

Runtime Detection and Prevention for

Structure Query Language Injection Attacks

PhD Thesis

Emad Shafie

Software Technology Research Laboratory

Faculty of Technology

De Montfort University

England

This thesis is submitted in partial fulfilment of the requirements for the

Doctor of Philosophy.

May, 2013

ii

Abstract

The use of Internet services and web applications has grown rapidly because of user

demand. At the same time, the number of web application vulnerabilities has increased

as a result of mistakes in the development where some developers gave the security

aspect a lower priority than aspects like application usability. An SQL (structure query

language) injection is a common vulnerability in web applications as it allows the

hacker or illegal user to have access to the web application’s database and therefore

damage the data, or change the information held in the database. This thesis proposes a

new framework for the detection and prevention of new and common types of SQL

injection attacks.

The programme of research is divided in several work packages that start from

addressing the problem of the web application in general and SQL injection in

particular and discuss existing approaches. The other work packages follow a

constructive research approach. The framework considers existing and new SQL

injection attacks. The framework consists of three checking components; the first

component will check the user input for existing attacks, the second component will

check for new types of attacks, and the last component will block unexpected

responses from the database engine.

iii

Additionally, our framework will keep track of an ongoing attack by recording and

investigating user behaviour. The framework is based on the Anatempura tool, a

runtime verification tool for Interval Temporal Logic properties. Existing attacks and

good/bad user behaviours are specified using Interval Temporal Logic, and the

detection of new SQL injection attacks is done using the database observer component.

Moreover, this thesis discusses a case study where various types of user behaviour are

specified in Interval Temporal Logic and show how these can be detected.

The implementation of each component has been provided and explained in detail

showing the input, the output and the process of each component. Finally, the

functionality of each checking component is evaluated using a case study. The user

behaviour component is evaluated using sample attacks and normal user inputs. This

thesis is summarized at the conclusion chapter, the future work and the limitations will

be discussed.

This research has made the following contributions:

 New framework for detection and prevention of SQL injection attacks.

 Runtime detection: use runtime verification technique based on Interval Temporal

logic to detect various types of SQL injection attacks.

 Database observer: to detect possible new injection attacks by monitoring database

transactions.

 User’s behaviour: investigates related SQL injection attacks using user input, and

providing early warning against SQL injection attacks.

iv

Acknowledgment

I start my thanks to God who supported me to carry out this work, there were many

difficulties and stresses at times but he opened new gates that resolved my mind and

personality to look back afresh at my studies again. The encouragement, pushing, and

support provided by Dr. Antonio Cau who is my supervisor. I really owe him for his

help. We started together doing this research and he guided and supported me at every

step of this research. This research under his supervision was interesting and without

his support and patience it would have been difficult to achieve. Many thanks for the

STRL staff, especially for Prof. Hussein Zedan who is the STRL director and who

created this helpful study environment for me and other PhD students. I also express

my thanks to Dr. Helge Janicke and Dr. Francois Siewe for their advice and

discussions that were helpful. Furthermore, I would like to express my thanks to Dr.

Turki Alsommani and Dr. Yaser Alasaleh whose support encouraged me to carry on

with this study. I will never forget to express my appreciation to all my STRL friends,

even those who have graduated or who are still carrying on in their study especially,

Dr. Ali Alzahrani , Dr. Adeeb Alnajjar, Dr. Hani AlQuhaiz, Dr. Meshrif Alruily and Dr

Sulaiman Alamru. Our friendship started here at DMU and hopefully will continue

forever.

v

Many thanks also to Lindsey Trent and her mother, Mrs Lynn Ryan, for their friendly

help to all STRL students.

Many thanks to the DMU library staff for their cooperation and continuing smiles.

vi

Dedication

To my loving parents

I dedicate this work to my great father, Mr. Abdulrahman Shafie, who has been a

permanent source of motivation and endless support throughout my life, and who tried

and worked a lot for me to be what I am now. I will never forget my loving mother

who gave and still gives me her love, kindness, tenderness and supports me for

everything and everywhere in my life.

To my beloved family

I also dedicate this work to my loving wife who has looked after me and my children

during this period and was so patient despite me being a long time away from home.

This work is also dedicated to my children Abdulrahman, Adnan, Layan, and Lana.

I will also never forget my brothers and sisters and this work is dedicated to them as

well. I hope that by obtaining this degree I can rejoice with them and add some small

pleasure to their life and that I can put a little smile on their faces.

vii

Declaration

I, Emad Shafie, declare that this thesis titled ‘Runtime Detection and Prevention for

SQL injection attacks, and its contents are my own and original work and it is

submitted for the degree of Doctor of Philosophy, at the Software Technology

Research Laboratory (STRL), De Montfort University. This work has never been

submitted before in any other university. The work was undertaken by me between

October 2009 and May 2013.

viii

Publications

Emad Shafie and Antonio Cau. A Framework for the Detection and Prevention of

SQL Injection Attacks. In Proceedings of the 11th European Conference on

Information Warfare and Security ECIW-2012, 2012.

ix

Contents

Abstract ... ii

Acknowledgment ... iv

Dedication .. vi

Declaration .. vii

Publications .. viii

Contents ... ix

List of Figures .. xiv

List of Tables.. xvi

List of Listings .. xvii

Acronyms ... xviii

Chapter 1 ... 1

Introduction ... 1

1.1. Background .. 2

1.2. Motivation and Research Objectives .. 2

1.3. Research Question .. 4

1.4. Scope of the Research .. 4

1.5. Research Methodology ... 5

1.6. Success Criteria .. 7

1.7. Thesis Outline ... 7

Chapter 2 ... 9

Background and Related Works ... 9

2.1. Introduction .. 10

2.2. Web Applications Review .. 10

2.2.1. Web Application Architecture .. 11

2.3. Web Application Security .. 13

2.3.1. Hacking Definition ... 14

x

2.3.1.1. Hacking Types .. 14

2.3.1.2. Hacking Aims ... 15

2.4. Hacking Web Application .. 15

2.4.1. Web Application Vulnerabilities .. 16

2.4.2. Web Application Vulnerabilities Scanning Tools 20

2.5. SQL Injection ... 21

2.5.1. SQL Injection Technique and Examples .. 21

2.5.2. SQL Injection Classification ... 22

2.5.2.1. Tautology Query ... 23

2.5.2.2. Piggy-Backed Query ... 23

2.5.2.3. UNION Query ... 25

2.5.2.4. Logically Incorrect Query ... 26

2.5.2.5. Stored Procedures.. 27

2.5.2.6. Inference Query ... 27

2.5.2.6.1. Blind Injection Inference ... 28

2.5.2.6.2. Timing Inference Query .. 28

2.5.2.7. Alternate Encoding.. 29

2.5.2.8. Inline Comments ... 30

2.6. Automated SQL Injection Attacks ... 31

2.6.1. SQL Injection Tools.. 32

2.6.2. False Positive and False Negative .. 35

2.7. Detection and Prevention Existing Approach .. 35

2.7.1. Controlling the User Input .. 36

2.7.2. Scanning Tools Using Black Box Testing Approaches 36

2.7.3. Scanning Tools Using White Box Testing Approaches 38

2.7.4. SQL Randomisation Approach ... 40

2.7.5. Filtering Input (String Analysis) approaches .. 40

2.7.6. Taint data Approaches .. 41

2.7.7. Static and Dynamic Approaches ... 43

2.8. Motivation Revisited .. 46

2.9. Summary .. 47

xi

Chapter 3 ... 49

Preliminaries ... 49

3.1. Introduction .. 50

3.2. Temporal Logic Background .. 50

3.2.1. Examples of Using Temporal Logic ... 51

3.3. Interval Temporal Logic ... 52

3.3.1. ITL Syntax ... 53

3.3.2. ITL Semantic ... 54

3.2.3. Derived Constructs .. 55

3.2.4. Examples of ITL .. 56

3.3.5. Why ITL? .. 57

3.4. Tempura .. 58

3.4.1. Tempura Syntax .. 58

3.5. Anatempura .. 67

3.6. Using of Anatempura in Our Framework ... 71

3.7. Summary .. 72

Chapter 4 ... 73

Architecture of Detection and Prevention Framework ... 73

4.1. Introduction .. 74

4.2. Overview of Detection and Prevention Framework (DPF) 74

4.3. Initial Phase (receiving Data) ... 77

4.3.1. Initial Capture of User Input ... 77

4.3.2. Users .. 78

4.3.3. Capturing Data .. 79

4.4. Checker Phase .. 79

4.4.1. Input Checker Component ... 80

4.4.2. Database Observer Component ... 80

4.4.3. Output Checker Component .. 83

4.5. Decision Phase ... 83

4.5.1. Feedback Component .. 83

4.5.2. User’s Behaviours Component .. 84

xii

4.5.3. Example of user’s Behaviour .. 86

4.5.4. Updating of User’s Behaviour Component ... 87

4.5.5. Updates Existing Attack Patterns Component .. 87

4.6. Summary .. 87

Chapter 5 ... 88

Detection and Prevention Framework Implementation .. 88

5.1. Introduction .. 89

5.2. Implementation Assumptions ... 89

5.3. DPF Components Implementation ... 90

5.3.1. Capturing Data Component .. 91

5.3.2. The input Checker ... 96

5.3.3. Behavioural Functions .. 104

5.3.4. Implementation of Database observer .. 107

5.3.5. Implementation of Output Checker .. 109

5.4. Summary .. 111

Chapter 6 ... 112

Detection and prevention framework Evaluation ... 112

6.1. Introduction .. 113

6.2. Evaluation Criteria ... 113

6.3. Real Web Application Testing ... 114

6.4. Single Input Checking .. 116

6.4.1. User Input Samples Testing .. 116

6.4.2. Input Checker Limitations ... 126

6.5. DB Observer Testing .. 127

6.6. Output Checker Testing .. 130

6.7. Behavioural Functions Testing ... 132

6.8. Related Work Comparison ... 138

6.9. Summary .. 141

Chapter 7 ... 142

Conclusion .. 142

7.1. Summary of the thesis .. 143

xiii

7.2. Contribution .. 144

7.3. Success Criteria Revisited .. 145

7.4. Limitations .. 146

7.5. Future work .. 147

Bibliography .. 149

Appendix 1: Java Code ... 158

Appendix 2: PHP Code ... 161

Appendix 3: Tempura Code .. 164

xiv

List of Figures

Figure 2.1 Architecture of Web Application... 11

Figure 2.2 OWASP Top 10 for 2010 .. 16

Figure 2.3 SQLdict Tool ... 33

Figure 3.1 Model Checker Technique. ... 68

Figure 3.2 Anatempura Technique. .. 69

Figure 3.3 General Architecture of Anatempura... 69

Figure 3.4 The Main framework Architecture .. 71

Figure 4.1 The Architecture of Detection and Prevention Framework 75

Figure 4.2 Initial specifications ... 78

Figure 4.3 Capture Data component ... 79

Figure 4.4 Database Observer ... 81

Figure 4.5 Transactions Relation .. 84

Figure 4.6 Examples of User Behaviour ... 85

Figure 5.1 Implementation General Architecture ... 91

Figure 5.2 Http Request Extracting Data .. 92

Figure 5.3 Preparing Procedures ... 95

Figure 5.4 The Input Checker ... 96

Figure 6.1 Web Application Input Sample ... 114

Figure 6.2 Booting of Java RMI Server and The Result ... 115

Figure 6.3 Tempura Tab and the Analysis Result ... 116

Figure 6.4 The Analysis Result of Safe Input Samples .. 119

Figure 6.5 The Analysis Result of Tautology Attack Samples 122

Figure 6.6 The Analysis Result for Piggy-back Attack Samples 124

Figure 6.7 The Analysis Results for Union Attack Samples 125

Figure 6.8 False Positive of the Checking Result ... 127

Figure 6.9 Database Observer Rejected Value ... 128

Figure 6.10 Database Observer Accepted Value Example ... 129

file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691638
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691639
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691640
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691641
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691642
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691644
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691646
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691647
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691648
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691650
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691652
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691655
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691656
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691658
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691659
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691661
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691662
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691663

xv

Figure 6.11 Database Observer Accepted Value Example 2 130

Figure 6.12 Sample of Web Application Page Error .. 131

Figure 6.13 Sample of Error Handling .. 132

Figure 6.14 Analysis Results of the Behaviour Input Samples 135

Figure 6.15 User's Behaviour Results ... 136

file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691665
file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/After%20Viva/Emad%20Shafie%20Thesis_9_26.docx%23_Toc369691666

xvi

List of Tables

Table 3.1 ITL Syntax .. 53

Table 3.2 Interval Operations .. 54

Table 3.3 Non Temporal Constructs ... 55

Table 3.4 Temporal Constructs ... 56

Table 4.1 Selective User’s Inputs.. 86

Table 5.1 Input String S .. 97

Table 5.2 Safe Symbols... 99

Table 6.1 Samples of Good Input ... 117

Table 6.2 Tautology Attack Samples. ... 121

Table 6.3 Piggy-back Attack Samples .. 123

Table 6.4 Union Query Attack Samples ... 124

Table 6.5 Behaviour Input Samples .. 134

Table 6.6 Existing Approaches Comparison with the DPF (1) 139

Table 6.7 Existing Approaches Comparison with the DPF (2) 140

file:///C:/Documents%20and%20Settings/omdah/My%20Documents/Dropbox/PHD/Write/Emad%20thesis/Emad%20Shafie%20Thesis_5_141.docx%23_Toc356820693

xvii

List of Listings

Listing 3.1 Java Assertion Point.. 70

Listing 5.1 PHP script: Sending Value from PHP to Java .. 93

Listing 5.2 Java Code: Checking Input Method ... 93

Listing 5.3 Tempura Code: inspecting and Sending Data to Java 94

Listing 5.4 Tempura Code: SearchSpecKword function .. 98

Listing 5.5 Tempura Code: Checking for Double Dash Characters 100

Listing 5.6 Tempura Code: Checking for hexadecimal encoded injection 102

Listing 5.7 Tempura Code: Checking for Alternative Encoded Injection 103

Listing 5.8 Tempura Code: The CheckingModel Procedure 106

Listing 6.1 The Code of Checking Model Test. .. 118

file:///F:/Emad%20thesis/Emad%20Shafie%20Thesis_5_141.docx%23_Toc356843949
file:///F:/Emad%20thesis/Emad%20Shafie%20Thesis_5_141.docx%23_Toc356843950
file:///F:/Emad%20thesis/Emad%20Shafie%20Thesis_5_141.docx%23_Toc356843951
file:///F:/Emad%20thesis/Emad%20Shafie%20Thesis_5_141.docx%23_Toc356843952
file:///F:/Emad%20thesis/Emad%20Shafie%20Thesis_5_141.docx%23_Toc356843953
file:///F:/Emad%20thesis/Emad%20Shafie%20Thesis_5_141.docx%23_Toc356843954
file:///F:/Emad%20thesis/Emad%20Shafie%20Thesis_5_141.docx%23_Toc356843955
file:///F:/Emad%20thesis/Emad%20Shafie%20Thesis_5_141.docx%23_Toc356843956

xviii

Acronyms

SQL Structure Query Language

DB Database

TCP Transmission Control Protocol

URL Uniform Resource Locator

HTML Hyper Text Mark-up Language

HTTP Hypertext Transfer Protocol

LDAP Lightweight Directory Access Protocol

OS Operating System

SSL Secure Socket Layer

TLS Transport Layer Security

OWASP Open Web Application Security Project

XSS Cross Site Scripting

DBMS Database Management System

DPF Detection and Prevention Framework

DOM Document Object Model

SPDL Security Policy Description Language

BDDs Binary Decision Diagrams

PQL Programme Query Language

JSA Java String Analysis

API application program interface

ITL Interval Temporal Logic

CTL Computation Tree Logic

CTPL Computation Tree Predicate Logic

LTL Linear Temporal Logic

MOFTL Metric First Order Temporal Logic

Chapter 1

Introduction

Objectives

 Present an introduction and the scope of this research.

 Identify the research problem statement and the motivation of this research.

 Highlight the research objectives and the success criteria.

 Provide the adopted methodology for this research.

 Provide the thesis outline.

Chapter 1 – Introduction

2

1.1. Background

Web based applications are a very important part of the internet because it enables

the transfer of data and services such as banking applications and governmental

applications via the Internet. However, the big challenge of using these type of

applications is how to increase the confidence of using these environments? And one

of the most important points is securing these applications against various types of

web application attacks. Web application vulnerabilities have been used to exploit

and damage these applications, such as SQL injection, insecure cryptographic

storage and XSS (Cross Site Scripting) etc. For example, Yahoo has been attacked in

July 2012, and more than 400,000 users password and information are stolen (BBC

2012). Another example is that, the hacking of the Nokia developer’s network in

August 2011, the hacker stole personal information such as email, date of birth etc

(BBC 2011). The exploited vulnerabilities in these examples were SQL injection.

SQL injection vulnerabilities have been chosen to be investigated in this research.

The following highlights the motivation of our selection.

1.2. Motivation and Research Objectives

Web application vulnerabilities are a big area of research as there are various types

of them. SQL (Structure Query Language) injection is a common and dangerous

example (OWASP 2010, Clarke 2012). This vulnerability type allows the attacker to

damage and steal the information of the web application. SQL injection attacks can

be done using various techniques, some of them are manual based on the attacker

experience in the structure of the web application and use of SQL commands, and the

Chapter 1 – Introduction

3

other is automated using existing injection tools. This research is one of many

researches dealing with the SQL injection problem (Boyd, Keromytis 2004, Huang,

Huang et al. 2003, Jovanovic, Kruegel et al. 2006, Kemalis, Tzouramanis 2008,

Kieyzun, Guo et al. 2009, Liu, Yuan et al. 2009). The existing approaches focus only

on blocking SQL injection attacks using various techniques, such as static analysis

that analyses the a source code of web application and determines the access points

of application database (Fu, Lu et al. 2007), filtering user inputs that removes the

injecting SQL keywords (Shrivastava, Bhattacharyji 2012) or runtime monitoring

approach that monitor the user inputs (Halfond, Orso 2006). The existing approaches

will be discussed in detail in Chapter 2.

The existing approaches consider SQL injection attacks to consist of a static run of

one step, whereas we consider them to be dynamic and consisting of several steps.

For example, if the attacker tries to inject a web application using SQL injection that

requires at least three steps, the first step determines the database type, and the

second step recognizes the database structure and the last step will exploit and

damage the application. In addition, the existing approaches have developed

detection techniques that can block existing attacks but cannot deal with new attacks.

For example, static analysis approaches have been used to determine weak points in

the application and this does not protect the application against new forms of attacks

despite the protection is more important than detection. Moreover, the dynamic

approaches are monitoring the user input looking for existing attacks, some of them

check the sequence of SQL statements at runtime and others compare the SQL

Chapter 1 – Introduction

4

statement structure derived from static analysis with those at runtime. Therefore, the

problem statement for this research is:

 The existing detection approaches are static and consider only one step attacks.

 The detection technique should handle new type of attacks.

 Thus, the research objectives can be summarized as follows:

 Develop a novel technique to analyse the user input against SQL injection attacks

that can deal with new attack patterns.

 Develop a new approach to model the attack behaviour based on the user input.

 Evaluate the result and compare the proposed approach with existing approaches.

1.3. Research Question

The question discussed in this research is as follows:

How to detect new and existing SQL injection attack patterns and how to profile

the attacker behaviour?

A research programme has been proposed in section 1.5 to answer this question.

1.4. Scope of the Research

Several attack types can be used for damaging the underlying tier of a web

application, these attacks can be done by exploiting one of the existing vulnerabilities

of this application like XSS or insecure misconfiguration etc. This research focuses

on the detection and prevention of SQL injection attacks that send HTTP requests to

the application server. As aforesaid, there are many studies that tackle the problem of

SQL injection attack, such static or dynamic analysis. This research focus on SQL

injection attack for the following reasons:

Chapter 1 – Introduction

5

 SQL injection is classified in OWASP 2007 as second common security

vulnerability of top ten vulnerabilities, and in 2010 and 2013 OWASP

statistics it is classified as the most dangerous one (OWASP 2010, OWASP

2013).

 To deal with the web application vulnerabilities requires focussing on a

specific type of web application vulnerabilities.

The development language that is chosen for this research is PHP and the database

type is MYSQL. Our section is based on the fact that PHP and MYSQL are free

resources and they can be installed using one execution file like “WampServer”

(Bourdon. 2013).

1.5. Research Methodology

This research follows a constructive research method (Iivari 1991). We develop a

new framework for the detection and prevention of SQL injection attacks that can

detect new and existing attacks in addition to monitor ongoing attacks. The

monitoring will be based on ITL (Interval Temporal Logic) and will use the

Anatempura runtime verification tool. Thus, our research programme consists of the

following work packages:

Work package 1: The research background and the related work.

This work package starts with discussing the architecture and security of web

applications, highlighting the type of hacking. It provides a summary of web

application vulnerabilities. SQL injection vulnerabilities types will be discussed in

detail with an illustrative example of each SQL injection type. The SQL injection

Chapter 1 – Introduction

6

techniques, i.e., manual or automated will be discussed in detail. The existing

approaches for detection and prevention of SQL injection attacks will be discussed

critically highlighting related work and motivating our approach.

Work package 2: The framework architecture.

This work package provides an overview of the proposed detection and prevention

framework and presents the design, discussing its components including the input,

the output and the process for each component. The architecture incorporates the

monitoring tool Anatempura. Furthermore, the interaction between these components

will be discussed.

Work package 3: Implementation.

In this work package the detection and prevention framework will be implemented.

The implementation includes the attacks specification, the detection functions, new

attacks detection procedures and the behavioural function for dealing with related

attacks.

Work package 4: The evaluation.

This work package evaluates the effectiveness of the detection and prevention

framework and its components, implemented in work package 3. The evaluation will

test the checking components individually. The behavioural functions will be tested

using a case study that involves sequences of user input. The testing results will be

analysed to measure the effectiveness of our framework. This work package also

contains a comparison between the proposed framework and existing approaches.

Chapter 1 – Introduction

7

1.6. Success Criteria

The success of this research will be measured according to its ability of answering

the research question, in addition to achieve the research objectives. Thus, the

success of this framework and its implementation will be judged according to

following criteria:

 The framework can detect and prevent existing SQL injection attack types.

 The runtime verification tool is suitable for monitoring SQL injection attacks.

 The framework can detect new types of SQL injection attacks.

 ITL is suitable to model attack behaviour.

1.7. Thesis Outline

As mentioned in the previous sections, this chapter provides an introduction that

discusses the motivation of this research and specifies the research problem and the

scope of this research. Moreover, the research aims and the success criteria have

been highlighted. This thesis is organized as follows:

 Chapter 2 introduces web applications and gives an overview of their

architecture. Furthermore, it discusses the security of these applications and

discusses several web application vulnerabilities in general. Moreover, this

chapter discusses existing SQL injection attacks techniques. The chapter

concludes with an overview of existing approaches for the detection and

prevention of SQL injection attacks.

 Chapter 3 provides an overview of temporal logic in general and ITL in

particular, showing its syntax and semantics and presents a justification of our

Chapter 1 – Introduction

8

selection of ITL. Tempura the executable subset of ITL will be discussed using

examples. In addition, the Anatempura tool will be reviewed, discussing its

features and architecture and its use in our framework.

 Chapter 4 provides and discusses the detection and prevention framework and its

architecture and components. Each component will be explained in detail, in

addition the interaction between these components will be discussed. This

chapter will also give examples of attack behaviour.

 Chapter 5 provides the implementation assumption and the implementation

requirements and the reasons of this selection. It also presents the implemented

functions and discusses how each component of our framework is implemented.

 Chapter 6 provides the evaluation criteria and the results of testing each

component of the framework. The results will be used to measure the

effectiveness of each component of the framework. This chapter also contains a

comparison of our approach with existing approaches that tackle the problem of

SQL injection attacks.

 Chapter 7 summarizes the thesis and discuss the proposed framework illustrating

its limitations and strengths. It then revisits the success criteria of our research

and then discusses future work.

Chapter 2

Background and Related Works

Objective

 Reviewing web application architecture.

 Providing a summary of web application vulnerabilities.

 Explaining the problem of SQL injection attacks in detail.

 Discussing the existing approaches.

 Highlighting the related work underpinning the motivation of our approach.

Chapter 2 - Background and Related Works

10

2.1. Introduction

The security of web applications is a concern for many organizations such as banks,

universities and other companies. To understand the security aspects of web

applications requires being conversant with the basic knowledge of the architecture

of web applications and the general process of the transformation of the data in a web

application. This chapter provides in general the architecture and the main concept of

web application, and it also discusses in detail the web application vulnerabilities,

especially SQL injections. This chapter is divided and organized into several

sections. Section 2.2 reviews the web application in general and highlights the web

application architecture. Section 2.3 highlights the main concept of web application

security describing the concept of hacking in general and its aims and types. Section

2.4 defines the hacking of a web application and explains various types of web

application vulnerabilities. Section 2.5 describes SQL injection techniques in detail.

Section 2.6 discusses SQL injection automated attacks and some of the existing

injection tools. Section 2.7 discusses the existing approaches that are proposed to

address SQL injection vulnerabilities. Section 2.8 reviews the motivation of this

research and highlights the research problem. Section 2.9 concludes and summarizes

this chapter.

2.2. Web Applications Review

Due to rapid development of computer software and the Internet communications,

the online services have been increased. There are many institutions that have made

their services accessible via the Internet. Those institutions have various aims and

Chapter 2 - Background and Related Works

11

purposes depending on their activity, looking to attract the users to access their

webpage to achieve the best return of their availability on the Internet.

Consequently, the data and the services are normally placed in a web application.

The web application is a software system can be accessed by the user over the

Internet (Morley 2008). Another definition of web application is “any software

application that depends on the Web for its correct execution” (Gellersen, Gaedke

1999). Therefore, the previous definitions have agreed that a web application is an

application or software that depends on the web environment. Accordingly, the

features of a web application are similar to features of the web, such as accessibility,

availability, and scalability. The next section will specify the web application

architecture.

2.2.1. Web Application Architecture

In general the web based application consists of three layers which are as follows:

Logical layer, Middleware layer and Data layer as shown in Figure 1 (Woodger

Computing Inc 2012).

Figure 2.1 Architecture of Web Application

Chapter 2 - Background and Related Works

12

 Client layer: this layer is running in the user web browser and implements the

user interface to allow the user to enter or change data according to the applications

needs, and it allows the user to view the content of the web page as well. The client

layer uses two general techniques which are as follows:

 Dump technique: with this technique, the application page has been built by

using HTML code only. This type of pages can run with old versions of web

browsers. However, there is no validation at these pages which means the data

entry will be checked by the middle tier layer. Accordingly, if there is any error

caught by the middle layer, the page will post it back to the user browser.

 Semi-Intelligent technique: here the web page would be built by using Dynamic

html and JavaScript in addition to HTML. These pages are more flexible than

the dump technique and the developer can design the web page with some

options and validations of a user input that can be executed on the client side.

As the result, the developed page will be run with better performance.

 Middle Tier: this layer generally consists of two layers which are the presentation

layer and the business layer. The first one is for generating the web pages in addition

to its dynamic content. The other task of this layer is for decoding the submitted

pages that are coming as packets from the client who submitted these pages. Thus,

this layer can extract the data that is submitted by the user and send this data to the

business layer. The business layer is used to perform the logical part of the

application such as the calculation, and user validation. Additionally, this layer is

used to manage the application workflow and the access to the data layer.

Chapter 2 - Background and Related Works

13

 Data layer: this layer organizes and stores the data that is passed from the

business layer and retrieves the data that is required from the business layer as well.

Moreover, some data manipulation would be done in this layer. For example, the

business layer requires specific data from data layer. So, the preparation stage to

process the required data can be done in any layer whether business layer or data

layer. Similarly, if the data manipulation requires a calculation or collection of data

from multiple tables, then the database engine will process this request using the

database procedures (Woodger Computing Inc 2012).

The previous paragraphs described in general the web application layers; next we

will review the security of web application.

2.3. Web Application Security

Web Applications allow various types of users to access the obtainable services. The

permanent availability of web applications will increase the opportunity for everyone

who is looking to exploit and damage these applications for illegal purposes. The

people who are damaging a web application are commonly known as hacker or

attacker, and the technique is called hacking (Morley 2008). The developers are

working to implement a functional web application and they neglect the security side

(Antunes, Laranjeiro et al. 2009). Consequently, many approaches have been

developed to secure the web application against harmful attacks. Each approach is

looking for the solution from a special perspective; some approaches are looking to

secure the network, and other approaches to secure the application or the application

server. Thus, to secure the web application one needs to start finding the problem

Chapter 2 - Background and Related Works

14

that requires a solution. The next sections will highlight the common security

problems together with an explanation of the hacking aims and types.

2.3.1. Hacking Definition

Traditionally, the hacker notion was used to call anyone who explores or tries to

learn how the computer system works. Currently, the hackers meaning has been

changed because the objectives and the behaviour of the hacker has changed. The

new meaning of hacker is the person who inserts malicious code to stop the system

or to gain unauthorized access for personal or harmful purposes (Beaver 2007).

2.3.1.1. Hacking Types

In general, the hacking types can be classified according to the classification criteria

that are used to distinguish between the hacking types. The first classification is from

the ethical perspective, and there are two main types which are ethical and unethical,

the ethical one is to perform testing for the application to find the weak points by

using hacker techniques (Simpson, Backman et al. 2010). The unethical is gaining

access for malicious aims such as damaging the application database. Another

classification has done by (Beaver 2007) who classified hacking into several types

according to the hacking target which are as follows:

 Hacking a server by exploiting a unsecured port in the server.

 Hacking a network by stealing data which is transferring via the network.

 Hacking a personal computer by using unsecured ports or any other vulnerability

like exploiting internet explorer vulnerabilities to steal personal information.

 Hacking a web applications starting with exposing the applications vulnerability

Chapter 2 - Background and Related Works

15

and then exploiting it.

Therefore, different types of hacking pose a threat to the web environment.

Accordingly, the security of web applications depends on how to secure this

application starting from the user computer to the application server.

2.3.1.2. Hacking Aims

The hacker’s aim can be predicted from the attacker intent and his target. However,

there is no order that can determine who comes first. Thus, the hacking aims are

important and can be used to determine the hacking reasons. For example, the

hacking of the data layer of a web application is aiming for multiple objectives

 Rigging of the web data either by adding or modifying the data.

 Stealing information by extracting the data.

 Affect the web database performance by running database remote commands

(Halfond, Viegas et al. 2006).

Another example is, the network hacking which is a result of insufficient protection

of the system network. The target here is the system network and some of the aims

are

 Monitoring the user data.

 Stealing important information that is sent by the user.

The mentioned examples show some of the common hacking aims which are related

to hacking target. In other words, the attacker’s targets determine the attacker’s aims.

2.4. Hacking Web Application

As aforesaid, hacking in general is gaining unauthorized access to execute or achieve

Chapter 2 - Background and Related Works

16

illegal activities. This unauthorized access can be done by exploiting one or more of

the web applications vulnerabilities. Therefore, the question here is what is a web

application vulnerability? What types of vulnerabilities do exist? The next sections

will describe types of web application.

2.4.1. Web Application Vulnerabilities

The common threat against the security of web application is the widespread

occurrence of different types of web application vulnerability. A vulnerability is a

weak point or gap in the application which allows the malicious attacker to endanger

the application stakeholders. The user, the owner and other objects that are

depending on the application are considered to be stakeholders (OWASP 2011).

There are several types of web application vulnerability; each one has special

properties, such as the vulnerability style, the detection and prevention techniques.

Figure 2.2 shows the statistics of OWASP (open web application security project)

top ten vulnerabilities which have classified the percentage of the vulnerability that is

used in the hacking of web application in 2010.

The statistics have been conducted according to the number of exploiting the same

Figure 2.2 OWASP Top 10 for 2010

Chapter 2 - Background and Related Works

17

vulnerability. Accordingly, the OWASP top ten 2010 vulnerabilities are as follows:

 Injection:

This type occurs when the attacker injects the application command or queries by

untrusted data. The application interpreter will execute the injected command

together with the normal command of the application. In this way, the application

data will be affected by unauthorised accesses, as well as the execution of unintended

commands. The common example of this type is SQL (structure query language), OS

(operating system), and LDAP (Lightweight Directory Access Protocol) injection.

 Cross Site Scripting (XSS):

This type happens as a result of poor validation of the untrusted data which is sent

via the web application to the web browser. This vulnerability allows a harmful

script to run at the victim’s computer. Moreover, these vulnerabilities can be

classified in two categories which are the first order and the second order attacks.

The first order one will be done by inserting script in application page or attract the

victim to click on an infected URL that contains a malicious script. The second one

is persistent as the attacker can store the malicious script in the application database

and can run it permanently. As a result, the attacker can redirect the victim to other

malicious sites (Kieyzun, Guo et al. 2009).

 Broken Authentication and Session Management:

This vulnerability allows the attacker to hijack the user session or password by

compromising it, and using the hijacked information for harmful purposes like

exploiting the session as another user. This vulnerability resides in the application as

Chapter 2 - Background and Related Works

18

a result of poor implementation of the authentication function.

 Insecure Direct Object References:

This vulnerability allows the attacker to direct the web application references to be

used with other resources. In other words, it allows the attacker to gain unauthorised

access of specific resources. This vulnerability is a developer’s mistake, because the

exposed references of internal object like directory or file are exposed by the

developer.

 Cross Site Request Forgery:

This type of attack allows the attacker to control the web browser of the victim’s

computer forcedly, and they can generate requests and send them to the application

as if the requests were sent from the victim.

 Security Misconfiguration:

This vulnerability is a result of misconfiguration between the system components or

neglect of the last update of these components. Therefore, to avoid this type of

vulnerability, the system requires a secure configuration for all components. The

configuration must be done for system implementation and maintenance (do not use

default security option). Moreover, all system software must be up to date starting

from the OS to DBMS. For example, if there is a XSS flows in the components. The

new update has fixed this problem at the application level but not in application

library. These differences can be found easily by the attacker.

 Insecure Cryptographic Storage:

 The sensitive data in a Web application must be secure enough with suitable hashing

Chapter 2 - Background and Related Works

19

or encryption techniques to avoid attacks, such as stealing or modifying important

data like credit card information or authentication credentials. Thus, if the attacker

can gain unauthorized access to a web application databases, he cannot use the stored

data as it is encrypted.

 Failure to Restrict URL Access:

Some developer lets URL application links point directly to some of the application

pages. Normally, the attackers are looking to find the hidden pages by changing the

ULR address to access it.

 For example, if the link of page is http://example.co.uk/webapp/mainpage and the

attacker will manipulate the URL to http://example.co.uk/webapp/admin_page, then

the attacker can gain unauthorised access to other pages. To avoid this vulnerability,

the checking of URL access is required for each page of the web application.

 Insufficient Transport Layer Protection:

The web application transport protection is important to keep the data transport

secure and protected. Many applications have used SSL (Secure Sockets Layer) or

TLS (Transport Layer Security) protocols to protect the application data. This

vulnerability is a result of weak protection of the transport layer like using expired

certificates which are supplied by the SSL provider. For, example, if the network is

not secured by SSL the attacker can monitor the network and see the victim’s session

or cookies then the attacker can used the victim’s information through the user

session.

 Unvalidated Redirects and Forwards:

 One of the web browsing features allows the user to move through the web pages by

http://example.co.uk/webapp/mainpage
http://example.co.uk/webapp/admin_page

Chapter 2 - Background and Related Works

20

redirect or forward. With this moving, validation is required to be sure there is no

wrong access for those pages and the redirected and forwarded pages are not

changed. The attacker can change the victim’s destination pages to other malware

sites (OWASP 2010).

The mentioned vulnerabilities are the top ten of 2010, there are other vulnerabilities

in a web application such as malicious file execution. Moreover, there are several

studies and tools for the detection of the various types of web application

vulnerabilities. The next section will highlight some of the scanning tools that are

used to expose and determine those vulnerabilities.

2.4.2. Web Application Vulnerabilities Scanning Tools

Due to the increasing security risk in web applications which is the result of the

spread of different type of vulnerabilities, there are many tools to scan those

vulnerabilities such as Nikto, W3af, Skipfish, Acunetix and Appscan and others

(Lyon 2011) ; some of these tools are as follows:

 Nikto is a comprehensive solution of web application scanner that can find around

3200 possibly unsafe points. Moreover, it is an open source tool and can be used with

multiple types of application server as well as with multiple operating systems like

Linux, and Windows. Moreover, this tool is frequently updated to handle the latest

vulnerability (Sullo, Lodge 2012).

 (Sullo, Lodge 2012)(Sullo, Lodge 2012)(Sullo, Lodge 2012)(Sullo, Lodge

2012)Acunetix is a commercial scanning tool produced by Acunetix Company. This

tool has many features in addition to being a web vulnerability scanner, such as

Chapter 2 - Background and Related Works

21

scanning a web server for unsecure ports. It uses an intelligent and fast crawler that

can scan many pages with high performance in addition to detect the type and the

application language of the web server automatically (Acunetix 2012).

The mentioned tools are examples of tools that can detect and block various types of

web application vulnerabilities. This research will explore one type of vulnerability

which is the SQL injection vulnerability. The next section will describe SQL

injection vulnerabilities.

2.5. SQL Injection

SQL injection is a common vulnerability used for hacking web application databases

by executing a malicious SQL code injected by the attacker. It also has been

classified as the first dangerous vulnerability regarding to OWASP statistics

(OWASP 2010). Moreover, the problem of this type of attack is that it cannot be

handled or controlled by a firewall or other communication security approaches

which are used in the prevention of network hacking. Because the attackers using

this type of vulnerability can gain access to the web application through the http

protocol (Fu, Lu et al. 2007).

2.5.1. SQL Injection Technique and Examples

To serve the user at a website, user information is required. Accordingly, web

applications usually provide a login page containing two text fields to allow the user

to enter his user name and password. After the user entry, the data will be submitted

and the user information will be sent to the web application database to check the

user information. By submitting the user data, this data will be sent to the web

Chapter 2 - Background and Related Works

22

application database using the following SQL statement:

Select * from UserTable where username= “user_entry_name” and userpassword

=”user_entry_password”

When this SQL statement is executed, the system will return the result of the query.

If the user data is valid then the web application permits the user to access other

pages at the website or the user input will be rejected and the login page reloads

again. However, there is another scenario which is if the user enters the following

code at the user name field (user name or ‘1’=’1’ - -) then the SQL statement will be

like the following:

SELECT * FROM UserTable WHERE username = “user name ‘ or ‘1’=’1’ # “

At this stage the database engine considers any code after WHERE as a conditional

statement, and when the database interpreter find “or 1=1 – “, the check condition is

always equal to true. Moreover, any code or condition after the double dash will be

ignored. Consequently, the attacker will have unauthorized access to this web

application.

This last example is a highlight of one the Tautology query or Tautology based SQL

injection attack (Halfond, Viegas et al. 2006, Fu, Lu et al. 2007, Kim 2010). This

attack type is done by injecting the web application with a command statement that

usually returns true. There are more SQL injection attack types which will be

discussed in the next section. There is also a clarifying example for each type.

2.5.2. SQL Injection Classification

According to (Halfond, Viegas et al. 2006) there are different types of SQL injection

Chapter 2 - Background and Related Works

23

techniques. Each type can be done in isolation or in combination. This depends on

the attacker’s experience, aims and behaviour. In this section various types of SQL

injection attacks will be discussed. In addition, for each type there is an illustrative

example.

2.5.2.1. Tautology Query

The example in the introduction was a tautology query attack. In this technique the

condition statements usually return true or are evaluated to true. When the attacker

injects the condition statements of the web application query by malicious code, the

attacker is aiming to keep the value of condition statements equal to true. This

technique usually uses the login page to inject the login field with “or 1=1”.

2.5.2.2. Piggy-Backed Query

The purpose of this type of attack is to inject the original query with an additional

query. All queries will be executed in sequence starting with the original one. This

attack is different from others because the attackers are not changing or editing the

original query, they are just attempting to add new queries and attach them to the

original one. Accordingly, the database engine will receive more than one query, the

first query will executed as normal then the second or others will be executed next.

Consequently, if the second query was executed successfully, the attackers can

execute and inject any SQL command such as stored procedures or any other

command. This vulnerability type normally needs a special database engine

configuration to allow the attacker to execute harmful SQL commands. In other

words, the database engine configuration allows the database system to execute

Chapter 2 - Background and Related Works

24

single string including multiple command statements. For example, suppose that the

following code “ ; drop table UserTable - - ” has been inputted at the login field of

the login system page. The scenario will be as follows:

SELECT * FROM UserTable WHERE username = ‘ any ;DROP TABLE UserTable - - ‘AND

userpassword =’ user_entry_password’

After submitting the login page the web application will send this information to the

database engine. Then, the database engine will run the login query as routine. As the

query is executed the database engine will find the query delimiter “;” or semi

comma, so the database will execute the injected code by default. At this stage the

user table will be dropped and the system will lose the user data. Another example is,

suppose that the database type was an MS-SQL database, and the attacker injects the

vulnerable parameter with the SHUTDOWN command. Therefore, the scenario will

be as follows:

SELECT * FROM UserTable WHERE username = ‘user_entry_name‘ AND userpassword =’ ;

SHUTDOWN -- user_entry_password’

The database engine will execute the query starting to execute the first part of the

query and return null, and then the second part of the query which includes the

injected command. Consequently, the injected command will shut down the database

(Stuttard, Pinto 2011). One more example is, if the attacker injects the query with a

statement to insert user data in above scenario. At this stage the attacker can add

wrong information to the database system. Note that there are differences between

databases engine to separate the queries. Accordingly, the good way to detect and

prevent this type of attack is using an effective technique for validation of the user

Chapter 2 - Background and Related Works

25

entry at runtime by scanning and analysing queries to find query separations, as well

as a correct (safe) database configuration (Lee, Jeong et al. 2012, Kim 2010).

2.5.2.3. UNION Query

The idea behind the union query attack is similar to the other SQL injection types;

the attackers are looking for a vulnerable parameter and try to exploit it by changing

the data set which is returned for a submitted query. In addition, by using this

technique the application will receive different results from the database instead of

the one programmed by the developer. This technique starts with injecting the

vulnerable parameter using the UNION SELECT keyword, so the attacker can

control the second query to obtain the database information. Moreover, data will be

available from any table and the attacker can just choose which data he/she wants or

from any specific table. Referring to the last example, if the attacker injects the

submitting query at student login page as follows:

UNION SELECT StudentName ,StudentId,StudentPass from Students where StudentId =’P07013000’

Therefore the submitted query will be like the following:

SELECT * FROM StudentTable WHERE StudentName = ‘StudentID’ AND StudentPass =’ any‘

UNION SELECT StudentName ,StudentId,StudentPass from Students where StudentId =’P07013000’

At this stage, the database engine will execute the first query and return null, and

then it will execute the second query and returned the student data including the

login information. Consequently, the attacker has unauthorised access to the system

and can change or edit any student data. Note that there are previous attack steps

Chapter 2 - Background and Related Works

26

using other SQL injection attack types to let the attacker know the database structure

before starting with this technique such as an illegal query attack (Anley 2002, Spett

2002, Fu, Lu et al. 2007, Halfond, Orso 2006).

2.5.2.4. Logically Incorrect Query

Logically Incorrect Query or illegal query is an SQL injection attack type used at the

early stage of an attack to gather information about the database such as database

type, table columns and column type or others. In this type of attack the input is a

logically false statement to cause a database error response like adding 2=1 to the

condition statement. Therefore, this technique is usually started by injecting the

vulnerable parameter of webpage with an incorrect command (logically) to produce

an error from the database engine. Moreover, this technique can be used as a blind

injection and the attacker can monitor the web application response. Thus, the

attacker can obtain the feedback from the database engine according to that error. For

example, if the injection code is as follows:

SELECT user FROM UsersTable WHERE username=’’ or 1 = convert (int, (select

top 1 name from sysobjects where xtype=’u’)) ; -- AND userpass=’’

The attacker here tampers the input by providing different data type in the condition

statement that is not compatible with the system column data type. Thus, if the

injected parameter is valuable the database engine responses to this input by

returning error feedback message that allows the attacker to do further steps to

retrieve data from this database. (Wang, Phan et al. 2010, Spett 2003, Yeole,

Meshram 2011, Halfond, Viegas et al. 2006).

Chapter 2 - Background and Related Works

27

2.5.2.5. Stored Procedures

This SQL injection attack technique is used to run or create stored procedures which

are used by the database engine. The stored procedure is usually used by the

developer or the database administrator to control the database and to take advantage

of the database facilities, such as database access or database services. The stored

procedures are not similar to each other, i.e., Oracle database are not similar to

MYSQL or MS-SQL database. Thus, the attacker needs to determine the database

type to exploit this vulnerability. Therefore, the attacker could start with a logically

incorrect query attack type to determine the database type, and then the attacker can

use the stored procedure attack. For example, if the developer prepares the login

condition statement as follow:

SELECT @sql_procedure = ‘ SELECT LoginId , LoginPassword from UserTable

where LoginId=”+ @userlogin + AND LoginPassword =”+@password +”

EXEC (@sql_procedure)

In this case the use of a stored procedure @ sql_procedure provides a way to the

attacker to harm the database of the application as the login values have direct access

to this database. (Manikanta, Sardana 2012, Santosh 2006)

2.5.2.6. Inference Query

This attack technique is used when the attacker is not able to get any interactive

message via an injection command. Therefore, the attackers are looking to find other

ways to expose the website vulnerability. The attacker here estimates a web

Chapter 2 - Background and Related Works

28

application response by injecting it with different SQL keywords till he/she gains the

required information from the database to start his attack. This type of attack is

generally divided into the following sub types.

2.5.2.6.1. Blind Injection Inference

In this technique, the attackers inject the web page with a condition statement to help

them to infer the database layout through evaluating the response of the database

engine with the inject condition statement, whether the statement is true or false. At

this stage, the system will continue working normally if the statement evaluates to

true. Consequently, if the injected statement evaluates to false, the web page will not

return an error message. However, the web page will not work normally, i.e., there

are differences between the page behaviour before the injection statement and after.

Therefore, the attacker here will gather the information by comparing the results of

the response from queries with true or false injected command injection. (Spett 2003,

Tajpour, Masrom et al. 2010)

2.5.2.6.2. Timing Inference Query

In this technique, the attacker injects queries with a malicious command to make a

system delay. Then the attacker will observe the reaction from the web application

by monitoring the response time and collect information about the database

according to this response. If there is a delay then the injected statement or

command runs successfully, otherwise the statement execution has failed and the

attacker needs to alter the injected statement. Consequently, there are various ways to

inject the web application using this type of attack such as using a delay function; the

Chapter 2 - Background and Related Works

29

next example will clarify the attack technique. If the database type is Ms-SQL and

the attacker injects a field of the web application by adding WAITFOR function then

the SQL statement will be like the following:

SELECT * FROM UserTable WHERE username = ‘WAITFOR DELAY '0:0:20'--

‘AND userpassword =’user_entry_password’

Or with MYSQL the attacker can add the following code to the vulnerable variable

' union select benchmark(22500, sha1('test')) ss, ee from test1 where '1'='1

If the injected field is vulnerable to injection then the injected code will make a delay

for 20 second till the end of function execution. So, the attacker will observe this

delay and knows the injected field is vulnerable to injection and usable for other

injection attack. The WAITFOR function does not work with Oracle database which

has other code to achieve same delay like “dbms_lock.sleep(20); ”.

Therefore, the attacker will try several attempts considering different database types

(Clarke 2012, Yeole, Meshram 2011, Tajpour, Masrom et al. 2010).

2.5.2.7. Alternate Encoding

Normal attack techniques look for known characters or keywords which are usually

called bad characters. In this technique, the attackers escape from the normal

detection approaches by using injected text that uses alternate encoding. The

alternate encoding uses injected text encoded in ASCII, Unicode or hexadecimal.

Thus, the attack aims cannot be determined, so the attacker can use more than one

encoding technique. Therefore, during the application development the developer

should secure the web application against this type of attack by using effective

technique that considers various possibilities of malicious encoding text to prevent

Chapter 2 - Background and Related Works

30

this type of attack. For example, if the attacker injects the user login field with the

following string exec(char(0x73687574646f776e)) - - , the query statement that is

sent for execution by the database engine will be as follows:

SELECT * FROM StudentTable WHERE StudentName = ‘StudentID ;

exec(char(0x73687574646f776e))--’ AND StudentPass =’Studentpassword’

At this stage, the database engine will execute the mentioned query by using the char

function which is built in the database engine. Note that the char function changes

the character style of encoding keyword to be in the actual style of character. So, the

injected encoded text that mentioned before is working similar to shutdown

command, and when the attacker inject the web page by this encoded text the

database system will stop working. Therefore, this attack technique is not the same as

the attack in previous sections because the effective prevention against this type will

need to consider all possible injected encodings that could be harmful to the web

application (Howard, LeBlanc 2009, Halfond, Viegas et al. 2006).

2.5.2.8. Inline Comments

This SQL injection attack can be used with all of the previous attacks technique as

the attacker can divide the injection command using the inline comment

programming feature. This technique can support the attacker to elude from the

primitive detection and prevention techniques that are looking for a specific

character. For example: if the attacker uses the tautology techniques as follows:

Select * from users where username = ‘or ‘1’=’1 and password =’ any word ’

This query can be divided using in line comment as follow:

Chapter 2 - Background and Related Works

31

Select * from users where username = ‘or /* hi */ ‘1’=/* no */’1 and password …

Another example if the attacker combine alternate encode with in line comment as

follow:

Select * from users where username = ‘or % 00 /* hi */ ‘1’=’1 and password …

The attacker here injects the null character and in line comment to the original query

using the tautology attacks techniques (Clarke 2012, Howard, LeBlanc 2009).

As aforesaid, there are different types of SQL injection attack vulnerability. This

classification of SQL injection is useful as it helps the developer to detect and fix the

SQL injection vulnerabilities during the application development stage. The other

useful way to detect SQL injecting vulnerabilities is determining all possible

injection ways to know how these vulnerability types could be exploited. The next

section will highlight some of the attack methods that are used with SQL injection.

2.6. Automated SQL Injection Attacks

In general, the injection techniques can be summarised in two main categories, the

first one is the manual technique which can be done using the mentioned attacks

types that are discussed in the previous section. Success of this injection type

depends on the attacker’s experience and the security level of the target web

application. The detection techniques used to detect this type of attacks depend on

the detection of the user input, or in other words it depends on the detection of the

injection paths which can be summarised as follows:

 Inputting data by using a parameter

 Inputting data by manipulating URL

Chapter 2 - Background and Related Works

32

 Inputting data by using hidden field

 Inputting data by tampering the http header

 Inputting data by poisoning the application cookies (Livshits, Lam 2005).

The other type of the injection attacks are automated SQL injection using one of the

existed injection tools that are used to attack web application. In the next section

some of these tools will be discussed.

2.6.1. SQL Injection Tools

Several automated injection tools have been used for attack, as a tool is easier to use

than the manual attack, the attacker just gives the basic information that is required

by the tool and waits till the tool retrieves the attack result whether it is successful or

not. Many tools have been created; some of them are primitive tools and only can be

used to attack specific database or to execute a prepared injection procedure. Other

tools can attack any database type and can be used to execute different injection

attacks.

 One of the primitive tools is SQLdict which can be used with MS SQL server only.

This tool needs some values to start, the IP address and the SQL account of the

victim in addition to loading of a password dictionary. If the injection attack runs

successfully, the tool returns the password of this account.

Figure 3 shows an example of how an SQL account ‘sa’ is attacked by the SQLdict

tool; the tool has returned the password value of this account.

Chapter 2 - Background and Related Works

33

 The weakness of this tool is that it is limited to one database engine type and it can

only search for the password of known SQL accounts in the password dictionary that

is loaded by the tool (SQLdict Tool 2008).

Another SQL injection tool is SQLIer which can be used to attack MYSQL type of

database. In general, this tool attacks a vulnerable URL and tries to find out some

information about vulnerable components to create an SQL injection template and

start exploiting it. The common use of this tool is to find the password of the

database based on the Union query attack. SQLIer runs using the following

command:

sqlier [option like –u for username , -o to crack password to file, ..etc] [URL].

This tool is better than SQLdict tool as there is no dictionary to find the password in.

Figure 2.3 SQLdict Tool

Chapter 2 - Background and Related Works

34

However, both tools are still primitive as they can only be used for injection of

specific database type and execute specific injection attack (SQLIer 2006).

One of the more sophisticated SQL injection tools is SQLmap as it has many features

that can be summarized as follows:

 Can attack different type of databases like Oracle, MYSQL, etc.

 Support different types of SQL injection techniques such as blind injection,

Union query and others.

 Searching for specific database name, table or column and finds the relevant

name that contains a string of user name and password.

 Establishing an interaction channel between the attacker pc and the DB server

using TCP connection (SQLmap 2012).

Use of the SQLmap tool is similar to the previous tool as it needs some information

to starts like the target server address. Then, it can start attacks or test the web

application for SQL injection vulnerable components. However, SQLmap has more

features and better performance and it is not limited to one database type like the

primitive tools.

There are also many other tools like SQLSmack for MYSQL and OracSec for

oracle database, each one has its advantage and limitation depending on the type and

environment of use.

The mentioned tools have been produced as result of many studies for the detection

of vulnerable components of web applications. Moreover, before discussing these

studies an important point should be discussed which is the false positives and false

Chapter 2 - Background and Related Works

35

negatives problem in the detection result. The next section will highlight those points

in addition to clarifying the differences between them.

2.6.2. False Positive and False Negative

False positives are “when a tool reports incorrectly that a vulnerability exists, when

in fact one does not”. Differently, the false negatives are “when a tool does not report

that a vulnerability exists, when in fact one does” (Clarke 2012). Therefore, the most

dangerous types of the checking result are false negatives. Some of the existing

studies measure the success of their approaches by checking the percentage or the

rate of the false positives and the false negatives in their result as one of the

evaluating criteria. For example, (Jovanovic, Kruegel et al. 2006) mentioned that

there are no false positives produced by their checking model, (Halfond, Orso 2005)

said that their approach only produced false positives in two cases and they have

specified those cases. Thus, if there is a high rate of false positives or negatives in a

specific study comparing with other studies that means the technique of the study

that have less numbers of false positives or negatives is more accurate than the other

one.

In the next sections the different types of existing detection techniques will be

highlighted.

2.7. Detection and Prevention Existing Approach

Many studies have been conducted for the detection and prevention against web

application vulnerabilities in general and SQL injection vulnerabilities in particular;

these studies have discussed the detection and prevention techniques from different

point of views and using different techniques. Some of them used static techniques

Chapter 2 - Background and Related Works

36

which are used during development time by analysing the web application code to

detect the injectable point in the application such as (Xie, Aiken 2006, Fu, Lu et al.

2007, Gould, Su et al. 2004). There are other techniques that use both dynamic and

static techniques by monitoring the user input at runtime such as (Halfond, Orso

2006, Huang, Yu et al. 2004). The next sections will discuss these types of detection

and prevention techniques.

2.7.1. Controlling the User Input

The available entry fields of a web application can be considered as a gate in front of

the attacker. Several suggestions have been proposed to control the user input such as

 Determining the size of text input, if the attacker tries to inject a union attack query

in the login field and this field size is ten characters, the attacker cannot inject this

field.

 Character replacement: remove some of the common characters that can be used in

the injection like semi comma.

 Input validation, by validating the input value that is entered by the user

(Hoffmeyer, Wang 2003).

2.7.2. Scanning Tools Using Black Box Testing Approaches

These approaches use two main steps for gathering the information about the weak

points in the web application. The first step detects the application workflow using a

web crawler to find the vulnerable points. The second step generates an attack and

monitors the applications behaviour. This technique has been called black box testing

Chapter 2 - Background and Related Works

37

as the scanning tools do not examine the source code of web application directly but

they try to generate special input and simulate it with this application.

(Kals, Kirda et al. 2006) have developed Secubat which is an open source tool that

can scan a web application to detect the vulnerable points. This tool has a graphical

user interface that gives the user flexibility to run the testing process. This tool has

three components which are a crawler, attack generator, and the analyser. The

crawler determines the link tree of the application pages including a web form fields

starting from the root web address. The crawler in this approach based on a queued

workflow system which improves its efficiency as it can run several concurrent

worker threads. Moreover, Secubat tests a web application by injecting single quote

for each form field and reports a web application response. The pages response result

will be analysed by the analyser.

(Huang, Huang et al. 2003) also have proposed a black box testing technique called

the WAVES scanning tool. It is also an open source scan tool based on a web crawler

supported by a parser engine that uses a DOM (Document Object Model) parser

(W3C 2009) to provide a comprehensive description of the web application

components. The attack generator will use the crawler’s result to inject a web

application fields with a prepared SQL injection pattern. The attack generator’s result

will depend on a web application response and output. The WAVES tool uses a

machine learning technique to enhance and improve its attack generator

methodology.

These approaches are useful as they provide a report that shows a web application’s

Chapter 2 - Background and Related Works

38

security level, but they have the same problem as other black box testing approaches

in that they cannot provide a comprehensive solution as effective as to white box

testing.

2.7.3. Scanning Tools Using White Box Testing Approaches

The white box testing or static analysis approaches are based on analysing the

internal code of a web application and its structure to detect the vulnerable points at

compilation time. Several attempts have been made to check a web application for

SQL injection vulnerabilities using the white box testing approach, some of them

will be highlighted in the following:

(Gould, Su et al. 2004) has proposed the JDBC Checker which is a tool that can

check statically for type correct queries in the SQL statement that are generated

dynamically in Java. This technique detects only the SQL injection vulnerabilities

that are based on type mismatches like logical incorrect query attacks, because it

checks only the syntax of SQL statement for errors, but SQL injection attacks can be

syntactically true and it does not return database errors.

(Xie, Aiken 2006) uses an analysis algorithm to analyse open source PHP web

applications statically for SQL injection and XSS vulnerabilities. This approach

employs analysis to detect and handle vulnerable components of PHP code and other

scripting languages that are used to develop the application pages. The authors run

the analysis in three steps. The first step converts all application functions into blocks

and summarizes these blocks by determining the variables and their location, the

block programming language and the variables flow. The second step is an

Chapter 2 - Background and Related Works

39

intraprocedural analysis to detect the errors and the return set for each block. The

third step is an interprocedural analysis to identify block conditions, such as, whether

the block has a variable that must be sanitized before running this block. Thus, the

vulnerable components will be detected by simulating these blocks using the analysis

result. This approach cannot handle inline comment injection attacks and reports a

high number of false positives.

The SAFELI framework is one of the white box analysis techniques proposed by

(Fu, Lu et al. 2007) to analyse ASP.NET applications. SAFELI consists of several

components; one of the main components is MSIL (Microsoft Intermediate

Language) Instrumentor which is used to manipulate the application byte code by

inserting additional functions for each access point of the application database and

replace its variables with symbolic constraints. The output of this component will be

scanned with a second component called a symbolic execution engine that maps the

whole application pages and its entry points and examines these points for pre

collected information about attack patterns called attacks library. Thus, the

examination results report the application’s vulnerabilities. However, this approach

detection is limited as it is based on the existing vulnerabilities that are identified in

the attacks library.

In general, static analysis approaches are required to be more accurate for detecting

security vulnerabilities, because they report a high number of false positives in the

analysis reports (Livshits, Lam 2005). Moreover, applying these approaches for

different host languages requires time and extensive effort due to the differences of

Chapter 2 - Background and Related Works

40

the structure of these languages (Bravenboer, Dolstra et al. 2007).

2.7.4. SQL Randomisation Approach

The main idea of this approach is adding numbers to each SQL keyword that are

used in the query statement of the application. These numbers are integer numbers

generated randomly. Then, during the execution of the application it will rewrite the

SQL statements using a proxy filter and by adding a random number to the SQL

keyword. Therefore, when the attacker tries to inject the application with any SQL

keyword the system will reject them due to the missing random number (Boyd,

Keromytis 2004, Kc, Keromytis et al. 2003). However, the problem of this approach

is that if the attacker can determine the random number the application can be

attacked.

2.7.5. Filtering Input (String Analysis) approaches

This technique is based on filtering from the input data the malicious SQL keywords

that can be used to attack the database system. (Scott, Sharp 2002) has developed a

proxy filter for the web application that can enforce the validation rule to check user

input. Filtering data in this approach uses three components; the first one is the

validation constraints specification using SPDL (security policy description

language) in addition to the specification of the transformation rule. The second

component is a policy compiler which compiles these specifications for execution on

a security gateway component. The security gateway validates the specification

rules on a web server by checking all http requests before sending it to the

application database. However, this approach requires many technical specifications

Chapter 2 - Background and Related Works

41

to be done by the developer as described in (Scott, Sharp 2002).

(Shrivastava, Bhattacharyji 2012) propose a protection and detection technique based

on filtering the user input, they have generated a two level filtration model. The first

one is an active guard which builds a susceptibility detector that can block any

malicious characters that could be used to attack the web application database. The

active guard runs blocking procedures that compare a user input with an existing list

of common malicious characters. The second one is a service detector which is used

to validate a user input. This approach can block all the existing types of SQL

injection attacks using a function called ‘killChars’. The drawback of this function is

that the function removes several characters that can be used for normal writing

without an extra checking of using these characters. Thus, it likely to report a high

number of false positives.

2.7.6. Taint data Approaches

These approaches start with a static analysis that identifies hotspots or sensitive

points in the web application which are any point that can be used by the application

to access the application database. The other step is tracking the data that comes

through these hotspots. Examples of these approaches will be highlighted in the

following:

(Livshits, Lam 2005) proposed an approach to find Java Tainted Objects. They are

using static analysis consisting of two steps. The first step determines the security

flow of a web application using a context-sensitive analysis technique (Whaley, Lam

2004) which represents many program contexts using BDDs (Binary decision

Chapter 2 - Background and Related Works

42

diagrams). The BDDs will be translated using bddbddb tool into BDDs–based

implementation that can be accessed as a Datalog queries. The second step uses the

PQL tool (Martin, Livshits et al. 2005) that can detect the application vulnerable

components using the result of first step, and thus reports the application

vulnerabilities in addition to its specification using a program query language. The

drawback of this approach is that during the information flow analysis, any SQL

query that receives data from the user will be considered a false positive

vulnerability. For example, the function ‘executeQuery’ is a common sink function

used by a Java application to execute an SQL statement and thus retrieves the data

from the application database. According to the flow analysis, if the system finds any

taint string or data that is passed to this function the system will consider it a unsafe

point and thus the application is vulnerable. The problem of this approach is that it

reports a high number of false positives.

Also (Jovanovic, Kruegel et al. 2006) have proposed another detection technique

implementing by the Pixy tool (Jovanovic, Kruegel et al. 2006) which is a prototype

written in Java that can analyse a PHP application statically. This analysis technique

is based on data flow analysis to find the taint points of a web application. However,

the analysis result shows that there is a rate of 50% of false positives.

(Wassermann, Su 2007) proposed another technique that can analyse a PHP

application statically in two steps. The first one uses context free grammars

(Thiemann 2005) to specify the syntactic structure for all SQL statements of the

application. The second step determine and retain the where SQL query will be

Chapter 2 - Background and Related Works

43

constructed. The second step results will be labelled to “direct” for the data that

comes for the user, or “indirect” if the data comes from another resources like the

database. This approach reported low numbers of false positive.

2.7.7. Static and Dynamic Approaches

The main idea of these approaches is finding the sensitive point by analysing the web

application code using a static analysis technique to detect the vulnerable

components. Then, these vulnerable components will be instrumented with a runtime

protection guard to ensure that the submitted data to the application is secure. The

following will highlight some of these approaches.

(Huang, Yu et al. 2004) have developed the WebSSARI tool that employs a detection

algorithm based on the analysis method of the application information flow to detect

the sensitive function that can be tainted in a PHP application. This tool has been

supported by a runtime guard that can run an extra checking for sensitive functions

that are found by the static analysis. In addition to the static analysis, a runtime guard

is added that depends on the annotations that are provided by the user. The runtime

guard filters the submitted user input from any SQL Keyword that can be injected in

this input. However, the result of the first step static analysis reports a high number

of false negatives and false positives (Xie, Aiken 2006) .

(Halfond, Orso 2006) developed AMNESIA (Analysis and Monitoring for

Neutralizing SQL Injection Attacks) tool that can be used for the detection and

prevention of SQL injection attacks. This tool combines two techniques which are

static analysis and runtime monitoring. The static analysis procedure builds an SQL

Chapter 2 - Background and Related Works

44

query model using JSA (Java string analysis) (Christensen, Møller et al. 2003) that

determines the construct queries points which have direct access to the database and

specifies the sequence of tokens of that query. Successively, the other step is runtime

monitoring which investigate all queries before they are sent to the database. This

investigation checks the constructs queries at runtime and compares them against any

of the existing attacks. The runtime monitoring specifically checks the sequence of

tokens that are specified by SQL query model, thus if the monitoring step finds that

the query matches with no previous sequence the query will be prohibited accessing

the database. This technique consists of two steps, and the limitation is the

monitoring step that depends on the result of static analysis step. For example, in a

hard-coded string (like null character %00) there is a mismatch between SQL query

model and the runtime monitoring as the last one looks for the original keywords and

cannot catch a hard-coded string that is recognized by the SQL query model.

(Kemalis, Tzouramanis 2008) have also proposed a monitoring technique based on a

detection algorithm that specifies the syntactic structure for all SQL statements of the

application through several phases. These phases describe each SQL statement of the

application using a lexical analyser (Kodaganallur 2004) to determine the sequence

of SQL keywords in these statements. The monitoring step checks if there is any

SQL code injected in a specific SQL statement based on the specification of this

SQL statement, and thus blocks unsafe SQL statements from the execution on the

database.

(Lam, Martin et al. 2008) improves their previous approach (Livshits, Lam 2005)

Chapter 2 - Background and Related Works

45

which uses a static analysis technique based on information flow (explained in

Section 2.7.6). In their improvement, they add a dynamic error recovery which is a

runtime monitoring technique based on PQL specification that is described in the

static analysis step. This monitor is added to recover some cases that generate errors

during the static analysis. The monitor compares the sequence of query contents of a

specific query with its PQL specification, if there is a difference between them this

query will be prohibited from the execution on the database.

(Lee, Jeong et al. 2012) use a combination of static and dynamic techniques by

removing any of the SQL attribute value of the SQL query at runtime and compare it

with a static SQL query. They use Paros (Paros 2004) which is a scanning tool that

can perform the static analysis of an application to detect the vulnerable points and

describe the syntactic structure of these points. The dynamic step performs the

monitoring of the input by applying a detection algorithm that can filter the input

from any malicious code based on the static analysis results. However, this static

analysis is based on the Paros tool and the last update of Paros was in 2004.

(Manikanta, Sardana 2012) propose a similar technique that starts by analysing all

application URL links to detect the vulnerable parameters and the injection points of

the application using w3af which is a static analysis tool (Riancho 2012). The next

step generate legitimate SQL queries based on the previous step results. The

legitimate SQL queries are all valid application queries that can be run. The

monitoring step uses GreenSQL (GreenSQL LTD 2012) as a database firewall or

front-end to database that can protect the application database against SQL injection.

Chapter 2 - Background and Related Works

46

GreenSQL monitors legitimate SQL queries and rejects any attacks and reports

attack attempts. The author here combines between two existing solutions to achieve

the best result of protection system. However, the GreenSQL does not support

protection for Oracle database types.

The previous discussed various methods that can detect and prevent SQL injection

vulnerabilities. This research is similar to one of the mentioned techniques which are

the detection of SQL injection at runtime by monitoring user input. The next section

discusses some of the existing approaches including this research and highlights the

contribution of this research.

2.8. Motivation Revisited

Many tools have been used to monitor systems at runtime. Some of these approaches

have been highlighted in the previous sections. Some of the existing monitoring

approaches have checked the order of SQL keywords in a SQL statement at runtime

comparing that to the order that is determined by the static analysis using JSA

(Halfond, Orso 2006). Other researchers developed a technique using java

monitoring to compare the syntactic structure of SQL statements using static analysis

with its structure at runtime (Kemalis, Tzouramanis 2008).

 Additionally, some of the monitoring do not require static analysis, they just run at

runtime only like (Natarajan, Subramani 2012) that propose some specification for

detection policies and apply their detection algorithm. As aforesaid, some

researchers focus on SQL injection attacks as a static run in one state; so they just try

to block the attacker injection attempts (Antunes, Laranjeiro et al. 2009, Fu, Lu et al.

Chapter 2 - Background and Related Works

47

2007, Lee, Jeong et al. 2012, Kim 2010, Boyd, Keromytis 2004).

However, the attacks are dynamic as they run over several steps such as, finding the

vulnerable item, detecting the database type and exploring the database structure.

Thus, the detection technique can be improved if there are scenarios that show the

injection stages of web application as the detection procedure can predict the next

step of the attack. Moreover, some of the existing approaches can only block some of

the existing attacks they detect specific injection type because they are not effective

to prevent several types like (Natarajan, Subramani 2012), and another one can block

all existing types like (Halfond, Orso 2006).

New attacks can be handled in some of the existing approaches like (Halfond, Orso

2006, Boyd, Keromytis 2004) because these approaches block any sequence of SQL

keywords that come through the user input. In this research, we focus on two points

which are, how to detect new attacks in addition to track the attacker at various

stages. Moreover, this research will develop a monitoring technique using the

Anatempura tool that runs the detection over several states to find the related attacks

and to detect new attacks.

2.9. Summary

This chapter has discussed SQL injection vulnerabilities. It provided an introduction

that reviewed the web application architecture, provided a summary of web

application vulnerabilities, and explained the problem of SQL injection attacks. It

also discussed existing approaches and their detection and prevention techniques and

focused on the related work underpinning the motivation of our approach.

Chapter 2 - Background and Related Works

48

The next chapter highlights the Anatempura tool and the Interval Temporal logic as

formal specification language that will be used to specify the monitoring conditions

that checks submitted data of the web application against SQL injection attacks.

Chapter 3

Preliminaries

Objectives

 Reviewing temporal logic in general and ITL in detail.

 Discussing the reasons of our selection of ITL.

 Describe the Tempura syntax.

 Providing the architecture of the Anatempura tool.

 Describe the detection and prevention framework.

Chapter 3 - Preliminaries

50

3.1. Introduction

As aforesaid in the previous chapter, the detection and prevention of SQL injection

approaches have been developed using different techniques. Some of these

approaches monitor the application at runtime to check the user inputs against any

form of SQL injection attacks. This research proposes a new approach to monitor the

application at runtime using Interval Temporal Logic (ITL) and specifically using the

Anatempura for runtime monitoring.

This chapter introduces Anatempura and its underlying logic ITL. Section 3.2

reviews temporal logic in general and provides examples that show the use of

temporal logic. Section 3.3 introduces ITL, specifying its features, semantics, derived

constructs, and our justification of using ITL. Section 3.4 describes Tempura

(executable subset of ITL) and its syntax providing clarifying examples for each

Tempura construct. Section 3.5 introduces the Anatempura tool and its common uses

and features. Section 3.6 highlights the framework for detection of SQL injection

attacks using Anatempura. Section 3.7 summarises this chapter.

3.2. Temporal Logic Background

The specification of any concurrent program should deal with the execution sequence

of these programs in addition to the input and output behaviour of these programs.

Temporal logic as a term is being used for expressing program properties involving

program conditions, the program execution sequence, and termination etc. (Wolper

1983). In other words, temporal logic can express any system property and structure

based on the execution of this system using a sequence of states. There are several

Chapter 3 - Preliminaries

51

versions of temporal logics such as Computational Tree Logic (CTL), Linear

Temporal Logic (LTL), and Interval Temporal Logic (ITL) etc.

In general, these types are similar and focus on analysing the system requirements in

addition to the topology of time for these requirements, and they differ from each

other in their expressive power. CTL uses a tree-like structure to express the system

in terms of its execution paths. Each path describes a specific execution and one of

them will be the actual path. LTL expresses the system behaviour as a linear order of

execution states of the system. ITL is based on LTL as linear order that can express

system requirements. ITL distinguishes from other temporal logic by its use of a

chop operator to sequentially compose sequences of states. ITL will be described in

detail in Section 3.3. The following section highlights some examples of using

temporal logic.

3.2.1. Examples of Using Temporal Logic

Temporal logic is being used in many studies for the specification of requirements,

tracking behaviour, and monitoring systems etc. Examples of these studies will be

highlighted in the following:

(Holzer, Kinder et al. 2007) have used a verification technique for malware detection

based on Computation Tree Predicate Logic (CTPL) which is an extension of CTL.

This approach uses a model checker called Mocca that expects as input assembly

source code. Mocca has been used to determine whether a security property

expressed in CTPL holds or not. The security property that is verified by Mocca is a

specification of the behaviour of malicious software.

Chapter 3 - Preliminaries

52

(Basin, Klaedtke et al. 2010) applied runtime monitoring using MFOTL (metric first

order temporal logic) which provide monitoring that can check and enforce system

policies like access or usage control policies using an expressive fragment of

MFOTL. The fragment consists of formulae that specify system safety requirements.

The feature of their proposed monitoring is that it can provide a specification of past

and future behaviour using quantitative temporal operators for finite or infinite

domain. In their experiment they just show the finite structure that is used for

monitoring bank transactions.

(Al Amro, Cau 2012) proposes a virus detection approach that can detect viruses

based on the virus behaviour that is specified using ITL. The detection approach uses

a tool set that is based on Anatempura (will be discussed later) that can monitor the

application program interface (API) calls.

ITL is our selected logic. ITL features and the reasons of our selection of ITL will be

described in the following section.

3.3. Interval Temporal Logic

ITL is a formal specification language based on LTL that can express both

propositional and first order logic properties and whose key notion is intervals. ITL

can describe system requirements and behaviour as a finite sequence of states

(interval). In addition, ITL can be used to handle both sequential and parallel

composition. ITL has an executable framework Tempura which provides a

development and testing environment for ITL specifications (Cau., Moszkowski. et

al. 10/2012, Zhou, Zedan et al. 2005, Moszkowski 1994).

Chapter 3 - Preliminaries

53

3.3.1. ITL Syntax

Table 1 shows the syntax of ITL and provides the syntax of ITL expressions and

formulas.

Table 3.1 ITL Syntax

In Table1, ‘µ’ is a fixed integer value, ‘a’ is a static variable (variable has a constant

value within an interval), ‘A’ is a state variable (can change within an interval), ‘g’ is

function symbol, ‘p’ is predicate symbol, ‘f’ is formula.

g is a expression that contains mathematical operators like subtraction (-) or addition

(+) or others. Atomic formulae are constructed using one or more relational symbols

like equal (=) or greater than or equal (≤) etc. Thus, ITL formulae will be composed

using atomic formulae and connectives like (¬, ∨, ∧, , ) in addition to temporal

modalities like chop (;), chopstar (*) or skip.

An interval  is denoted by ... an interval consists of one or more states

 (). Each state of the interval is a mapping from the set of variables to the set

of their values. The length of an interval denoted by ||, is equal to the number of

 ()| | ∧ |  | | |

Expressions

 | | | ()|O |

Formulae

Chapter 3 - Preliminaries

54

states  minus one. If the interval  =   …  then ||= n.

For example, if the length of the interval is 4, the number of states in that interval

will be 5. Table 3.2 lists some operations on intervals.

Interval Type Specification

prefix  …  (where 0 ≤ k ≤ ||)

suffix  … | | (where 0 ≤ k ≤ ||)

sub  …  (where 0 ≤ k ≤ i ≤ ||)

Table 3.2 Interval Operations

The empty interval is a one state interval. The following example shows a sample of

an empty interval and a multi states interval.

 Empty interval Interval of length equal 4

3.3.2. ITL Semantic

As aforesaid, ITL describes sequences of states (interval). The formula that contains

no temporal operator will be called a state formula, and thus will be hold at the initial

state of an interval. All ITL formulae will be evaluated over the whole interval. For

example, ∧ will be true over an interval iff and are both evaluated to

true over this interval . The following are some useful ITL constructs with their

informal semantic:

skip: is a unit interval and its length equal ‘1’. For example, the following interval

has two states ‘ ’ and ‘ ’, and its length is equal to ‘1’.

Skip

Chapter 3 - Preliminaries

55

 f1; f2: this formula will be true over an interval if that interval can be decomposed

into a prefix and suffix interval, and f1 holds over the former and f2 holds over the

latter, and the prefix and suffix interval share a state.

 Example of chop construct

 : this formula will be true over an interval if that interval can be decomposed

into a number of sub intervals and the formula f is true over all these sub intervals.

Example of Chop star

3.2.3. Derived Constructs

Some frequently used derived ITL constructs are shown in Table 3 and Table 4

(Cau., Moszkowski. et al. 10/2012).

Table 3.3 Non Temporal Constructs

f1 f2

f f f

Chapter 3 - Preliminaries

56

Ο ƒ skip ; ƒ next

more Ο true non-empty interval

empty ¬ more empty interval

 f true ; ƒ sometimes

□ f ¬ ¬ƒ always

Ⓦf ¬ O¬ƒ weak next

f ƒ ; true some initial subinterval

□ f ¬ (¬ƒ) all initial subinterval

f true ; ƒ ; true some subinterval

□ f ¬ (¬ƒ) all subinterval

fin f □(empty ƒ) Final state

halt f □(empty ≡ ƒ) Exactly in the final state

Table 3.4 Temporal Constructs

3.2.4. Examples of ITL

 The formula A=5 means that the variable A has a value 5 in the initial state.

 In the interval, there are two variables A and B, the variable A is always equal 3,

the variable B is equal to 0 in the first state and equal to 2 in the next state, the

interval will be expressed as follow

B=0∧ □ (A=3) ∧ O (B=2) ∧ skip

 In the interval, there are three variables A, B and C. The variable A equals ‘R’, B

is an array of non-accepted characters [‘+’, ‘*’, ‘/’], and the variable C will be used

to store the comparison result between A and B, C is equal to ‘y’ if they are similar

or ‘n’ if not. The length of the array is denoted by |B|. The interval can be expressed

as follow

i

i i

a

a

a

Chapter 3 - Preliminaries

57

 skip ∧ A=’R’ ∧ B = [‘+’, ‘*’, ‘/’] ∧ if (i:0 ≤ i ≤ |B| ∧ B[i] =A)

 then C=’y’

 else C=’n’

The interval here is a two state interval.

 In the interval, if there is a choice between two formulas that will be executed

depending on the value of the propositional variable ‘A’. The interval can be

expressed as follow

(A∧)∨ (¬A ∧)

3.3.5. Why ITL?

Our selection of ITL is based on a number of reasons that make ITL the language of

choice for our proposed detection and prevention technique for SQL injection

attacks.

 ITL has the Anatempura tool which is a runtime verification tool that can be used

for monitoring external applications like web applications. Anatempura has a

pluggable architecture that can easily connect to other applications and it also has

other features that will be highlighted in Section 3.4.

 The checking procedures that check the user input against SQL injection attacks is

a sequence of several checking stages for each transaction. ITL can describe this

sequence of stages because of the chop operator.

 The user behaviour will be investigated for all transactions using the checking

results. The checking result will be preserved and expressed as ITL intervals. ITL

operators like skip and chop are well suited to handle the intervals that contain the

Chapter 3 - Preliminaries

58

checking results of the web application transactions which are an important factor in

the investigation of user behaviour.

3.4. Tempura

Tempura is a programming language based on ITL developed by Ben Moszkowski.

Tempura provides an executable framework for development and experimenting of

suitable ITL specifications. Tempura variables are similar to ITL as it has ‘state’ and

‘static’ variables which can be Integers, Booleans, Floats or Strings, or a derived type

like lists. Tempura has most of other conventional imperative programming

languages features. For example, Tempura contains iteration construct such as for

statement, and it has most of regular operators such as (+),(-) and ,or etc. However,

ITL differs from Tempura slightly because Tempura can run only ITL specifications

that satisfy three conditions which concern the length of the interval and the variables

with their values in addition to that the formula should be deterministic (Moszkowski

1985). The following examples show some different samples of executable and non-

executable Tempura code.

 S= 0 ∧ skip ∧ O (S = 1) is executable.

len (5) ∧ □(S= 2) is executable.

empty ∧ (S= 0 ∨ S = 1) is non-executable as there is no unique value for S.

len (3) ∧ S gets S + 5 is non-executable as there is no initial value of S that

can be incremented.

3.4.1. Tempura Syntax

Tempura is an executable subset of ITL. The syntax of Tempura can be classified

Chapter 3 - Preliminaries

59

into three main categories, Locations, Expressions and Statements.

 Locations

Locations which determine where values are stored and can be examined in a

specific interval. Thus, if there is an existing variable A, then the location of variable

in the next state will be determined by next A. There are various variable types in

Tempura such as

Integer number such as 0, 1, 5, -1,-2, or float numbers like 0.001.

List variables which are arrays of fixed or variable length.

There are also other types like Boolean and String variables. The types of

expressions in Tempura with a clarifying example will be highlighted in the

following.

 Expressions

The types of Tempura expressions are, for example, integer, string, list, float or

Boolean.

Integer Expression

These types of expressions return an integer value and the operators that can be used

with it are: +,-, **,>, or mod etc. For example

exists A , B, C: { A=1 and B=2 and C =A+B and empty}.

C=A+ next B

If (next A) = B then C=2*A else C=2*B

Chapter 3 - Preliminaries

60

Boolean Expression

These types of expressions return a Boolean value either true or false when

evaluated. For example

A>B

next A > 0

List Expression

List variables are defined using List(S, n) or list(S, n) commands. The command

‘List’ defines a list ‘S’ of size up to n. The command ‘list’ defines the array ‘S’ of

fixed size n. Moreover, the structure of an existing array ‘S’ can be fixed over the

interval using the command: stable (structure (S)). For example

S[2][1] ='a' to assign value a to list S[2][1].

next S=S+A[2] to add the value of A[2] to list S in the next stae.

The size of array S= [‘a’, ‘b’, ‘c’] is equal to 3. The list size is denoted by |S|.

String expression

String expressions have a string as value and these are enclosed in double quotes

such as “the mentioned value is a string”. String values include most of the C escapes

characters. For example, the new line can be introducing using \n. The string values

also can be appended using the ‘+’ operator like “aaa” + “bbb” = “aaabbb”.

Moreover, to copy part of a string value one can use S[i..j] where i denoted the

beginning and j denoted the end index of the substring. Some examples of using

string expressions:

Chapter 3 - Preliminaries

61

S3 = S1 +S2 or S3=S1+next S2

S1 [2..4] =[S[2],S[3],S[4]]

Let S1 = “abcd” then the substring of S1[3..4]=”cd”

Float expression

Float expressions have a floating point value. Tempura denotes float values by

enclosing them between two $ characters. Float expressions can be printed using %F.

For example

format("the value: %F ", Var)

A=itof(B)*100 ‘itof' to change the variable type from integer to float.

A= tan(70)

 Statements

Statements are a subset of ITL in addition to Tempura system commands that can be

used to define simple or compound statements.

Example of Simple Statements

 A=B assignment in current state.

 A gets e to assign value of ‘e’ to variable ‘A’ throughout the interval.

stable (A) variable ‘A’ has a constant value for all states in the interval.

empty interval of length zero.

skip interval of length 1.

The next operator is used to refer to the variable in next state as long as the next

Chapter 3 - Preliminaries

62

state exists. For example,

 next (A) =A+1 or A:=A+1

A in the next state is assigned the current value of A plus 1.

len(5) has interval length 5.

Example of Compound Statements

Choice

Choice in Tempura is denoted by the if statement.

If (A=B) then output A else {output A and output B}

if A then and if B then

if A then else

Loop

Loop in Tempura is denoted by for, while and repeat.

while I <=|S| do { I:=I+1 and output S[I] and skip}

repeat {S:=S+[|S|+1] and skip} until (|S|=5)

for i<|S| do { S[i]:=S[i]*2 and skip}

Forall

This operator is a universal quantification forall i<n: {…}. It corresponds to

indexed concurrency.

forall i< |S| : {S[i]:=S[i] +2 }

all list elements are assigned a new value concurrently.

Chapter 3 - Preliminaries

63

Keep

keep A=4 and len(6)

A is 4 in all state of the interval except the last state. The last state will be determined

using another operator i.e, fin and halt.

Keep (x=4) and len (5) ; (x=5 and empty)

The X variable in the first interval has no value at the last state on the interval.

System commands

There are two system commands which will be used for executing Tempura code

such as, ‘run’ for executing a program, ‘load’ for loading a program. There are also

other system commands such as, the ‘input’ command to request a value from the

user. The ‘output’ command prints a variable value or any text using double or single

quotes and it can print to file or on screen. format is an output command that has

feature C programming language style string characters.

set outfile="stdout" set output to be on screen.

set infile="input file" input data from file.

format(“the number is: %2d \n”,Var) print a text with a variable value.

output(Var) print the variable value.

output (‘any text’) print a string.

input (X) input the variable value.

/* run */ define name() = { tempura code}. define a program with a specific name.

Chapter 3 - Preliminaries

64

load "../library/exprog". load a program file.

Sequential and Parallel execution

The sequential execution uses the chop operator that ends the current interval

execution and starts a new interval. For example if there are two procedures P1 and

P2 as follows

define P1(L) = {exists X: { X=L and X gets X+1 and len(5) and fin (output X)} }.

define P2(L) = { exists X: { X=L and X gets X+2 and len(5) and fin (output X)}}.

Sequential example

/* run */ define Test1 () = { exists A,B: { A=3 and P1(A)};{ B=2 and P2(B) } }.

The first interval has a length of 5 and the P1 procedure gets executed, the second

interval has also a length of 5 and the P2 procedure is executed. Thus, the overall

interval length is 10.

 Note that state number 5 is a shared state the two intervals are fused at this state. It

contains both of A and B variables. The state 5 ends the prefix interval of the P1

procedure (for A variable), and starts a suffix interval for the P2 procedure (for B

variable).

Parallel example

/* run */ define Test () = { exists A,B: { A=3 and B=2 and P1(A) and P2(B) } }.

In this example, P1 and P2 are executed in parallel, and the overall interval length is

5.

Chapter 3 - Preliminaries

65

Halt

Halt operator is being used to define the interval termination condition.

A = 3 and A gets A+1 and halt (A=6)

In this example, A is 3 in the initial state, and A will be incremented with 1 in the

next state until the value of A equal 6 as the interval will be terminated by halt

condition A=6.

Fin

There are two versions of fin operator such as, fin (A) which means the value of

variable ‘A’ at the end of the interval (a location). The other version is fin (A=5), i.e.,

a statement, which means variable ‘A’ must have 5 at the end of the interval.

Both halt and fin statements concern the last state of the interval. The difference

between them is that halt terminates as soon as the termination condition has been

reached whereas fin only requires the final state to satisfy the final condition.

Always, Sometimes

always f means that there is a formula f holds for every suffix interval.

sometime f means that there exists suffix interval for which f holds.

always (output (A)) print the value of A in every state of the interval.

Chapter 3 - Preliminaries

66

{ A=0 and len(3) and A gets A+1 and sometimes (A = 2 and output A)}.

In this example, A is 0 in the initial state, and the interval length is determined to be

3. A will be incremented with 1 in each next state, and when A reached the state with

a value equal 2 then the value of A will be printed.

Exists

This operator is being used to introduce the local variables either static or state.

 exists A,B:{ A=0 and B=1 and skip and B:=A } “B:=” means next B

Functions

Tempura functions are denoted by, define F(,…..,) ={e}. A parameter will be

passed to a function via ‘call by reference’.

define F(A) ={A+2}.

The function is called: B=F(A)

Following example shows how to call the function using more than one parameter.

define Power(A,B)={A**B}.

Function call: C= Power(A,B)

Procedure

Following concerns procedure calls.

 define CallbyValue(X,A) = {

exists B:{B=A and B:=B+3 and skip and fin(X=B)}}.

Variable X is used to return the procedure result. This procedure can be called using

Chapter 3 - Preliminaries

67

the following Tempura code.

define TestCallbyValue () = {

 exists C,D: {

C=3 and testValue(D,C) and fin(output(D))}

}.

The mentioned syntax of Tempura can be executed using the Anatempura tool which

will be explained in the next section.

3.5. Anatempura

Anatempura is a tool that can execute Tempura code. Anatempura is also a runtime

verification and validation tool that can be used to monitor and check specific

application conditions at runtime (Al Amro, Cau 2011, El-kustaban, Moszkowski et

al. 2012). Moreover, Anatempura has a visualisation component with a graphic

interface that can simplify the tracking and the analysis of the monitoring results. It

has a pluggable architecture that can easily connect to other applications. The first C-

version of the Tempura interpreter is by Roger Hale, after that further development

has been done by Ben Moszkowski and Antonio Cau.

In addition, runtime verification as used in Anatempura does not suffer from the state

explosion problem such as experienced by model checkers (Cimatti, Clarke et al.

2002, Holzmann 1997). The explosion problem happens as a result of the huge

number of states that are used to specify the system behaviour. The specification will

determine all possible system sequence states that can be reached and uses by the

Chapter 3 - Preliminaries

68

System PropertiesModel

All system possible Behaviours
Beh1
Beh2
Beh3
.

The Property Behaviours

 =

Model Checker

model checker to check the system property.

The state transition used to describe system behaviour, will be determined using two

factors which are the current state and the transition relation. The corresponding finite

automaton of the system is intersected with the automaton of the negation of the

property (Valmari 1998). If this intersection is empty the system satisfies the

property. If the intersection is not empty it will constitute a counter example why the

system does not satisfy the property. If there are three processes and the system has10

variables, thus the number of states will be =1000. Thus, if the system has

thousands of variables the number of states grows too big to be practical. Figure 3.1

shows the technique that is used by the model checker to check the system properties.

In Anatempura a new state is computed on the fly using rewrite rules as follows:

f = w∧ f ’ where ‘w’ is the current or initial state, and that means the next state will

be accepted only if formula f ’ is valid from the next state on ward. This reduces the

number of the states to be only the current one that is used during the runtime

w

Figure 3.1 Model Checker Technique.

Chapter 3 - Preliminaries

69

Current behaviour f

 = ⃝

 = ⃝

 = ⃝

validation process. So there is no need to compute the automaton with its states as is

done by model checkers. Figure 3.2 the Anatempura Technique

Figure 3.2 shows how Anatempura reduces the number of states using the weak next

operator. Therefore, if is not the same as then we know that the system

behaviour so far will not satisfy the property, otherwise we continue with and we

need to check whether it is the same as . Again if they are not the same we know

that the system behaviour so far will not satisfy the property.

The general architecture of Anatempura is as follow:

.

Figure 3.3 shows the main components of the Anatempura tool which are Tempura

Figure 3.2 Anatempura Technique.

Figure 3.3 General Architecture of Anatempura

Chapter 3 - Preliminaries

70

interpreter, the monitor and animator.

The Tempura interpreter executes Tempura code in addition to validating the monitor

conditions. The monitoring conditions of Anatempura are the assertion points which

can be easy inserted in the application source code. These points will be used to

generate a sequence of states as the application runs like values of variable and the

timestamp. This sequence represents a behaviour of the application and can be used

by Tempura. Listing 3.1 shows an example of assertion point in Java.

Listing 3.1 Java Assertion Point

Listing 3.1 is a Java print command that contains “!PROG:assert Var:"+Val+":time!”

as an assertion point. This assertion point is captured by the monitor as Val is a value

of Var when the ‘print’ command is executed.

For example, the following java code contains an assertion point as follow:

Date Time = new Date();

 System.out.println ("!PROG: assert Name:"+Name+":"+ Time.toString()+"!\n");

This assertion point sends a variable called Name, its value and the system current

time to Anatempura. In this research, the assertion points will be added manually to

the application source code to monitor the user’s entries and behaviour, the assertion

points can be added automatically using JIE tool (Tromer 1999).

Anatempura will be used to perform two tasks. The first task is to monitor the

application’s submitted data and check whether this data contains any form of SQL

 System.out.println ("!PROG: assert Var:"+Val+":time!\n");

Chapter 3 - Preliminaries

71

injection attack. The second task is to investigate related attacks using the checking

result of the submitted data.

3.6. Using of Anatempura in Our Framework

As the main goal of this research is the detection and prevention against SQL

injection attacks, we need to develop a new security framework that uses runtime

verification as shown in Figure 3.2.

Figure 3.4 The Main framework Architecture

This framework shows the main components of the proposed detection technique. It

is based on the specification of SQL injection attacks and the monitoring tool

Anatempura which checks these attacks. Anatempura will perform the monitoring of

all web application transactions and checks each transaction input according to the

SQL injection attacks specifications. As aforesaid in Chapter 2 on the SQL injection

attacks techniques, there are some characters that are used frequently in SQL

injection like a single quotation character. Thus, if a single quotation character is

blocked that means the injection that is based on this character will be blocked as

Chapter 3 - Preliminaries

72

well.

Thus, key to this detection technique is producing an accurate ITL specification of

attacks. The detection results will be used in the investigation of the attack

behaviour. Therefore, Anatempura keeps track of each transaction as it checks the

current transaction and investigates the related attacks for existing transactions. The

following chapters (4 and 5) will describe in detail how the detection and tracking is

implemented based on Anatempura.

3.7. Summary

This chapter reviewed temporal logic in general and described various types of them

and discussed the differences between them. An overview of the selected logic ITL

with its executable tool Tempura has been provided together with its syntax and

semantics.

 Moreover, Tempura operators and their common use with clarifying examples for

each operator have been provided. This chapter is concluded with highlighting the

Anatempura tool, showing its general architecture. The next chapter provides details

of our proposed detection and prevention framework which is based on the

Anatempura.

Chapter 4

Architecture of Detection and

Prevention Framework

Objectives

 Provides an overview of the detection and prevention framework.

 Describe the framework phases.

 Describe the components of the architecture.

 Give examples of user behaviour.

Chapter 4 - Architecture of DPF Framework

74

4.1. Introduction

Chapter 2 has introduced SQL injection attacks describing the various techniques

that are used to attack a web application. Chapter 2 also discussed the existing

approaches that are developed to tackle this problem and discussed existing solutions

to block these types of attacks. Chapter 3 has reviewed the Anatempura tool that is

chosen as a basis of our framework showing its architecture and describing the

underlying logic ITL used by this tool and its executable engine Tempura.

Anatempura checks the input data for existing SQL injection attacks by monitoring

the web application’s inputs using the attack specifications expressed in Tempura.

This chapter explains in detail our Detection and Prevention Framework (DPF).

The contents of this chapter are organized as follows: Section 4.2 describes the DPF

architecture and provides an overview of the detection and prevention framework.

Section 4.3 discusses the initial phase of the DPF. Section 4.4 provides the details of

the checking phase that is used in the analysis of the user entry data. Section 4.5

describes the decision phase in detail by specifying the user behaviour and the

feedback component. Finally, Section 4.6 provides a summary of this chapter.

4.2. Overview of Detection and Prevention Framework (DPF)

The main aims of DPF is the monitoring and blocking of SQL injection attacks that

are used to gain unauthorised access of web applications and their databases. DPF

uses Anatempura as runtime monitoring and verification tool to block malicious

users inputs. DPF is initialized by specifying existing attack patterns using Tempura.

Anatempura will be connected to a web application server to monitor the users input

Chapter 4 - Architecture of DPF Framework

75

using the attacks specifications. Figure 4.1 shows the main architecture of DPF.

DPF starts when the user enters data and submits the web application page, the data

will be sent from the client machine to the web server using the HTTP protocol.

Moreover, DPF extracts the submitted data in the capture user input component.

Extracting the data depends on the hotspots of a web application, which maps the

submitted data to its variables in the web application. The hotspots can be detected

using one of the existing static analysis tools such as the pixy tool for web

applications that are developed using PHP (Jovanovic, Kruegel et al. 2006).

Therefore, the hotspots will be assumed to exist. The extracted data will be

transformed into Anatempura assertion point format (variable, value, timestamp) so

that the Tempura interpreter can use this data to check against existing attack patterns

using the input checker component. The result determines whether the input is good,

Users Input checker

Initial Capture of Good and
Bad (input) conditions

Capturing User
Entry Data

Application Processing

HTTP REQUST

Output Checker

Feedback

Database
Observer

Update Users
Behaviour

Update Good/Bad
Specification Conditions

User

Behaviour

Good

Unknown

 Good & Bad
Update

Bad

Message

Bad and unknown

Good (normal)

bad

good

Checking Phase Decision phaseInitial Phase

Figure 4.1 The Architecture of Detection and Prevention Framework

Chapter 4 - Architecture of DPF Framework

76

bad or unknown and this information will be used for the investigation of related

attacks.

DPF has three checking components which are input checker, output checker and

database observer, and each one of them uses a different technique for checking the

user input. The first checking stage uses the input checker to analyse the user input

using two steps, the first step will analyse the user input to check whether it is a good

input (see Section 4.3.1), if the first step determines that the user input is not good

then the second step will compare those inputs with the existing attack patterns.

Thus, if the first step considers the user input to be good then it will be sent for

processing by the application processing component. If the user input matches an

existing attack pattern, the input will be rejected and the user will be informed by the

DPF feedback component as a part of the decision phase (see Section 4.5). In

addition, the DPF decision phase has another component that updates the user

behaviour database with information that a bad input has been used to attack the web

application. Note that the user behaviour will be updated in both cases whether the

input was good or bad, and it will be used for investigating related attacks (see

Section 4.5.2).

If the input checker cannot determine whether the user data is good or bad then DPF

will run the database observer to determine what the effect of the user input is on the

database engine. Thus, if the user input is accepted (see Section 4.4.2) by the

database observer then DPF will send the user input to application processing

component, if the user input is not accepted (see Section 4.4.2) then DPF will reject

Chapter 4 - Architecture of DPF Framework

77

the user input and inform the user using the DPF’s feedback component, and then

DPF will also update both the user’s behaviour database and the existing attacks

pattern with information that a new injection attack has been used on the web

application.

The last step of the checking phase is the output checker which is used to determine

whether the message that is communicated from the database engine to the user

contains any information about the database type or structure or not (see Section

4.4.3). DPF consists of three phases which are the initial phase, checking phase and

decision phase. These phases will be discussed in detail in the following section.

4.3. Initial Phase (receiving Data)

The initial phase consists of several steps that need to be done before data can arrive

at the input checker component. The first step in this stage provides the Tempura

formula that is used to analyse the user’s input. This formula is based on the

specification of SQLlib (SQLlib-tool 2007) which is an open source tool. The

following specifies the Initial phase and describes its components:

4.3.1. Initial Capture of User Input

The initial capture of user input step component needs to determine the good input

and the bad input at character level as shown in Figure 4.2.

Good input should not include any bad symbol like single quotation and double

quotation or star, or the good input should not contains any of the SQL keywords that

can be used to attack the web application database. Furthermore, the bad input will

be specified by describing some of the existing attack patterns like union query,

Chapter 4 - Architecture of DPF Framework

78

piggyback query, and tautology etc.

Figure 4.2 Initial specifications

The existing attacks specifications will be merged for any attack that uses the same

injection character which means that the specification formula does not described

each type separately.

For example, the blind attacks can be done using a single quotation similar to a

piggyback attack, so the specification of the attacks that involve a single quotation do

not need to be in a separate detection formula, and both attacks can be detected

using a specification that covers the attacks that use a single quotation. Therefore, the

initial bad/ good specification will be used by Anatempura for initializing the DPF.

4.3.2. Users

In DPF the users are considered to be a part of the initial phase because any

transaction will be started from the user. Thus, the user is anyone who submits an

HTTP request to the web application. So, the user would be good, bad or unknown.

Therefore, there are no beforehand assumptions proposed for users behaviour.

Initial Specifications

Good input specification Bad input specification

No SQL sympols No SQL keywords Existing SQL injection attacks pattern

Union TautologyPiggyback Alternative encodingDatabase ProcedureBlind logical

Chapter 4 - Architecture of DPF Framework

79

Step 2

Using Anatempura

Step 1

Using Library call of web

Application
User

Capture Data

Drop extra
spaces

Transform to
lower case

Extracting
Data

4.3.3. Capturing Data

At this stage the system will analyse the HTTP request to extract the user input data,

then the extracted data will be transformed into Anatempura’s assertion point format.

Moreover, Anatempura normalizes this data using two procedures that transform it in

a style without extra spaces and only lower case characters. This normalization step

will be useful to block any attacker who tries to use extra spaces or upper and lower

characters as attack methods.

The capturing Data component consists of two steps which are the extract data and

normalize data steps. This extract data step does not involve Anatempura but is

performed at the web application side. In other words, the data will be extracted by

using a library call offered by the programming language that is used to develop the

web application.

4.4. Checker Phase

In this phase, the system will analyse the data that comes from the capturing data

component. The phase will uses three checking components and these are as follows:

Figure 4.3 Capture Data component

Chapter 4 - Architecture of DPF Framework

80

4.4.1. Input Checker Component

This component is the heart of the DPF as it determines the next step of DPF whether

to proceed to the application normal processing component or the database observer

component. Moreover, the input checker component will use the existing attack

patterns that are prepared by the initial capture of user input component. The input

checker component will analyse the user entry against existing attack, and the result

is one of three possibilities:

The entry data is good, which means that the user input does not contain any SQL

symbols or keywords that are used in existing SQL injection attacks, so the data will

be passed to the application server for normal processing, and the user’s behaviour

will be updated. The other possibility is that the entry data is bad, then the data will

be rejected and the user’s behaviour will be updated and a message will be prepared

to be sent to the user via the feedback component.

The last possibility is that the entry data is unknown; in this case the database

observer component determines whether the entry data is bad or good according to

effect these data have on the database. The database observer component checks the

entry data by validating four conditions that determines whether the entry data is safe

or not. The database observer component will be discussed in detail in the next

section.

4.4.2. Database Observer Component

This component will check unknown entry cases which are not caught by the input

checker component. The purpose of the database observer component is to determine

Chapter 4 - Architecture of DPF Framework

81

what exactly will happen to the database on the transaction of user input, and this

will be done by monitoring the outcome of each database transaction.

The monitoring of the database transaction needs the web application developer

because the database observer component needs the developer to specify the

expected result of each transaction that is run by the web application such as, the

table name, running command type, number of the expected records, and the user

type.

The expected result of a database transaction will be compared with the runtime

result. The comparison between the expected result and the runtime result is used to

ensure that the database transaction is safe (if the runtime result is similar to what the

developer expected) as shown in the Figure 4.4. In case of a unsafe transaction the

database will be rolled back to the state before this unsafe transaction.

Therefore, the database observer has to monitor four conditions for each transaction;

TR Table =TE Table

TR Type =TE Type

TR R.No =TE R.No

TR User =TE User

accept

accept

accept

Normal processing

accept

Ro
llb

ac
k

No

TR transaction at runtime

TE expected transaction

No

No

End

DB Observer Start

No

Figure 4.4 Database Observer

Chapter 4 - Architecture of DPF Framework

82

those conditions are specified by the web application developer as follows:

 Transaction type at runtime is the same as the expected one specified by the

developer. For example, if the transaction type at runtime is “Select” and the

expected one is “Select” as well, then the database observer component will accept

this transaction and continue. If they are different the database observer component

will do a rollback and prepare a feedback message for the user and update the user’s

behaviour.

 The transaction table name at runtime is the same as the expected one that is

specified by the developer. For example, if the transaction table name at runtime is

“users” and the expected table name is also “users” then the database observer

component will accept this transaction and continue to the next step. If they are

different then the database observer component will do a rollback and prepare a

feedback message for the user and update the user’s behaviour.

 The transaction record number at runtime is the same as the expected number that

is specified by the developer. For example, the login page normally returns one

record with the select statement, so if at runtime the select statement returns the same

number (one record), then the database observer component will accept this

transaction, otherwise it will be rejected and the database observer component will

do a rollback and prepare a feedback message for the user and update the user’s

behaviour.

 Transaction user type at runtime is the same as the expected one that is specified

by the developer. For example, the user tries to change the password at the change

Chapter 4 - Architecture of DPF Framework

83

password page then the user type should be same to the expected one. However, if

the user tries to change another user’s password then the database observer

component will catch this, then this transaction will be rejected and the database

engine will do a rollback and prepare a feedback message for the user and update the

user’s behaviour.

Note the database observer can only deal with recoverable transactions so no DDL

(Data Definition Languages) commands like create, drop, and alter table, because the

injected DDL commands cannot be recovered by a rollback command, so these

transactions should already be rejected by the input checker component.

4.4.3. Output Checker Component

This component checks whether the message sent to the user is safe or not. The

output checker will not analyse the response in the same way as the input checker, as

it will block any message that contains details about the database structure or type

because these types of messages are not safe. Moreover, the output checker will

block unsafe messages using the library calls in the programming language which is

employed during the development of the web application.

4.5. Decision Phase

This phase of DPF depends on the results of the input and output checking phases,

and consists of the feedback and user’s behaviour components.

4.5.1. Feedback Component

The feedback component prepares the message that will be sent to the user regarding

the cases of bad entry data. If the user entry is bad and the input is caught as unsafe

Chapter 4 - Architecture of DPF Framework

84

then DPF will respond to this entry by using a prepared message depending on the

type of badness.

4.5.2. User’s Behaviours Component

SQL injection attacks usually consists of several steps, this component focuses on the

main point of this research which is how to investigate the user behaviour according

the history of entry data. DPF will track each transaction in the system and detects

the type of the transaction, i.e, whether it is a good, bad or unknown transaction. The

tracking information will be used to model the user behaviour. Therefore, the user

behaviour depends on the result of the input and output checker components in

addition to the result of the database observer component. The DPF will use user

information like IP address, user status (good, bad), attacking technique (primitive,

advance), and time stamp of the transaction to build the user behaviour as shown in

Figure 4.5.

Figure 5 shows a sample of a web application transaction that contains both good and

bad attempts as determined in the checking phase. Transaction 3, 6 and 7 are related

as T3 is start SQL injection attacks using a specific technique, and T6 and T7 are

T0 T2T1
T3

Pre.
T5T4

T6
Adv.

T7
Adv.

T10T8 T9

Technique Used Relation Same IP addrerss

T0 to T10 is a
system transaction

Pre primitive attempt

 Adv advance attempt

 Figure 4.5 Transactions Relation

Chapter 4 - Architecture of DPF Framework

85

30 % Bad Transaction

90% Good Transaction

Three Sequence Transaction

based on T3 as they cannot be executed if T3 does not inject successfully. T8 and

T10 are related as they have come from the same IP address. The following ITL

formula determines whether two bad inputs are related by IP address:

 IP. (Status(Input) = Bad  IP(Input) = IP) ;  (Status(Input) = Bad  IP(Input) = IP)

This means if the IP of the user in a certain state is equivalent to the IP of the user in

a previous state then these inputs are related. Another example of related attacks is

shown by the following ITL formula which determines whether two bad inputs are

related “by stored procedure “.

 command.  (Declare (Input) = command);  (EXEC (Input) = command)

This means if there is an execution of a stored procedure command in a certain state

and the declaration of that stored procedure in a previous state then these inputs are

related.

Moreover, the DPF can determine user behaviour according to the following three

criteria: the percentage of transactions, the sequence of transaction type, and the

transaction types as shown in Figure 4.6.

Figure 4.6 Examples of User Behaviour

Figure 4.6 shows several user behaviour graphically. Therefore, user behaviour can

be used as a quick way to view the transactions status and the proportion of hacking

Chapter 4 - Architecture of DPF Framework

86

attempts that have been done so far. It can act as an early warning system.

4.5.3. Example of user’s Behaviour

This example illustrates how attacker’s information can be used to model user

behaviour. This example describes an input scenario and assumes that the status of

each input is already determined by the DPF checking phase as mentioned in the

checking phase of Section 4.4. Table 4.1 shows a particular input scenario that

involves several sample user inputs.

Seq. User IP The input status

1 146.168.255.12 Normal g

2 146.168.255.13 Normal g

3 82.164.254.12 ‘ or ‘1’=’1 b

4 82.164.254.12 ‘;drop table users;-- b

5 212.164.254.14 Normal g

6 212.164.254.16 Normal g

7 212.164.254.14 any’; declare @NewStoreProcedure char(80) …….; g

8 67.164.254.14 Normal g

9 146.164.2.46 ‘ ; b

10 212.164.254.14 Normal g

11 182.164.254.23 any’; EXEC (@NewStoreProcedure); b

12 212.164.254.14 Normal g

13 212.164.254.16 Normal g

Table 4.1 Selective User’s Inputs

In Table 4.1, input 3 and 4 are marked as bad, those attempts are one step attacks

because they do not retrieve any information from the database and just try to inject

the harmful code in the web application fields. However, those attempts have the

same IP address which means there is a relation between them because both attempts

have been done by the same user. Input 7 and 11 can be classified as related as well,

because the attacker here declares the stored procedure in the first attempt and in the

Chapter 4 - Architecture of DPF Framework

87

second attempt he/she uses it. So there is a relation between these hacking attempts

and this justifies the use of monitoring user behaviour.

4.5.4. Updating of User’s Behaviour Component

The user’s behaviour will be updated continuously within DPF according to the

result of the checking phase. The updating will involve all of the user’s inputs types

(good, bad). Thus, this component will update behaviour according to the three

criteria used to investigate the sequence of bad transactions: the percentage of the

checking result type, related IPs and related techniques.

4.5.5. Updates Existing Attack Patterns Component

This component receives new attack patterns from the database observer component.

When the database observer finds any unsafe input, it will send the input to this

component to update the existing attack patterns. Note the updating of the attack

patterns library will be manually, because the library that is used by input checker is

specified in ITL, thus the updating uses manual translation into ITL by anyone who

expert in ITL.

4.6. Summary

An overview of the architecture of our framework DPF has been presented in this

chapter. The framework phases and the components of each phase have been

discussed. This chapter also describes the task of each component in detail and how

these components will interact with each other. The user’s behaviour has been

discussed in detail using a clarifying example. The following chapter will present the

implementation of the DPF.

Chapter 5

Detection and Prevention Framework

Implementation

Objectives

 Provide the reasons of selection of tools for the implementation.

 Provide the architecture of selected components.

 Present the implementation of each component.

Chapter 5 - DPF Implementation

89

5.1. Introduction

The previous chapter has described the main structure and processes of DPF that are

proposed to check the submitted data that comes to the application server through

http requests. This chapter describes in detail how the DPF is implemented and it is

organized as follows, Section 5.2 describes the DPF implementation assumptions in

order to realize DPF. Section 5.3 describes the implementation of all the components

of the DPF. Section 5.4 gives the summary of this chapter.

5.2.Implementation Assumptions

The existence of different types of programming languages and DBMS that can be

used for creating and developing web application is a reason for choosing a specific

environment to implement our framework. The implementation is used to determine

the interaction and the compatibility between the components and to know exactly

the effectiveness of Anatempura with this environment as a runtime monitoring tool.

Additionally, SQL injection attacks normally depend on the type of DBMS that is

used as application repository, because some of the SQL commands work only for a

particular DBMS. For example, a MSSQL database can be injected using single

quotation, or semicolon, or double dash --, /* ... */ and xp_ (for stored procedure

catalog name) characters (MSDN 2008).

Thus, the development language that is chosen is PHP and the DBMS is MYSQL.

This selection is based on the fact that PHP and MYSQL are free resources and they

can be installed together using one execution file like ‘WampServer’ (Bourdon.

2013). Our choice of MYSQL means that we focus on the injection possibilities that

Chapter 5 - DPF Implementation

90

affect this database type which are restricted as follows (Matsuda, Koizumi et al.

2011, Clarke 2012):

 Using a semicolon.

 Using a single quotation as a character data and string delimiter.

 The comment delimiter is either hash mark ‘#’ or inline comment /* ...*/.

 The encoded character using ‘0x’ for executing hexadecimal code and ‘%’

percentage.

Therefore, the implementation will focus on these as they are key to SQL injection

attacks. In addition, the implementation is created to test the SQL injection attacks

for web application, thus we assume that hotspots of the web application have been

determined before using existing tools.

5.3. DPF Components Implementation

DPF has several components which were already described in the previous chapter.

The following will be implemented first: capturing Data component. This component

will be used to extract submitted data and send them to the input checker using a

library call in the PHP development language. The second step will be the usage of

the extracted data which are a user IP address, submission time stamp, and a user

input. This information will be sent to Anatempura using the PHP-Java Bridge

(Bökemeier., Koerber. 2012) as the Anatempura cannot communicate directly with

an PHP application. The bridge supports transportation of data between PHP and

Java application at runtime and sends the extracted data to a Java application and this

Chapter 5 - DPF Implementation

91

database

User

DPF

Anatempura

Monitoring
Http Request

A
p

p
li

c
a

ti
o

n
 S

e
rv

e
r

Ja
v
a

 R
M

I
S

e
rv

e
r

Safe DATA

Not Safe

P
H

P
 J

a
v
a

 B
ri

d
g

e

Java application sends them to the Anatempura tool. The Java application that

communicates with the Anatempura is implemented using Java RMI (Remote

Method Invocation) (Oracle. 2012) as shown in Figure 5.1.

This Java application is running as a server that can communicate with a PHP

application using the bridge. Thus, the extracted data will be analysed by the input

checker that is executed by Anatempura to detect the input status and decide which

data is safe or not before passing it to the application database. Additionally, there

are other processes like the user behaviour and database observer which will be

described later on. The implementation of all of the mentioned components will be

explained in detail in the following Section.

5.3.1. Capturing Data Component

This component prepares the data to be analysed by the Anatempura tool, so the

submitted information that comes to the server via HTTP requests will be

Figure 5.1 Implementation General Architecture

Chapter 5 - DPF Implementation

92

IP Address
Submission

Time

Extracting Data

User submitted
data

Http request

reformatted in Anatempura format which is (IP address, submitted data, submission

time) as shown in the Figure 5.2.

Figure 5.2 Http Request Extracting Data

The discussed information will be extracted using the following PHP code to extract

the value for a specific variable in a HTTP request:

The value here for a variable called ‘username’. The submission time will be

extracted using the following:

The user IP address can be extracted by:

As aforesaid, the extracted information will be sent to the Java application and then

to Anatempura using the PHP-Java Bridge. The java application (RMI) that transfers

UserIP = $_SERVER ["REMOTE_ADDR"]

Time=Date ("h:i:s A")

Value= $_REQUEST ["username"]

Chapter 5 - DPF Implementation

93

the data between Java and PHP consist of three files which are ServerImpl for the

implementation of the server methods, Server to define the RMI server method, and

Client to communicate with PHP. After installing the Bridge, PHP initializes an

instance of ‘Client’ and calls it by the value that will be checked using the script as

shown in Listing 5.1.

Thus, the object ‘VarJava’ can invoke the ‘Client’ class methods. The Client class

calls the checking method of the RMI server called CheckInput() that is implemented

as shown in Listing 5.2.

The CheckInput() contains an assertion point that is used to communicate with

Anatempura, and thus the input data will be transferred to Anatempura for checking.

$VarJava = new Java("Client");

$Result =$VarJava ->CheckValue($Value_for_Checking);

 public String CheckInput(String sentvalue) throws RemoteException

 { try {

 Console c = System.console();

 String in ;

 System.out.println("!PROG:assert V_check:"+sentvalue+":Timestamp :!\n");

 in = c.readLine("read it \n");

 System.out.println("Tempura Result: "+in);

 return in;

}

Listing 5.1 PHP script: Sending Value from PHP to Java

Listing 5.2 Java Code: Checking Input Method

Chapter 5 - DPF Implementation

94

Anatempura receives the inputs using the get_var procedure. The input will be

inspected using the CheckingModel procedure, and the result will be returned to the

application Java using the prog_send_ne(X) procedure as listed in Listing 5.3.

The reason of using the Java RMI application is that Anatempura can start and

monitor the Java application and it will communicate with the web application server

(server to server).

The web application’s variables and hotspot points are known as the application has

been implemented for testing the effectiveness of Anatempura in monitoring

submitted data against SQL injection Attacks. So, the Anatempura tool can be used

to monitor an existing application as long as the application’s variables and hotspots

are known beforehand. The detection of these variables and hotspots can be done by

using an existing analysis tool like the Pixy tool (Jovanovic, Kruegel et al. 2006) for

PHP applications.

Therefore, extracted data is received by Anatempura and can be analysed by the

input checker. Anatempura receives the data in array style and analyses the submitted

data only and determines the status, i.e., whether it is safe or not. The analysis of the

while (Loop = 1)

 do {

{get_var("V_check ", NewValue) and output(NewValue) and

CheckingModel(X,NewValue) and stable(NewValue)};

 {prog_send_ne(X) and skip and

 if (NewValue ='ex1') then Loop := 0 else Loop :=1 }

 }

Listing 5.3 Tempura Code: inspecting and Sending Data to Java

Chapter 5 - DPF Implementation

95

submitted data is based on the initial capture component that prepares the data before

the analysis stage using two procedures as shown in Figure 5.3.

 There are two preparation procedures which are:

 Lowercase procedure

 DecreaseSpaces procedure

These procedures run in sequence for every transaction, and they utilize predefined

functions like unascii which is used to give the corresponding character an ASCII

value. For example, if the function called like unascii (57) the function will return the

character ‘W’, and this function will be used in the lowercase function in the

preparation procedure.

Lowercase is one of the preparation functions and it is used to transform the user

input into lower case. Normally, when this function is called it starts with an input

string and converts this string into a string of lower case characters using the ASCII

code of input string characters.

User
submitting data

Preparation procedures

Lowercase function

DecreaseSpaces function

Analysis procedure

Figure 5.3 Preparing Procedures

Chapter 5 - DPF Implementation

96

DecreaseSpaces is a preparation function that is used to remove any extra spaces in

the user input. This function has two steps, the first one determines all non space

characters in the string, and the next step is to restructure a sequence of characters in

such a way that the extra spaces will be converted to one space character, and then

the function will return this restructured string. The code of these functions is in the

Appendix 3.

5.3.2. The input Checker

The input checker receives the prepared data from the capturing data component so

that it can be analysed. The analysis functions inspect the content of the inputs and

determine if those inputs contain any form of SQL injection attacks. The first step of

the input analysis splits the input tokens and it is followed by other procedures like

SearchGenKeywords, GoodEntry and BadEntry as shown in Figure 5.4.

Figure 5.4 The Input Checker

Input checker

Initial capture of good and bad (input)
conditions

Capturing user
entry data

Application processing Feedback

Database
Observer

Unknown

Normalized Data

Not Safe

Good Entry

SearchGen

Keywords

Bad Entry

Accepted

Accepted

StringTokens

Accepted

User’s Behaviour

Chapter 5 - DPF Implementation

97

The StringTokens function has two steps, the first step determines a non space

character of the input string, and the second step divides the input string in an array

of tokens which can be used to search for specific SQL Keywords. This function

uses the same technique as the DecreaseSpaces function. However, StringTokens

differs in the second part during the restructuring of the parts of the string. Table 1

shows an example of the first part of the function.

The other part of the function transforms a string S into an array of keywords called

‘A1’ that involves all tokens of string S. The result of the example will be

 .

The SearchGenKeywords function is used by the main two functions that analyse

the user input which are GoodEntry and BadEntry procedures. When this function is

called it searches for the most common SQL injection keywords that come after an

SQL injection symbol like semi colon and single quotation. The function starts by

transforming it into an array of token using the StringTokens function. The returned

array of string tokens will be compared with common SQL keywords that can be

used in a SQL injection attack, like ["select","drop","update","delete","alter",

"create","union","declare","exec",”insert”] as part of the analysis of the user input.

The comparison will be done between two arrays which are a string token array and a

A1= [“‘”,”union”,”select”,”*”,”from”,”table”]

‘ u n i o n s e l e c t * f r o m t a b l e

0 2 3 4 5 6 8 9 10 11 12 13 15 17 18 19 20 22 23 24 25 26

0 2 3 4 5 6 8 9 10 11 12 13 15 17 18 19 20 22 23 24 25 26

Table 5.1 Input String S

Chapter 5 - DPF Implementation

98

common SQL keywords array and the result will be either ‘y’ for yes or ‘n’ for no.

The SearchSpecKword function is used by the BadEntry function to compare the

token that comes after the SQL symbol with a special token that is normally used

after this symbol, like union after a single quotation. In other words, this function

checks the input against existing attacks patterns that use a single quotation. The

function has two input variables S and D. Variable D is an array of the comparable

tokens that will be used to check what comes after the SQL symbol. The S variable

is the part of the user input that comes after the SQL symbol. So, if the input is

 , the S variable will be . This part of the

user input is transformed into a list of tokens using the Q array. Listing 5.4 shows

the checking part of the function which compares the first token of Q with D that

contains a possible injected keyword that can come after this SQL symbol.

This function returns as result an array X = [A, G]. The G variable is used to return

the length of list of the token Q that can be used to determine the remaining part of a

string S, and A is a variable used for returning the comparison result. Moreover, the

S = or '1'='1 input =” any ' or '1' ='1 “

stable(Q) and I=0 and J=0 and A='n' and G=0 and {

while I < |D|

do{ if (D[I]=Q[0])

 then{I:=|D| and skip and A:='y' and G:=|Q[0]|}

 else { I:=I+1 and skip and A:=A and G:=G}

Listing 5.4 Tempura Code: SearchSpecKword function

Chapter 5 - DPF Implementation

99

result of this function is determined to be ‘n’ or ‘y’ in the same way as the

SearchGenKeywords function. The result will be used in the next step of the input

checking, namely the CheckingModel procedure (Listing 5.8).

GoodEntry function is one of the main functions for analysing the user input and it

is the first analysis stage that checks whether the user entry contains any SQL

keywords that can be used in SQL injection attacks or not. The function has as input

a normalized string and first checks for a hex encoded SQL injection technique by

comparing the user input on the character level with a key of this type of injection

like ‘0x ….’, if it is not matched the analysis process will continue checking for input

characters in the range of ‘0 to 9’ and ‘a to z’ using an ASCII code. Additionally,

there are some symbols that are considered safe, because they are not used as a key

in this attack, the safe symbols are shown in Table 5.2.

Seq. Symbol Character ASCII code

1. space 32

2. ! 33

3. $ 36

4. . 46

5. : 58

6. ? 63

7. _ 95

8. £ 163

 Table 5.2 Safe Symbols

The choice of the above characters is because they can be used as part of user input

when using a web application. The analysis steps will be executed sequentially for

each character, thus if any of the mentioned steps has a positive match the function

Chapter 5 - DPF Implementation

100

if ((S[I..I+2]= "--" and (I+2 <= |S|)) or

(S[I..I+3]= "- -" and (I+3 <= |S|)))

then{I:=|S| and A:='b'}

else{A:=A and I:=I+1} and skip}

will return ‘n’ which means the input is not safe.

The BadEntry function is the second step of the analysis that checks user inputs and

compare it against existing attack patterns. The function has several parts, one checks

for the SQL injection keys such as a single quotation as a character delimiter, semi

colon as query delimiter, hash symbol as comment delimiter and a back and

forward slash with a star as a comment delimiter in addition of other encoded

injection attacks.

The part that checks if the input contains a double dash characters is as follows:

The variable S contains normalized user input and the variable I is the index of the

current user input character. The code shows that the checking of this part is based

on comparison between the sequences of characters in S with double dash characters

with or without space in between the double dash. If there is a matching then it will

return ‘b’ which means the input is bad. Note in the loop the value of I should not

exceed the length of S, so the last possibility to find the double dash comment will be

|S| minus 3 or |S| minus 2 and that depends on the form of the double dash.

The second part will check for SQL injection attacks using a single quotation using

several steps; the first step is to check for a single quotation, the second step will

check the token that comes after a single quotation, and the last step checks what

Listing 5.5 Tempura Code: Checking for Double Dash Characters

Chapter 5 - DPF Implementation

101

comes after that token.

The code below shows the second step to find the token written after a single

quotation:

This code checks for common tokens used to inject web applications after a single

quotation. If SearchSpecKword returns that there is no matching, the loop will

resume from the ‘I+1’ character of string S to check if there is another single

quotation. If SearchSpecKword returns that there is a matching then what comes

after this token will be checked using another string index D that starts from I+1 to

|S| to save the value of I if there is no matching.

Note, the code above is checking for characters that can come after the injecting

token and if there is a matching the entry will be considered as an attack and it will

be rejected, because the mentioned characters and token are used in SQL injection

attacks.

The second part will check whether the input includes a semi colon and check for

attacks that can be done using a semi colon. The process of the checking will be done

in several steps, the first step checks for a semi colon, the second step will check the

token that comes after a semi colon, the last step checks what comes after that token.

While (D < |S|)

do {if (S[D]= ";" or S[D]="=" or S[D]= "-" or S[D]="'" or S[D]=">" or S[D]="<"

or S[D..D+6]="select" or S[D..D+3]="all")

SearchSpecKword(X,S[I+1..|S|],["union","or","and","group","order"])

Chapter 5 - DPF Implementation

102

while (D < |S|)

do {if (S[D]= ";" or S[D]= "#" or S[D]= "--" or S[D]="'" or S[D]="*" or

S[D..D+5]="table")

The code below shows the second step to check the token after a semi comma using

SearchSpecKword:

The code above checks for tokens used to inject web applications after a semi colon.

If SearchSpecKword returns that there is no matching, the loop will resume the

checking process from the ‘I+1’ character of string S. If SearchSpecKword returns

that there is a matching then it will check what comes after this token via string index

D that starts from I+1 to |S| to save the value of I if there is no matching as shown in

the following:

The code above checks for the character that comes after the injecting token and if

there is a matching with any of those possible characters and token, the entry will be

considered as an attack and it will be rejected, because the mentioned characters and

token are used in SQL injection attack.

The last part will check whether the user input contains any of the alternative

encoded injection techniques using the most widely used encoding.

SearchSpecKword(X,S[I+1..|S|],

["select","drop","update","delete","alter","create","declare","bigen","exec"])

while I < |S|

do{ if ((S[I..I+3]= " 0x" or S[I..I+3]= "(0x" or S[I..I+4]= "(0x") and

(((ascii(S[I+3])>= 48 and ascii(S[I+3])<=57) or (ascii(S[I+3])>= 97

and ascii(S[I+3])<=102)) and ((ascii(S[I+4])>= 48 and

ascii(S[I+4])<=57) or (ascii(S[I+4])>= 97 and ascii(S[I+4])<=102))))

Listing 5.6 Tempura Code: Checking for hexadecimal encoded injection

Chapter 5 - DPF Implementation

103

Listing 5.6 shows the code that is used to detect attacks that use a hexadecimal

encoded injection. The idea of the mention code is to block strings that starts with

zero followed by character x and after it the hex encoded SQL command. This

checking step inspects the input for ‘0x’ and two characters that come after it, if the

inputs characters have the ascii code from 48 to 57 (‘0’ to ‘f’) or from 97 to102 (A to

F) which are the hexadecimal injection key the inputs will be rejected and it will be

considered as a bad input.

Additionally, there are other types of alternative encoded injection and these will be

checked using the following:

The code above checks for SQL injection used in:

" char(" which is concatenating characters in ASCII code. Note, there are several

forms of the mentioned characters to consider different cases of spaces that can be

used to elude this checking.

"select(" to catch ‘select’ keyword that is entered with bracket as one token.

"exec(" to catch ‘exec’ keyword that is entered with bracket as one token.

"%00" is a null character that is used to confuse the checking process of the position

of the token.

if (S[I..I+6]= " char(" or S[I..I+7]= " char(" or S[I..I+5]= "char(" or S[I..I+6]= " exec("

or S[I..I+5]= "exec(" or S[I..I+6]= "select(" or S[I..I+7]= "select (" or S[I..I+3]= "%00"

or S[I..I+3]= "%2f" or S[I..I+3]= "%2a" or S[I..I+5]= "%252f" or S[I..I+5]= "%252a")

Listing 5.7 Tempura Code: Checking for Alternative Encoded Injection

Chapter 5 - DPF Implementation

104

"%2a" and "%2f" which are used to encode the inline comment character using

Unicode style to escape from the normal checking of the character ‘*’ or ‘/’.

5.3.3. Behavioural Functions

These functions investigate the relation between previous user inputs by checking the

list of results that is created during the checking process. The list ‘H’ contains the

submitted input, submission time, an IP address and status whether it is good, bad, or

unknown. The behavioural functions implement the four possible relational attacks

that are defined in Chapter 4. The code below shows the implementation of the first

possibility which is the percentage of the bad, good or unknown inputs.

The variables ‘T’ and ’I’ have been used to count the percentage of bad and unknown

inputs, and the good inputs can be calculated using these values.

The second behavioural function will check for repeated IP addresses that are used

by the attacker who inject a malicious code in the application. The first step will

G=itof(T)*100/itof(|H|) and

 D=itof(I)*100/itof(|H|) and

 format("the percentage of bad inputs is: %F \n ",G) and

 format("the percentage of unspecified inputs is: %F \n",D) and

 format("the percentage of good inputs is: %F \n ",(100-(G+D)))

and empty}

T=0 and I=0 and for i<|H| do {

 if H[i][1] ='b'

 then {T:=T+1 and I:=I }

 else {T:=T and if H[i][1] ='OB' then I:=I+1 else I:=I}

Chapter 5 - DPF Implementation

105

determine a bad input attempt using the information of array result ’H’:

The variable D is an array used to register the IP of each bad input attempt, and the

variable HH is an array used to register the array index of those attempts. The next

step will remove the redundant IP addresses that are registered more than one time in

the array D using the Filter () function which will return an array X which is an array

D without duplicates. The X and HH arrays will be used to create the result that

shows in order the IP and the submission time of the input.

The code above uses several variables and two loops to create the ‘G’ array that is

used to gather the result of related IPs. The first loop uses ‘X[I]=H[HH[j]][0]’

condition to check if the IP of array X is equal to the IP of array the ‘HH’ using the

H result array of the analysis. The matching IP address will be collected in array T

grouped by IP address. The result of this part is as follows:

while I < |X| do{

 for j<|HH| do { stable (G) and stable I and

 if X[I]=H[HH[j]][0]

 then {T:=T+[H[HH[j]][3]]}

 else {T:=T} and skip};

{T:=[] and I:=I+1 and G:=G+[[X[I]]+[T]] and skip}

for i<|H| do {

if H[i][1] ='b'

then{HH:=HH+[i] and D:=D+[H[i][0]]}

else{HH:=HH and D:=D}

Chapter 5 - DPF Implementation

106

The third behavioural function will find a sequence of user inputs that is considered

to be bad. This part uses the index of result array H to detect a sequence of three bad

inputs and it will show the IPs and their submission time.

The CheckingModel procedure is the sequential composition of all of the discussed

functions as shown in Listing 5.8.

define CheckingModel(X,S) = {

 exists D,R,F,T,M:{

 {stable(S) and LowerCase(T,S)};

{stable(T) and DecreaseSpaces(R,T)};

 {stable(R) and SearchGenKeywords(D,R)};

 {stable(R) and stable(D) and GoodEntry(F,R)};

 {stable(R) and stable(D) and stable(F) and

 {if (D='g' and F='g')

 then{M='g' and empty}

 else{BadEntry(M,R)}}} and fin(X=M)}

 }.

if (H[i][1] ='b' and H[i+1][1] ='b' and H[i+2][1] ='b' and i~=0)

 then {i>0 and if (H[i-1][1] ='b' and H[i][1] ='b' and H[i+1][1] ='b')

 then{G:=G+[i+2]}

 else{G:=G+[i]+[i+1]+[i+2]}}

[IP1,[transaction times],IP2,[transaction times],….,IPn,[transaction times]

Listing 5.8 Tempura Code: The CheckingModel Procedure

Chapter 5 - DPF Implementation

107

5.3.4. Implementation of Database observer

This component deals with unknown input cases to exactly determine the response of

the database engine regarding this type of user entry. The DB observer is developed

to determine new attacks using the application development language to observe

those unknown cases. The database observer monitors the transaction to check four

conditions as follow:

 Transaction type at runtime is the same as the expected one specified by the

developer.

 The transaction table name at runtime is the same as the expected one that is

specified by the developer.

 The transaction record number at runtime is the same as the expected number that is

specified by the developer.

 Transaction user type at runtime is the same as the expected one that is specified by

the developer.

 So, the DB observer will be implemented using the PHP language to monitor the

conditions of DB observer that are explained in Chapter 4. To implement this part,

each transaction should be enclosed by transaction delimiters as follows:

The Begin function will be used to start the DB transaction.

function Begin()

{

mysql_query("BEGIN");

}

Chapter 5 - DPF Implementation

108

function rollback()

{

mysql_query("ROLLBACK");

}

The Commit function will be used to end the DB transaction in addition to save the

data into the database.

The Rollback function will be used to end the DB transaction and to cancel the

execution of a database transaction.

The mentioned functions will be used for the monitoring of each database observer

condition.

In this part we implement only two of the conditions as the other two can be done in

a similar way. The chosen conditions are the condition of user type and the condition

of record number. The recorded number of the execution can be checked using two

PHP functions which are mysql_num_rows() and mysql_affected_rows(). The

difference between those functions is that the mysql_num_rows() function will be

used with the selection command whereas the other will be used with the

modification command like delete, update etc.

The user type will be run as a PHP session that starts when the user log in to the

system, so at the login page there no need to check this condition because the other

function commit()

{

mysql_query("COMMIT");

}

Chapter 5 - DPF Implementation

109

three condition are enough to check the transaction at this page, and it will be used in

the other page of the application. The session can be initialized at the login page

using the following script.

5.3.5. Implementation of Output Checker

This component is used in the last step of the checking of the user input and it will

block any message that contains details about the database structure or type. This

component is implemented using the PHP language. The PHP program returns the

error message of database using the mysql_error() function, and the error message

number is returned by the mysql_errno() function. So, the mention functions will be

used to block any unsafe messages as follows:

This code illustrates how to replace a MYSQL DB engine message with one that

does not indicate the DB type. For example, if the user enters a duplicate value in the

DB, in this case the DB will respond to the user input by ‘ Duplicate entry 'User_a'

for key 'UName' ‘ and that shows the column name ‘UName’ of the users table.

Using above code will change the message into ‘There is a duplicated Entry’.

Moreover, the unchanged message indicates a MYSQL database engine. If the

message appears like ‘unique constraint (%s) violated’ that means the database

if (mysql_errno() == 1061)

{

 echo “There is a duplicated entry ”;

}

$_SESSION['username'] = $_post[“username”];

Chapter 5 - DPF Implementation

110

switch (mysql_errno())

{

 case 1064:

 echo “Wrong entry try again! ”;

 break;

 case 1061:

 echo “There is a duplicated entry”;

 break;

 default:

 echo "Wrong entry try again";}

engine is Oracle. In this case the output checker will hide the database message and

replace it with another one to block any information that can indicate the DB type.

Another scenario is if the attacker tries to gather some information about the database

type (if possible), some wrong cases of SQL syntax will be used. Thus, the database

engine will respond to those cases with a SQL syntax error. For example, if the input

is “ or 1 = 1-- ” and the database type is MYSQL, this input is illegal syntax but it

will cause a DB error as follows:

“You have an error in your SQL syntax; check the manual that corresponds to your MySQL

server version for the right syntax to use near 'any'' at line 1”. Error no: 1064

Therefore, this type of message shows the DB type and it can be blocked by

choosing another message as follows:

One way to handle the different types of the DB error cases is by using the PHP

switch statement as follows:

if (mysql_errno() == 1064)

{

 echo “Wrong entry, try again! ”;

}

Chapter 5 - DPF Implementation

111

5.4. Summary

This chapter presented the implementation of the DPF components and gave a

detailed explanation of the implementation of each component and the relation

between each of the DPF components. The selected implementation tools and

programming languages are discussed with a justification of our choice. Moreover,

the implementation of the Checking Module procedure in Tempura is explained in

detail. The next chapter will discuss the feasibility of our implementation discussing

the strengths and limitations of DPF.

Chapter 6

Detection and prevention framework

Evaluation

Objectives

 Discuss the evaluation criteria.

 Provides several samples of user input and its expected result.

 Presents and discussed the evaluation result of each DPF component.

 Compare the DPF approach with the existing approaches.

Chapter 6 - DPF Evaluation

113

6.1. Introduction

The previous Chapters 4 and 5 have discussed the research framework and the

implementation of our approach DPF. Thus, the success of the goal of the research

depends on the evaluation results and the successful execution of DPF components.

This chapter will discuss the evaluation of DPF that checks the DPF effectiveness

and the interaction between DPF components in addition to evaluate each component

individually. The evaluation will be done using the Anatempura tool with a sample

of user input. This chapter is organized as follows: Section 6.2 discusses the

evaluation criteria that will be used to evaluate DPF components. Section 6.3 tests

the interaction of different software used to test the DPF framework. Section 6.4

presents the results of input checker examination and discusses various samples of

input data as well. Section 6.5 discusses the testing result of database observer

component. Section 6.6 shows the testing results of the output checker component.

Section 6.7 tests the behavioural functions by investigating related attacks and

discusses their results. Section 6.8 compares the DPF evaluation results with some of

the existing approaches. Finally, Sections 6.9 summarises this chapter.

6.2. Evaluation Criteria

Focusing on a special environment is required to evaluate the effectiveness of this

research, and using specific criteria that specifies the successful measurement.

Accordingly, we are focussing to choose same environment for the evaluation of our

framework that is mentioned in the implementation chapter, i.e., using PHP as

development language and MYSQL as database engine. In this part the effectiveness

Chapter 6 - DPF Evaluation

114

of DPF will be measured for each DPF component using various samples of user

input and we are looking to check the following:

 The implementation feasibility.

 The success of input checker using as measurement the rate of false positives

and false negatives.

 Handling of new attacks.

 Matching of attacks behaviour.

6.3. Real Web Application Testing

This part tests the interaction of different software used to test the framework on a

web application. The testing starts by booting the Java RMI server using Anatempura

code as explained in Chapter 5. The Wamp server is also up and running. The testing

will be done by submitting a sample of login page that contains two login fields.

Figure 6.1 shows an example of a web application page that contains a user input

sample.

Figure 6.1 Web Application Input Sample

Chapter 6 - DPF Evaluation

115

The submitted data is being sent via PHP page to the Java RMI server and then to

Anatempura. The checking process for this page will run two times as this page

contains two fields. Anatempura checks the user name field first and the password

field second. The user name field has any user name, and the password is injected by

SQL injection and thus these entries will be rejected and a feedback message will be

sent to the user. Therefore, different types of inputs have been considered to check

the leverage of the input checker component in catching the common SQL injection

attacks. The examination checks also the input checker ability for determining the

safe input as there are several types of safe input that can be used by the user as

normal entries. The data that is submitted from the web application will appear in the

external tab of the Anatempura interface. Figure 6.2 shows the external tab page of

the Anatempura interface. This tab page contains the RMI server starting messages,

and the analysis results of submitted data.

Figure 6.2 Booting of Java RMI Server and The Result

Chapter 6 - DPF Evaluation

116

Note there are two values that are read as shown in Figure 6.3, which are the

username and the password values. Therefore, each submitted value will be analysed

separately.

Note in the case of good inputs the value will be hidden, but they appear here

because of testing the application.

6.4. Single Input Checking

In this part the effectiveness of the input checker will be examined to measure its

ability to analyse the user inputs. The evaluation is divided into three sections, the

first section will check safe inputs and how the input checker deals with them. The

second section discusses the ability of blocking attacks and the last section will

discuss the limitation of the input checker.

6.4.1. User Input Samples Testing

The input checker component checks if the input contains any form of SQL injection

attack. In addition, the user input can be also a safe input. The first testing involves

samples that show possible types of safe input and shows the result of the input

checker component during the analysis of these samples.

Figure 6.3 Tempura Tab and the Analysis Result

Chapter 6 - DPF Evaluation

117

Safe Inputs

The following table contains input samples and the expected analysis result. The

expected result is added with each input sample.

Seq. Input sample and Expected result

1 ["g","which better 'I don't know or 'may be'?? "].

2 ["g","I don't know , or it''s will be fine. "].

3 ["g","'0"].

4 ["g","to apply visit http://www.dmu.ac.uk/home.aspx"].

5 ["g","user_input"].

6 ["g","user+input"].

7 ["g","us/er+09=2"].

8 ["g","username"].

9 ["g","I want (£5) or (7.5 $) to buy this ben."].

10 ["g","UserName"].

11 ["g","Daived starts his game at '6:30' am, and Ali normally start it at 7:00. "].

12 ["g","why you Do not send the paper?"].

13 ["g","emad_ss@hotmail.com"].

14 ["g","fahed@yahoo.com"].

15 ["g","' declare @nn"].

16 ["g","12/01/2012"].

17 ["g","12/feb/2012"].

18 ["g","12.12.2012"].

19 ["g","12-12-2012"].

20 ["g","exec @nn "].

21 ["g","1234567890"].

22 ["g","I do not know!! what is the reason of this?"].

23 ["g","hani.doody@hotmail.com "].

24 ["g","the 'dmu' website is: http://www.dmu.ac.uk/home.aspx"].

25 ["g","I got 50% in my math, and Aric Got 60%."].

26 ["g","input"].

27 ["g","my address is: flat2, 20 garden avenue Leicester post code: le2 4ee "].

Table 6.1 Samples of Good Input

Chapter 6 - DPF Evaluation

118

Table 6.1 shows 27 samples of safe input, these samples contain in some cases some

of the SQL injection keys such as semicolon and single quotation. The expected

result for each sample is denoted by the ‘g’ character. These samples are saved in a

file called GoodSample. The simulation has three steps; the first step determines the

source file of the sample using ‘infile’ system command. The second step reads the

file records and save them to an array using an extendable array as Anatempura reads

the file recorded one by one. CheckingModelTest is a Tempura application that read

these values and glues the expected result as shown in Listing 6.1.

Listing 6.1 The Code of Checking Model Test.

Listing 6.1 shows that the values will be saved to an array called H that can be easier

and more flexible to be accessed and checked.

/* run */ define CheckingModelTest () = {

exists X,S,H:{

{set outfile="stdout" and set infile="GoodSample"

and list(H,0) and input X and while (X ~= 0) do

{extend_list(H,X) and skip and next input X}};

{stable(H) and for i<|H|

do {{CheckingModel(S,H[i][1])}; {

if S = H[i][0]

 then{ format("\n Number %d done %t : %t \n",i+1,S,H[i][1])}

 else {format ("Conflict ! Number %d is %t Expected %t for: %t

",i+1,S,H[i][1],H[i][0]) }

 and skip}}

 }

 }}.

Chapter 6 - DPF Evaluation

119

CheckingModelTest analyses the sample value and compares the result with the

expected result. If the result matches with a CheckingModelTest result, the

application prints ‘done’ or if not the application print ‘Conflict’ and shows the

analysis result. A good sample has been simulated and the result is shown in Figure

6.4.

Figure 6.4 The Analysis Result of Safe Input Samples

Figure 6.4 shows the actual result produced by the input checker component. The

Chapter 6 - DPF Evaluation

120

input checker can deal with different types of safe user input and the word done

which means the expected results matches the actual result.

According to the result in Figure 6.4, the samples with the number 16, 17, 18 and 19

are date style and they are considered safe inputs despite their contents containing

forward slash, dot and dash characters because there is only one sequence dash

character and the forward slash is suspicious only if it is followed by star.

Samples number 1 and 3 contain a single quotation and they are consider as safe

input, as the single quotation is not followed by any of SQL injection keywords.

Sample number 15 is slightly different to 1 and 3 because it is similar to a SQL

injection attack. The single quotation here is followed by the declare command and

the danger of this command will be achieved if it comes after a semicolon.

Moreover, samples 13 and 14 are an example of email address and they contain the

‘at’ character that can be used with a stored procedure attack. They are considered as

safe inputs because the ‘at’ character is not preceded with a SQL command like

declare or exec. Therefore, the checking model checks the sequence of each

character to avoid the cases of false positives in the analysis results.

Tautology Attacks

The second test of the checking model, checks its ability to catch and block various

forms of SQL injection attacks. This test involves several samples of these forms.

Some of these samples have more than one form of SQL injection as the SQL

injecting attack can consist of one or more injection type. The first SQL injection

Chapter 6 - DPF Evaluation

121

attack that will be checked is a tautology attack. The following sample illustrates the

most common tautology attacks.

Table 6.2 Tautology Attack Samples.

Table 6.2 shows samples of using tautology attack. The differences between these

samples are by adding other characters that can change the attack form but they still

will be dangerous and executed. The test run using the same scenario of simulation

that is used with the good sample in the previous section as the sample value will be

read from a file that has the input sample with its expected result. Figure 6.5 shows

the actual result that is produced by the checking model, the result is matched with

the expected one and thus the checking model successfully caught this SQL injection

type of attack. The result shows that sample number 1,2 and 3 are just a tautology

attacks that starts with a single quotation and followed by the ‘or’ keyword and true

condition statement. Sample number 4 is a tautology attack with an extra space. The

extra space will be removed and the injection code will be caught by the checking

Seq. The input sample

1 ["b","'or '1'='1"].

2 ["b","'or 'abc'='abc"].

3 ["b","' or '2'>'l "].

4 ["b","' or '1 '= ' 1"].

5 ["b","' %2f%2a */ or '1'='4"].

6 ["b","' %00 or '1'='1"].

7 ["b","' %00 o/* nothing */r '1'='1"].

8 ["b","'or /* no time or */ or '6'='2*3"].

9 ["b","'union select * from test1 where '4'='3+1"].

Chapter 6 - DPF Evaluation

122

model. As aforesaid in Chapter 5, the checking model inspects the input looking for a

single quotation and then checks what comes after this character. Sample 5 is a

logical incorrect query attacks mixed with alternative encoding attacks. Samples 6, 7

and 8 are mixed tautology and alternative encoding attacks. The checking model in

this case blocks the injection based on the alternative encoded key character and it

checks the input to find a percentage character followed by number and the slash that

is followed by the star character.

Samples number 9 is a union attack based on a tautology attack. Samples 8 and 9

have true condition statement that is based on integer expression. The checking

model will catch this attack as a union query attack because the injection starts with a

single quotation and followed by the union keyword. Thus, the result shows that the

Figure 6.5 The Analysis Result of Tautology Attack Samples

Chapter 6 - DPF Evaluation

123

checking model is blocking these attack type successfully.

Piggy-back Query Attacks

The following sample will be used to check the effectiveness of the checking model

for blocking piggy-back query attacks.

Seq. The injection sample The effect

1
["b",';select 1,2,3 from users into

dumpfile ‘/temp/anyfilename;# "].
SQL injection of select statement that can

retrieve all user information.

2
["b",';drop table users cascade

constraints;# "].
Injection of drop command to delete the user

table.

3
["b",'; insert /* New user */ into

users values(2, 'u123','123 ');# "].
Adding new user to the application permitted

users in addition to in line comment.

4
["b",'; %00 update users /* all user */

set u_password= '123';# "].
Changing the users passwords.

5
["b",'; alter table users drop

u_password;# "].
Changing the structure of the user table.

6
["b",'; create user /* database user */

dbu1 identified by ‘p123′;#"].
Add new user to database system.

7
["b",'; delete from /* any */ users

where u_name like '%Emad%' ;# "].
Delete the admin user from the user table.

8
["b",";declare @sql_procedure

;#"].
Defines a stored procedure.

Table 6.3 Piggy-back Attack Samples

Table 6.3 contains a sample of SQL injection attacks that are based on piggy-back

attacks. Figure 6.6 shows the analysis result of the checking model for these samples.

As aforesaid in Chapter 2, the idea of these attacks that adding a new query to the

original query, so a semicolon character has been used to perform these type of

attacks. Samples 1 to 7 are injected using a semicolon. The checking model checks

what comes after this character, if it is one of the existing attacks keywords then it

will be blocked. As the result in Figure 6.6 is matched with the expected result that

Chapter 6 - DPF Evaluation

124

means the checking model can block these types of attacks successfully.

Union Query Attacks

Seq. The injection sample

1 ["b","'union select * from users;#"].

2 ["b","'union select * from tablename where 'q'='q "].

3
["b","'Union select table_name, from information_schema.table into outfile

'/www/file.txt'"].

4 ["b","'union select * from tablename %00 where 'q'='q "].

5 ["b","' %00 union select * from tablename %2f%2a */ where 'q'='q "].

6
["b","","' union select benchmark(5552555, sha1('test')) ss, ee from test1 where

'1'='1 "].

7 ["b","'union all select 1,2,3,4 where 1=2 "].

Table 6.4 Union Query Attack Samples

Figure 6.6 The Analysis Result for Piggy-back Attack Samples

Chapter 6 - DPF Evaluation

125

Table 6.4 shows various styles of using the union keyword in SQL injection attacks.

This injection type uses a single quotation as value delimiter and use the union

command followed by the injection code. The checking model has tested the samples

of Table 6.4 and the result is shown in the Figure 6.7.

Figure 6.7 The Analysis Results for Union Attack Samples

Union attacks as shown in Figure 6.7 can consist of more than one attack type like

sample 7 that is similar to logical incorrect query. Samples 2, 4 and 5 are union and

tautology attack including code of alternative encoding attacks. Sample 6 is a blind

injection that causes a delay if injected successfully. The checking model has

Chapter 6 - DPF Evaluation

126

detected these types of attacks, and the result matches the expected result.

6.4.2. Input Checker Limitations

The input checker component has been checked using various types of user input and

multi forms of SQL injection attacks. The result matches with those of the expected

results. However, these samples are not enough for the evaluation of the input

checker component as they do not covered all possible input. Thus, there is a

possibility of false negatives and false positives. False negatives were not found

during the testing of this component despite using different attacks type. However,

the alternative encoding attacks has unlimited possibility. In the detection algorithm

the common alternative encoding attacks has been handled based on the key of these

attacks. For example, the function char is used to combine the character decimal

code. The function char and the codes that start with ‘0x’ are being blocked in

addition to the other alternative encoding attacks that are discussed in Chapter 5.

Another limitation is that the checking component produces some false positives if

the injection code contains the SQL injection key or the input start with one of the

common SQL injection. For example, if the input contains single quotation followed

by union keyword and then semi colon, the detection algorithm considers this code

as an injection where it actually does not affect or damage the database. Thus, this

case and other similar cases that start with injection are blocked as they can cause a

database error.

Another example is if input has a part that is similar to the SQL injection form like

using a single quotation followed by the ‘or’ keyword and then anything, in this case,

Chapter 6 - DPF Evaluation

127

the input checker will consider it an attack as shown in Figure 6.8.

6.5. DB Observer Testing

As aforesaid in Chapter 4, the database observer is detecting unknown SQL injection

attacks. Chapter 5 discusses the techniques that control the session using three

functions which are Begin, Commit and Rollback. Thus, any unknown session will

be started with the Begin function and if it matches the database observer condition

the function Commit will end the session, otherwise the session will end with the

Rollback function. To check effectiveness of this component, we discuss a database

sample and show how the database observer will deal with unknown injections. The

results show the database condition values during the injection and without the

injection. Figure 6.9 shows a result sample of the record number condition during the

injection of the web page.

Figure 6.8 False Positive of the Checking Result

Chapter 6 - DPF Evaluation

128

Figure 6.9 shows an example of a login page that contains the SQL statement after

the page is submitted. The page also contains the number of records that are affected

using the submitted data which is similar to the database observer checking

technique for the first checking condition. In this example, the submitted page

returned 5 as record number which means the SQL injection code has run

successfully. Thus, this data will be rejected and the initial capture specification will

be updated. Note that the page has no checking of the submitted data as this example

is for testing the database observer.

Figure 6.10 and Figure 6.11 show examples of submitted pages that are accepted by

the database observer component.

Figure 6.9 Database Observer Rejected Value

Chapter 6 - DPF Evaluation

129

Figure 6.10 shows that the SQL statement has a value for the Pass field containing

semicolon and plus characters. The value is not matched with existing attack patterns

and it cannot be considered good because of its contents. However, the number of

matching records is 1 which means that the SQL statement matches one record of the

test1 table. Thus, the data is compatible with the first condition of the database

observer.

Figure 6.11 shows an example of a SQL statement that has a value of password field

that contains a semicolon followed by a bracket. However, the number of matching

records is 0 which means that the SQL statement does not match with any record of

the user table and therefore no records are affected by executing this statement.

Figure 6.10 Database Observer Accepted Value Example

Chapter 6 - DPF Evaluation

130

Thus, the data is secure and does not break the first condition of the database

observer.

In the examples of Figure 6.10 and Figure 6.11, the new attacks will be analysed,

than the new attacks specification will be added to the initial capture. Thus, the initial

capture will be updated manually to deal with new cases that are found by the

database observer.

Figure 6.11 Database Observer Accepted Value Example 2

Similarly, the evaluation of the user type condition will be done. For example, if a

web application has several user types and the user type is created when the user

login as explained in Chapter 4, then the user cannot access and use any page without

available session. In other words, the user will be blocked if (s)he tries to change the

data that is not related to the session type.

6.6. Output Checker Testing

This component replaces the messages that come from the database with one that

Chapter 6 - DPF Evaluation

131

does not contain any information about the database type or structure. Figure 6.12

shows an example of the database response to the injection code that is not executed

successfully.

The injected code here is a single quotation followed by an ‘or’ SQL keyword. The

error message shows information about the database type which is MYSQL. In

Chapter 4, the replacement of the messages type has been discussed and

implemented. Figure 6.9 shows another message for same input.

Figure 6.12 Sample of Web Application Page Error

Chapter 6 - DPF Evaluation

132

Thus, the error has been replaced with another message and therefore the output

checker has run successfully.

6.7. Behavioural Functions Testing

Testing of the user’s behaviour will be done by simulation in Anatempura only. The

reasons of the simulation are because of the difficulty to collect the SQL injection

data from various machines and to check the success of all user behaviour. Thus, the

investigation simulates related attacks using a file that contains various types of user

input. Each record in this file contains four values which are the IP address, the input

sample and the time stamp of the submitted data that come from application server.

Figure 6.13 Sample of Error Handling

Chapter 6 - DPF Evaluation

133

The investigation of related records will be done in several steps. The first step

uploads the file that contains the sample records to Anatempura using an extendable

array as Anatempura reads the file records one by one. The input of each record of

the sample in this array will be analysed using the input checking component. The

analysis result of each record will be added to the record and replace the expected

result. Thus, the record will contain four values as follows

As aforesaid in Chapter 4, the investigation of related user behaviour will be done

according to four criteria which are the sequence of SQL injection attacks, the

percentage of the transaction type, the related IP address, and the related store

procedure attacks. The following sample shows sample inputs:

Seq. Input Samples

1 ["192.168.1.2","which better I don't know, or say 'may be'?? ","Time 1:1","g"].

2 ["192.168.1.1","; declare @SQLProcedure","Time 1:2","b"].

3 ["192.168.1.6","'; drop table ","Time 1:3","b"].

4 ["192.168.1.12","' or 1=1 ","Time 1:4","b"].

5 ["192.168.1.1","12/feb/2012","Time 1:5","g"].

6 ["192.168.1.8","'union select @SQLProcedure ","Time 1:6","b"].

7 ["192.168.1.6","I don't know or it it''s will be fine. ","Time 1:7","g"].

8 ["192.168.1.1","to apply visit http://www.dmu.ac.uk/home.aspx","Time

1:8","g"].

9 ["192.168.1.1","user_input","Time 1:9","g"].

10 ["192.168.1.1","user+input","1:10","g"].

["IP Address "," Input Sample", "Time"," The analysis result"]

Chapter 6 - DPF Evaluation

134

11 ["192.168.1.2","; exec @SQLProcedure ","Time 1:11","b"].

12 ["192.168.1.6","us/er+09=2","Time 1:12","g"].

13 ["192.168.1.6","username","Time 1:13","g"].

14 ["192.168.1.6","I want (£5) or (7.5 $) to buy this ben.","Time 1:14","g"].

15 ["192.168.1.1","emad_ss@hotmail.com","Time 1:15","g"].

16 ["192.168.1.6","fahed@yahoo.com","Time 1:16","g"].

17 ["192.168.1.1","'or '1'='1","Time 1:17","b"].

18 ["192.168.1.6","' %00 or '1'='1","Time 1:18","b"].

19 ["192.168.1.4","' %2f%2a */ or '1'='1","Time 1:19","b"].

20 ["192.168.1.7","' %252f%252a */ or '1'='1","Time 1:20","b"].

21 ["192.168.1.1","' or exists (select * from test1) and ''='","Time 1:21","b"].

22 ["192.168.1.1","' or not equal to zero","Time 1:22","b"].

23 ["192.168.1.2","12/01/2012","Time 1:23","g"].

24 ["192.168.1.6","UserName","Time 1:24","g"].

25 ["192.168.1.5","12.12.2012","Time 1:25","g"].

26 ["192.168.1.1","12-12-2012","Time 1:26","g"].

Table 6.5 Behaviour Input Samples

The test has two parts, the first one uses the input checker component because the

creation of the behaviour runs in sequence and starts after the checking component,

and the second one run uses the behavioural procedure. Figure 6.14 shows the

analysis results of the sample inputs and Figure 6.15 shows the related behaviour of

these samples.

Chapter 6 - DPF Evaluation

135

Figure 6.14 Analysis Results of the Behaviour Input Samples

Chapter 6 - DPF Evaluation

136

Figure 6.15 User's Behaviour Results

Chapter 6 - DPF Evaluation

137

Figure 6.14 shows 26 cases of user input and the analysis result for these cases, the

IP address for each case and the transaction time. These values have been

investigated using the behavioural function and the result is shown in Figure 6.15 in

4 parts. The first part contains the related bad cases that come from the same IP

address. The result of this part displays the IP address followed by the sequence

transaction times that are arranged in ascending order.

The result of the second part shows the related attacks that run sequentially, and the

behavioural function here checks for sequences of three attacks or more because the

SQL injection attacks require at least three attempts to run the injection. The first

attempt detects the database type. The second one finds the database structure, and

the third one starts the exploit and attack the database. The result shows that the

inputs number 2, 3 and 4 are related as they run sequentially. Another sequence is for

the inputs number 18,19,20,21, and 22. Note the inputs in these attempts come from

several IP addresses.

The third part shows the percentage of each transaction type, i.e., good, bad, and

unknown. The result shows the percentage of the three types of transaction whereas

the bad transaction has a percentage of 38.46154, the unknown transaction equal

3.84615 %, and the good transaction percentage 57.69231 which is not an acceptable

value for any web application if that data is collected from a real web application,

because if the percentage of the bad transaction is high then it means that this

application is under attack. Thus, the transaction percentage statistics can be used to

produce an early warning for the system administrator about the attacks. So, if the

Chapter 6 - DPF Evaluation

138

percentage of good transactions is 95% that it can be considered as nearly safe

because the 5 % involves false positives cases and some unknown cases that can be

handled with database observer in addition to some rejected cases of bad input.

Therefore, the determination of the percentage of the system transactions is required

to know the system states. And these percentage needs to be determined by the

application administrator.

The result of the last part shows the related attacks that are based on using the same

stored procedure. Input number 2 is used to declare a stored procedure and input

number 6 and 11 are used these procedure.

Therefore, the result shows that the behavioural functions can detect related attempts

of bad input such as presented in Chapter 4 and it has run successfully. The

following section discusses some of the existing approaches and compares them with

our approach.

6.8. Related Work Comparison

There are many studies and web application vulnerabilities scanning tools that tackle

the problem of the SQL injection. Some of these studies are discussed in Chapter 2.

DPF will not compared to the web application scanning tools like Nikto or Acunetix

because they uses black box testing techniques and they deal with various of web

application vulnerabilities. In this section, the DPF technique and its checking results

will be discussed and compared with other studies that are proposed to block SQL

injection attacks. The comparison will be based on the following criteria:

 Blocking all attacks type

Chapter 6 - DPF Evaluation

139

 Using static analysis

 Modifying code

 Developer specification level

 Producing false positives and false negatives

 Runtime underlying logic

In addition to the comparison criteria, the DPF differs from existing approaches as it

can track attacks using behavioural functions, and it also block new attacks by

following database transactions using the database observer. The comparison will be

divided in two tables because the information of comparison criteria is not available

in some studies. The following table show the comparison result of some of the

mentioned criteria.

Approaches Using static

analysis

Attacks

specification

Block exist

attacks

Tracking

Attacks

(Halfond, Orso 2006) Fully Automated All No

(Wassermann, Su 2007) Fully Automated All No

(Shrivastava, Bhattacharyji

2012)

No Manual -

Filter

All No

(Natarajan, Subramani 2012) yes Automated Some *1 No

(Manikanta, Sardana 2012) Fully Automated All No

(Lee, Jeong et al. 2012) Fully Automated All No

DPF partly Manual All yes

Table 6.6 Existing Approaches Comparison with the DPF (1)

Table 6.6 shows some the existing approaches and the comparison information

according to the criteria: ‘using a static analysis’, ‘attacks specification’ and ‘block

*1, Union, Tautology and Logically Incorrect Query Attacks

Chapter 6 - DPF Evaluation

140

existing attacks’. Some of the existing approaches analyse the code and simulate to

find vulnerable contents, and others do not require the static analysis stage because

they are based on filtering the inputs. The DPF assumes that static analysis is used to

determine the hotspots of the application. The DPF attacks specification will be done

manually because the detection specification needs to be specified in ITL.

The second comparison information is shown in the following table.

Approaches Modifying

code

False

Positive

False

negative

Runtime

monitoring

Database

Observer

(Boyd, Keromytis

2004)

Yes No No No No

(Halfond, Orso 2006) No Low No Yes java

based on

NDFA

No

(Wassermann, Su

2007)

No low No No No

(Shrivastava,

Bhattacharyji 2012)

No N/A N/A No No

(Natarajan, Subramani

2012)

No N/A Yes Yes Java

monitoring

No

(Manikanta, Sardana

2012)

No No No Yes using

DB

Firewall

No

DPF Yes Low No Yes using

Anatempur

a

Yes

Table 6.7 Existing Approaches Comparison with the DPF (2)

Table 6.7 shows another comparison which is based on the criteria: ‘modifying

code’, ‘false positives’, ‘false negatives’ and ‘using of runtime monitoring’. Some of

the existing approaches modify the application code to apply their approach like

(Boyd, Keromytis 2004) as they need integrated software that can initialize and

recollect the random number of each SQL keyword. The DPF requires little code

Chapter 6 - DPF Evaluation

141

modification because of the assertion points that will be added to a web application

code for each hotspot of runtime monitoring. The most dangerous type of checking

result is false negatives and false positives. False positives are limited as discussed in

the evaluation of the input checker section. So according to the criteria using

Anatempura as runtime monitoring is recommended.

6.9. Summary

This chapter presented the evaluation of the DPF components and discussed the

evaluation result of each component. The evaluation of the input checker

components had several stages of testing for most common and existing attacks

which were using Anatempura and run time testing. The DPF component database

observer and the output checker also have been evaluated and discussed. The

behavioural functions are evaluated using a case study. The evaluation result shows

that DPF has been implemented successfully. The next chapter will conclude this

thesis and discuss the strengths and limitations of DPF in addition to the future work.

Chapter 7

Conclusion

Objectives

 Summarise the thesis.

 Discuss the research limitations.

 Highlight the contributions to knowledge of this research.

 Discuss future work.

Chapter 7 - Conclusion

143

7.1. Summary of the thesis

This thesis presented a new framework for the detection and prevention of SQL

injecting attacks (DPF) that can detect existing and new attacks and investigate

related SQL injection attacks at runtime. The DPF framework is based on ITL using

its executable engine Tempura and its runtime monitoring tool Anatempura. The

framework’s components are discussed showing how these components interact with

each other to detect and prevent SQL injection attacks. Furthermore, the DPF

consists of three checking components, i.e., the input checker component, the output

checker component and the database observer component. The input checker

monitors the user inputs for existing SQL injection attacks that are specified using

ITL. The database observer checks database transactions of inputs that are tagged as

unknown. The output checker is used to check if the database messages contain any

information about the database structures or type. Therefore, the checking process

can deal with various types of user input. The investigation of related attacks uses

also Anatempura and can construct the user behaviour via behavioural functions

using the web transactions information like, user inputs, submission time and the IP

address.

The framework implementation is programmed using Tempura, Java, and PHP.

Tempura is used to implement the detection formula and the behavioural functions.

PHP is used to implement the database observer and the output checker. Java is used

as a bridge to transfer submitted data between the PHP application and the

Anatempura tool.

Chapter 7 - Conclusion

144

The testing of the feasibility of DPF and the effectiveness of DPF components are

done in several stages. The input checker is tested in two stages, the first one at

runtime to check the interaction of various components (Section 6.3).

The input checker is tested using various samples of user input. The samples contain

examples of safe input and existing attacks patterns like tautology, piggy-back query

and union attacks. The effectiveness was measured by simulating sample inputs,

using the Anatempura tool, and the simulation results were discussed. The

effectiveness of the input checker in detecting existing attacks pattern was shown

(Section 6.4). The database observer and the output checker were tested using

different PHP pages that show various user input and the way these components deal

with these cases was discussed (Section 6.5, Section 6.6).

The user behaviour was tested using a case study that contains information about real

transactions like IP addresses, the submission time and the input. This testing is

performed using runs simulating the input behaviour with Anatempura. The

behavioural function testing results showed that the investigation criteria of related

attacks are successful. Finally, the DPF framework is compared with existing

approaches that are proposed to detect SQL injection attacks.

7.2. Contribution

This research makes the following contributions:

 New framework for detection and prevention of SQL injection attacks (Section

4.2).

Chapter 7 - Conclusion

145

 Runtime detection: using a runtime verification technique based on Interval

Temporal logic detecting various types of SQL injection attacks (Section 4.4.1).

 Database observer: to detect possible new injection attacks by monitoring

database transactions (Section 4.4.2).

 User’s behaviour: investigates related SQL injection attacks using user input, and

providing early warning against SQL injection attacks (Section 4.5.2).

7.3. Success Criteria Revisited

Success criteria have been proposed in Chapter 1 to judge the success of the research.

The following will revisit those criteria to measure the success of this research.

 The framework can detect and prevent existing SQL injection attack types.

The framework architecture has been discussed in Chapter 4 and there are three

checking components that can check the user inputs. Chapter 5 discussed the

implementation of these components. Chapter 6 has discussed several samples of

user input that contains good and bad inputs. The result showed the input checker’s

ability to detect and prevent existing SQL injecting attack types. Thus, this

framework has been successful in detecting and blocking the existing SQL injection

attacks.

 The runtime verification tool is suitable for monitoring the web application.

In Chapter 3, the Anatempura and its features have been discussed. An overview of

using Anatempura in the DPF framework is discussed as well. Section 6.3

highlighted a runtime example that shows how the Anatempura deal with web

transactions. Anatempura can monitor attacks specification, and there are several

Chapter 7 - Conclusion

146

samples of user input that were discussed, and that show the effectiveness of

Anatempura in the detection of various types of inputs (Section 6.4). Therefore,

using Anatempura is recommended for monitoring a web application.

 The framework can detect new types of SQL injection attack.

One of the contributions in this research is that it uses the database observer which

can detect a new SQL injection attack by monitoring the unknown input and

determining whether the input is safe or not. Chapter 6 has discussed several cases

that use a database observer showing the effectiveness of this component. The result

of these cases showed the database observer’s ability to catch and block new attacks.

 ITL is suitable to model attack behaviour.

Attacks behaviour component tracks the user over several states and determines

related states. The web transaction data, such as the user input and others, have been

used to investigate this relation. Chapter 4 discussed the conditions that are proposed

to investigate this relation, and Chapter 5 showed the implementation of the

behavioural function using Tempura. Chapter 6 discussed the result that is achieved

based on a real web application. The results supported our choice for ITL to model

attacks behaviour as all proposed conditions were successfully realized.

7.4. Limitations

As aforesaid in Chapter 6, the evaluation results of the proposed framework are

similar to the expected result of each test sample. Thus, the framework can detect the

existing and new SQL injection attacks, in addition to modelling attacks behaviour.

However, the framework has the following limitations.

Chapter 7 - Conclusion

147

 Production of false positives and the possibility of false negatives.

This part is discussed in Section 6.4.2, and the reason for the false positives is that

the injection code contains the SQL injection key or starts with one of the common

SQL injections. False negatives can be produced because of the alternative encoding

attacks having unlimited possibilities. Furthermore, to discuss the rate of false

positives and false negatives would require a comprehensive benchmark that

includes all existing SQL injection attacks techniques in addition to possible safe

inputs. Such a benchmark does not exist at the moment.

 Manual addition of the specification of new attacks.

The initial capture component that contains the attacks specification is now manually

updated because of the new attacks that needs to be analysed first then its

specification will be added to the detection formula. However, Anatempura can

update the attacks specification automatically but that requires further research.

7.5. Future work

As stated in Chapter 2, the detection of SQL injection attacks is based on the DBMS

type that is used within a web application because the SQL injection code should be

compatible with the DBMS type to run the injection successfully. Currently, the

detection technique is tested for the MYSQL database type and the testing results

showed the effectiveness of the checking components. The limitation of the input

checker component is discussed showing some examples of false positives and the

reasons for these cases. In addition, because the alternative encoding technique is

unlimited, so, there is a possibility of false negatives. Thus, the future work will

Chapter 7 - Conclusion

148

focus on the following:

 Improve the detection technique and develop the ability to check the SQL

injection attacks for other database types.

 Improve the detection formula to reduce the false positive cases, and do more

investigation of the alternative encoding attacks to check that the input

checker component can detect more of these types of attacks.

 The related attacks can now be investigated based on four conditions; further

research can establish other conditions.

 Improve the investigation of related attacks so that the input checker

component can predict the next steps of attacks.

 Improve the updated of detection formula of the existing attacks to be run

automatically.

 Further research to specify XSS attacks and the way to add its specification to

the detection formula.

 Check the DPF ability to detect and protect the SQL injection vulnerabilities

that are mentioned in CVE entries (MITRE 2013).

Bibliography

Bibliography

150

ACUNETIX, 2012-last update, Web Application Security with Acunetix Web

Vulnerability Scanner. Available: http://www.acunetix.com/vulnerability-scanner/

[10/18, 2010].

AL AMRO, S. and CAU, A., 2012. Behavioural api based virus analysis and

detection
. International Journal of Computer Science and Information

Security, 10(5), pp. 14-22.

AL AMRO, S. and CAU, A., 2011. Behaviour-based virus detection system using

Interval Temporal Logic, Risk and Security of Internet and Systems (CRiSIS), 2011

6th International Conference on 2011, IEEE, pp. 1-6.

ANLEY, C., 2002. Advanced SQL injection in SQL server applications. White

paper, Next Generation Security Software Ltd, .

ANTUNES, N., LARANJEIRO, N., VIEIRA, M. and MADEIRA, H., 2009.

Effective Detection of SQL/XPath Injection Vulnerabilities in Web Services,

Services Computing, 2009. SCC'09. IEEE International Conference on 2009, IEEE,

pp. 260-267.

BASIN, D., KLAEDTKE, F. and MÜLLER, S., 2010. Policy monitoring in first-

order temporal logic, Computer Aided Verification 2010, Springer, pp. 1-18.

BBC, 12 July 2012, 2012-last update, Yahoo investigating exposure of 400,000

passwords [Homepage of BBC], [Online]. Available:

http://www.bbc.co.uk/news/technology-18811300 [05/05, 2013].

BBC, 29 August 2011, 2011-last update, Nokia's developer network hacked

[Homepage of BBC], [Online]. Available: http://www.bbc.co.uk/news/technology-

14706810 [05/05, 2013].

BEAVER, K., 2007. Hacking for dummies. John Wiley & Sons.

BÖKEMEIER., J. and KOERBER., J., 2012-last update, PHP -Java Bridge.

Available: http://php-java-bridge.sourceforge.net/pjb/index.php [12/010/2012, 2012].

BOURDON., R., 2013-last update, Wamp server. Available:

http://www.wampserver.com/en/ [11/15, 2010].

BOYD, S. and KEROMYTIS, A., 2004. SQLrand: Preventing SQL injection attacks,

Applied Cryptography and Network Security 2004, Springer, pp. 292-302.

BRAVENBOER, M., DOLSTRA, E. and VISSER, E., 2007. Preventing injection

attacks with syntax embeddings, Proceedings of the 6th international conference on

http://www.acunetix.com/vulnerability-scanner/
http://www.bbc.co.uk/news/technology-18811300
http://www.bbc.co.uk/news/technology-14706810
http://www.bbc.co.uk/news/technology-14706810
http://php-java-bridge.sourceforge.net/pjb/index.php
http://www.wampserver.com/en/

Bibliography

151

Generative programming and component engineering 2007, ACM, pp. 3-12.

CAU., A., MOSZKOWSKI., B. and ZEDAN, H., 10/2012-last update, Interval

Temporal Logic. Available: http://www.cse.dmu.ac.uk/STRL/ITL/ [1/17, 2010].

CHRISTENSEN, A., MØLLER, A. and SCHWARTZBACH, M., 2003. Precise

analysis of string expressions. Static Analysis, , pp. 1076-1076.

CIMATTI, A., CLARKE, E., GIUNCHIGLIA, E., GIUNCHIGLIA, F., PISTORE,

M., ROVERI, M., SEBASTIANI, R. and TACCHELLA, A., 2002. Nusmv 2: An

opensource tool for symbolic model checking, Computer Aided Verification 2002,

Springer, pp. 241-268.

CLARKE, J., 2012. SQL injection attacks and defense. Syngress Publishing.

EL-KUSTABAN, A., MOSZKOWSKI, B. and CAU, A., 2012. Formalising of

transactional memory using interval temporal logic (ITL), Engineering and

Technology (S-CET), 2012 Spring Congress on 2012, IEEE, pp. 1-6.

FU, X., LU, X., PELTSVERGER, B., CHEN, S., QIAN, K. and TAO, L., 2007. A

static analysis framework for detecting SQL injection vulnerabilities, Computer

Software and Applications Conference, 2007. COMPSAC 2007. 31st Annual

International 2007, IEEE, pp. 87-96.

GELLERSEN, H.W. and GAEDKE, M., 1999. Object-oriented web application

development. Internet Computing, IEEE, 3(1), pp. 60-68.

GOULD, C., SU, Z. and DEVANBU, P., 2004. JDBC checker: A static analysis tool

for SQL/JDBC applications, Proceedings of the 26th International Conference on

Software Engineering 2004, IEEE Computer Society, pp. 697-698.

GREENSQL LTD, 2012-last update, Database Security Solutions | GreenSQL.

Available: http://www.greensql.com/ [09/12, 2012].

HALFOND, W.G.J. and ORSO, A., 2006. Preventing SQL injection attacks using

AMNESIA, Proceedings of the 28th international conference on Software

engineering 2006, ACM, pp. 795-798.

HALFOND, W.G.J. and ORSO, A., 2005. AMNESIA: analysis and monitoring for

NEutralizing SQL-injection attacks, Proceedings of the 20th IEEE/ACM

international Conference on Automated software engineering 2005, ACM, pp. 174-

183.

HALFOND, W., VIEGAS, J. and ORSO, A., 2006. A classification of SQL-injection

attacks and countermeasures, Proceedings of the IEEE International Symposium on

http://www.cse.dmu.ac.uk/STRL/ITL/
http://www.greensql.com/

Bibliography

152

Secure Software Engineering 2006, IEEE, pp. 65-81.

HOFFMEYER, C.C. and WANG, J., 2003. Protecting Web Services from

Interpretive-Language Injection Attacks.

HOLZER, A., KINDER, J. and VEITH, H., 2007. Using verification technology to

specify and detect malware. Computer Aided Systems Theory–EUROCAST 2007, ,

pp. 497-504.

HOLZMANN, G.J., 1997. The model checker SPIN. Software Engineering, IEEE

Transactions on, 23(5), pp. 279-295.

HOWARD, M. and LEBLANC, D., 2009. Writing secure code. Microsoft press.

HUANG, Y.W., HUANG, S.K., LIN, T.P. and TSAI, C.H., 2003. Web application

security assessment by fault injection and behavior monitoring, Proceedings of the

12th international conference on World Wide Web 2003, New York, NY, USA, pp.

148-159.

HUANG, Y.W., YU, F., HANG, C., TSAI, C.H., LEE, D.T. and KUO, S.Y., 2004.

Securing web application code by static analysis and runtime protection, Proceedings

of the 13th international conference on World Wide Web 2004, ACM, pp. 40-52.

IIVARI, J., 1991. A paradigmatic analysis of contemporary schools of IS

development. European Journal of Information Systems, 1(4), pp. 249-272.

JOVANOVIC, N., KRUEGEL, C. and KIRDA, E., 2006. Pixy: A static analysis tool

for detecting web application vulnerabilities, Security and Privacy, 2006 IEEE

Symposium on 2006, IEEE, pp. 6 pp.-263.

JOVANOVIC, N., KRUEGEL, C. and KIRDA, E., 2006. Precise alias analysis for

static detection of web application vulnerabilities, Proceedings of the 2006 workshop

on Programming languages and analysis for security 2006, ACM, pp. 27-36.

KALS, S., KIRDA, E., KRUEGEL, C. and JOVANOVIC, N., 2006. Secubat: a web

vulnerability scanner, Proceedings of the 15th international conference on World

Wide Web 2006, ACM, pp. 247-256.

KC, G.S., KEROMYTIS, A.D. and PREVELAKIS, V., 2003. Countering code-

injection attacks with instruction-set randomization, Proceedings of the 10th ACM

conference on Computer and communications security 2003, ACM, pp. 272-280.

KEMALIS, K. and TZOURAMANIS, T., 2008. SQL-IDS: a specification-based

approach for SQL-injection detection, Proceedings of the 2008 ACM symposium on

Bibliography

153

Applied computing 2008, ACM, pp. 2153-2158.

KIEYZUN, A., GUO, P.J., JAYARAMAN, K. and ERNST, M.D., 2009. Automatic

creation of SQL injection and cross-site scripting attacks, Software Engineering,

2009. ICSE 2009. IEEE 31st International Conference on 2009, IEEE, pp. 199-209.

KIM, H.K., 2010. Frameworks for SQL Retrieval on Web Application Security,

Proceedings of the International MultiConference of Engineers and Computer

Scientists 2010.

KODAGANALLUR, V., 2004. Incorporating language processing into java

applications: A JavaCC tutorial. Software, IEEE, 21(4), pp. 70-77.

LAM, M.S., MARTIN, M., LIVSHITS, B. and WHALEY, J., 2008. Securing web

applications with static and dynamic information flow tracking, Proceedings of the

2008 ACM SIGPLAN symposium on Partial evaluation and semantics-based

program manipulation 2008, ACM, pp. 3-12.

LEE, I., JEONG, S., YEO, S. and MOON, J., 2012. A novel method for SQL

injection attack detection based on removing SQL query attribute values.

Mathematical and Computer Modelling, 55(1), pp. 58-68.

LIU, A., YUAN, Y., WIJESEKERA, D. and STAVROU, A., 2009. SQLProb: a

proxy-based architecture towards preventing SQL injection attacks, Proceedings of

the 2009 ACM symposium on Applied Computing 2009, ACM, pp. 2054-2061.

LIVSHITS, V.B. and LAM, M.S., 2005. Finding security vulnerabilities in Java

applications with static analysis, Proceedings of the 14th conference on USENIX

Security Symposium 2005, pp. 18-18.

LYON, G., 2011-last update, SecTools.Org: Top 125 Network Security Tools.

Available: http://sectools.org/tag/web-scanners/ [02/10, 2011].

MANIKANTA, Y.V.N. and SARDANA, A., 2012. Protecting web applications from

SQL injection attacks by using framework and database firewall, Proceedings of the

International Conference on Advances in Computing, Communications and

Informatics 2012, ACM, pp. 609-613.

MARTIN, M., LIVSHITS, B. and LAM, M.S., 2005. Finding application errors and

security flaws using PQL: a program query language, ACM SIGPLAN Notices 2005,

ACM, pp. 365-383.

MATSUDA, T., KOIZUMI, D., SONODA, M. and HIRASAWA, S., 2011. On

predictive errors of SQL injection attack detection by the feature of the single

character, Systems, Man, and Cybernetics (SMC), 2011 IEEE International

http://sectools.org/tag/web-scanners/

Bibliography

154

Conference on 2011, IEEE, pp. 1722-1727.

MITRE, October 02, 2013, 2013-last update, Common Vulnerabilities and

Exposures. The Standard for Information Security Vulnerability Names. Available:

http://cve.mitre.org/ [10/18, 2013].

MORLEY, D., 2008. Understanding computers in a changing society. Course

Technology Ptr.

MOSZKOWSKI, B., 1994. Some Very Compositional Temporal Properties,

Programming concepts, methods and calculi: proceedings of the IFIP TC2/WG2.

1/WG2. 2/WG2. 3 Working Conference on Programming Concepts, Methods, and

Calculi (PROCOMET'94), San Miniato, Italy, 6-10 June 1994 1994, North-Holland,

pp. 307.

MOSZKOWSKI, B., 1985. Executing temporal logic programs, Seminar on

Concurrency 1985, Springer, pp. 111-130.

MSDN, L., 2008-last update, SQL Injection in SQL server [Homepage of MSDN],

[Online]. Available: http://msdn.microsoft.com/en-

us/library/ms161953(SQL.105).aspx [11/02, 2012].

NATARAJAN, K. and SUBRAMANI, S., 2012. Generation of Sql-injection Free

Secure Algorithm to Detect and Prevent Sql-Injection Attacks. Procedia Technology,

4, pp. 790-796.

ORACLE., C., 2012-last update, Remote Method Invocation Home [Homepage of

Oracle Corporation], [Online]. Available:

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html [03/11,

2011].

OWASP, 13 April 2013, 2013-last update, OWASP Top 10 for 2013. Available:

https://www.owasp.org/index.php/Top_10_2013 [05/10, 2013].

OWASP, 2011-last update, Category:Vulnerability - OWASP. Available:

https://www.owasp.org/index.php/Category:Vulnerability [11/18, 2012].

OWASP, 2010-last update, Top 10 2010-Main - OWASP. Available:

https://www.owasp.org/index.php/Top_10_2010-Main [11/15, 2012].

PAROS, 2004-last update, Web Application Security Assessment. Available:

http://www.parosproxy.org/ [02/18, 2011].

RIANCHO, A., 2012-last update, w3af - Web Application Attack and Audit

http://cve.mitre.org/
http://msdn.microsoft.com/en-us/library/ms161953(SQL.105).aspx
http://msdn.microsoft.com/en-us/library/ms161953(SQL.105).aspx
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
https://www.owasp.org/index.php/Top_10_2013
https://www.owasp.org/index.php/Category:Vulnerability
https://www.owasp.org/index.php/Top_10_2010-Main
http://www.parosproxy.org/

Bibliography

155

Framework. Available: http://w3af.sourceforge.net/ [12/9, 2012].

SANTOSH, K., 2006-last update, Are stored procedures safe against SQL injection?

: Palisade. Available: http://palizine.plynt.com/issues/2006Jun/injection-stored-

procedures/ [12/10, 2012].

SCOTT, D. and SHARP, R., 2002. Abstracting application-level web security,

Proceedings of the 11th international conference on World Wide Web 2002, Citeseer,

pp. 396-407.

SCOTT, D. and SHARP, R., 2002. Developing secure Web applications. Internet

Computing, IEEE, 6(6), pp. 38-45.

SHRIVASTAVA, R. and BHATTACHARYJI, R.S.J., 2012. SQL INJECTION

ATTACKS IN DATABASE USING WEB SERVICE: DETECTION AND

PREVENTION–REVIEW. Asian Journal of Computer Science and Information

Technology, 2(6),.

SIMPSON, M.T., BACKMAN, K. and CORLEY, J., 2010. Hands-On Ethical

Hacking and Network Defense. Delmar Pub.

SPETT, K., 2003. Blind sql injection. SPI Dynamics Inc, .

SPETT, K., 2002. SQL injection: Are your Web applications vulnerable. SPI Labs

White Paper, .

SQLDICT TOOL, 2008-last update, SQLdict Tool [Homepage of

VulnerabilityAssessment.co.uk], [Online]. Available:

http://www.vulnerabilityassessment.co.uk/sqldict.htm [11/13, 2012].

SQLIER, 2006-last update, BCable.net - SQLIer Injection Tool. Available:

http://bcable.net/project.php?sqlier [11/13, 2012].

SQLLIB-TOOL, 2007-last update, Open labs web application security. . Available:

http://www.open-labs.org/sqlibf113b2.tar.gz [12/10, 2011].

SQLMAP, 2012-last update, sqlmap: automatic SQL injection and database takeover

tool. Available: http://sqlmap.org/ [11/13, 2012].

STUTTARD, D. and PINTO, M., 2011. The Web Application Hacker's Handbook:

Finding and Exploiting Security Flaws. Wiley.

SULLO, C. and LODGE, D., 16/09/2012, 2012-last update, Nikto2 | CIRT.net.

Available: http://cirt.net/nikto2 [11/18, 2010].

http://w3af.sourceforge.net/
http://palizine.plynt.com/issues/2006Jun/injection-stored-procedures/
http://palizine.plynt.com/issues/2006Jun/injection-stored-procedures/
http://www.vulnerabilityassessment.co.uk/sqldict.htm
http://bcable.net/project.php?sqlier
http://www.open-labs.org/sqlibf113b2.tar.gz
http://sqlmap.org/
http://cirt.net/nikto2

Bibliography

156

TAJPOUR, A., MASROM, M., HEYDARI, M. and IBRAHIM, S., 2010. SQL

injection detection and prevention tools assessment, Computer Science and

Information Technology (ICCSIT), 2010 3rd IEEE International Conference on

2010, IEEE, pp. 518-522.

THIEMANN, P., 2005. Grammar-based analysis of string expressions, Proceedings

of the 2005 ACM SIGPLAN international workshop on Types in languages design

and implementation 2005, ACM, pp. 59-70.

TROMER, E., 1999-last update, The Java Instrumentation Engine. Available:

http://tau.ac.il/~tromer/jie/ [10/19, 2013].

VALMARI, A., 1998. The state explosion problem. Lectures on Petri Nets I: Basic

Models, , pp. 429-528.

W3C, 2009-last update, Document Object Model (DOM). Available:

http://www.w3.org/DOM/ [04/29, 2012].

WANG, J., PHAN, R.C.W., WHITLEY, J.N. and PARISH, D.J., 2010. Augmented

attack tree modeling of SQL injection attacks, Information Management and

Engineering (ICIME), 2010 The 2nd IEEE International Conference on 2010, IEEE,

pp. 182-186.

WASSERMANN, G. and SU, Z., 2007. Sound and precise analysis of web

applications for injection vulnerabilities, ACM SIGPLAN Notices 2007, ACM, pp.

32-41.

WHALEY, J. and LAM, M.S., 2004. Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams. ACM SIGPLAN Notices, 39(6), pp. 131-

144.

WOLPER, P., 1983. Temporal logic can be more expressive. Information and

control, 56(1), pp. 72-99.

WOODGER COMPUTING INC, 2012-last update, Woodger Computing Inc. -

General Web Architecture. Available: http://www.woodger.ca/archweb.htm [11/18,

2012].

XIE, Y. and AIKEN, A., 2006. Static detection of security vulnerabilities in scripting

languages, Proceedings of the 15th conference on USENIX Security Symposium

2006, pp. 179-192.

YEOLE, A. and MESHRAM, B., 2011. Analysis of different technique for detection

of SQL injection, Proceedings of the International Conference & Workshop on

http://tau.ac.il/~tromer/jie/
http://www.w3.org/DOM/
http://www.woodger.ca/archweb.htm

Bibliography

157

Emerging Trends in Technology 2011, ACM, pp. 963-966.

ZHOU, S., ZEDAN, H. and CAU, A., 2005. Run-time analysis of time-critical

systems. Journal of Systems Architecture, 51(5), pp. 331-345.

Appendix 1

158

import java.util.*;

import java.text.*;

import java.rmi.NotBoundException;

import java.rmi.RemoteException;

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

public class Client

{

public static String input;

private static Registry r;

private static Server server;

public static String CheckValue(String res) throws Exception

 {

 String recive;

 recive = server.CheckInput(res);

 return recive;

 }

public static void main(String args[]) throws Exception

 { System.out.println("Starting up Client");

 r = LocateRegistry.getRegistry("127.0.0.1");

 server= (Server) r.lookup("Server");

 System.out.println("Welcome ");

 Scanner in = new Scanner(System.in);

 do {

 System.out.println("Please Enter the string you like to check:");

 input = in.nextLine();

 }while(input==null);

 System.out.println(CheckValue(input));

 }

}

Appendix 1: Java Code

Client.Java

Appendix 1

159

The client, server and serverimpl files are used to transfer a submitted data from PHP

page to Anatempura tool.

The client class is used to test the CheckInput function in the server file as this

function communicates with Anatempura using an assertion points.

Server.java

The server file is used to define the function that can be used by the client to

communicate with serverimpl that is used to implement the CheckInput function.

import java.rmi.Remote;

public interface Server extends Remote

{

public String CheckInput(String sentvalue) throws

java.rmi.RemoteException;

}

Appendix 1

160

ServerImpl.Java

This file implements the CheckInput function that includes the assertion point. The

assertion point will be used to deliver a submitted data to Anatempura and the

checking result will be returned using the Console class which is one of the Java

system libraries.

import java.io.*;

import java.util.*;

import java.rmi.RemoteException;

import java.rmi.registry.LocateRegistry;

import java.rmi.registry.Registry;

import java.rmi.server.UnicastRemoteObject;

public class ServerImpl implements Server

{

 public String CheckInput(String sentvalue) throws RemoteException

 { try{

 Console c = System.console();

 String in ;

 System.out.println("!PROG: assert Name:"+sentvalue+":9:!\n");

 in = c.readLine("read it \n");

 System.out.println("Tempura Result: "+in);

 return in;

 } catch(Exception e)

 {

 System.out.println("Server data erro:");

 e.printStackTrace();

 return null;

 }

 }

Appendix 2

161

Appendix 2: PHP Code

TestDatabaseObserver.php

<head>

 <title>PHP Injection test</title>

 </head>

 <body>

 <form action="TestDatabaseObserver.php" method="post">

<p>UserName <input type="text" name="textfield" /></p>

<p>PassWord <input type="text" name="textfield2"/></p>

<p><input type="submit" name="Submit" value="Submit" /></p>

<?php

define ("DB_HOST", "localhost"); // set database host

define ("DB_USER", "root"); // set database user

define ("DB_PASS",""); // set database password

define ("DB_NAME","emad"); // set database name

$link = mysql_connect(DB_HOST, DB_USER,DB_PASS);

$db = mysql_select_db(DB_NAME, $link) or die("Couldn't select database");

if (!$link) { die('Could not connect: ' . mysql_error()); }

echo 'Connected successfully';

echo '<p>==========================</p>';

if (isset($_POST['textfield']))

{ if(isset($_POST['textfield2']))

{ $user=$_POST["textfield"];

 $pwd=$_POST["textfield2"];

 $ee="select * from test1 where ee='$user' and UPass='$pwd'";

 echo '<p>SQL statment:</p>';

 echo $ee;

 $result = mysql_query($ee) or die ("<p>Wrong entry try again!");

 echo '<p>Number of record:

</p>'.mysql_num_rows($result);}}

mysql_close($link);

 ?>

 </form> </body> </html>

Appendix 2

162

The TestDatabaseObserver.php file will be used to test the records number condition

using mysql_num_rows($result) that can retrieve the matching record numbers of a

select statement.

TestDatabaseObserverInsert.php

function begin()

{ mysql_query("BEGIN");}

function commit()

{@mysql_query("COMMIT");}

function rollback()

{@mysql_query("ROLLBACK");}

if (isset($_POST['textfield']))

{ if(isset($_POST['textfield2']))

{ $user=$_POST["textfield"];

 $pwd=$_POST["textfield2"];

 begin();

 $query = "INSERT INTO test1(ee,UPass) values('$user','$pwd')";

 echo '<p>SQL statment:</p>';

 echo $query;

 $result = mysql_query($query) or die ("<p>Wrong entry try again!");

 $RowNo = mysql_affected_rows();

 echo '<p>Number of inserted record: </p>'.$RowNo;

 if ($RowNo=1)

 { commit();}

 else

 { rollback();

 echo '<p>Wrong entry</p>';

 }

}}

mysql_close($link);

 ?>

</form></body></html>

Appendix 2

163

The TestDatabaseObserverInsert.php file has same database connection procedure

that is used in a TestDatabaseObserver.php file. This is used to test the record

number with an insert statement using mysql_affected_rows() that can retrieve the

effected record numbers of the insert statement.

TestOutput.php

The TestOutput.php file is used to test the output checker that checks the message

content and block any database information using a switch case command.

if (isset($_POST['textfield']))

{ if(isset($_POST['textfield2']))

{ $user=$_POST["textfield"];

 $pwd=$_POST["textfield2"];

 $ee="select * from test1 where ee='$user' and UPass='$pwd'";

 echo '<p>SQL statment:</p>';

 echo $ee;

 $result = mysql_query($ee);

if (mysql_errno())

{switch (mysql_errno())

{ case 1064:

 echo '<p>syntax error try again! </p> ';

 break;

 case 1061:

 echo '<p>There is a duplicated entry </p>';

 break;

 default:

 echo '<p> Wrong entry try again </p> ';}}

 else { echo '<p>Number of record:

</p>'.mysql_num_rows($result);}

 }}

mysql_close($link);

 ?> </form> </body> </html>

Appendix 3

164

Appendix 3: Tempura Code

Anascii Function

This function is used to return the Ascii code for any character and it.

LowerCase function

This procedure is used to transform all the character in a lowercase.

define codes = " !\"#$%&'()*+,-

./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefghijklm

nopqrstuvwxyz{|}~".

define anascii(X) = {

 if X>=32 and X<=126 then { codes[X-32] } else { "===" }

}.

define LowerCase(X,ReceiveString)= { /* X will be used for return variable*/

exists A2,A1:{stable (ReceiveString) and List(A2,|ReceiveString|) and A2=[] and

 { for i < |ReceiveString|

 do{

 A2:=A2+[ascii(ReceiveString[i])] and skip } };{

 A1="" and stable(A2) and stable(ReceiveString) and

 { for i < |ReceiveString|

 do{

 if (A2[i]>=65 and A2[i]<=90)

 then {A1 := A1 + anascii(A2[i]+32) and skip }

 else {A1:=A1+ReceiveString[i] and skip }}} and fin(X=A1)

 }}

}.

Appendix 3

165

DecreaseSpaces function.

This function has been used to reduce the number of sequence spaces to be one

space.

StringTokens function

This function is used to separate the string into tokens.

define DecreaseSpaces(X,S) = {

 exists A1,A2,E : { List(A2,|S|) and stable(S) and A2=[] and {

for i < |S| do{

if S[i]~=" "

 then {A2:=A2+[i] and skip }

else {skip and A2:=A2}}};

 {stable(S) and stable(A2) and A1 ="" and E=A2[0] and

 for i < |A2|-1 do{

 if (A2[i+1]-A2[i]=1)

 then{ stable(A1) and E:=E and skip }

 else{ A1 := A1+S[E..A2[i]+1]+" " and E:= A2[i+1] and skip}

 } and fin(X=A1+S[E..A2[|A2|-1]+1])

 }

 }

 }.

define StringTokens(X,S) = {

exists A1,A2,E : { List(A2,|S|) and stable(S) and A2=[] and {

for i < |S| do{

if S[i]~=" " then {A2:=A2+[i] and skip } else {skip and A2:=A2}}};

 {stable(S) and stable(A2) and List(A1,|S|) and A1 =[] and E=A2[0] and

 for i < |A2|-1 do{

 if (A2[i+1]-A2[i]=1)

 then { A1:=A1 and E:=E and skip }

 else{ A1:= A1+[S[E..A2[i]+1]] and E:= A2[i+1] and skip}

 } and fin(X=A1+[S[E..A2[|A2|-1]+1]])

 }

 }

 }.

Appendix 3

166

SearchGenKeywords function

This function has been used to check if the string contains any SQL keywords.

SearchSpecKword function

This function is used to check if the string contains a specific SQL keyword.

define SearchGenKeywords(X,S) = {

 exists A,I,J,SQLKeys:{{

 StringTokens(X,S) and fin(T=X)};{

 stable(T) and

 SQLKeys=["select","drop","update","delete","alter","create","union","declare",

"bigen","exec","ascii"]

 and stable(SQLKeys) and I=0 and J=0 and A='g' and {

 while I < |SQLKeys|

 do{ while J < |T|

 do{

 if (SQLKeys[I]=T[J])

 then {I:=|SQLKeys| and J:=|T| and skip and A:='n'}

 else {I:=I and skip and J:=J+1 and A:=A}

 };{ I:=I+1 and J:=0 and skip and A:=A }

 } and fin(X=A)

 } } } }.

define SearchSpecKword(X,S,D) = {

 exists A,I,Q,G:{stable (D) and stable (S) and {

 {StringTokens(Q,S)};

 {stable(Q) and I=0 and J=0 and A='n' and G=0 and {

 while I < |D|

 do{if (D[I]=Q[0])

 then {I:=|D| and skip and A:='y' and G:=|Q[0]|}

 else { I:=I+1 and skip and A:=A and G:=G}

 }

 }and fin(X=[A,G]) } } } }.

Appendix 3

167

StringCommentCut function

This function can be used to filter a string from the comment that can be used to

elude from the detection function.

GoodEntry function

define StringCommentCut(X,S) = {

 exists A1,A2,T,B : { List(A1,|S|) and stable(S) and A1=[] and T=0 and B=0 and {

for (i < |S|)

 do{if (S[i..i+2]= "/*" and T=0)

 then {T:=1 and B:=i and A1:=A1}

 else { if (S[i..i+2]= "*/" and T=1)

 then { A1:=A1+[B]+["s"]+[i+1] and T:=0 and B:=B}

 else {A1:=A1 and T:=T and B:=B}} and skip }};

{ stable(S) and stable(A1) and A2="" and

 if |A1|>0

 then {for (i<|A1|)

 do{if A1[i]="s"

 then { if (|A2|=0)

 then {A2:=S[0..A1[i-1]]+S[A1[i+1]+1..i+1]+S[A1[i+1]+1..A1[i+2]]}

 else { if ((i+2)=|A1|)

then{ A2:=A2+S[A1[i+1]+1..i+1]+S[A1[i+1]+1..|S|]}

 else{ A2:=A2+S[A1[i+1]+1..i+1]+S[A1[i+1]+1..A1[i+2]]} }}

 else {A2:=A2} and skip}}

 else {A2:= S and skip}

 }and output (S) and fin(X=A2)

 }}.

define GoodEntry(X,S)={

exists A,I:{

 stable(S) and A='g' and I=0 and while I < |S| do {

 if (S[0..2]='0x' or S[I..I+3]=" 0x")

 then {I:=|S| and A:='n' and skip}

 else {if (ascii(S[I])>= 97 and ascii(S[I])<= 122)

 then { stable(A) and I:=I+1 and skip}

 else {if (ascii(S[I])>= 48 and ascii(S[I])<=58)

 then {stable(A) and I:=I+1 and skip}

 else {if (ascii(S[I])= 32 or ascii(S[I])= 33 or ascii(S[I]) = 63

or ascii(S[I]) = 95 or ascii(S[I]) = 43 or ascii(S[I]) = 61)

 then {stable(A) and I:=I+1 and skip}

 else {next(A)='n' and I:=|S| and skip }}}}} /*return n means not good entry*/

 and fin (X=A)

}}.

Appendix 3

168

BadEntry function

define BadEntry(X,S)={

exists A,D,I,F,G: {

{stable(S) and stable(struct(S)) and A='u' and I =0 and

 while I < |S|

do{ if ((S[I..I+2]= "--" and (I+2 <= |S|)) or (S[I..I+3]= "- -" and (I+3 <= |S|)))

 then{I:=|S| and A:='b'}

 else{A:=A and I:=I+1} and skip}};

{stable(S) and skip and if (A ='b') then{A:=A and I:=I} else{A:=A and I:=0}};

{stable(S) and

while I < |S|

do{ if (S[I..I+2]= "/*" and (I+2 < |S|)) or (S[I..I+3]= "/ *" and (I+3 < |S|))

 then{ D=I+2 and

 while (D < |S|)

 do {if (S[D..D+2]= "*/" or S[D..D+3]= "* /")

 then {I:=|S| and A:='b' and skip and D:=|S|}

 else {I:=|S|and A:='u' and skip and D:=D+1}}}

 else{ if (S[I..I+2]= "/*" and (I+2 >= |S|)) or (S[I..I+3]= "/ *" and (I+3 >= |S|))

 then{I:=|S| and A:='b' and skip and D:=|S|}

else{A:=A and skip and I:=I+1}}}};

{stable(S) and skip and if (A ='b') then{A:=A and I:=I} else{A:=A and I:=0}};

{stable(S) and {

 while I < |S|

 do{

 if (S[I]= ";" and I+1<|S|)

 then{{stable (A) and stable(I) and

 {SearchSpecKword(N,S[I+1..|S|],["drop","alter","create","declare"]);

 stable N and

SearchSpecKword(X,S[I+1..|S|],["select","update","bigen","exec","delete","insert"])}};

{if N[0]= 'y'

 then {A:='b' and I:=|S| and stable X}

 else {stable X and stable (A) and stable(I)} and skip};

{D=I+X[1]+1 and

 if X[0]='y'

then{while (D < |S|)

do {if (S[D]= ";" or S[D]= "#" or S[D]= "--" or S[D]="'" or S[D..D+2]=" @" or

S[D]="*" or S[D..D+5]="table" or S[D]="#" or S[D..D+1]="/*")

 then {A:='b' and skip and D:=|S| and I:=|S|}

 else {A:='OB' and skip and D:=D+1 and I:=|S|}}}

else{A:=A and skip and I:=I+1}}}

else{if (S[I]= ";") and (I+1 >= |S|)

then{I:=|S| and A:='b' and skip}

else{A:=A and skip and I:=I+1}}}}};

Appendix 3

169

BadEntry part2.

The GoodEntry function checks if the string contains any SQL keyword or symbols

The BadEntry function checks the string if contains any of the exiting SQL injection attacks.

{stable(S) and skip and if (A ='b') then{A:=A and I:=I} else{A:=A and I:=0}};

{stable(S) and {

 while I < |S|

do{ if (S[I]= "'" and I+1<|S|)

 then{{stable (A) and stable(I) and

SearchSpecKword(X,S[I+1..|S|],["union","or","and","group","order"]) };

{ D=I+X[1]+1 and if X[0]='y'

then{while (D < |S|)

do {if (S[D]= ";" or S[D]="," or S[D]="=" or S[D]= "-" or S[D]="%" or

S[D]="'" or S[D..D+3]="all" or S[D]="#" or S[D..D+1]="/*" or

S[D]=">" or S[D]="<" or S[D..D+6]="select")

 then {A:='b' and skip and D:=|S| and I:=|S|}

 else {A:='OB' and skip and D:=D+1 and I:=|S|}}}

 else{A:=A and skip and I:=I+1}}}

 else{if (S[I]= "'") and (I+1 >= |S|)

 then{I:=|S| and A:='b' and skip}

 else{A:=A and skip and I:=I+1}}}}};

{stable(S) and skip and if (A ='b') then{A:=A and I:=I} else{A:=A and I:=0}};

{stable(S) and

while I < |S|

do{ if ((S[I..I+3]= " 0x") and

 (((ascii(S[I+3])>= 48 and ascii(S[I+3])<=57) or (ascii(S[I+3])>= 97 and

ascii(S[I+3])<=102)) and

 ((ascii(S[I+4])>= 48 and ascii(S[I+4])<=57) or (ascii(S[I+4])>= 97 and

ascii(S[I+4])<=102))))

 then{I:=|S| and skip and A:='b'}

 else{A:=A and skip and I:=I+1}}};

{stable(S) and skip and if (A ='b') then{A:=A and I:=I} else{A:=A and I:=0}};

{stable(S) and

while I < |S|

 do{if (S[I..I+6]= " char(" or S[I..I+7]= " char (" or S[I..I+5]= "char(" or

S[I..I+6]= " exec(" or S[I..I+5]= "exec(" or S[I..I+6]= "select(" or S[I..I+6]= " select("

or S[I..I+3]= "%00" or S[I..I+3]= "%2f" or S[I..I+3]= "%2a" or S[I..I+5]= "%252f" or

S[I..I+5]= "%252a")

 then{I:=|S| and skip and A:='b'}

 else{A:=A and skip and I:=I+1}}};

{stable(S) and skip and if (A ='b') then{A:=A and I:=I} else{A:=A and I:=0}};

 {stable(S) and if A='u' then A:='g' else A:=A and skip}

 and fin (X=A)

 }}.

Appendix 3

170

extend_list function

This function is used to increase the size of the array and add new element to this array.

Filter function

This function is used by a behavioural function to remove a repeated IP address

SearchProcedure

This function is to check if there are frequent uses of a specific procedure.

define extend_list(L,d) = {

 list(next L, |L|+1) and

 forall i<|L|+1: if i<|L| then L[i]:=L[i] else L[i]:=d

}.

define Filter(X,N) = {

 exists A,T:{

 {List(A,|N|) and A=[] and List(T,|N|) and

 while (|N| ~=0) do{

 {A:=A+[N[0]] and N:=N[1..|N|] and skip};

 {stable A and stable N and

 T=[] and for i<|N|

do { if N[i] ~=A[|A|-1]

 then {T:=T+[N[i]]}

 else {T:=T} and skip };{N:=T and stable A and skip}

 } } and fin(X=A) } }}.

define SearchProcedure(X,S,N) = {

exists A,I,J,DProcedure:{{

StringTokens(T,S)};

{stable(T) and DProcedure=["declare","select","exec"]

and stable(DProcedure) and I=0 and J=0 and List(A,|T|) and A=[] and {

 while I < |DProcedure|

 do{ while J < |T|

 do{if (DProcedure[I]=T[J])

 then {if T[J+1][0..1] ="@" then {I:=|DProcedure| and J:=|T| and skip

and A:=A+[N]+[DProcedure[I]]+[T[J+1]]}}

 else {I:=I and skip and J:=J+1 and A:=A}};

{ I:=I+1 and J:=0 and skip and A:=A}

 } and fin(X=A) }}}}.

Appendix 3

171

ReltedIP function

This function is used by a behavioural function to find related IP address that is matched

with existing attacks.

CheckingModel procedure

This procedure is used to check if the string contains any form of SQL injection

attack.

define ReltedIP(H) = {

exists I,X,T,HH,D: {

{stable(H) and { List(HH,|H|) and HH=[] and List(D,|HH|) and D=[] and

for i<|H| do {if H[i][1] ='b'

 then{HH:=HH+[i] and D:=D+[H[i][0]]}

 else{HH:=HH and D:=D} and skip}};

{ stable HH and stable H and Filter(X,D)};

{List(T,|HH|) and T=[] and I=0 and stable HH and stable H and stable X

and while I < |X|

do{ for j<|HH| do { stable I and

 if X[I]=H[HH[j]][0]

 then {T:=T+[H[HH[j]][3]] }

 else {T:=T} and skip};{T:=[] and I:=I+1 and format("%t \n",[[X[I]]+[T]])

 and skip}}}}}}.

define CheckingModel(X,S) = {

 exists D,R,F,T,M:{

 {stable(S) and LowerCase(T,S)};

 {stable(T) and DecreaseSpaces(R,T)};

 {stable(R) and SearchGenKeywords(D,R)};

 {stable(R) and stable(D) and GoodEntry(F,R)};

 {stable(R) and stable(D) and stable(F) and

 {if (D='g' and F='g')

 then{M='g' and empty}

 else{BadEntry(M,R)}}} and fin(X=M)}

}.

Appendix 3

172

Behavioural function

This function has been run in several stages to investigate related attacks.

efine BuildBehaviour(H) = {

exists I,X,T,HH,G,D: {

{stable(H) and

{ ReltedIP(H) and format("\n*********Related IP with bad input ********\n\n")} ;

{ format("************ Sequance of bad input ***************\n\n") and

if |H|>2

 then {List(G,|H|) and G=[] and

for i<|H|-2 do {if (H[i][1] ='b' and H[i+1][1] ='b' and H[i+2][1] ='b' and i~=0)

 then { if (H[i-1][1] ='b' and H[i][1] ='b' and H[i+1][1] ='b') and i>0

 then{G:=G+[[H[i+2][0]]+[H[i+2][3]]]}

 else{G:=G+["\n Seq. Attack:

"]+[[H[i][0]]+[H[i][3]]]+[[H[i+1][0]]+[H[i+1][3]]]+[[H[i+2][0]]+[H[i+2][3]]]+["\n"]}

}

 else{G:=G} and skip} and fin(output(G) and format ("\n \n "))}

 else{empty}};

{format("*********** Percentage of all input *********\n\n") and

T=0 and I=0 and

for i<|H| do {

 if H[i][1] ='b'

 then {T:=T+1 and I:=I }

 else {T:=T and if H[i][1] ='OB' then I:=I+1 else I:=I}

 and skip}};

{stable(T) and stable(I) and

G=itof(T)*100/itof(|H|) and D=itof(I)*100/itof(|H|) and

format("the percentage of bad inputs is: %F \n",G) and

format("the percentage of unspecified inputs is: %F \n",D) and

format("the percentage of good inputs is: %F \n\n\n",(100-(G+D))) and empty};

{format("*********** Related Database Procedure *****************\n\n") and

List(HH,|H|) and HH=[] and for i<|H| do {

 if H[i][1] ='b' then {{SearchProcedure(X,H[i][2],i) and stable(HH)};

 {if X~=[] then HH:=HH+[X] else HH:=HH and skip}}

 else {skip and HH:=HH}}};

{stable(HH) and for i<|HH| do { if HH[i][2]=HH[|HH|-1][2] then{ format ("

[%t,%t,%t] \n",H[HH[i][0]][0],H[HH[i][0]][2],H[HH[i][0]][3]) and skip}} }}}}.

Appendix 3

173

Testing functions

This function is used to simulate the checking model with files that consist of various

types of attacks. it is also used to check a safe input.

This function is used to simulate a behavioural function with input samples to find

related attacks.

 /* run */ define TestCheckingModel() = {

 exists X,S,H:{

 {set outfile="stdout" and set infile="Piggyback" and

 list(H,0) and input X and

 while (X ~= 0)

 do {extend_list(H,X) and skip and next input X}};

{stable(H) and for i<|H| do {{CheckingModel(S,H[i][1])};

{skip and if S = H[i][0]

then{ format("Number %d done %t : %t \n",i+1,S,H[i][1])}

 else {format("Conflict : Number %d is %t Expecting %t for: %t

\n",i+1,S,H[i][1],H[i][0])} }}}}}.

/* run */ define TestCheckingRelted () = {

 exists X,S,H,BehaviourArray:{

 list(BehaviourArray,0) and

 {set outfile="stdout" and set infile="behaviour" and

 list(H,0) and input X and

 while (X ~= 0) do {extend_list(H,X) and skip and next input X }};

 {stable(H) and BehaviourArray=[] and

 for i<|H| do {{CheckingModel(S,H[i][1]) and stable(BehaviourArray) };

 {stable(S) and

 if S = H[i][3]

 then{ format("Number %d done %t : %t \n",i+1,S,H[i][1])}

 else {format("Conflict : Number %d is %t Expecting %t for: %t

\n",i+1,S,H[i][1],H[i][3])}

 and extend_list(BehaviourArray,[H[i][0]]+[S]+[H[i][1]]+[H[i][2]])

 and skip }}};

{stable(H) and format ("\n \n") and stable(BehaviourArray) and

BuildBehaviour(BehaviourArray)} }}.

	Abstract
	Acknowledgment
	Dedication
	Declaration
	Publications
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	Chapter 1
	Introduction
	1.1. Background
	1.2. Motivation and Research Objectives
	1.3. Research Question
	1.4. Scope of the Research
	1.5. Research Methodology
	1.6. Success Criteria
	1.7. Thesis Outline

	Chapter 2
	Background and Related Works
	2.1. Introduction
	2.2. Web Applications Review
	2.2.1. Web Application Architecture
	2.3. Web Application Security
	2.3.1. Hacking Definition
	2.3.1.1. Hacking Types
	2.3.1.2. Hacking Aims
	2.4. Hacking Web Application
	2.4.1. Web Application Vulnerabilities
	2.4.2. Web Application Vulnerabilities Scanning Tools
	2.5. SQL Injection
	2.5.1. SQL Injection Technique and Examples
	2.5.2. SQL Injection Classification
	2.5.2.1. Tautology Query
	2.5.2.2. Piggy-Backed Query
	2.5.2.3. UNION Query
	2.5.2.4. Logically Incorrect Query
	2.5.2.5. Stored Procedures
	2.5.2.6. Inference Query
	2.5.2.6.1. Blind Injection Inference
	2.5.2.6.2. Timing Inference Query
	2.5.2.7. Alternate Encoding
	2.5.2.8. Inline Comments
	2.6. Automated SQL Injection Attacks
	2.6.1. SQL Injection Tools
	2.6.2. False Positive and False Negative
	2.7. Detection and Prevention Existing Approach
	2.7.1. Controlling the User Input
	2.7.2. Scanning Tools Using Black Box Testing Approaches
	2.7.3. Scanning Tools Using White Box Testing Approaches
	2.7.4. SQL Randomisation Approach
	2.7.5. Filtering Input (String Analysis) approaches
	2.7.6. Taint data Approaches
	2.7.7. Static and Dynamic Approaches
	2.8. Motivation Revisited
	2.9. Summary

	Chapter 3
	Preliminaries
	3.1. Introduction
	3.2. Temporal Logic Background
	3.2.1. Examples of Using Temporal Logic
	3.3. Interval Temporal Logic
	3.3.1. ITL Syntax
	3.3.2. ITL Semantic
	3.2.3. Derived Constructs
	3.2.4. Examples of ITL
	3.3.5. Why ITL?
	3.4. Tempura
	3.4.1. Tempura Syntax
	3.5. Anatempura
	3.6. Using of Anatempura in Our Framework
	3.7. Summary

	Chapter 4
	Architecture of Detection and Prevention Framework
	4.1. Introduction
	4.2. Overview of Detection and Prevention Framework (DPF)
	4.3. Initial Phase (receiving Data)
	4.3.1. Initial Capture of User Input
	4.3.2. Users
	4.3.3. Capturing Data
	4.4. Checker Phase
	4.4.1. Input Checker Component
	4.4.2. Database Observer Component
	4.4.3. Output Checker Component
	4.5. Decision Phase
	4.5.1. Feedback Component
	4.5.2. User’s Behaviours Component
	4.5.3. Example of user’s Behaviour
	4.5.4. Updating of User’s Behaviour Component
	4.5.5. Updates Existing Attack Patterns Component
	4.6. Summary

	Chapter 5
	Detection and Prevention Framework Implementation
	5.1. Introduction
	5.2. Implementation Assumptions
	5.3. DPF Components Implementation
	5.3.1. Capturing Data Component
	5.3.2. The input Checker
	5.3.3. Behavioural Functions
	5.3.4. Implementation of Database observer
	5.3.5. Implementation of Output Checker
	5.4. Summary

	Chapter 6
	Detection and prevention framework Evaluation
	6.1. Introduction
	6.2. Evaluation Criteria
	6.3. Real Web Application Testing
	6.4. Single Input Checking
	6.4.1. User Input Samples Testing
	6.4.2. Input Checker Limitations
	6.5. DB Observer Testing
	6.6. Output Checker Testing
	6.7. Behavioural Functions Testing
	6.8. Related Work Comparison
	6.9. Summary

	Chapter 7
	Conclusion
	7.1. Summary of the thesis
	7.2. Contribution
	7.3. Success Criteria Revisited
	7.4. Limitations
	7.5. Future work

	Bibliography
	Appendix 1: Java Code
	Appendix 2: PHP Code
	Appendix 3: Tempura Code

