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Abstract

Operational Risk (OpR) refers to the possibility of suffering losses resulting from inadequate
or failure of processes and/or technology, inadequate behaviour of people or external events.
OpR was one of the main risks that led to the 2008 global financial crisis. Limitations of the
analytical models that are applied in estimating this risk surface when qualitative information,
frequently associated with OpR events, is used. To determine the magnitude of OpR in financial
organisations, qualitative datainnd also historical data from risk events can be used. Current
research trends that focus on the development of analytical models, by using different databases,
to estimate the Operational Value at Risk (OpVaR) still lack models based on qualitative
information, risk management profiles and the ability to integrate different databases of OpR
events. In this paper we present a fuzzy model to estimate the OpVaR of an organisation
by working with two different databases that contain internal available data and external or
observed data. The proposed model considers: (1) the intrinsic properties of the data as
fuzzy sets related to the linguistic variables of the observed data (external) and the data from
available databases (internal), and (2) a series of management profiles to mitigate the effect that
external data usually causes in estimating the OpVaR of an organisation. The results obtained
with the proposed model allow an organisation to estimate and determine the behaviour of the
OpVaR over time by using different risk profiles. The integration of qualitative information,
different risk profiles (ranging from weak to strong risk management), and internal and external
databases contributes to the advancement of estimating the OpVaR in risk management.

Keywords: Operational Value at Risk (OpVaR), Risk profile, Basel II, Loss Distribution
Approach (LDA), Fuzzy credibility model, internal and external data

1. Introduction

Operational Risk (OpR), which was one of the risks that led to the world financial crisis
in 2008, is defined by the Basel II committee as “the risk of loss resulting from inadequate or
failed internal processes, people and systems or from external events” [1, page 3|. This same
agreement mentions that “any operational risk measurement system must [..] include the use
of internal data, relevant external data, scenario analysis and factors reflecting the business
environment and internal control systems.” [2, pages 45-46]. The limitations of the analytical
models that are applied to estimate the Operational Value at Risk (OpVaR) become evident
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when using a significant amount of qualitative information, such as the information used to
describe failures in a business process of an organisation, including financial institutions [3]. To
achieve the required confidence level in estimating the OpVaR, many organisations have to use
external databases and scenarios of OpR events. However, this data, in many cases, does not
represent the reality of the modelling organisation [4]. Thus, there are two main question to
address that refer, on the one hand, to the credibility of the external data used in estimating
the OpVaR in comparison to the historical, internal OpR event data of an organisation, and,
on the other hand, to the evolution of this risk over time, when using different risk management
profiles, ranking from weak to strong risk management, that might impact the expected losses
in the future [5].

Four development research trends can be identified when revising the literature on this
knowledge area:

The first research trend is related to the estimation of the OpVaR by using different models
and techniques based on the definitions of the Basel II agreement [6, 7]. After the publica-
tion of the Basel II agreement, the most common models used to estimate the OpVaR are
the Standardized Indicator (SI), the Basic Indicator (BI) and the Advanced Measurement
Approach (AMA) [8]. In particular, AMA based models are quantitative OpR models
that use internal and external data [9], and they are widely used. However, their role in
the recent world financial crisis has been picked up by some scholars [10]. All these models
have to consider the following key elements, which are subject to management decisions,
related to OpR: causes, events, controls and impact in the estimation of OpVaR; in order
to mitigate or remove this type of risk to some extent from an organisation by using, for
example, management matrices [11]. Over time, this research trend has established new
approaches for the estimation of the OpVaR in financial institutions and in using risk
management policies that consider the conditions of the international financial markets
[12]. Accordingly, mathematical and statistical models can be highlighted that imple-
ment different methods and techniques [13] that use internal and external data, scenarios
and risk management matrices in AMA models, based on the definitions of the Basel II
Agreement.

The second research trend estimates the OpVaR by using Bayesian models. Among them, a
model stands out that uses the Bayesian approach to integrate three different sources
of information [14] to estimate the OpVaR, identifying the causes and the relationship
between risk events [15]. Also, a new methodology has been proposed to frame risk self-
assessment data into suitable prior distributions, updated with observed loss data. This
produces posterior distributions from which the OpVaR can be determined accurately
[16]. Furthermore, this Bayesian approach has also been used to identify and quantify
the OpR associated with financial transactions using electronic devices [17]. This research
line aims at understanding the causes and the relationship between risk events in order to
integrate into one single model internal and external data and the application of credibility
theory that is based on Bayesian concepts [18].

The third research trend integrates internal and external databases with risk events by using
different credibility theory techniques. In [19], different techniques are used to create sce-
narios and external risk events that reflect the market or risk occurrences that happened
in other financial institutions. These quantitative models combine internal and external
data to overcome the limitation of modelling only internal risk event data only, which
refers to the volume of data available, because extreme OpR events rarely occur. Thus,
internal data is mixed with external data so that tail events can be modelled [20, 21].
To overcome the limitation of not possessing sufficient internal data, other authors [22]



proposed the use of scenarios to model extreme events, which reside in the tail of the
loss distributions, so that the body and the tail of the loss distribution can be modelled
separately. Moreover, models have been proposed that integrate databases by using a
novel approach of multidimensional credibility, which is based on Biihlmann credibility
theory [23-25]. This research line applies the definitions of Basel II, which requires that
AMA models for estimating the OpVaR of an organisation should include internal, ex-
ternal and scenario data, but also data related to the business environment and internal
control factors (BECF).

The fourth research trend focuses on the developing of fuzzy logic based models to estimate
the OpVaR. An evaluation of the OpR by means of a fuzzy inference model to manage
endogenous and exogenous risk factors was presented in [26]. In that context, the fuzzy
C-means and fuzzy swarm for fuzzy clustering have been applied to identify the relevant
data in the databases [27] and to show how to organise risk event type variables into macro
classes based on fuzzy variables to improve OpR management [28]. Additionally, models
can be highlighted that use fuzzy logic to integrate different databases to estimate the
OpVaR [3] and a checklist-based fuzzy weighted severity approach for calculating OpR
exposure with regard to foreign exchange trades under Basel II [29]. These works show
that this line of research focuses on the integration of internal and external data and
aiming at improving the estimation of the OpVaR by incorporating highly qualitative
information [30]. However, there is still a lack of proposals that estimate the OpVaR by
using both internal and external data of risk events, considering the intrinsic quantitative
and qualitative properties of the data and risk management matrices. This is the focus
of the present article and, as further elaborated below, a novel fuzzy credibility model to
estimate the OpVaR is developed by integrating two databases representing the internal
available data (AD) and external or observed (OD) data of OpR events in a financial
organisation.

Fuzzy logic and methods can also be found in other risk management areas, with the field
of emergency decision making (EDM) related to natural disasters being an example [35]. In
this case, a natural disaster represents an OpR event that may cause damage to physical
assets of an organisation. Disaster management requires risk management, primarily related to
extreme events, and both strive to improve decision making. In both knowledge areas, decision
making for OpR management and emergency decision making, fuzzy set theory has been applied
because decision information is often vague or incomplete [31-34], which is most notably true
in emergency situations [36]. With regard to the integration of data and information from
different sources, in [36] the authors also highlight, in the context of EDM, that at present
“weight determination methods are almost confined to the static weights and few of them
have been introduced into dynamic intuitionistic fuzzy decision making”, which reinforces the
necessity of taking into account the dynamic changes of the influencing factors in the estimation
of the OpVaR.

This paper presents, with regard to the above fourth trend of research, a novel fuzzy cred-
ibility model to estimate the OpVaR through the integration of two databases that represent
both the internal available data (AD) and external or observed (OD) data of OpR events in a
financial organisation. The proposed model is composed of two submodels, with the first one
allowing the estimation of the credibility of each database. This is done by using the overlap
between fuzzy sets to represent the quantitative and qualitative intrinsic properties for the AD
and OD as linguistic variables (ADLV — ODLV). To estimate the credibility, it is necessary to
establish a series of definitions, identifying this way the presence of distributions with long tails,
according to the form and shape of the fuzzy sets. The second submodel allows to estimate
the OpVaR by using the credibility and different risk management profiles for the OD, so that



an m_ fuzzy risk management model is configured. Additionally, this model allows to assess
the evolution of the loss distribution (LD) by using a sequence of Fuzzy Risk Management Ma-
trices (FRMMs). The proposed model achieves both lower OpVaR values and a narrower LD
than the analytical models based on Biihlmann credibility theory, as shown in Section 4. This
is mainly due to the control that the FRMMSs exert on the risk events that conform the OD
database. Thus, main contribution of this paper is the development of a model able to integrate
qualitative information, different risk profiles (ranging from weak to strong risk management)
and databases in estimating the OpVaR in risk management.

The rest of the article is organised as follows. Section 2 provides the background theory
related to the estimation of the OpVaR (Section 2.1) and to the analytical credibility estimator
based on Biihlmann credibility theory (Section 2.2). Section 3 presents the structure of the
proposed m_ fuzzy model and the experimental design to analyse and validate its behaviour.
Section 4 analyses a series of results regarding the behaviour of the model with regard to the
estimation of the OpVaR by using different risk profiles. In Section 5 the most important
conclusions are presented and recommendations are made with respect to future work in this
knowledge area.

2. Theory
2.1. OpR Modelling

In general, there are three different methods available for financial organisations to estimate
the OpR [37]: (1) the Basic Indicator Approach (BIA) allows to estimate the OpR applying
a fixed rate of 15% to the gross annual income during the three previous years; (2) the Stan-
dardized Approach (SA) is less general and allows to estimate the OpR by using a percentage,
referred to as beta factor, of the annual gross income for each of the eight business lines. This
way, the beta factor weights the riskiness of a business line; and (3) the Advanced Measure-
ment Approach (AMA), which includes analytical models that use quantitative and qualitative
criteria to estimate the OpR and the regulatory capital for an organisation. In essence, the first
two methods determine the regulatory capital by using a fixed percentage of the gross annual
income, with the main difference between them being that that the second one requires the
sum of the capital needs per line of business [38]. These two models determine the operational
risk simply by relating it to the annual gross income, which represents a very general way to
determine the level of OpR and in consequence the required regulatory capital of a financial
institution, whereas the AMA models use historical observed data. The OpVaR in the context
of AMA models is defined according to the definitions of the Basel Committee on Bank Super-
vision (BCBS) as the maximum loss that can be expected given a certain confidence level («)
and within a certain period of time (typically one year) for OpR. The OpVaR value is obtained
from the loss distribution (LD), which reflects the probability of occurrence of a risk event
in a business line in an organisation with a confidence level of 99.9% [37]. The two variables
parameters that allow the identification of the losses are severity, which is the amount of loss
registered in the analysed period of time, and frequency, which refers to how often a risk event
occurs in this same period of time. The LD distribution is obtained through the convolution of
these random variables (frequency and severity) by using different statistical sampling methods
[13]. The LD distribution has three different representative values as represented in Figure 1
[3]: (i) expected losses (EL), which represent the set of losses below the mean; (ii) the Op VaR
as described above, which identifies the severe losses; and (iii) unezpected losses (UL), which
are located between the mean and the OpVaR.

2.2. The Bihlmann Credibility Estimator

Due to the limited quantity of internal loss data generated through OpR events, organisa-
tions need to use external data to achieve the required degree of confidence for the estimation
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Figure 1: General structure of the loss distribution (LD)

of the OpVaR (99.9% is the value defined by the Basel II Accord [37]). In order to use in-
ternal and external data in an OpR model these data sources are “mixed” according to their
respective level of credibility. Credibility is defined as the degree of accuracy in forecasting
statistically future events, based on a set of reported past or historical risk events, where the
weight assigned to the observed internal data is defined relative to the external data through
analytical methods or by judgement. The weight or credibility assigned to the observed data
increases with the number of records and decreases with higher levels of variability in the data
[39].

Three statistical models to estimate the credibility from observed historical risk events can
be highlighted: least square credibility, empirical bayesian credibility and the Bithlmann credi-
bility. Models based on least square credibility are most commonly used. These models attempt
to produce linear estimates that minimise the square of differences between the estimated value
of risk and the quantity being estimated. However, the Bayesian and Biithlmann credibility
models have been used most in recent years, thanks to their capacity to work with the intrinsic
properties of the data when the underlying distributions are unknown [17].

Given X1, Xo,..., X, as the historical loss amounts that represent failures occurred in busi-
ness processes, and assuming these to be independent and identically distributed, where the
distribution of the risk characteristics in the population of the data being represented by 7y (),
the Biihlmann credibility estimate for the OpVaR, ; is [3, 40]:

OpVaRyy =2 X +(1—2)-p, (1)

where X is the mean of the historical loss amounts; y is the expected value of the hypothetical
mean, i.e. the unconditional mean F[X], using a risk parameter of 6 or a particular type of
risk event.

p=E[X]=E[E[X]H]. (2)
Z is the credibility factor assigned to the observed or available data (AD)

N
J=— 3
N+k’ (3)

with N representing the number of observed historical risk events. The Biithlmann—Straub

credibility factor (k) is defined:
EPV

= — 4
A g
where PV is the expected process variance,

EPV = E[Var[X|0]], (5)

>



and VHM is the variance of the hypothetical means,
VHM =Var|[E[X]6]]. (6)
The total variance of this random processes is:
Var [ X]=E[Var[X|0]] +Var[E[X|0]]. (7)

The Bithlmann credibility for estimating the OpVaR is a linear model of available past data
that takes the following form:

ND
OpVaRy 1 =Z - X+(1—2) - p=wo+ Y wy-x (8)
k=1
wo=(1=2)-p (9)
A
wp,=—; k=1,2,3,....,ND, (10)
n
with ND indicating the number of available data (AD). This linear model is the best linear
estimator of the Bayesian predictive mean, F [zjy1|T1,22,...,2,4], and the hypothetical mean,

E[zj11]0], that minimises the square error loss. The w; coefficients are obtained by minimising
the loss functions over all AD events for a parameter 6 [41]:

ND 2
L1=E E[:L‘k_i_ll@]—wo— Zwk'xk (11)
k=1
ND 2
Loy =E | |E[zppl2r,22,. .06 —wo — > wy - (12)
k=1

These loss functions can be obtained by using fuzzy stochastic neuronal network models [42],
based on an evolutionary polynomial model [39] with estimation distribution algorithms [43].

3. Methodology

One of the main issues to address when estimating the OpVaR in a financial organisation is
related to the characteristics of the AD in the database of risk events (endogenous database). As
already mentioned, the OpVaR should be estimated for a confidence level of 99.9%. However,
the low frequency with which an OpR event occurs, may lead to databases that do not have
sufficient data to achieve such confidence level. To overcome this problem, organisations use
external or exogenous databases (OD) that come from other organisations or governmental
financial institutions, which in many cases cannot represent the reality of the market or of the
financial organisation itself. For this reason, in this paper we propose a fuzzy credibility model
to estimate the OpVaR of an organisation by using the qualitative and quantitative intrinsic
properties for the OD and AD as linguistic variables. The proposed fuzzy model is analysed
and validated by using different risk profiles, which show a priori the evolution of the OpVaR
in a financial organisation over time.



3.1. Experimental Design

To design the fuzzy credibility model two databases were used. A first database with
available data (AD) that is composed by a 700 daily records of risk events in total related to
failures of cash machines (business line retail banking) and that were recorded in a financial
organisation during 2009 and 2010. A second database of external/observed data (OD), which
consists of 350 records of daily risk events that are related to the same risk and that were
recorded during the year 2011. At an initial stage, an analysis was carried out with respect to
the structure and shapes of the fuzzy sets that represent the OD and AD databases as linguistic
variables (ODLV, ADLV), as well as the credibility associated with the overlaps among fuzzy
sets. To analyse the behaviour of the model in estimating both the credibility and the OpVaR,
three case studies were carried out in a first stage. These are related to the structure of fuzzy
sets that represent both the ODLV and ADLV. For these variables, 16 ODs were constructed
by using different impact factors that show the compression and expansion of losses in an OD
database. At a second stage, the analysis and validation of the proposed fuzzy model was
performed by using different risk management matrices or risk profiles for the OD, configuring
an m__fuzzy credibility model that allows us to assess the evolution of the OpVaR in a financial
organisation over time [44].

3.2. Characterization of the Fuzzy Sets

One of the main issues in credibility theory when estimating the OpVaR is related to the
intrinsic statistical properties of the data. In this sense, the intrinsic statistical properties of a
database represented as a linguistic variables require the following definitions.

Definition 1. Let X1, Xo,..., X yp be records of loss amounts that have been stored in a database
of risk events, qo,q1,92,q3,q4 the quantiles of the data, and XCy, XC1,XC9, XC3,XCy the
clusters of the data. The intrinsic characteristics of the data are given by the linear regression:

g=m-XC;+b, (13)
where b represents the intercept with the y-axis; and m represents the slopes of the line.

Accordingly, the experimental distribution has the following intrinsic statistical characteristics
in terms of the slope:

m = 1: The clusters that represent the fuzzy sets are uniformly distributed (balanced fuzzy
sets).

m > 1: The clusters that represent the fuzzy sets are located toward the left side of the hori-
zontal axis. This indicates the presence of distributions with long tails with unbalanced
fuzzy sets.

m < 1: The clusters that represent the fuzzy sets are located toward the right side of the
horizontal axis. This indicates the presence of negative asymmetry with unbalanced
fuzzy sets.

The Biithlmann credibility factor allows to estimate the relation between the intrinsic prop-
erties of the observed data and the intrinsic properties of the available data.

Definition 2. The credibility factor is defined as follows:



where N indicates the number of observed risk events; k is the Biihlmann credibility factor

_ EPV
- VHM

with EPV being the expected value of process variance (EPV = E[Var|[X [0]]]); and VHM
the variance of the hypothetical means (VHM = Var[E[0]]).

(15)

The impact factor allows the expansion or contraction of the fuzzy sets associated with an
ODLV.

Definition 3. The impact factor (IF) is defined as follows:
XCop,jiks1=1F - XCop.jik (16)

00oD,jk+1=1F 00Dk (17)

where XCop ;i represents the component i of the fuzzy set j in instant k; opp ;1 represents
the standard deviation of the data in the cluster j. IF values in the interval (0,1) allow the
contraction of the fuzzy sets, while values in the interval (1,00) allows the expansion of the
fuzzy sets.

3.3. The Fuzzy Risk Management Matriz (FRMM)

The FRMM is a data structure established according to the BCBS definitions to manage
OpR. Each row of this matrix is defined by the labels that describe the OD database in terms
of a linguistic variable (ODLV), while each column is defined by the labels that describe the AD
database, also in terms of a linguistic variable (ADLV). The linguistic variables are obtained
by using the fuzzy c-means clustering method [45], where each element of the matrix is defined
by a value that shows both the mixed impact of two fuzzy sets on the OpVaR and a “value of
management” to reduce this impact. The FRMM is defined as [46]:

(mir1,mgi1)  (mit2,mgi2) - (Mi1ne,MG1ne)
FRMM- (mig1,mge)  (migz,mge2) -+ (Mi2ne, Mg2,nc) | (18)
i (minqlamgnc,l) (minc,2amgnc,2) (minc,nCamgnc,nc> |

where nc is the number of labels that describe the ODLV and ADLV; mi; ; represents the
combined impact on the OpVaR of the [ fuzzy ODLV label and the j fuzzy ADLV label; mg; ;
represents the level or degree of management to reduce the combined impact aforementioned;
1=1,2,3,4,5 (Very Low, Low, Medium, High, Very High); and j =1,2,3,4,5 (Very Low, Low,
Medium, High, Very High).

To evaluate the behaviour of the model we propose three different fuzzy risk management
matrices, which can be applied for different scenarios that define the IF. Figure 2 shows three
risk profiles of management with regard to OD events, where (a) represents a weak management
with minor values for the impact, (b) shows a balanced management, where the level of impact
is balanced with the levels of management, and (c¢) showing higher levels of management than
levels of impact. The sequence E1 — E2 — E3 represents a development path for an organisation
to achieve a strong risk management [47].
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Figure 2: Fuzzy risk management matrices: (a) Weak management (E1); (b) Balanced management (E2); (c)
Strong Management (E3).

3.4. Fuzzy Credibility Model (FCM)

To estimate OpVaR at a confidence level of 99.9% (OpVaRgggy) by using two different
databases that characterise the internal (AD) and external (OD) OpR events of a financial
organisation, the proposed fuzzy model has two submodels. A first submodel allows us to
estimate the credibility by working with two different linguistic variables that represent the AD
and OD database. A second submodel allows us to to estimate the OpV aRgq g9 by using a risk
management matrix on the OD data.

3.4.1. The fuzzy credibility factor (ky)
The exponential function that represents the degree of membership of an input data to a
fuzzy set is defined as follows [48]:

128 (XCi— X\
Uj j; = exp (—22 <W> ) 7 (19)
i=1

where u; ;. is the degree of membership of data & with respect to cluster j; XC'; represents
the component 7 of the cluster j ; X; represents the component ¢ of the data k; D; is the
standard deviation of data in the cluster j; and ne is the number of input variables for data k.

The average degree of membership for all £ data with respect to the cluster j can be defined

as:
1 ND[rne (chi—Xik>2
U; =exp | — — ; (20)
! ( 2-NDZ(Z D

k=1 \i=1

where ND is the number of data to be evaluated.



Considering equation (20), the average degree of membership of k data associated with the
cluster | with respect to the centre of the cluster j is defined as:

1 1 NDL / ne 2
g =P\~ ML e (g(m’“xl’i”) | .

where NDL is the number of data associated with the cluster [; X;;  represents the component
1 of the k data associated with the cluster [.
From Definition 2, and taking into consideration equation (21), we have:

ne

1 NDL 9
where VHM B is the variance of the data associated with the cluster [ of the ODLV with
respect to the cluster j of the ADLV.
As the k data belongs to a different linguistic variable that defines the cluster j, the EPV
can be expressed as:
0j + 0o
2
EPVB;;=D}* (24)

where EPV B is the average of the standard deviations (unlike to the degree of membership,
which uses only one variable, this variable represents the combined standard deviations); o;
is the standard deviation of the cluster j associated with the ADLV; and o; is the standard
deviation of the cluster [ associated with the ODLV.

In compliance with equation (24), the credibility between the fuzzy set | associated with
the ODLV with respect to the fuzzy set j associated with the ADLV can be expressed as [40]:

D; = (23)

1 VHMB,
o 1 VHMB; 25
Ui eXp( 2 EPVBM>’ (25)
where
L VHMB, (26)
YT EPVB,,

and kp ; is the fuzzy credibility between the cluster [ for the ODLV and the cluster j for the

ADLV.
The fuzzy credibility factor with respect to the cluster jin the AD database can be expressed

as:
ncop
Jopi=1— Uy s 27
i1 o 2 27)
1 ncop
JAD ;= Ui q, 28
= reop X (28)

where Jop ; is the fuzzy credibility factor that represents the average credibility for the ODLV
with respect to the cluster j associated with the ADLV.

3.4.2. The fuzzy credibility structure

According to the Bithlmann credibility model, the structure of the proposed fuzzy credibility
model for estimating the OpVaR by using two different databases ODLV and ADLV is defined
as:

nc nc
Y Jopj XCopji Y Japj XCapyj
OpVaR = = + =1 (29)

nc nc
> Jop,; > Jap,
=1 =1
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OpVaR = OpVaRpp+ OpVaR 4p, (30)

where XCop j; is the location of the j cluster using ODLV; XCop j; is the location of the j
cluster using ADLV; and

JODj = ZZInC— (31)

1=1 "MY1,5

The assimilation of the OD data in the AD database is performed through the fuzzy c-means
method as follows [45]:

1. Updating the clusters of available data:

ND

m
> (wfjin) -woDin

k=1
XCuapji="—"%p - (32)
> (wfin)
k=1
where m is the plasticity of the fuzzy sets that constitute a database.
2. The distance between new data x,; and the fuzzy sets that define the ADLV.
2
ne 2
djr = H \l > (wm - XCAD,j,i) (33)
i=1

3. The update of the fuzzy partition array:

—1

2
NC djl,k m—1
wfine=2 |7 (34)

The stop criteria allows to identify the assimilation of the OD data in the AD database as:
HU k1 _ Uy kH < 5 x 107P, where p indicates the precision of the assimilation.

3.5. Ezxperimental Validation
For a general validation of the fuzzy credibility model the following stages apply:

Initial Stage. An analysis was carried out to determine the structure and shape of the ODLV
and ADLV, using the associated fuzzy sets. An initial test was also performed to evaluate
the credibility in terms of the overlaps between fuzzy sets.

First Stage. An analysis of the behaviour of the model in the estimation of the credibility was
carried out by using three different case studies that define the structure and shape of
the fuzzy sets that conform the ODLV and ADLV. In the first case study, the ODLV and
ADLV were represented using balanced fuzzy sets. In the second case study, the ODLV
was represented using balanced fuzzy sets and the ADLV using unbalanced fuzzy sets. In
the third case, both ADLV and ODLV were represented using unbalanced fuzzy sets. The
unbalanced fuzzy set were obtained using the fuzzy c-means method. For each study 16
ODs were created using an [F which allowed to increase and reduce the losses of the OD
database. At this stage the validation of the model was done in terms of the behaviour
of the losses using the proposed fuzzy model and the Bithlmann credibility for all ODs
and for all structures taken by the linguistic variables.
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Second Stage. An analysis of the behaviour of the proposed fuzzy model was carried out using

three different risk management matrices (FRMMs) for the OD data of risk events over
time. Furthermore, at this stage 16 ODs were created. The validation and analysis of
the proposed model was made based on the evolution of losses by using the Biithlmann
model for Mean OpVaR and Variance OpVaR and the proposed fuzzy credibility model
applied a set of FRMMs to the 16 OD databases. The set of FRMMs represents the
natural evolution of risk in a financial organisation.

3.5.1. Metrics for credibility
To analyse and validate the behaviour of the model when estimating the OpVaR the fol-
lowing statistical metrics were used [49, 50]:

1.

OpVaRgg gy — the OpVaR at a confidence level of 99.9% with respect to the loss distri-
bution (LD).

EL (Ezpected Losses) — the mean of the LD distribution.
UL (Unexpected Losses) — the losses located within the interval [EL,OpVaRgg gy |-
o — the standard deviation of the LD.

Negative Loglikelihood — method to estimate the parameters of a statistical model given
the observations by finding the parameter values that maximise the likelihood of making
the observations given the parameters [51] . Bigger values show a better fit of a probability
distribution for the given data.

3.5.2. Case Study (Canonical Model)

Aligned with the general structure of the proposed fuzzy credibility model and taking into
account the similarity with respect to the losses registered in the OD and AD databases and
a weak management matrix (E1), this section presents the estimation of the OpVaR using a
canonical model with balanced fuzzy sets for the estimation. Table 1 shows the structure of the
balanced fuzzy sets for ODLV and ADLV, while Figure 3 shows the structure and the shapes of
the balanced fuzzy sets for ODLV and ADLV, where the slope of the linear regression between
quantiles and centroids is m = 1.

Table 1: Balanced fuzzy sets that represent the Losses in the OD and AD Databases

Fuzzy Sets — OD Database

Very Low Low Medium High Very High
XG4 0 2.5 5 7.5 10
2.5 2.5 2.5 2.5 2.5
Fuzzy Sets — AD Database
Very Low Low Medium | High Very High
XGC;4 0 2.5 5 7.5 10

D; 2.5 2.5 2.5 2.5 2.5

After the definition of the fuzzy sets for each database, the procedure continues with es-
timating the overlaps between the fuzzy sets that conform the ODLV and ADLV, which is
provided in Table 2). To illustrate the computation process involved, the value corresponding
to the fuzzy sets Low for ODLV and Medium for ADLV is explicitly shown:

2
1/5-25
2

12



Balanced Fuzzy Sets - OD Fuzzy Sets Distribution OD

/’_\.\ . v y =2.0532x +0.442 o
P, 10 2

Grade

|
Quantiles
" I; (=)
-
L

- —— -
2 ] g b g 1 12 %
U L
XCM,j,1- Normalized Balanced Fuzzy Sets 0 1 2 3 4 5 &
Very Low —g— Low Medium High —e—VeryHih XCN,j,1-Normalized Balanced Fuzzy Sets

Figure 3: Distribution of the fuzzy linguistic labels for the ODLV and ADLV databases (Balanced Fuzzy Sets)

Table 2: Overlap matrix for the OD and AD databases based on balanced fuzzy set

uq us ug Uy us ;
1.000 0.607 0.135 0.011 0.000
0.607 1.000 0.607 0.135 0.011
0.135 0.607 1.000 0.607 0.135
0.011 0.135 0.607 1.000 0.607
0.000 0.011 0.135 0.607 1.000

The procedure continues with the estimation of the fuzzy credibility for each of the ODLV fuzzy
sets as given in Table 3, whose first entry is shown below:

1
Jopi1=1-— R (1.000 +0.607 +0.135+0.011 4 0.000) = 0.6493

Table 3: Credibility for each fuzzy set that conforms the ODLV and ADLV

J1 J2 J3 J4 J5
AD | 0.35066208 | 0.47190112 | 0.49674637 | 0.47190112 | 0.3506620
OD | 0.64933792 | 0.52809888 | 0.50325362 | 0.52809888 | 0.64933792

In accordance with the content of Table 3, the OpVaR estimated by using the structure of the
proposed fuzzy model is:

0.649 %0+ 0.528 2.5+ 0.503 x5+ 0.528 * 7.5 4+ 0.649 « 10 14.285
0.649 +0.528 4+ 0.503 + 0.528 + 0.649 2857

OpVCZROD = = 5.000

0.351%040.472%2.540.497+x54+0.472x7.54+0.351 « 10 _ 10.715

= =5.000
0.351+0.472+40.497 4 0.472 4 0.351 2.143

OpVaRp =

OpVaR =OpVaRypp+ OpVaR 4p = 10.00

Taking into account the FRMM — E1 (Weak Risk Management) and the credibility associated
with the ODLV, we obtain:

o #0.607 + 2 % 1.000 + 2 % 0.607 + 2 % 0.135+ 2 % 0.011
N 1 ,3,.3,3,.3
(s +3+3+3+3)

Jopp =1 =1-0.462=0.537
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oD AD

uL 57 182
| EL 292 518
| o 4.01350458 | 15.2311543
Media 1.4709 9.5895

OpVar 33.5050871 | 107.004237

i Distribution (NLogL)
i Loglogistic 270.088 221.13
il G.Pareto 269.959 221.263
4 Lognormal 273.145 221.706
GEV 272.199 222.291
Weibull 311.785 223.435

(b)

Figure 4: Characterisation of the Loss Distribution for the OD and AD databases: (a) Loss Distributions; (b)
Statistical Metrics.

For the case where the management was done with the low fuzzy set associated to ADLV, the
OpVaR is calculated as:

Jopaks1 _ 0.537
Jop 1k 0.528

XCop,ijik+1 = % 2.5 = 2.542

0.649 % 0+ 0.528 ¥ 2.542 4 0.503 x 54 0.528 * 7.5+ 0.649 « 10 14.307

OpVaRnr — _
pyatop 0.649 + 0.528 + 0.503 + 0.528 + 0.649 2.857

=5.007

0.351%0+0.472%2.540.497+54+0.472x7.54+0.351 « 10 _ 10.715

= =5.000
0.351+0.472+40.49740.472 4 0.351 2.143

OpVaR A p =

OpVaR =OpVaRyp+ OpVaR 4p =10.007

Accordingly to these figures, the effect of a weak management (E1) can be observed with
respect to an increase in the ODLV fuzzy sets and with regard to low losses in the ADLV.
In this case, the OpVaR ranges from 10.000 to 10.007, which represents an important effect,
taking in account that these figures are in thousands of dollars.

4. Experimental Results

Figure 4 shows the intrinsic statistical properties that characterise the AD and OD databases
in the experimental design for this study. It shows that the distributions for the OD and AD
have long tail properties according to the Negative Loglikelihood index. These distributions
are representative for this type of risk [38], where the OpVaR for the OD is lower than for AD.

Figure 5 and 6 show the representation of the fuzzy sets for ODLV and ADLV, respectively,
located in both cases at the left side of the horizontal axis. These figures show long tail
distributions based on the data of the databases, a fact that is corroborated through the slope
of the lines in the QQ-Plot as per Definition 1. The set of labels for each linguistic variable
defined on the universe of discourse are in both cases: { Very Low, Low, Medium, High, Very
High}.

Considering equation (25), Table 4 presents the credibility values achieved by applying the
OD fuzzy sets with respect to the fuzzy set j in ADLV. It can be observed that the credibility
for AD is higher when the OD fuzzy sets have a higher degree of overlap with the fuzzy set j
in ADLV or when the fuzzy sets have a similar magnitude in terms of losses.
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4.1. Stage 1: Credibility behaviour

Figure 7 (a) shows that the credibility that was estimated for the OD fuzzy sets converged
to unity when the OD and AD fuzzy sets have the same magnitude. Both Fig. 7 (b) and
Fig. 7 (c) show that the credibility for the Very High label in ODLV decreases when the impact
increases, so that the OD largest losses are automatically “rejected” by the fuzzy model when
assimilating this data in the AD database. According to Figure 7 (c), the VHM B values of
the fuzzy credibility factor (kp) are greater than E'PV B values, which delivers lower values of
credibility for the OD fuzzy sets with the largest losses.

Figure 8 shows the OpVaR that is estimated by applying the proposed fuzzy model and
the Biithlmann model by using the process of the mean (Mean OpVaR) and the process of the
variance (Variance OpVaR). The OpVaR estimated by the Biithlmann model delivered higher
losses than the fuzzy model, because it uses a credibility factor to estimate the general OpVaR,
when the credibility is proportional to the slope of the OpVaR line. Moreover, it can be observed
that the general OpVaR estimated by the fuzzy model delivered lower losses, because this model

Table 4: Credibility factor for overlaps between AD and OD fuzzy sets, using an [F =1

ul,1 ul,2 ul,3 ul,4 ul,5

0.99726766

0.94082169

0.7836257

0.47592922

0.05923289

0.9831725

0.99576345

0.89839739

0.58160317

0.06428227

0.93953373

0.99623023

0.96044707

0.67685416

0.07345302

0.90626478

0.98246134

0.9847665

0.74039998

0.08271061

0.35742626

0.41440032

0.53095901

0.78943744

0.50857678

Credibility (J)

AD

0.83673299

0.86593541

0.83163913

0.65284479

0.15765111

oD

0.16326701

0.13406459

0.16836087

0.34715521

0.84234889
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Figure 7: Estimated credibility for each fuzzy set that constitutes the observed database: (a) OD — AD Balanced
fuzzy sets; (b) OD Balanced — AD Unbalanced fuzzy sets; (c) OD Unbalanced — AD Unbalanced fuzzy sets.
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Figure 8: Operational Value at Risk: (a) Compressed Losses; (b) Expanded Losses.

uses a set of credibility factors for the corresponding OD fuzzy sets. Here, the growth of the
losses was moderate, because the fuzzy model tends to estimate lower credibility indices for the
largest losses in the OD database. It is important to highlight that the cut-off point between
the lines shows the equilibrium between the models in estimating the OpVaR. When the OD
losses are smaller, the OpVaR is estimated using the AD (AD credibility is higher). When the
losses are bigger, the OpVaR is estimated using the OD database (OD credibility is bigger).
This fact makes a difference when assessing analytical credibility models, where the credibility
for the AD data is higher.

Figure 9 shows the evolution of LD with IF values of 1 and 9. It can be observed that
the distributions evolve toward long tail distributions with heavier tails, which is corroborated
by the IC-fingerprint in Table 5, where the losses are higher when the IF' is bigger. However,
the fuzzy model keeps the mean and the OpVaR below the values of the Bithlmann analytical
model. The structure and shape of the LD distributions preserve the structure and shape for
different I F' values, which underlines the stability of the fuzzy model in estimating the OpVaR
using different [ F' values.

4.2. Stage 2: Risk Management Matrices

Figure 10 presents the behaviour of the proposed fuzzy model in estimating the OpVaR
using different FRMMs that configure the fuzzy management model or m_ fuzzy model. The
results show that the fuzzy model with FRMMs achieved OpVaR values lower than the fuzzy
model used in the previous stage, which reflects the importance of the management related to
the OD data. Also, the stability of the fuzzy model in estimating the OpVaR can be observed,
which is corroborated through the parallel lines.
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Figure 9: Evolution of the LD Distribution with TF =1 and IF = 9: (a) Fuzzy Credibility Model; (b) Biihlmann

Loss Distribution Fuzzy Model
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Table 5: Fingerprint LD statistical indices

80 90 100 110

OD [F=1 OD IF=9
Fuzzy B-Variance | B-Media Fuzzy B-Variance | B-Media
UL 97 91 91 76 57 57
EL 252 258 258 273 292 292
o 6.30921529 | 15.041344 |15.0997045 |26.0012683 [36.0771405 |36.0907955
Media 4.43194404 19.48595864 (9.51781526 [12.1343187 |13.2332572 |13.2346888
OpVar 41.4276898 [105.641541 |106.060659 |218.960123 |301.197468 |301.304598
Distribution |Lognormal |Lognormal |Lognormal |Lognormal |Lognormal |Lognormal
NLogL 1123.775 1092.624 1093.829 | 1123.775 1042.263 1042.162
Operational Value at Risk OpVar (US) B Operational Value at Risk OpVar (US) o "E:)F m—
i et T || R Eoo
- | T "1: w)__rflr**‘“ﬂ "
= 002
- | IR T T "

e Wedi OpVar VaranceOpVar 0 10 20 30 40 50 60 70 8 9 100 110
Losses (U$)

(b) ()

Figure 10: OpR estimated by using RCFMs: (a) Compressed losses (IF < 1); (b) Expanded Losses (IF > 1);
(¢) LD distributions of losses.

—e—M_Fuzzy OpVar Fuzzy OpVar
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Table 6: The LD distribution with 7F = 9 with FRMMS (m_ fuzzy model) and without (fuzzy model and

Bithlmann model).

OD [F=9.0

m_ Fuzzy Fuzzy B-Variance | B-Media

UL 105 76 57 57

EL 244 273 292 292
o 8.32401839 [26.0012683 |36.0771405 [36.0907955
Media 5.45643251 (12.1343187 [13.2332572 |13.2346888
OpVar 83.1600312| 218.960123 | 301.197468 | 301.304598
Distribution |Lognormal |Lognormal |Lognormal |Lognormal
NLogL 1180.076 | 1123.775 | 1042.263 | 1042.162

Table 6 shows that the expected losses (EL) estimated using the Biihlmann mean OpVaR
and the Bithlmann variance OpVaR for an IF=9 were highest with heavy tails LDs, as these
type of models use a general credibility factor when estimating the OpVaR, without taking into
account the magnitude and impact of an risk event. Furthermore, this Figure reveals that the
m__fuzzy model achieved the lowest OpVaR value. This is mainly due to the incorporation of
FRMMs in managing the impact of the OD events. This makes the model ideal to assess the
evolution of the OpVaR by using a sequence of risk profiles or FRMMs.

Figure 11 presents the evolution of the LD distribution using the sequence of risk profiles (E1
— E2 - E3). Here, the LD evolves toward more narrow distributions, with the LD distribution
obtained using the E3 risk profile achieving the lowest values of risk as shown in the Figure 11
(b). Consequently, the fuzzy model can be used as a reference model in a financial organisation
when evaluating a priori the effect of different risk profiles; unlike the analytical models, which
do not allow to integrate risk profiles when determining operational risk.

M-Fuzzy Loss Distribution

M_FLDE3 | M_FLDE2 | M_LDE1

- uL 81 94 90

EL 268 255 259

o 6.79499987 | 10.7115533 | 17.9354861

- Media | 4.12162549 | 6.32044441 | 9.46735151

OpVar | 42.4926595 | 77.5042355 | 142.357395

001 Distribution | Lognormal | Lognormal | Lognormal
Coew W e o ww NLogL. 773.023 922.026 | 1050.882

(a) (b)

Figure 11: Evolution of the LD distribution for different risk profiles

5. Conclusions

This paper presents a novel m__fuzzy model to assess the evolution of the OpVaR in financial
organisations using a sequence of risk profiles and a set of credibility factors, defined through
overlaps between fuzzy sets that represent the intrinsic properties of risk events that are stored
in different databases (OD, AD) and represented as linguistic variables (ODLV, ADLV). The
OpVaR value obtained by the proposed model is lower with the LD characterised by a long
tail, which is narrower than the corresponding estimations obtained using the analytical models
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based on Bithlmann credibility theory. This is mainly due to the control that is performed by
the fuzzy risk management matrices with regard to risk events stored in the OD database.

The m_ fuzzy model allows to assess the evolution of the LD and the OpVaR values by
using a sequence of fuzzy risk management matrices (FRMMSs) that show a priori the effect of
a risk profile on the management of a business process in a financial organisation. This model
overcomes the limitations that impose the analytical model in the integration of management
matrices and using qualitative information that describes an OpR event. Different impact
factors allow expanding and contracting the losses based on the registered data in the OD
database.

The Expected Losses (EL) estimated by the m_ fuzzy model were lower than the EL esti-
mated by the analytical model. This is mainly due to the use of differentiated fuzzy credibility
factors that qualitatively describe the impact of a risk event on the OpVaR, according to the
label that represents a fuzzy set. While analytical models use general factors to estimate the
credibility and treat risk events similarly that show different magnitudes and impacts concern-
ing the estimation of the OpVaR.

The credibility analysis that was carried out by using unbalanced fuzzy sets shows that the
credibility decreased with the expansion of the highest losses in the OD, so the estimation of
the OpVaR was supported by the credibility associated with the biggest losses in the AD. This
means that the organisation needs to implement risk profiles that allow to decrease the impacts
of this type of risk on the OpVaR.

In terms of future work in this research area we propose the estimation of the OpVaR by
applying the structure of ANFIS models, integrating into a single model the representation of
the OD and AD databases as linguistic variables, the estimation of credibility by using the
overlaps between fuzzy sets associated with ODLV and ADLV, respectively, and integrating
different management matrices to assess a priori the impact of a risk profile on the business
process of an organisation.
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