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ABSTRACT

A method for estimating subjective quality score of 3D stereo-
scopic video is proposed which is based on decision trees. The
output of this estimation can be fed into encoding and transmis-
sion units for compensation. The proposed method operates with
minimum dependency on reference video. Content characterist-
ics, no reference (NR) and reduced reference (RR) quality metrics
are extracted and summarised prior to training stage. Content fea-
tures are based on spatio-temporal activities within depth layers.
Quality features include NR blockiness, NR blurriness and RR
3D stereoscopic video quality metric. Due to fast and accurate re-
quirements for the quality estimation, decision trees are employed
where a 0.94 accuracy is achieved.

Index Terms — Subjective quality, 3D stereoscopic Video,
Content characteristics, RR metric, NR metric, Decision Trees.

1. INTRODUCTION

Due to recent advancements of various 3D video applications and
services, there is an increasing demand for accurate and opera-
tional quality assessment of underlying videos. Accurate estimate
for 3D video quality is crucial to video codec development, net-
work protocol planning, quality of service (QoS) monitoring or
quality assurance of end-users. Moreover, a component capable
of accurate estimation can be combined in video delivery chain in
various places like after encoder or before user display. 3D stereo-
scopic videos are basically attainable in colour plus depth format.
They require greater capacities for storage compared to 2D videos
and higher transmission rates. Different processes like compres-
sion or transmission incur visual artefacts on 3D videos. Concur-
rently, the purpose in the entire delivery system is to provide end-
user with a 3D video that has high quality. Quality evaluations of
3D video can be achieved objectively or subjectively.
Objective metrics measure distortions/qualities incurred during en-
coding or transmission. They are consistent with time and based
on mathematical models to compute distortion. A better under-
standing of delivered quality is achieved by measuring user’s per-
ceived quality through a set of subjective tests. Subjective ex-
periments require real participants which is time consuming and
expensive. Unlike objective metrics, subjective evaluations are
susceptible to user preferences, equipment or content. Objective
metrics can be extracted for each 2D section of 3D stereoscopic
video and the relation of metrics to subjective quality can be in-
vestigated. However, better estimation of subjective quality re-
quires combination of metrics and preferably having an exclusive
3D quality metric.
Accurate estimatation of subjective quality (ρ) eliminates the need

of subjective tests and real participants and help video codec and
transmitter to monitor and recover failures. The ultimate goal of
many research activities in this area is to bridge this gap to its
simplest format: ρ = f1(θ), where f1 is a function of objective
quality metrics θ. However, in reality, many influential paramet-
ers can be considered as inputs. Parameters like user preferences,
aesthetic level for content, price of display technology, eye com-
fort or ambient light can severely affect human judgement of 3D
content. With a fast and accurate estimation of subjective quality,
the need of real participants to judge 3D content can be avoided.
Prior research works on relating subjective and objective qualities
for 2D and 3D videos have led to some mathematical representa-
tions of video quality [1–5]. These representations consider some
distortion measures of processed video and compare it to refer-
ence video. However, human judgement of video quality based
on content characteristics should be considered. This changes the
formula to: ρ = f2(θ, α, φ), where φ is content characteristics
and α represents other factors like human factors or cost. Au-
thors in [6] have used some content characteristics for 2D videos
to model subjective quality for 2D videos. In [7], authors suggest
a framework to classify content of 2D videos in to 5 classes based
on motion estimation features. Content analysis for 2D videos is
mainly based on tracking spatial information changes for consec-
utive frames. In the case of 3D videos, many other factors need
consideration. The first element is depth perception. Human eyes
distinguish between 3D videos based on amount of depth they
have in addition to colour quality. Moreover, 3D motion analysis
and 3D texture analysis can help content analysis of 3D video.
For 3D videos, the problem of mathematical representation of per-
ceived quality can be tackled by taking into account content char-
acteristics as well as objective quality metrics. Ideally, this model
should be with minimum dependency on reference video, as avail-
ability of reference signal is not applicable to receiver side. On the
other hand, there is a lack of exclusive objective quality metrics
for 3D videos. Several 3D quality metrics can be found in [8–11].
These 3D quality metrics are dependent on availability of refer-
ence video. Moreover, they do not consider texture changes dur-
ing compression and transmission and they are similar to block-
based peak signal to noise ratio for each 2D section of 3D video.
The last but not the least is depth importance ratio in overall 3D
perception needs appropriate exploration. Solving this problem
will change the formula to: ρ = f3(θ̂, α, φ), where θ̂ represents
reference-free (NR,RR) objective quality metrics. Solving these
problems will omit the need of having real human eye observers
to assess 3D video content subjectively. To tackle this problem
in this paper, the first stage of the proposed technique is content
feature extraction. Numbers of depth layers, spatial and temporal
features within depth layers are considered to represent video con-
tent characteristics. In the second stage, quality features are ex-
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tracted. NR Blockiness [12] and NR blurriness [13] are calculated
for only colour frames of the 3D stereoscopic video. Furthermore,
a RR video quality metric is applied [14]. Content and quality
features are used in machine learning algorithms to estimate sub-
jective quality scores.
Decision trees (DT) are selected due to their capabilities for fast
and accurate prediction. Extracted features are inputs to DT. Pre-
processing of data is performed to summarise 3D stereoscopic
video content and quality features which leads to smaller tree size.
Summarisation is with non-overlapping windowing for each 5 con-
secutive frames to reduce the size of input vector by 80%. Learn-
ing process of DTs is an inductive process that uses particular facts
from data attributes to make more generalised conclusions [15].
After learning process, DT is able to predict the output giving new
inputs. There are different methods of learning process of the DTs.
In this paper, random subspace method (RSM [16]) and bootstrap
aggregating (bagging [17]) are employed. Block diagram of the
proposed technique is shown in Figure 1.

Figure 1. Block diagram of the proposed model.

In this paper, we present method to estimate subjective quality
scores for 3D stereoscopic videos in a NR-RR way. This tech-
nique extracts content characteristics as well as quality features
which are then fed in to the learning algorithms. In Section II, a
method for NR-RR content and quality feature extraction is de-
scribed. Subjective quality estimation is presented in Section III
of this paper. Finally, Section IV concludes this paper.

2. NR-RR CONTENT AND QUALITY FEATURE
EXTRACTION

One of the important features in 3D stereoscopic videos is their
difference in depth perception. Accordingly, finding the number
of depth layers is a preliminary stage for content analysis. Depth
frame as a grey scale image has 256 possible grey levels (gl ∈
[0,255] ). Afterwards, depth frame is scaled down to 32 grey
levels. By scaling, nearby depth layers are combined and con-
sidered as one layer. Histogram of scaled depth frame Ω is calcu-
lated. Number of peaks in Ωi (for the ith frame) is the parameter κi
which is equal to the number of the depth layers for the ith frame
of the depth video. Afterwards, stream of peaks of depth video is
smoothed and updated to hinder sudden changes from one frame

to following frame based on:

κ̂i =


κi, for i = 1, 2(initialisation).

d0.5κi + 0.5κi−1e, for |κi−κi−1

κi−1
| > 0.5

dακi + (1− α)κi−1e, for |κi−κi−1

κi−1
| ≤ 0.5

(1)
For example, if the ith frame has 7 depth layers and the ith − 1
frame has 3 depth layers, feature extraction algorithm smooths
this hard transition and caps the number of depth layers to 5 for
the ith frame. Another case is where the ith frame has 4 depth
layers and the ith − 1 has 7, feature extraction algorithm smooths
this hard transition and caps the number of depth layers to 5 for
the ith frame. This approach is similar to fair smoothing. In this
paper α is set to 0.97 and the resultant κ̂i is then used for K-
means clustering segmentation of corresponding depth frame to
generate κ̂i masks. In Figure 2, an example of balanced peaks
(depth layers) for a sample 3D videos is shown.

Figure 2. An example of balancing number of depth layers for a sample
3D video (sequence butterfly3 as in [18]).

Each masked colour image has zero and non-zero pixels, where
non-zero pixels show the information from the colour frame over
the specific part of the segmented depth image. Corresponding
colour image is passed through each filter. For each filtered colour
frame (the ith frame is Ii in the notations) applying the j th filter
ψi,j , spatial feature ξ is defined for the luminance component as:

ξij = σV(σH(Ŝ

masked colour image︷ ︸︸ ︷
(ψi,j(I

i) ))) i=1,...,N
j=1,...,κ̂i

(2)

Where Ŝ is edge detector, and σ is standard deviation along ver-
tical (V) or horizontal (H) axis. Another feature is computed from
time difference ν, which is computed using luminance compon-
ents for two consecutive filtered colour frames (the ith−1 and the
ith frames) over the correspondent j th filters (ψi,j ,ψi−1,j). Time
features are computed from:

νi,i−1
j = σV(σH(ψi,j(I

i)− ψi−1,j(I
i−1))) i=1,...,N

j=1,...,min(κ̂i,κ̂i−1)

(3)
Extracted content features can differentiate videos based on spatio-
temporal activities within depth layers. 3D Stereoscopic videos
have different motion activities in depth layers like high motion
in background or low motion in foreground. The next step in the



estimation algorithm is to calculate two NR metrics: blocking and
blurriness measures for colour images. Blocking occurs in the
block based coding schemes. They appear in block borders as
discontinuities or shift in edges along blocks. In this part of the
paper, the algorithm introduced in [12] is employed that finds dis-
continuities along vertical or horizontal lines (borders). Blurriness
or luminance bleeding is another artefact caused during compres-
sion. This is due to bigger values for QP (hard quantising). This
artefact exists along the edges. The method introduced in [13] is
used for blurriness. Each 3D stereoscopic video has N (number of
frames) blockiness measures and N blurriness measures. To con-
sider overall 3D stereoscopic video quality, the metric in [14] is
used. This metric utilises texture information in a content-based
combination. Where content characteristics are taken from edge
properties. To verify the performance of the 3D stereoscopic video
quality metric, it should correspond to opinion scores from con-
ducted subjective experiments.
In this paper, there are 29 reference videos in different types of
motion, depth perception, the number of objects, colour palette
and moving camera. The spatial resolution for each view (col-
our/depth) is 960×540 pixels. To have wide range of qualities,
different quantisation parameters (QPs) were applied during com-
pression of colour and depth maps. For each 3D video, colour
and depth maps were encoded separately using H.264/AVC with
variable bitrate coding (VBR) at the QPs: 30, 35, 40, 45, and
50. Baseline profile was used for encoding colour images and
depth maps were encoded using high profile. I frames were in-
cluded every 75 frames for all colour and depth maps (IPPPP...).
During coding stage, content adaptive binary arithmetic coding
(CABAC) was used. 3D Stereoscopic videos have different spa-
tial information (texture) in depth layer. As an example, difference
between a plain background and highly textured background are
recognisable through extracted content features. These features
and quality features are used in pre-processing before applying
to machine learning algorithm to predict subjective quality. Con-
sequently, 725 videos were generated at 25 fps rate. This data set
has been already used in [11, 14, 18]. Subjective tests are based
on SAMVIQ [19], and user scores are based on continuous scale
in the range of [0 (worst)-100 (best)] for overall 3D stereoscopic
video quality. In each part of the test, there is an explicit refer-
ence and other videos to rate; one video is called hidden reference.
Number of participants, the vision test, and ambient light are com-
plying with ITU guidelines for subjective experiments. For each
impaired video at least 15 votes were gathered. A 42” inch Philips
WOWvx multi-view auto-stereoscopic display with the resolution
of 1920×1080 pixels was used for the test. Ambient light and
viewing distance were 200 lux and 3m respectively.

3. QUALITY ESTIMATION

Each 3D stereoscopic video (N frames) has a continuous opinion
score equal to ρ from subjective experiment results:

f3(λ1, λ2, ..., λN ) ' ρ (4)

After using non-overlapping window with size 5, each 3D ste-
reoscopic video is summarised with a set of group of frames (Λ)
belonging to the same quality score region as the whole video:

f3(Λ1,k,Λ2,k, ...,ΛN,k) ' ρ (5)

where Λj,k = G(λj − k, ..., λj , ..., λj + k) is the grouping func-
tion. In this paper, content and quality features are summarised

with non-overlapping windowing as grouping function. Summar-
ised features are considered as input vector which are fed to dif-
ferent learning algorithms. A non-overlapping windowing for 5
frames is used for summarisation that gives 80% decrease of input
vector size for our datasets. Non-overlapping windowing can be
treated as a time buffer for duration of 200 ms for videos with 25
fps. Accordingly, input vector consists of content-quality features
which are spatial information within depth layers as shown in [5],
time information within depth layers as shown in [6], NR blocki-
ness for colour video frames as shown in [12], NR blurriness for
colour video frames as shown in [13] and RR 3D stereoscopic
video quality metric as shown in [14]. For the metric in [14], a ra-
tio of 0.8 for colour and 0.2 for depth is applied in this paper. De-
cision trees are trained and tested with the summarised features.
Random subspace method [16], is an ensemble classifier and a
generalization of the random forests algorithm. Bagging [17], is
an ensemble algorithm to improve stability and accuracy of clas-
sification. It helps to avoid over-fitting. For 725 impaired videos,
summarisation gives 725×(250/5)=36250 instances per feature.
As an example, totally, we have 36250 measures of blockiness
for all our data set. Half of the instances are kept for training.
Number of instances for training and test sets is 18125. Train and
test sets are selected randomly among all data set where GOFs (Λ)
for each impaired 3D stereoscopic video are in either training or
test set. In other words, train and test sets have proper distance.
Test results for two learning algorithms are shown in Table 1.

Table 1. Experimental Results for the learning algorithms: Tree size (S)
is the number of nodes, CC is the correlation coefficients, and RMSE is
root-mean-square error.

Algorithm S CC RMSE
Random Subspace 2205 0.94 6.551
Bagging 3173 0.934 7.625

It is evident that DT with random subspace algorithm performs
better with 94% accuracy and remarkably reduced tree size (num-
ber of nodes in DT). This method modifies training data in the fea-
ture space. This method is fast and accurate to apply in to frame-
by-frame (or bufferred) estimation of subjective quality. Future
changes to this method will include bit-rate considerations. To
make the system completely NR, random subspace algorithm is
trained and tested leaving out the 3D RR metric introduced in
( [14]). Results of this investigation are shown in Table 2. Omit-
ting the RR metric leads to 0.22 decrease in estimation accuracy,
10 increase in RMSE, and 57.14% decrease in tree size, which
means many nodes in DT are incorporating the proposed metric.

Table 2. Experimental Results for RSM learning algorithm with only NR
features: Tree size (S) is the number of nodes, CC is the correlation coef-
ficients, and RMSE is root-mean-square error.

Algorithm S CC RMSE
Random Subspace 945 0.7208 16.659

As shown in results, NR-RR estimation of subjective quality in
this paper has good accuracy. Furthermore, due to nature of train-
ing algorithms used in this paper, implementations of the proposed
estimation are lightweight in terms of computational complexity
and memory. This system estimates subjective quality score at
the end of each buffer time which is 200 ms. There are several
ways to improve this estimation algorithm. One is to deploy bit-
rate considerations in training algorithms and involve them a new
feature set. Some improvements can be achieved by adding other
NR-RR quality features that consider other perspective of visual
quality. However, both proposed remedies will increase tree size



that is a very important factor. The concept behind this system
is extensible to situations where subjective score is gathered in a
real-time fashion. It means that users rate video quality frequently
in smaller fractions of time rather than at the end of 8s or 10s,
which are current standards. For this purpose, there is a high de-
mand for comprehensive subjective quality assessment standards
that are capable of this.

4. CONCLUSION

A method for fast and accurate subjective quality estimation of 3D
stereoscopic video is proposed. The first stage of the model ex-
tracts content and quality features with minimum dependency on
reference video. Furthermore, with the help of non-overlapping
windowing, the number of the content-quality features is reduced
significantly preserving the important information concurrently.
Summarised features are fed into a decision tree to predict opinion
score inductively. Maximum measure of success of the proposed
system for test sequences is 0.94. The output of the proposed sys-
tem can be fed into other units for compensation to prevent further
degradation of perceived quality.
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