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Abstract—Dynamic multi-objective optimization problems (D-
MOPs) provide a challenge in that objectives conflict each other
and change over time. In this paper, a hybrid approach based on
prediction and autonomous guidance is proposed, which responds
the environmental changes by generating a new population.
According to the position of historical population, a part of
the population is generated by predicting roughly and quickly.
In addition, another part of the population is generated by
autonomous guidance. A sub-population from current population
evolves several generations independently, which guides the
current population into the promising area. Compared with
other three algorithms on a series of benchmark problems, the
proposed algorithm is competitive in convergence and diversity.
Empirical results indicate its superiority in dealing with dynamic
environments.

Index Terms—Dynamic multi-objective optimization, au-
tonomous guidance

I. INTRODUCTION

Many real-world optimization problems involve several ob-
jectives which conflict with each other and change over time
[1]. This kind of optimization problems is usually known as
dynamic multi-objective optimization problems (DMOPs) [1],
[2]. Evolutionary algorithms are useful in solving DMOPs as
they are inspired by evolution [3]. When dealing with DMOPs,
the optimization algorithm must be able not only to evolve
a set of convergent and diverse solution, but also to track
the moving Pareto-optimal front (POF) and Pareto-optimal set
(POS). Without loss of generality, a typical DMOP in this
paper can be described as follows [1]:

{
min F (x, t) = (f1(x, t), f2(x, t), ..., fM (x, t))

s.t. g(x, t) ≤ 0, h(x, t) = 0, x ∈ Ωx

(1)

where f is the set of objectives at time t, M is the number of
objectives, g and h are the inequality and equality constraints,
and Ωx ⊆ Rn is the decision space.

In recent years, evolutionary algorithms are widely in-
troduced to solve the multi-objective optimization problem
because of its high efficiency [4], [5], [6]. Based on this,
evolutionary algorithms also have been introduced for DMOPs
[7], [8], [9]. Jiang et al. [10] classified dynamic multi-objective
evolutionary algorithms (DMOEAs) into two categories based
on the way of handling environmental changes, namely,
convergence-based approaches and diversity-based approach-
es.

Convergence-based approaches particular emphasize the
convergence, which try to exploit past information for better
tracking performance mainly by using prediction strategy and
memory strategy. Some DMOEAs use prediction approaches
to speed up convergence by guiding the population to evolve
towards the POF after environmental changes. For example,
Hatzakis and Wallace [11] proposed feed-forward prediction
strategy (FPS) to estimate the POF. Zhou et al. [12] proposed
a forecasting approach called population prediction strategy
(PPS). More recently, in 2016, Murugananham et al. [13]
proposed a new prediction model called Kalman filter pre-
diction. Those prediction models work at particular problem.
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Usually, prediction models are too weak to deal with ruleless
problem. Besides, memory scheme is another kind of common
convergence-based approach [14], [15]. This kind of approach
works by storing relevant information of historic POS into
a memory. Goh et al. [16] proposed a coevolutionary multi-
objective algorithm based on competitive and cooperative
mechanisms to solve DMOPs. What’s more, several memory-
based strategies have been presented in Wang [17] which
reuses the information from memory pool to conduct a new
population while the changes happen.

Diversity-based approaches particular put emphasis on the
diversity, which try to make the the population keep uniform
distribution and expand the search area. Many methods based
on diversity have been proposed [18], such as diversity intro-
duction after a change, diversity maintenance throughout the
run, and self-adaptive methods. Deb et al. [19] extends NSGA-
II to deal with DMOPs by introducing diversity. This algo-
rithm replaces ζ% of the new population with new randomly
produced solutions. In addition to randomly producing solu-
tions, multiple population method is another normal diversity-
based approach. Maintaining diversity by multiple population
methods is helpful for exploring promising search area. For
example, in R. Shang et al. [20] and C. Goh et al. [21],
multiple population method is introduced to coevolutionary
algorithm. Proper diversity is helpful for exploring promising
search regions, but too much diversity may causes evolutionary
stagnation. There are many other strategies to solving DMOPs
[22], [23], [24], [7]. For example, Farina et al. [1] proposed
an adapted static MOO algorithm for DMOPs.

In this paper, a hybrid approach based on center-point
prediction and sub-population autonomous guidance(CPSAG)
is proposed, which responds to environmental changes by
generating a new population. According to the position of
historical population, a part of the population is generated by
predicting roughly and quickly. In addition, another part of
the population is generated by autonomous guidance. A sub-
population from current population evolves several generations
independently, which guides the current population into the
promising area.

The rest of this paper is organized as follows. Section II
describes the proposed CPSAG in detail. Experimental studies
and analysis on test problems are carried out in Section III.
Finally, some conclusions are drawn in Section IV.

II. ALGORITHM DESIGN

The flowchart of DMOEA framework is illustrated in
algorithm 1. In general, the DMOEA starts with random
initialization of population, and then executes optimization
operators which include evaluation, selection, crossover, and
mutation. If the stopping criteria are not met, the detection of
environmental changes is executed all the time. The response
will be executed only if the environment has changed, and the
optimization operators are executed along with the detection
of environmental changes.
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Fig. 1. Illustration of the proposed CPSAG.

Algorithm 1 Framework of DMOEA
input: N(population size)
output: P (population)

1: initpop();
2: optimize the MOP by using an MOEA
3: while stopping criterion not met do
4: if change detected then
5: response();
6: else
7: optimize the MOP by using an MOEA
8: end if
9: end while

In the past, researchers have done a lot of work to solve
DMOPs. Usually, a change is detected by reevaluating in-
dividuals or checking population statistical information [25],
[26], [27]. We use the former way to detect the environmental
changes. In fact, when the environment does not change, a
DMOP is usually seen as a static multi-objective optimization
problem. In this paper, RM-MEDA [28] is introduced as an
MOEA to optimize the problems. In this paper, we mainly
focus on the response to environmental changes of the line 5
in algorithm 1.

In this section, we focus on how to respond to environmental
changes by using center-point prediction and sub-population
autonomous guidance strategy. It should be noted that we are
not prepared to emphasize the accuracy of forecast when using
the center-point prediction strategy. We are more inclined
to track the trend of change because actually it is difficult
to forecast a set of exact solution, and then, sub-population
autonomous guidance strategy is introduced which helps to
find the promising area independently. As Fig.1 shows, in the
decision space, the sub-population labeled as ‘d’ is generated
by center-point prediction strategy and another sub-population
labeled as ‘c’ is generated by autonomous guidance strategy.
It should be noted that the individuals are selected by non-
dominated sorting in the Algorithm 2 and Algorithm 3. The
following steps detail the algorithm.

A. Center-point Prediction

Because DMOP constantly changes all the time, it is rea-
sonable to mine useful knowledge from the historical data.
As shown in algorithm 2, we forecast the optimal solution



Algorithm 2 Center-point Prediction
input: Pt(population before environment changed at time t), Pt−1

output: Pa(subpopulation)
1: Ct ← the center point of Pt

2: Ct−1 ← the center point of Pt−1

3: M ← Q individuals selected from Pt

4: for i = 1 to M.size() do
5: Pa ← Xi = Mi + Ct − Ct−1

6: end for

at the next moment by using the the former two generations.
Fig. 2 illustrates that, Ti−1 and Ti represent the former two
generations. Ct represents the centroid of POS at the time t
and |P | represents the size of population P , then Ct can be
computed by

Ct =
1

|P |
∑
x∈P

x (2)

What needs to be stressed again is that we do not intend
intended to forecast the population accurately and overnight at
the next moment, in fact, it is impossible to do it. As algorithm
2 shows, a part of the population is generated by predicting
roughly and quickly, and this is based on the fact that Ct −
Ct−1 represents the direction of evolution. And a new solution
X’ can be generated by

X ′ = X +Dt (3)
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Fig. 3. Illustration of the sub-population autonomous guidance.

Algorithm 3 Autonomous Guidance
input: Pt(population before environment changed at time t)
output: Pb, Pc, Pd(subpopulation)

1: R0 ← R individuals selected from Pt

2: C0 ← the center point of R0

3: R1 ← execute EC operation k generations on R0

4: C1 ← the center point of R1

5: N ← R individuals selected from Pt

6: for i = 1 to N.size() do
7: Pb ← Xi = Ni + C1 − C0

8: end for
9: Pc ← R0

10: Pd ← R1

B. Sub-population Autonomous Guidance

As mentioned above, just a part of the population is gener-
ated by predicting roughly and quickly. In order to compensate
for this deficiency, a new and important strategy is proposed.
As the algorithm 3 shows, after environmental changes being
detected, some solutions have been selected to archive from
the current population, in which center point is C0, the center
point is defined as (2). Then, the sub-population (consisting
of solutions from the archive) evolves k generations and then
gains a new sub-population where center point is labeled as
C1. In fact, C1 - C0 represents the direction of evolution
by sub-population autonomous guidance but not prediction.
Based on this, a part of the new population is generated
according to Line 7. Because the sub-population R is evolving
autonomously based on some solutions of current population,
R will be retained to the next generation. It is also necessary
to retain some individuals to the next generation.

Fig. 3 illustrates that, the environmental changes have been
detected at time Ti. And, the population at time Ti is labeled as
current population. The sub-population labeled ‘a’ is selected
from current population by means of non-dominated sorting,
in which center point is labeled as ‘A’. The selected sub-
population evolves k generations autonomously. Thereafter,
we get a new sub-population labeled ‘b’ as shown in Fig. 2.
The center point of this new sub-population is labeled as A’.
This paper holds that the obtained sub-population is located
in a promising area. So the evolutionary direction of sub-
population can be used as the evolutionary direction of whole
population.

C. Boundary Check

The boundary check in the proposed algorithm is applied
to check whether the generated solution is within the given
boundary of the decision space. The procedure of the boundary
check is described in detail as follows:

yi =


xi if li < xi < ui

ui − 0.1 ∗ (ui − Ci) if x > ui

li + 0.1 ∗ (Ci − li) if x < li

(4)

where Ci is the ith dimension of the population’ center
point, i = 1,..., n, n is the dimension of the test problems’



decision space. li is the minimum boundary of the ith
dimension, correspondingly, ui is the maximum boundary of
the ith dimension.

III. EXPERIMENTAL STUDIES

A. Test Problems

In this paper, three test benchmark suites, including FDA
[1], dMOP [16], and F [12], are used to assess proposed
algorithm. According to the changes of PSt and PFt, the
benchmark problems are classified into four categories. Type
I: the PS changes and the PF remains invariant. Type II: both
PS and PF changes. Type III: the PF changes and ps remains
invariant. Type IV: both PS and PF remain invariant.Usually,
the fourth type is considered to be static MO optimization
problem, other than dynamic problem.

TABLE I
THE POPULATION SIZE

Type benchmark problems
I FDA1, FDA4, DMOP3
II FDA3, DMOP2, F5, F6, F7, F8, F9, F10
III DMOP1, FDA2

B. Performance Metric

• Inverted generational distance (IGD)
The IGD metric proposed by Sierra and Coello [29] mea-
sures both the convergence and diversity of the obtained
solutions. It is mathematically given by

IGD(A,P ∗) =

∑
v∈p∗ d(v,A)

|P ∗|
(5)

Where A is the obtained PF, P∗ is a set of uniformly
distributed points along the optimal PF in the objective
space and d(v,A) is the minimum Euclidean distance
between v and the points in A. The lower the IGD is,
the better the convergence performance is shown.

• Maximum spread (MS)
The MS metric proposed by Goh [30] measures to what
extent the obtain POF covers the optimal POF, and is
defined as follows:

MS(A,P ∗) =

√√√√∑M
j=1 (

min(Aj,u,P∗
j,u)−max(Aj,u,P∗

j,l)

P∗
j,u−P∗

j,l
)2

M
(6)

where Aj,u and Aj,l are the maximum and the minimum
value of the j-th objective in the obtained PF. P ∗j,u and
P ∗j,l are the maximum and the minimum value of the
j-th objective in the optimal PF.

• Spacing metric (Sp)
Schott [31] developed this kind of metric with regard to
the distribution of the discovered Pareto front. Schott’s

spacing metric measures how evenly the members in POF
are distributed, and is computed as

Sp =

√√√√ 1

|A| − 1

|A|∑
i=1

(d− di)2 (7)

where A is the approximate Pareto optimal front and di
is the Euclidean distance between the ith member in POF
and its nearest member in POF and d is the average value
of di.

C. Compared Algorithms and Parameter Settings

• Compared Algorithms
In this paper, the proposed CPSAG is compared to
three other existing strategies: population prediction
strategy (PPS), feed-forward prediction strategy (FPS)
and randomly initialize strategy (RIS). RM-MEDA
introduced in this paper is chosen as the MOEA
optimizer.

FPS: FPS [11] records the boundary points of the POF
and predicts the location of the whole population when
the next environmental change occurs by autoregressive
(AR) model. The re-initialized population in FPS is
composed of three parts: the non-dominated solution set,
the dominated solution set and the predicted solution set.

PPS: The optimal solution set of PPS [12] is divided
into two parts: the population center and manifold.
Based on the archived population centers over a number
of continuous time series, PPS adopts a univariate
autoregression (AR) model to predict the next population
center. Similarly, previous manifolds are used to predict
the next manifold. The initial population is completely
generated through the predicted center and manifold
when there is an environmental change.

RIS: Randomly initialize strategy (RIS) [12], which
randomly generates a new population in the feasible
region of the decision space.

• Parameter Settings
The parameter settings for the problems and algorithms
are as follows. The severity and frequency of the environ-
mental changes are nT = 10, τT = 30. The dimensions
of the test problems’ decision space are all set to be n
= 20. The AR(p) model order is set to be p = 3 and
the length of history mean point series is set to be M
= 23 for PPS and FPS. For FPS, the number of cluster
was set 5 and the probability in the prediction model
was 0.9. The population size is set to be N = 100 for all
test problems. To make sure the population size is 100
in every generation, generally, the sub-population sizes of
two strategy are set Q =40, R = 20. We run each algorithm
20 times for each test problem independently. Then each



TABLE II
MEAN AND STANDARD DEVIATION OF IGD VALUES FOR FOUR ALGORITHMS ON TEST PROBLEMS OVER 20 RUNS

PROBLEM CPSAG PPS FPS RIS
FDA1 9.40E-03(8.14E-04) 5.82E-02(2.59E-02) 2.64E-02(4.04E-03) 1.13E+00(4.92E-02)
FDA2 2.56E-02(1.04E-04) 2.56E-02(1.29E-04) 2.55E-02(8.06E-05) 5.25E-02(5.99E-04)
FDA3 2.58E-01(9.16E-03) 3.77E-01(3.39E-02) 2.83E-01(5.98E-03) 1.79E+00(7.08E-02)
FDA4 1.09E-01(1.96E-03) 1.19E-01(2.53E-03) 1.26E-01(2.46E-03) 3.67E-01(8.16E-03)

DMOP1 9.80E-02(3.62E-03) 1.54E-01(1.34E-01) 1.01E-01(4.67E-03) 5.62E-01(1.79E-02)
DMOP2 9.50E-02(1.31E-03) 1.65E-01(5.49E-02) 1.18E-01(9.53E-03) 1.50E+00(2.83E-02)
DMOP3 9.32E-03(7.30E-04) 4.63E-02(2.69E-02) 2.60E-02(4.45E-03) 1.12E+00(2.77E-02)

F5 1.97E-01(2.75E-02) 2.13E-01(5.01E-02) 2.54E-01(4.09E-02) 1.04E+00(3.41E-02)
F6 2.11E-01(1.24E-02) 2.45E-01(2.05E-02) 2.63E-01(2.33E-02) 4.96E-01(1.25E-02)
F7 1.92E-01(4.18E-03) 1.97E-01(9.35E-03) 2.04E-01(7.04E-03) 5.65E-01(1.38E-02)
F8 3.09E-01(9.32E-02) 2.72E-01(7.88E-02) 2.97E-01(5.99E-02) 1.06E+00(2.69E-02)
F9 8.57E-01(4.40E-01) 3.67E-01(5.04E-02) 3.46E-01(2.56E-02) 9.36E-01(2.73E-02)
F10 1.32E-01(3.17E-03) 1.41E-01(5.97E-03) 1.39E-01(3.63E-03) 7.01E-01(2.34E-02)

simulation experiment run for 3600 generations and 120
environmental changes were tracked for all algorithms.

D. Results and discussion

1) Results on FDA and DMOP problems: Comparison
results of CPSAG with other three DEMOAs in terms of IGD,
MS and Sp values are presented in Tables II-IV . The best
metric values are highlighted in bold face. As the results show,
CPSAG performs better than other three DEMOAs on most
problems for the metric values.

It is clear from Table II that CPSAG obtains the best results
on the majority of the tested FDA and dMOP instances. Apart
from FDA2, CPSAG performs better than PPS, FPS and RIS
on the other tested FDA and dMOP instances for IGD values,
which indicates that CPSAG maintains better convergence over
the three others compared algorithms in most case. It is worth
noting that CPSAG significantly performs better than the other
three algorithms on the tested dMOP instances.

As shown in Table III, CPSAG performs better than FPS
and RIS on all FDAs and DMOPs in terms of MS. Apart
from FDA2, CPSAG also performs better than PPS on the
other tested FDA and dMOP instances for MS value.

From Table IV, CPSAG performs better than the other
algorithms on FDA1, FDA2, DMOP1 and DMOP3 in terms
of SP. but CPSAG is a little worse than FPS on FDA3.
Compared to pps, CPSAG shows worse performance.

2) Results on F5-F10 problems: In this section, We test
CPSAG and the other three algorithms on F5-F10, which have
nonlinear correlation between decision variables. It can be
observed from Table II that CPSAG obtains the best results
ont the majority of the tested F instances and mainly loses on
F8 and F9, which also indicates that CPSAG maintains better
convergence in most case. Table III presents the MS metric
obtained by four algorithms on the tested F instances. Apart
from F9, CPSAG performs better than PPS on the other tested
F instances for MS value. And CPSAG performs better than
FPS on provided problems except F8. It is clear from Table IV
that CPSAG significantly performs better than the other three
algorithms on F5, F6, F7, F9 and F10 but just lose on F8.

3) Discussion : The previous experimental comparison has
shown that CPSAG is capable of solving a wide range of
DMOPs. On the one hand, in some patterns of changes, the
expected set of solutions can be found easily. So, center-point
prediction plays an important role in this situation. On the
other hand, the autonomous guidance strategy can overcome
shortages of the former strategy in other cases. Because the
autonomous guidance strategy finds the expected solution by
autonomic evolution regardless of the fact that some environ-
ment changes irregularly. The autonomous guidance strategy
has some drawbacks too. For example, CPSAG performs
worse on F7 and F8. One of the main reasons is the lack
of search capability. Further, the individuals that participate in
autonomic evolution are not enough.

In order to investigate the influence of the generation in
autonomous evolution, several comparative experiments are
carried out. The experiments are conducted on FDA1-FDA5,
dMOP1-dMOP3, and F5-F10. The relevant parameter settings
are presented in subsection C. The generations of autonomous
evolution are set to 5, 10, 20 and 30 respectively. From table
V, when k≥10, The indicators are not very different from each
other for most case. What needs to be explained is the k is set
to 10 when CPSAG compared with other three algorithms.

IV. CONCLUSION

This paper has proposed the CPSAG algorithm for dynamic
multi-objective optimization problems. CPSAG aims to re-
spond to environmental changes. To attain this goal, the center-
point prediction and autonomous guidance strategy are intro-
duced into the proposed method. From comparison results, the
proposed algorithm is competitive in almost test problems. In
the future, it is a subject remaining to be researched that the
influence of the number of sub-population.
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TABLE III
MEAN AND STANDARD DEVIATION OF MS VALUES FOR FOUR ALGORITHMS ON TEST PROBLEMS OVER 20 RUNS

PROBLEM CPSAG PPS FPS RIS
FDA1 9.95E-01(7.73E-04) 9.78E-01(6.00E-03) 9.85E-01(2.48E-03) 7.03E-01(5.20E-03)
FDA2 7.61E-01(8.32E-04) 7.62E-01(9.98E-04) 7.61E-01(6.63E-04) 8.75E-01(1.83E-03)
FDA3 8.71E-01(6.88E-03) 7.32E-01(1.74E-02) 8.05E-01(5.53E-03) 5.77E-01(7.21E-03)
FDA4 0.99999(2.12E-06) 0.99986(1.65E-05) 0.99998(5.14E-06) 0.99984(1.35E-05)

DMOP1 9.91E-01(4.42E-03) 9.66E-01(5.04E-02) 9.87E-01(5.96E-03) 3.19E-01(1.24E-02)
DMOP2 9.90E-01(1.96E-03) 9.54E-01(2.90E-02) 9.71E-01(7.06E-03) 5.43E-01(1.24E-02)
DMOP3 9.95E-01(7.10E-04) 9.80E-01(8.94E-03) 9.85E-01(2.64E-03) 7.03E-01(7.25E-03)

F5 9.76E-01(1.39E-02) 9.75E-01(1.45E-02) 9.59E-01(1.43E-02) 6.79E-01(1.67E-02)
F6 9.68E-01(1.20E-02) 9.66E-01(8.30E-03) 9.50E-01(1.27E-02) 7.98E-01(1.09E-02)
F7 9.86E-01(5.08E-03) 9.81E-01(6.18E-03) 9.75E-01(8.45E-03) 7.82E-01(1.00E-02)
F8 9.10E-01(3.63E-02) 9.37E-01(2.53E-02) 9.45E-01(1.93E-02) 6.79E-01(1.19E-02)
F9 7.07E-01(9.32E-02) 8.72E-01(1.65E-02) 8.26E-01(2.02E-02) 6.96E-01(1.82E-02)

F10 0.999997(3.10E-06) 0.999754(4.94E-04) 0.999994(2.78E-06) 0.99958(6.77E-05)

TABLE IV
MEAN AND STANDARD DEVIATION OF SP VALUES FOR FOUR ALGORITHMS ON TEST PROBLEMS OVER 20 RUNS

PROBLEM CPSAG PPS FPS RIS
FDA1 4.46E-03(5.59E-04) 5.34E-03(5.72E-04) 5.35E-03(3.61E-04) 4.22E-02(3.31E-03)
FDA2 4.88E-03(9.44E-05) 4.91E-03(9.90E-05) 5.07E-03(1.31E-04) 1.02E-02(3.63E-04)
FDA3 2.12E-02(1.29E-03) 7.16E-03(5.22E-04) 6.40E-03(1.60E-04) 4.02E-02(3.99E-03)
FDA4 7.20E-02(7.02E-03) 4.92E-02(1.25E-03) 7.30E-02(5.32E-03) 1.22E-01(3.17E-03)

DMOP1 3.35E-03(2.95E-04) 3.51E-03(6.30E-04) 4.05E-03(2.03E-03) 4.29E-02(4.94E-03)
DMOP2 6.09E-03(7.01E-04) 4.55E-03(4.21E-04) 5.46E-03(3.74E-04) 3.11E-02(2.26E-03)
DMOP3 4.71E-03(4.80E-04) 5.18E-03(5.79E-04) 5.45E-03(2.84E-04) 4.10E-02(2.91E-03)

F5 6.74E-03(3.31E-03) 1.22E-02(7.93E-03) 3.27E-02(1.22E-02) 9.38E-02(7.38E-03)
F6 7.63E-03(2.68E-03) 1.45E-02(3.53E-03) 2.69E-02(6.45E-03) 6.44E-02(8.53E-03)
F7 6.10E-03(1.60E-03) 8.02E-03(1.93E-03) 1.82E-02(6.07E-03) 6.87E-02(6.71E-03)
F8 2.57E-02(1.24E-02) 2.42E-02(8.85E-03) 4.22E-02(1.43E-02) 9.77E-02(6.51E-03)
F9 3.79E-02(1.53E-02) 3.83E-02(5.39E-03) 4.50E-02(7.16E-03) 9.31E-02(8.02E-03)

F10 9.03E-02(1.01E-02) 1.13E-01(1.41E-02) 1.04E-01(1.31E-02) 5.82E-01(3.73E-02)

TABLE V
MEAN OF THE IGD, SP AND MS VALUES FOR THE CPSAG WITH VARYING EVOLUTIONARY GENERATIONS K, WHERE THE AVERAGE OVER 20

INDEPENDENT RUNS IS SHOWN

Problems IGD Sp MS
k=5 k=10 k=20 k=30 k=5 k=10 k=20 k=30 k=5 k=10 k=20 k=30

FDA1 1.08E-02 9.40E-03 9.46E-03 9.13E-03 5.10E-03 4.46E-03 4.59E-03 4.70E-03 9.94E-01 9.95E-01 9.95E-01 9.96E-01
FDA2 2.56E-02 2.56E-02 2.56E-02 2.56E-02 4.93E-03 4.88E-03 4.87E-03 4.83E-03 7.61E-01 7.61E-01 7.61E-01 7.61E-01
FDA3 2.64E-01 2.58E-01 2.55E-01 2.49E-01 2.14E-02 2.12E-02 2.09E-02 2.16E-02 8.66E-01 8.71E-01 8.72E-01 8.77E-01
FDA4 1.12E-01 1.09E-01 1.09E-01 1.09E-01 7.65E-02 7.20E-02 7.15E-02 6.71E-02 1.00E+00 1.00E+00 1.00E+00 1.00E+00

DMOP1 1.00E-01 9.80E-02 9.94E-02 1.05E-01 3.40E-03 3.35E-03 3.44E-03 3.54E-03 9.87E-01 9.91E-01 9.88E-01 9.80E-01
DMOP2 1.10E-01 9.50E-02 9.58E-02 9.49E-02 6.45E-03 6.09E-03 6.17E-03 6.06E-03 9.80E-01 9.90E-01 9.89E-01 9.91E-01
DMOP3 1.05E-02 9.32E-03 9.51E-03 9.15E-03 4.77E-03 4.71E-03 4.71E-03 4.69E-03 9.95E-01 9.95E-01 9.95E-01 9.95E-01

F5 2.25E-01 1.97E-01 2.16E-01 2.01E-01 1.01E-02 6.74E-03 1.07E-02 8.78E-03 9.60E-01 9.76E-01 9.68E-01 9.77E-01
F6 2.15E-01 2.11E-01 2.09E-01 2.13E-01 9.56E-03 7.63E-03 8.14E-03 8.56E-03 9.65E-01 9.68E-01 9.73E-01 9.72E-01
F7 1.95E-01 1.92E-01 1.95E-01 1.90E-01 5.65E-03 6.10E-03 6.13E-03 5.57E-03 9.80E-01 9.86E-01 9.83E-01 9.86E-01
F8 3.04E-01 3.09E-01 3.43E-01 3.51E-01 2.77E-02 2.57E-02 2.63E-02 3.17E-02 9.17E-01 9.10E-01 9.10E-01 9.01E-01
F9 8.76E-01 8.57E-01 9.77E-01 9.36E-01 3.35E-02 3.79E-02 4.01E-02 3.92E-02 7.07E-01 7.07E-01 6.78E-01 7.09E-01

F10 1.35E-01 1.32E-01 1.31E-01 1.30E-01 1.01E-01 9.03E-02 8.93E-02 8.32E-02 1.00E+00 1.00E+00 1.00E+00 1.00E+00

of Hunan Province under Grant No. 14JJ2072, the Science
and Technology Plan Project of Hunan Province under Grant
No. 2016TP1020, the Provinces and Cities Joint Foundation
Project under Grant No. 2017JJ4001.
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