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Abstract—Robots are a great tool for engaging and enthusing
students when studying a range of topics. De Montfort University
offers a wide range of courses from University access courses
to Doctoral training. We use robots as tools to teach technical
concepts across this wide and diverse range of learners. We have

had great success using the Lego RCX and now NXT on the
less demanding courses, and conversely with the MobileRobots
Pioneer range for postgraduate and research projects. Although
there is a distinct area in between these two where both these
platforms meet our needs, neither is suitable for every aspect of
our work. For this reason we have developed our own hardware
and software platform to fulfil all of our needs. This paper
describes the hardware platform and accompanying software and
looks at two applications which made use of this system.

Our platform presents a low-cost system that enables students
to learn about electronics, embedded systems, communication,
bus systems, high and low level programming, robot architec-
tures, and control algorithms, all in individual stages using the
same familiar hardware and software.

I. INTRODUCTION AND BACKGROUND

Robots and control systems have become essential parts

of modern industry and are increasingly used in education.

Within many teaching curricula, pupils are often introduced to

robots at the primary school stage, where they learn concepts

such as direction, angles, measurement and sequencing. At

this level, Roamers [1], Pixies [2], and BeeBots [3] are

popular choices due to their simple programming interface

and “friendly” appearance.

At a higher level, students may make use of their theoretical

knowledge by applying these to a real world machine [4].

General computer science as well as robotics and artificial

intelligence students begin to explore the mechanics of robot

design, constructing their own robots and adding sensors

and actuators to suit a particular challenge. In this format

there is generally some form of processor unit or brain that

contains the control instructions and connects to the sensors

and actuators. The control software is often developed on

a standard PC and then uploaded to the controller via a

communications link. Common choices for this format are the

Lego Mindstorms [5] RCX and NXT and the Robix Rascal [6].

This showed to be effective for motivating students in practical

activities [7].

For teaching software processes relating to control systems,

it is often desirable to employ a robot platform with standard

actuators and sensors (e.g. having motion, vision, hearing,

proximity detection etc) with an embedded PC as the central

control processor. In this environment, students learn to write

control software that uses the underlying operating system to

communicate with the available sensors/actuators. Examples

of such robot platforms include the MobileRobots Pioneer and

Peoplebot [8].

At De Montfort University, whilst we have found the Lego

Mindstorms kits and the MobileRobots equipment to offer

extremely useful platforms for the various teaching courses

offered, there are some concepts; such as electronic design

and embedded programming, that neither platform allows us

to teach in the way we would like. For this reason we have

developed our own PCB with an onboard Microchip micro-

controller and several I/O connections that easily interface to

commonly used actuators and sensors. Since a student version

of the Microchip Integrated Development Environment (in-

cluding editor, compiler, debugger and programmer) is freely

available, we may use this as the main environment within

which students develop their embedded code. The Microchip

In-Circuit Debugging tools are relatively cheap and provide a

useful means for interfacing between a host PC and the robot

control platform.

By using a modular approach to the design of the platform

along with its accompanying electronic interfacing and soft-

ware libraries, we are able to easily reconfigure the platform

according to the nature of the concepts being taught. As an

example, for first year students we can provide them with

pre-built sensor circuitry and a software library of high-level

C functions that enable them to design a simple embedded

system whilst shielding them from the lower-level complexi-

ties of electronics and software. As the teaching programme

progresses, the control platform can be reconfigured so that

students are required to design their own electronic interfaces

or write their own low-level software in order to accomplish

the tasks assigned to them.

This paper describes the development of the platform and

software libraries in more detail. We include two case studies

highlighting how the platform has contributed to the teaching

programme at both first year Bachelor course level and also

at Masters and Doctoral training levels. Finally we offer a

conclusion that summarises how this approach may be of
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benefit to other educational establishments with a robotics

teaching programme.

II. THE PLATFORM

The hardware side of the platform consists of a printed

circuit board with voltage regulation, a 16bit Microchip pro-

grammable interrupt controller, analogue and digital peripheral

input and output pins, two RS232 serial ports, I2C bus, as well

as pulse width modulation and motor control outputs. The PIC

is programmed using a commercially available USB In-Circuit

Debugger. This section will introduce and discuss the platform

in more detail.

A. Hardware and its Components

The design of the board is optimised for mechatronics and

control projects. It is based around a Microchip microcon-

troller dsPIC30F4011, which can run at up to 30 million in-

structions per second (MIPS), has 48kB program memory, 2kB

random access memory, 1kB non-volatile EEPROM memory

and 31 I/O ports. The PIC is powered by 5 VDC for the digital

power supply, which is regulated by a standard analogue

voltage regulator LM7805. We used the TO-92 package to

maximise the power dissipation capability so that a range of

battery voltages can be used, up to an online-charging lead acid

battery at 14.8VDC. Since this board is intended for robotics

projects, it is assumed that it will be used with batteries only,

not a mains power supply; as such it has no rectifier diodes or

large ripple-filtering capacitors at the input. It includes only

the compact capacitors required to filter the feedback and noise

from the digital clock and circuitry and the power devices that

might be connected (e.g. electric motors).

This particular PIC provides three PWM-specific outputs

(balanced pairs of digital outputs); two of which are connected

to a dual motor driver chip L298N. This provides two full H-

bridge PWM direct motor power outputs from the PCB. The

H-bridge driver chip provides an interface between the digital

supply voltage (typically +5VDC) and the battery voltage

(typically +12VDC), which supplies power directly to the

motors through the H-bridge. We have tested powering motors

from 7-12 volts from different types of batteries (e.g. 7.2V or

9.6V from an array of NiMH, 7.4V from an array of Li-Po

and 12V from standard sealed Lead acid), and our system has

shown to be quite effective for most applications. All standard

protections are included in the PCB so that the students need

only connect the motors directly; there is a set of flyback fast

switching inverse diodes to ground and power VCC (battery)

and capacitor in parallel with the motor. The third PWM set of

outputs from the PIC is available for expansions in the projects

via a connector in the PCB.

Four of the PIC’s signals are dedicated for driving RC-

hobbyist servos (pulse position controlled position-servo

mechanisms). These position-servos draw the power from the

5VDC regulated power supply to avoid problems when using

batteries above 9V, which would be outside the tolerance

of such devices (typically designed to work between 4.8V -

TABLE I
PLATFORM INTERFACES

Quantity Interface name and description

Actuators:

2 Full H-bridge motor drivers

1 Full-balanced PWM digital output

4 Direct connections to ppm postion-servos

16 Simple digital actuators via I/O ports

Sensors:

<127 I2C sensors
Available to our students are:
• Digital Compass
• Ultrasonic ranger
• Other boards

9 Analogue sensors (1Msps @ 10bit)
Available to our students are:
• Light dependent resistor
• Inertial measurement unit

16 Digital sensors (various)

Communication:

2 UART serial ports (RS232 via converter)

1 I2C bus (master or slave mode)

Expansion:

17 Additional programmable I/O pins

9.0V). The outputs from the PIC are connected to four 3-

pin headers arranged in the standard Ground-Power-Signal

configurations used by most RC-hobbyist servos.

Finally, there are two more dedicated headers, both intended

for communications. One uses one of the PIC’s UART pins

to connect to a standard RS232 serial port. The pins come

directly to the headers so that the digital signals from the PIC

are available directly, i.e. there is no RS232 level-converter

driver on the PCB. This allows connecting directly to other

digital serial ports. If a standard serial port is going to be used

(e.g. to connect to a computer) then an external RS232 level

converter (e.g. MAX232) is required. We have various mini-

PCBs with a MAX232 already mounted for use in various

projects. The other communications header provides digital

signal connection to the I2C port from the PIC. This is mainly

used for connecting to peripherals such as ultrasonic rangers,

electronic compasses or IMUs. The addressable structure of

this serial bus allows multiple devices to be connected and

it has proved to be very useful and versatile as there is

a vast range of peripherals, sensors, etc. that are available

commercially and at low cost using this protocol.

The remaining I/O pins of the PIC are connected to a

general-purpose header, which the students can use to connect

any other type of peripheral or device not covered by the other

headers mentioned above.

This convenient and compact design provides the optimal

configuration for robotic and control projects. Table I sum-

marises the platform’s available interfaces for the students to

use.

B. Development Environment and Tools

The microcontroller is programmed and can be debugged

using Microchip’s in-circuit debugger ICD2. This device is

connected via USB to the host machine running the inte-



grated development environment called MPLab. The standard

programming language that comes with this development

environment is assembler. In order to program with a high

level programming language, an additional cross-compiler is

required. We use Microchip’s C30 compiler which is freely

available for research and students projects. The compiler is

fully ANSI compliant and includes a set of libraries for easier

device configuration and use.

III. SOFTWARE LIBRARIES

To enable students new to programming and robotics to

work with the platform we have written a set of high level

functions for them to use. This Section details some of the

software libraries that provide simple software interfaces to

functionality such as timers, sensors, communication, and

motor control.

A. Timers

At the heart of any embedded controller is a timing system,

our system is no different. Our API supplies four basic

functions which can be combined to give all timing functions

necessary:

// Initialise timer device

void timePassed_init (void);

// Reset timer device

void timePassed_reset (void);

// Get elapsed time (ms) as a uint

unsigned int timePassed_ms (unsigned char);

// Get elapsed time (s) as a uint

float timePassed_fs (unsigned char);

The function timePassed_init sets up the timer by setting

the relevant configuration bits on the PIC’s timers. This

function must be called before the other timing code will

work. The function timePassed_ms returns the elapsed time

in milliseconds as an integer whereas timePassed_fs returns

the elapsed time in seconds as a floating point number. Elapsed

time in both these functions is a measure of how much time

(measured using processor clock cycles) has elapsed since the

PIC timer was reset. The PIC timer is reset by four possible

actions:

• Calling timePassed_init().

• Calling timePassed_reset().

• Calling timePassed_ms(1).

• Calling timePassed_fs(1).

Although the initialisation function must reset the timer, we

also provide the explicit timePassed_reset() reset function.

Additionally the timer may be reset when measuring the

elapsed time by calling the relevant function with a parameter

of 1. These functions provide a simple interface for measuring

time in milliseconds and seconds.

B. Analogue to Digital Converter

The ADC provides access to readings from analogue sensors

connected up to our embedded system. Our API provides four

functions for controlling and accessing the sensor readings

from the ADC:

// Initialise ADC

void myadc_init(void);

// Start the ADC reading timer

void myadc_startReadings (void);

// Stop the ADC reading timer

void myadc_stopReadings (void);

// Read data from the ADC

int sensorReading (char sensorNumber );

The ADC needs to be initialised, this is done by

calling myadc_init(void). The initialisation routine

sets up a timer driven interrupt system which reads

data off the ADC according to a timer which can be

controlled through the API. The timer is started and

stopped using the myadc_startReadings(void) and

myadc_stopReadings(void) functions. When the timer

elapses it causes an interrupt routine to run with regular

frequency. The interrupt reads data from the ADC to a

predefined data structure via a mean of two filter. This

data can be accessed through the sensorReading(char

sensorNumber) function. This is in effect an interrupt-driven

polling system – the ADC is polled with a regular frequency

as designated by a timer. It is worth noting the the polling

timer causes interrupts to by raised, meaning that although

the ADC-API uses a polling system this could be modified

to a pure interrupt driven system fairly easily.

C. Motor Control

The motors are controlled using a standard pulse width

modulation approach, taking into account that an H–bridge

motor driver is used. Two duty cycle registers are utilised,

one for each motor, with forward and reverse control. Figure

1 depicts the forward and reverse control of a single motor

using PWM through an H–bridge motor driver.

Our API provides three functions for controlling the motors:

// Initialise the motor control system

void MotorControlPWM_Init (void);

// Set the motor speed off both motors

void MotorSpeed(int motorLeft ,

int motorRight);

// Turn a choice of motors off

void MotorOff(int choice );

The MotorControlPWM_Init() function needs to be called

before motor speeds can be controlled. This function sets up

the two duty cycle registers and organises the relevant pins for

PWM output. The MotorSpeed(left, right) function takes

integers as percentage values i.e. calling MotorSpeed(-25,

75) causes the left motor to turn in reverse with 25% power

(not speed – generally power to speed is a non-linear relation-

ship) and the right motor to turn forward with 75% power.

The MotorOff(choice) function turns off one or more motors

when passed one of three constants: MOTORLEFT, MOTORRIGHT

or ALLSTOP. If the function is called with MOTORLEFT or

MOTORRIGHT then the respective motor is stopped with a

powered stop (see Figure 1(c)), if called with ALLSTOP then
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Fig. 1. PWM Motor Control with an H–Bridge.

PWM is switched off (PWM timer base is disabled), switching

off power to the motors and letting the motors drift.

IV. APPLICATION CASE STUDIES

The platform introduced in this paper has been used in

a variety of projects including an inverted pendulum robot,

balancing weight robot, an autonomous Dr Who Dalek, a sumo

fighting robot and an autonomous helicopter. We focus on the

latter two for our application case studies of the hardware

and software as they are on the opposite ends of the higher

education spectrum.

The first case study looks at a robot built by first year

students on our Artificial Intelligence and Robotics Bachelors

degree. This robot took part in the standard sumo competition

at the 2009 Robot Challenge in Vienna. The second case

study investigates how a compact version of the same system

was used to control an autonomous helicopter for a Masters

dissertation and later on in a PhD project.

(a) KITTDASH9 On a Sumo Arena.

(b) The Interior of KITTDASH9.

Fig. 2. The KITTDASH9 Sumo Robot.

A. Sumo Robot – KITTDASH9

KITTDASH9 was built by a group of first year undergrad-

uate students studying Artificial Intelligence and Robotics at

De Montfort University. The students built the robot within

the robot club which runs once a week and not during formal

teaching time. The robot was designed and built to be entered

in the standard class of the robot sumo competition at the

Robot Challenge 2009. Figure 2 shows the KITTDASH9

including the mounted embedded system (notice it is mounted

upside down) and drive train.

The robot has four custom built light intensity sensors, one

on each corner and a modified serial ball mouse to provide

a basic form of odometry. The robot has no range finding or

bump sensors. Locomotion is provided by two independently

driven tracks fitted with a high traction rubber surface. The

robot is fitted with a lighting effect system consisting of an

array of red LEDs controlled by a separate PIC which is



Fig. 3. The Finite State Machine Control Architecture as a State Transition
Diagram.

TABLE II
MICROSOFT SERIAL MOUSE PROTOCOL [9].

D6 D5 D4 D3 D2 D1 D0

1st word 1 LB RB Y7 Y6 X7 X6

2nd word 0 X5 X4 X3 X2 X1 X0

3rd word 0 Y5 Y4 Y3 Y2 Y1 Y0

connected to the main embedded system being discussed here.

The students implemented a finite state machine control

architecture, as depicted in Figure 3. Each state has a clear

control objective which is implemented through a combination

of the timer and motor control functions from our API. Transi-

tions between the states are enacted by a combination of states

from the light intensity sensors, given on the state transition

diagram as a binary string, for example 0101. Notice the light

intensity sensors give binary readings. The students achieved

this by taking readings from the light intensity sensors, using

the ADC part of our API, and putting them through a hard

limiter to decide whether the sensor is over a white surface

or a black surface – the only two surfaces the robot will

encounter during a sumo battle. Each sensor has an individual

hard limiter threshold, allowing each sensor to be individually

calibrated.

As mentioned earlier, KITTDASH9 is fitted with a modified

serial mouse. Although the students did not manage to use

this sensor in their control process, they did (with significant

help) manage to get readings from the mouse unit. The mouse

was connected directly to the second serial connection on

the embedded system. As the mouse ball moves, events are

generated and data giving the amount of motion in the x and

y axis are sent on the serial bus. Each event consists of three

7 bit words (see Table II) and the motion reading must be

decoded from these three words as given below:

δx = word1 & 0x03 << 6 + word2 & 0x3F

δy = word1 & 0x0C << 4 + word3 & 0x3F

Most of the code to read the serial port was written by the

authors, however the students had to decode the readings from

the mouse. This meant they got practical experience using bit

Fig. 4. Autonomous Helicopter Flyper based on our Proposed Platform

masking and bit shifting; both of which are taught to students,

but rarely covered in practice.

The robot was finished on time and the code written mainly

by a group of first year undergraduate students. This would

not have been possible without the pre-built embedded system

and programming API ready to use. Unfortunately the robot

only performed moderately well in competition, it appeared

to be under powered compared to its rivals. The high traction

rubber meant the robot defended well but it lacked the power

to push opposing robots out of the arena.

B. Autonomous Helicopter – Flyper

Our proposed hardware and software platform has also been

used to create an autonomous helicopter called Flyper. This

robot, as shown in Figure 4, has been built by a post graduate

for his Master of Science dissertation and later on used in his

Doctoral training. The robot’s embedded system and software

architecture are like the platform design introduced in this

paper but the circuitry has been miniaturised to save space

and weight.

In general, helicopters have 3 rotational degrees of freedom

(DOF), called pitch, roll and yaw, as well as 3 translational

DOF called up/down, left/right and forwards/backwards. The

helicopter used in this work is a Twister Bell 47 small indoor

helicopter model. It is a coaxial rotor helicopter with twin

counter rotating rotors with fixed collective pitch and 340 mm

span. The rotors are driven by two high performance direct

current motors and two servos control the rotor blades’ plane

angles. The weight of the helicopter in its original state is

approximately 210 grams and it can lift up to 120 grams.

Before modification, the helicopter was remote controlled by

a pilot handling four controls simultaneously: the amount of

lift, heading, pitch and roll.

Due to the limited payload the small helicopter is able to

carry, the student reduced the platform’s physical size by using

a prototyping board rather than a PCB. This reduced the size

from 80 x 80 mm to 52 x 33 mm and from 51 grams to 25

grams without heat sinks.

In order to keep the autonomous helicopter at a low cost,



the student chose to use standard sensors that were already

available to him: sonar distance sensors (SRF08) for measuring

altitude and attitude and a digital compass (CMPS03) to

determine the heading. The I2C bus was used to connect and

read the sensors using the PIC microcontroller. Figure 4 shows

three sonar sensors mounted on the helicopter as well as the

digital compass at the far end of the tail.

In order to avoid reflections received from one sonar but

transmitted from another, the sensors have been installed at

an angle of 10◦away from the centre of the helicopter. With

this configuration in place and given a flat ground, the attitude

of the helicopter can be determined by analysing the difference

in measured distances between the sensors. Although the

accuracy of the calculated attitude is restricted to the accuracy

and resolution of the sonar sensors, the system showed to work

as intended.

The PWM outputs together with the L298N motor driver

were set to power the two brushed DC motors driving the

rotors over a two cogwheel transmission. A small alteration to

the circuitry changed the use of the H-bridge as such to using

it as a simple driver. This configuration provided the motors

with the power required although the motor driver partially

reached its peak output current of 4 ampere (e.g. during take

off).

Within only three months, the student built an autonomous

helicopter that achieved relatively stable flight 1. Furthermore,

during his Doctoral training he used this robot to study the

use of evolutionary algorithms to tune and optimise conven-

tional proportional integral derivative (PID) control algorithms

directly on the robot [10], [11].

V. CONCLUSIONS

In this paper we introduced a low cost platform to be used

extensively in the broad spectrum of higher education. The

platform can be put together by first year students to learn

about electronics, bus systems, and digital technologies. The

same students can then program the system using a high level

C API. Later on, individual students can build new robots

using the existing platform and generate complex programs

using Assembler and C. Post-graduate students can use the

existing robots to study and compare robots, behaviours, and

control architectures.

By using industry-standard components and a modular

approach, we have developed a low-cost robot-control platform

that may be easily reconfigured to suit some of the general

computer science and all levels of the robotics teaching

curricula: our platform enables students to learn about elec-

tronics, embedded systems, communication, bus systems, high

and low level programming, robot architectures, and control

algorithms, all in individual stages using the same familiar

hardware and software.
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