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Abstract

Kodsi (2016) proposed a criterion for isotropic, linear elastic media in a brittle state applicable to both sharp
and blunt notches. Fracture toughness and material strength are the only parameters required to operate the
criterion. This paper provides a formulation of the criterion specific to blunt notches and further examines
the capability of the criterion for samples weakened by U-notches. Predictions are compared to significant
experimental results from U-notched samples that were subject to mixed-mode fracture. Good agreement
is demonstrated, justifying and substantiating the theory.
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1. Introduction

Extensive experimental data related to the static failure of vertical and tilted U-notched polymethyl-
metacrylate (PMMA) samples was supplied by Gómez et al. in [1] and [2]. The tests were designed to
induce mixed-mode (I-II) fracture in the samples with cracks emanating from the U-notches. In [1], the
average strain energy density of a small crescent-shaped control area local to the notch was computed and
used to provide critical (fracture) load predictions. But first, however, the control area had to be centred
at the point of maximum principal stress present on the notch edge. This proved to be a decent indicator
of crack onset location. Predictions made by the average strain energy density criterion compared well
with experimental results. Still, there were two steps involved in forming a prediction for the critical load.
Furthermore, the criterion itself is not part of a physical theory or mathematical description justifying the
computation of the strain energy density mean value over a given area. Application of the established
cohesive process zone concept [3, 4] to predict the critical load for crack propagation from the U-notches
yielded excellent results [2, 5]. Again, the maximum principal stress was taken as the location of crack
onset. Implementation of such models is not so straightforward. Firstly, the form of the softening function
must be inferred. Secondly, and probably the most difficult to contend with, is the numerical realisation.
Propagation direction of a crack must be known a priori and the geometrical discretisation, for example in
the finite element method, has to be carefully designed so that cohesive elements lie along the path.

Novozhilov made an astute observation in [6] that fracture in solids is a discrete process, that is, consid-
ering the atomic make-up of matter. A non-local stress criterion was put forward by Novozhilov, in which
fracture occurs when the mean value of de-cohesive stress taken over an elementary increment reaches a
critical value. This elementary increment or fracture quantum [7] represented the diameter of the atom
and the stress was acting in the normal direction to an atomic layer. Seweryn and Mróz [8] generalised the
criterion to predict crack propagation from notches subject to mixed-mode deformation. The increment was
still treated as a material characteristic but now based on linear elastic fracture mechanics (LEFM). The
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Nomenclature

ac increment length
b thickness of U-notched samples
E Young’s modulus
g distance of applied load from centre
Gc critical energy release rate
h U-notch height
KIc (mode-I) fracture toughness
l length of U-notched samples
m distance of support from centre
P applied load
Q change in energy
w width of U-notched samples
Y non-dimensional constant
ν Poisson’s ratio
ρ U-notch root radius
σ Cauchy stress
σc (material) tensile strength
ϕ crack onset angle
ξc virtual (small) circle domain radius

Acronyms
LEFM linear elastic fracture mechanics
PMMA polymethyl-metacrylate

capability of the formulation was demonstrated on V-notched samples that were subjected to multi-axial
loading [9, 10]. An energy-based equivalent to the non-local stress criterion was developed by Pugno and
Ruoff [7] as part of their quantised fracture mechanics.

Based on Novozhilov’s and successive theories, Kodsi [11, 12] took the viewpoint that crack nucleation
at the macroscopic scale in isotropic, linear elastic and brittle media is a sudden and discrete phenomenon.
Accordingly, he cast Griffith’s criterion [13] into a finite difference form, as in [7]. Crack nucleation, thus,
only results if the change in total potential energy is equal to the energy spent on creating the finite-length
crack, which is given by the critical energy release rate together with the increment length. The increment
length was obtained from Pugno and Ruoff’s energy-based equivalent to the non-local stress criterion by
bounding the stress for a vanishing (edge) crack in an infinite plate subject to tensile loading. An asymptotic
analysis was employed to derive a closed-form expression for the change in total potential energy due to the
introduction of a small circular hole at a point (being the hole centre) in the unperturbed, i.e., virgin domain.
To determine the size of the hole, a calibration scenario of mode-I fracture was studied. A distinguishing
feature of this approach is generality of application; crack propagation can be predicted from both sharp
and blunt notches. Moreover, the criterion is readily automated and can be easily integrated into the post-
processing framework of a finite element analysis software for example. Only the fracture toughness and
material strength are required for criterion operation.

Validation of the criterion involved the prediction of pure and mixed-mode fracture in notched PMMA
samples; numerous circular [14] notched, U-notched [1] and V-notched [9] samples were scrutinised. The
results were very supportive of the theory. This work (i) provides a version of the criterion specific to blunt
notches, (ii) presents the theory behind the criterion in a manner befitting an engineering audience, and (iii)
rigorously examines the predictive capability of the criterion focusing on samples weakened by U-notches.
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To that end, experimental tests in [1] and [2] are modelled numerically and predictions by the criterion
are solicited. This is an expanded set of tests compared to [11, 12] and serves the purpose of not only
corroborating Kodsi’s findings but also for furthering confidence in the criterion.

The paper is organised as follows. In Section 2, the criterion proposed by Kodsi is concisely reviewed.
Then the experimental tests in [1] and [2] are summarised in Section 3. Crack onset location and critical
load predictions are compared with experimental results in Section 4. Section 5 concludes this work.

2. Discrete energy approach

Crack propagation according to the proposed criterion is assumed to occur when the energy, Q, associated
with the creation of a small and finite-length crack satisfies a critical value:

Q = acGc, (2.1)

in which ac is a (material) incremental length and Gc is the critical energy release rate. While the latter is
experimentally derived, the former is defined (refer to [11, 12] for the derivation) as

ac =
2

π

(
KIc

Y σc

)2

, (2.2)

where KIc is the (mode-I) fracture toughness, Y = 1.1215 and σc is the tensile strength.
The change in energy due to finite-length crack propagation is assessed at points that are a distance ξc

in the inward normal direction to the body domain boundary, see Figure 1a, by

Q =
πξ2c
2Ē

(
3σ2

xx + 3σ2
yy − 2σxxσyy + 8σ2

xy

)
(2.3)

where Ē = E for plane stress and Ē = E
/ (

1− ν2
)

for plane strain. Here, σij represents components of
the Cauchy stress tensor in the standard Cartesian coordinate system. This expression, in fact, provides
the approximate energy change associated with the perforation of a domain, shown in Figure 1b, by a small
circular hole. Equivalence of the energy change to a discrete crack extension event is achieved through the
hole radius ξc.

ξc

(a) (b)

Figure 1. Energy change, (a) evaluated at points a distance ξc in the inward normal direction to the boundary, associated with
a (b) small circular domain perforation.

In order to surmise the form of ξc, mode-I fracture of a double-edge semi-circular notched sample is
considered. Crack onset location is known, so is the propagation direction, and an assumption of (relatively)
uniform stress ahead of the notch root bounded by the tensile strength can be made. Subsequently, σyy = σc
and σxx = σxy = 0, leading to

ξc =

√
2acGcĒ

3πσ2
c

. (2.4)
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If σxx = σc and σyy = σxy = 0, the result is consistent. For plane strain, this simplifies to

ξc =
2√

3πY

(
KIc

σc

)2

. (2.5)

It is worth emphasising that the radius is taken as constant for any mode mixity prediction, i.e., the size of
the small circular hole is fixed. There is no reason why ξc could not be based on an alternate mixed-mode
fracture scenario. However, calibration would be a more involved process and certainly not as simple as the
employed strategy. To date, there has been no research conducted in this area. Even though the criterion
itself is just as valid for sharp notches, the parameter ξc must be set accordingly. The form of ξc given here
is only appropriate for blunt notches.

Once a linear elasticity boundary value problem solution is available, e.g. from a finite element analysis,
the change in energy can be interrogated at points a distance ξc from the boundary. Then the location of
crack onset and critical load can be determined if the criterion is satisfied at one of the queried points.

3. Experiments

3.1. Sample material properties

PMMA, an amorphous glassy polymer, exhibits brittle characteristics and behaves in a near-linear elastic
manner at −60◦C [4]. Therefore, it is a popular choice in experiments for validating criteria based on the
principles of linear elastic fracture mechanics. Mechanical properties of the PMMA samples tested in [1]
and [2] are:

• Young’s modulus, E = 5.05± 0.04 GPa

• Poisson’s ratio, ν = 0.40± 0.01

• Tensile strength, σc = 128.4± 0.1 MPa

• Fracture toughness, KIc = 1.7± 0.1 MPa
√

m

3.2. Sample geometry and loading

Experimental data in [1] and [2] was reported for rectangular parallelepiped samples with vertical and
(45◦) tilted U-notches subjected to three point bend tests. All samples share the same length l = 126 mm,
width w = 28 mm, thickness b = 14 mm and notch height h = 14 mm. The support as well as loading
positions for the vertical and tilted U-notched PMMA samples are depicted in Figure 2.

Eccentric loading of the vertical U-notched samples with fixed supports was used to induce mixed-mode
fracture. Six loading positions were studied at distances g = −3, 3, 9, 18, 27 and 36 mm from the centre. The
influence of the U-notch root radius at every loading position was also investigated: ρ = 0, 0.2, 0.3, 0.5, 1.0, 2.0
and 4.0 mm. For g = −3 and 3 mm, the radius corresponding to 0.2 mm was not considered.

Mixed mode fracture in the tilted samples was facilitated by varying the distance, m, of a support from
the centre. Three values were analysed: m = 3, 9 and 15 mm. As in the vertical U-notched case, the
influence of the following U-notch root radii ρ = 0.3, 0.5, 1.0, 2.0 and 4.0 mm was explored for every value
of m. Every test, whether vertical or tilted, was repeated three times.

3.3. Testing procedure

Testing took place on a servo-controlled INSTRON machine. The experimental set-up was located inside
an INSTRON environmental chamber. First, the sample was cooled to −60◦C through the use of liquid
nitrogen over a thirty minute period and a small pre-load was applied (under load control). Once the sample
temperature was stabilised (remaining under load control), displacement control testing was performed at
constant temperature at a rate of 0.05 mm/min for the vertical U-notched samples with loading positions
g = 9, 18, 27 and 36 mm and 0.03 mm/min for the others. Results of the vertical (ρ = 0 and 0.2 mm omitted)
and tilted U-notched PMMA experiments are included in Appendix A for completeness. Location of crack
onset on the notch is given by the angle ϕ measured from the vertical axis, see Figure 3.

4



Pg

9 56

28

126

14
(mm)

(a)

P9

m 56

28

126

14
(mm)

(b)

Figure 2. (a) Vertical and (b) tilted U-notched sample test configurations; Thickness = 14 mm.

ϕ

Figure 3. Crack onset location, angle ϕ.

4. Numerical predictions

4.1. Model

Stress in the tested samples was obtained numerically by means of the open source Code Aster [15]
finite element package. All the analyses were carried out under the hypothesis of linear elasticity and
an assumption of plane strain. Code Aster has the ability to handle point loads and supports. This is
advantageous since the imposed boundary conditions are all of this variety. A highly refined mesh composed
of quadratic quadrilateral finite elements was employed in the vicinity of the U-notch tip region. In order to
gauge the level of refinement, a mesh-sensitivity study was undertaken. Over one hundred thousand elements
was the standard. Unfortunately, the analysis of tilted U-notched samples corresponding to ρ = 0.3 and
0.5 mm proved to be too computationally onerous and were abandoned. In order to evaluate the criterion in
question, a subroutine was developed for interpolating the stress around the U-notch tip involving nodal value
projections. Also, due to the computing power, the angle representing crack onset location was only examined
at one degree intervals. For the assessment of fracture, ac = 8.873×10−5 m and ξc = 5.745×10−5 m.
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4.2. Vertical U-notched samples

Location of crack onset and critical load predictions are plotted along with experimental results against
the notch root radii for g = −3, 3, 9, 18, 27 and 36 mm in Figures 4–9. Even though the predictive angle for
crack onset location is impacted (most pronounced in Figures 8 and 9) by the aforementioned restriction,
the trends are captured exceptionally well in all cases if ρ = 0.3 mm with respect to g = 3, 18, 27 and 36 mm
is discounted or ignored. This is wholly justified given the rather capricious nature of these results, as can
be more clearly observed in [11, 12]. It can be thus concluded that there is very good agreement between the
predictions and experimental results. Predictions of the critical loads are sound and apart from ρ = 2 mm
at g = −3, 3 mm as well as ρ = 4 mm at g = 3, 18 mm are consistently a little conservative. Trends are,
however, captured quite well. The predictions for g = 9, 18, 27 and 36 mm are in line with those reported
in [11, 12].
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Figure 4. Experimental results and numerical predictions for g = −3 mm.
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Figure 5. Experimental results and numerical predictions for g = 3 mm.
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Figure 6. Experimental results and numerical predictions for g = 9 mm.
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Figure 7. Experimental results and numerical predictions for g = 18 mm.

4.3. Tilted U-notched samples

Once again, location of crack onset and critical load predictions are plotted along with experimental
results against the notch root radii for m = 3, 9 and 15 mm in Figures 10–12. As in the vertical U-notch
case, the criterion offers critical load predictions that capture the trends but are just shy of the experimental
results (exceptions being ρ = 2 mm at m = 3 mm and ρ = 4 mm at m = 15 mm). It is a bit more of a
complicated matter with regards to the crack onset location. While the predicted angles are generally close
to or within the scatter of experimental results, the trends (including results for ρ = 0.3 and 0.5 mm) are not
so obvious or sufficiently clear to arrive at a firm conclusion one way or the other. A numerical investigation
of the maximum principal stress on the notch edge that can be found in [16], however, supports the resolved
angles.
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Figure 8. Experimental results and numerical predictions for g = 27 mm.
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Figure 9. Experimental results and numerical predictions for g = 36 mm.

5. Conclusions

Predictions made by the criterion proposed by Kodsi [11, 12] have been compared to extensive experimen-
tal results from U-notched PMMA samples that were subjected to three-point bend testing. Mixed-mode
fracture, in the tests, was induced through a non-symmetric arrangement of supports and loading. It was
comprehensively shown that the criterion provides very reliable predictions. There was very good agreement
between the predicted and experimental results for crack onset location. Critical loads were very close to
the experimental results but slightly conservative, though not by a sufficient amount to detract from the
quality of the prediction. This work gives further credence to the criterion. Moreover, the presentation
of the theory should, hopefully, be more amenable to the engineering community. Analysis of U-notched
disc-type graphite samples [17] would be an interesting avenue of research to pursue next.
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Figure 10. Experimental results and numerical predictions for m = 3 mm.
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Figure 11. Experimental results and numerical predictions for m = 9 mm.
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Appendix A. Experimental results

Table A.1. Vertical U-notched samples (reproduced from [2]).

ρ (mm) g (mm) P1 (N) P2 (N) P3 (N) 〈P 〉 (N) ϕ◦
1 ϕ◦

2 ϕ◦
3 〈ϕ〉◦

4 -3 6903 6830 7277 7003 3.9 5.6 4.6 4.7
3 4716 4643 4645 4668 19.3 21.3 20.4 20.3
9 4219 4155 4171 4182 28.0 27.0 28.5 27.8

Continued on next page
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Table A.1 – Continued from previous page

ρ (mm) g (mm) P1 (N) P2 (N) P3 (N) 〈P 〉 (N) ϕ◦
1 ϕ◦

2 ϕ◦
3 〈ϕ〉◦

18 4885 5304 5133 5107 36.0 36.4 36.0 36.1
27 6114 6518 6659 6430 35.8 32.7 33.4 34.0
36 9968 9889 9286 9714 35.4 35.8 35.6 35.6

2 -3 5954 6093 6033 6027 6.7 10.6 9.7 9.0
3 3880 3740 3775 3798 25.2 27.8 29.3 27.4
9 3692 3700 3374 3589 29.2 33.1 30.3 30.9
18 4079 4102 4062 4081 36.8 34.8 37.1 36.2
27 5258 5210 4689 5052 38.8 37.2 35.8 37.3
36 7606 7640 8113 7786 30.0 34.8 35.3 33.4

1 -3 4634 4633 4549 4605 20.2 12.7 21.3 18.0
3 2901 2876 2846 2874 26.3 24.5 25.2 25.3
9 2742 2886 2559 2729 34.0 35.3 35.1 34.8
18 3531 3739 3262 3511 37.5 39.1 37.6 38.1
27 4302 4401 4469 4391 37.6 35.0 38.5 37.0
36 6242 6115 5835 6064 40.4 37.3 38.1 38.6

0.5 -3 3687 3682 3505 3625 22.3 18.4 17.3 19.3
3 2530 2514 2562 2535 30.0 26.7 27.3 28.0
9 2131 2246 2186 2188 32.2 31.9 35.3 33.1
18 2504 2503 2677 2561 37.7 35.7 37.5 37.0
27 3412 3509 3452 3458 36.9 38.5 35.5 37.0
36 4837 4791 4519 4716 38.5 37.7 38.5 38.2

0.3 -3 3462 2880 3161 3168 18.0 16.0 19.6 17.9
3 2146 2235 2195 2192 33.2 31.6 36.2 33.7
9 1797 1918 2131 1949 35.7 33.4 35.4 34.8
18 2356 2346 2345 2349 46.9 46.3 45.6 46.3
27 3305 2776 3435 3172 45.0 46.8 45.6 45.8
36 4722 4700 4487 4636 44.0 45.0 45.0 44.7

Table A.2. Tilted U-notched samples (reproduced from [2]).

ρ (mm) m (mm) P1 (N) P2 (N) P3 (N) 〈P 〉 (N) ϕ◦
1 ϕ◦

2 ϕ◦
3 〈ϕ〉◦

4 15 3433 3329 3466 3409 64.1 64.8 63.9 64.3
9 4225 4209 4448 4294 67.2 66.6 68.7 67.5
3 6613 6337 6353 6434 77.8 78.5 76.6 77.6

2 15 2842 2809 3112 2921 66.4 64.9 66.5 65.9
9 3743 3854 3729 3775 67.5 68.5 76.7 70.9
3 6316 6086 5914 6105 84.5 85.9 83.6 84.7

1 15 2266 2310 2460 2345 63.7 63.1 61.8 62.9
9 3327 3164 3008 3166 69.3 65.9 69.2 68.1
3 5435 4851 5316 5201 77.2 84.3 80.3 80.6

0.5 15 1792 1783 1776 1784 64.5 64.1 63.7 64.1
9 2323 2494 2436 2418 68.4 70.3 67.9 68.9
3 4503 4732 4334 4523 83.3 84.8 87.5 85.2

0.3 15 1736 1866 1669 1757 60.4 62.0 60.6 61.0
9 2397 2420 2446 2421 72.6 68.1 74.2 71.6
3 4394 4354 4173 4307 86.2 87.0 85.5 86.2
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Figure 12. Experimental results and numerical predictions for m = 15 mm.
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