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ABSTRACT 
 

 
Data mining is the process of discovering useful patterns from datasets using 

intelligent techniques to help users make certain decisions. A typical data mining task 

is classification, which involves predicting a target variable known as the class in 

previously unseen data based on models learnt from an input dataset. Covering is a 

well-known classification approach that derives models with If-Then rules. Covering 

methods, such as PRISM, have a competitive predictive performance to other classical 

classification techniques such as greedy, decision tree and associative classification. 

Therefore, Covering models are appropriate decision-making tools and users favour 

them carrying out decisions. 
 

Despite the use of Covering approach in data processing for different classification 

applications, it is also acknowledged that this approach suffers from the noticeable 

drawback of inducing massive numbers of rules making the resulting model large and 

unmanageable by users. This issue is attributed to the way Covering techniques 

induce the rules as they keep adding items to the rule’s body, despite the limited data 

coverage (number of training instances that the rule classifies), until the rule becomes 

with zero error. This excessive learning overfits the training dataset and also limits the 

applicability of Covering models in decision making, because managers normally 

prefer a summarised set of knowledge that they are able to control and comprehend 

rather a high maintenance models. In practice, there should be a trade-off between 

the number of rules offered by a classification model and its predictive performance. 

Another issue associated with the Covering models is the overlapping of training data 

among the rules, which happens when a rule’s classified data are discarded during the 

rule discovery phase. Unfortunately, the impact of a rule’s removed data on other 

potential rules is not considered by this approach. However, When removing training 

data linked with a rule, both frequency and rank of other rules’ items which have 

appeared in the removed data are updated. The impacted rules should maintain their true 

rank and frequency in a dynamic manner during the rule discovery phase rather just 

keeping the initial computed frequency from the original input dataset. 
 

In response to the aforementioned issues, a new dynamic learning technique 
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based on Covering and rule induction, that we call Enhanced Dynamic Rule 

Induction (eDRI), is developed. eDRI has been implemented in Java and it has been 

embedded in WEKA machine learning tool. The developed algorithm incrementally 

discovers the rules using primarily frequency and rule strength thresholds. These 

thresholds in practice limit the search space for both items as well as potential rules by 

discarding any with insufficient data representation as early as possible resulting in an 

efficient training phase. More importantly, eDRI substantially cuts down the number 

of training examples scans by continuously updating potential rules’ frequency and 

strength parameters in a dynamic manner whenever a rule gets inserted into the 

classifier. In particular, and for each derived rule, eDRI adjusts on the fly the 

remaining potential rules’ items frequencies as well as ranks specifically for those that 

appeared within the deleted training instances of the derived rule. This gives a 

more realistic model with minimal rules redundancy, and makes the process of rule 

induction efficient and dynamic and not static. Moreover, the proposed technique 

minimises the classifier’s number of rules at preliminary stages by stopping learning 

when any rule does not meet the rule’s strength threshold therefore minimising 

overfitting and ensuring a manageable classifier. Lastly, eDRI prediction procedure not 

only priorities using the best ranked rule for class forecasting of test data but also 

restricts the use of the default class rule thus reduces the number of 

misclassifications. 
 

The aforementioned improvements guarantee classification models with smaller 

size that do not overfit the training dataset, while maintaining their predictive 

performance. The eDRI derived models particularly benefit greatly users taking key 

business decisions since they can provide a rich knowledge base to support their 

decision making. This is because these models’ predictive accuracies are high, easy 

to understand, and controllable as well as robust, i.e. flexible to be amended without 

drastic change. eDRI applicability has been evaluated on the hard problem of phishing 

detection. Phishing normally involves creating a fake well-designed website that has 

identical similarity to an existing business trustful website aiming to trick users and 

illegally obtain their credentials such as login information in order to access their 

financial assets. The experimental results against large phishing datasets revealed that 

eDRI is highly useful as an anti-phishing tool since it derived manageable size models 
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when compared with other traditional techniques without hindering the classification 

performance. Further evaluation results using other several classification datasets from 

different domains obtained from University of California Data Repository have 

corroborated eDRI’s competitive performance with respect to accuracy, number of 

knowledge representation, training time and items space reduction. This makes the 

proposed technique not only efficient in inducing rules but also effective.
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Chapter One  

 

Introduction   

 

 

1.1 Introduction 

Data mining (DM), which is based on computing and mathematical sciences, is a common 

intelligence tool currently used by managers to perform key business decisions 

(Abdelhamid & Thabtah, 2014). Traditionally, data analysts used to spend a long time 

gathering data from multiple sources and little time was spent on the analysis due to 

limited computing resources. However, since the rapid development of computer 

networks and the hardware industry, analysts are spending more time on examining data, 

seeking useful concealed information. In fact, after the recent development of cloud 

computing, data collection, noise removal, data size, and data location are no longer 

obstacles. Data analysis, or DM, is concerned about finding hidden patterns from datasets 

that are useful for users, particularly managers, to conduct suitable planning (Thabtah & 

Hamoud, 2014). 

 One of the known DM tasks, which involves forecasting class labels in previously 

unseen data based on models (classifiers) learnt from training datasets, is classification 

(Hall, et al, 2009). Generally, classification is performed in two steps: constructing a 

model, which is often named the classifier, from a training dataset, and utilising the 

classifier to predict the value of the class of test data accurately. This type of learning is 

called supervised learning because while building of the classifier the learning is guided 

toward the class label. Common applications for classification are medical diagnoses, 

web security, and stock market analysis (Rameshkumar, et al, 2013; Mohammad, et al, 

2015; Dash & Dash, 2016), etc.  

One of the least studied approaches in classification is that which is based on separate 

and conquer learning (Pagallo & Haussler, 1990). This learning approach normally splits 

the training dataset into subsets based on classes and discovers the rules for each class 
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through relationships between the input dataset’s variables and class values. Once the 

complete set of rules is discovered, a classifier is formed by integrating the rules.  

This thesis focuses on rule-based classification models, particularly Covering approaches 

in DM. It proposes new dynamic Covering classification techniques that generate 

predictive models. These models contain knowledge represented as “if-then” rules, 

therefore they can be easily understood and maintained by decision makers.  This chapter 

discusses the research problems under investigation, as well as the major contributions 

achieved. Lastly, we outline the structure of this PhD report. 

 

1.2 Motivation  

Supervised learning is one of the common learning approaches in machine learning (ML) 

and DM.  In supervised learning, a model is normally constructed from a labelled set of 

examples called the training dataset. A typical training dataset consists of a set of 

variables (features) and a special variable called the class. For example, in medical 

diagnoses the class is the type of illness, and for credit card scoring the class is whether 

an applicant is granted credit or not. The primary purpose of the classifier is to accurately 

predict the class of an unseen dataset called the test dataset.  There have been many 

different classification approaches proposed  by researchers in the last few decades, 

including Decision Trees, Neural Network (NN), Support Vector Machine (SVM), 

Associative Classification (AC), and Covering among others (Quinlan, 1979; 

Mohammad, et al, 2013; Cortes & Vapnik, 1995; Thabtah, et al, 2004; Holt, 1993). The 

latter two approaches, AC and Covering, extract classifiers that consist of rules, which 

explain their wide applicability. However, in practise  there are differences between AC 

and Covering, in particular in the way rules are induced and pruned. This thesis falls under 

the umbrella of Covering rule-based classification research. 

There are a number of distinguishing features for Covering approaches in 

classification. The most dominant being that they are easy to understand models. Unlike 

models devised by traditional classification models such as NN, decision trees, or SVMs 

which normally require a domain expert to interpret them. The simplicity of Covering 

based models can be attributed to the straightforward rule format used, which novice users 

can easily interpret and utilise in decision making (Abdelhamid, 2015).  Another 
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noticeable feature of rule-based models is that users can easily maintain the classifier by 

adding, removing, or even amending rules when needed (Witten & Frank, 2005). This 

feature is hardly accomplished in other predictive models such as Decision Trees. Indeed, 

in decision trees the entire tree (classifier) must be reshaped if one tries to add a branch 

or partial tree to the existing tree, which is a complex process. Lastly, in Covering 

approaches, rules are ranked in a way that enables end users differentiate between highly 

effectives rules (mostly ranked at the top of the models) and less effective rules. This 

ranking is vital in choosing the rule or the set of rules that are able to predict the test cases, 

and therefore ranking influences the number of test data misclassifications. 

The methodology in most existing Covering classification algorithms requires 

splitting the training dataset into a number of subsets based on class labels before the 

training phase begins. This approach was criticised by scholars in ML and DM because 

it builds local classifiers that belong to a subset of the training dataset rather than a 

complete training dataset (Abdelhamid & Thabtah, 2014). This criticism is attributed to 

the fact that rules are generated per class rather than from the entire classes at once, and 

in some cases a variable value belonging to multiple classes is considered only with the 

most frequent class during the training phase.  This can also cause the generation of only 

single rules (one class per rule). 

Another obvious problem associated with Covering techniques is the large numbers 

of rules induced, which normally leads to large classifiers (Witten & Frank, 2005). This 

problem appears because of the way the algorithm induces the rules; it keeps adding items 

to the rule’s body until it covers only positive training data examples. In other words, the 

Covering algorithm typically produces many rules, each covering only a few examples of 

positive data, rather than rules covering large numbers of positive and negative data 

samples. The outcome of the aforementioned excessive learning is a classifier with 

several specific low data coverage rules that may overfit the training dataset. This may 

limit the use of this learning approach to domains that require a concise set of rules for 

decision making. Often managers in application domains such as medical diagnosis or 

credit card scoring prefer a summarised set of rules that they can manage instead of a high 

maintenance set of rules. There should be compromise between the number of rules and 

the predictive accuracy.  
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A more crucial issue that is worth investigating in Covering classification is the way 

rules are induced. When a rule is discovered, the algorithms directly delete its 

corresponding positive training data. The Covering algorithm then scans the adjusted 

training data to discover the next rule, produce it, remove its linked data, and then scan 

again the newly adjusted training data and so on (Abdelhamid & Thabtah, 2014). This 

repetitive process, especially the multiple data scans, consumes large computing 

resources and should be dynamically implemented. 

This thesis investigates shortcomings associated with Covering algorithms in data 

mining. Specifically, we look at research issues including but not limited to the following: 

1) Minimising computing resources, especially the number of passes over data 

examples, by proposing a dynamic learning technique.  

2) Reducing the search space for both items and rules to make the training phase 

more efficient. 

3) Generating smaller predictive models without hindering predictive power so end 

users can manage the classifiers in a straightforward manner. 

4) Derive good quality rules, not necessarily with 100% accuracy, to reduce over-

fitting and increase data coverage per rule.    

5) Generating web security models based on Covering approach to serve as an anti-

phishing rules set. This is since novice users usually prefer easy to understand rule 

to make them better understand phishing activities and features. 

6) Identifying small, effective, phishing features.  

This thesis involves only binary and multi-class classification problems since they are 

more common in classification applications. These problems produce datasets with 

examples, which are linked with one class. In other word, each instance in the training 

dataset is connected with one class value. The multi-label classification case is out of the 

scope of this thesis since they have different data format and requires special 

transformation. The scope is limited to the Covering approach in data mining, so other 

approaches related to generating rules such as Associative Classification are not explored.  

Associative Classification methods are based on association rule so they require the 
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complete rule sets to be derived using unsupervised learning search before building the 

classifiers. 

  

1.3 Covering Induction Process and Related Definitions  

In Covering Classification approach, knowledge is discovered readily as the algorithm 

typically discovers rules per class label. For each class, i.e. C1, the algorithm makes an 

empty rule (if empty then C1) and looks for the best variable value (VV), such as Max 

VVi, which leads to the largest gain according to a certain metric, or accuracy, with C1. 

The rule’s accuracy can be achieved by dividing the combined frequency of VVi and the 

class, C1, by the number of data examples that belong to  VVi in the training dataset. 

The algorithm merges the VVi with the largest accuracy with the rule’s antecedent (left 

hand side), and proceeds to search for the next VVi+1 in the training dataset with which 

to append. The algorithm terminates building the rule when no more VVi with acceptable 

accuracy can be found, and at that point the rule is generated and all of its positive 

examples that belong to C1 are discarded. The algorithm continues discovering the rules 

from the remaining data examples that belong to class C1 until that set becomes empty, 

or no VVi when integrated with C1 has an acceptable accuracy. When this occurs, the 

algorithm moves on to the next class data set and repeats the aforementioned steps until 

the complete rules set is derived.    

The problem can be formally defined as follows: Given a training dataset T, which has 

x distinct columns (variables) V1, V2, … ,Vn, one of which is the class, i.e. class. The size 

of T is |T|. A variable in T may be nominal, which means it takes a value from a predefined 

set of values, or continuous. Nominal attribute values are mapped to a set of positive 

integers whereas continuous attributes are pre-processed by discretising their values using 

any discretisation method.  

The aim is to construct a classifier from T, e.g. classVClassfiier  : , which forecasts the 

class of a previously unseen dataset. 

The classification method investigated employs a user threshold called freq. This 

threshold serves as a fine line to distinguish strong rule items <item, class> from weak 

ones based on their computed occurrences in T.  Any rule item whose frequency bigger 
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than the freq is called a strong rule item, otherwise being referred to as a weak rule item. 

Below are the main concepts used throughout the thesis and their definitions. 

Definition 1: A variable plus its denoted values name (Vi, vi) is known as item 

Definition 2: A training example in T is a row consisting of variable values (Vj1, vj1), …, 

(Vjv, vjv), plus a class denoted by classj.  

Definition 3: A rule item r has the format |body, c|, where body is a set of disjointed items 

and c is a class value.  

Definition 4: The frequency threshold (freq) is a predefined threshold given by the end 

user.  

Definition 5: The body frequency |body_Freq| of a rule item r in T is the number of 

training examples in T that matches r’s body. 

Definition 6: The frequency of a rule item r in T (ruleitem_freq) is the number of training 

examples in T that matches r. 

Definition 7: A rule item r passes the freq threshold if, r’s |body_Freq|/ |T| ≥ freq. Such 

a rule item is said to be a strong rule item. 

Definition 8: The rule strength |rule_strength| is a predefined threshold given by the end 

user.  

Definition 9: A rule r has a strength which is defined as |ruleitem_freq|/ |body_Freq|.  

Definition 10: A rule r can be generated when r’s |strength|>= |rule_srtength|.  

Definition 11: A rule takes the form: r: classbody  , where body is a set of disjoint 

variable values and the consequent is a class value. The format of the rule is: 

121 ... classvvv n   

 

1.4 Thesis Research Issues  

Different issues related to rule based classification approaches, particularly Covering 

classification, are discussed in this research. These are: 

Generic Issues  
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 Developing a dynamic rule discovery process.  

 Improving the performance of Covering techniques.  

o The reduction of the search space of items during training phase.   

o Generating a concise set of rules by removing redundant rules in the 

classifier.  

o Minimising over-fitting the training dataset. 

o Improving training time required to construct models.   

Domain Specific Issues 

 Covering classifiers as an anti-phishing tool. 

 Determining the most effective features related to phishing.  

 

1.4.1 Generic Issues  

GI-Issue 1: The Methodology to Discover the Rules 

In most rule-based classification the process of rule discovery is accomplished in a 

separate phase after the algorithm goes over the training dataset to record item and class 

occurrences.  For each available class, these algorithms add the best item to the class 

according to a certain measure of the rule’s body. When the rule reaches the desirable 

accuracy, then it gets derived and these algorithms discard all classified training data 

examples that belong to the rule. The algorithm then proceeds to discover other potential 

rules for the class at hand from remaining data examples by reviewing the complete 

dataset again, wasting runtime and memory. This step is necessary, however, since the 

frequency computed earlier for the items and the class labels for some potential rules have 

changed. This process not only is resource demanding, but can also cause the algorithm 

to crash when the data is highly dimensional. A simple experiment using the PRISM 

Covering algorithm implemented in WEKA ML tool against a “Segment Challenge” 

dataset downloaded from the University of Irvine data repository was conducted to record 

how many data examples this algorithm must go over to learn the rules (Cendrowska, 

1987; Hall, et al., 2009; Licham, 2013). The “Segment Challenge” dataset consisted of 

twenty variables and 1500 examples. It turns out that this methodology must scan 
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7,147,542 data examples to find the rules. This number can be of higher magnitude if 

datasets with larger dimensionalities are used, which is a burden in big data domains. 

Contribution 

There should be a mechanism embedded in the training phase which ensures that the rank 

and frequency of potential rules are amended in a dynamic manner without any repetitive 

training data scans.  This will make the process of rule induction efficient, not static every 

time a rule is derived. Therefore, whenever a rule is inserted into the classifier all 

remaining potential rule <item,class> occurrences should be updated extemporaneously 

based on data removal. We developed a new dynamic rule learning that substantially 

reduces the number of examples scanned. Our method, which we called Enhanced 

Dynamic Rule Induction (eDRI) Qabajeh, et al, (2014) is presented in Chapter three.  

Experimentations using different classification datasets that belong to applications 

beyond medicine, credit card scoring, finance, agriculture, politics, and others from UCI 

data repository (Lichman, 2013) have been conducted to evaluate the proposed eDRI. 

Chapters four and five give further detail on the compared algorithms, experiment 

settings, evaluation measures, and data characteristics. The results show that eDRI 

outperforms other classic ML algorithms as well as rule-based algorithms in regard to the 

considered evaluation measures. Moreover, models produced by eDRI not only have 

good predictive power, but they are also efficient during data processing and contain 

small effective rules for decision making. These rules have low to no redundancy since 

they do not overlap in the training examples and normally require a lower number of data 

scans to be found that the compared Covering algorithms. 

 

GI-Issue 2: Enhancing the Performance of the Classification Models 

(Classifiers) 

We investigated different problems in rule-based classification related primarily to the 

process of rule discovery and classifier content. These issues are:  

 Reducing the search space for items 

 Decreasing the number of rules in the classifier so users can better understand and 

use them 
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 Improving test data prediction by using multiple rules based on weights 

A. Cutting down the items search space during the training phase   

As mentioned before, in typical rule-based classifiers such as Covering the methodology 

to find the rule necessitates that after generating each rule a full scan is conducted on the 

remaining data examples. This is necessary to record item frequencies after data removal; 

hence, the search space of items is massive and consequently consumes large computing 

resources. In fact, the number of items that can participate in rule induction should be 

minimised since many of these items have no statistical significance and removing them 

will improve the process of creating rules. Thus, there is a need for a mechanism that 

discriminates between items to reduce the numbers of items in the search space during 

the training phase. 

 

Contribution 

The rule discovery process proposed in the enhanced Dynamic Rule Induction algorithm 

(eDRI) minimised the number of items that can be offered to the rules. We have 

introduced a frequency threshold (freq, see Definition 6) that discriminates among items 

based on their occurrence with the item and class in the training dataset. The freq 

threshold serves as an indicator that distinguishes weak items from strong items. Any 

item plus class frequency must pass the freq threshold so it can be considered by the rules. 

This has reduced the search space for items during rule building by discarding weak items 

early on and in a dynamic manner. In fact, strong items can become weak whenever a 

rule is derived if they appeared in the discarded rule’s data.   Experimental studies in 

Qabajeh et al, (2015) showed an improvement in use of computing resources, especially 

run time reduction and number of passes required for building the classifier. These results 

are documented in Chapter 4. 

 

B. Reducing the number of rules for better controllability  

One of the drawbacks associated with Covering algorithms is that despite being simple 

classifiers, the number of rules they produce is large.  This can be attributed to the way 

the algorithm discovers rules in that each correlation between class and variable is 
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investigated and which leads to the production of several specific rules (covering very 

limited data examples). Most Covering algorithms, like PRISM and its successors, keep 

appending variables into the rules body until the rule achieves a zero error rate. This can 

result in just covering one or two training data examples, which limits generalising rule 

performance across wider data applications.  To overcome this issue, we investigated this 

problem and proposed a rule pruning procedure to cut down the number of potential rules 

and reduce the classifier size. It should be noted that search induction learning algorithms 

such as PART, IREP and RIPPER use extensive such as backward and minimum 

description length principle pruning to cut down the size of the classifiers (Frank & 

Witten, 1998). However, these algorithms originally employ a divide and conquer 

approach to learning trees that then are converted into classification rules. Thus, it is 

impractical and incorrect to consider them Covering approaches despite generating rules. 

 

Contribution 

We have developed a pruning method that ensures each potential rule has a true rank 

during the process of rule generation. When a rule is constructed, and its data examples 

are discarded, we immediately adjust the potential rule ranks which help us to determine 

weak rules early on and remove them. The resulting analysis against a large data 

collection from the UCI repository showed moderate size models being consistently 

generated by our dynamic technique when compared with those generated from decision 

trees and other Covering algorithms. Interestingly, the models produced by eDRI had a 

lower number of rules yet the predictive performance was sustained for the majority of 

datasets. Furthermore, in phishing detection, eDRI was able to construct small set of 

useful anti-phishing rules that contained new and interesting information for security 

experts and online users. Lastly, when the phishing data was processed, the accuracy of 

our incremental model was only slightly affected, which shows constant predictive 

performance of eDRI on different domains data. All the aforementioned results are 

elaborated in details in Chapters 4 and 5. 
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C. Avoiding Over-fitting and Under-fitting   

One of the important issue in supervised learning predictive models is over-fitting the 

training dataset. This problem is obvious in Covering approach when the learning 

algorithm excessively trains against the input dataset particularly when the algorithm 

allows the generation of only perfect rules, which is true case with PRISM. These rules 

usually are associated with maximum accuracy against the training dataset, yet they are 

not general rules that can be widely applied on an unseen dataset. Therefore, the 

predictive performance of the rules when they are applied on a test dataset is questionable.  

Another obvious example is the REP algorithm that generates a complete rule set and 

then invokes an evaluation step to cut down redundant rules (Fürnkranz & Widmer, 

1994). There should be a mechanism for learning to be stopped so that training datasets 

will not be overfitted. This mechanism guarantees realistic rules in the final classifier that 

are linked with insufficient data representation being discarded early during the training 

phase. 

 

Contribution 

We posit that generating high quality rules, not necessarily perfect ones but rather those 

with larger classified training examples, is advantageous. This can be accomplished using 

user statistical measure such as rule strength (see definition 9). The rule strength separates 

acceptable from unacceptable rules based on both data coverage and items’ frequency 

within the class label. This is important because applications such as phishing 

classification necessitates small yet highly correlated rules in the classifiers. Rule strength 

serves as a point at which we stop adding items into the rule’s body and therefore reduce 

over-fitting the training data by allowing for a slight error per rule while maintaining 

larger data coverage. Moreover, rule frequency dynamically during the training phase 

contributes to reducing over-fitting. This is since items within potential rules that fail to 

accomplish the frequency threshold will be discarded, and therefore these rules will not 

be considered during the training phase and consequently further shrinks the search space.  

1.4.2 Domain Specific Issues 

Issue 3: Rules Set as Effective Anti-Phishing Tool 
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Phishing is one of the most serious online frauds, costing different stakeholders including 

banks, online users, governments, and other organisations severe financial damages. This 

fraud often entails designing and implementing a replica website that maintains visual 

similarity to that of an existing trusted organisation (Aburrous, et al, 2010). The aim of 

phishing is to unlawfully obtain user login data in order to access their financial 

information (Mohammad, et al, 2015). One promising research direction to minimise the 

risks of phishing is using predictive ML and DM algorithms. Despite promising results 

with reference to classification accuracy of the aforementioned approaches, the models 

they produce are usually complicated in a way that novice users might find difficult to 

interpret and use them for making decisions. Moreover, adding to or amending the model 

requires careful implementation and is often a complex process that end users might be 

unable to perform (Abdelhamid, et al, 2014).  

 

Contribution 

A model with straightforward knowledge represented in simple rules is obviously 

advantageous for end users. Not only the model could be used to detect phishing 

activities, but it could also serve as a decision making tool in which the user can readily 

understand the relationship between phishing features and the website’s class, i.e. phishy 

or legitimate. There has been recent research on the use of rule-based classifiers utilising 

associative classification reported in Abdelhamid (2015) and Abdelhamid, et al (2014). 

However, these approaches suffer from noticeable drawbacks, which are not limited to 

just the size of the classifiers derived but also the inherited problems from association 

rules such rule redundancy. A Covering approach that enhances the process of rule 

discovery and classifier building as discussed in Section 1.4.1 and removes data 

overlapping can be an effective anti-phishing tool. To date, there is very limited work on 

anti-phishing using covering classification.  

A case study, Chapter 5, that investigates phishing as a classification problem is reported. 

This chapter contains critical analysis of phishing approaches, from traditional to 

education and intelligent ones, with their associated benefits, disadvantages and ways 

forward in combatting phishing. More importantly, a comprehensive experimental study 

on real phishing websites is reported. eDRI’s performance as a phishing detection 
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technique is compared against the performance of other ML techniques to reveal the 

strengths and weaknesses of eDRI.   

 

1.5 Thesis Structure 

This thesis consists of five chapters including the present one. Chapter two critically 

analyses Covering techniques in data mining, separate and conquer, divide and conquer, 

and their mutually common algorithms. We have included induction learning approaches 

as well. Chapter three is devoted to the proposed Covering algorithm (eDRI) for 

constructing rule-based predictive models. In chapter three, we present the dynamic 

process mechanism, pruning procedure, class forecasting method and a detailed example 

that explains eDRI insight. Chapter four contains the implementation of our newly 

enhanced dynamic method during the training phase. We also present the evaluation 

measures used and phase details of our algorithm alongside a complete example.  In 

addition, the results on the UCI datasets and their analysis are discussed in chapter four. 

These are not only limited to large variations of UCI datasets, large selection of rule and 

non-rule based ML algorithms, and evaluation measure results analysis. Real data 

experimentations related to phishing and using a number of ML techniques have been 

conducted in chapter five. This section also reviews and critically analyses the phishing 

problem and traditional solutions based on legal, educational, and intelligent anti-

phishing tools. A large experimental analysis is then conducted to evaluate the benefits 

and disadvantages of the proposed algorithm. Lastly, chapter six concludes the thesis by 

responding to the research issues raised in chapter one and highlights the main 

contributions of this thesis, further pinpointing possible future research paths. 
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Chapter Two 

 

Covering and Induction Approaches in 

Classification   

 

2.1 Introduction  

One of the primary tasks in ML is predictive classification (Diebold and Mariano, 1995; 

Abdelhamid, et al., 2016). In classification, a predictive model called the 

categoriser/classifier is typically constructed from a training dataset. This model is then 

applied to test data in order to predict the class as accurately as possible. Effectiveness of 

the model is measured mainly on its performance in predicting test cases (Abdelhamid 

and Thabtah, 2014). The less number of misclassifications the model scores on test data 

cases the higher predictive power the model possesses and therefore its performance can 

be generalised.  

There are two forms of classification problems; single label and multi-label 

(Fürnkranz, et al., 2008). The former can also be classified into two types: binary and 

multi-class classification. In binary classification, training data can only be linked to a 

single class value from two possible values in the training dataset, while in multi-class 

classification each training instance is linked with one class value from two or more 

possible values. On the other hand, multi-label classification problems necessitate that 

each training instance has multiple class values, and thus this type of data requires careful 

transformation (Taiwiah and Sheng, 2013). This is since each instance must be repeated 

with each class label. More details on the different classification problem types are given 

in Section 2.2. 

Different intelligent learning methodologies based on DM and ML have been 

developed and disseminated to deal with the classification problem. Among these we 

have support vector machine (SVM), neural network (NN), associative classification 
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(AC), boosting, regression trees, probabilistic, decision trees, induction learning, and 

Covering  among others (Joachims, 1999; Mohammad, et al, 2012; Liu, et al, 1998; 

Abdelhamid, 2015; Freund & Schapire, 1997; Breiman, et al, 1984; Duda, 1973; Quinlan, 

2002; Cohen, 1995; Bramer, 2002). The majority of the learning approaches solve 

classification by decomposing the problem into two phases discussed berfore 

 Learning Phase: This phase involves learning a model from the training dataset. 

 Prediction Phase: Using the learned model to predict the class label value in a test 

dataset. 

In this thesis we deal with Covering classification, yet in Section 2.3 other common 

induction ML approaches that are suitable to solve the classification problem are still 

discussed.  

As mentioned in Chapter One, Covering classification is one of the most important 

learning approaches that generate predictive models with “If-Then” rules. These “If-

Then” rules can be utilised as a knowledge base by end-users for decision making 

(Qabajeh, et al., 2015). A typical Covering algorithm learns rules one by one and for each 

available class in the training dataset. The algorithm initially creates an empty rule for a 

specific class [If empty, then Class 1]. Then using certain mathematical metrics such as 

accuracy, foil gain, etc., append one item to the empty rule body (left hand 

side)(Cendrowska, 1987; Quinlan, 1990). The algorithm keeps appending items until the 

rule metric cannot be further enhanced, at which point the rule is inserted into the 

classifier. In the same manner, the algorithm continues deriving the rules for the classes 

until a stopping condition is met. 

Three noticeable characteristics exist of a Covering approach in solving classification 

problems (Clark & Boswell, 1991; Domingos, 1996a; Grzymala-Busse, 2010; 

Abdelhamid & Thabtah, 2014) 

 The learned model contains simple yet highly influential rules for decision making 

that end-users can easily comprehend and manage. 

 Adding new knowledge (rules) can be done in a straightforward manner. 

 The way models are constructed is based on easy searches. 
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This chapter defines classification problems, followed by discussing classic induction 

learning approaches. More importantly, the focus will be on Covering classification 

methods as well as other common rule-based classifiers. The chapter structure is as 

follows: the classification problem and its main steps are discussed in Section 2.2; classic 

learning strategies dealing with predictive tasks such as classification are briefly 

discussed in Section 2.3, while section 2.4 critically analyses Covering  classification 

approaches along with other common rule-based classifiers in DM and ML. Moreover, 

we also introduce non-rule classification methods such as Boosting, probabilistic, SVM, 

AC and NN in section 2.5. Finally, conclusions are drawn in section 2.6. 

 

2.2 The Classification Problem and Its Variations  

In Chapter One, we have discussed the main terminologies related to the classification 

problem, specifically those connected with the Covering approach. In this section, we 

define single label classification problems (both binary and multi-class) in the ML 

context. Figure 2.1 depicts the essential steps that any learning algorithm goes through in 

order to construct models and apply them to predicting test cases. Input will consist of a 

set of labelled variables, including the class, called the training dataset. A learning 

algorithm then processes the training dataset to derive the classifier. This classifier is then 

applied to a test dataset to measure its prediction power (see Figure 2.1). 
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Multi-label and multi-output classifications are variants of the classification problem 

where multiple target labels must be assigned to each test case (Veloso , et al, 2007). 

Multi-label classification should not be confused with multi-class classification, which is 

the problem of categorising instances into one of more than two classes. Formally, multi-

label learning can be phrased as the problem of finding a model that maps inputs (x) to 

binary vectors (y), rather than scalar outputs as in the ordinary classification problem 

(Tsoumakas, et al, 2010). 

In binary classification and according to Bradley, et al (1998), given an input dataset 

taking the format of  (Xi, Ci) we can assign the given vector xi n  into one of two 

disjoint sets A or C in a dimensional variable space where n. Xi n  is the ith data 

instance and Ci {1, ….., K) is the ith class. The ultimate goal is to derive a function, F, 

that maximises the chance that F(x) = Ci for an unseen data instance. The classification 

problem can basically be transformed into a two class problem in which the class ci can 

be either 0 or 1. This simple format of the problem is called binary classification. Binary 

classification function, F(x), has the following format: 

	



1

0
     








Cx

Ax
 

Multiclass classification deals with predictive problems that involve more than two 

values for the class label.This is because the training dataset in multi-label classification, 

such as an image or a science, contains instances where each may be associated with 

multiple labels rather than a single class as in multi-class or binary classification 

(Tsoumakas, et al, 2010). Tables 2.1a-2.1b depict multi-label and multi-class datasets, 

respectively. Table 2.1b is the transformation of Table 2.1a from multi to single label 

classification.  

Often multi-class and multi-label datasets require data transformation, so strategies 

that transform their datasets into binary classification are essential. Two of the common 

data conversion strategies from multi-class and multi-label into a binary classification are 

one-versus-one and one-versus-all (Fürnkranz, et al, 2008). The latter essentially learns 

single classifiers for each class label. While learning the classifier for a class C, all 

training instances that belong to C are considered positive instances and the remaining 

are negative instances. Thus, when a test case is about to be predicted, a score based on 
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the required single classifiers is calculated to come up with the class decision (Thabtah et 

al, 2006). One shortcoming associated with the one-versus-all approach, however, is 

when the training dataset is imbalanced because it potentially creates a computed score 

that can be arisen with biased to the majority class. The other data conversion strategy, 

the one-versus-one approach, necessitates producing N (N − 1) / 2 binary models for the 

N multi-class problem (dataset)(Thabtah, et al, 2006). When test data is about to be 

predicted, a voting mechanism is employed in which all N (N − 1) / 2 are utilised and the 

class with the largest correct predictions is assigned by the multiple binary models.  

According to Tsoumakas, et al, (2010), for multi-label classification problems two data 

processing methods are also used; problem transformation and algorithm adaptation. The 

problem transformation consists of converting of the available multi-label dataset into 

binary classification sets in that each set can then be dealt with using any binary 

classification methods. In other words, the problem transformation strategy can be seen 

as a pre-processing phase which ensures that each training instance in the original multi-

label dataset is transformed into multiple single label instances. On the other hand, 

Table 2.1A multi-label dataset 

Variable 
1 

Variable 
2 

Variable 
3 

Class 

X1 Y1 Z2 C1, C3 
X1 Y1 Z2 C1, C3 
X2 Y1 Z3 C1,C2, C4 
X2 Y2 Z3 C2 
X1 Y3 Z2 C3,C4 
X2 Y2 Z1 C2 

 

Table 2.1B multi-class dataset transformed from Table 2.1A 

Variable 
1 

Variable 
2 

Variable 
3 

Class 

X1 Y1 Z2 C1 
X1 Y1 Z2 C3 
X1 Y1 Z2 C1 
X1 Y1 Z2 C3 
X2 Y1 Z3 C1 
X2 Y1 Z3 C2 
X2 Y1 Z3 C4 
X2 Y2 Z3 C2 
X1 Y3 Z2 C3 
X1 Y3 Z2 C4 
X2 Y2 Z1 C2 
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algorithm adaptation strategy employs a specific algorithm to learn multi-label models 

directly from the multi-label classification datasets without the use of data pre-processing 

phase. This approach to learning from multi-label problems is domain specific, and 

requires different learning strategies to acknowledge the fact that an instance has multiple 

class labels and the prediction involves assigning multiple labels to the test data.  

This thesis focuses only on binary and multi-class classification, and leaves multi-label 

classification out of scope of this study since this requires effort for additional PhD.  

 2.3 Learning Strategies in Classification  

2.3.1 Divide and Conquer   

 This classification approach splits data into subsets, which are further divided into 

smaller divisions until the algorithm believes that the subsets are adequately homogenous 

or the stopping criterion has been satisfied (Quinlan, 1979). To illustrate this, imagine a 

root node being the entire dataset. Subsequently, the algorithm specifies a variable in the 

dataset to start the first split. In an ideal situation the algorithm starts with the feature that 

maximises discrimination among the outcome classes in the dataset. Decision tree 

algorithms which apply divide and conquer use Gini index or Information Gain metrics 

to select the variable that can be the root node (Zaremotlagh, S., & Hezarkhani, 2017; 

Gini, 1999; Quinlan, 1986).  The cases are next grouped into classes based on the splitting 

of the variable. This process is repeated and the algorithm continues to separate (divide) 

and group cases while excluding heterogeneous data cases (conquer).  

Decision tree algorithms are common divide and conquer methods that classify cases 

based on their attributes’ values. Nodes represent variables to be classified, and branches 

represent the values that variables take (see Figure 2.2). Cases are classified beginning at 

the root node. Figure 2.2 represents a decision tree for a tax evasion classification problem 

(Tan, et al, 2005). Based on a number of attributes (tax refund and taxable income along 

with demographic information and marital status), the user wants to predict whether 

citizens cheated on their tax forms.  

 Note that the attribute that best classifies the cases is represented by the root node 

feature. In this example, marital status seems to be the best one. Married people did not 

cheat on their taxes as the first node of the tree indicates. The process of classification 
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based on best features continues until a parsimonious representation is obtained. Decision 

trees are useful given their representations for classification problems, which constitute a 

large portion of everyday applications. The detailed process of how to construct decision 

trees from training dataset and common methods used are given below. 

 Imagine that you are a university administrator working for a public university. Your 

role is to decide whether new programmes should be approved for enrolment in the next 

academic year. Upon your return from holiday, your work station is full of requests from 

various colleges. Realising that you do not possess sufficient time, you decide to construct 

a decision tree to help make the decision of categorising the requests into three groups: 

Success, Revision and Failure. To construct the decision tree, you explore factors 

associated with the 20 most successful and 20 worst programmes at the university during 

the past 25 years. You realise that there is a strong correlation between the programmes’ 

budget, size, and college affiliation of programme with the probability of its success or 

failure. Beginning with the entire dataset, the root node, we can select programme budget 

as the first feature by which to split programmes. Programmes can be classified as having 

a cost of more than $1 million or less. Second, among the programmes with a cost of less 

than $1 million, we can classify them based on their college affiliation. We could further 

split the programmes, yet over-fitting a tree is non-advisable. Over-fitting occurs when 

someone is trying to over learn by building larger trees in order to maximise the predictive 

performance of the model (tree) on the training dataset rather than on the test dataset 

(Hall, et al, 2009). You could therefore decide that programmes meeting a cost of less 

than $1 million dollars within a technical college affiliation are more successful, and thus 

approve them.  

Despite its applicability, the divide and conquer approach, it suffers from a number of 

limitations (Kothari & Dong, 2000; Leung, 2007; Grzymala-Busse, 2010). First, it tends 

to split the data based on variables with a large number of levels. Second, it is easy to 

over-fit or under-fit a model for classifying instances in a given dataset. Under-fitting the 

model occurs when someone stops building the tree early, and thus produces a model with 

limited performance (Witten & Frank, 2005; Jankowski & Jackowski, 2014). Third, the 

divide and conquer approach is problematic when it comes to modelling complex 

relationships since it relies on axis-parallel splits. Moreover, the output produced, 

especially in large trees, can be difficult to interpret and understand by non-technical 
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audiences. In this event, the user will not be able to manage the tree and therefore will not 

be able to use it for decision making.   Finally, a key weakness of the divide-and-conquer 

approach is its sensitivity to the input data (Leung, 2007; Grzymala-Busse, 2010). A small 

change in the input may result in significant changes in the decision trees produced. 

Introducing new cases into the dataset may result in redrawing the whole tree altogether. 

Despite the easy constructing decision trees, they tend to be more complex compared to 

other classification approaches, i.e. separate-and-conquer (see section 2.3.2) (Fürnkranz, 

1999; Brookhouse & Otero, 2016), which This learning approach produces an easier 

representation of results, thereby making them superior to divide-and-conquer, 

particularly in their final models understanding. 

 

2.3.2 ID3 Decision Algorithm    

Decision trees in classification spread out after the dissemination of the ID3 algorithm 

(Quinlan, 1979). A decision tree can be constructed based on the available features inside 

the training dataset, primarily using the equation for Information Gain (IG) (Equation 

2.1). The tree is built using the ID3 algorithm by initially selecting the attribute with the 

highest computed IG among all available attributes in the training dataset as a root node. 

IG is computed using Entropy (Equation 2.2) which denotes how informative a feature is 

in splitting the training instances according to the target attribute values. After choosing 

the root node, the algorithm computes IG repeatedly for the remaining attributes, 

excluding the root node until the tree cannot be divided any further or all training 

instances for an attribute belong to one class (Quinlan, 1993). 

IG (T, f) = Entropy (T) - ((|Tf| / | T |) * Entropy Tf))             (2.1) 

Where  Entropy (T) = cc PP 2log      (2.2) 

where 

vP = Probability that T belongs to class l.  

Tf = Subset of T for which feature F has value fa 

|Tf| = Number of examples in Tf , and |T| = Size of T. 
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A tree constructed by ID3 can be transformed into a rules set in which a path in that 

tree links the root node to any leaf making a rule. Figure 2.2 displays a tree that contains 

four rules that were constructed based on three features and a target attribute (class).  

 
2.3.3 Separate and Conquer   

Separate-and-Conquer is a learning strategy famous within the rule-based classification 

(Pagallo & Haussler, 1990; Fürnkranz, 1999; Rijnbeek & Kors, 2010). The classification 

problem is characterised by a number of positive and negative cases of a specific concept, 

normally called the class, and a set number of attributes inside a training dataset. The 

separate-and-conquer algorithm discovers the class in the form of explicit rules, or 

knowledge, composed of tests derived from values of attributes in the training dataset. 

The resulting set of rules should be able to explain instances of the target class and 

discriminate other instances that do not belong to it. Many approaches have been 

developed to solve this problem including covering and induction learning (Stahl & 

Bramer, 2014; Pazzani & Kibler, 1992). 

Covering approaches are popular within rule-based classification. Despite their limited 

numbers of algorithms, they still constitute a viable approach in classification problems 

(Abdelhamid & Thabtah, 2014). Covering approaches are present in many free tools 

developed by the ML community such as R and WEKA (R Development Team, 2008; 

Hall, et al., 2009). Covering approaches have a number of advantages over other 

 

Figure. 2.2 Decision tree example (Tan, et al, 2005) 
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approaches of rule-based classification especially the simple to define outcome rules. 

However, before we delve into their strengths, we need to describe their basic strategy in 

classification problems.   

Covering algorithms are similar in the logic they adapt when solving a classification 

problem. This family of rules learning share a common feature: a separate-and-conquer 

algorithm that searches for a rule that predicts part of the training set, while are isolated 

those, and then conquers the remaining cases learning new rules until no cases are left in 

the dataset. This approach guarantees that each case in the training set is covered by at 

least one rule (Grzymala-Busse, 2010).   Pagallo & Haussler (1990) developed the term 

separate-and-conquer in reference to the common feature of those algorithms. Other 

authors have referred to this approach in different ways, “separate-and-conquer,” 

“Covering ,” or “greedy” just to name few.  

 Covering approaches are characterised by a strong representation bias compared to 

other approaches such as classification tree algorithms (Fürnkranz, 1999). A simple rule 

is required to perform the same task a complicated tree would achieve. The separate and 

conquer approach tries to maximize the purity of a leaf when it attempts to generate a 

rule. On the other hand, classification trees look for the average purity when splitting a 

node. However, the rules do not possess the redundancy problem of the association rules 

approach. The underlying logic behind separate-and-conquer is to generate a 

parsimonious set of rules capable of classifying new cases by distinct rules within a 

dataset (Pagallo & Haussler, 1990). Covering approaches are more sensitive to collision 

problems when an instance could be classified into more than one rule (Witten & Frank, 

2005).    

 Covering approaches work either in a bottom-up or top-down fashion (Grzymala-

Busse, 2010). The bottom-up strategy begins with a positive case by attempting to 

generalise the rule through the removal of conditions. The basic assumption here is that 

the rule must cover the largest group of positive cases and the fewest number of negative 

cases. While valuable, this strategy is tedious and does not perform well in noisy datasets 

(Stahl and Bramer, 2012). The top-down strategy resembles the classification tree model. 

It aspires to maximise the purity of the leaf on a branch of a tree. Computationally, this 

strategy consumes equivalent time to that of the classification tree approach (Witten & 
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Frank, 2005). Hereunder are the main advantages and disadvantages associated with 

traditional Covering approaches based on the comprehensive review we have conducted: 

Advantages  

1) The simplicity of rules generation in which only one metric is computed to decide 

rule significance (Franczak, 2002).  

2) The classifier contains easy rules which can empower decision makers, 

particularly in domain applications that necessitate quick and easy interpretations 

(Abdelhamid, et al, 2014; Abdelhamid and Thabtah, 2014)  

3) Straightforward implementation, especially with available computing resources 

(Stahl and Bramer, 2014).  

4) The predictive power of its classifier can be seen as acceptable when contrasted 

to other classic DM and ML approaches such as search methods, decision trees, 

NN, Boosting, Regression, AC, and many others (Bramer, 2002; Thabtah et al, 

2007).  

Disadvantages  

1) Noisy datasets that contain incomplete attributes and missing values. This can be 

seen as a major challenge since no clear mechanism on handling noise is presented 

(Grzymala-Busse, 2010). Currently, adopted approaches from information theory 

are used to handle noise as in Bramer (2000), Stahl and Bramer (2014), and Cohen 

(1995). 

2) No clear rule pruning methodology is present. This may lead to the discovery of 

large numbers of rules and therefore combinatorial explosion (Abdelhamid & 

Thabtah, 2014). There is a high demand on pruning methods to cut down the 

number of rules without hindering overall performance of the classifiers 

(Abdehamid, et al, 2014). One possible promising solution is pruning methods 

adopted by induction learning algorithms such as PART, IREP, and RIPPER 

because they use reduce-error pruning methods and therefore decrease the number 

of rules.  

3) Conflicting rules during prediction. There is no clear mechanism on how to 

resolve conflicting rules (Grzymala-Busse, 2010). Currently the choice is random 
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and favours class labels with the largest frequency linked with the item rather than 

keep multiple class labels per item.  

4) Breaking ties among item frequencies while building a rule. When two or more 

items having the same frequency, Covering algorithms such as PRISM look at 

their denominator in the rule accuracy formula. Yet, sometimes these items have 

similar accuracy and denominators, which makes the choice random. Arbitrary 

selection without scientific justification can result in biased decisions and may not 

be useful for overall algorithm performance (Thabtah, et al, 2007). 

 

2.4 Common Covering and Induction Algorithms  

There are many separate-and-conquer algorithms in the literature, the majority of which 

are local algorithms such as PRISM and a few are global algorithms like our algorithm 

eDRI (Chapter 3). In global Covering algorithms, all variable values are used in the search 

space together with the class variable. Whereas in local Covering algorithms the attribute-

value pairs are used as the search space. In this section, we highlight common Covering 

algorithms and then shed light on other approaches that generate rule-based classifiers 

similar to Covering approaches.  

 

2.4.1 PRISM Algorithm and its Successors   

Covering methods such as PRISM derive rules one by one from the training dataset 

(Cendrowska, 1987). Normally these algorithms divide the training dataset into subsets 

representing each one of the target classes. The instances in one subset are considered 

positive to that subset’s class label and negative for all other class labels.  To make rules, 

the Covering algorithm is applied on each subset.  A rule is made by attributing values to 

its body using a statistical measure such as rule’s accuracy. A rule building stops upon 

reaching a certain condition. Once a rule is generated, all of the training data instances 

covered by it are removed and the algorithm discovers other rules in the same manner.  

Termination of the data processing is typically occurred when the training dataset has no 

remaining data instances or no rules with an acceptable accuracy can be found.   
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PRISM is a key algorithm for building classification models that contain simple yet 

easy to understand rules. This algorithm was developed in 1987, using data examples 

which are separated using the available class labels. Specifically, for each class (wi) data 

sample, an empty rule (If nothing then w1) is formed. The algorithm computes the 

frequency of each attribute value linked with that class, and appends the attribute value 

with the largest frequency to the current rule’s body. PRISM terminates the process of 

building a rule when that rule has an accuracy of 100%. Meaning this algorithm favours 

very specific rules that have no negative instances. When the rule is generated, the 

algorithm continues processing the remaining possible rules from w1’s data subset until it 

becomes empty or no additional attribute value can be found with an acceptable accuracy. 

At that point, PRISM moves to the second class data subset, repeating the same steps. 

When the training dataset is evaluated, the algorithm finally stops and the rules formed 

construct the classifier. Algorithm 2.1 below depicts the major steps of the PRISM 

algorithm. One of the major challenges faced by PRISM is noisy training datasets. These 

are datasets that contain missing values, data redundancy, and incomplete data examples. 

Bramer (2000) has developed a modified version of PRISM, called N- PRISM to handle 

noisy datasets as well as focusing on maximising prediction accuracy. N-PRISM has been 

implemented using Java within an R package. Experimental tests using eight datasets 

from the UCI have showed consistent performance of N-PRISM when compared to 

classic PRISM, particularly on classification accuracy obtained from noisy and noise-free 

datasets (Lichman, 2013). It should be noted that the difference between the singular 

PRISM and N-PRISM is very minimal.  

Input: Training dataset T 
Output: A classifier that consists of If-Then rules 

1. for each subset Ti in T that belong to wi Do 
2.     make an empty rule, rj: If Empty then wi 
3.     calculate Attx in Ti p(wi = i| Attx); 
4.     append the Attx with the largest p(wi = i| Attx) to the body of rj 
5.     repeat steps 1.1-1.3 until rj has 100% accuracy or no longer can be improved 
6. generate rj and insert it into the classifier  
7. discard all  data examples from Ti that match rj’s body 
8. continue producing rules until Ti is empty or no rule with accepted error can be found 
9. repeat steps 1-4 until no more data subsets of can be wi found  
10. if (Ti does not contain any data examples  of class wi )  
11.     Generate the classifier.  

 
Algorithm 2.1 PRISM Pseudocode 
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 Stahl and Bramer (2012) developed another modified PRISM method based on a 

previously developed pre-pruning method called J-Pruning. Its purpose was to reduce 

over-fitting on the training dataset. J-Pruning is based on an information theory test 

performed typically in decision trees by measuring the significance of removing an 

attribute from the rule’s body. This algorithm was developed to address rule pruning 

issues during the process of building up rules for each class label in PRISM (Stahl & 

Bramer, 2012). Experimental results using sixteen UCI datasets (Lichman, 2013) have 

shown decreases of the number of items per rule.  

In 2015, Othman and Bryant (2015) investigated instance reduction methods as a 

paradigm for rule pruning in induction algorithms. They claimed that minimising the 

training dataset to the subset needed to learn the rules is one way to shrink the search 

space. The authors applied three common instance reduction methods, namely DROP5, 

ENN, and AllKnn, on a limited number of datasets to evaluate their impact on the 

resulting classifiers. Results obtained, although limited, can be seen as a promising 

direction of using instance reduction methods as a pre-pruning phase in induction 

learning. 

Database coverage pruning and its successors were one of the major breakthroughs in 

AC that can be employed successfully in induction learning as a late or post pruning 

method (Liu et al, 1998; Thabtah, et al, 2011). These pruning methods necessitate a 

positive data coverage per rule with a certain accuracy so the rule can be part of the 

classifier. A newer version of database coverage pruning was developed by Ayyat, et al, 

(2014) as a rule prediction measure. The authors proposed a method that considers the 

rule rank as a measure of goodness in addition to the number of similar rules sharing items 

in their body.  These two parameters play a critical role in differentiating among available 

rules, especially in predicting test data class labels.  

Recently, Elgibreen and Aksoy (2013) investigated a common problem in both the 

PRISM and RULES-IS algorithms, which is the trade-off between training time and 

classification accuracy during constructing the classifiers (Elgibreen & Aksoy, 2013).  

Moreover, the authors also highlighted performance deterioration of Covering methods 

when applied to incomplete datasets. Their result is a new induction algorithm that utilises 

the “Transfer Knowledge” approach to fill in missing attribute values, specifically the 
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target attribute, in the training dataset before mining kicks in. “Transfer Knowledge” is 

basically building up a knowledge base based on learning curves via agents from different 

environments and previous learning experiences, which is generally used to fill in 

incomplete data examples (Ramon, et al, 2007). Experimental results against eight 

datasets reported in (Ramon, et al, 2007) revealed this the improved PRISM Covering 

algorithm consistently produced competitive classifiers when compared with other 

algorithms such as RULES-IS and PRISM.   

One of the major obstacles DM algorithms face is the massive amount of data that are 

stored and scattered in different geographical locations. Decision makers are striving for 

an “on the fly” mining approach that processes very big databases simultaneously, hoping 

to facilitate planning decisions. Most of reported studies on parallelisation in 

classification were focused on decision trees (Stah and Bramer, 2014). However, 

Covering may lead to simple classifiers that are useful to decision makers, which suggest 

why Stahl and Bramer (2012) have investigated the big data problem by amending the 

PRISM algorithm to handle parallelisation., leading them to develop parallel learning 

method called Parallel Modular Classification Rule Induction (PMCRI). This strategy is 

a continuation of an early work by the same authors reported in 2008 which resulted in 

parallel PRISM (P-PRISM) algorithm (Stahl & Bramer, 2008).  

P-PRISM algorithm aims to overcome PRISM’s excessive computational process of 

testing the entire population of data attributes inside the training dataset. The parallelism 

involves sorting attribute values based on their frequency in the input dataset and class 

attribute. This means the algorithm will need only this information for processing the 

rules and therefore hold these results rather than the entire input data, which reduces usage 

of computing resources such as processing time and memory.  The attribute values and 

their frequency are then distributed to clusters, and rules are generated from each. All 

rules are finally merged to form the classifier. Experiments using a replication of the 

Diabetes and Yeast datasets from the UCI repository (Litchman, 2013) reported in (Stahl 

& Bramer, 2008) with results showing that P-PRISM scales well in run time. However, a 

better approach to evaluate the parallelisation capability in P-PRISM is to utilise 

unstructured real data such as Bioinformatics or text mining where dimensionality is huge 

and the number of instances vary.  
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Since PRISM often suffers from over-fitting Stahl and Bramer (2014) developed an 

Ensemble Learning PRISM to minimise this risk. Ensemble Learning is an approach used 

in classification to improve the classifier’s predictive accuracy by deriving multiple 

classifiers from any learning approach such as NN, Naïve Bayes, decision trees, etc, and 

then merging them to form a global classifier. The results derived from fifteen UCI 

datasets revealed that the Ensemble Learning model based on PRISM was able to generate 

results slightly better than classic PRISM algorithm (Stahl and Bramer, 2014). Moreover, 

a parallel version of the new model has also been implemented by the authors and tested 

with respect to training time. Results on run time showed that the parallel version scales 

well during the process of constructing the classifier. 

PRISM successors have focused mainly on improving algorithm scalability. We have 

seen approaches such as P-PRISM that showed a promising research direction toward 

parallel DM using induction learning. Other approaches such as Ensemble Learning based 

PRISM were able to minimise over-fitting the training data by integrating Ensemble 

classifiers (weak learners) with J-pruning to reduce the number of rules. There is a need 

to further cut down irrelevant candidate items during rules construction in PRISM. This 

will have obviously a positive impact on the algorithm’s efficiency in mining the rules 

and building the classifier. We believe that post-pruning is also essential in PRISM as it 

should increase its chance of being used as an intelligent solution and decision-making 

tool in practical applications. However, its use is limited because the classifiers produced 

by this algorithm family is large in regards to the numbers of rules.  

Since PRISM relies primarily on an item’s frequency to build rules; one promising 

solution to shrink the size of PRISM’s classifier could be accomplished by having live 

item frequency during the mining phase. In particular, PRISM algorithm often employs 

the rule’s 100% accuracy as a measure to generate the rule. This normally results in low 

data coverage by the rules. However, each candidate item that can be part of a rule body 

could be associated with its true frequency in the training dataset, which usually changes 

when a rule is generated. Recall that when a rule is derived by PRISM, all positive data 

linked with it is discarded and this may affect other items appearing in those discarded 

rows. While building the classifier, the true data representation for each item would 

decrease the search space and all insufficient candidate items would be deleted rather than 

stored as in PRISM. The overall benefit will be having less redundant rules in the 



30 
 

classifiers. These classifiers can be seen as real decision support system tools since they 

would hold rules that are easy to maintain and use by decision makers.  This pruning 

strategy will be implemented in our new eDRI algorithm discussed in Chapter 3 as a 

solution to decrease the classifier size in terms of the numbers of rules. 

 

2.4.2 Incremental Reduced Error Pruning and Its Successors 

Rule pruning in the separate-and-conquer approach enhances the predictive models’ 

performance by minimising the number of errors on test data, in particular when the input 

data has noise (Franczak, 2000). The ultimate aim of rule pruning is to discard rules that 

over represent training data and under represent unseen data (test dataset). These types of 

rules, which misclassify instances, have limited training data coverage, or high similarity 

with portions of its rule do not perform well on test data. Consequently, early discarding 

of such rules during the classifier-building phase is preeminent and could enhance the 

general predictive performance of the models.  Reduced Error Pruning (REP) (Quinlan, 

1987), Incremental Reduced Error Pruning (IREP) (Fürnkranz and Widmer 1994), and 

Repeated Incremental Pruning to Produce Error Reduction (RIPPER)  (Chen, 1995) are 

successful methods that have been used in rule learning models to accomplish the task of 

model generalisation by rule pruning (Quinlan, 1987; Pagallo & Haussler, 1990; 

Fürnkranz &  Widmer, 1994; Cohen, 1995).  

IREP and RIPPER are improved rule induction algorithms that minimise over-fitting 

resulting from overlearning the models. The aim is to extend the successful REP method 

so it can be used as a learning algorithm to produce efficient rule-based models. Most of 

the credit in rule induction algorithms based on REPs goes to Cohen at AT&T Bell 

Laboratories. Cohen’s main goal was to design a fast rule induction algorithm that can 

scale well with C4.5 decision tree algorithms by using IREP pruning. Before discussing 

the RIPPER algorithm, both REP and IREP algorithms are presented.   

  

2.4.2.1 Reduced Error Pruning (REP) 

Initially, REP was designed to reduce the over-fitting problem of decision tree models by 

Ross Quinlan in 1987 so that predictive performance of the classifiers is enhanced. Later, 
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REP was applied by Pagallo and Haussler (1990) and Brunk and Pazzani (1991) to 

produce decision lists. REP is a pruning method used in both rule induction and decision 

trees to reduce the error of a produced rule set. Therefore, REP can consider as a separate-

and-conquer method that keeps pruning rules in the classifier until the classifier has an 

acceptable predictive accuracy. It should be noted that when REP is employed in decision 

tree algorithms like C4.5 or See5 the tree model is converted into the corresponding rules 

set before invoking it (Quinlan, 1993; Quinlan, 2002).  

REP splits the training dataset into pruning and growing sets, with the learning 

algorithm deriving its rules from the growing set. The initial set of rules often over-fits 

the growing set, so REP applies a post rule pruning heuristic repeatedly to simplify the 

rules set by using rule pruning operators. This pruning heuristic evaluates each discovered 

rule of the pruning dataset, and the rule pruning operator that generates the smallest error 

is selected. To elaborate, each rule is evaluated against the pruning dataset, and then 

adjusts the rule body using operators in order to generate a new rule that ideally fits the 

pruning dataset. A rule pruning operator removes a condition (item) in the rule’s body, or 

the whole rule in some cases. The rule pruning process terminates when removing an item 

increases the rule’s error on the pruning dataset.  

Experimental studies, such as Cohen (1995), Fürnkranz and Widmer (1994), Cohen 

(1993) and Brunk and Pazzani (1991) have shown enhancement in a models’ predictive 

power when REP was adopted for rule pruning. Nevertheless, REP was criticised for 

being intensive resource demanding method since each rule must go through a thorough 

testing by pruning operators. This can be computationally costly when the input dataset 

is highly dimensional, which limits REP applicability.   

  

2.4.2.2 Incremental Reduced Error Pruning (IREP)  

In order to improve efficiency of the REP method, Fürnkranz and Widmer (1994) 

proposed Incremental REP (IREP) (Algorithm 2.2) as a rule-based learning method with 

a new pruning heuristic. Unlike REP, IREP introduced the idea of eliminating the 

generation phase of the initial rule set, thereby saving substantial data processing time 

and computing resources. Similar to REP, the training dataset gets split into pruning 

(33.33%) and growing (66.67%) sets. Then, IREP constructs greedily one rule at a time. 
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When a rule is put into a pruning test and passes that test, then its corresponding data 

instances in both the growing and pruning sets are discarded and the rule is derived. 

During rule pruning, IREP considers deleting conditions (items) from the rule’s body and 

stops the pruning when no item deletion can enhance the following value given by 

equation (2.3).  
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pruneNegprunePosRulev
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Where p and n are the # of positive and negative instances covered by the pruned rule, 

and N is the total number of instances in the pruning set. 

IREP intuitively eliminates the last condition added to the rule until the rule’s accuracy 

cannot be improved, when the rule will be generated. Whenever a rule is derived, all 

remaining uncovered instances in the training dataset are re-partitioned. The same process 

is repeated until no more positive instances are left, or the last rule derived had an 

unacceptable level of error. In other words, the termination occurs when the error of the 

last pruned rule is larger than that of the empty rule. When this occurs, the discovered 

pruned rules are returned as the classifier. Experimental studies by Fürnkranz and Widmer 

(1994) and Cohen (1995) shown that IREP is highly competitive with regards to 

classification accuracy compared to REP, and more importantly, faster than REP in 

producing the rules set.   

Input: A training dataset 
Output: A ruleset classifier 

1. procedure IREP(Pos,Neg)  
2. begin 

3. {}_ setRule  
4. while Pos < > {} do 
5. split (Pos,Neg) into (GrowPos,GrowNeg) and (PrunePos,PruneNeg)  

6.  GrowNeg)rowPos,GrowRule(GR    

7. PruneNeg)PrunePos,Rule,PruneRule(R   
8. if Error (R) on (PrunePos,PruneNeg) >= 50% then 
9.    return Rule_set  
10. else 

11.    RsetRule _   
12.    remove examples covered by Rule from (pos,Neg) 
13. endif  
14. endwhile  
15. return  Rule_set 
16. end 

Algorithm 2.2 Incremental Reduced Error Pruning procedure  



33 
 

 

 

2.4.2.3 RIPPER and Other Alternative Algorithms  

To improve performance of the REP and IREP methods, the RIPPER algorithm was 

proposed by Cohen (1995). RIPPER was shown to have a higher predictive accuracy and 

less complexity when contrasted with IREP. RIPPER initially employed a divide-and-

conquer strategy integrated with a Covering search heuristic during the process of rule 

induction. Specifically, after a rule is found, similar to IREP, RIPPER prunes the rule by 

considering removal of some of its conditions and evaluating the resultant error rate.  

RIPPER was designed to handle multi-class datasets and binary classification data, unlike 

IREP which was developed primarily for datasets with two possible class values. This is 

a bonus for RIPPER in mining different real world application data. Algorithm 2.3 depicts 

the function of growing the rule used by the REP, IREP, and RIPPER algorithms. 

One of the important enhancements over REP is the optimisation phase added. In this 

phase, RIPPER amends or removes the rules set in order to improve the predictive 

accuracy of the constructed model. Particularly, and for each rule, RIPPER creates two 

alternative rules: the replacement rule and the revision rule. The latter is formed by adding 

literal conditions to the rule body until the error on the rule increases. However, the 

replacement rule is formed by growing a rule from an empty set and removing literals 

Input: A grow dataset 
Output: A new rule: R 

1. procedure Grow Rule (GrowSet) 
2. begin 
3. {}R  

4. do 
5. {}__ SplitBestGloba  

6. for each variable in GrowSet do 
7.  ),(varF GrowSetiableINDSPLITNewSplit     

8. if NewSplit is better than Global_Best_Split  
9. ewSplitSplitBestGlobal N__   

10. SplitBestGlobalRR __  

11. ),( GrowRuleRNOTCOVEREDGrowSet   

12. until no errors on GrowSet  
13. remove examples covered by Rule from (pos,Neg) 
14. end 

 
Algorithm 2.3 Growing Rule Function used in REP, IREP and RIPPER algorithms 
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from the rule body until the error on the entire rule set gets minimised. The decision 

whether to include the original rule, its replacement rule, or its revision rule is made based 

on evaluating them against the minim description length principle (MDL) (Witten & 

Frank, 2005). 

Dian, et al. (2004) proposed IREP++ to further enhance runtime of the IREP algorithm 

while reducing the number of items a rule can hold, thereby generating less complex 

models. The authors used the Gini Index metric as the basis for the rule growing function 

procedure. The Gini Index evaluates data impurity based on the following Equation 2.4. 

)(
.

)(
)(

psns

ns

nsps

ps
SI


     (2.4) 

where ps is the number of positive instance and ns is the number of negative instances. 

IREP++ splits the training dataset, similarly to IREP, into growing and pruning sets. Then 

during the rule building process, IREP++ uses the data split that leads to the largest 

reduction in Gini Index based on Equation 2.5 below, 
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When a rule is about to be pruned, IREP++ adopts the RIPPER rule pruning strategy in 

which any sequence of literals (conditions) added to the rule is considered (Cohen, 1995). 

The stopping metric for rule pruning used. 
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where p and n are the number of positive and negative instances covered by the pruned 

rule.  P and N are the number of positive and negative instances in the entire pruning set. 

Cohen and Singer (1999) have developed a variation of the RIPPER algorithm called 

SLIPPER based on Boosting learning. SLIPPER improved the predictive models slightly 

when compared with RIPPER because of the Boosting strategy implemented during the 

process of rule construction.  In Boosting a rule, each successive rule classifies training 

data instances that were incorrectly classified by the rule’s predecessors (rules already 

generated). This new rule learning strategy has resulted in a different classifier to RIPPER 
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at least on the sample of datasets used in Cohen and Singer (1999). However, the 

SLIPPER algorithm suffers from the high complexity caused by the Boosting mechanism, 

which makes it slower than traditional rule induction algorithms.   

Experimental results against nine datasets showed that IREP++ scales well with the 

IREP and RIPPER algorithms with respect to run time. 

 

2.4.3 Rough Set Theory Induction Algorithms 

Pawlak introduced Rough set Theory as a mathematical solution to uncertainties and 

inconsistencies in data analysis (Pawlak, 1982). Many datasets contain incomplete data 

instances, missing values, miscoding or mislabelling. Therefore, one may not be able to 

classify instances accurately in light of incomplete datasets. Rough set theory introduces 

a solution by utilising approximations referred to as lower and upper approximation 

approaches (Pawlak, 1991). One may utilise rough set theory to generate rules in cases 

where the input data is incomplete.  

 Unlike other approaches used to deal with inconsistencies and uncertainties in input 

data, rough set theory does not aggregate nor correct the missing pieces. It relies on lower 

and upper approximations to compute concepts in inducing rules. Therefore, one may 

think of this approach as dealing with consistent data, since it does not alter the input 

structure used in rule induction. The output generated by rough set theory can be 

categorised into two classes of rules: certain and approximate, contingent on whether 

lower or upper approximations are used (Pawlak, et al, 1995).  

 Few algorithms have been developed to induce rules based on the rough sets’ 

approach. Learning from Examples Based on Rough Sets (LERS) is a good example of 

the systems used to induce rules based on rough sets theory (Pawlak, 1991). LERS has 

many variants to induce rules, all using the aforementioned framework that utilises 

approximation to generate accurate rules. LERs is a system used to induce a set of rules 

based on examples presented in a decision table format, and may be used to classify new 

examples based on the learned set of rules (Pawlak, 1982). The decision table contains 

input data collected from a certain field such as banking, nursing, manufacturing or 

sociology. Variables are included in the table (symptoms or test outcomes), along with 

the decision and dependent variables. The decision table is similar to the training dataset.  
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LERS simply searches for regularities in the table. The output of LERS is a set of rules, 

used to classify or predict new instances. Initially, LERS uses data instances for inducing 

classification rules from the decision table using a Covering procedure described later in 

this sub-section (Algorithm 2.4).  LERS, similar to other algorithms, attempts to find a 

minimal description of concepts presented in the data by retaining positive examples 

while excluding negative examples. Therefore, the rules generated by LERS are referred 

to as minimal discriminant concepts.  

 LERS is capable of dealing with uncertainty in data. Missing values and inconsistency 

are the two main problems constituting this uncertainty in a given dataset. LERS has been 

implemented to process continuous variables from inconsistent data to produce rules; 

LERS is applied by many decision support systems such as LEM2 (Pawlak, et al, 1995). 

The primary benefit of rough set theory is that it does not require additional information 

about the presented data. Rough set theory does not remove the inconsistencies, however, 

but rather finds approximations to the concept (Pawlak, 1991). The remaining part of this 

section describes the Covering procedure of LERS and its variations while introducing 

the mathematical notations. 

Let X be subset of the set Y of all variables and X is nonempty.  Let W be the set of all 

instances, the indiscernible relation IND(X) is a relation on W defined for Wba , by

)(),( XINDba  if and only if for both a and b the values for all variables from X are 

Input: Set of all variables, {c}* on W 
Output: A global Covering R 
1. do begin 
2. compute X split 
3. PX   
4. R  
5.  if *}{cX   

6.      begin 
7. for each variable x in X do 
8.    begin 
9.     }{xPD   

10.    calculate split D* 
11.     if *}{* cD   

12.     DP  
13.      end // for 
14.    PR  
15.   end//if 
16. end 

Algorithm 2.4 Single global Covering function of LERs and its variations (Pawlak, 1991) 
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similar. The indiscernible relation is an equivalence relation, and the classes of IND (X) 

are named elementary sets of X. For instance, from Table 2.2 (from Grzymala-Busse, 

2010), and X= {Temperature, Headache}, elementary sets of IND (X) are {{1}, {2}, 

{3,7}, {4}, {5,6}}. All X-elementary sets have a family X*. For a class c, c depends on X 

if *{c}X* . A Covering (reduct) of {c} is a subset of X of Y such that {c} depends on X 

and X is minimal in Y. One can obtain the Covering of {c} by comparing splits of X* with 

{c}*. 

The Covering methodology (see Algorithm 2.4) used in LERS components such as 

LEM1 or LEM2 are calculated based on the eliminating condition procedure developed 

by Michalski (1983). Using this procedure, the condition within a rule such as R1 is 

scanned from R1’s body starting with the left-hand most condition moving to the right. 

Whenever a condition is removed, we check the decision table to evaluate whether the 

new simplified rule is violating the consistency of the discriminant description 

(Grzymala-Busse, 2010).  

 

2.4.4 CN2 Algorithm 

CN2 is a classification algorithm designed to induce a set of rules from datasets associated 

with duplication (Witten & Frank, 2005). The original CN2 algorithm (See Algorithm 

2.5) was initially designed in 1989 and then improved in 1991 (Clark & Niblett, 1989; 

Clark & Boswell, 1991). The algorithm traditionally used Entropy for its search heuristic 

and was able to produce a list of ordered rules. Entropy indicates variable purity in 

splitting data instances with respect to the class label. The purer a variable can split, the 

training instances with reference to the target attribute values (class variable), the higher 

the variable score. Many have shown that the algorithms’ performance increases with few 

Table. 2.2 Sample dataset (Grzymala-Busse, 2010) 

Instance ID Temperature  Headache  Weakness Nausea Class 
1 Very high Y Y N Yes 
2 High Y N Y Yes 
3 Normal N N N No 
4 Normal Y Y Y Yes 
5 High N Y N Yes 
6 High N N N No 
7 Normal N Y N No 
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modifications (Quinlan, 1993; Abdelhamid and Thabtah, 2014). For instance, using a 

Laplacian error estimate as the heuristic may improve the results of the models (Witten 

& Frank, 2005).  

 CN2 is composed of two main phases: a search and a control phase. The search is 

composed of a beam search with the objective of reaching to a good rule, while the control 

phase is composed of the reiteration and execution of the search algorithm part. During 

the search phase, the algorithm looks for the best rules it can generate. One possible 

evaluative criterion used is the accuracy rate of rules given the training data. CN2 follows 

the learning approach that first identifies the rule’s body then the class, rather than class 

then conditions as in the REP, IREP and RIPPER algorithms. 

In 1995, an improved search algorithm called Optimized Pruning for Unordered 

Search (OPUS) was proposed by Webb (1995). OPUS presents a solution for the heuristic 

search problem in ML predictive tasks. OPUS is a fast heuristic for searching the data 

space for conjunctive rules. Usually, heuristic search methods do not guarantee 

generation of the target relation. However, OPUS presents an alternative search strategy, 

based on admissible search, that promises production of the target relations if they exist. 

OPUS method permits efficient admissible searches for search spaces in which the order 

of application of search operators is not important. This is permitted by the use of domain 

specific pruning of rule to provide a narrower search space.  OPUS uses a branch and 

Input: Set of all variables (training dataset- T) 
Output: Rules set (R_S) 
1. function  CN2 (T) 
2. begin 
3. SR _   // initialising the rule set to be empty 

4. do    
5.   begin 
6.   find_Best_Variable(T) // Entropy metric is used to measure the best variable  
7.  Tsubsetiabletemp __var // Inserting the best variable data examples of the variable in a temp 

8.  valueVarR _  // Adding a variable value to  the rule 

9.  tempTT     //removing the rule covered data from the training dataset 

10.  )(TempsCommonClasR   // finding the most common class in the rule’s data examples  

11.   until no adding a variable is not satisfies the minimum condition   
12. end 
13. RSR _    // adding the rule into the rule set 

14. end 
                           

Algorithm 2.5 CN2 original rule generation function  (Clark and Niblett, 1989) 
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bound search strategy that guarantees that no two equal nodes in the search space are 

visited. It also optimises the influence of pruning by organising the search process. 

 

2.4.5 First Order Inductive Learner (FOIL)  

First Order Inductive Learner (FOIL) builds learning systems that utilise propositional 

value attribute language to describe entities and classification rules, as well as systems 

that generate first order logic classification rules (Quinlan, 1990). FOIL originated from 

developments based on other classification methods including the divide-and-conquer 

approach ID3 (Quinlan, 1979). The FOIL algorithm aims to generate statements that 

describe a specific relation by itself and other relations in the input data. FOIL shifts from 

the explicit approach of representing the relation with a set of tuples of a particular 

collection of constants to a general functional form applied to different collections of 

constants.  

 FOIL rule generation functions (Algorithm 2.6) devise statements one at a time to 

describe a relation, and then looks for the subsequent one. It then uses an information 

based heuristic to generate a general functional set of statements. Thus, FOIL begins with 

a set of tuples of constants instead of the variable-values structure. Each tuple corresponds 

to a value assigned to a variable. They are then indicated to be either positive or negative, 

depending on whether or not they correspond to the target relation. More details on the 

mathematical formulas of FOIL can be found in Quinlan (1990). 
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2.4.6 Instance Based Learning Rule Classifiers 

Domingos (1996a) proposed a new rule induction approach called RISE, linking it with 

instance-based learning in classification (Cover, et al, 1967; Aha, et al, 1991). The RISE 

approach does not contain a global procedure, but it considers all algorithms (growing, 

pruning, etc.) as sub procedures. RISE generates a classifier that can be considered a rule 

induction set, as well as a nearest neighbour method. The author refers to RISE as a 

unified rather than combined approach that looks for the rule in a specific-to-general 

manner. It begins with one rule per classified training instance. In doing so, it circumvents 

the few limitations presented by the Covering approach to classification.  RISE evaluates 

the accuracy of a set of rules all at once in a global fashion. It then uses a best match 

framework empirical evaluation when assigning class labels to test data. Experimental 

studies revealed that RISE outperforms its parent approaches, such as CN2. In particular, 

Domingos in (1996a) Domingos (1996b) showed that RISE achieved slightly better 

classification accuracy than classic rule learning algorithms. For large datasets, though, 

Input: Set of all variables (training dataset- T) 
Output: Rules set (R_S): first order predicate logic  

1. Foil (T) 
2. begin 

3.    SR _  
4.      Set P_S be the positive set of data examples (data belong to class C) 
5.      Set C class be the predicate to be learned 
6. for each p_s instance in P_S do 
7. begin 
8.    let N be the negative data examples  
9.     R  If nothing, then C // creating an empty rule  
10.     find_Best_Variable(T) // FOIL gain metric is used to measure the best variable 
11.     valueVarR _         // Adding a variable value to  the rule’s body 

12. end 
13. delete from P_S data examples which match the rule’s body 
14. until N is empty do 
15. select a literal L 
16. append L to Rule’s Body 
17. delete from N data examples that do not match L 
18. end 

 
Algorithm 2.6 FOIL algorithm (Quinlan, 1990) 
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RISE suffers from the long time spent discovering and pruning the rules, which may 

obviously limit its applicability in big data applications. 

Gora and Wojna (2002) proposed a combined approach similar to RISE, called 

RIONA, for rule induction that incorporates elements of rule-based classification 

techniques. In RIONA, decisions are not based on the set of all rules or matching test 

cases, but on a restriction of rules applicable neighbourhood test cases.  The size and 

optimisation of the restriction is automatically produced. Empirical testing of RIONA 

indicates that it is sufficient to achieve acceptable levels of classification accuracy by 

specifying a narrow neighbourhood. 

RIONA and RISE can be considered learning approaches based on integrating rule-

based classification and the nearest neighbour method. Yet RIONA is different to RISE 

because it considers all minimal rules (rules with a limited number of attribute values 

with larger data coverage). This suggests that the class assignment decision should use a 

class that is more frequent in the minimal rules matching a test case. The primary idea of 

RIONA is that the support set is constrained to the neighbourhood of a test case. The 

neighbourhood is composed of training data within a specified distance from a test data, 

or a quantity of data closest to a test data similar to the K Nearest Neighbour algorithm 

(Cost & Salzberg, 1993). The ideal size of a neighbourhood applied to classifying a test 

case is learned during the training phase. One distinguishing feature of the RIONA 

algorithm is cutting the search time for the minimal rules set because observations are 

taken from the neighbourhood rather than from the complete training phase dataset. 

Moreover, rules are extracted by RIONA during the classification phase, and each 

produced rule is associated with particular test data. A rule descriptor is expressed by the 

test data attribute values. 

 

2.4.7 One Rule and RIDOR Algorithms  

One of the simplest, yet acceptable, algorithms that produce one rule classifiers is 

SimpleRule /OneRule (Holte, 1993). OneRule initially scans the input dataset and looks 

for the pair of <attribute value, class> with the least error rate on the training dataset. This 

pair is produced as a rule classifier. Algorithm 2.7 depicts the description of OneRule 

algorithm steps from Witten & Frank (2005). Normally, the OneRule algorithm creates a 
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frequency table for each attribute value in the dataset in order to calculate the errors for 

that attribute value when associated with a class label. 

A more advanced method that generates rules as exceptions is called the Ripple Down 

Rule learner (RIDOR) proposed by Gaines and Compton (1995).  RIDOR normally builds 

a default rule, then repeatedly employs the IREP method to generate exceptions with the 

least number of errors and then identify exceptions from each discovered exception by 

reviewing subsets of the training dataset.  Good exceptions are those derived by each 

exception in tree like expanding. The exceptions denote classification rules that forecast 

class labels other than the default class rule.  At the heart of this algorithm is IREP since 

it is implemented to produce rules from exceptions. Algorithm 2.8 shows the RIDOR 

algorithm pseudocode.  

 

2.4.8 Hybrid Classification Rules  

Input: Training dataset T 
Output: One rule classifier  

1. for each  variable value, create a rule by: 
2. find the largest frequency class label 
3. assign that class to the variable value  
4. compute the number errors of the rule  
5. choose the variable value with the least errors. 
 
Algorithm 2.7 OneRule Pseudocode 

Input : A training dataset T with target class Rt that contains P positive and N negative data examples 
Output : A set of rules  
1. Ridor (T, Rt) 

2.   R  
3.    If |Rt|< Minimum_support    

4.    R  
5.    Mark R active  
6.    Do 
7.       Find a rule:r in active relation 
8.       Learn except and if not branch  
9.       Set relation of r to active 

10.      rRR   

11.      rXX    
12.  Until X=  
13.  Set all active relations into inactive 
14.  Return R  
15.  end 

Algorithm 2.8 Ridor algorithm pseudocode (Gaines and Compton, 1995) 
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A classification method that integrates divide-and-conquer with separate-and-conquer, 

called PART, was proposed in Frank & Witten (1998). PART uses information gain and 

decision tree pruning to build partial decision trees that are converted into rules sets.   

PART constructs partial decision trees from the input dataset and then a rule induction 

strategy is invoked to produce the rules set.  Thus, PART makes a rule from the sub-tree 

and transforms each path from the root node to the leaf node with the largest data 

frequency into a candidate rule, then discards the sub-tree and its corresponding positive 

data from the training dataset. PART repeats this process until the dataset becomes empty, 

or no rule with acceptable error can be produced. 

An integration of fuzzy logic and rule induction was implemented in an algorithm 

called Fuzzy Unordered Rule Induction Algorithm (FURIA) (Hahn & Hllermeier, 2009).  

FURIA enhanced the RIPPER algorithm maintains its main advantages by including its 

optimisation procedure, pruning and prediction methods, and comprehensive rules set.  

FURIA adds into RIPPER fuzzy rules rather the classic rules induced, so unordered rule 

sets are presented instead of rule lists. In addition, FURIA illustrated a new rule stretching 

method to deal with data examples that have no rule coverage, thus minimising the use 

of default class rule and reducing the number of misclassifications. Results obtained from 

experimentations revealed that FURIA outperformed RIPPER and C4.5 decision tree 

algorithms with respect to predictive power (Hahn & Hllermeier, 2009).    

The way FURIA discovers the unordered rules set per class label is based on the one 

versus the rest strategy. Unlike conventional rule induction approaches that produce 

decision lists, models created by FURIA may not be comprehensive which can cause 

some training data not to be covered by the fuzzy rules which is problematic. To treat this 

case, FURIA is empowered with an efficient rule stretching method adopted from 

Eineborg and Boström (2001). This stretching method generalises the rules set until the 

data example is classified.   

 

2.5 Other Common Classical Non-Rule Approaches  

In this sub-section, we briefly review common ML methods such as Probabilistic, 

Boosting, SVM, NN, and AC. This has been done since some of these algorithms have 

been employed in chapters 4 and 5 for comparison purposes. 
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2.5.1 Probabilistic Models 

One of the simplest methods to come up with a decision based on a labelled set of 

variables is to utilise probabilistic methods. In classification problems, the Naïve Bayes 

classification method is based on the simple and naïve assumption that attributes in the 

training dataset are independent and have no correlation (Duda & Hart, 1973). This 

method was initially developed in the 1950s and later gained popularity because of its 

efficient performance and applicability to classification problems including text mining 

and image classification among others (Hand & Yu, 2001). In Naïve Bayes, any variable 

value is assumed to be totally independent from other variables’ values in the training 

dataset.  

When test data is about to be classified, the Naïve Bayes algorithm computes the 

likelihood of the attribute values in the test case from the training dataset with respect to 

each class label. In other words, each attribute values’ probability in regards to each class 

is calculated. The test data attribute values probabilities are then multiplied with each 

other and the class distribution probability computed. Test data is then assigned the higher 

probability outcome based on these aforementioned calculations (see Equation 2.7). 

Naïve Bayes is a highly scalable algorithm, and can produce the classification decision 

quickly when compared against other classification approaches (Ng & Jordan, 2002). 

Moreover, the predictive power of the classifiers generated by probabilistic algorithms is 

acceptable when compared with Boosting and divide-and-conquer algorithms (Caruana 

& Niculescu-Mizil, 2006). One clear disadvantage of Naïve Bayes, however, is its 

independent assumption since attributes are usually correlated in reality.   

Given a test case represented as a vector X = (x1, x2, …, xn) where each x is an attribute 

value to be classified, using Bayes Theorem, the conditional probability can be computed 

as: 

)(

)|().(
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n       ( 2.7) 

 The test data X  will be assigned the class nC  with the largest conditional probability 

value )|( XCP n . 
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2.5.2 Association Rule-based Classification 

Associative Classification (AC) is an approach that employs association rule methods to 

generate rule-based classification systems from supervised learning datasets (Liu, et al., 

1998; Thabtah, et al., 2005; Abdelhamid, et al., 2016). This approach normally relies on 

user minimum support and minimum confidence.  Minimum support of a feature value is 

how many times that feature value has appeared in the training dataset whereas the 

frequency of the feature value plus the target class together denote the confidence of that 

feature value.   

The aim of the AC algorithm is to discover all frequent feature values, and from these 

the classification system is built in which any frequent feature value with confidence 

larger than the minimum confidence becomes knowledge. One advantage of AC is the 

low error rate systems derived, but a noticeable drawback is the very large number of 

rules derived which limits its usage in real applications. Another noticeable drawback of 

AC is the time needed to learn and evaluate the knowledge. This is because a typical AC 

method, like CBA, requires multiple data scans to discover the knowledge (Abdelhamid 

& Thabtah, 2014).  A number of comparative studies have shown that AC is more 

accurate than rule induction, decision trees, and probabilistic models (Abdelhamid, 2015; 

Thabtah, et al, 2004). Nevertheless, associative classifiers demanded high computing 

resources and may crash when the support is set to a low value. Hence, they are not 

suitable for large datasets. 

  

2.5.3 Support Vector Machine 

Support vector machine (SVM) is a common approach that was initially developed to 

improve the performance of current classification methods, particularly classification 

accuracy (Boser, et al., 1992).  SVM relies on decision planes, which split a set of data 

objects using computed class memberships. The logic behind SVM learning methodology 

is that it rearranges data instances within the problem space utilising quantitative 

functions known as kernels. A kernel is a function that measures similarity between data 

objects with respect to class labels (Joachims, 1999). Normally kernels are given by the 

domain experts to the SVM algorithm and used during the classification process. The 
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entire procedure of changing the orientation or data instances is referred to as 

transformation. Experimentation showed that SVM methods normally generate better 

classifiers with respect to accuracy than traditional classification approaches such as 

decision trees and rule induction (Joachims, 1999; Shawe-Taylor & Sun, 2011).  

 

2.5.4 Boosting 

Boosting is a supervised learning approach in ML that was mainly designed to minimise 

the problem of bias in classification data (Schapire & Singer, 2000). The origin of the 

Boosting learning approach was a question of whether a group of weak learners can make 

one strong learner. A weak learner is basically a model/classifier that can help classify 

unseen data better than random classification (Freund & Schapire, 1997). Therefore, 

Boosting is based on the idea of repeatedly improving the accuracy of a classifier by 

merging weak and inaccurate rules. Typically, after boosting has derived the weak 

learners it reweighs the training data accordingly, where the performance is then boosted 

(Schapire & Singer, 2000`).  

The majority of current Boosting algorithms like AdaBoost repeatedly learn weak 

classifiers then add them to make a final single classifier (Freund & Schapire, 1997). 

When the classifiers are added, they are weighted based on the accuracies derived from 

them and, when a particular weak classifier is added, the data gets reweighted. In the data 

re-weighing, instances that were incorrectly classified gain higher weights and those that 

were correctly classified drop their weights.  This decrement and increment in training 

data weights enable near future weak classifiers to focus more on data instances that have 

been misclassified by previously weak classifiers.  

 

2.5.5 Neural Network 

An artificial neural network (ANN) often consists of an interconnected processing 

components (neurons) that converts a set of inputs into desired output (Witten & Frank, 

2005). The strength of ANN originates from the hidden neurons’ nonlinearity. The output, 

is normally dependant on certain features of the components and weights linked with their 

interconnections. Usually the ANN classification model is shaped after the training phase 

on the input dataset in which information about the weights and features related to the 
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network’s components heavily impacts the performance quality of the formed predictive 

system. The most used function of ANN is called the sigmoid function (Mohammad, et 

al, 2012). During formation of the NN predictive model, weights keep amending to derive 

accuracy closer to the desire value specified by the end-user.   

 

2.6 Chapter Summary  

Classification in ML is a vital task that commonly is accomplished by applying various 

learning approaches. This chapter has reviewed common rule-based approaches in 

classification, especially those that are based on separate-and-conquer including rule 

induction and Covering approaches. In particular, we have critically analysed algorithms 

that produce rules such as PRISM and its successors, REP, IREP, RIDOR, RIPPER, 

RIONA, FURIA, and PART among others. Furthermore, we shed light on divide-and-

conquer and other non-rule-based classification systems such as decision trees, 

probabilistic, Boosting, SVM, etc. 

In the next chapter we propose our novel rule learning approach, which we called 

enhanced Dynamic Rule Induction (eDRI) and highlight its major steps, strengths, and 

weaknesses as well. 
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Chapter Three 

 

A New Dynamic Rule Induction Approach  

 

 

3.1 Introduction 

As aforementioned, Covering algorithms such as PRISM usually produce “If-Then” 

classifiers with comparable predictive performance to other traditional classification 

approaches such as decision trees and associative classification. Thus, these classifiers 

are favourable for users because they can be useful tools in decision making. 

Nevertheless, Covering methods, including PRISM and its successors, suffer from a 

number of drawbacks such as the large number of rules derived. This can be burdensome, 

especially when input data is largely dimensional. Therefore, pruning unnecessary rules 

becomes essential for the success of this type of algorithm.  

This chapter proposes a new rule-based classification algorithm that reduces the search 

space for candidate rules by pruning early on any irrelevant items during the process of 

building the classifier. Whenever a rule is generated, this algorithm updates the candidate 

items’ frequency to reflect the discarded data examples associated with the rules derived 

and thus avoids unnecessary repetitive data scans. This methodology makes item 

frequencies dynamic rather than static and it ensures that irrelevant rules are deleted in 

preliminary stages when they do not hold enough data representation. The major benefit 

will be the production of a concise set of rules, which facilitates their management by 

users and therefore appealing as decision making tools.  

This chapter proposes a classification method called enhanced Dynamic Rule 

Induction (eDRI). After the initial scan of the training dataset, eDRI discovers the rule 

one-by-one. It primarily uses a threshold value to limit the search space for rules by 

discarding any items with insufficient data representation as early as possible. These 
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items are called weak items since they do not hold sufficient statistical significance. eDRI 

appends the largest item with respect to accuracy into the current rule and continues 

appending items until the current rule cannot improve any further, i.e. its strength is 

above the Rule_Strength threshold, which is used to separate acceptable from 

unacceptable rules.  

Once a rule is produced, eDRI removes all of its training data instances and amends all 

candidate items’ frequency that appeared within the deleted instances of the generated 

rule. This approach leads to a natural pruning during the rule discovery phase and results 

in a more realistic classifier with lower number of rules. This is unlike induction 

algorithms that employ excessive divide-and-conquer pruning per rule after the rule 

generation phase, which consequently makes the training phase slow. In addition, the 

proposed eDRI algorithm limits the use of the default class rule by generating rules with 

accuracy below 100% accuaracy. Often, other algorithms ignore these rules because they 

do not have zero error. These rules are though used only during the class prediction phase 

instead of the default class rule, when there is no rule with 100% accuracy to classify a 

test data. 

The proposed eDRI algorithm has been implemented in Java within the Waikato 

Environment for Knowledge Analysis (WEKA) environment, making it available to be 

utilised by different types of users such as managers, researchers, students in their own 

research studies and experimentations (Hall, et al., 2009). This ML platform was initially 

developed at the University of Waikato in New Zealand and contributors from all over 

the world who are interested in data analysis have since contributed specific methods to 

it. 

Experimental results using real data from the security domain (Chapter 5) as well as 

different classification datasets from the University of California Irvine (UCI) (Chapter 

4) reveal that the proposed eDRI algorithm is competitive in regards to classification 

accuracy when compared to known rule-based algorithms such as PRISM, OneRule, 

ConjunctiveRule, Decision Trees (C4.5), RIPPER, and hybrid approaches such as PART 

and Boosting. Moreover, classifiers produced by our eDRI algorithm are smaller in size, 

which increases their usability in practical applications. Further details on the 

implementation of eDRI and the experimentations carried out are provided in Chapter 4. 
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The rest of this chapter is structured as follows. Section 3.2 describe in detail the 

different phases of eDRI along with corresponding pseudocodes. Section 2.3 presents a 

thorough example using a dataset to show the pros and cons of eDRI and the classic 

Covering algorithm PRISM.  Section 2.4 is then devoted to the distinguished features of 

eDRI, and lastly, the chapter summary is given in Section 2.5. 

  

3.2 Enhanced Dynamic Rule Induction Algorithm (eDRI) 

The proposed eDRI algorith (Algorithm 3.1) has two primary phases: rule production and 

class assignment of test data. In phase 1, eDRI produces rules for each available class 

label in the training dataset that has accuracy greater than or equal to Rule_Strength 

parameter. This parameter aims to generate near perfect rules alongside rules with 100% 

accuracy, like in classic PRISM, and it is used within eDRI to differentiate among 

acceptable and unacceptable rules.  eDRI’s learning procedure ensures the production of 

rules that have no error as well as rules that survive the Rule_Strength parameter, i.e. 

rules with expected accuracy greater than or equal to Rule_Strength parameter. The 

algorithm terminates building the classifier when no more rules with an acceptable 

accuracy are found, or when the training dataset becomes empty. When this occurs, all 

rules are merged together to form the classifier. 

Another important parameter is utilised in phase 1 of the eDRI algorithm in phase 1, 

which aims to minimise the search space of items. The parameter freq is utilised 

primarily to differentiate between strong items, having a high number of occurrences in 

the training dataset, and weak items. This helps in removing weak items, i.e. items with  

low frequencies (frequency below the freq threshold), as early as possible and thereby 

saving computing resources as well as ensuring only strong items can be part of a rule’s 

body. Weak items are maintained in PRISM in the hope of producing 100% accuracy 

rules. However, this is seen as a major deficiency because the classifier may end having 

too many specific rules covering small portions of the training dataset (Abdelhamid and 

Thabtah, 2014). On the other hand, because eDRI discards weak items it generates highly 

predictive general rules with large data coverage. 
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Input: Training dataset T, Rule_Strength, Frequency (freq) thresholds 
Output: A classifier that consists of If-Then rules 

Phase (1) 
 
1.    data transformation and discretisation (if necessary) 

     (See Figure 3.2 for rule inducing phase) 
2.    for each Attribute  in T Do 
3.       make an empty rule, rj: If Empty then Empty 
4.       calculate Attx accuracy in Ti p(classi = i| Attx); 
5.       append the Attx with the largest accuracy (classi = i| Attx) to the body of rj 
6.       repeat steps 1.1-1.3 until rj has either  
7.       100% accuracy or no longer can be improved 
8.       rj accuracy >= Rule_strength 
9.           generate rj 
10.        discard all data examples from Ti that match rj’s body  
11.        update the frequency of all impacted candidate items to reflect step 3 
12.  repeat steps 1-4 until no items with acceptable frequency is found or no more data can be found  
13.  If (T does not contain any data examples)  
14.    generate the classifier 
15.    produce a default rule  

 
Phase 2  
 
16. predict test data (Algorithm 3.3) 

 
Algorithm. 3.1 eDRI Pseudocode 

The eDRI algorithm generates all rules in phase 1. Whenever a rule is generated, 

training data examples linked with it are deleted and the frequencies of those waiting to 

be added containing strong items that appear in the deleted data are instantly updated. 

This update process involves decreasing their frequencies, thus some of these items may 

no longer become strong and are discarded, which  can be seen as a quality assurance 

measure because it does not rely on the original frequency of items computed initially 

from the training dataset.  Rather, we have a dynamic dataset that reduces its cardinality 

whenever a rule is generated. This reflects the true data coverage per rule in the final 

classifier and it contributes in the production of controllable classifiers that can be used as 

decision making tools in different application domains. Also, eDRI algorithm data 

processing procedure is more efficient as a result of this update process. Indeed, other 

advanced induction learners, such as RIPPER for example, scan the entire updated 

training dataset each time a rule is derived, whereas eDRI avoids this expensive data 

processing by actively updating item frequencies.  
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Whenever a rule is derived, its associated training data samples are removed; the 

frequency of each affected item is continuously updated during rule learning until the rule 

production phase is terminated. Having said this, eDRI is a special algorithm because it 

does not allow items inside rules to share training data examples, therefore generating 

classifiers that do not depend on a static training dataset. Rather, eDRI updates the 

training data and item frequencies each time a rule is formed.  

In phase 2 of eDRI, rules derived are used to guess the type of class for test cases. 

Our algorithm assumes that the attributes inside the training dataset are nominal, and any 

continuous attribute must be discretised before the rule inducing phase starts. Finally, 

missing values are treated as any other values in the training dataset. 

 

3.2.1 Data Representation and Data Processing 

Before the eDRI starts searching for knowledge (rules), the training dataset is 

transformed into a data structure of the form <Item, class, Line#’s / row IDs>. The item 

and class are represented by <ColumnID, RowID>, where the first column and row 

numbers that the item/class occurs in is the training data set denoting the item/class. This 

data representation has been adopted from Thabtah and Hammoud (2013) because it 

minimises the counting of items and it also decreases the number of data scans the 

algorithm must go through during data processing. Another primary advantage of using 

this data formatting method is that there is no attribute value frequency counting after 

iteration 1, scanning the training dataset. This is because the algorithm stores both the 

attribute values and class locations of the training data set inside a special data structure, 

<Item, class>, which is utilised to locate the frequency of each item by just taking its size. 

This is a simple process that normally reduces the number of passes over the training 

dataset.   

In eDRI, each data instance in the training dataset is linked to a unique integer value 

(Item number). The first row number where the instance occurs within the training 

dataset is called RowId, while ColumnIds is used for the variable (attribute) number in 

the training dataset which generates the item’s values. Attributes are saved from left to 

right where the first one being denoted by “0,” the second one by “1,” and so forth. This 
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data format helps in the data processing phase, especially while the algorithm is building 

the rules and performing computations for all candidate items in the training dataset in 

order to determine the survived items. Table 3.1b shows a data format example after 

transforming the training dataset of Table 3.1a. In Table 3.1b, (0)0 corresponds to item 

“X”, and (0)1 correspond to item “Z,” and so forth.  This numbering method eases the 

mining process and reduces needed computing resources, especially training time during 

calculating and updating item frequencies, as it will be seen later on in Chapter 4. 

 

 

 

 

 

 

 

The eDRI algorithm assumes that all variables or attributes are categorical, meaning they 

have a finite set of possible values. Any continuous attribute must therefore be discretised 

using a particular discretisation method such as the entropy based one. For datasets with 

noise, eDRI takes advantage of the filtering procedures available in WEKA, with 

“ReplaceMissingValues” filter being a possible one. First, missing values in the training 

dataset should be replaced or treated as any other possible values. This filtering procedure 

was modified and embedded within eDRI in WEKA platform. 

 

3.2.2 Rule Discovery and Classifier Building 

During the rule discovery phase and earlier after transforming the training dataset into the 

designated format, the eDRI algorithm scans the training dataset to record items and their 

frequencies as described. All <item, class> appearances are counted and stored in a 

temporary data structure. Any item that appears with a class in the training dataset 

accompanied by inadequate frequency is discarded as encountered. This minimises the 

Table 3.1A Training dataset sample 

ROWID   Variables            Class 
0 X Y Z C1 
1 Z Y Z C1 
2 Z W Z C2 
3 Z W Z C3 
4 X Y X C2 
5 X W X C3 
6 Z W X C3 
7 Z Y W C3 
8 X Y X C3 

 Table 3.1 B Transformation of Table 3.1A 

ROWID: 
Class 

Variables            

0:0 (0)0  (1)0  (2)0 
1:0 (0)1 (1)0 (2)0 
2:2 (0)1 (1)2 (2)0 
3:3 (0)1 (1)2 (2)0 
4:2 (0)0 (1)0 (2)4 
5:3 (0)0 (1)2 (2)4 
6:3 (0)1 (1)2 (2)4 
7:3 (0)1 (1)0 (2)7 
8:3 (0)0 (1)0 (2)4 
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 Table 3.2 Items occurrences after initial scan by eDRI 

Variable Variable Frequency 

(0) 0 0:0, 4:2, 5:3, 8:3 

(0) 1 1:0, 2:2, 3:3, 6:3, 7:3 

(1) 0 0:0, 1:0, 4:2, 7:3, 8:3 

(1) 2 2:2, 3:3, 5:3, 6:6 

(2) 0 0:0, 1:0, 2:2, 3:3 

(2) 4 4:2, 5:3, 6:3, 8:3 

(2) 7 7:3 

 

search space of all candidate items and ensures that only strong items can be part of the 

classifier’s rules.  Table 3.2 shows the candidate items obtained from Table 3.1a by 

eDRI, where the bold ones are strong items assuming that the freq threshold is set to 2.  

All non-bold items of Table 3.2 will be removed by eDRI after passing over the dataset. 

From Table 3.2 it is obvious that there is one weak and six strong items of size one.  

It is important to mention that unlike other rule-based classifications that are not 

covering-based, such as associative classification that require joining items and counting 

beginning with strong items of size 1 until n, eDRI only keeps items of size 1 during its 

rule discovery process. Therefore, eDRI relaxes one of the major burdens of associative 

classification as well as the association rule mining method, which uses the candidate 

generation function. This function normally necessitates passing over the training dataset 

many times to discover frequent items of size 2, 3, 4, to n.  

To elaborate on this, associative classification and associating rule algorithms, such as 

CBA, find frequent items of size 1 (F1) after scanning the training dataset and keeping all 

those which survived the minimum freq threshold. Then, disjoint items inside F1 are 

appended to derive the candidate items of size 2 (C2), and based on counting all items in 

C2 they determine the frequent items of size 2 (F2). Possible remaining candidate items of 

size 3 (C2) are then obtained by merging disjoint items of F2, counting them again, and so 

on. On the other hand, the proposed rule discovery method of eDRI relaxes this entire 

candidate generation function and only utilises items size one F1 without the need for: (1) 

joining disjoint items; (2) passing over the dataset multiple times; and (3) undergoing an 

exhaustive counting process. Rather, the algorithm employs on the fly item frequency 

update procedures that are invoked whenever a rule is built and its data instances 
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removed, which saves too many unnecessary costs associated with training time. It should 

also be noted another difference between associative algorithms, which discover the 

complete rules set and then adopt different pruning procedures, and Covering algorithms, 

which employ the rule-by-rule induction strategy. 

The eDRI algorithm stores all surviving strong one items (F1), items that are associated 

with a frequency greater than freq threshold, and seeks the item among them that when 

added to a class achieves the largest rule_strength (item with the lowest error regardless of 

the class label). This item and class will be made an initial rule with the item placed in the 

rule’s body and the class in the rule’s consequent. This process of adding other item(s) to 

the rule is straightforward for eDRI since strong <item, class> of size one obtained from 

the initial scan are already ranked based on their frequency with the class labels in a 

descending manner. The candidate rule’s data is located by eDRI, which continues adding 

items to the current rule’s body until the rule either derives a zero error or one above the 

Rule_Strength threshold parameter. For the second scenario, i.e for any rule that cannot 

reach zero error, the algorithm checks whether its accuracy is greater than the 

Rule_Strength threshold. If the rule passes the Rule_Strength threshold, it will be created, 

otherwise being ignored.  

Noticeable differences between the eDRI algorithm and most of the current Covering 

algorithms, such as PRISM and its successors, are as follows: 

a) In eDRI, no item is added to the rule’s body unless it verifies the minimum 

frequency requirement. Otherwise, the item is ignored and will not form part of 

any rule. 

b) In eDRI, there is a possibility of creating rules that have accuracy lower than 

100%, whereas PRISM only allows generation of perfect rules. 

c) eDRI does not need to revisit the training data to amend item frequencies, rather it 

employs an efficient data structure procedure that guarantees dynamic update, thus 

saving computing resources. 

In eDRI, whenever a rule is generated, the following applies 

1. The rule’s data samples in the training dataset are discarded. 
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Input: Training set D, Rule_Strength, Minimum Frequency (freq) thresholds 

Output: Set of Rules ( R ) 
 
Phase (1) Inducing the rules 
 
1. R    
2. 1r     

3. DD '    

4. for each (atti, class) in 'D do 
5.    compute p(ci = i| atti)/| 'D | and p(ci = i| atti)/ p(atti);  
6.    remove any atti such that p(ci = i| atti)/| 'D | <= freq 
7.    append the largest (atti, class)  accuracy  to the current rule, iattir           

8.    if p [(ci = i| atti)/ p(atti )] < = Rule_Strength   {                    

9.       (( '' DD atti) |i = p(ci( ))     
10.       repeat steps 6-9  (keep adding single attribute values to the current rule in production)  

11.       until ir  Rule_Strength    

12.                                      } //if  

13.  irR      // adding the rule into the classifier  

14.  )( '' DDD    // setting the temporary data after generating the  rule 

15.   'DD       // setting up the new training data after removing the derived rule’s data (after rj is generated) 
16.   ir  // re-initialising the current rule to empty for the next iteration  

17.    repeat steps 3-14 and stop when D is empty or no atti) |i = p(ci >=  freq 

18.  }  // for loop 
 

Algorithm. 3.2 eDRI learning phase 

2. Before building the next in line rule, eDRI updates item frequencies that have 

appeared in the removed data samples by decreasing them to reflect the rule’s 

training data samples deletion, without the need to scan the data again.  

The proposed algorithm continues creating rules until no more items with a sufficient 

frequency can be found. At this point, eDRI moves to the remaining unclassified instances 

in the training data, and chooses the class that is linked with the more frequent data as a 

default class rule. In case the class labels in the remaining unclassified instances have 

equal frequency, eDRI will choose the largest frequency class in the initial training 

dataset. If class labels in the initial training dataset also have equal frequency, then eDRI 

selects the class that appeared with more generated rules. The pseudocode of the learning 

phase of eDRI is provided in Algorithm 3.2. 
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Input: Classifier (CL) and test dataset (Ts) 

Output: One error rate 

1. 0 ttingcounter_hi    

2. for each test data tsm in Ts { 

3.    for each rule rn in CL { 

4.       if (tsm = rn body) 

5.          temp_rule   rn } 

6.    for each rule temp_rule  { 

7.       class_counter ++; 

8.       tsm (class)   Max(class_counter) (class) }   

9.   tsm (class)   default class rule  

10.   If (tsm (class) == rn (class)) 

11.  counter_hitting   Counter_hitting + 1 

 8.   }   

10.    
|Ts|

 ttingCounter_hi
Error  

11. print Accuracy 

Algorithm 3.3 Predicting test cases procedure of eDRI 

 The rule discovery procedure keeps item ranks dynamic since item frequency with the 

class is continuously updated whenever a rule is derived. This dynamism provides a 

distinguishing advantage to the eDRI algorithm in determining items that become weak 

during construction of the classifier without needing to again look them up in the training 

dataset. By doing so, the search space of candidate items is minimised and should provide 

smaller in size classifiers. In fact, the proposed algorithm develops a pruning procedure 

that reduces over-fitting and results in rules with larger data coverage than PRISM (add a 

reference when this is proved/shown; maybe the experimental section of the thesis where 

this is covered). Indeed, the over-fitting is reduced for two reasons 

1) There is a limit on the rule growth:  a stopping condition that limits this growth is 

adopted.  

2) Items with limited statistical significance (weak items) are discarded early, and the 

algorithm continuously cuts down item search space whenever a rule is discovered 

because of the dynamic update of the items frequency. 

 To clarify, PRISM keeps adding items to the rule’s body regardless of the number 
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of data examples that might be covered by the rule. The focus of most Covering 

algorithms is maximising the rule’s accuracy, even when the derived rule covers only 

one data example. This obviously may over-fit the training data and generates large 

number of specific rules that only cover very limited parts of the training dataset. For 

example, a simple run of the PRISM Covering algorithm over the “Weather.nominal” 

(only 14 data samples) dataset from the UCI repository revealed two rules covering a 

single data example each. In other words, 33.33% of the PRISM classifier’s (two out of 

six rules) cover just two data examples (add a reference where this is actually reported). 

This result, if limited, shows how classic covering methods over-fit the training data 

without providing a red flag to stop rules during the learning process. In the case of the 

eDRI algorithm, these two rules are basically discarded since they do not hold enough 

data representation.   

Since the PRISM algorithm creates only rules with 100% accuracy, there is no rule 

preference procedure. Meanwhile, the eDRI classifier contains rules with good accuracy, 

though not necessarily 100%, and thus the algorithm utilises a rule sorting procedure to 

differentiate among results. The rule’s strength and frequency are the main criteria 

employed to sort rules. When two or more rules have the same strength, eDRI uses a rule’s 

frequency as a tie-breaker. Finally, whenever two or more rules have same strengths and 

frequencies, the algorithm prefers rules with a lower number of items in their body. This is 

because these rules are general rules with wider training representation that often hold 

multiple specific rules.  

 

3.2.3 Test Data Prediction 

The eDRI classifier consists of two rule levels 

a) Level 1: Rules with zero error: Primary rules (higher rank) 

b) Level 2: Rules with good strength: Secondary rules (lower rank) 

Whenever a test data sample is about to be classified, eDRI goes over the rules in the 

classifier in a top down fashion starting with the primary rules. The first rule with items 

identical to the test data classifies it. In other words, if the rule’s body is contained with 
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the test sample, then this rule’s class is assigned to the test data. If no rule in the primary 

rules matches the test data, then eDRI moves into the lower rank rules and evaluates 

whether any of its rules is able to assign a class to the test data sample. If one of the 

secondary rules in level 2 matches the test case attribute values, it will classify it. A more 

complicated scenario occurs when multiple rules are able to classify the test case. When 

this happens, eDRI groups them with respect to the class label into groups. It then counts 

the number of rules per group and the class label that belongs to the group with the 

largest number of rules is used to classify the test case. Finally, when no rule in the 

primary or secondary rules sets is able to classify the test case, eDRI invokes the default 

class rule (the largest frequency class in the training dataset). 

This class prediction procedure limits the use of the default class rule, and decrease the 

number of misclassifications. In addition, eDRI also minimises the chances of arbitrary 

choices and biased decisions favouring a specific rule. Rather, eDRI employs the best 

first and combining with the group of rule prediction approach.   

 

3.3 Example of the Proposed eDRI Algorithm and PRISM 

This section provides an example to distinguish the learning process the typical covering 

algorithms PRISM and the proposed eDRI algorithm. In particular, we show how the 

rules are generated and the classifier building process is conducted alongside predicting 

test data cases. The dataset displayed in Table 3.3 is used for the purpose of comparison, 

assuming that the frequency threshold is set to 3 and the Rule_Strength to 80% for 

presentation purpose only. First, the eDRI algorithm calculates the frequency of items 

linked with each <item, class>. For presentation purposes, and because typical Covering 

algorithms work per class during data processing, eDRI starts with the minority class 

(No) and  its items’ frequencies are provided in Table 3.4. The largest frequent items are 

“Outlook=sunny” and “”Windy=true”, i.e. 3. The eDRI algorithm selects 

“Outlook=sunny” because it has higher accuracy, separating this rule’s data samples as 

shown in Table 3.5, and forms the following first rule: 

RULE (1) If “Outlook=sunny” then NO  (3/5) 
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Table 3.3: Sample training dataset from (Witten and Frank, 2005) 

outlook temperature humidity windy play 
covering 

rule 

sunny hot high FALSE no R1 

sunny hot high TRUE no R1 

overcast hot high FALSE yes R2 

rainy mild high FALSE yes default 

rainy cool normal FALSE yes R3 

rainy cool normal TRUE no default 

overcast cool normal TRUE yes R2 

sunny mild high FALSE no R1 

sunny cool normal FALSE yes R3 

rainy mild normal FALSE yes R3 

sunny mild normal TRUE yes default 

overcast mild high TRUE yes R2 

overcast hot normal FALSE yes R2 

rainy mild high TRUE no default 

All items highlighted in red in Table 3.4 have failed to pass the frequency threshold; 

therefore they are ignored in the rule production of class “NO”. This means that the eDRI 

algorithm has substantially minimised the search space for the rules by keeping only 

three candidate items (the ones not highlighted red in Table 3.4). However, PRISM keeps 

these candidate items, aiming to seek for specific rules with low data coverage.  

The frequency of items in the data subset related to “Outlook=sunny” is computed to 

find out whether the current rule’s strength can be improved, which is summarised in 

Table 3.6. It is clear that the highest rule’s expected accuracy occurs when 

“Humidity=high” is added to the current rule, so eDRI appends this item to Rule (1) and 

the rule’s strength becomes 100%. Therefore, eDRI generated Rule (1), removed all 

training samples connected with it (the red text of Table 3.3), and updated the frequency 

for the remaining candidate items of class “NO” as  shown in Table 3.4 (Column 3). It 

should be noted that Table 3.5 is provided for presentation purposes although the eDRI 

algorithm does not need to scan such training examples but PRISM does. Based on the 

updated frequency of the items after Rule (1) is devised, item “Windy=true” becomes 

weak since its frequency has been decremented from “3” to “2”. Therefore no more rules 

can be produced for the current class “NO”, and the eDRI algorithm proceeds to the next 

class “YES”. 

RULE (1) If “Outlook=sunny and Humidity=high” then NO  (3/3) 
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Table 3.4: Candidate items linked with class NO 

 During Rule 1 Generation  
After generating Rule 
(1) 

Item Status 

Candidate Item 

Original 
Frequency 
in the 
training 
data 

Rule’s 
Expected 
Accuracy 
(strength) 

Freq. 
status 

 Item status 

Outlook=sunny 3 60%   Picked largest expected accuracy 

Outlook= rainy 2    Initially Ignored (fails freq. test) 

Temperature= hot 2    Initially Ignored (fails freq. test) 

Temperature= mild 2    Initially Ignored (fails freq. test) 

Temperature= cool  25%   Ignored(fails freq. test) 

Humidity= high 4 57.14% 
   Ignored after Rule(1) production  

(fails freq. test) 

Humidity= normal 1    Initially Ignored (fails freq. test) 

Windy=   true 3 50% 
2  Ignored after Rule(1) production  

(fails freq. test) 

Windy=   false 2    Initially Ignored (fails freq. test) 
 

Table 3.7 shows the candidate items associated with class “YES” along with their 

frequency and accuracy. The highest rule strength is associated with item 

“Outlook=overcast,” its accuracy being 100%, and thus the following rule is formed: 

RULE (2) If “Outlook=overcast “then YES (4/4) 

 After Rule (2) is generated, all data samples linked with it in Table 3.3 are discarded 

(the rows highlighted green), and the frequency of remaining candidate items of Table 

3.7 are updated as shown in columns 4-5 of the same table. After the generation of Rule 

(2), the following three candidate items are pruned for having insufficient frequency as 

shown in Table 3.7: ”Temperature= cool”, “Humidity= high”, and “Windy= true”. This 

pruning, represented by constant item frequency updates whenever a rule gets generated, 

is indeed useful. The search space has reduced by 37.5% by discarding three out of eight 

candidate items after Rule (2) is derived. The algorithm then continues searching for 

rules linked with class “YES” from the remaining unclassified training data. Item 

“Humidity=normal” is then appended with the expected rule’s accuracy of 80% as 

follow: 

RULE (3) If “Humidity=normal“ then YES (4/5) 

Since the current rule has not yet reached maximum accuracy, its data samples are 

separated as shown in Table 3.8.  Table 3.9 displays the remaining candidate item 

frequencies obtained from Table 3.8. The highest accuracy item, “Windy=false,” is 

appended to Rule (3), achieving 100% accuracy, as shown below 
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Table 3.5: Data samples associated with item “Outlook=sunny” 

outlook temperature humidity windy  play 

sunny hot high FALSE  no 

sunny hot high TRUE  no 

sunny mild high FALSE  no 

sunny cool normal FALSE  yes 

sunny mild normal TRUE  yes 

Table 3.6: Candidate items linked with item “Outlook=sunny” Then NO in the training dataset with their frequencies 
 None 

Candidate Item Frequency 
Rule’s 
Expected Accuracy   

Temperature= hot 2 100% 

Temperature= mild 1 50% 

Humidity= high 3 100% 

Windy=   true 2 66.67% 

Windy=   false 2 50% 
 

RULE (3) If “Humidity=normal and Windy=false” then YES (3/3) 

Therefore, Rule (3) gets produced and all its connected data samples are removed 

(yellow rows of Table 1). The remaining items became weak because they have 

frequencies lower than 3 and therefore the algorithm stops.  The four instances remaining 

in the training dataset are then covered by the default rule, which is the largest frequency 

class in the remaining uncovered data samples. In this case, we have a tie between the 

“NO” and the “YES” class labels, so the choice will be based on the largest frequency 

class in the training dataset. This results in the class “YES” default rule being built. Thus, 

the eDRI algorithm builds a classifier with following four possible rules: 

RULE (1) If “Outlook=sunny and Humidity=high” then NO  (3/3) 

RULE (2) If “Outlook=overcast” then YES (4/4) 

RULE (3) If “Humidity=normal and Windy=false” then YES (3/3) 

Otherwise “YES” 

In the above example, eDRI was able to induce three possible rules and a default class 

whereas PRISM produced six possible rules and a default class as shown below. In fact, 

most of the rules induced by PRISM cover very limited data examples (1 or 2 rows) 
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Table 3.8: Training data samples linked with “Humidity=normal” 

outlook temperature humidity windy play 

rainy cool normal FALSE yes 

rainy cool normal TRUE no 

sunny cool normal FALSE yes 

rainy mild normal FALSE yes 

sunny mild normal TRUE yes 

 

Table 3.7: Candidate items linked with class YES 

 During Rule 1 Generation  
After generating Rule 
(1) 

Item Status 

Candidate Item 

Original 
Frequency 
in the 
training data 

Rule’s 
Expected 
Accuracy 
(strength)  

Freq. 
status 

 Item status 

Outlook=overcast 4 100%    

Outlook= sunny 2    Initially Ignored (fails freq. test) 

Outlook= rainy 3 60% 3 60%  

Temperature= hot 2    Initially Ignored (fails freq. test) 

Temperature= 
mild 

4 66.67% 
3 60%  

Temperature= 
cool 

3 75% 
2   

Humidity= high  3 42.85% 
1   Ignored after Rule(2) production  

(fails freq. test) 

Humidity= normal 6 85.71% 4 80%  

Windy=   true   3 50% 
1  Ignored after Rule(2) production  

(fails freq. test) 

Windy=   false   6 75% 4 66.67%  
 

whereas the eDRI algorithm rules cover at least three data examples. This makes a 

difference in practice, especially in large datasets or datasets with high dimensionality, as 

we will see in the experimental study carried out (Chapter 4). The fact that the eDRI 

algorithm derived a number of rules 42.85% lower than PRISM from a dataset of just 14 

examples is evidence in itself of the power of the new pruning proposed which ensures 

the imposition of dynamic learning.   
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Table 3.9: Candidate items linked with item “Outlook=sunny” Then NO in the training dataset 
with their frequencies 

 None 

Candidate Item Frequency 
Rule’s 
Expected Accuracy (strength) 

Outlook=rainy 3 66.67% 

Outlook=sunny 2  

Temperature= cool 3 66.67% 

Temperature= mild 2  

Windy=   true 2  

Windy=   false 3 100% 

 

 

Prism rules 

--------------- 

1) If outlook = overcast then yes 

2) If humidity = normal and windy = FALSE then yes 

3) If temperature = mild and humidity = normal then yes 

4) If outlook = rainy and windy = FALSE then yes 

5) If outlook = sunny and humidity = high then no 

6) If outlook = rainy and windy = TRUE then no 

Otherwise “YES”. 

 

3.4 Distinguishing Features of eDRI 

In Covering classification, most of the different rule induction algorithms developed are 

based on on PRISM and IREP. The vast majority of Covering algorithms have been 

divised to deal with over-fitting or to enhance the processing of data during the induction 

of rules. Hereunder, the primary distinctive differences between eDRI and these existing 

induction algorithms are listed: 

 PRISM and other Covering algorithms learn one rule then amend the training dataset, 

learn the second rule and again amend the training dataset, then continue learning in the 

same fashion. Therefore, each rule derived necessitates a full scan over the remaining 

training instances, which is an expensive computational data processing approach. On 

the other hand, eDRI adopts a special data structure and dynamic procedure and 
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whenever a rule is generated the remaining item frequencies are updated on the fly 

without the necessity of training data scans, thereby saving processing time and 

computing resources. 

 eDRI employs a data processing procedure that limits the search space of items by 

discarding items with limited statistical significance during the process of building 

rules. Other Covering algorithms keep all items without paying attention to their 

training data representation for the sake of inducing highly accurate rules, yet with low 

data coverage which may increase the chance of over-fitted classifiers. 

 The classification procedure employed by eDRI minimises random rule selection and 

ensures that more than one rule is used for assigning the class of test data. This results 

in less questionable prediction decisions and reduces the dependency on a single rule, 

unlike most Covering methods that employ just one rule for class prediction.   

 eDRI splits rules discovered in the classifier into two levels. In the secondary level, 

eDRI keeps rules with some error in case rules in the primary level were unable to 

predict a test data. This is unlike classic Covering approaches, like PRISM, which only 

derive rules with zero error without considering their training data coverage. Overall, 

eDRI allows the production of rules with small errors in order to reduce over-fitting of 

the training data set and the number of discovered rules in the classifier. 

 eDRI employs an implicit pruning procedure that is naturally integrated with the data 

processing phase. In pruning, eDRI prevents items from participating in a rule early 

and ignores rules that do not meet the Rule_Strength requirement. This significantly 

cuts down both the search space of rules as well as the expected number of derived 

rules. The result is a more efficient induction phase and smaller model that facilitates 

their management and usage by users as efficient tools for making decisions.  

 eDRI adopts a data structure from the distributed association rule that prevents level-

wise searching in rule induction algorithms such as IREP and RIPPER. This data 

structure holds all information about items, classes, and their occurrences in the 

training dataset and is used for rule and item pruning by eDRI.     
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3.5 Chapter Summary 

Covering is a promising classification approach that has attracted researchers due to its 

simplicity. This chapter dealt with major shortcomings associated with classic Covering 

algorithms. Specifically, we investigated the problem of generating rules with limited 

data coverage by PRISM and discarding good quality rules covering larger training data 

portions, leading to massive classifiers.  A new dynamic Covering algorithm called 

Enhanced Dynamic Rule Induction (eDRI) has been proposed and built into the WEKA 

environment (Chapter 4) to deal with these deficiencies. The eDRI algorithm minimises 

the search space for rules by cutting down items with low data representation and 

stopping learning when any rule meets the rule’s strength threshold. Moreover, eDRI 

implements a multiple prediction rule method that reduces doubtful prediction decisions 

and thus minimises random rule selection. In addition, eDRI reduces the need for 

repetitive data scans during the data processing phase, resulting in a more efficient rule 

induction method. These improvements guarantee smaller sized classifiers that do not 

over-fit the training dataset and maintain their predictive performance. 

Classifiers derived by the proposed eDRI algorithm are of benefit to managers, 

particularly when making key business decisions since they can serve as a rich 

knowledge base inside a decision making tool. This is due to the classifiers being easy to 

understand, having high predictive accuracy, and being controllable as well as robust 

(flexible to be amended without drastic change). Moreover, eDRI can be employed as a 

prediction module embedded inside a decision support system in various domain 

applications that necessitate both simplicity of the outcome and good accuracy, such as 

medical diagnoses systems or anti-phishing models in computer security (Chapter 5). 

Since general practitioners usually have busy clinics with tightly allocated time per 

patient, they favour decision support systems with a concise set of knowledge similar to 

the eDRI classifiers. Regarding computer security, eDRI is planned to be embedded by 

researchers in Huddersfield University as an anti-phishing tool based on the case study 

conducted in Chapter 5. This will raise awareness of public employees about phishing 

because of eDRI's outcome simplicity, which can be understood by different users.    
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In Chapter 4, we present the detailed implementation of eDRI, its main thresholds 

used, and the graphical user interface of the algorithm with which end-users interact. We 

also highlight the evaluation measures used to evaluate the strengths and weaknesses of 

eDRI, along with a full description of the large number of datasets used in the 

experimentations. Furthermore, experiments using datasets from the UCI repository have 

been conducted utilising a number of Covering, induction, and decision tree algorithms to 

measure eDRI’s performance with reference to various evaluation measures in 

classification.   
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Chapter Four   

 

Implementation and Evaluation of the Enhanced 

Dynamic Rule Induction Algorithm  

 

4.1 Introduction 

In this chapter, we discuss the implementation of the new proposed eDRI 

algorithm and explain the different thresholds it utilises for the dynamic learning 

process. Since the proposed algorithm has been implemented in the WEKA environment 

(see Section 4.2), its primary Graphical User Interface (GUI) is also briefly highlighted 

in Section 4.2 (Hall, et al., 2009). After this, the integration of eDRI within the classifier 

package of WEKA under “Classifier.Rules” is covered and a discussion of the input 

parameters used is provided. Furthermore, a few GUIs of eDRI within WEKA are 

shown, in particular the different processes to go through until the predictive model is 

generated. Section 4.3 explains the evaluation measures (one-error rate, confusion 

matrix, number of rules derived, etc.) used to produce the results and test the 

performance of the proposed eDRI algorithm and other known predictive models in 

classification for their comparison (Diebold & Mariano, 1995; Powers, 2011).    

 This Chapter also includes a number of experiments on datasets published at the UCI 

data repository (see Section 4.4) (Lichman, 2013). In particular, twenty different 

datasets that belong to various applications (credit card scoring, medicine, politics, and 

agriculture among others) are utilised. The chosen datasets have different number of 

variables, variable types, and data examples. Section 4.4 highlights the main 

characteristics of the datasets used in the experiments. The experimental evaluation 

validate eDRI’s advantages, particularly in predicting test data as well as limiting data 

processing time. Later, in Chapter 6, a further specific evaluation and comparison of 
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eDRI with a wide range of algorithms on a phishing problem is reported. The choice of 

the phishing application was based on the fact that it is a vital threat that necessitates not 

only accurate detection but also useful knowledge for decision making.   

 

4.2 eDRI Implementation  

WEKA stands for Waikato Environment for Knowledge Analysis and is an open 

source tool based on the Java platform that contains implementations for different DM 

methods including filtering, classification, clustering, evaluation, and visualisation 

among others. This tool was designed and implemented at New Zealand’s Waikato 

University to assist students, researchers, and academic staff in conducting quantitative 

research. Experiments on the datasets using the considered classification algorithms 

were conducted using WEKA. The proposed eDRI algorithm has implemented in Java 

and integrated into the WEKA environment. 

Since WEKA is built with Java programming language, it organises the different 

filtering, learning, and visualisation methods in packages. A package can be seen as a 

container that holds and manages related Java classes and has its own subdirectories 

(Bouckaert et al. 2008). In WEKA versions 3.7.2 and upward, information other than 

classes can be held inside a package such as the functionalities of the JAR file, meta 

data, source codes, and other related documentations of the classes. These enable users 

to have better management of which methods can be stored in separate packages, and 

therefore can use what they actually need.  By default, WEKA keeps packages and their 

related information in $WEKA_HOME, which is located in the user’s home directory 

(i.e. user.home/WEKAfiles), although it can be using an environment variable (more 

information can be found in Bouckaert et al. 2013). 

The main class of the proposed algorithm, “EDRI,” has been integrated within the 

Rules package inside WEKA. This Rules package contains implementation of a few 

rule-based algorithms such as JRIP, PRISM, ZeroRule, Decision Table, PART, and 

OneRule. Since the proposed algorithm generates classifiers with an “If-Then” rules 

format, it was more relevant to include it inside “Classifiers.Rules. eDRI uses two input 

parameters (shown in the appendix), “minFrequency” and “minRuleStrength,” in 

addition to an optional selection to use a default rule during the classification process. 
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The proposed algorithm can be accessed from WEKA Explorer or the Command Line 

platforms for data processing.  

The minimum frequency threshold is used to reduce the number of items (variable 

values) that may participate in creating the rules. By using this threshold, the eDRI 

algorithm will be able to discard early items that their data representation is below the 

minFrequency value (weak items) and thus to keep statistically significant items (strong 

items). Moreover, the minRuleStrength threshold is employed by the proposed 

algorithm to produce not only rules with 100% positive data examples, as in typical 

Covering algorithms, but also rules that may cover a few negative data examples as long 

as their computed strengths are greater than or equal to the minRuleStrength value. This 

threshold sustains the predictive performance of eDRI by only keeping rules that are 

effective yet have a large data coverage in the training dataset. Both the minFrequency 

and minRuleStrength must be inputted as decimals by the end user in (see Appendix) 

before eDRI starts data processing.  

The minFrequency plays critical role in the data processing phase. If this threshold 

has been set to very high value, i.e. 1, then more specific rules that cover limited 

training data instances will be generated. On the other hand, if it has been set to very 

low value, i.e. <1%, then possibly more rules are derived. We have conducted warming 

up experiments to evaluate this threshold and found out that values between 1% to 4% 

balance out the number of rules generated as well as data coverage. Unfortunately, no 

ideal value for the minFrequency that works for any dataset simply because datasets 

have different characteristics. A recently published distributed associative classification 

(see Thabtah, et al., (2015)) showed that minFrequency has no ideal value and setting it 

remains a challenging question in both association rule and classification domains. 

Therefore, the requirements of both the decision maker and application play important 

role in setting the minFrequency. Nevertheless, and based on our experiments as well as 

Thabtah, et al., 2015, we recommend 1%-4% to be assigned for the minFrequency. 

Finally, as mentioned before, there is an option within the eDRI interface, 

“addDefaultRule”, which enables the user to utilise a default class rule in cases when all 

derived rules are unable to classify an unseen data case. The user has this option so a 
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default class rule can be utilised when no other rules are available to classify a test case, 

and thus the number of random classification will be minimised. 

Three types of dataset format are possible to be received in eDRI; comma separated 

formats in spreadsheet (CSV), text formats that are comma separated (TXT) similar to 

WEKA’s ARFF file format, and an external database that can be connected with WEKA 

using ODCB or JDCB connectivity objects. Furthermore, all evaluation measures and 

cross validation testing method are offered in eDRI because we have taken advantages 

of WEKA’s other classes and packages (Kohavi, 1995). Mathematical and explanatory 

details on the evaluation measures are given in Section 4.3.  

For model evaluations, eDRI can use separate test datasets, training datasets, or 

cross validations with different variations in terms of the number of folds or split 

percentages. In all experiments of eDRI, reported in Section 4.4, the testing method 

used was tenfold cross validation. Appendix A provides a detailed example of data 

processing using eDRI on one dataset from UCI for further graphical exposition. 

 

4.3 Evaluation Measures  

 A number of measures related to predictive models in classification that we used 

are discussed in this Section. In particular, we describe the testing method, cross 

validation, common predictive model evaluation criteria such as accuracy, one-error 

rate, and confusion matrix related measures such as false positive, false negative, true 

positive, true negative, etc. Moreover, methods related to computing resources utilised 

through the data processing of the learning algorithms such as processing time and 

numbers of data examples are also covered. We also present two new methods for rule 

evaluation in this Section: average rule length (ARL) and weighted average rule length 

(WARL). 

  

4.3.1 Cross Validation  

One of the major issues for minimising biased results in predictive models within 

classification is the use of cross validation (Kohavi, 1995). Cross validation ensures that 
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the models derived from data processing are evaluated on data examples that have not 

been seen during the training phase. In ten-fold cross validation, the dataset is randomly 

partitioned into ten different parts. The model is trained on nine parts, and then 

examines the remaining “hold out” part to derive an average error rate (Equation 4.1). 

Error rate denotes the proportion of training examples in the hold out part that the model 

has misclassified from the total number of data examples. In ten-fold cross validation, 

the process of partitioning the training data is repeated ten times and the derived errors 

are averaged.  

One of the challenges in cross validation is random partitioning of the data 

examples, which may cause a class imbalance problem. In binary classification, this 

results in a majority class that has much larger data instances than the minority class in 

the input data.  Therefore, to guarantee each class is represented in each partition, so the 

produced predictive model can be generalised, cross validation must be stratified. 

Stratification ensures distribution of all available classes in the training data into each 

partition when the random shuffling occurs. 

 

4.3.2 Confusion Matrix  

For DM and ML predictive models, a matrix called the error table, or the confusion 

matrix, has been developed (Powers, 2011; Fawcett, 2006). The confusion matrix is 

typically used to evaluate the performance of predictive models with respect to the 

different metrics that are primarily related to the predictive power of the models. 

Predicted and actual values of the class labels, as shown in Table 4.1, are then displayed 

in the confusion matrix. Each row in the table represents data examples of the actual 

class, while each column represents the data examples of the predicted class.  

In measuring the performance of the models in classification, a test case is assigned a 

predicted class by the model. If the test case class is identical to the predicted class, this 

counts for a correct classification; otherwise it is considered a misclassification. For a 

test dataset with M cases, the error rate (Equation 4.1) denotes the proportion of the 

misclassified cases from M. On the other hand, classification accuracy (Equation 4.2) 

denotes the proportion of correct classifications from M. 
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Table 4.1: Confusion matrix for ASD diagnosis problem 
 Predicted Class 
 

Actual Class 
YES NO 

YES True Positive(TP) False Negative (FN) 
NO False Positive (FP) True Negative (TN) 

Relevancy measures such as recall (Equation 4.3) and precision (Equation 4.4) are 

also useful for evaluating predictive models (Rocchio, 1971). In Information Retrieval, 

recall is the proportion of relevant data examples that are retrieved whereas precision is 

the proportion of retrieved data examples that are relevant.  In classification problems, 

and for a test data with N ( 15  cases, ten cases have “yes” class and N-10 (5) cases 

have “no” for the actual classes.  For the cases with actual class=yes, assume the 

predictive model was able to predict “yes” for seven (7) of them, and the remaining 

three (3) cases were misclassified as “no”. For the cases with actual class = no, four (4) 

were predicted correctly and one (1) wrongly. Thus, the model’s recall is 70%, while its 

precision is 87.5%. Relevancy measures are usually used when the dataset is 

imbalanced with respect to the class label since accuracy becomes a biased measure 

toward the majority class label. Notice that there are measures more relevant to multi-

label classification problems and therefore these have been omitted from the 

experimental section (Tsoumakas, et al., 2010).  
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4.3.3 Computing Resources Evaluation Measures   

Measuring the processing time taken for the predictive model to be constructed is a 

useful indicator of the efficiency of the data processing phase. Moreover, the time taken 

to predict data cases can be measured as part of the model’s efficiency. In the WEKA 

environment, we recorded the time taken to build the predictive model in milliseconds 

(ms) so we can compare eDRI processing time performance with other classification 

algorithms. Moreover, we have also computed how many instances are necessary to 

build the predictive model for the eDRI and PRISM Covering algorithms, and 

implemented it as a Java class in the WEKA version. This class contains codes that 

compute repetitive data scans, and can be seen as a performance indicator of the 

proposed algorithm when compared with other Covering algorithms.  

 

4.3.4 New Rules Evaluation Measures  

Initially, we have used the number of rules produced by the classification algorithms 

as a measure of goodness, that is the trade-off between the number of rules generated 

and the predictive accuracy of the classifier. We have sought classifiers with a smaller 

number of rules since users are able to manage them in a more effective manner. 

Furthermore, new rule evaluation measures based on the number of variables inside the 

rule and how many instances a rule may cover are proposed here. These measures 

reflect the relationship between the rule length in the classifier and the number of 

instances the rule has covered. The first rule measure is called the average rule length 

(ARL) and the second is known as the weighted average rule length (WARL) as per the 

following expressions (4.5) and 4.6, respectively: 

ARL   = 	 #	of	rules	of	length	 	 ∗ 	rule	length	n / 	#	 	   (4.5) 

WARL = 	 ∗ 	#	 	 	 	 	 	

	 	 	 	
    (4.6) 

To elaborate on these two measures, consider for instance the following two rules: 

 Rule 1: (if a=windy and b = mild then yes) 

 Rule 2: (if a=sunny then no) 
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Table 4.2: The UCI datasets characteristics 

dataset 
# of 
attributes 

# of 
instances 

# of 
classes 

Continuous 
attributes 

Missing 
values  

Arrhythmia  280  452  16  Yes  Yes 

Balance‐scale  5  625  3  Yes  No 

Cleve  12  690  2  Yes  Yes 

Credit‐g  21  1000  2  Yes  No 

Cylinder‐bands  40  540  2  Yes  Yes 

Dermatology  35  366  6  Yes  Yes 

Pima_diabetes  9  768  2  Yes  No 

Hayes‐roth‐test  5  28  4  Yes  No 

Hayes‐roth‐train  5  132  4  Yes  No 

 Hepatitis  20  155  2  Yes  Yes 

Hypothyroid  30  3772  4  Yes  Yes 

Ionosphere  35  351  2  Yes  No 

Liver‐disorders  7  345  2  Yes  No 

Lung‐cancer  57  32  2  No  Yes 

 Lymph  19  148  4  Yes  No 

Mushroom  23  8124  2  No  Yes 

Sick  30  3772  5  Yes  Yes 

Tae  6  151  3  Yes  No 

Tic‐tac‐toe  10  958  2  No  No 

 Waveform  41  5000  3  Yes  No 
 

Rule 1 has a body length of two attribute values, and let us assumes that it covers three 

data instances. On the other hand, rule 2 has one attribute value in its body and let us 

assumes a coverage of 97 data instances. Based on this information, one can calculate 

ARL and WARL as follows: 

 ARL = (1+2)/2 = 1.5 

 WARL = 2 * 3/100 + 1 * 97/100 = 1.03 

It seems that the rules set has ARL=1.5 which indicates that the average rule length is 

1.5 variables. On the other hand, the weighted averahe rule length of 1.03 indicates that 

correlation between the rules set and the number of covered data instacnes in the 

training dataset.  

 

4.4 UCI Data Experimental Settings 

In this section, different datasets from the University of California Irvine (UCI) 

repository used to evaluate the proposed eDRI algorithm performance are described 

(Lichman, 2013). In particular, twenty datasets along with their specifications as 

displayed in Table 4.2 have been used. All numerical attributes of the chosen datasets 

have been discretised, and missing values were replaced using ReplaceFilter in WEKA 

(Hall, et al., 2009). 
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For fair comparison, datasets with different sizes have been chosen. Stratified ten-

fold cross validation method, as explained  in Section 4.3.1, has been used for testing all 

considered classification algorithms. This method is widely used in ML and DM 

communities to produce average error rates of the classifiers (Witten and Frank, 2005).  

In order to exhibit eDRI’s performance with respect to different measures when 

contrasted with a wide range of ML algorithms that adopt a variety of learning 

strategies, a number of highly competitive classification algorithms that generate rule-

based models are required to be utilised to conduct the experiments (Quinlan, 1993; 

Cendrowska, 1987; Cohen, 1995; Holt, 1993; Witten & Frank, 2005; Freund & 

Schapire, 1997; Liu, et al., 1998; Gaines & Compton, 1995). The selection of rule-based 

classifier algorithms was based on four main factors: 

a) Produce rules are in the format of “If-Then”, so they are similar to the proposed 

eDRI algorithm; 

b) They adopt different rule discovery mechanisms;  

c) All are known algorithms that have been evaluated by previous researchers in the 

DM and ML communities; 

d) They are all implemented in the recent developer version of WEKA 3.7. 

 

. The above criteria resulted in the following classification algorithms that generate 

rule-based models to be selected for the experiments: decision trees C4.5, PRISM, 

RIPPER, OneRule, Conjunctive Rule, Boosting (AdaBoost is the exception with respect 

to criterion a) above), CBA, and Ridor were chosen. 

It should be noted that the majority of PRISM successors such as P-PRISM and N-

PRISM focus on treating noise datasets and reducing computing resources (parallelism) 

as described earlier in Chapter two. Thus, their rule learning strategy is identical to 

PRISM learning startegy, and therefore PRISM WEKA’s version was selected for 

comparison. Moreover, REP, IREP, IREP++ employ similar learning strategies to the 

RIPPER one, and considering that RIPPER is more advanced because of its 

optimisation procedure it was therefore the selected one to be part of the 

experimentations.  
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All experiments have been run on a Core i5 computer with a 3.1 GHz processor and 

8.0 GB RAM. The minimum frequency and rule strength thresholds for eDRI have been 

set in all experiments to 1% and 50%, respectively. Minimum frequency threshold plays 

a critical role in controlling the number of rules that may be generated, and therefore 

following recent published studies (Thabtah, et al., 2015; Abdelhamid, et al., 2014) we 

set it to 1%. On the other hand, rule strength has a low impact so was set to 50%. These 

values normally balance between the classifier's size and the classification accuracy 

performance measure as shown by other scholars (Thabtah, et al., 2016; Abdelhamid et 

al., 2014; Li et al., 2001). 

We utilised a number of evaluation measures to show the benefits and negatives of 

the proposed algorithm when compared with other classification algorithms in DM. 

Precisely, the below measures have been used to evaluate eDRI:   

• One error rate (%) 

• The classifier size (Number of rules derived) 

• The time in ms taken to discover and extract the rules 

 

4.5 UCI Data Results 

The eDRI algorithm was tested against twenty generic classification datasets that belong 

to different applications at the UCI data repository. The choice of the dataset was based 

on different data features such as number of data examples, number of class values, 

available number of variables in the dataset, attribute types, data application domain 

type, and noise tolerance such as missing values, etc. Overall, datasets with small, 

medium, and large dimensionalities have been selected as shown in Table 4.2 provided 

before.   

Figure 4.1 depicts the average one-error rate generated by the considered algorithms 

on the twenty UCI datasets.  The CBA algorithm was unable to produce rules from 

twelve datasets (often large dimensionality ones) due to a combinatorial explosion 

problem (running out of memory), so we omitted its average error results and will later 

show its results on the eight datasets it produced rules. Figure 4.1 clearly shows that the 

eDRI algorithm outperformed the considered algorithms on average, with an  average 
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Figure 4.1 error rate generated by the considered classification algorithms against the 20 datasets 
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error,lower than PRISM, C4.5, PART, Ridor, OneRule, ConjunctiveRule, RIPPER, and 

AdaBoost by 9.75%, 4.41%, 3.67%, 4.19%, 13.46%, 11.34%, 2.32%, and 8.49%, 

respectively. Its dynamic rule production by live updating the frequency and rank values 

of each candidate rules ensures fair and high quality rules. These play a major role in 

decreasing the error rate of the classifiers produced by the eDRI algorithm when 

compared with other rule learning algorithms. Furthermore, the proposed eDRI 

algorithm eliminates any item with insufficient data representation from becoming part  

 

  

of any rule’s body. This is done by evaluating each item’s frequency against the 

frequency threshold while testing each rule-strength during the learning phase against 

the minimum rule-strength threshold. These two early pruning tests ensure that only 

high quality rules are kept for predicting test data cases. 



79 
 

Table 4.3: The considered algorithms error rate for the UCI datasets 

  
Algorithms 

  

Dataset  Ridor  C4.5  PART  RIPPER  PRISM  OneRule  ConjunctiveRule 
Proposed 
eDRI  AdaBoost 

Arrhythmia  38.94  38.49  42.69  29.64  61.50  42.47  46.68  39.38  44.46 

Balance‐scale  20.48  35.52  22.72  20.96  36.32  43.68  37.28  16.16  27.68 

Cleve  57.42  13.62  14.20  48.18  21.03  46.53  27.06  16.10  16.83 

Credit‐g  28.10  27.20  30.70  28.30  36.20  33.90  30.5  28.08  30.50 

Cylinder‐bands  31.11  42.22  40.74  34.81  44.80  50.37  34.44  26.22  27.40 

Dermatology  6.83  6.01  5.19  13.11  15.56  50.27  49.72  8.46  49.72 

Pima_diabetes  25.00  26.17  26.56  23.95  38.92  28.51  31.25  27.08  25.65 

Hayes‐roth‐test  46.42  50.00  50.00  53.57  57.14  50.00  53.57  14.28  39.28 

Hayes‐roth‐
train  18.93  27.27  25.75  14.39  31.05  56.06  57.57  20.45  56.81 

 Hepatitis  21.29  18.70  19.35  21.93  22.57  20.00  21.29  20.64  17.41 

Hypothyroid  0.55  6.73  7.26  0.66  8.77  3.76  2.94  6.70  6.78 

Ionosphere  11.96  13.39  12.82  10.25  13.95  19.08  18.51  13.39  9.11 

Liver‐disorders  36.81  38.84  37.68  35.36  44.34  44.92  42.31  35.36  33.91 

Lung‐cancer  37.50  21.87  25.00  21.87  41.62  12.50  18.75  25.00  21.87 

 Lymph  14.86  20.27  19.59  22.29  24.31  25.00  27.02  20.27  25.67 

Mushroom  0.00  0.00  0.00  0.00  0.00  1.47  11.32  0.49  3.80 

Sick  1.82  1.74  2.22  1.77  1.95  3.60  2.28  1.80  2.81 

Tae  48.34  50.33  52.98  58.94  45.02  53.64  34.43  43.04  62.25 

Tic‐tac‐toe  8.03  15.44  5.74  2.19  3.54  30.06  30.06  8.03  27.45 

 Waveform  22.28  27.22  25.20  20.80  39.42  46.28  42.68  22.00  33.36 

 In order to further evaluate the predictive power of the proposed eDRI algorithm, 

the error rate per dataset for all considered algorithms are provided in Table 4.3. The 

figures clearly show a consistent domination for the eDRI algorithm when compared to 

the remaining algorithms. In particular, eDRI won-lost-tie record against PRISM, C4.5, 

PART, Ridor, OneRule, ConjunctiveRule, RIPPER, and AdaBoost are 18-2-0, 9-9-2, 

11-8-1, 11-8-1, 17-3-0, 17-3-0, 9-9-2 and 15-5-0, respectively. It seems that RIPPER, 

Ridor, PART, C4.5, and the proposed eDRI algorithm are more predictive than the 

remaining rule-based classifiers, as it is obvious from both the average error and the 

per-dataset errors generated. This makes OneRule, ConjunctiveRule, and RPSIM the 

least applicable algorithms due to the low predictive models derived. Models derived 

from datasets such as “Arrhythmia”, “Balance-Scale” and “Ionosphere” make this 

especially clear. 
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The advantage of eDRI becomes apparent whenever a rule is inserted into the 

classifier and its covered data are discarded, thereby causing an immediate amendment 

on the remaining potential rule rank. This is because the classifier constructed contains 

rules with little to no redundancy, which ensures that:  

a) No training example is used multiple times in inducing rules;  

b) Each item has its real time frequency rather than the initial frequency computed 

from the training dataset; 

c) Rule rank, which is the primary measure for rule strength, is constantly updated. 

This safeguards the rule discovery phase since insignificant rules are removed 

during learning despite some of them having a high rank at the first scan.  

The development of rules linked with constant frequency and rank values have 

contributed to the decrease of the one-error rate in the classifiers derived by eDRI. As a 

matter of fact, the algorithm ensures each rule is derived from the remaining instances 

in the training data after removing instances associated with the already generated rules. 

This only allows rules that are constantly fit statistically to participate in the classifier. 

These rules are the ones utilised later on during the class prediction step. 

The average number of rules in the classifiers produced by C4.5, PART, PRISM, 

and eDRI is depicted in Figure 4.2. We omit the rules generated from OneRule and 

ConjunctiveRule since both are single-rule learners. Moreover, RIPPER uses excessive 

pruning based on a growing set and a pruning set, besides an optimisation procedure, 

thus a very limited number of rules are generated. Therefore, for fair comparison, we 

omitted the classifier of RIPPER. Later we show RIPPER classifiers for the phishing 

problem since that problem necessitates small yet useful numbers of rules. Figure 4.1 

illustrates that PRISM and C4.5 produce classifiers with a larger number of rules than 

the remaining algorithms, which make it hard for end-users to manage and understand. 

On the other hand, eDRI and Ridor were able to produce, on average, an acceptable size 

of predictive model. Despite Ridor’s ability to get smaller classifiers than eDRI, the 

predictive power of eDRI is still higher and may be seen as a definite advantage. Ridor 

“must” perform extensive rule pruning, and therefore usually ends up with few rules. 



81 
 

 
 
Figure 4.2 Average # of rules generated by the selected rule based classification algorithms against the 20 
datasets  
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PRISM generates larger classifiers than the rest of the considered algorithms and on 

most of the datasets considered, which is due to the fact that PRISM prefers rules with 

low data coverage (specific rules). However, eDRI on average generates a lower 

number of rules in the classifier than C4.5, PART, and PRISM. We believe that this 

rules reduction is attributed to two main reasons: 

1) Each rule covers a large number of training instances because of incremental 

data processing.  

2) The new learning strategy employed by eDRI allows a rule to cover more 

training instances. 

The mechanism of rule learning in eDRI contributed to a decrease in the final 

classifier because when each rule is inserted into the classifier eDRI reduces the search 

space of remaining potential rules by only storing those that are linked with acceptable 

frequency and rank values. Other algorithms, such as PART and C4.5, build trees based 

on information gained and repeatedly evaluate all variables in the training data. When a 

variable is linked with many possible values, this may result in many branches, each of 

which can be linked to a leaf node and thus making a rule. During the building of the 

classifier, these algorithms may generate a larger number of rules despite employing 

backward and forward pruning. On the other hand, eDRI induces and evaluates each 

rule in parallel until the dataset is empty or no item with sufficient data is present. This 
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Figure 4.3  Average time in ms generated by the considered classification algorithms against the 20 
datasets  
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substantially decreases the available number of candidate items for the next possible 

rules. 

We also looked at the time required to build the predictive models in average 

milliseconds (ms) (Figure 4.3) and per dataset (Table 4.4). According to Table 4.4, 

eDRI consistently built classifiers in an efficient manner. In fact, eDRI was able to 

outperform all tested algorithms with respect to average time taken to construct the 

predictive models, and for each individual dataset. Figure 4.3 demonstrates that eDRI 

achieved 7, 3, 9, 49, and 4 less milliseconds in inducing the rules than the PRISM, C4.5, 

PART, Ridor, and AdaBoost algorithms respectively. These figures are clearer when the 

number of input variables are large, as exhibited in cases such as the “Wavefor” dataset. 

Therefore, we expect that when the dataset consists of a larger number of attributes the 

gap in time taken to find the rules between eDRI and the remaining algorithm will 

increase. Minimisation in time during the process of rule discovery in eDRI is attributed 

to the fact that this algorithm has combined rule discovery and building the classifier 

into a single phase.  In eDRI, no separate classifier building procedure is included as in 

traditional rule induction algorithms such as PART, Adaboost, Ridor, and C4.5.  
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Table 4.4: The considered algorithms time in ms to generate the rules from the 20 UCI datasets 

Time to induce the rules in ms 

dataset  PRISM  C4.5  PART  eDRI  Ridor  RIPPER  AdaBoost  

Arrhythmia  22  17  38  8  688  72   32 

Balance‐scale  3  10  2  0  2  3  0 

Cleve  3  2  5  0  2  2  0 

Credit‐g  6  3  5  2  5  9  2 

Cylinder‐bands  5  0  11  2  3  5  2 

Dermatology  0  2  2  0  8  3  2 

Pima_diabetes  2  3  3  2  2  2  2 

Hayes‐roth‐test  0  0  0  0  0  0  0 

Hayes‐roth‐train  0  0  0  0  0  0  0 

 Hepatitis  2  0  0  0  0  0  0 

Hypothyroid  6  9  24  5  17  11  5 

Ionosphere  2  3  5  0  2  3  2 

Liver‐disorders  1  1  3  1  0  2  2 

Lung‐cancer  1  1  1  1  0  0  0 

 Lymph  0  0  0  0  0  0  0 

Mushroom  2  5  4  2  14  29  11 

Sick  7  8  8  2  6  22  12 

Tae  3  4  1  2  0  0  1 

Tic‐tac‐toe  1  2  2  1  2  3  2 

 Waveform  119  23  108  5  278  266  35 
 

 

 

 We have included a new rule-based associative classification algorithm called CBA 

to see how eDRI performs in predictive accuracy and rule generation with this 

competitive family of algorithms (Liu, et al., 1998). As indicated earlier, CBA crashed 

when the number of attributes increased, so no results for CBA on twelve out of the 

twenty datasets could be generated on the WEKA platform.  

Figure 4.4 displays the error rate derived respectively by all considered algorithms on 

the eight datasets that CBA was able to mine clearly shows that CBA results are 

competitive when compared to those obtained by eDRI, PART, C4.5, and PRISM 

algorithms, which support previous research findings in AC research literature 

(Thabtah, et al., 2015; Abdelhamid net al., 2014). To be more precise, CBA was able to 

produce, on average, higher predictive classifiers than C4.5, PART, and PRISM on the 

eight datasets while eDRI slightly outperformed CBA in terms of error rate on the same 

datasets. Nevertheless, classical AC algorithms have shown a significant drawback in 
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Figure 4.4 error rate generated by CBA and the considered classification algorithms against the 8 least # of 
attributes datasets  
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mining datasets with moderate to large numbers of attributes, which can be seen as a 

drawback of this family of algorithms because it limits their use in commercial 

applications.  

The fact that CBA failed to mine twelve datasets is evidence of its exhausting rule 

discovery and evaluation phases. Relaxing such exhaustive mining by eDRI is a bonus 

that not only produces higher quality classifiers in terms of predictive accuracy but also 

smaller in size ones. It is clear from the experimentation that CBA produced larger 

classifiers than eDRI on seven out of the eight datasets mined. In fact, CBA derived 38 

rules more than eDRI on average for the eight datasets with a limited number of 

attributes it was able to mine. We can only deduce that this average difference will 

increase when mining datasets with higher dimensionality.  

Finally, the runtime in milliseconds for the classification algorithms on these eight 

datasets has been recorded in Table 4.5. The figures clearly point out that CBA is the 

slowest algorithm to construct classifiers, which seems a new trend in AC mining 

approaches. This has been attributed to two factors: CBA “must” discover all 

correlations in the training dataset using the candidate generation function; and it 

employs a tense rule evaluation step that requires for each training instance a full scan 

over the complete set of candidate rules before selecting the classifier. These two steps 
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Table. 4.5 Runtime in ms generated by CBA and the considered classification algorithms against the 8 
least # of attributes datasets 
 

PRISM  C4.5  PART  eDRI  CBA 

3  10  2  0  7.7 

3  2  5  0  1720 

2  3  3  2  540 

0  0  0  0  0 

0  0  0  0  5.7 

1  1  3  1  33.5 

3  4  1  2  9.7 

1  2  2  1  88 

unfortunately consume a tremendous amount of time and are a substantial deficiency in 

CBA. According to Table 4.5, CBA has to spend 299 ms more on average than eDRI to 

build the classifiers, which places it in last place among the considered algorithms in 

terms of efficiency. 

 

We investigated the search space used by PRISM and eDRI to determine the major 

differences between both algorithms in constructing the classifier since both are the only 

classic Covering algorithms. The number of data samples (rows) scanned by both 

algorithms in determining item frequencies and accuracy while building the rules were 

recorded. Table 4.6 illustrates the findings. For most of the datasets considered, PRISM 

had to scan more data samples to derive the final classifier except for the “Labor” 

dataset. One example is the “Segment Challenge” dataset which consists of 19 attributes 

and 1500 instances where PRISM has to pass over 7,147,542 rows while eDRI only 

used 938,263 rows. On average for the datasets we examined, PRISM and eDRI had to 

scan 1,075,551 and 203,350 times, respectively. This is clear evidence to support that 

the proposed eDRI algorithm substantially reduces the search space for rules in its 

classifier building process. The fact that eDRI on average reduces the search space by 

around  five times less than PRISM is significant  since it stops building rules when 

they have an acceptable error rate, rule strength, according to the user. 
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Table 4.6: # of scanned data samples during building the classifier by PRISM and eDRI on the UCI 
datasets 

Dataset 
PRISM eDRI 

Contact lenses 1503 168 

Weather 1160 196 

Labor 13796 19507 

Glass 325951 58613 

Iris 20613 15265 

Diabetes 1979939 418680 

Segment Challenge 7,147,542 938,263 

Zoo 72,852 21,011 

Tic-Tac 509,652  120,526 

Pima 682,505 358,451 
 

 

 

4.6 Chapter Summary 

In this chapter, the details of eRDI implementation were provided and its integration in 

the WEKA environment has been discussed, explaining the required parameters in the 

graphical user interface. In addition, we described the different evaluation measures 

used, the mathematical notations required, the experimental settings, and the algorithms 

used in the experimental comparison conducted.  

A number of experiments have been carried out in the WEKA environment using 

twenty datasets from the UCI data repository to measure the success and failure of the 

proposed eDRI algorithm.  We utilised a number of evaluation metrics such as 

predictive accuracy, number of rules, classifier content, time taken to construct the 

predictive models in ms, etc.  A wide range of predictive models that normally produce 

classifiers with rule formats have been contrasted with eDRI with respect to the 

aforementioned evaluation metrics. Experimental results revealed that eDRI is an 

efficient DM algorithm that constantly derives highly competitive predictive models 

when compared to those derived with Ridor, PRISM, PART, C4.5, and AdaBoost. 

Specifically, eDRI was able to outperform the considered algorithms regarding average 

error rate and for most datasets. Furthermore, the predictive models derived by eDRI 
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were often moderate in size and smaller than the rest of the contrasted algorithms except 

for Ridor. Nevertheless, Ridor continuously consumed larger quantities of time in 

producing the predictive models, making this algorithm the least applicable when 

processing large amounts of data. The dynamic adjustment in item and rule frequencies 

and rank contributed to the efficient data processing and higher predictive model 

performance of eDRI. The results of the experiments can be summarised as follows: 

1) eDRI outperformed the considered algorithms in regard to their predictive power 

for most datasets and, on average, for the entire datasets. 

2) The classifiers produced by eDRI were smaller than those of PRISM, C4.5, and 

PART, which makes it applicable to applications that necessitate concise sets of 

knowledge for decision making. In Chapter 6, we show the effectiveness of 

eDRI in detecting phishing websites.  

3) The efficiency of eDRI in processing small, medium, and large datasets have 

been measured and it has been shown its superiority over the considered 

algorithms.   

4) The new dynamic Covering learning in eDRI scaled well when contrasted with 

the high predictive learning in associated classification approaches such as CBA. 

Results showed superiority not only in classification accuracy of the models 

generated, but also in the time taken to build and size of the models. 

 In the next chapter, the problem of phishing within the context of website security 

is investigated. We then apply eDRI on a real dataset related to phishing detection in 

order to measure the strengths and weaknesses of eDRI as an anti-phishing tool, 

comparing its performance with a wider selection of ML algorithms (both rule and 

none rule based). 
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Chapter Five 

 

Applicability of eDRI on Cyber Security 

Applications: Phishing Detection  

 

5.1 Introduction  

As the largest computer network, the Internet is considered a critical platform for 

business success and expansion as most commercial trades are being conducted online. 

With the majority of businesses competing in a global market, they seek to maximise 

revenue by increasing user accessibility and promotion of products and services through 

the web-based and mobile platforms.  People not only use the internet for socialisation 

and knowledge but purchasing goods, pay bills, and transfer money, and consequently 

the internet has become a necessity for many individuals. Since the explosion of mobile 

commerce applications access to the World Wide Web has become a daily essential 

requirement, with people performing regular financial transactions regardless of their 

geographical location (Ronald et al., 2007; Aburrous et al., 2010b). 

With the advanced development of computer hardware, especially computer 

networks and cloud technology services, online and mobile commerce have 

significantly increased in the last few years (Abdelhamid & Thabtah, 2014). Indeed, the 

number of customers who perform online purchase transactions has dramatically 

increased and large monetary values are daily exchanged through electronic means, 

such as private payment gateways, that are usually verified by secure socket layer (SSL) 

(Sheng et al., 2010). Despite the convenience associated with online transactions from 

both user and business prospectives, an online threat has emerged: phishing.  

Phishing involves creating a well designed website that replicates an existing 

authentic business website in order to deceive users and obtain illegally their credentials 

and/or login information (Abdelhamid, 2015), so as for phishers to get access to 
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legitimate users’ financial information (Afroz, et al., 2011). Unfortunately, the 

consequences of phishing are fatal because affected legitimate users become vulnerable 

to identity theft and information breach and no longer trust online commerce and 

electronic banking (Nguyen, et al., 2015). Phishing typically occurs via email sent to 

users, from apparent trustworthy sources, urging them to adjust their login information 

by clicking/following a hyper link within such email (Khadi & Shinde, 2014). 

In 2011, Gartner Group published a report (McCall, 2011) that revealed an annual 

loss over $2.8 billion as a result of  phishing activities occurring within the United 

States. For this reason, an international body that aims to minimise online threats 

including pharming, spoofing, phishing and malware, the Anti-Phishing Work Group 

(APWG), was created (Jevans, 2003). APWG periodically disseminates reports for the 

online community on recent cyber-attacks, with a recent report stating the rapid increase 

of phishing websites to 17,000 in the month of December 2014 alone (Aaron & 

Manning, 2014). In the same report, the total number of monthly phishing activities 

reported in the fourth quarter of 2014 was more than 197,000 websites, and increase of 

18% compared with the previous quarter of the same year, with the United States 

continued to be the top country hosting phishing websites.  

It seems imperative that users, as well as businesses, adopt renewable anti-phishing 

tools or strategies to reduce phishing activities and protect themselves from their 

potential negative impacts. This is important because phishing attacks are constantly 

changing and new deceptions are emerging all the time. Anti-phishing solutions 

adopting DM (ML) are shown to be more practical and effective in combating phishing 

because they work automatically and are capable of revealing concealed knowledge that 

online users are not aware of, especially with respect to the relationship among website 

features and phishing activities. This hidden knowledge, when combined with human 

experience, can result in an effective shield for protecting users from phishing 

(Abdelhamid, 2015). 

In this Chapter, we investigate the phishing problem and define it in a ML context. 

We then discuss common, traditional, strategies in addition to computerised techniques 

developed to combat phishing. More importantly, this Chapter thoroughly investigates 

ML anti-phishing techniques and critically analyses both their benefits and drawbacks. 
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Figure 5.1. Example of an early phishing attack (Blogonlymyemail.com) 

Specifically, we evaluate the eDRI model proposed in Chapter three on the hard 

problem of phishing detection in order to exhibit its applicability as an anti-phishing 

tool. Using real data, we compare eDRI with other common ML algorithms and in 

reference to different evaluation metrics.    

 

5.2 Phishing Background  

Phishing comes from the word “fishing,” in which the phisher throws a bait and 

awaits for potential users to take a bite. Phishing is not recent as an online risk, with its 

origin rooted in a social engineering method using telephones known as “phone 

phreaking” (Rader & Rahman, 2015). It was during the 1990s period when the internet 

community started to grow that phishing was originally observed as an online threat, 

especially in the United States (Basnet, et al., 2008).   

According to McFredies (2016), the first phishing incident was noticed in the mid-

1990s when phishers attempted to obtain registered online users’ account information 

from the internet provider America Online (AOL). Phishers during this era frequently 

utilised instant messages (IM) in AOL chat rooms or emails to reach users so that they 

would reveal their passwords (Figure 5.1 illustrates an example of an early phishing 

attack), which were sunsequently used by phishers to leverage the victims’ accounts and 

begin emailing spam to other online users. Obvioulsy, phishers realised that they could 
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further trick victims if the IMs and emails requested them to update their billing 

information. With this realisation, the attackers expanded their aim and using the same 

electronic means (IMs and emails) attempted to access other financial information from 

victims such as social security numbers, addresses, credit card information, etc.  

One of the most common beliefs that ordinary users have about phishing websites is 

that grammatical errors and typos are typical within these websites (Rader & Rahman, 

2015). This has misled users into believing that a website without grammatical errors 

must be trustworthy, which has proven not necessarily be true.   Phishers in today’s 

cyber world become more innovative and work systematically in groups sometimes 

even orchestrating phishing campaigns motivated by potential financial gains. In fact, 

phishers are continuously changing their spoofing methods based on the counterpart 

security measures taken by organizations, and recently they have directed their attention 

to the mobile commerce platform. This means that the profile of phishers has changed 

from egocentric purposes into more organized and serious cybercrime that keeps 

evolving, which makes it hard to detect. 

  

5.2.1 Phishing Process 

Phishing attacks are initiated through an email sent to potential users. Other ways a 

phisher may start an attack include Instant Messaging, online blogs and forums, short 

message services, peer to peer file sharing services, and social media websites 

(Abdelhamid, et al., 2014). We can summarise the phishing lifecycle as follows (see 

Figure 5.2): 

1) A link is sent using one of the aforementioned channels to potential victims.  

2) When clicked, the link will redirect potential victims to a malicious website.  

3) Users become vulnerable as they try to login using their credentials on the 

malicious website.  

4) Login credentials are then transferred to a server, or a key logger is installed into 

the user’s computing device.   

5)  The phisher can then utilise the credentials to perform additional cybercrimes.    
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Figure 5.2. Phishing life cycle (Abdelhamid et al., 2014) 

 

 5.2.2 Phishing as a Classification Problem  

Generally speaking, websites can be classified by hand-crafted methods based on 

certain features such as URL length, prefix_suffix, domain, sub_domain, etc. Initially, 

scholars in the area of online security (Aburrous et al., 2008; 2010b) developed different 

knowledge bases using their experience and expertise to distinguish phishing from 

legitimate websites. Rcently, there have been studies and proposals aiming at deriving 

intelligent rules to detect the fine line between legitimate and phishing websites using 

statistical analysis (Qabajeh and Thabtah, 2015; Mohammad et al., 2014b; Abdelhamid 

et al., 2014). For instance, Aburrous et al. (2010a) and Mohammad et al. (2014b) 

defined a number of hand crafted rules based on various website features using simple 

statistical analysis on websites (instances) collected from different sources including 

Phishtank and Yahoo directory (Phishtank, 2011). More advanced decision rules have 

been developed in Abdelhamid et al. (2014) in which the authors used further statistical 

analysis on a larger phishing dataset collected from varying sources.  

ML and DM have proved to be powerful data analysis tools in many application 

domains such as medical diagnosis, market basket analysis, weather forecasting and 

events processing, to cite some (Abdelhamid & Thabtah, 2014). This is due to the fact 

that ML and DM techniques usually reveal concealed meaningful information from 

large datasets so they can be utilised in management decisions related to development, 

planning, and risk management. Generally speaking, ML and DM can be seen as an 

automated and intelligent tool embedded within management information systems to 

guide decision making processes in both business and scientific domains. Common 
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tasks or problems that ML and DM handle are clustering, association rule discovery, 

regression analysis, classification, pattern recognition, time series analysis, trends 

analysis, and multi-label learning (Witten & Frank, 2005). 

One of the frequent task of ML is the forecasting of a target variable within datasets 

based on other available variables (Witten & Frank, 2005). This forecasting process 

occurs in an automated manner using a classification model, normally named the 

classifier, that is derived from a labelled training dataset. The goal of the classifier is to 

“guess” the value of the target variable in unseen data, referred to as the test dataset, as 

accurately as possible. This task description falls under the umbrella of supervised 

learning and is known as classification. Abdelhamid and Thabtah (2014) defined 

classification as the ability to “accurately” predict class attributes for a test instance 

using a predictive model derived from a training dataset. 

Since the problem of website phishing involves automatic categorisation of websites 

into a predefined set of class values (legitimate, suspicious, phishy) based on a number 

of available features (variables) then this problem can be considered a classification 

problem. To be more specific, the training dataset will consist of a set of predefined 

features and the class attribute and instances are basically the websites’ feature values. 

These instances can be extracted from different sources such as Phishtank and online 

directories. The aim will be to build an anti-phishing classifier that can predict the type 

of website based on hidden knowledge discovered from the training set features during 

the data processing phase. Usually the goodness of the classifier is measured using 

accuracy, which primarily relies on the correlations of the features and the class 

(Thabtah et al., 2016a). Figure 5.3 shows phishing as a classification problem from the 

ML prospective. As discussed before, phishing websites are dynamics and consequently 

it can modelled as a dynamic supervised learning classification problem. Therefore, an 

effective anti-phishing classifier should be adaptable to any new features observed in 

order to handle and manage the dynamic nature of the problem.   
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Figure 5.3. Phishing as a classification process 

 

5.3 Common Traditional Anti-Phishing Methods  

Since phishing causes serious breaching of user confidentiality, as well as 

organizations including government agencies, there have been different methods 

proposed to combat it.  These approaches can be categorized into three main groups:  

 Education and legal 

 Computerized using human-crafted methods 

 Intelligent ML methods 

In this section, we examine the literature on phishing and critically analyse different 

techniques based on the above categories. The focus, however, will be on the intelligent 

anti-phishing solutions because that is the aim of this PhD dissertation but also because 

it is our belief this will be the way forward in shielding the web from phishing threats as 

promising recent results confirm (Thabtah et al. 2016b; Nguyen et al. 2015; Lee et al. 

2015; Mohammad et al. 2014a; Jameel and George 2013; Khadi and Shinde 2013;  

Sheng et al. 2010). 
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5.3.1 Legal Anti-phishing Legislations  

Governments have been slow in responding and opposing started to oppose phishing. 

California State in the US was the first to issue anti-phishing legislation in 2005 

(InformationWeek, 2016). This legislation stated that it is unlawful to use any electronic 

means such as websites, emails, or any other methods to ask or solicit information from 

online users by claiming ones self as a business without the authority of that business. 

Other US States such as Texas have also introduced new cybercrime legislations that 

include phishing, and in 2005 the General Assembly of Virginia added phishing attacks 

to their list of computer crimes (General Assembly of Virginia, 2005). These new laws 

empowered companies such as America Online to file lawsuits in Virginia against 

phishers in 2006 (Pike, 2006). However, most US States have not yet designated laws 

for phishing and usually prosecute phishers using other computing crime laws such as 

fraud.  

At Federal level in US, lawmakers and congressional representatives have not passed 

anti-phishing legislation either. There were a few attempts between 2004 and 2006 

following the Anti-Phishing Act of 2004 to pass specific bills incriminating phishing 

and instigating tougher prison sentences, but these bills were stopped at the committee 

level in Congress. Nevertheless, federal law enforcement can incriminate phishers using 

other laws that are related to identity theft and fraud such as “18 U.S.C. section 1028” 

(Pike, 2006). Businesses have also joined the Government in fighting phishing. For 

example, in 2005 Microsoft filed over 115 lawsuits in Washington’s Western District 

Court accusing a single Internet user of utilising various deceptive methods to access 

some of the company’s users’ information (Pike, 2006). In mid-2006, the then president 

George W. Bush established a new cybercrime identity theft task force (Executive-

Order-13402, 2006), with a single goal: reduce the risks of cybercrime, especially 

phishing.  

The United Kingdom (UK) has followed the US by strengthening its legal system 

against severe cybercrimes, including fraud and identity theft. In 2006, the UK 

introduced the new Fraud Act, which increased prison sentences to up to ten-years for 

online fraud offences (BBC News, 2005). This same act prevents possession of a 

phishing website with the intent to deceive users and commit fraud. Further, Microsoft 
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decided to collaborate with other law enforcement agencies outside US to bring justice 

to phishers. In doing so, the company signed an agreement with the Australian 

government to train law enforcement agents in preventing phishing (Government of 

Australia, 2011). Also, in 2010 Canada introduced an Anti-spam Act that incriminates 

cybercrime and that aims to protect Canadian online consumers and businesses when 

globally trading (ClickDimensions, 2014).   

 

5.3.2 Educating Users: Simulated Training   

One of the easier, yet helpful, policies to oppose cybercrimes is to educate users on 

the ways employed to access their information. Users awareness of the circumstances 

around phishing will undoubtedly hep minimise this risk or stop it as early as possible. 

Unfortunately, most users are unaware of how phishing attacks start or how to recognise 

visually an untruthful website and differentiate it from one that is trustworthy 

(Mohammad et al., 2015). Moreover, basic security indicators and anti-phishing 

software counterparts are still vague for many online shoppers (Qabajeh & Thabtah, 

2015). All this contributes to phishing increase and, subsequently, motivate phishers to 

launch further attacks. A security survey conducted by Julie et al. (2007) revealed the 

lack of knowledge on cybercrimes, including phishing, held by online users, and that 

some security aware respondents to the survey were reluctant to use their financial 

information for payment purposes even within trustworthy websites. 

There have been a number of studies on educating people as to the severity of 

phishing. For example, Arachchilage and Love (2013) investigated whether mobile 

games can be a helpful method for raising awareness of phishing attacks. The authors 

evaluated learning curves of users who played with a mobile game about phishing 

developed by Arachchilage and Cole (2011), and assessed whether an interactive mobile 

platform is effective in educating users in contrast to traditional security training. A 

comparison of user responsiveness to phishing has also been conducted using the 

developed mobile game, along with a website designed by APWG. The results showed 

that users who played the anti-phishing mobile game were able to spot non-genuine 

websites with a higher rate of accuracy than other users who only used the APWG 

website. A number of organizations and research studies (Arachchilage et al. (2007); 
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Ronald et al. 2007) have adopted training to warn users of phishing, which involves 

sending participants simulated malicious emails from a genuine source to evaluate their 

vulnerability to phishing. Embedded training is another way to measure users’ 

vulnerability to phishing. This type of training often mimics primary daily business 

processes performed by employees by experimenting to measure a certain outcome 

(Arachchilage, et al., 2013). Based on a preliminary pilot study conducted on a limited 

number of students, Arachchilage et al. (2007) used embedded training methodology to 

measure phishing awareness at a University. The authors sent malicious emails from the 

administrator to participants without informing them of the training material content. 

These emails urged users to click on a link that would redirect them to a malicious 

website where they would input their login credentials.  This aim was directed at 

identifying the number of users who would actually click on the link. During the 

experiment, the user was interrupted immediately when he clicked the link and was then 

provided with the training material.  

 

5.3.3 User Experience: Anti-phishing Online Communities  

One of the simplest approaches to reducing the impact of phishing on online users 

and organisations is to build an anti-phishing community to monitor recent phishing 

activities and provide news to the different stakeholders. Users’ experiences are 

practical and based on real cases related to different types of phishing. Such efforts by 

users and organizations have resulted in new proactive online communities and data 

repositories. These accumulated and useful resources are of interest since they can be 

employed to study ways to make the Internet safer and free from phishing. 

The Monitoring and Takedown (MaT) approach enables individuals who recognise  

phishing activity to report it via public anti-phishing communities including APWG, 

PhishTank, Millersmiles, and Symantec among others (Jevans, 2003; PhishTank, 2011; 

Bright, 2011; Nahorney, 2011). These anti-phishing communities allow users to report 

phishing content and warn other users and organisations as well.  Users can also report 

phishing content to the Federal Trade Commission’s Complaint Department, becoming 

directly part of the campaign toward combating phishing. Many reputable companies 

also have an internet fraud department that allows users to report any fraudulent or 
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suspicious activity such as phishing. PhishTank was created in 2003 as a subsidiary of 

OpenDNS in order to provide the parent company, as well as the online community, 

with a phishing repository. This large collection of stored phishing websites has given 

computer security experts, users, researchers and business owners’ extensive 

information about phishing attacks and the features of their associated emails and 

websites. Another example of a good use of user experiences is Cloudmark, which is an 

alerting-based anti-phishing method with user rating system (Cloudmark, 2002). When 

a user is visiting a website and experiencing any kind of threat, they can then rate that 

website to alert other online users. Finally, Web of Trust (WOT) is another example of 

an anti-phishing approach based on the user feedback rating model (Web of Trust, 

2006).   

 

5.3.4 Discussion on Non Intelligent Anti-phishing Solutions  

Legislators in the US, UK and Canada, among others countries, have approved 

legislative bills that include serious jail sentences for incriminated phishers. This has 

been made clear in several high profile cases, especially in the US. Nevertheless, these 

legislative bills have not achieved a decrease of phishing attacks.  On the contrary, 

phishing has now become more severe than ever and businesses as well as individual 

users have suffered from substantial financial losses as a result. One of the primary 

reasons for legal actions not to be as effective as expected in minimising phishing is due 

to the fact that often a phishing website has a short life span (normally about two days), 

which helps the phisher to disappear quickly once the fraud has been committed, 

making law enforcement difficult.  

As previously mentioned, raising awareness of phishing risks and educating users 

has shown promising initial results (Ronald et al. 2007). Computer security scholars 

have adopted different ways to disseminate the seriousness phishing may cause to 

society, with Jevans (2003) and PhishTank (2011) using web-based material to teach 

novice users phishing fraud techniques; while others, such as Arachchilage et al. (2007), 

developing contextual and embedded trainings based on simulated phishing emails 

coming from genuine sources; or educational material on phishing based on mobile 
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games in order to increase the motivation factor among (Arachchilage et al. 2009; 

2013)..  

Even though educating users may positively impact the global efforts of combating 

phishing, this approach demands high costs and requires users to be equipped with 

computer security knowledge. Large organizations and governments are periodically 

investing in the development of anti-phishing materials in both hard and soft forms as 

well as websites and mobile applications. However, since phishing techniques keep 

changing/evolving, small to medium enterprises might not have the resources large 

organisations have to enable them to invest in their users’ education.  Therefore, a large 

portion of the online community realistically cannot afford the continuous additional 

costs to keep updating current anti-phishing material. Furthermore, phishing techniques 

are becoming more sophisticated because of the group efforts of phishers who employ 

systematic attack strategies, which make it harder for even security experts and 

specialised law enforcement agents to keep their skills updated. This makes ordinary 

users vulnerable, even if they were equipped with basic knowledge about phishing. 

Thus, more advanced, cheaper and intelligent approaches are needed for their 

implementation both within educational and legislative solutions to further reduce 

phishing attacks. We have seen thoughtful attempts that evolved from user experiences, 

user ratings, and users’ social networking (such as Phishtank, Cloudmark, and APWG 

among others helping novice users and enterprises avoid falling prey to phishing). 

Effectiveness of these user community based approaches relies mainly on the following 

factors: (1) User experience; (2) User knowledge; (3) User honesty; and (4) 

Accessibility and validity of the user community’s website data . Unfortunately, these 

factors are difficult to measure and validate, thus relying on user experience and 

knowledge alone necessitates carful care and accuracy. We hypothesise that by “only” 

considering users’ experience in judging a websites’ legitimacy is not enough to combat 

phishing, although it can be a supporting approach to a more advanced intelligent 

solution based on ML/DM. 
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5.4 Computerised Anti-Phishing Techniques  

There has been development of anti-spam software tools that can block suspicious 

emails, however, these programs constantly block a large number of genuine emails and 

classify them as junk emails (Mohammad, et al., 2015). Emails misclassified as spam 

are simply false positive instances. Thus, one of the ultimate goals of the computerised 

anti-phishing tool is to reduce false positives and increase true positives so users can be 

confident of their mailbox’s filter results without having to manually check their junk 

email folder. 

 

5.4.1 Databases (Blacklist and Whitelist) 

A database driven approach to fight phishing, called blacklist, was developed by 

several research projects  (Site Advisor, 2006; Sheng, et al., 2009; Google SB, 2010). 

This approach is based on using a predefined list containing domain names or URLs for 

websites that have been recognised as harmful. A blacklisted website may lose up to 

95% of its usual traffic, which will hinder the website’s revenue capacity and eventually 

profit (Aburouse et al., 2010b). This is the primary reason that web masters and web 

administrators give great attention to the problem of blacklisting.  According to 

Mohammad et al. (2015), there are two types of blacklists in computer security: 

 Domain/URL Based.  These are real time URL lists that contain malicious 

domain names and normally look for spam URLs within the body of emails.   

 Internet Protocol Based.  These are real time URL or domain server blacklists 

that contain IP addresses who, in real-time, change their status. Often, mailbox 

providers, such as Yahoo for example, check domain server blacklists to 

evaluate whether the sending server ( source ) is run by someone who allows 

other users to send from their own source. 

Users, businesses, or computer software enterprises can create blacklists. Whenever 

a website is about to be browsed, the browser checks the URL in the blacklist. If the 

URL exists in the blacklist, a certain action is taken to warn the user of the possibility of 

a security breach.  Otherwise, no action will be taken as the website’s URL is not 

recognized as harmful. Currently, there are a few hundred blacklists which are 
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publically available, among which we can mention the ATLAS blacklist from Arbor 

Networks, BLADE Malicious URL Analysis, DGA list, CYMRU Bogon list, 

Scumware.org list, OpenPhish list, Google blacklist, and Microsoft blacklist (Return 

Path 2016). Since any user or small to large organisation can create blacklists, the 

currently public available blacklists have different levels of security effectiveness, 

particularly with respect to two factors: 

1) Times the blacklist gets updated and its consistent availability.  

2) Results quality with respect to accurate phishing detection rate. 

Marketers, users, and businesses tend to use Google and Microsoft blacklists when 

compared with other publically available blacklists commonly use because of their 

lower false positive rates. A study by Sheng et al. (2009) analysing blacklists concluded 

that they contain on average 47% to 83% phishing websites. 

Blacklists often are stored on servers, but can also be available locally in a computer 

machine as well (Mohammad et al., 2014b). Thus, the process of checking whether a 

URL is part of the blacklist is executed whenever a website is about to be visited by the 

user, in which case the server or local machine uses a particular search method to verify 

the process and derive an action. The blacklist usually gets updated periodically. For 

example, Microsoft blacklist is normally updated every nine hours to six days, whereas 

Google blacklist gets updated every twenty hours to twelve days (Mohammad et al., 

2015). Hence, the time window needed to amend the blacklist by including new 

malicious URLs, or excluding a possible false positive URLs, may allow phishers to 

launch and succeed in their phishing attacks. In other words, phishers have significant 

time to initiate a phishing attack before their websites get blocked This is an obvious 

limitation of using the blacklist approach in tracking false websites (Abdelhamid, et al., 

2014). Another study by APWG revealed that over 75% of phishing domains have been 

genuinely serving legitimate websites and when blocked imply that  several trustworthy 

websites will be added to the blacklist, which causes a drastic reduction in the website’s 

revenue and hinder its reputation (Aaron & Manning 2014).  

After the creation of blacklists, many automated anti-phishing tools normally used 

by software companies such as McAfee, Google, Microsoft, were proposed. For 

instance, The Anti-Phishing Explorer 9, McAfee Site Advisor, and Google Safe Base 
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are three common anti-phishing tools based on the blacklist approach. Moreover, 

companies such as VeriSign developed anti-phishing internet crawlers that gather 

massive numbers of websites to identify clones in order to assist in differentiating 

between legitimate and phishing websites. 

There have been some attempts to look into creating whitelists, i.e. legitimate URL 

databases, in contrast to blacklists (Chen & Guo, 2006). Unfortunately, since the 

majority of newly created websites are initially identified as “suspicious,” this creates a 

burden on the whitelist approach. To overcome this issue, the websites expected to be 

visited by the user should exist in the whitelist. This is sometimes problematic in 

practise because of the large number of possible websites that a user might browse. The 

whitelist approach is simply impractical since “knowing” in advance what users might 

be browsing for might be different to those actually visited during the browsing process. 

Human decision is a dynamic process and often users change their mind and start 

browsing new websites that they initially never intended to. 

One of the early developed whitelist was proposed by (Chen & Guo, 2006), which 

was based on users’ browsing trusted websites. The whitelist monitors the user’s login 

attempts and if a repeated login was successfully executed this method prompts the user 

to insert that website into the whitelist. One clear limitation of Chen and Guo’s method 

is that it assumes that users are dealing with trustful websites, which unfortunately is not 

always case.  

Phishzoo is another whitelist technique developed by Afroz and Greenstadt (2011). 

This technique constructs a website profile using a fuzzy hashing approach in which the 

website is represented by several criteria that differentiate one website from another 

including images, HTML source code, URL, and SSL certificate. Phishzoo works as 

follows: 

1) When the user browses a new website, PhishZoo makes a specific profile for 

that website. 

2) The new website’s profile is contrasted with existing profiles in the PhishZoo 

whitelist.  

 If a full match is found, the newly browsed website is marked trustful.  

 If partly matching, then the website will not be added since it is suspicious  
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 If no match is found but the SSL certificate is matched, PhishZoo will 

instantly amend the existing profile in the whitelist.  

 If no match is found, then a new profile will be created for the website in the 

whitelist. 

Recently, Lee et al. (2015) investigated the personal security images whitelist 

approach and its impact on internet banking users’ security. The authors utilised 482 

users to conduct a pilot study on a simulated bank website. The results revealed that 

over 70% of the users during the simulated experiments had given their login 

credentials despite their personnal security image test not being performed.  Results also 

revealed that novice users do not pay high levels of attention to the use of personal 

images in ebanking, which can be seen as a possible shortcoming for this anti-phishing 

approach. 

 

5.4.2 Intelligent Anti-Phishing Techniques based on DM      

Since phishing is a typical classification problem, ML and DM techniques seem 

appropriate for deriving knowledge from website features that can assist in minimising 

the problem. The key to success in developing automated anti-phishing classification 

systems is a website’s feature. Since there are a tremendous number of features linked 

with a website, a necessary step to enhance the predictive system performance is to pre-

process the set of features in order to pick up the “most” effective. Feature effectiveness 

can be measured using different computational intelligence methods such as 

information gain, correlation analysis, and chi-square among others (Quinlan, 1979; 

Hall, 1999; Liu & Setiono, 1995). 

Once an initial features set is chosen, the intelligent algorithm can be applied on the 

selected features to come up with the predictive system. There are many ML and DM 

algorithms for classification that have been developed by scholars in the last two to 

three decades as covered in Chapter 2. Most of these algorithms use one of the 

following major classification approaches in deriving their predictive systems: 

1) Decision trees (ID3, C4.5 and successors)(Quinlan, 1993). 
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2) Probabilistic models (Naïve Bayes, Bayesian Network and successors)(Duda & 

Hart, 1973; Friedman et al., 1997). 

3) Rule-based classification 

a. Associative classification (AC) 

i. Classification based Association (CBA and successors) (Liu et 

al., 1998). 

ii. Classification based on Multiple Association (CMAR and 

successors) (Li et al., 2001). 

iii. Multiclass Classification-based Association (MCAR and 

successors) (Thabtah et al., 2005). 

b. Rule induction such as FOIL, RIPPER and successors (Quinlan, 1979; 

Cohen, 1995).  

c. Covering or greedy, such as PRISM (Cendrowska, 1987) and eDRI 

(Thabtah, et al., 2016).  

4) Neural Networks (NN) methods and their successors (Grossberg, 1988).  

5) Support Vector Machine (SVM) (Joachims, 1999) 

6) Fuzzy Logic (FL) (Zadeh, 1965)    

7) Boosting and paging methods, and their successors (Freund & Schapire, 1997). 

8) Search methods such as Genetic Algorithms (GA) (Goldberg, 1989) 

Among the aforementioned classification approaches, rule-based classification 

systems are more suitable as an anti-phishing tool because: (1) their proven merits in 

predicting target values in many domains, including medical diagnoses, stock market 

analysis, email classification, text categorization, etc; and (2) the content of rule-based 

classification systems is simply human knowledge that novice users can easily 

understand and apply when necessary. Often the knowledge is formed as “If-Then” 

rules in which the antecedent of the rule (“If” part) consists of the conjunction of 

attribute values (Feature values) and the consequent of the rule (“Then” part) containing 

the target attribute value (Website type). 

The rest of this section critically analyses intelligent anti-phishing attempts based on 

ML. We show how these approaches derive a classification anti-phishing system along 

with their benefits and weaknesses. 
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5.4.2.1 Decision Trees 

Fette et al. (2007) explored email phishing utilising the C4.5 decision tree classifier 

among other methods including Random Forest, SVM and Naïve Bayes. As a result, a 

new Random Forest method called "Phishing Identification by Learning on Features of 

Email Received" (PILFER) was developed. Experiments on a set of 860 phishy and 695 

ham emails were conducted. Various features for distinguishing phishing emails 

identified included: IP URLs, time of space, HTML messages, number of connections 

inside the email, and JavaScript. The authors claim that PILFER can be improved 

towards grouping messages by joining all ten features discovered in the classifier apart 

from "Spam filter output". 

 

5.4.2.2 Rule Induction 

 Mohammad et al. (2014b) investigated a number of rule induction algorithms on the 

problem of website phishing classification. The authors compared RIPPER, C4.5 

(Rules), CBA, and PRISM on a security dataset they collected containing 2500 

instances and 16 features. A special hand crafted rule to collect the data was developed 

by the authors based on simple statistical analysis performed on the initial dataset’s 

features. Experiments of the four rule-based classification methods showed that there 

are eight effective features that can be employed by the classification algorithm in 

combating phishing:  SSL and HTTPS, Domain-age, Site-traffic, Long-URL, Request-

URL Sub-domain, Multi—sub-domain, Suffix-prefix, and IP-address. 

Khadi and Shinde (2013) studied the problem of email-based phishing and proposed 

a potential solution based on combining a RIPPER classifier with fuzzy logic. The role 

of fuzzy logic is to pick the main features of the email and rank them based on a 

probability score. Meanwhile, the role of RIPPER is to automatically use these features 

to classify the type of emails as ham or phishy. Two components of the email were 

utilized by Khadi and Shinde: the email message (spelling errors, embedded link) and 

URL (IP address, Length, Long URL, Suffix_Prefix, Crawler URL, Non matching 

URL). Moreover, very limited data consisting of just 100 instances from phishtank was  
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in experiments involving the WEKA software tool. No comparison with other fuzzy 

logic or rule-based classifications was conducted by the authors. Results showed that 

there are twelve rules generated by RIPPER from the dataset with an 85.4% prediction 

rate. 

Aburrous et al. (2010a) investigated rule induction methods to seek their 

applicability for categorising websites based on phishing features. Website features 

were initially manually classified into six criteria as described in an earlier report on 

phishing by Aburrous et al. (2008). Using WEKA, a number of experiments with four 

classification algorithms (RIPPER, PART, PRISM, C4.5) were conducted against 1006 

instances downloaded from Phishtank. The focus of the experiments was the 

classification accuracy of the classifiers produced.  Results revealed that rule induction 

is a promising approach because it was able to detect, on average, 83% of phishing 

websites. The authors suggested that results obtained could be further enhanced if a 

careful feature selection were employed.  

 

5.4.2.3 Associative Classification (AC) 

The two AC methods CBA and MCAR have been evaluated on a Phishtank dataset 

to seek their applicability in cracking phishing (Liu et al., 1998; Thabtah et al., 2005; 

Abourrous et al., 2010b). Abourrous et al. (2010b) used a dataset consisting of over 

1000 instances with 27 different features and applied CBA, MCAR, and four other rule-

based classifiers using the WEKA DM tool. The aim was to assist security managers 

within organisations by building an intelligent anti-phishing tool within browsers that 

can detect phishing as accurately as possible. Experimental results of the six ML 

algorithms revealed that AC methods generated more rules than the rest of the 

algorithms, yet had higher predictive classifiers. More specifically, the AC systems 

produced showed high correlations among features linked with three major criteria: 

URL, Domain Identity, and Encryption.   Nevertheless, the massive number of rules 

derived by MCAR and CBA may overwhelm end-users since they might not be able to 

control the anti-phishing system. Furthermore, the authors did not implement the AC 

rules within a browser to evaluate its real performance, which does not facilitate 

measuring  the success or failure of their classification systems. 
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Recently, more domain specific AC anti-phishing systems have been created 

(Abdelhamid et al., 2014; Abdelhamid, 2015). These new models take into account not 

only two class values of the phishing problem (legitimate, phishy) but also considers a 

harder case to detect: the “suspicious” class label. Instances that cannot be fully classes 

as phishy nor as legitimate are very hard to detect by typical ML algorithms, thus 

increasing their false positive rates. Abdelhamid et al. (2014) and Abdelhamid (2015) 

have therefore enhanced current intelligent classification systems by including two 

distinct advantages: (1) extending the phishing problem to include suspicious cases, 

making it more realistic; and (2) proposing a new multi-label learning phase that can 

discover disjunctive in addition to conjunctive rules. These additional disjunctive rules 

are tossed out by existing AC methods. This new multi-label phase enhances predictive 

power and provides more useful knowledge to the end-user. The authors used a dataset 

that has 16 features and over 1500 instances, comparing the performance of their 

classifiers with other rule-based classifiers with respect to the knowledge derived and its 

accuracy. The authors employed the chi-square testing method to measure the features 

goodness and discriminate among features with respect to their impact on phishing. 

Processed data results showed high competitive performance of the new multi-label 

associative classifiers when compared with CBA, MCAR, rule induction, and decision 

trees.    

 

5.4.2.4 Neural Network (NN) 

One of the common ways to train a NN is trial and error (Mohammad et al., 2014a). 

However, this methodology has been criticised because of the time spent to tune the 

parameters and the requirement of an available domain expert. Thabtah et al. (2016b) 

proposed a NN anti-phishing model based on self-structuring the classification system 

rather than using trial and error. The algorithm proposed by the authors updated several 

parameters, like the learning rate, in a dynamic way before adding a new neuron to the 

hidden layer. The process of updating these NN features is performed during the 

building of the classification model and based on the network environment, behaviour 

of the desired error rate, and the computed error rate at that point. The dynamic NN 

model was applied to detect phishing on a large dataset from UCI containing over 
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11000 websites (Mohammad et al., 2015b). Experiments using different epoch sizes 

(100, 200, 500, 1000) have been conducted, and the results obtained exhibited better 

predictive systems when compared to Bayesian Network and Decision Trees.  

The ANN Back Propagation algorithm (Rumelhart, et al., 1986) was investigated on 

a security dataset concerning website phishing by Mohammad et al. (2013). The authors 

collected a dataset with over 2000 instances from different legitimate and phishing 

sources. Processing the dataset, they tried to measure the correlation between the 

features and target attributes using basic univariate statistical analysis (frequency of 

features values and the target attribute values). Finally, they applied the Back 

Propagation ANN algorithm to derive anti-phishing models. The results of the study 

indicated that ANN is a promising approach for combatting phishing, particularly since 

the results showed increased accuracy of the models generated from the Back 

Propagation algorithm when compared with decision trees and probabilistic. 

Mohammad et al. (2014a) have developed an anti-phishing NN model that relies on 

constantly improving the learned predictive model based on previous training 

experiences, Since phishers continuously update their deception methods, new features 

become apparent while others become insignificant. In order to cope with these 

changes, the authors proposed a self-structuring NN classification algorithm that deals 

with the vitality of phishing features. The algorithm employs validation data to track the 

performance of the constructed network model and make the appropriate decision based 

on results obtained against the validation dataset. For instance, when the achieved error 

against the network is lower than the minimum achieved error, the algorithm saves the 

network’s weights and continues the training process. However, when the achieved 

error is larger than the minimum achieved error so far, the algorithm continues the 

training process without saving the weights. Other important network parameters are 

also updated when necessary during the building of the classification model without 

waiting until the model has been entirely built. Results obtained against a phishing 

dataset of thirty features and over 10000 instances showed that the self-structuring NN 

model is able to generate anti-phishing models more accurately than traditional 

classification approaches such as C4.5 and probabilistic approaches.  
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Feed Forward NN (FFNN) was applied on an email phishing classification problem 

by Jameel and Georg (2013). Basic implementation of a multilayer FFNN based on 

Back Propagation was used to differentiate suspicious from legitimate emails. Eighteen 

binary features were extracted from the email (header and HTML body) and made 

available as the training dataset attributes. These features were given values based on 

human rules developed by security domain experts. To derive the NN models, 6000 

emails were used. The results obtained showed that FFNN is able to categorise emails 

with high speed and with an error rate below 2%. However, the authors have not yet 

embedded their FFNN into browsers for live testing. 

In 2007, an experimental study contrasting five ML algorithms on the problem of 

classifying emails as ham or suspicious was conducted by Abu-Nimeh et al. (2007). The 

authors chose Classification and Regression Trees (CART), NN, Random Forests (RF), 

Bayesian Additive Regression Trees (BART), and Logistic Regression (LR) to measure 

the most successful approaches in email phishing detection. A training dataset 

consisting of 2889 emails and 43 email’s features was used.   To produce the results, the 

testing method employed was ten-fold cross validation and the evaluation measures 

used were precision, recall, and harmonic mean. Results revealed that RF achieved a 

lower error rate while NN generated the highest error rate among the tested classifiers. 

Moreover, despite RF generating the highest predictive classifiers, it derived the least 

false positive rate among all contrasted algorithms. The authors suggested though that 

more carefully chosen features may improve the performance of the anti-phishing email 

tool. 

 

5.4.2.5 Support Vector Machine (SVM) 

Proposed by Pan and Ding (2006), the SVM classification method evaluates the 

discrepancy between a website’s identity, its HTTP transactions, and structural features.  

The anti-phishing solution proposed contains two layers:     

o Website Identity: The set of characters appearing inside the domain name.  

o Structural Features Classifier: Features that are related to the website identity and 

HTTP transactions. 
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Once a new website identity and its structural features are captured (Abnormal URL, 

Abnormal anchors, Server Form Handler, Abnormal certificate in SSL, Abnormal DNS, 

Abnormal cookies), then a SVM algorithm is trained on a historical data set consisting 

of the same features in order to derive the new website type.  Experimental results on 

six features using the proposed SVM indicated that the first helps toward increasing the 

detection rate since malicious websites are not correlated. Furthermore, the SVM model 

achieved just over 83% prediction rate, and therefore more investigation is needed into 

the feature selection phase by including other features that could improve the 

performance of the classifier. 

  

5.4.2.6 Fuzzy Logic  

 Phishing in electronic banking (Ebanking) applications has been investigated by 

Aburrous et al. (2008) utilizing Fuzzy Logic. A simulated phishing email was sent by 

the authors with the help of the security manager at Jordan Ahli Bank to measure 

security indicators of phishing among a sample of 120 employees after obtaining the 

necessary authorization (www.ahlionline.com.jo).  The email urged the chosen 

employees to reactivate their accounts by logging in because server maintenance 

conducted the previous two days required account reactivations. Shocking results were 

obtained: 37% of the targetted employees submitted their credentials without 

investigation, of which 7% were Information Technology employees. The authors’ goal 

with the simulated email was to determine features that users may look for inside the 

email when they suspect phishing to be used within a FL system to help in 

differentiating types of email. 

 FL has been used as an anti-phishing model to help classify websites into legitimate 

or phishy in Aburrous et al. (2008). The authors claimed that FL could be effective in 

identifying phishing activities because it provides a simple way of dealing with intervals 

rather than specific numeric values. Their proposed FL classification model was built 

manually to categorise websites using the six criteria listed in Table 5.1. Each of those 

criteria contains a number of phishing indicators as described in the same table. Each 

feature in the dataset was assigned three possible values by the authors: Phishy, 
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Table 5.1: Phishing Features per category (Aburrous, et al., 2008) 

Criteria N Phishing Indicators 
 

URL    

1 IP address
2 Abnormal request URL 

3 Abnormal URL of anchor 

4 Abnormal DNS record 

5 Abnormal URL 

 

Encryption 

1 Using SSL certificate (Padlock Icon) 

2 Certificate authority 

3 Abnormal cookie 

4 Distinguished names certificate 

Source Code   1 Redirect pages
2 Straddling attack 

3 Pharming attack 

4 OnMouseOver to hide the Link 

5 Server Form Handler (SFH) 

Page Style & Contents 1 Spelling errors
2 Copying website 

3 Using forms with Submit button 

4 Using pop-ups windows 

5 Disabling right-click 
Web Address   1 Long URL address

2 Replacing similar char for URL 
3 Adding a prefix or suffix 
4 Using the @ Symbol to confuse 
5 Using hexadecimal char codes 

Human   1 Emphasis on security 

2 Public generic salutation 

3 Buying time to access accounts 

 

Genuine, and Doubtful.  Limited results indicated that there are two effective indicators 

to distinguish phishiness in websites: Domain Identity and URL. 

  A fuzzy based ANN model was proposed in 2015 by Nguyen et al. (2015) to 

classify websites based on a smaller set of phishing features related to the website’s 

URL (PrimaryDomain, SubDomain, PathDomain) and its rank (PageRank, AlexaRank, 

AlexaReputation). The proposed fuzzy ANN model does not use any rules set, rather it 

employs a computational function to split data instances (websites) into “genuine” and 

“non-genuine” categories. Their model was tested against 21600 websites from 

legitimate and phishing sources such as Phishtank and DMOZ. They also compared the 
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generated results with that of Aburrous et al. (2010a) and Zhang and Yuan (2008). It 

was discovered that their fuzzy NN model was able to slightly enhance the phishing 

detection rate. 

 

5.4.2.7 CANTINA Term Frequency Inverse Document Frequency 

Approach  

Carnegie Mellon Anti-phishing and Network Analysis Tool (CANTINA) is a 

content based anti-phishing method that determines suspicious websites using the 

statistical measure of Term Frequency Inverse Document Frequency (TF-IDF). Term 

Frequency (TF) is a statistical formula that measures keyword significance in a 

document while Inverse Document Frequency (IDF) measures the importance of that 

keyword across a large collection of documents (Witten & Frank, 2005). CANTINA 

evaluates the website content (links, anchor tags, forms tags, images, text, etc) for TF-

IDF to produce a lexical signature of the website. This signature (top ranked TF-IDF 

key words) will be passed into the search engine to seek their rank in domain names and 

decide the type of the website. The description of the CANTINA based classification 

process is as follows: 

1. Parse the webpage. 

2. Compute the TF-IDF for the common terms of the website.  

3. Select the top five terms according to the computed scores of all TF-IDF terms.  

4. Add the top five terms to the URL to locate the lexical signature. 

5. Input the lexical signature into a search engine. 

6. Check whether the domain name of the current website matches the domain names of 

the top N search results (often N=30). 

7. Return “Legitimate” when there is a match or “Phishy” when there is no match. 

When the search results in an empty set, the current website is classified as “phishy”. To 

overcome the “no results” problem the authors merged TF-IDF with other content 

features such as “IP Address,” “domain age.” “suspicious Images,” “suspicious Link,”  

and “suspicious URL.”   
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Table 5.2 Common recent anti-phishing methods based on ML 

Method name  ML technique  Reference  
Dynamic rule induction  Rule induction learning  Qabajeh et al., 2014 
Enhanced Dynamic rule induction Rule induction and Covering approaches  Thabtah et al., 2016 
Classification based association  AC Aburrous, et al., 2010 
Multi-label Classifier based 
Associative Classification 

AC  Abdelhamid, et al., 2014 

Self-structuring neural network NN Mohammad, et al., 2014 
Neural Network trained with Back-
Propagation 

NN Mohammad, et al., 2013 

Feed Forward Neural Network NN Jameel & George, 2013 
Fuzzy DM  Fuzzy logic  Aburrous, et al., 2008 
Fuzzy DM  Fuzzy logic Khadi & Shindi, 2014 
PILFER Decision tree Fette, et al., 2007 
Page classifier SVM  Pan & Ding, 2006 
CANTINA Term frequency and inverse document 

frequency 
Sanglerdsinlapachai & 
Rungsawang, 2010 

Biased SVM, LIBSVM,  ANN, 
Self-Organizing Map 

NN, SVM and other ML techniques  Basnet, et al., 2008 

Sanglerdsinlapachai and Rungsawang (2010) have used CANTINA TF-IDF, and 

added a few more features such as “Forms” and “Top pages’ similarity linked with the 

domain,” and removed features such as “domain age” and “known images.” A dataset 

consisting of 200 websites was used in the experiments, and three DM methods were 

applied to the dataset. Results obtained, despite being limited, revealed that the reduced 

features set maintained a similar detection rate with that of the CANTINA features set. 

Moreover, adding the new features slightly enhanced the detection rate for most of the 

learning methods considered in the experiments. 

Table 5.2 shows a brief summary of the common anti-phishing approaches that are 

based on automated learning along with the name of the method, the learning 

approached used, the first author, and their reference details. 

 

5.5 Phishing  Data Experimental Results 

5.5.1 Experiments Settings   

In deriving the predictive models, the ten-fold cross validation procedure has been 

adopted to compute the evaluation measures while constructing the classifiers. As 

discussed earlier for the UCI data experimental settings (Chapter 4) all experiments 

were run on a Core i5 machine with 3.1 GHz processor and 8.0 GB RAM. The 
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minimum frequency and rule strength thresholds for eDRI were set in all experiments to 

1% and 50%.  The same classification algorithms used in Section 4.5 have been utilised 

in the phishing data experiments, including new classic non-rule based classification 

algorithms given the specifics of the phishing problem at hand. To be precise, we 

extended the algorithms to include probabilistic Bayes Net, SVM based on Sequential 

Minimal Optimization (SVM-SMO), and Simple Logistic (Bouckaert, 2004; Platt, 

1998; Sumner et al., 2005). This is in order to evaluate the predictive power as well as 

the model content on the specific problem of website phishing classification. Another 

aim of the set of experiments is to show the advantages and limitations of the proposed 

eDRI algorithm when compared to other ML algorithms and rule classification 

algorithms used to detect phishing websites.  

We have conducted two major experiments: one that does not consider feature 

filtering and one with feature filtering. Correlation Feature Set (CFS) filtering method 

was chosen due to the fact it reduces feature-to-feature correlation and maximises 

feature-to-class correlation (Hall, 1999). As a matter fact, CFS usually reduces the 

dimensionality of the input dataset significantly when compared with other known 

filtering and wrapping methods, such as Information Gain and Chi-Square, without 

drastically hindering the predictive model’s performance. We also verified the filtering 

results by calculating the information gain scores per variable in the phishing data.  The 

foundation of the experimental comparisons is as follows: 

1) Predictive model content for decision makers, at least for rule based classifiers. 

1) Predictive power measured in error rate (%). 

2) Classifier size measured by the available number of rules. 

3) Runtime measured by the time taken to construct the predictive models in ms. 

4)  Rule coverage by taking into account the number of instances covered by the 

rule and the available number of items in the rule's body (rule's length), as well as 

the earlier introduced two measures ARL and WARL (Chapter 4). 

5) Number of data samples scanned to generate the classifier, to measure the 

increase and decrease of search space by eDRI when compared to other Covering 

algorithms such as PRISM. 
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Table 5.3: Sample of twelve websites from the dataset and for eight features 

IP 

address 

URL 

Length 

Shortening 

Service 

@ 

symbol  HTTPS 

Request 

URL 

URL of 

Anchor 

Links in 

Tags 

Class 

(1‐ Legitimate, 

 ‐1 Phishy) 

‐1  1  1  1  ‐1  1  ‐1  1  ‐1 

1  1  1  1  ‐1  1  0  ‐1  ‐1 

1  0  1  1  ‐1  1  0  ‐1  ‐1 

1  0  1  1  ‐1  ‐1  0  0  ‐1 

1  0  ‐1  1  1  1  0  0  1 

‐1  0  ‐1  1  ‐1  1  0  0  1 

1  0  ‐1  1  1  ‐1  ‐1  0  ‐1 

1  0  1  1  ‐1  ‐1  0  ‐1  ‐1 

1  0  ‐1  1  ‐1  1  0  1  1 

1  1  ‐1  1  1  1  0  1  ‐1 

1  1  1  1  1  ‐1  0  0  1 

1  1  ‐1  1  1  1  ‐1  ‐1  ‐1 

 

5.5.2 Data Description and Features  

The size of the security dataset includes more than 11050 examples, each one 

representing a website that can be either legitimate or phishy. The majority of existing 

features are either binary or multi value (ternary). Available website features in the 

dataset were extracted using a PHP script that was embedded in the web browser and 

then applied on Phishtank and legitimate websites between the middle of 2012 and late 

2015. The data instances have been collected from the Millersmiles and Phishtank 

repositories (Bright 2011; PhishTank, 2011).  

Before collecting the websites, a hand crafted rule was designed and then coded in 

PHP for each feature. For example, for the IP Address, a rule was designed that maps a 

website to phishy class when the IP address appears in the URL. Another rule examines 

URL length, and assigns a website phishy status when the URL length exceeds 75 

digits. Further details on the complete description of features and their hand crafted 

rules can be found in Mohammad et al. (2015). 
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Table 5.3 shows twelve sample websites with only eight features of the dataset for 

presentation purposes. The possible values (-1, 1, 0) correspond to phishy, legitimate, 

and suspicious values. Three features appearing in Table 5.3 are linked with ternary 

values, URL_Length, URL_of_Anchor, and Links in Tags while the rest are assigned 

binary values (1, -1).  The last column in the table represents the class and is based on 

the twelve sample websites; four identified legitimate websites and eight phishy. Class 

values have been assigned based on the possible feature values per website and using 

the hand crafted feature rules developed in Mohammad et al. (2015) as explained above. 

 

5.5.3 Phishing Data Results  

Figure 5.4 shows the error rate generated by the rule-based predictive models 

and traditional classification algorithms against the phishing dataset.  It is obvious that 

decision tree algorithms and eDRI produced the highest predictive models in regards to 

accuracy, and both outperformed the remaining classifiers. Particularly, eDRI achieved 

0.83%, 4.79%, 4.79%, 0.69, 0.07%, 0.06% and 1.49% higher percentages of accuracy 

than Ridor, OneRule, ConjunctiveRule, Bayes Net, SVM-SMO, and Ada Boost 

algorithms, respectively.  Only the C4.5 and PART algorithms outperformed eDRI on 

the phishing dataset, higher by 2.20% and 3.09% respectively, yet generated far more 

rules than eDRI (see Figure 5.6). The increase in the accuracy by C4.5 and PART was 

due to the fact that these algorithms utilise information gain metrics to choose the root 

variable in a repetitive manner.  Since we have several variables with ternary values in 

the input dataset, when these variables are evaluated by decision tree algorithms a 

branch is made and each path from the root node to any leaf denotes a rule. Therefore, 

models generated by C4.5 and PART on the phishing dataset are very large with respect 

to the number of rules derived when compared with the remaining classifiers, which 

may limit their use in real domain applications including the dealt with here: phishing.  
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Figure 5.4  The One error rate (%) of the considered algorithms on the phishing dataset   
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The fact that eDRI was able to achieve consistently lower error rates than powerful 

classic algorithms such as Naïve Bayes, SVM-SMO, and Simple Logistic as well as 

rule-based classfiers such as OneRule, Ridor, Conjunctive Rule, and PRISM, is clear 

evidence that the eDRI algorithm learning strategy has improved the classifier’s 

predictive power. In fact, the ability to limit the use of the default class by eDRI has 

increased the overall accuracy of the classifier. Despite the increased accuracy rate by 

the C4.5 and PART algorithms, they discovered more rules than their counterparts. To 

be precise, the PART algorithm extracted 130 and 144 additional rules more than eDRI 

and RIDOR, respectively. C4.5 was worse, having generated from the phishing dataset 

268 and 258 more rules than eDRI and RIDOR algorithms, respectively. These massive 

classifiers may slightly increase classification accuracy yet are of no practical use for 

decision makers since they are hard to understand, maintain, and manage.   In other 

words, the additional knowledge may contribute to increase C4.5 and PART predictive 

performance, but results in uncontrollable classifiers that may overwhelm end-users. 

Overall, classification algorithms that derived rule-based classifiers other than C4.5 and 

PART, more specifically eDRI and RIDOR, were able to produce predictive models 

with good levels of accuracy and maintainable sets of rules.  
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Table 5.4: Phishing features derived by Correlation Features Set filtering method along 
with their information gain scores 

Phishing Feature Name Information Gain Score 
 
 

Prefix_Suffix 0.1230 

having_Sub_Domain 0.1090 
SSLfinal_State 0.4994 

Request_URL 0.0460 

URL_of_Anchor 0.4770 

Links_in_tags 0.0470 

SFH 0.0370 

web_traffic 0.1145 

Google_Index 0.0110 

Phishing fetaures in the input dataset were assessed to determine the smallest set of 

effective phishing features. Table 5.4 displays the top features after applying the CFS 

filtering method, and the results were verified based on information gain scores. Nine 

vital features for phishing detection were chosen using the CFS and information gain 

filtering methods. The best scored feature was SSL_Final_State followed by 

URL_Of_Anchor. As a result, it was decided to run the classification algorithms and 

derived predictive models from the nine feature sets resulting after application of the 

CFS filtering method. All remaining features are insignificant to the class variable in the 

dataset, thus having a limited effect on phishing detection, and  therefore they have been 

ignored. 

 

Figure 5.5 shows the error rate (%) results of all considered algorithms against 

the top nine features listed in Table 5.4.  These figures indicate strong and consistent 

performance in regard to predictive power by eDRI, PART and C4.5 algorithms. 

Specifically, the eDRI algorithm achieved the least error rate on the reduced phishing 

data among the rule induction algorithms, while C4.5 and PART algorithms derived the 

highest quantity of predictive classifiers. Moreover, pruning useless and redundant rules 

have an obvious positive effect on performance by ensuring only effective rules are 

utilised in the prediction. These rules, unlike other algorithms, cover a larger portion of 

the training dataset. Decision tree algorithms (C4.5, PART) produced the least error 
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Figure 5.5.  The One error rate (%) of the considered algorithms on the reduced nine features 
phishing set chosen by CFS filtering  
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rate, yet still produced very large predictive models that are associated with an 

excessive number of rules. To be precise, and for the nine feature dataset, C4.5 and 

PART derived 60 and 59 more rules, respectively, than eDRI. 

 

We looked at the number of rules eDRI and the remaining rule-based classfiers derive 

from the complete phishing dataset and the nine-feature dataset, respectively. The 

results, shown in Figures 5.6 and 5.7, illustrate that the proposed eDRI algorithm 

substantially reduced the classifier size in comparison to the considered rule-based 

algorithms. In fact, eDRI generated models with a lower number of rules than the 

remaining algorithms from both the complete and reduced phishing dataset. For 

instance, classic Covering algorithms such as PRISM derived 325 more rules than eDRI 

without achieving any performance gain in classification accuracy. Many of PRISM’s 

rules cover very limited data samples, which makes them overfit the training dataset.  
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Figure 5.7. Number of rules generated by the rule-based algorithms from the nine features phishing data 

 

 

Figure 5.6. Number of rules generated by the rule-based algorithms from the phishing data 

 

 

We looked further into the classifier produced by eDRI from the phishing dataset and 

observed that some of its rules have errors greater than zero. Despite the fact that these 

rules do not hold an accuracy of 100%, they are useful knowledge that the PRISM 

classifier is unable to provide because it only poduces perferct rules with low data 

coverage. This indicates that generating rules which are not necessarily perfect (100% 
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accuracy) not only minimises the classifier size but also covers a larger number of 

training data examples per rule. Therefore, the overall performance of the classifier gets 

enhanced in regard to predictive accuracy and human controllability. In other words, 

having a smaller classifier is a definite advantage for managers and decision makers 

since they are able to process a lower amount of data during the decision making 

process. These classifiers work fine for applications such as medical diagnoses where 

general practitioners can enjoy a concise set of rules for daily diagnoses of their 

patients.  Overall, eDRI consistently derived smaller classifiers than the rest of the 

classification algorithms, yet sustained steady predictive performance.  

The relationship between the rule length in the classifier and the number of instances the 

rule was covered by the Covering algorithms (PRISM, eDRI) was also investigated. The 

proposed average rule length (ARL) and weighted average rule length (WARL) 

(Chapter 4) were used.  For the dataset examined, PRISM’s classifier had associated  

ARL and WARL values of 4.25 and 7.29 respectively; meanwhile eDRI’s classifier 

ARL and WARL were 4.95 and 5.16, respectively. WARL measures how the training 

attributes have been utilised to build the classifier. As such, it is clear that PRISM 

needed more features (two more features on average) than eDRI to make the rules, 

without achieving any enhancement in predictive performance. As a matter of fact, 

PRISM excessively searched for more items to be added per rule during the classifier 

building process. This explains the many specific rules (rules associated with a large 

number of items) derived by PRISM, which classifies each very small portion of the 

training dataset though in many cases is just a single data sample. We believe that the 

above rationale is behind a larger WARLvalue for PRISM than eDRI. On the other 

hand, it seems that there is consistency between both algorithms with respect to ARL. 

We analysed the time in ms taken by the considered algorithms to construct the anti-

phishing models from both the complete and reduced datasets respectively, which is 

shown in Figures 5.8 and 5.9 . Simple Logistic and SMO-SVM were excluded since 

both took longer than expected to build the models with respect to time in ms: Simple  
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Logistic spent 3691 and 708 ms, while SMO-SVM spent 4327 and 1383 ms in 

building the models, respectively. Thus, both of these predictive algorithms proved very 

slow in mining the phishing data. 

 

 

Data processing time figures clearly indicated that eDRI is the most efficient 

algorithm among all those considered for detecting phishing activities, followed by 

Bayes Net. In addition, the OneRule and ConjunctiveRule algorithms were able to 

generate models quicker than decision trees due to the simplicity in their rule induction 

mechanisms. Overall, Ridor was the slowest rule induction algorithm followed by 

decision tree algorithms (PART, C4.5). The proposed eDRI algorithm showed 
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consistently more efficient classifiers than the remaining algorithms, for both the 

complete and the reduced nine features dataset. This can be attributed to the efficient 

rule induction strategy employed which automatically generates rules and dynamically 

updates the remaining potential rule rank. Resultant is the integration of the classifier 

building phase with the training phase in eDRI, thus saving computing resources. 

We also investigated the number of times eDRI passed over training data 

examples when compared to PRISM. The number of rows that both algorithms have to 

scan while building rules during the learning process were recorded. It turns out that 

PRISM passed over 34,465,178 training examples during the process of creating only 

397 rules. Meanwhile eDRI scanned 9,388,208 data examples resulting in 25 rules. 

These results show that the proposed algorithm has substantially  reduced the search 

space for rules. The fact that PRISM has to pass over many more millions of data 

examples shows the poor mechanism employed by this algorithm which over fits the 

training data while aiming to induce perfect yet low data coverage rules. This 

mechanism requires overtraining by repetitively splitting data examples whenever an 

item has to be added to a rule in order to increase the rule’s accuracy. The outcome 

guarantees the production of rules having zero error, but it is time consuming and 

demanding of computing resources. The frequency threshold employed in the eDRI 

algorithm was able to successfully discard many infrequent items that are associated 

with low data representation. This minimised the search space of items, therefore the 

classifier size was reduced. Moreover, allowing rules which are not 100% accurate to be 

generated decreased the number of data examples that eDRI had to pass over. The 

proposed eDRI algorithm does not always  generate rules that are perfect but rather 

generates rules with large data coverage and only acceptable accuracy as it was obvious 

from its classifier containing a much lower number of rules. 

 

5.6 Chapter Summary 

In this chapter, the history of the phishing problem has been described along with the 

main phases in its lifecycle. Anti-phishing methods that depend on legal, educational, 

and user experiences have been reviewed along with their associated advantages and 

disadvantages. The main focus of the Chapter, however, has been on ML anti-phishing 
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techniques based on decision trees, SVM, NN, rule induction, AC, and computational 

intelligence. Phishing was then investigated as a classification problem. The 

experimental study on real phishing datasets was conducted in Section 5 to explore the 

applicability of the proposed eDRI algorithm as an anti-phishing tool and how it 

performs against other DM algorithms. Experiments were performed in two situations:  

a) Complete thirty feature real phishing datasets 

b) Applying the CFS filtering method to identify effective features and measure the 

impact on the predictive model’s accuracy 

The aim of these experiments was to evaluate how effective rule based models, and in 

particular eDRI, are in classifying websites and producing useful knowledge for 

decision makers. Classification  accuracy, runtime and the number of rules were the 

measures of evaluation of eDRI with respect to the following algorithms: decision trees 

C4.5, OneRule, Conjunctive Rule, Bayes Net, Support Vector Machine (SMO), Simple 

Logistic, Boosting (AdaBoost), PART, Ridor, and eDRI. The experimental results 

showed that 

1) eDRI is an efficient rule-based method that normally generates anti-phishing 

models quicker than other rule-based algorithms and classic DM methods.  

2)  eDRI derives high quality models with respect to error rate, and outperformed all 

rule-based classifiers. Moreover, decision tree algorithms derives higher predictive 

models than eDRI yet with excessive additional rules, make them difficult to utilise as a 

decision making tool and thus limiting their use. 

3) The number of rules in eDRI models are consistently smaller than most of the 

considered algorithms, therefore eDRI models are more appropriate knowledge base for 

phishing classification.  

4) Nine features with high information gain scores were selected by CFS as the 

highest influential phishing features. The SSL_Final_State and URL_Of_Anchor 

features were specifically the ones with more presence in the rule-based classifiers as 

well as with higher information gain scores.  

5) The highest ranked rules in eDRI, PRISM, RIDOR, C4.5, and PART are 

associated with SSL_Final_State and URL_Of_Anchor features. 
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6) eDRI showed superiority over the remaining algorithms, other than decision trees 

with respect to the predictive accuracy of models derived from the nine features dataset.  

 

The PhD dissertation conclusions and future research directions are discussed in the 

following chapter. 
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Chapter Six 

 

Conclusions and Future Work 

 

6.1 Research Summary 
 

Key research issues related to the utilization of the Covering approach in 

classification have been investigated. A number of improvements to the training phase, 

efficiency, and classification steps in the Covering approach have been presented.  The 

final outcome is new dynamic rule induction algorithm, the eDRI algorithm, with novel 

training, rule pruning, and class prediction procedures. Experimental results have shown 

the ability of eDRI’s Covering methodology to produce efficient and predictive 

accuracy in classification. Following a thorough evaluation of the eDRI algorithm on 

generic classification datasets and domain specific data related to web security, the 

different improvements presented in this PhD dissertation have been peer reviewed and 

presented at IEEE conferences, and published in reputable data analysis journals such as 

Expert system with Application and Management Analytics. 

  

6.2 Research Contributions 

The following main research contributions are summarised in this section. 

 

1 Dynamic Rule Discovery 

One of the major hurdles that classic Covering algorithms face is the need to 

repeatedly scan part of the training dataset whenever a rule is constructed. Indeed, for 

the first rule to be derived a complete scan over the training dataset is usually requires;  

once the rule is derived and its training data instances discarded, a complete scan of the 

remaining data instances is required to produce the second rule and so forth. These 

repetitive data scans are computationally very expensive and demand high computing 

resources, particularly runtime, to create a predictive model. To deal with this issue, the 
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proposed eDRI algorithm dynamically updates frequencies of the attribute values and 

potential rules whenever a rule is produced. In particular, eDRI employs a data structure 

that minimises passing over unnecessary data instances by storing attribute values in a 

special data structure. This data structure is actively updated whenever a rule is 

generated by decrementing the frequencies of all impacted attribute values without the 

need to keep reading training data instances.  

A number of experiments, using twenty datasets belonging to various application 

domains, showed that eDRI is faster than both Covering and rule induction algorithms 

when building predictive models. Specifically, eDRI was consistently more efficient 

than Ridor, RIPPER, PRISM, and C4.5 algorithms on each of the twenty datasets.  This 

can be attributed as mentioned above to the dynamic training procedure that eDRI 

adopts, which limits the scanning of training data instances and relies on a special data 

structure that holds the necessary information to compute the rules’ strengths and 

attribute value frequencies. Additional evidence supporting the efficiency of the 

proposed eDRI algorithm was obtained via a thorough analysis on phishing application 

data, which showed that that eDRI was the fastest algorithm among the rule-based and 

classic machine learning classifiers. In addition, eDRI was compared to the classic 

Covering algorithm PRISM; the results showed that eDRI scans 5 times less data 

examples than PRISM to produce their corresponding predictive models.  

 

2 Enhancing the Performance of the Classification Models (Classifiers) 

Three specific improvements related to Covering classification performance have 

been achieved:   

 

A. Cutting down the items’ search space during the training phase 

The proposed eDRI algorithm adopts a frequency threshold parameter that 

substantially reduces the search space for attribute values during the training phase. This 

parameter distinguishes attribute values that have a chance to make rules (strong 

attribute values) from others that have a low statistical significance (weak attribute 

values) in the input dataset during the training phase. This frequency threshold 

parameter is used to eliminate weak attribute values as early as possible by testing the 
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actual frequency of attribute values whenever a rule is generated.  This was 

corroborated experimentally in Chapter 4, which also was reported in Qabajeh et al. 

(2015), with an improvement on computing resources, especially run time reduction and 

the number of passes required to build the classifier.  

 

B. Minimising the number of rules for better controllability  

 
A pruning procedure that removes rules having an insufficient strength in a dynamic 

manner has been proposed. The eDRI rule pruning procedure discards rules whenever 

they are unable to pass the required rule_strength parameter. Moreover, when a rule is 

produced, and the remaining attribute value frequencies are decremented because of the 

rule’s data removal, eDRI prunes other potential rules in real time if their updated 

strengths fall below the required minimum strength. Thus, rules that are not only 

statistically representative in the remaining training data but also have a higher rank in 

the classifier are kept. This rule pruning procedure significantly decreases the number of 

rules in the classifiers without hindering the predictive accuracy, as experiments on 

twenty datasets reported in Chapter 4 and 5 revealed. Indeed, the number of rules 

derived by the proposed eDRI algorithm is normally smaller than other Covering and 

decision trees algorithms, such as PRISM and C4.5. More importantly, the classifiers 

generated from the phishing dataset reported in Chapter 5 showed a fewer number of 

rules for eDRI than for C4.5, PART, PRISM, and Ridor. Specifically, PART and C4.5 

algorithms generated 130 and 268 more rules than eDRI, respectively, which has the 

obvious consequence of making their models difficult to manage and understand by 

end-users. Even the rule induction algorithm Ridor generated more rules than eDRI on 

the phishing dataset.  

 

C. Avoiding Over fitting and Under fitting, and Improving Class Prediction  

Rule learning in Covering classification should be restricted so that the 

discovered models will not over fit the training dataset. For example, in rule induction, 

RIPPER stops learning when the rule achieves an error rate above 50%. Classic 

Covering and rule induction approaches like PRISM and REP over fit the training 

dataset because they continue adding items to the rule until it becomes perfect (0% error 
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rate). The proposed eDRI algorithm minimises over fitting by allowing a small window 

of errors to some rules as long as: 

1) They have a strength above the minimum required rule strength, 

2) The attribute values in their bodies have acceptable training data 

representation, and 

3) They cover large training data examples.  

The above three conditions together act as a quality assurance strategy to maintain rule 

generation while reducing over fitting. One of the possible limitations to occur with the 

eDRI algorithm is associated with setting the rule strength to 100% when the process of 

making a rule can become excessive. This problem has been minimised by allowing the 

user to determine the rule strength according to the sensitivity of the domain data. 

Warming up experiments using a large number of values for the rule strength and 

frequency thresholds have showed that the frequency threshold can be set to 1-2% in 

order to balance the classifier size and predictive accuracy (Thabtah et al., 2015; 

Abdelhamid, 2015). In addition, the results in (Thabtah et al., 2015; Abdelhamid, 2015) 

showed that the rule_strength threshold does not directly influence model performance, 

so it can be set to any value based on users’ experience and the application data 

characteristics.  

To improve the classification step, we examined two separate approaches; one 

rule and multiple rules prediction (Thabtah, et al., 2011). We found that the differences 

between both approaches are insignificant, yet when the multiple rules approach is 

adopted for the classification of test data, this may reduce usage of the default class rule, 

and therefore slightly enhance the predictive accuracy of the models. For this reason, we 

developed a new prediction method (Chapter 3) that improved classification accuracy 

for some of the datasets considered in chapters 4 and 5. 

3 Rules Set as an Effective Anti-Phishing Tool: A Case Study 

Phishing is a web threat that is continuously evolving. Phishing creates authentic 

websites are supplanted by purposely created malicious websites to deceive online 

users.  
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A predictive ML approach to phishing has been extensively presented in Chapter 

five, in addition to a critical analysis of the advantages and disadvantages of traditional 

educational, training, legal, and awareness solutions to it. Recent intelligent anti-

phishing approaches based on computational intelligence and ML, such as SVM, NN, 

Fuzzy Logic, AC, CANTINA, etc., have been surveyed, with both their the impact on 

detecting phishy websites and their advantages and drawbacks being identified.  

Chapter five presented as well an important comprehensive experimental study on a 

real phishing dataset that consisted of over 11000 websites from different sources such 

as Millersmiles and Phishtank. A wide range of ML algorithms and the proposed eDRI 

algorithm were applied to this dataset which aimed at identifying whether eDRI is an 

effective anti-phishing detector. To such aim, a wide range of different performance 

metrics were used, including phishing detection rate, runtime, classifier size and 

knowledge presented to the decision maker. The experiment results showed that eDRI is 

indeed an effective and efficient anti-phishing algorithm for detecting phishing 

websites. The proposed eDRI algorithm achieved higher accuracy than rule-based 

induction, probabilistic, boosting, SVM and even AC ML algorithms. Specifically, 

eDRI achieved 0.83%, 4.79%, 4.79%, 0.69, 0.07%, 0.06% and 1.49% higher accuracy 

than Ridor, OneRule, ConjunctiveRule, Bayes Net, SVM-SMO, and Ada Boost 

algorithms, respectively. Furthermore, the experimental results also showed that smaller 

sets of effective rules were produced by eDRI that can explain in detail the associations 

among website features that have increased influence on detecting phishing activities. 

Finally, when using filtering methods such as CFS, eDRI maintained its competitive 

performance even when the dimensionality of the phishing data was significantly 

reduced to nine features.  

 

6.3 Future Work 

The following challenges are considered for future avenues to research. 

 

1 Data Representation for Fast Training Phase   

There are two main approaches for presenting data: horizontal and vertical format. 

Data in the horizontal format used in this PhD dissertation consists of a number of rows 



131 
 

and columns and similar to the relational database approach. In each data row, a number 

of attribute values are provided. In reading a horizontal training dataset, the learning 

algorithm usually moves sequentially, counting the number of occurrences for each 

attribute value and the class value. These numbers are used to weigh the rule 

significance and are often used within mathematical or statistical rule stopping formulas 

such as information gain, foil gain, expected accuracy, or rule strength. Unfortunately, 

the learning algorithm must perform multiple passes over part of or the complete 

training dataset, especially in Covering classification. These repetitive data scans 

negatively affect the efficiency of the data processing phase of the learning algorithm.  

The other data format, rarely used within Covering algorithms, is the vertical 

data format. Using this format, simple yet effective intersections among item locations 

in the training dataset can be performed. This approach is popular in association rule 

mining, and several algorithms such as DCLAT, CHARM, and MAC have adopted it 

for fast data processing (Zaki & Gouda, 2003; Zaki & Hsiao, 2002; Abdelhamid, et al., 

2012). The vertical data format is believed to have the potential to enhance the 

efficiency of the exhaustive search for rules in covering and other rule-based 

classifications such as rule induction. This format could enable algorithms like eDRI, 

and others such as RIPPER and RIDOR, to limit scanning of the database attribute 

values. Experimental research is needed to ascertain or corroborate this research 

hypothesis. 

 

 2 Partly Matching Class Forecasting Methods    

In classic Covering classification, the process of classifying a test instance is 

primarily based on using the first rule that fully matches the test instances’ attribute 

values. Often, the learning algorithm evaluates whether a rule’s body is contained inside 

the test instance, and if so, allocates the class label of that rule to the test instance. 

However, there are scenarios when no rule is fully contained in the test instance, and in 

these cases the learning algorithm selects the default rule to assign the class to the test 

instance. Unfortunately, this approach may increase the number of misclassifications, 

and therefore might hinder the predictive accuracy of the model because default class 

rule is a weak rule that is derived from the remaining unclassified training data during 
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the rule discovery phase. Therefore, the choice of the default rule and the way it is 

constructed seems to be arbitrary rather than based on an intelligent based approach. 

The improvement of the class-forecasting phase in Covering classification seems 

to essentially require for partly matching of rules to play a role in classifying test 

instances rather than applying the default class rule. For example, assuming that a test 

instance needed a class with no rules fully contained in it, the learning algorithm could 

then seek for all partly matching rules, i.e. rules with at least one-attribute values within 

the test instance. Once those rules are determined, the learning algorithm could cluster 

them into groups and a voting mechanism could be used to allocate the class, such as 

the class that belongs to the cluster with the largest number of rules or that has the 

largest average rules strength value (Thabtah et al. 2011). This strategy of class 

forecasting may decrease the number of classifications since it limits the number of 

times the default class is utilised in class predictions. Thus, the overall predictive 

accuracy of the model could be improved. Experimental research is needed to ascertain 

or corroborate this research hypothesis. 

 

3 Distributed Covering     

As a result of the literature review and critical analysis conducted in Chapter two, we 

can conclude that most Covering and rule induction algorithms are time consuming 

because of their exhaustive data processing and rule pruning phases. For instance, REP 

generates a large rule set that is improved it by pruning each rule. To do that, each item 

removal within the rule is examined to determine whether rule accuracy can be 

enhanced for all rules that have been generated. RIPPER and IREP eliminate the 

generation of a complete set of rules, deriving them instead one at a time. Both 

algorithms adopt extensive pruning based on growing and pruning datasets. Moreover, 

similarly to REP, each rule must also be taken for evaluation once it has been generated. 

These learning approaches have been criticized for being slow when processing data 

locally. The problem becomes more severe in real time applications that have data 

distributed over different locations.  Therefore, new approaches of mining distributed 

data and big data are needed.  
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Spark and MapReduce seem appropriate parallel and distributed platforms for 

data processing in these situations (Hammoud, 2010; Taylor, 2008).  These platforms 

are becoming increasingly popular for mining large scale training datasets that are 

scattered over many locations. This is due to their efficiency, simplicity, and 

effectiveness for data processing in a parallel manner. For instance, MapReduce has 

been adopted by many organizations such as Google, Yahoo, and Amazon to construct 

petabyte data centers. These centers consist of hundreds of thousands of nodes with 

hardware and software capabilities that allow efficient parallel data analysis. A need 

exists to amend current Covering algorithms to handle big data, especially in domains 

that generate datasets with large dimensionality like Bioinformatics, text mining, and 

medicine. 

 

6.4 Limitation of the Proposal and Potential Improvements  

 

This section explains the limitation of the proposed Covering algorithm and potential 

ways to improve it. 

 

Limitations and Potential Improvements 

 

1 eDRI algorithm works only locally so if the datasets are scattered all over different 

locations this can be a challenge. In today’s era of cloud computing and affordable 

computing resources such as processing clusters, bandwidth and distributed platforms 

eDRI can be extended to handle datasets that are not only very big but also distributed 

on different locations. We recommended SPARK or Hadoop platforms for a distributed 

version of eDRI to handle scattered datasets for parallel processing. 

 

2 Unstructured, and multimedia applications’ data are increasing in the last few years. 

Companies are collecting different types of variables in forms of audio, video and 

images. In the current version of eDRI, these types of datasets are not considered 

because of the complex nature, which requires extensive and expensive pre-processing. 
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There are good potential that eDRI learning mechanism to be linked with deep learning 

research to handle one or more of the challenging datasets. 

 

3 One possible improvement on eDRI is adopting forward pruning procedures such as 

pessimistic error estimation into its learning phase in order to reduce further weak rules. 

Moreover, we can also integrate backward pruning procedures such as sub tree 

replacement to increase the chance of incorporating only variables that have low 

correlation with each others but high correlation with the class labels. The results are 

expected to be more concise classification systems with less number of variables. 

 

4 The experimental methodology discussed in Chapter 4 was based on utilizing the 

standard evaluation measures used by other scholars in predictive tasks within data 

mining and machine learning.  In particular, we have used tenfold cross validation 

method as a testing methodology. This method ensures that the sample data examples 

used during the training phase is different than the data examples used during the 

classifiers’ evaluation phase. This consequently sustains fairness and legitimacy in the 

classifiers’ performance of the different data mining algorithms utilized during the 

experimentations. 

Alternative non-parametric statistical analysis approaches can be potentially useful in 

measuring the significance of the results achieved by a data mining method in 

comparison with other methods. The application of these techniques is possible, yet 

these alternative techniques might produce a completely different type of data analysis 

to the one achieved. Non-parametric testing approaches are normally named 

distribution-free tests since they have no pre-assumption that the data used follows a 

certain distribution in statistics (Gravetter & Wallnau, 2016; Zhang & Zhou, 2005). 

These tests can be used by comparing between learning algorithms in parwise or in 

groups (SCI2S, 2017). For instance, Wilcoxon signed-rank-test (SCI2S, 2017) can be 

adopted to figure out the performance of two data mining algorithms by 

individual comparing the accuracy performance of the selected algorithms.  

Overall, there are several useful non-parametric tests that can be employed to verify the 

performance results of the classifiers including but not limited to 

      · The Iman and Davenport Test  
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      ·Wilcoxon test 

      · Friedman test 

      · Quade Test  

A investigation of non-parametric test can be potentially useful to reveal the statistical 

significance of the classifiers’ performance results. Nevertheless, the sample dataset 

size should be large enough in order to compare between paired to multiple classifiers 

since the sample size ensures the power of the statistical test is sustainable.  More 

information about common non-parametric tests and other statistical procedures such as 

hypothesis testing can be found at (SCI2S, 2017; Gravetter & Wallnau, 2016).  
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Appendices   
 
 

Sample Screen Shots of our eDRI Algorithm in 
WEKA Java Machine Learning Tool  
 
 
 

 
Figure 1 Launching WEKA  
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Figure 2 Choosing the WEKA explorer platform 

 
 
 
 

 
Figure 3 Loading the Balloon dataset  
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Figure 4 Balloon dataset characteristics  
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Figure 5 Choosing eDRI from “Classify” Tab 
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Figure 6 eDRI results on the Balloon dataset  
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