

Dynamic Rule Covering
Classification in Data Mining with

Cyber Security Phishing
Application

Issa Mohammad Qabajeh

Submitted in partial fulfilment of the requirements for the
degree of Doctor of Philosophy

at De Montfort University

Faculty of Technology
School of Computer Science and Informatics

Centre for Computational Intelligence

May, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228197489?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

I

ACKNOWLEDGMENTS

First and foremost, I thank God for granting me the strength, patience,

good health, and ability to pursue this goal in my life.

I would like to express my deep thanks and gratitude to my supervisors

Prof. Francisco Chiclana and Prof. Fadi Thabtah for their continuous

support and everlasting encouragement during the long journey of my

PhD study in the United Kingdom. My thesis would not have been possible

without the guidance and the assistance of my supervisors who contributed

to the completion of this study.

My sincere thanks go to Dr. Jenny Carter for her support in allowing me

to further enhance my academic experiences through teaching modules and

supervising master students at De Montfort University.

My thanks should also be extended to my family throughout the past four years.

Very special thanks to my wife Neda’a. Her patience, encouragement and

support over the period of study in UK made things much easier than

expected.

Many thanks also go to my children who endured my absence and have always

been granting me their love and support.

Finally, I would like also to thank all my friends especially; Sadir,

Muhannad, Mohammad, and Ayad and all of my colleagues in the Centre

for Computational Intelligence who support me during my study.

II

 DEDICATION

My thesis is dedicated to:

 The souls of my late father, mother, sisters, and brothers, especially

my brothers who have passed away during the last two years of my

PhD. Study, Mahmoud, Abdlmajeed, and Jamal, truly I missed all

of them, God bless them all.

 My brothers who have guided, mentored, and supported me during

the journey of my study, especially Abdlmuhdi, Abdlmonhem,

Samir, and Ziad, they are faithful brothers.

 My wife Neda’a, for her continuous cheer on, patience and

empathy, she is my true supporter.

 My children who have endured my absence in the UK; Dima, the

family mentor; Rand, the family active planner; Shahed, the family

loyal assistant; Amin, the gorgeous hero; and Malak, the lovely

butterfly, all of you my motivators. Love you all!!

III

Publications

Most of the chapters in this thesis have been published or submitted for publication

in refereed international journals or conferences. The published papers are shown

below. Additionally, there are two more journal papers under review.

Journals

• Qabajeh I., Thabtah F., Chiclana F. (2015) Dynamic Classification

Rules Data Mining Method. Journal of Management Analytics.Volume

2, Issue 3, pp. pages 233-253. Wiley.

• Thabtah F., Qabajeh I.., Chiclana F. (2016B.) Constrained dynamic rule

induction learning. Expert Systems with Applications 63, 74-85.

• Qabajeh I. Thabtah F. Chiclana F. (2017) Understanding and Preventing

Phishing: A recent Review. Journal of Information Security and

Applications (Under Review)

Conferences

• Qabajeh, I. and Thabtah, F., 2014, December. An Experimental Study

for Assessing Email Classification Attributes Using Feature Selection

Methods. In Advanced Computer Science Applications and

Technologies (ACSAT), 2014 3rd International Conference on (pp. 125-

132). IEEE.

• Qabajeh, I., Chiclana, F. and Thabtah, F., 2015, November. A

classification rules mining method based on dynamic rules' frequency.

In Computer Systems and Applications (AICCSA), 2015 IEEE/ACS

12th International Conference of (pp. 1-7). IEEE.

IV

ABSTRACT

Data mining is the process of discovering useful patterns from datasets using

intelligent techniques to help users make certain decisions. A typical data mining task

is classification, which involves predicting a target variable known as the class in

previously unseen data based on models learnt from an input dataset. Covering is a

well-known classification approach that derives models with If-Then rules. Covering

methods, such as PRISM, have a competitive predictive performance to other classical

classification techniques such as greedy, decision tree and associative classification.

Therefore, Covering models are appropriate decision-making tools and users favour

them carrying out decisions.

Despite the use of Covering approach in data processing for different classification

applications, it is also acknowledged that this approach suffers from the noticeable

drawback of inducing massive numbers of rules making the resulting model large and

unmanageable by users. This issue is attributed to the way Covering techniques

induce the rules as they keep adding items to the rule’s body, despite the limited data

coverage (number of training instances that the rule classifies), until the rule becomes

with zero error. This excessive learning overfits the training dataset and also limits the

applicability of Covering models in decision making, because managers normally

prefer a summarised set of knowledge that they are able to control and comprehend

rather a high maintenance models. In practice, there should be a trade-off between

the number of rules offered by a classification model and its predictive performance.

Another issue associated with the Covering models is the overlapping of training data

among the rules, which happens when a rule’s classified data are discarded during the

rule discovery phase. Unfortunately, the impact of a rule’s removed data on other

potential rules is not considered by this approach. However, When removing training

data linked with a rule, both frequency and rank of other rules’ items which have

appeared in the removed data are updated. The impacted rules should maintain their true

rank and frequency in a dynamic manner during the rule discovery phase rather just

keeping the initial computed frequency from the original input dataset.

In response to the aforementioned issues, a new dynamic learning technique

V

based on Covering and rule induction, that we call Enhanced Dynamic Rule

Induction (eDRI), is developed. eDRI has been implemented in Java and it has been

embedded in WEKA machine learning tool. The developed algorithm incrementally

discovers the rules using primarily frequency and rule strength thresholds. These

thresholds in practice limit the search space for both items as well as potential rules by

discarding any with insufficient data representation as early as possible resulting in an

efficient training phase. More importantly, eDRI substantially cuts down the number

of training examples scans by continuously updating potential rules’ frequency and

strength parameters in a dynamic manner whenever a rule gets inserted into the

classifier. In particular, and for each derived rule, eDRI adjusts on the fly the

remaining potential rules’ items frequencies as well as ranks specifically for those that

appeared within the deleted training instances of the derived rule. This gives a

more realistic model with minimal rules redundancy, and makes the process of rule

induction efficient and dynamic and not static. Moreover, the proposed technique

minimises the classifier’s number of rules at preliminary stages by stopping learning

when any rule does not meet the rule’s strength threshold therefore minimising

overfitting and ensuring a manageable classifier. Lastly, eDRI prediction procedure not

only priorities using the best ranked rule for class forecasting of test data but also

restricts the use of the default class rule thus reduces the number of

misclassifications.

The aforementioned improvements guarantee classification models with smaller

size that do not overfit the training dataset, while maintaining their predictive

performance. The eDRI derived models particularly benefit greatly users taking key

business decisions since they can provide a rich knowledge base to support their

decision making. This is because these models’ predictive accuracies are high, easy

to understand, and controllable as well as robust, i.e. flexible to be amended without

drastic change. eDRI applicability has been evaluated on the hard problem of phishing

detection. Phishing normally involves creating a fake well-designed website that has

identical similarity to an existing business trustful website aiming to trick users and

illegally obtain their credentials such as login information in order to access their

financial assets. The experimental results against large phishing datasets revealed that

eDRI is highly useful as an anti-phishing tool since it derived manageable size models

VI

when compared with other traditional techniques without hindering the classification

performance. Further evaluation results using other several classification datasets from

different domains obtained from University of California Data Repository have

corroborated eDRI’s competitive performance with respect to accuracy, number of

knowledge representation, training time and items space reduction. This makes the

proposed technique not only efficient in inducing rules but also effective.

VII

Table of Contents

Chapter One: Introduction ………………………………………………………………………..1

1.1 Introduction..1

1.2 Motivation2

1.3 Covering Induction Process and Related Definitions………………………………………….…5

1.4 Thesis Research Issues .. 6

1.4.1 Generic Issues.. ... 7

1.4.2 Domain Specific Issues...11

1.5 Thesis Structure ..13

Chapter Two: Covering and Induction Approaches in Classification14

2.1 Introduction ...15

2.2 The Classification Problem and Its Variations... 16

2.3 Learning Strategies in Classification ... 19

2.3.1 Divide and Conquer ... 19

2.3.2 ID3 Decision Algorithm..21

2.3.3 Separate and Conquer... 22
2.4 Common Covering and Induction Algorithms... 25

2.4.1 PRISM Algorithm and its Successors…………………………...............…………….….. 25
2.4.2 Incremental Reduced Error Pruning and its Successors……………...…………….....…30

2.4.2.1 Reduced Error Pruning (REP)……………………………………….………..….. 30
2.4.2.2 Incremental Reduced Error Pruning (IREP)………………………………..……. 31
2.4.2.3 RIPPER and Other Alternative Algorithms…………………………………..….. 33

2.4.3 Rough set Theory Induction Algorithms…………………………………………………35
2.4.4 CN2 Algorithm…………………………………………………………………………...37

2.4.5 First Order Inductive Learner (FOIL)…………………………………………………39
2.4.6 Instance Based Learning Rule Classifiers……………………………………………....40
2.4.7 One Rule and RIDOR Algorithms ……………………………………………………..41
2.4.8 Hybrid Classification Rules………………………………………………………….... 42

2.5 Other Common Classical Non-Rule Approaches.. 43

2.5.1 Probabilistic Models... 44

 2.5.2 Association Rule-based Classification... 45

2.5.3 Support Vector Machine..45

2.5.4 Boosting ..46

2.5.5 Neural Network ... 46

2.6 Chapter Summary .. 47

Chapter Three: A New Dynamic Rule Induction Approach... 48

3.1 Introduction ... 48

3.2 Enhanced Dynamic Rule Induction Algorithm (eDRI) .. 50

3.2.1 Data Representation and Data Processing .. 52

VIII

3.2.2 Rule Discovery and Classifier Building .. 53

3.2.3 Test Data Prediction .. 58

3.3 Example of the Proposed eDRI Algorithm and PRISM .. 59

3.4 Distinguishing Features of eDRI .. 64

3.5 Chapter Summary ... 66

Chapter Four ... 68

Implementation and Evaluation of the Enhanced Dynamic Rule Induction Algorithm 68

4.1 Introduction 68

4.2 eDRI Implementation .. 69

4.3 Evaluation Measures ... 71

 4.3.1 Cross Validation…. .. … 71

 4.3.2 Confusion Matrix ... 72

 4.3.3 Computing Resources Evaluation Measures …………..………………….....……………...74

4.3.4 New Rules Evaluation Measures ……………………………………………………...…….81

4.4 UCI Data Experimental Settings .. 75

 4.5 UCI Data Results ... ……………..77

 4.6 Chapter Summary ... 86

Chapter Five: Applicability of eDRI as a Phishing Detection Tool: A Case Study 88

5.1 Introduction .. 88

5.2 Phishing Background .. 90

5.2.1 Phishing Process .. 91

5.2.2 Phishing as a Classification Problem ... 92

5.3 Common Traditional Anti-Phishing Methods .. .94

5.3.1 Legal Anti-phishing Legislations ... 95

5.3.2 Educating Users: Simulated Training ... 96

5.3.3 User Experience: Anti-phishing Online Communities .. 97

5.3.4 Discussion on Non Intelligent Anti-phishing Solutions ... 98

5.4 Computerised Anti-Phishing Techniques .. 100

5.4.1 Databases (Blacklist and Whitelist) ... 100

5.4.2 Intelligent Anti-Phishing Techniques based on DM .. 103

5.4.2.1 Decision Trees ... 105

5.4.2.2 Rule Induction ... 105

5.4.2.3 Associative Classification (AC) ... 106

5.4.2.4 Neural Network (NN) .. 107

5.4.2.5 Support Vector Machine (SVM) .. 109

5.4.2.6 Fuzzy Logic ... 110

5.4.2.7 CANTINA Term Frequency Inverse Document Frequency Approach ………......112

IX

5.5 Phishing Data Experimental Results ... 113

5.5.1 Experiments Settings ... 113

 5.5.2 Data Description and Features ... 115

 5.5.3 Phishing Data Results .. 116

5.6 Chapter Summary ... 123

Chapter Six: Conclusions and Future Work .. 126

6.1 Research Summary .. 126

6.2 Research Contributions .. 126

6.3 Future Work ... 130

6.4 Limitations of the Proposal and Potential Improvements……………………………………..133

 Bibliography ... 141

 Appendices... .. 156

List of Figures

Figure 2.1 Classification steps ... 16

Figure 2.2 Decision tree example (Tan, et al, 2005) ... 22

Figure 4.1 Error rate generated by the considered classification algorithm against the 20

datasets……………………………………………………………………………………….78

Figure 4.2 Average # of rules generated by the selected rule based classification algorithms

against the 20 datasets…………………………………………………………....…………..81

Figure 4.3 Average time in ms generated by the considered classification algorithms against

the 20 datasets ... 82

Figure 4.4 error rate generated by CBA and the considered classification algorithms against the

8 least # of attributes ... 84

Figure 5.1. Example of an early phishing attack (Blogonlymyemail.com) 90

Figure 5.2. Phishing life cycle (Abdelhamid et al., 2014) .. 92

Figure 5.3. Phishing as a classification process .. 94

Figure 5.4 The One error rate (%) of the considered algorithms on the phishing dataset ... 117

Figure 5.5. The One error rate (%) of the considered algorithms on the reduced nine features

phishing set chosen by CFS filtering .. 119

Figure 5.6. Number of rules generated by the rule-based algorithms from the phishing

data .. 120

X

Figure 5.7. Number of rules generated by the rule-based algorithms from the nine features

phishing data ... 120

Figure 5.8 Time in ms taken to build the models by the considered algorithms from the

security data. ... 122

Figure 5.9 Time in ms taken to build the models by the considered algorithms from the

reduced nine variables security data. .. 122

List of Tables

Table 2.1 A multi-label dataset………………………………………………………….…18
Table 2.1B Multi class dataset transformed from table 2.1A………………………….…...19
Table 2.2 Sample dataset (Grzymala-Busse, 2010)…………………………………….…..37
Table 3.1A Training dataset sample …….…..………………………………………….….53
Table 3.1B Transformation of Table 3.1A …………………………………………….…...53
Table 3.2: Items occurrences after initial scan by eDRI……………...………………….…54
Table 3.3: Sample training dataset from (Witten and Frank, 2005)………………….…......60
Table 3.4: Candidate items linked with class NO…………………………….......……..61
Table 3.5: Data samples associated with item “Outlook=sunny”……..………………… 62
Table 3.6: Candidate items linked with item “Outlook=sunny” Then NO in the training
dataset with their frequencies…………………………………………………….….……...62
Table 3.7: Candidate items linked with class YES…………………………………….…...63
Table 3.8: Training data samples linked with “Humidity=normal”………………….....…..63
Table 3.9: Candidate items linked with item “Outlook=sunny” Then NO in the training
dataset with their frequencies…………………………………………………………….....64
Table 4.1: Confusion matrix for ASD diagnosis problem………………………………..…73
Table 4.2: The UCI datasets characteristics……………………………………………… 75
Table 4.3: The considered algorithms error rate for the UCI datasets…………………… 79
Table 4.4: The considered algorithms time in ms to generate the rules from the 20 UCI
datasets…………………………………………………………………………………… 83
Table. 4.5 Runtime in ms generated by CBA and the considered classification algorithms
against the 8 least # of attributes datasets…………………………………………….……..85
Table 4.6: # of scanned data samples during building the classifier by PRISM and eDRI on the
UCI datasets…………………………………………………………………………….. 86
Table 5.1: Phishing Features per category (Aburrous, et al., 2008)………………………..111
Table 5.2 Common recent anti-phishing methods based on ML…………………………...113
Table 5.3: Sample of twelve websites from the dataset and for eight features…………….115
Table 5.4: Phishing features derived by Correlation Features Set filtering method along with
their information gain scores……………………………………………………………….118

XI

List of Algorithms

Algorithm 2.1 PRISM Pseudo code…………………………………………….………..…..26
Algorithm 2.2 Incremental Reduced Error Pruning procedure……………………………. .. 32
Algorithm 2.3 Growing Rule Function used in REP, IREP and RIPPER algorithms…...… . 33
Algorithm 2.4 Single global Covering function of LERs and its variations (Pawlak, 1991)..36
Algorithm 2.5 CN2 original rule generation function (Clark and Niblett,1989)….......……..38
Algorithm 2.6 FOIL algorithm (Quinlan, 1990)……………………………………...…. 40
Algorithm 2.7 One Rule Pseudo code …………………………………..…………………...42
Algorithm 2.8 Ridor algorithm pseudo code (Gaines and Compton, 1995)……..…………. 42
Algorithm 3.1 eDRI Pseudococode …………………………..……… 51
Algorithm 3.2 eDRI Learning Phase………………….…………………………..……… 56
Algorithm 3.3 Predicting test cases procedure of eDRI…………………………..……… 57

List of Acronyms

AC Associative Classification
AOL America Online
ANN Artificial Neural Network
APWG Anti-Phishing Work
Group ARL Average Rule Length
CANTINA Carnegie Mellon Anti-phishing and Network Analysis
Tool CBA Classification Based on Associations
CFS Correlation Feature Set
DM Data mining
DROP5 Decremental Reduction Optimization Procedure 5
eDRI Enhanced Dynamic Rule Induction
ENN Edited Nearest Neighbor
FFNN Feed Forward NN
FOIL First Order Inductive Learner
IG Information Gain
IREP Incremental Reduced Error Pruning
LERS Learning from Examples Based on Rough Sets
MaT Monitoring and Takedown
MDL Minimum Description Length
NN Neural Networks
OPUS Optimized Pruning for Unordered Search
PILFER Phishing Identification by Learning on Features of Email Received
PMCRI Parallel Modular Classification Rule Induction
REP Reduced Error Pruning
RIONA Rule Induction with Optimal Neighbourhood Algorithm
RIDOR Ripple Down Rule learner
SLIPPER Simple Learner with Iterative Pruning to Produce Error Reduction
SSL Secure Socket Layer
TF Term Frequency

XII

TF-IDF Term Frequency Inverse Document Frequency
UCI University of California Irvine
VV Variable Value
RIPPER Repeated Incremental Pruning to Produce Error Reduction
SVM Support Vector Machine
WARL Weighted Average Rule Length
WEKA Waikato Environment for Knowledge Analysis
WOT Web of Trust

1

Chapter One

Introduction

1.1 Introduction

Data mining (DM), which is based on computing and mathematical sciences, is a common

intelligence tool currently used by managers to perform key business decisions

(Abdelhamid & Thabtah, 2014). Traditionally, data analysts used to spend a long time

gathering data from multiple sources and little time was spent on the analysis due to

limited computing resources. However, since the rapid development of computer

networks and the hardware industry, analysts are spending more time on examining data,

seeking useful concealed information. In fact, after the recent development of cloud

computing, data collection, noise removal, data size, and data location are no longer

obstacles. Data analysis, or DM, is concerned about finding hidden patterns from datasets

that are useful for users, particularly managers, to conduct suitable planning (Thabtah &

Hamoud, 2014).

 One of the known DM tasks, which involves forecasting class labels in previously

unseen data based on models (classifiers) learnt from training datasets, is classification

(Hall, et al, 2009). Generally, classification is performed in two steps: constructing a

model, which is often named the classifier, from a training dataset, and utilising the

classifier to predict the value of the class of test data accurately. This type of learning is

called supervised learning because while building of the classifier the learning is guided

toward the class label. Common applications for classification are medical diagnoses,

web security, and stock market analysis (Rameshkumar, et al, 2013; Mohammad, et al,

2015; Dash & Dash, 2016), etc.

One of the least studied approaches in classification is that which is based on separate

and conquer learning (Pagallo & Haussler, 1990). This learning approach normally splits

the training dataset into subsets based on classes and discovers the rules for each class

2

through relationships between the input dataset’s variables and class values. Once the

complete set of rules is discovered, a classifier is formed by integrating the rules.

This thesis focuses on rule-based classification models, particularly Covering approaches

in DM. It proposes new dynamic Covering classification techniques that generate

predictive models. These models contain knowledge represented as “if-then” rules,

therefore they can be easily understood and maintained by decision makers. This chapter

discusses the research problems under investigation, as well as the major contributions

achieved. Lastly, we outline the structure of this PhD report.

1.2 Motivation

Supervised learning is one of the common learning approaches in machine learning (ML)

and DM. In supervised learning, a model is normally constructed from a labelled set of

examples called the training dataset. A typical training dataset consists of a set of

variables (features) and a special variable called the class. For example, in medical

diagnoses the class is the type of illness, and for credit card scoring the class is whether

an applicant is granted credit or not. The primary purpose of the classifier is to accurately

predict the class of an unseen dataset called the test dataset. There have been many

different classification approaches proposed by researchers in the last few decades,

including Decision Trees, Neural Network (NN), Support Vector Machine (SVM),

Associative Classification (AC), and Covering among others (Quinlan, 1979;

Mohammad, et al, 2013; Cortes & Vapnik, 1995; Thabtah, et al, 2004; Holt, 1993). The

latter two approaches, AC and Covering, extract classifiers that consist of rules, which

explain their wide applicability. However, in practise there are differences between AC

and Covering, in particular in the way rules are induced and pruned. This thesis falls under

the umbrella of Covering rule-based classification research.

There are a number of distinguishing features for Covering approaches in

classification. The most dominant being that they are easy to understand models. Unlike

models devised by traditional classification models such as NN, decision trees, or SVMs

which normally require a domain expert to interpret them. The simplicity of Covering

based models can be attributed to the straightforward rule format used, which novice users

can easily interpret and utilise in decision making (Abdelhamid, 2015). Another

3

noticeable feature of rule-based models is that users can easily maintain the classifier by

adding, removing, or even amending rules when needed (Witten & Frank, 2005). This

feature is hardly accomplished in other predictive models such as Decision Trees. Indeed,

in decision trees the entire tree (classifier) must be reshaped if one tries to add a branch

or partial tree to the existing tree, which is a complex process. Lastly, in Covering

approaches, rules are ranked in a way that enables end users differentiate between highly

effectives rules (mostly ranked at the top of the models) and less effective rules. This

ranking is vital in choosing the rule or the set of rules that are able to predict the test cases,

and therefore ranking influences the number of test data misclassifications.

The methodology in most existing Covering classification algorithms requires

splitting the training dataset into a number of subsets based on class labels before the

training phase begins. This approach was criticised by scholars in ML and DM because

it builds local classifiers that belong to a subset of the training dataset rather than a

complete training dataset (Abdelhamid & Thabtah, 2014). This criticism is attributed to

the fact that rules are generated per class rather than from the entire classes at once, and

in some cases a variable value belonging to multiple classes is considered only with the

most frequent class during the training phase. This can also cause the generation of only

single rules (one class per rule).

Another obvious problem associated with Covering techniques is the large numbers

of rules induced, which normally leads to large classifiers (Witten & Frank, 2005). This

problem appears because of the way the algorithm induces the rules; it keeps adding items

to the rule’s body until it covers only positive training data examples. In other words, the

Covering algorithm typically produces many rules, each covering only a few examples of

positive data, rather than rules covering large numbers of positive and negative data

samples. The outcome of the aforementioned excessive learning is a classifier with

several specific low data coverage rules that may overfit the training dataset. This may

limit the use of this learning approach to domains that require a concise set of rules for

decision making. Often managers in application domains such as medical diagnosis or

credit card scoring prefer a summarised set of rules that they can manage instead of a high

maintenance set of rules. There should be compromise between the number of rules and

the predictive accuracy.

4

A more crucial issue that is worth investigating in Covering classification is the way

rules are induced. When a rule is discovered, the algorithms directly delete its

corresponding positive training data. The Covering algorithm then scans the adjusted

training data to discover the next rule, produce it, remove its linked data, and then scan

again the newly adjusted training data and so on (Abdelhamid & Thabtah, 2014). This

repetitive process, especially the multiple data scans, consumes large computing

resources and should be dynamically implemented.

This thesis investigates shortcomings associated with Covering algorithms in data

mining. Specifically, we look at research issues including but not limited to the following:

1) Minimising computing resources, especially the number of passes over data

examples, by proposing a dynamic learning technique.

2) Reducing the search space for both items and rules to make the training phase

more efficient.

3) Generating smaller predictive models without hindering predictive power so end

users can manage the classifiers in a straightforward manner.

4) Derive good quality rules, not necessarily with 100% accuracy, to reduce over-

fitting and increase data coverage per rule.

5) Generating web security models based on Covering approach to serve as an anti-

phishing rules set. This is since novice users usually prefer easy to understand rule

to make them better understand phishing activities and features.

6) Identifying small, effective, phishing features.

This thesis involves only binary and multi-class classification problems since they are

more common in classification applications. These problems produce datasets with

examples, which are linked with one class. In other word, each instance in the training

dataset is connected with one class value. The multi-label classification case is out of the

scope of this thesis since they have different data format and requires special

transformation. The scope is limited to the Covering approach in data mining, so other

approaches related to generating rules such as Associative Classification are not explored.

Associative Classification methods are based on association rule so they require the

5

complete rule sets to be derived using unsupervised learning search before building the

classifiers.

1.3 Covering Induction Process and Related Definitions

In Covering Classification approach, knowledge is discovered readily as the algorithm

typically discovers rules per class label. For each class, i.e. C1, the algorithm makes an

empty rule (if empty then C1) and looks for the best variable value (VV), such as Max

VVi, which leads to the largest gain according to a certain metric, or accuracy, with C1.

The rule’s accuracy can be achieved by dividing the combined frequency of VVi and the

class, C1, by the number of data examples that belong to VVi in the training dataset.

The algorithm merges the VVi with the largest accuracy with the rule’s antecedent (left

hand side), and proceeds to search for the next VVi+1 in the training dataset with which

to append. The algorithm terminates building the rule when no more VVi with acceptable

accuracy can be found, and at that point the rule is generated and all of its positive

examples that belong to C1 are discarded. The algorithm continues discovering the rules

from the remaining data examples that belong to class C1 until that set becomes empty,

or no VVi when integrated with C1 has an acceptable accuracy. When this occurs, the

algorithm moves on to the next class data set and repeats the aforementioned steps until

the complete rules set is derived.

The problem can be formally defined as follows: Given a training dataset T, which has

x distinct columns (variables) V1, V2, … ,Vn, one of which is the class, i.e. class. The size

of T is |T|. A variable in T may be nominal, which means it takes a value from a predefined

set of values, or continuous. Nominal attribute values are mapped to a set of positive

integers whereas continuous attributes are pre-processed by discretising their values using

any discretisation method.

The aim is to construct a classifier from T, e.g. classVClassfiier : , which forecasts the

class of a previously unseen dataset.

The classification method investigated employs a user threshold called freq. This

threshold serves as a fine line to distinguish strong rule items <item, class> from weak

ones based on their computed occurrences in T. Any rule item whose frequency bigger

6

than the freq is called a strong rule item, otherwise being referred to as a weak rule item.

Below are the main concepts used throughout the thesis and their definitions.

Definition 1: A variable plus its denoted values name (Vi, vi) is known as item

Definition 2: A training example in T is a row consisting of variable values (Vj1, vj1), …,

(Vjv, vjv), plus a class denoted by classj.

Definition 3: A rule item r has the format |body, c|, where body is a set of disjointed items

and c is a class value.

Definition 4: The frequency threshold (freq) is a predefined threshold given by the end

user.

Definition 5: The body frequency |body_Freq| of a rule item r in T is the number of

training examples in T that matches r’s body.

Definition 6: The frequency of a rule item r in T (ruleitem_freq) is the number of training

examples in T that matches r.

Definition 7: A rule item r passes the freq threshold if, r’s |body_Freq|/ |T| ≥ freq. Such

a rule item is said to be a strong rule item.

Definition 8: The rule strength |rule_strength| is a predefined threshold given by the end

user.

Definition 9: A rule r has a strength which is defined as |ruleitem_freq|/ |body_Freq|.

Definition 10: A rule r can be generated when r’s |strength|>= |rule_srtength|.

Definition 11: A rule takes the form: r: classbody , where body is a set of disjoint

variable values and the consequent is a class value. The format of the rule is:

121 ... classvvv n

1.4 Thesis Research Issues

Different issues related to rule based classification approaches, particularly Covering

classification, are discussed in this research. These are:

Generic Issues

7

 Developing a dynamic rule discovery process.

 Improving the performance of Covering techniques.

o The reduction of the search space of items during training phase.

o Generating a concise set of rules by removing redundant rules in the

classifier.

o Minimising over-fitting the training dataset.

o Improving training time required to construct models.

Domain Specific Issues

 Covering classifiers as an anti-phishing tool.

 Determining the most effective features related to phishing.

1.4.1 Generic Issues

GI-Issue 1: The Methodology to Discover the Rules

In most rule-based classification the process of rule discovery is accomplished in a

separate phase after the algorithm goes over the training dataset to record item and class

occurrences. For each available class, these algorithms add the best item to the class

according to a certain measure of the rule’s body. When the rule reaches the desirable

accuracy, then it gets derived and these algorithms discard all classified training data

examples that belong to the rule. The algorithm then proceeds to discover other potential

rules for the class at hand from remaining data examples by reviewing the complete

dataset again, wasting runtime and memory. This step is necessary, however, since the

frequency computed earlier for the items and the class labels for some potential rules have

changed. This process not only is resource demanding, but can also cause the algorithm

to crash when the data is highly dimensional. A simple experiment using the PRISM

Covering algorithm implemented in WEKA ML tool against a “Segment Challenge”

dataset downloaded from the University of Irvine data repository was conducted to record

how many data examples this algorithm must go over to learn the rules (Cendrowska,

1987; Hall, et al., 2009; Licham, 2013). The “Segment Challenge” dataset consisted of

twenty variables and 1500 examples. It turns out that this methodology must scan

8

7,147,542 data examples to find the rules. This number can be of higher magnitude if

datasets with larger dimensionalities are used, which is a burden in big data domains.

Contribution

There should be a mechanism embedded in the training phase which ensures that the rank

and frequency of potential rules are amended in a dynamic manner without any repetitive

training data scans. This will make the process of rule induction efficient, not static every

time a rule is derived. Therefore, whenever a rule is inserted into the classifier all

remaining potential rule <item,class> occurrences should be updated extemporaneously

based on data removal. We developed a new dynamic rule learning that substantially

reduces the number of examples scanned. Our method, which we called Enhanced

Dynamic Rule Induction (eDRI) Qabajeh, et al, (2014) is presented in Chapter three.

Experimentations using different classification datasets that belong to applications

beyond medicine, credit card scoring, finance, agriculture, politics, and others from UCI

data repository (Lichman, 2013) have been conducted to evaluate the proposed eDRI.

Chapters four and five give further detail on the compared algorithms, experiment

settings, evaluation measures, and data characteristics. The results show that eDRI

outperforms other classic ML algorithms as well as rule-based algorithms in regard to the

considered evaluation measures. Moreover, models produced by eDRI not only have

good predictive power, but they are also efficient during data processing and contain

small effective rules for decision making. These rules have low to no redundancy since

they do not overlap in the training examples and normally require a lower number of data

scans to be found that the compared Covering algorithms.

GI-Issue 2: Enhancing the Performance of the Classification Models

(Classifiers)

We investigated different problems in rule-based classification related primarily to the

process of rule discovery and classifier content. These issues are:

 Reducing the search space for items

 Decreasing the number of rules in the classifier so users can better understand and

use them

9

 Improving test data prediction by using multiple rules based on weights

A. Cutting down the items search space during the training phase

As mentioned before, in typical rule-based classifiers such as Covering the methodology

to find the rule necessitates that after generating each rule a full scan is conducted on the

remaining data examples. This is necessary to record item frequencies after data removal;

hence, the search space of items is massive and consequently consumes large computing

resources. In fact, the number of items that can participate in rule induction should be

minimised since many of these items have no statistical significance and removing them

will improve the process of creating rules. Thus, there is a need for a mechanism that

discriminates between items to reduce the numbers of items in the search space during

the training phase.

Contribution

The rule discovery process proposed in the enhanced Dynamic Rule Induction algorithm

(eDRI) minimised the number of items that can be offered to the rules. We have

introduced a frequency threshold (freq, see Definition 6) that discriminates among items

based on their occurrence with the item and class in the training dataset. The freq

threshold serves as an indicator that distinguishes weak items from strong items. Any

item plus class frequency must pass the freq threshold so it can be considered by the rules.

This has reduced the search space for items during rule building by discarding weak items

early on and in a dynamic manner. In fact, strong items can become weak whenever a

rule is derived if they appeared in the discarded rule’s data. Experimental studies in

Qabajeh et al, (2015) showed an improvement in use of computing resources, especially

run time reduction and number of passes required for building the classifier. These results

are documented in Chapter 4.

B. Reducing the number of rules for better controllability

One of the drawbacks associated with Covering algorithms is that despite being simple

classifiers, the number of rules they produce is large. This can be attributed to the way

the algorithm discovers rules in that each correlation between class and variable is

10

investigated and which leads to the production of several specific rules (covering very

limited data examples). Most Covering algorithms, like PRISM and its successors, keep

appending variables into the rules body until the rule achieves a zero error rate. This can

result in just covering one or two training data examples, which limits generalising rule

performance across wider data applications. To overcome this issue, we investigated this

problem and proposed a rule pruning procedure to cut down the number of potential rules

and reduce the classifier size. It should be noted that search induction learning algorithms

such as PART, IREP and RIPPER use extensive such as backward and minimum

description length principle pruning to cut down the size of the classifiers (Frank &

Witten, 1998). However, these algorithms originally employ a divide and conquer

approach to learning trees that then are converted into classification rules. Thus, it is

impractical and incorrect to consider them Covering approaches despite generating rules.

Contribution

We have developed a pruning method that ensures each potential rule has a true rank

during the process of rule generation. When a rule is constructed, and its data examples

are discarded, we immediately adjust the potential rule ranks which help us to determine

weak rules early on and remove them. The resulting analysis against a large data

collection from the UCI repository showed moderate size models being consistently

generated by our dynamic technique when compared with those generated from decision

trees and other Covering algorithms. Interestingly, the models produced by eDRI had a

lower number of rules yet the predictive performance was sustained for the majority of

datasets. Furthermore, in phishing detection, eDRI was able to construct small set of

useful anti-phishing rules that contained new and interesting information for security

experts and online users. Lastly, when the phishing data was processed, the accuracy of

our incremental model was only slightly affected, which shows constant predictive

performance of eDRI on different domains data. All the aforementioned results are

elaborated in details in Chapters 4 and 5.

11

C. Avoiding Over-fitting and Under-fitting

One of the important issue in supervised learning predictive models is over-fitting the

training dataset. This problem is obvious in Covering approach when the learning

algorithm excessively trains against the input dataset particularly when the algorithm

allows the generation of only perfect rules, which is true case with PRISM. These rules

usually are associated with maximum accuracy against the training dataset, yet they are

not general rules that can be widely applied on an unseen dataset. Therefore, the

predictive performance of the rules when they are applied on a test dataset is questionable.

Another obvious example is the REP algorithm that generates a complete rule set and

then invokes an evaluation step to cut down redundant rules (Fürnkranz & Widmer,

1994). There should be a mechanism for learning to be stopped so that training datasets

will not be overfitted. This mechanism guarantees realistic rules in the final classifier that

are linked with insufficient data representation being discarded early during the training

phase.

Contribution

We posit that generating high quality rules, not necessarily perfect ones but rather those

with larger classified training examples, is advantageous. This can be accomplished using

user statistical measure such as rule strength (see definition 9). The rule strength separates

acceptable from unacceptable rules based on both data coverage and items’ frequency

within the class label. This is important because applications such as phishing

classification necessitates small yet highly correlated rules in the classifiers. Rule strength

serves as a point at which we stop adding items into the rule’s body and therefore reduce

over-fitting the training data by allowing for a slight error per rule while maintaining

larger data coverage. Moreover, rule frequency dynamically during the training phase

contributes to reducing over-fitting. This is since items within potential rules that fail to

accomplish the frequency threshold will be discarded, and therefore these rules will not

be considered during the training phase and consequently further shrinks the search space.

1.4.2 Domain Specific Issues

Issue 3: Rules Set as Effective Anti-Phishing Tool

12

Phishing is one of the most serious online frauds, costing different stakeholders including

banks, online users, governments, and other organisations severe financial damages. This

fraud often entails designing and implementing a replica website that maintains visual

similarity to that of an existing trusted organisation (Aburrous, et al, 2010). The aim of

phishing is to unlawfully obtain user login data in order to access their financial

information (Mohammad, et al, 2015). One promising research direction to minimise the

risks of phishing is using predictive ML and DM algorithms. Despite promising results

with reference to classification accuracy of the aforementioned approaches, the models

they produce are usually complicated in a way that novice users might find difficult to

interpret and use them for making decisions. Moreover, adding to or amending the model

requires careful implementation and is often a complex process that end users might be

unable to perform (Abdelhamid, et al, 2014).

Contribution

A model with straightforward knowledge represented in simple rules is obviously

advantageous for end users. Not only the model could be used to detect phishing

activities, but it could also serve as a decision making tool in which the user can readily

understand the relationship between phishing features and the website’s class, i.e. phishy

or legitimate. There has been recent research on the use of rule-based classifiers utilising

associative classification reported in Abdelhamid (2015) and Abdelhamid, et al (2014).

However, these approaches suffer from noticeable drawbacks, which are not limited to

just the size of the classifiers derived but also the inherited problems from association

rules such rule redundancy. A Covering approach that enhances the process of rule

discovery and classifier building as discussed in Section 1.4.1 and removes data

overlapping can be an effective anti-phishing tool. To date, there is very limited work on

anti-phishing using covering classification.

A case study, Chapter 5, that investigates phishing as a classification problem is reported.

This chapter contains critical analysis of phishing approaches, from traditional to

education and intelligent ones, with their associated benefits, disadvantages and ways

forward in combatting phishing. More importantly, a comprehensive experimental study

on real phishing websites is reported. eDRI’s performance as a phishing detection

13

technique is compared against the performance of other ML techniques to reveal the

strengths and weaknesses of eDRI.

1.5 Thesis Structure

This thesis consists of five chapters including the present one. Chapter two critically

analyses Covering techniques in data mining, separate and conquer, divide and conquer,

and their mutually common algorithms. We have included induction learning approaches

as well. Chapter three is devoted to the proposed Covering algorithm (eDRI) for

constructing rule-based predictive models. In chapter three, we present the dynamic

process mechanism, pruning procedure, class forecasting method and a detailed example

that explains eDRI insight. Chapter four contains the implementation of our newly

enhanced dynamic method during the training phase. We also present the evaluation

measures used and phase details of our algorithm alongside a complete example. In

addition, the results on the UCI datasets and their analysis are discussed in chapter four.

These are not only limited to large variations of UCI datasets, large selection of rule and

non-rule based ML algorithms, and evaluation measure results analysis. Real data

experimentations related to phishing and using a number of ML techniques have been

conducted in chapter five. This section also reviews and critically analyses the phishing

problem and traditional solutions based on legal, educational, and intelligent anti-

phishing tools. A large experimental analysis is then conducted to evaluate the benefits

and disadvantages of the proposed algorithm. Lastly, chapter six concludes the thesis by

responding to the research issues raised in chapter one and highlights the main

contributions of this thesis, further pinpointing possible future research paths.

14

Chapter Two

Covering and Induction Approaches in

Classification

2.1 Introduction

One of the primary tasks in ML is predictive classification (Diebold and Mariano, 1995;

Abdelhamid, et al., 2016). In classification, a predictive model called the

categoriser/classifier is typically constructed from a training dataset. This model is then

applied to test data in order to predict the class as accurately as possible. Effectiveness of

the model is measured mainly on its performance in predicting test cases (Abdelhamid

and Thabtah, 2014). The less number of misclassifications the model scores on test data

cases the higher predictive power the model possesses and therefore its performance can

be generalised.

There are two forms of classification problems; single label and multi-label

(Fürnkranz, et al., 2008). The former can also be classified into two types: binary and

multi-class classification. In binary classification, training data can only be linked to a

single class value from two possible values in the training dataset, while in multi-class

classification each training instance is linked with one class value from two or more

possible values. On the other hand, multi-label classification problems necessitate that

each training instance has multiple class values, and thus this type of data requires careful

transformation (Taiwiah and Sheng, 2013). This is since each instance must be repeated

with each class label. More details on the different classification problem types are given

in Section 2.2.

Different intelligent learning methodologies based on DM and ML have been

developed and disseminated to deal with the classification problem. Among these we

have support vector machine (SVM), neural network (NN), associative classification

15

(AC), boosting, regression trees, probabilistic, decision trees, induction learning, and

Covering among others (Joachims, 1999; Mohammad, et al, 2012; Liu, et al, 1998;

Abdelhamid, 2015; Freund & Schapire, 1997; Breiman, et al, 1984; Duda, 1973; Quinlan,

2002; Cohen, 1995; Bramer, 2002). The majority of the learning approaches solve

classification by decomposing the problem into two phases discussed berfore

 Learning Phase: This phase involves learning a model from the training dataset.

 Prediction Phase: Using the learned model to predict the class label value in a test

dataset.

In this thesis we deal with Covering classification, yet in Section 2.3 other common

induction ML approaches that are suitable to solve the classification problem are still

discussed.

As mentioned in Chapter One, Covering classification is one of the most important

learning approaches that generate predictive models with “If-Then” rules. These “If-

Then” rules can be utilised as a knowledge base by end-users for decision making

(Qabajeh, et al., 2015). A typical Covering algorithm learns rules one by one and for each

available class in the training dataset. The algorithm initially creates an empty rule for a

specific class [If empty, then Class 1]. Then using certain mathematical metrics such as

accuracy, foil gain, etc., append one item to the empty rule body (left hand

side)(Cendrowska, 1987; Quinlan, 1990). The algorithm keeps appending items until the

rule metric cannot be further enhanced, at which point the rule is inserted into the

classifier. In the same manner, the algorithm continues deriving the rules for the classes

until a stopping condition is met.

Three noticeable characteristics exist of a Covering approach in solving classification

problems (Clark & Boswell, 1991; Domingos, 1996a; Grzymala-Busse, 2010;

Abdelhamid & Thabtah, 2014)

 The learned model contains simple yet highly influential rules for decision making

that end-users can easily comprehend and manage.

 Adding new knowledge (rules) can be done in a straightforward manner.

 The way models are constructed is based on easy searches.

16

This chapter defines classification problems, followed by discussing classic induction

learning approaches. More importantly, the focus will be on Covering classification

methods as well as other common rule-based classifiers. The chapter structure is as

follows: the classification problem and its main steps are discussed in Section 2.2; classic

learning strategies dealing with predictive tasks such as classification are briefly

discussed in Section 2.3, while section 2.4 critically analyses Covering classification

approaches along with other common rule-based classifiers in DM and ML. Moreover,

we also introduce non-rule classification methods such as Boosting, probabilistic, SVM,

AC and NN in section 2.5. Finally, conclusions are drawn in section 2.6.

2.2 The Classification Problem and Its Variations

In Chapter One, we have discussed the main terminologies related to the classification

problem, specifically those connected with the Covering approach. In this section, we

define single label classification problems (both binary and multi-class) in the ML

context. Figure 2.1 depicts the essential steps that any learning algorithm goes through in

order to construct models and apply them to predicting test cases. Input will consist of a

set of labelled variables, including the class, called the training dataset. A learning

algorithm then processes the training dataset to derive the classifier. This classifier is then

applied to a test dataset to measure its prediction power (see Figure 2.1).

17

Multi-label and multi-output classifications are variants of the classification problem

where multiple target labels must be assigned to each test case (Veloso , et al, 2007).

Multi-label classification should not be confused with multi-class classification, which is

the problem of categorising instances into one of more than two classes. Formally, multi-

label learning can be phrased as the problem of finding a model that maps inputs (x) to

binary vectors (y), rather than scalar outputs as in the ordinary classification problem

(Tsoumakas, et al, 2010).

In binary classification and according to Bradley, et al (1998), given an input dataset

taking the format of (Xi, Ci) we can assign the given vector xi n into one of two

disjoint sets A or C in a dimensional variable space where n. Xi n is the ith data

instance and Ci {1, ….., K) is the ith class. The ultimate goal is to derive a function, F,

that maximises the chance that F(x) = Ci for an unseen data instance. The classification

problem can basically be transformed into a two class problem in which the class ci can

be either 0 or 1. This simple format of the problem is called binary classification. Binary

classification function, F(x), has the following format:

	

1

0

Cx

Ax

Multiclass classification deals with predictive problems that involve more than two

values for the class label.This is because the training dataset in multi-label classification,

such as an image or a science, contains instances where each may be associated with

multiple labels rather than a single class as in multi-class or binary classification

(Tsoumakas, et al, 2010). Tables 2.1a-2.1b depict multi-label and multi-class datasets,

respectively. Table 2.1b is the transformation of Table 2.1a from multi to single label

classification.

Often multi-class and multi-label datasets require data transformation, so strategies

that transform their datasets into binary classification are essential. Two of the common

data conversion strategies from multi-class and multi-label into a binary classification are

one-versus-one and one-versus-all (Fürnkranz, et al, 2008). The latter essentially learns

single classifiers for each class label. While learning the classifier for a class C, all

training instances that belong to C are considered positive instances and the remaining

are negative instances. Thus, when a test case is about to be predicted, a score based on

18

the required single classifiers is calculated to come up with the class decision (Thabtah et

al, 2006). One shortcoming associated with the one-versus-all approach, however, is

when the training dataset is imbalanced because it potentially creates a computed score

that can be arisen with biased to the majority class. The other data conversion strategy,

the one-versus-one approach, necessitates producing N (N − 1) / 2 binary models for the

N multi-class problem (dataset)(Thabtah, et al, 2006). When test data is about to be

predicted, a voting mechanism is employed in which all N (N − 1) / 2 are utilised and the

class with the largest correct predictions is assigned by the multiple binary models.

According to Tsoumakas, et al, (2010), for multi-label classification problems two data

processing methods are also used; problem transformation and algorithm adaptation. The

problem transformation consists of converting of the available multi-label dataset into

binary classification sets in that each set can then be dealt with using any binary

classification methods. In other words, the problem transformation strategy can be seen

as a pre-processing phase which ensures that each training instance in the original multi-

label dataset is transformed into multiple single label instances. On the other hand,

Table 2.1A multi-label dataset

Variable
1

Variable
2

Variable
3

Class

X1 Y1 Z2 C1, C3
X1 Y1 Z2 C1, C3
X2 Y1 Z3 C1,C2, C4
X2 Y2 Z3 C2
X1 Y3 Z2 C3,C4
X2 Y2 Z1 C2

Table 2.1B multi-class dataset transformed from Table 2.1A

Variable
1

Variable
2

Variable
3

Class

X1 Y1 Z2 C1
X1 Y1 Z2 C3
X1 Y1 Z2 C1
X1 Y1 Z2 C3
X2 Y1 Z3 C1
X2 Y1 Z3 C2
X2 Y1 Z3 C4
X2 Y2 Z3 C2
X1 Y3 Z2 C3
X1 Y3 Z2 C4
X2 Y2 Z1 C2

19

algorithm adaptation strategy employs a specific algorithm to learn multi-label models

directly from the multi-label classification datasets without the use of data pre-processing

phase. This approach to learning from multi-label problems is domain specific, and

requires different learning strategies to acknowledge the fact that an instance has multiple

class labels and the prediction involves assigning multiple labels to the test data.

This thesis focuses only on binary and multi-class classification, and leaves multi-label

classification out of scope of this study since this requires effort for additional PhD.

 2.3 Learning Strategies in Classification

2.3.1 Divide and Conquer

 This classification approach splits data into subsets, which are further divided into

smaller divisions until the algorithm believes that the subsets are adequately homogenous

or the stopping criterion has been satisfied (Quinlan, 1979). To illustrate this, imagine a

root node being the entire dataset. Subsequently, the algorithm specifies a variable in the

dataset to start the first split. In an ideal situation the algorithm starts with the feature that

maximises discrimination among the outcome classes in the dataset. Decision tree

algorithms which apply divide and conquer use Gini index or Information Gain metrics

to select the variable that can be the root node (Zaremotlagh, S., & Hezarkhani, 2017;

Gini, 1999; Quinlan, 1986). The cases are next grouped into classes based on the splitting

of the variable. This process is repeated and the algorithm continues to separate (divide)

and group cases while excluding heterogeneous data cases (conquer).

Decision tree algorithms are common divide and conquer methods that classify cases

based on their attributes’ values. Nodes represent variables to be classified, and branches

represent the values that variables take (see Figure 2.2). Cases are classified beginning at

the root node. Figure 2.2 represents a decision tree for a tax evasion classification problem

(Tan, et al, 2005). Based on a number of attributes (tax refund and taxable income along

with demographic information and marital status), the user wants to predict whether

citizens cheated on their tax forms.

 Note that the attribute that best classifies the cases is represented by the root node

feature. In this example, marital status seems to be the best one. Married people did not

cheat on their taxes as the first node of the tree indicates. The process of classification

20

based on best features continues until a parsimonious representation is obtained. Decision

trees are useful given their representations for classification problems, which constitute a

large portion of everyday applications. The detailed process of how to construct decision

trees from training dataset and common methods used are given below.

 Imagine that you are a university administrator working for a public university. Your

role is to decide whether new programmes should be approved for enrolment in the next

academic year. Upon your return from holiday, your work station is full of requests from

various colleges. Realising that you do not possess sufficient time, you decide to construct

a decision tree to help make the decision of categorising the requests into three groups:

Success, Revision and Failure. To construct the decision tree, you explore factors

associated with the 20 most successful and 20 worst programmes at the university during

the past 25 years. You realise that there is a strong correlation between the programmes’

budget, size, and college affiliation of programme with the probability of its success or

failure. Beginning with the entire dataset, the root node, we can select programme budget

as the first feature by which to split programmes. Programmes can be classified as having

a cost of more than $1 million or less. Second, among the programmes with a cost of less

than $1 million, we can classify them based on their college affiliation. We could further

split the programmes, yet over-fitting a tree is non-advisable. Over-fitting occurs when

someone is trying to over learn by building larger trees in order to maximise the predictive

performance of the model (tree) on the training dataset rather than on the test dataset

(Hall, et al, 2009). You could therefore decide that programmes meeting a cost of less

than $1 million dollars within a technical college affiliation are more successful, and thus

approve them.

Despite its applicability, the divide and conquer approach, it suffers from a number of

limitations (Kothari & Dong, 2000; Leung, 2007; Grzymala-Busse, 2010). First, it tends

to split the data based on variables with a large number of levels. Second, it is easy to

over-fit or under-fit a model for classifying instances in a given dataset. Under-fitting the

model occurs when someone stops building the tree early, and thus produces a model with

limited performance (Witten & Frank, 2005; Jankowski & Jackowski, 2014). Third, the

divide and conquer approach is problematic when it comes to modelling complex

relationships since it relies on axis-parallel splits. Moreover, the output produced,

especially in large trees, can be difficult to interpret and understand by non-technical

21

audiences. In this event, the user will not be able to manage the tree and therefore will not

be able to use it for decision making. Finally, a key weakness of the divide-and-conquer

approach is its sensitivity to the input data (Leung, 2007; Grzymala-Busse, 2010). A small

change in the input may result in significant changes in the decision trees produced.

Introducing new cases into the dataset may result in redrawing the whole tree altogether.

Despite the easy constructing decision trees, they tend to be more complex compared to

other classification approaches, i.e. separate-and-conquer (see section 2.3.2) (Fürnkranz,

1999; Brookhouse & Otero, 2016), which This learning approach produces an easier

representation of results, thereby making them superior to divide-and-conquer,

particularly in their final models understanding.

2.3.2 ID3 Decision Algorithm

Decision trees in classification spread out after the dissemination of the ID3 algorithm

(Quinlan, 1979). A decision tree can be constructed based on the available features inside

the training dataset, primarily using the equation for Information Gain (IG) (Equation

2.1). The tree is built using the ID3 algorithm by initially selecting the attribute with the

highest computed IG among all available attributes in the training dataset as a root node.

IG is computed using Entropy (Equation 2.2) which denotes how informative a feature is

in splitting the training instances according to the target attribute values. After choosing

the root node, the algorithm computes IG repeatedly for the remaining attributes,

excluding the root node until the tree cannot be divided any further or all training

instances for an attribute belong to one class (Quinlan, 1993).

IG (T, f) = Entropy (T) - ((|Tf| / | T |) * Entropy Tf)) (2.1)

Where Entropy (T) = cc PP 2log (2.2)

where

vP = Probability that T belongs to class l.

Tf = Subset of T for which feature F has value fa

|Tf| = Number of examples in Tf , and |T| = Size of T.

22

A tree constructed by ID3 can be transformed into a rules set in which a path in that

tree links the root node to any leaf making a rule. Figure 2.2 displays a tree that contains

four rules that were constructed based on three features and a target attribute (class).

2.3.3 Separate and Conquer

Separate-and-Conquer is a learning strategy famous within the rule-based classification

(Pagallo & Haussler, 1990; Fürnkranz, 1999; Rijnbeek & Kors, 2010). The classification

problem is characterised by a number of positive and negative cases of a specific concept,

normally called the class, and a set number of attributes inside a training dataset. The

separate-and-conquer algorithm discovers the class in the form of explicit rules, or

knowledge, composed of tests derived from values of attributes in the training dataset.

The resulting set of rules should be able to explain instances of the target class and

discriminate other instances that do not belong to it. Many approaches have been

developed to solve this problem including covering and induction learning (Stahl &

Bramer, 2014; Pazzani & Kibler, 1992).

Covering approaches are popular within rule-based classification. Despite their limited

numbers of algorithms, they still constitute a viable approach in classification problems

(Abdelhamid & Thabtah, 2014). Covering approaches are present in many free tools

developed by the ML community such as R and WEKA (R Development Team, 2008;

Hall, et al., 2009). Covering approaches have a number of advantages over other

Figure. 2.2 Decision tree example (Tan, et al, 2005)

23

approaches of rule-based classification especially the simple to define outcome rules.

However, before we delve into their strengths, we need to describe their basic strategy in

classification problems.

Covering algorithms are similar in the logic they adapt when solving a classification

problem. This family of rules learning share a common feature: a separate-and-conquer

algorithm that searches for a rule that predicts part of the training set, while are isolated

those, and then conquers the remaining cases learning new rules until no cases are left in

the dataset. This approach guarantees that each case in the training set is covered by at

least one rule (Grzymala-Busse, 2010). Pagallo & Haussler (1990) developed the term

separate-and-conquer in reference to the common feature of those algorithms. Other

authors have referred to this approach in different ways, “separate-and-conquer,”

“Covering ,” or “greedy” just to name few.

 Covering approaches are characterised by a strong representation bias compared to

other approaches such as classification tree algorithms (Fürnkranz, 1999). A simple rule

is required to perform the same task a complicated tree would achieve. The separate and

conquer approach tries to maximize the purity of a leaf when it attempts to generate a

rule. On the other hand, classification trees look for the average purity when splitting a

node. However, the rules do not possess the redundancy problem of the association rules

approach. The underlying logic behind separate-and-conquer is to generate a

parsimonious set of rules capable of classifying new cases by distinct rules within a

dataset (Pagallo & Haussler, 1990). Covering approaches are more sensitive to collision

problems when an instance could be classified into more than one rule (Witten & Frank,

2005).

 Covering approaches work either in a bottom-up or top-down fashion (Grzymala-

Busse, 2010). The bottom-up strategy begins with a positive case by attempting to

generalise the rule through the removal of conditions. The basic assumption here is that

the rule must cover the largest group of positive cases and the fewest number of negative

cases. While valuable, this strategy is tedious and does not perform well in noisy datasets

(Stahl and Bramer, 2012). The top-down strategy resembles the classification tree model.

It aspires to maximise the purity of the leaf on a branch of a tree. Computationally, this

strategy consumes equivalent time to that of the classification tree approach (Witten &

24

Frank, 2005). Hereunder are the main advantages and disadvantages associated with

traditional Covering approaches based on the comprehensive review we have conducted:

Advantages

1) The simplicity of rules generation in which only one metric is computed to decide

rule significance (Franczak, 2002).

2) The classifier contains easy rules which can empower decision makers,

particularly in domain applications that necessitate quick and easy interpretations

(Abdelhamid, et al, 2014; Abdelhamid and Thabtah, 2014)

3) Straightforward implementation, especially with available computing resources

(Stahl and Bramer, 2014).

4) The predictive power of its classifier can be seen as acceptable when contrasted

to other classic DM and ML approaches such as search methods, decision trees,

NN, Boosting, Regression, AC, and many others (Bramer, 2002; Thabtah et al,

2007).

Disadvantages

1) Noisy datasets that contain incomplete attributes and missing values. This can be

seen as a major challenge since no clear mechanism on handling noise is presented

(Grzymala-Busse, 2010). Currently, adopted approaches from information theory

are used to handle noise as in Bramer (2000), Stahl and Bramer (2014), and Cohen

(1995).

2) No clear rule pruning methodology is present. This may lead to the discovery of

large numbers of rules and therefore combinatorial explosion (Abdelhamid &

Thabtah, 2014). There is a high demand on pruning methods to cut down the

number of rules without hindering overall performance of the classifiers

(Abdehamid, et al, 2014). One possible promising solution is pruning methods

adopted by induction learning algorithms such as PART, IREP, and RIPPER

because they use reduce-error pruning methods and therefore decrease the number

of rules.

3) Conflicting rules during prediction. There is no clear mechanism on how to

resolve conflicting rules (Grzymala-Busse, 2010). Currently the choice is random

25

and favours class labels with the largest frequency linked with the item rather than

keep multiple class labels per item.

4) Breaking ties among item frequencies while building a rule. When two or more

items having the same frequency, Covering algorithms such as PRISM look at

their denominator in the rule accuracy formula. Yet, sometimes these items have

similar accuracy and denominators, which makes the choice random. Arbitrary

selection without scientific justification can result in biased decisions and may not

be useful for overall algorithm performance (Thabtah, et al, 2007).

2.4 Common Covering and Induction Algorithms

There are many separate-and-conquer algorithms in the literature, the majority of which

are local algorithms such as PRISM and a few are global algorithms like our algorithm

eDRI (Chapter 3). In global Covering algorithms, all variable values are used in the search

space together with the class variable. Whereas in local Covering algorithms the attribute-

value pairs are used as the search space. In this section, we highlight common Covering

algorithms and then shed light on other approaches that generate rule-based classifiers

similar to Covering approaches.

2.4.1 PRISM Algorithm and its Successors

Covering methods such as PRISM derive rules one by one from the training dataset

(Cendrowska, 1987). Normally these algorithms divide the training dataset into subsets

representing each one of the target classes. The instances in one subset are considered

positive to that subset’s class label and negative for all other class labels. To make rules,

the Covering algorithm is applied on each subset. A rule is made by attributing values to

its body using a statistical measure such as rule’s accuracy. A rule building stops upon

reaching a certain condition. Once a rule is generated, all of the training data instances

covered by it are removed and the algorithm discovers other rules in the same manner.

Termination of the data processing is typically occurred when the training dataset has no

remaining data instances or no rules with an acceptable accuracy can be found.

26

PRISM is a key algorithm for building classification models that contain simple yet

easy to understand rules. This algorithm was developed in 1987, using data examples

which are separated using the available class labels. Specifically, for each class (wi) data

sample, an empty rule (If nothing then w1) is formed. The algorithm computes the

frequency of each attribute value linked with that class, and appends the attribute value

with the largest frequency to the current rule’s body. PRISM terminates the process of

building a rule when that rule has an accuracy of 100%. Meaning this algorithm favours

very specific rules that have no negative instances. When the rule is generated, the

algorithm continues processing the remaining possible rules from w1’s data subset until it

becomes empty or no additional attribute value can be found with an acceptable accuracy.

At that point, PRISM moves to the second class data subset, repeating the same steps.

When the training dataset is evaluated, the algorithm finally stops and the rules formed

construct the classifier. Algorithm 2.1 below depicts the major steps of the PRISM

algorithm. One of the major challenges faced by PRISM is noisy training datasets. These

are datasets that contain missing values, data redundancy, and incomplete data examples.

Bramer (2000) has developed a modified version of PRISM, called N- PRISM to handle

noisy datasets as well as focusing on maximising prediction accuracy. N-PRISM has been

implemented using Java within an R package. Experimental tests using eight datasets

from the UCI have showed consistent performance of N-PRISM when compared to

classic PRISM, particularly on classification accuracy obtained from noisy and noise-free

datasets (Lichman, 2013). It should be noted that the difference between the singular

PRISM and N-PRISM is very minimal.

Input: Training dataset T
Output: A classifier that consists of If-Then rules

1. for each subset Ti in T that belong to wi Do
2. make an empty rule, rj: If Empty then wi
3. calculate Attx in Ti p(wi = i| Attx);
4. append the Attx with the largest p(wi = i| Attx) to the body of rj
5. repeat steps 1.1-1.3 until rj has 100% accuracy or no longer can be improved
6. generate rj and insert it into the classifier
7. discard all data examples from Ti that match rj’s body
8. continue producing rules until Ti is empty or no rule with accepted error can be found
9. repeat steps 1-4 until no more data subsets of can be wi found
10. if (Ti does not contain any data examples of class wi)
11. Generate the classifier.

Algorithm 2.1 PRISM Pseudocode

27

 Stahl and Bramer (2012) developed another modified PRISM method based on a

previously developed pre-pruning method called J-Pruning. Its purpose was to reduce

over-fitting on the training dataset. J-Pruning is based on an information theory test

performed typically in decision trees by measuring the significance of removing an

attribute from the rule’s body. This algorithm was developed to address rule pruning

issues during the process of building up rules for each class label in PRISM (Stahl &

Bramer, 2012). Experimental results using sixteen UCI datasets (Lichman, 2013) have

shown decreases of the number of items per rule.

In 2015, Othman and Bryant (2015) investigated instance reduction methods as a

paradigm for rule pruning in induction algorithms. They claimed that minimising the

training dataset to the subset needed to learn the rules is one way to shrink the search

space. The authors applied three common instance reduction methods, namely DROP5,

ENN, and AllKnn, on a limited number of datasets to evaluate their impact on the

resulting classifiers. Results obtained, although limited, can be seen as a promising

direction of using instance reduction methods as a pre-pruning phase in induction

learning.

Database coverage pruning and its successors were one of the major breakthroughs in

AC that can be employed successfully in induction learning as a late or post pruning

method (Liu et al, 1998; Thabtah, et al, 2011). These pruning methods necessitate a

positive data coverage per rule with a certain accuracy so the rule can be part of the

classifier. A newer version of database coverage pruning was developed by Ayyat, et al,

(2014) as a rule prediction measure. The authors proposed a method that considers the

rule rank as a measure of goodness in addition to the number of similar rules sharing items

in their body. These two parameters play a critical role in differentiating among available

rules, especially in predicting test data class labels.

Recently, Elgibreen and Aksoy (2013) investigated a common problem in both the

PRISM and RULES-IS algorithms, which is the trade-off between training time and

classification accuracy during constructing the classifiers (Elgibreen & Aksoy, 2013).

Moreover, the authors also highlighted performance deterioration of Covering methods

when applied to incomplete datasets. Their result is a new induction algorithm that utilises

the “Transfer Knowledge” approach to fill in missing attribute values, specifically the

28

target attribute, in the training dataset before mining kicks in. “Transfer Knowledge” is

basically building up a knowledge base based on learning curves via agents from different

environments and previous learning experiences, which is generally used to fill in

incomplete data examples (Ramon, et al, 2007). Experimental results against eight

datasets reported in (Ramon, et al, 2007) revealed this the improved PRISM Covering

algorithm consistently produced competitive classifiers when compared with other

algorithms such as RULES-IS and PRISM.

One of the major obstacles DM algorithms face is the massive amount of data that are

stored and scattered in different geographical locations. Decision makers are striving for

an “on the fly” mining approach that processes very big databases simultaneously, hoping

to facilitate planning decisions. Most of reported studies on parallelisation in

classification were focused on decision trees (Stah and Bramer, 2014). However,

Covering may lead to simple classifiers that are useful to decision makers, which suggest

why Stahl and Bramer (2012) have investigated the big data problem by amending the

PRISM algorithm to handle parallelisation., leading them to develop parallel learning

method called Parallel Modular Classification Rule Induction (PMCRI). This strategy is

a continuation of an early work by the same authors reported in 2008 which resulted in

parallel PRISM (P-PRISM) algorithm (Stahl & Bramer, 2008).

P-PRISM algorithm aims to overcome PRISM’s excessive computational process of

testing the entire population of data attributes inside the training dataset. The parallelism

involves sorting attribute values based on their frequency in the input dataset and class

attribute. This means the algorithm will need only this information for processing the

rules and therefore hold these results rather than the entire input data, which reduces usage

of computing resources such as processing time and memory. The attribute values and

their frequency are then distributed to clusters, and rules are generated from each. All

rules are finally merged to form the classifier. Experiments using a replication of the

Diabetes and Yeast datasets from the UCI repository (Litchman, 2013) reported in (Stahl

& Bramer, 2008) with results showing that P-PRISM scales well in run time. However, a

better approach to evaluate the parallelisation capability in P-PRISM is to utilise

unstructured real data such as Bioinformatics or text mining where dimensionality is huge

and the number of instances vary.

29

Since PRISM often suffers from over-fitting Stahl and Bramer (2014) developed an

Ensemble Learning PRISM to minimise this risk. Ensemble Learning is an approach used

in classification to improve the classifier’s predictive accuracy by deriving multiple

classifiers from any learning approach such as NN, Naïve Bayes, decision trees, etc, and

then merging them to form a global classifier. The results derived from fifteen UCI

datasets revealed that the Ensemble Learning model based on PRISM was able to generate

results slightly better than classic PRISM algorithm (Stahl and Bramer, 2014). Moreover,

a parallel version of the new model has also been implemented by the authors and tested

with respect to training time. Results on run time showed that the parallel version scales

well during the process of constructing the classifier.

PRISM successors have focused mainly on improving algorithm scalability. We have

seen approaches such as P-PRISM that showed a promising research direction toward

parallel DM using induction learning. Other approaches such as Ensemble Learning based

PRISM were able to minimise over-fitting the training data by integrating Ensemble

classifiers (weak learners) with J-pruning to reduce the number of rules. There is a need

to further cut down irrelevant candidate items during rules construction in PRISM. This

will have obviously a positive impact on the algorithm’s efficiency in mining the rules

and building the classifier. We believe that post-pruning is also essential in PRISM as it

should increase its chance of being used as an intelligent solution and decision-making

tool in practical applications. However, its use is limited because the classifiers produced

by this algorithm family is large in regards to the numbers of rules.

Since PRISM relies primarily on an item’s frequency to build rules; one promising

solution to shrink the size of PRISM’s classifier could be accomplished by having live

item frequency during the mining phase. In particular, PRISM algorithm often employs

the rule’s 100% accuracy as a measure to generate the rule. This normally results in low

data coverage by the rules. However, each candidate item that can be part of a rule body

could be associated with its true frequency in the training dataset, which usually changes

when a rule is generated. Recall that when a rule is derived by PRISM, all positive data

linked with it is discarded and this may affect other items appearing in those discarded

rows. While building the classifier, the true data representation for each item would

decrease the search space and all insufficient candidate items would be deleted rather than

stored as in PRISM. The overall benefit will be having less redundant rules in the

30

classifiers. These classifiers can be seen as real decision support system tools since they

would hold rules that are easy to maintain and use by decision makers. This pruning

strategy will be implemented in our new eDRI algorithm discussed in Chapter 3 as a

solution to decrease the classifier size in terms of the numbers of rules.

2.4.2 Incremental Reduced Error Pruning and Its Successors

Rule pruning in the separate-and-conquer approach enhances the predictive models’

performance by minimising the number of errors on test data, in particular when the input

data has noise (Franczak, 2000). The ultimate aim of rule pruning is to discard rules that

over represent training data and under represent unseen data (test dataset). These types of

rules, which misclassify instances, have limited training data coverage, or high similarity

with portions of its rule do not perform well on test data. Consequently, early discarding

of such rules during the classifier-building phase is preeminent and could enhance the

general predictive performance of the models. Reduced Error Pruning (REP) (Quinlan,

1987), Incremental Reduced Error Pruning (IREP) (Fürnkranz and Widmer 1994), and

Repeated Incremental Pruning to Produce Error Reduction (RIPPER) (Chen, 1995) are

successful methods that have been used in rule learning models to accomplish the task of

model generalisation by rule pruning (Quinlan, 1987; Pagallo & Haussler, 1990;

Fürnkranz & Widmer, 1994; Cohen, 1995).

IREP and RIPPER are improved rule induction algorithms that minimise over-fitting

resulting from overlearning the models. The aim is to extend the successful REP method

so it can be used as a learning algorithm to produce efficient rule-based models. Most of

the credit in rule induction algorithms based on REPs goes to Cohen at AT&T Bell

Laboratories. Cohen’s main goal was to design a fast rule induction algorithm that can

scale well with C4.5 decision tree algorithms by using IREP pruning. Before discussing

the RIPPER algorithm, both REP and IREP algorithms are presented.

2.4.2.1 Reduced Error Pruning (REP)

Initially, REP was designed to reduce the over-fitting problem of decision tree models by

Ross Quinlan in 1987 so that predictive performance of the classifiers is enhanced. Later,

31

REP was applied by Pagallo and Haussler (1990) and Brunk and Pazzani (1991) to

produce decision lists. REP is a pruning method used in both rule induction and decision

trees to reduce the error of a produced rule set. Therefore, REP can consider as a separate-

and-conquer method that keeps pruning rules in the classifier until the classifier has an

acceptable predictive accuracy. It should be noted that when REP is employed in decision

tree algorithms like C4.5 or See5 the tree model is converted into the corresponding rules

set before invoking it (Quinlan, 1993; Quinlan, 2002).

REP splits the training dataset into pruning and growing sets, with the learning

algorithm deriving its rules from the growing set. The initial set of rules often over-fits

the growing set, so REP applies a post rule pruning heuristic repeatedly to simplify the

rules set by using rule pruning operators. This pruning heuristic evaluates each discovered

rule of the pruning dataset, and the rule pruning operator that generates the smallest error

is selected. To elaborate, each rule is evaluated against the pruning dataset, and then

adjusts the rule body using operators in order to generate a new rule that ideally fits the

pruning dataset. A rule pruning operator removes a condition (item) in the rule’s body, or

the whole rule in some cases. The rule pruning process terminates when removing an item

increases the rule’s error on the pruning dataset.

Experimental studies, such as Cohen (1995), Fürnkranz and Widmer (1994), Cohen

(1993) and Brunk and Pazzani (1991) have shown enhancement in a models’ predictive

power when REP was adopted for rule pruning. Nevertheless, REP was criticised for

being intensive resource demanding method since each rule must go through a thorough

testing by pruning operators. This can be computationally costly when the input dataset

is highly dimensional, which limits REP applicability.

2.4.2.2 Incremental Reduced Error Pruning (IREP)

In order to improve efficiency of the REP method, Fürnkranz and Widmer (1994)

proposed Incremental REP (IREP) (Algorithm 2.2) as a rule-based learning method with

a new pruning heuristic. Unlike REP, IREP introduced the idea of eliminating the

generation phase of the initial rule set, thereby saving substantial data processing time

and computing resources. Similar to REP, the training dataset gets split into pruning

(33.33%) and growing (66.67%) sets. Then, IREP constructs greedily one rule at a time.

32

When a rule is put into a pruning test and passes that test, then its corresponding data

instances in both the growing and pruning sets are discarded and the rule is derived.

During rule pruning, IREP considers deleting conditions (items) from the rule’s body and

stops the pruning when no item deletion can enhance the following value given by

equation (2.3).

Np

nNp
pruneNegprunePosRulev

)(

),,((2.3)

Where p and n are the # of positive and negative instances covered by the pruned rule,

and N is the total number of instances in the pruning set.

IREP intuitively eliminates the last condition added to the rule until the rule’s accuracy

cannot be improved, when the rule will be generated. Whenever a rule is derived, all

remaining uncovered instances in the training dataset are re-partitioned. The same process

is repeated until no more positive instances are left, or the last rule derived had an

unacceptable level of error. In other words, the termination occurs when the error of the

last pruned rule is larger than that of the empty rule. When this occurs, the discovered

pruned rules are returned as the classifier. Experimental studies by Fürnkranz and Widmer

(1994) and Cohen (1995) shown that IREP is highly competitive with regards to

classification accuracy compared to REP, and more importantly, faster than REP in

producing the rules set.

Input: A training dataset
Output: A ruleset classifier

1. procedure IREP(Pos,Neg)
2. begin

3. {}_ setRule
4. while Pos < > {} do
5. split (Pos,Neg) into (GrowPos,GrowNeg) and (PrunePos,PruneNeg)

6. GrowNeg)rowPos,GrowRule(GR

7. PruneNeg)PrunePos,Rule,PruneRule(R
8. if Error (R) on (PrunePos,PruneNeg) >= 50% then
9. return Rule_set
10. else

11. RsetRule _
12. remove examples covered by Rule from (pos,Neg)
13. endif
14. endwhile
15. return Rule_set
16. end

Algorithm 2.2 Incremental Reduced Error Pruning procedure

33

2.4.2.3 RIPPER and Other Alternative Algorithms

To improve performance of the REP and IREP methods, the RIPPER algorithm was

proposed by Cohen (1995). RIPPER was shown to have a higher predictive accuracy and

less complexity when contrasted with IREP. RIPPER initially employed a divide-and-

conquer strategy integrated with a Covering search heuristic during the process of rule

induction. Specifically, after a rule is found, similar to IREP, RIPPER prunes the rule by

considering removal of some of its conditions and evaluating the resultant error rate.

RIPPER was designed to handle multi-class datasets and binary classification data, unlike

IREP which was developed primarily for datasets with two possible class values. This is

a bonus for RIPPER in mining different real world application data. Algorithm 2.3 depicts

the function of growing the rule used by the REP, IREP, and RIPPER algorithms.

One of the important enhancements over REP is the optimisation phase added. In this

phase, RIPPER amends or removes the rules set in order to improve the predictive

accuracy of the constructed model. Particularly, and for each rule, RIPPER creates two

alternative rules: the replacement rule and the revision rule. The latter is formed by adding

literal conditions to the rule body until the error on the rule increases. However, the

replacement rule is formed by growing a rule from an empty set and removing literals

Input: A grow dataset
Output: A new rule: R

1. procedure Grow Rule (GrowSet)
2. begin
3. {}R

4. do
5. {}__ SplitBestGloba

6. for each variable in GrowSet do
7.),(varF GrowSetiableINDSPLITNewSplit

8. if NewSplit is better than Global_Best_Split
9. ewSplitSplitBestGlobal N__

10. SplitBestGlobalRR __

11.),(GrowRuleRNOTCOVEREDGrowSet

12. until no errors on GrowSet
13. remove examples covered by Rule from (pos,Neg)
14. end

Algorithm 2.3 Growing Rule Function used in REP, IREP and RIPPER algorithms

34

from the rule body until the error on the entire rule set gets minimised. The decision

whether to include the original rule, its replacement rule, or its revision rule is made based

on evaluating them against the minim description length principle (MDL) (Witten &

Frank, 2005).

Dian, et al. (2004) proposed IREP++ to further enhance runtime of the IREP algorithm

while reducing the number of items a rule can hold, thereby generating less complex

models. The authors used the Gini Index metric as the basis for the rule growing function

procedure. The Gini Index evaluates data impurity based on the following Equation 2.4.

)(
.

)(
)(

psns

ns

nsps

ps
SI

 (2.4)

where ps is the number of positive instance and ns is the number of negative instances.

IREP++ splits the training dataset, similarly to IREP, into growing and pruning sets. Then

during the rule building process, IREP++ uses the data split that leads to the largest

reduction in Gini Index based on Equation 2.5 below,

)(
)(

)(
)(

)(2
22

1
11 SI

nsps

nsps
SI

nsps

nsps
SII

 (2.5)

When a rule is about to be pruned, IREP++ adopts the RIPPER rule pruning strategy in

which any sequence of literals (conditions) added to the rule is considered (Cohen, 1995).

The stopping metric for rule pruning used.

np

np
npM

),((2.6)

where p and n are the number of positive and negative instances covered by the pruned

rule. P and N are the number of positive and negative instances in the entire pruning set.

Cohen and Singer (1999) have developed a variation of the RIPPER algorithm called

SLIPPER based on Boosting learning. SLIPPER improved the predictive models slightly

when compared with RIPPER because of the Boosting strategy implemented during the

process of rule construction. In Boosting a rule, each successive rule classifies training

data instances that were incorrectly classified by the rule’s predecessors (rules already

generated). This new rule learning strategy has resulted in a different classifier to RIPPER

35

at least on the sample of datasets used in Cohen and Singer (1999). However, the

SLIPPER algorithm suffers from the high complexity caused by the Boosting mechanism,

which makes it slower than traditional rule induction algorithms.

Experimental results against nine datasets showed that IREP++ scales well with the

IREP and RIPPER algorithms with respect to run time.

2.4.3 Rough Set Theory Induction Algorithms

Pawlak introduced Rough set Theory as a mathematical solution to uncertainties and

inconsistencies in data analysis (Pawlak, 1982). Many datasets contain incomplete data

instances, missing values, miscoding or mislabelling. Therefore, one may not be able to

classify instances accurately in light of incomplete datasets. Rough set theory introduces

a solution by utilising approximations referred to as lower and upper approximation

approaches (Pawlak, 1991). One may utilise rough set theory to generate rules in cases

where the input data is incomplete.

 Unlike other approaches used to deal with inconsistencies and uncertainties in input

data, rough set theory does not aggregate nor correct the missing pieces. It relies on lower

and upper approximations to compute concepts in inducing rules. Therefore, one may

think of this approach as dealing with consistent data, since it does not alter the input

structure used in rule induction. The output generated by rough set theory can be

categorised into two classes of rules: certain and approximate, contingent on whether

lower or upper approximations are used (Pawlak, et al, 1995).

 Few algorithms have been developed to induce rules based on the rough sets’

approach. Learning from Examples Based on Rough Sets (LERS) is a good example of

the systems used to induce rules based on rough sets theory (Pawlak, 1991). LERS has

many variants to induce rules, all using the aforementioned framework that utilises

approximation to generate accurate rules. LERs is a system used to induce a set of rules

based on examples presented in a decision table format, and may be used to classify new

examples based on the learned set of rules (Pawlak, 1982). The decision table contains

input data collected from a certain field such as banking, nursing, manufacturing or

sociology. Variables are included in the table (symptoms or test outcomes), along with

the decision and dependent variables. The decision table is similar to the training dataset.

36

LERS simply searches for regularities in the table. The output of LERS is a set of rules,

used to classify or predict new instances. Initially, LERS uses data instances for inducing

classification rules from the decision table using a Covering procedure described later in

this sub-section (Algorithm 2.4). LERS, similar to other algorithms, attempts to find a

minimal description of concepts presented in the data by retaining positive examples

while excluding negative examples. Therefore, the rules generated by LERS are referred

to as minimal discriminant concepts.

 LERS is capable of dealing with uncertainty in data. Missing values and inconsistency

are the two main problems constituting this uncertainty in a given dataset. LERS has been

implemented to process continuous variables from inconsistent data to produce rules;

LERS is applied by many decision support systems such as LEM2 (Pawlak, et al, 1995).

The primary benefit of rough set theory is that it does not require additional information

about the presented data. Rough set theory does not remove the inconsistencies, however,

but rather finds approximations to the concept (Pawlak, 1991). The remaining part of this

section describes the Covering procedure of LERS and its variations while introducing

the mathematical notations.

Let X be subset of the set Y of all variables and X is nonempty. Let W be the set of all

instances, the indiscernible relation IND(X) is a relation on W defined for Wba , by

)(),(XINDba if and only if for both a and b the values for all variables from X are

Input: Set of all variables, {c}* on W
Output: A global Covering R
1. do begin
2. compute X split
3. PX
4. R
5. if *}{cX

6. begin
7. for each variable x in X do
8. begin
9. }{xPD

10. calculate split D*
11. if *}{* cD

12. DP
13. end // for
14. PR
15. end//if
16. end

Algorithm 2.4 Single global Covering function of LERs and its variations (Pawlak, 1991)

37

similar. The indiscernible relation is an equivalence relation, and the classes of IND (X)

are named elementary sets of X. For instance, from Table 2.2 (from Grzymala-Busse,

2010), and X= {Temperature, Headache}, elementary sets of IND (X) are {{1}, {2},

{3,7}, {4}, {5,6}}. All X-elementary sets have a family X*. For a class c, c depends on X

if *{c}X* . A Covering (reduct) of {c} is a subset of X of Y such that {c} depends on X

and X is minimal in Y. One can obtain the Covering of {c} by comparing splits of X* with

{c}*.

The Covering methodology (see Algorithm 2.4) used in LERS components such as

LEM1 or LEM2 are calculated based on the eliminating condition procedure developed

by Michalski (1983). Using this procedure, the condition within a rule such as R1 is

scanned from R1’s body starting with the left-hand most condition moving to the right.

Whenever a condition is removed, we check the decision table to evaluate whether the

new simplified rule is violating the consistency of the discriminant description

(Grzymala-Busse, 2010).

2.4.4 CN2 Algorithm

CN2 is a classification algorithm designed to induce a set of rules from datasets associated

with duplication (Witten & Frank, 2005). The original CN2 algorithm (See Algorithm

2.5) was initially designed in 1989 and then improved in 1991 (Clark & Niblett, 1989;

Clark & Boswell, 1991). The algorithm traditionally used Entropy for its search heuristic

and was able to produce a list of ordered rules. Entropy indicates variable purity in

splitting data instances with respect to the class label. The purer a variable can split, the

training instances with reference to the target attribute values (class variable), the higher

the variable score. Many have shown that the algorithms’ performance increases with few

Table. 2.2 Sample dataset (Grzymala-Busse, 2010)

Instance ID Temperature Headache Weakness Nausea Class
1 Very high Y Y N Yes
2 High Y N Y Yes
3 Normal N N N No
4 Normal Y Y Y Yes
5 High N Y N Yes
6 High N N N No
7 Normal N Y N No

38

modifications (Quinlan, 1993; Abdelhamid and Thabtah, 2014). For instance, using a

Laplacian error estimate as the heuristic may improve the results of the models (Witten

& Frank, 2005).

 CN2 is composed of two main phases: a search and a control phase. The search is

composed of a beam search with the objective of reaching to a good rule, while the control

phase is composed of the reiteration and execution of the search algorithm part. During

the search phase, the algorithm looks for the best rules it can generate. One possible

evaluative criterion used is the accuracy rate of rules given the training data. CN2 follows

the learning approach that first identifies the rule’s body then the class, rather than class

then conditions as in the REP, IREP and RIPPER algorithms.

In 1995, an improved search algorithm called Optimized Pruning for Unordered

Search (OPUS) was proposed by Webb (1995). OPUS presents a solution for the heuristic

search problem in ML predictive tasks. OPUS is a fast heuristic for searching the data

space for conjunctive rules. Usually, heuristic search methods do not guarantee

generation of the target relation. However, OPUS presents an alternative search strategy,

based on admissible search, that promises production of the target relations if they exist.

OPUS method permits efficient admissible searches for search spaces in which the order

of application of search operators is not important. This is permitted by the use of domain

specific pruning of rule to provide a narrower search space. OPUS uses a branch and

Input: Set of all variables (training dataset- T)
Output: Rules set (R_S)
1. function CN2 (T)
2. begin
3. SR _ // initialising the rule set to be empty

4. do
5. begin
6. find_Best_Variable(T) // Entropy metric is used to measure the best variable
7. Tsubsetiabletemp __var // Inserting the best variable data examples of the variable in a temp

8. valueVarR _ // Adding a variable value to the rule

9. tempTT //removing the rule covered data from the training dataset

10.)(TempsCommonClasR // finding the most common class in the rule’s data examples

11. until no adding a variable is not satisfies the minimum condition
12. end
13. RSR _ // adding the rule into the rule set

14. end

Algorithm 2.5 CN2 original rule generation function (Clark and Niblett, 1989)

39

bound search strategy that guarantees that no two equal nodes in the search space are

visited. It also optimises the influence of pruning by organising the search process.

2.4.5 First Order Inductive Learner (FOIL)

First Order Inductive Learner (FOIL) builds learning systems that utilise propositional

value attribute language to describe entities and classification rules, as well as systems

that generate first order logic classification rules (Quinlan, 1990). FOIL originated from

developments based on other classification methods including the divide-and-conquer

approach ID3 (Quinlan, 1979). The FOIL algorithm aims to generate statements that

describe a specific relation by itself and other relations in the input data. FOIL shifts from

the explicit approach of representing the relation with a set of tuples of a particular

collection of constants to a general functional form applied to different collections of

constants.

 FOIL rule generation functions (Algorithm 2.6) devise statements one at a time to

describe a relation, and then looks for the subsequent one. It then uses an information

based heuristic to generate a general functional set of statements. Thus, FOIL begins with

a set of tuples of constants instead of the variable-values structure. Each tuple corresponds

to a value assigned to a variable. They are then indicated to be either positive or negative,

depending on whether or not they correspond to the target relation. More details on the

mathematical formulas of FOIL can be found in Quinlan (1990).

40

2.4.6 Instance Based Learning Rule Classifiers

Domingos (1996a) proposed a new rule induction approach called RISE, linking it with

instance-based learning in classification (Cover, et al, 1967; Aha, et al, 1991). The RISE

approach does not contain a global procedure, but it considers all algorithms (growing,

pruning, etc.) as sub procedures. RISE generates a classifier that can be considered a rule

induction set, as well as a nearest neighbour method. The author refers to RISE as a

unified rather than combined approach that looks for the rule in a specific-to-general

manner. It begins with one rule per classified training instance. In doing so, it circumvents

the few limitations presented by the Covering approach to classification. RISE evaluates

the accuracy of a set of rules all at once in a global fashion. It then uses a best match

framework empirical evaluation when assigning class labels to test data. Experimental

studies revealed that RISE outperforms its parent approaches, such as CN2. In particular,

Domingos in (1996a) Domingos (1996b) showed that RISE achieved slightly better

classification accuracy than classic rule learning algorithms. For large datasets, though,

Input: Set of all variables (training dataset- T)
Output: Rules set (R_S): first order predicate logic

1. Foil (T)
2. begin

3. SR _
4. Set P_S be the positive set of data examples (data belong to class C)
5. Set C class be the predicate to be learned
6. for each p_s instance in P_S do
7. begin
8. let N be the negative data examples
9. R If nothing, then C // creating an empty rule
10. find_Best_Variable(T) // FOIL gain metric is used to measure the best variable
11. valueVarR _ // Adding a variable value to the rule’s body

12. end
13. delete from P_S data examples which match the rule’s body
14. until N is empty do
15. select a literal L
16. append L to Rule’s Body
17. delete from N data examples that do not match L
18. end

Algorithm 2.6 FOIL algorithm (Quinlan, 1990)

41

RISE suffers from the long time spent discovering and pruning the rules, which may

obviously limit its applicability in big data applications.

Gora and Wojna (2002) proposed a combined approach similar to RISE, called

RIONA, for rule induction that incorporates elements of rule-based classification

techniques. In RIONA, decisions are not based on the set of all rules or matching test

cases, but on a restriction of rules applicable neighbourhood test cases. The size and

optimisation of the restriction is automatically produced. Empirical testing of RIONA

indicates that it is sufficient to achieve acceptable levels of classification accuracy by

specifying a narrow neighbourhood.

RIONA and RISE can be considered learning approaches based on integrating rule-

based classification and the nearest neighbour method. Yet RIONA is different to RISE

because it considers all minimal rules (rules with a limited number of attribute values

with larger data coverage). This suggests that the class assignment decision should use a

class that is more frequent in the minimal rules matching a test case. The primary idea of

RIONA is that the support set is constrained to the neighbourhood of a test case. The

neighbourhood is composed of training data within a specified distance from a test data,

or a quantity of data closest to a test data similar to the K Nearest Neighbour algorithm

(Cost & Salzberg, 1993). The ideal size of a neighbourhood applied to classifying a test

case is learned during the training phase. One distinguishing feature of the RIONA

algorithm is cutting the search time for the minimal rules set because observations are

taken from the neighbourhood rather than from the complete training phase dataset.

Moreover, rules are extracted by RIONA during the classification phase, and each

produced rule is associated with particular test data. A rule descriptor is expressed by the

test data attribute values.

2.4.7 One Rule and RIDOR Algorithms

One of the simplest, yet acceptable, algorithms that produce one rule classifiers is

SimpleRule /OneRule (Holte, 1993). OneRule initially scans the input dataset and looks

for the pair of <attribute value, class> with the least error rate on the training dataset. This

pair is produced as a rule classifier. Algorithm 2.7 depicts the description of OneRule

algorithm steps from Witten & Frank (2005). Normally, the OneRule algorithm creates a

42

frequency table for each attribute value in the dataset in order to calculate the errors for

that attribute value when associated with a class label.

A more advanced method that generates rules as exceptions is called the Ripple Down

Rule learner (RIDOR) proposed by Gaines and Compton (1995). RIDOR normally builds

a default rule, then repeatedly employs the IREP method to generate exceptions with the

least number of errors and then identify exceptions from each discovered exception by

reviewing subsets of the training dataset. Good exceptions are those derived by each

exception in tree like expanding. The exceptions denote classification rules that forecast

class labels other than the default class rule. At the heart of this algorithm is IREP since

it is implemented to produce rules from exceptions. Algorithm 2.8 shows the RIDOR

algorithm pseudocode.

2.4.8 Hybrid Classification Rules

Input: Training dataset T
Output: One rule classifier

1. for each variable value, create a rule by:
2. find the largest frequency class label
3. assign that class to the variable value
4. compute the number errors of the rule
5. choose the variable value with the least errors.

Algorithm 2.7 OneRule Pseudocode

Input : A training dataset T with target class Rt that contains P positive and N negative data examples
Output : A set of rules
1. Ridor (T, Rt)

2. R
3. If |Rt|< Minimum_support

4. R
5. Mark R active
6. Do
7. Find a rule:r in active relation
8. Learn except and if not branch
9. Set relation of r to active

10. rRR

11. rXX
12. Until X=
13. Set all active relations into inactive
14. Return R
15. end

Algorithm 2.8 Ridor algorithm pseudocode (Gaines and Compton, 1995)

43

A classification method that integrates divide-and-conquer with separate-and-conquer,

called PART, was proposed in Frank & Witten (1998). PART uses information gain and

decision tree pruning to build partial decision trees that are converted into rules sets.

PART constructs partial decision trees from the input dataset and then a rule induction

strategy is invoked to produce the rules set. Thus, PART makes a rule from the sub-tree

and transforms each path from the root node to the leaf node with the largest data

frequency into a candidate rule, then discards the sub-tree and its corresponding positive

data from the training dataset. PART repeats this process until the dataset becomes empty,

or no rule with acceptable error can be produced.

An integration of fuzzy logic and rule induction was implemented in an algorithm

called Fuzzy Unordered Rule Induction Algorithm (FURIA) (Hahn & Hllermeier, 2009).

FURIA enhanced the RIPPER algorithm maintains its main advantages by including its

optimisation procedure, pruning and prediction methods, and comprehensive rules set.

FURIA adds into RIPPER fuzzy rules rather the classic rules induced, so unordered rule

sets are presented instead of rule lists. In addition, FURIA illustrated a new rule stretching

method to deal with data examples that have no rule coverage, thus minimising the use

of default class rule and reducing the number of misclassifications. Results obtained from

experimentations revealed that FURIA outperformed RIPPER and C4.5 decision tree

algorithms with respect to predictive power (Hahn & Hllermeier, 2009).

The way FURIA discovers the unordered rules set per class label is based on the one

versus the rest strategy. Unlike conventional rule induction approaches that produce

decision lists, models created by FURIA may not be comprehensive which can cause

some training data not to be covered by the fuzzy rules which is problematic. To treat this

case, FURIA is empowered with an efficient rule stretching method adopted from

Eineborg and Boström (2001). This stretching method generalises the rules set until the

data example is classified.

2.5 Other Common Classical Non-Rule Approaches

In this sub-section, we briefly review common ML methods such as Probabilistic,

Boosting, SVM, NN, and AC. This has been done since some of these algorithms have

been employed in chapters 4 and 5 for comparison purposes.

44

2.5.1 Probabilistic Models

One of the simplest methods to come up with a decision based on a labelled set of

variables is to utilise probabilistic methods. In classification problems, the Naïve Bayes

classification method is based on the simple and naïve assumption that attributes in the

training dataset are independent and have no correlation (Duda & Hart, 1973). This

method was initially developed in the 1950s and later gained popularity because of its

efficient performance and applicability to classification problems including text mining

and image classification among others (Hand & Yu, 2001). In Naïve Bayes, any variable

value is assumed to be totally independent from other variables’ values in the training

dataset.

When test data is about to be classified, the Naïve Bayes algorithm computes the

likelihood of the attribute values in the test case from the training dataset with respect to

each class label. In other words, each attribute values’ probability in regards to each class

is calculated. The test data attribute values probabilities are then multiplied with each

other and the class distribution probability computed. Test data is then assigned the higher

probability outcome based on these aforementioned calculations (see Equation 2.7).

Naïve Bayes is a highly scalable algorithm, and can produce the classification decision

quickly when compared against other classification approaches (Ng & Jordan, 2002).

Moreover, the predictive power of the classifiers generated by probabilistic algorithms is

acceptable when compared with Boosting and divide-and-conquer algorithms (Caruana

& Niculescu-Mizil, 2006). One clear disadvantage of Naïve Bayes, however, is its

independent assumption since attributes are usually correlated in reality.

Given a test case represented as a vector X = (x1, x2, …, xn) where each x is an attribute

value to be classified, using Bayes Theorem, the conditional probability can be computed

as:

)(

)|().(
)|(

XP

CXPCP
XCP nn

n (2.7)

 The test data X will be assigned the class nC with the largest conditional probability

value)|(XCP n .

45

2.5.2 Association Rule-based Classification

Associative Classification (AC) is an approach that employs association rule methods to

generate rule-based classification systems from supervised learning datasets (Liu, et al.,

1998; Thabtah, et al., 2005; Abdelhamid, et al., 2016). This approach normally relies on

user minimum support and minimum confidence. Minimum support of a feature value is

how many times that feature value has appeared in the training dataset whereas the

frequency of the feature value plus the target class together denote the confidence of that

feature value.

The aim of the AC algorithm is to discover all frequent feature values, and from these

the classification system is built in which any frequent feature value with confidence

larger than the minimum confidence becomes knowledge. One advantage of AC is the

low error rate systems derived, but a noticeable drawback is the very large number of

rules derived which limits its usage in real applications. Another noticeable drawback of

AC is the time needed to learn and evaluate the knowledge. This is because a typical AC

method, like CBA, requires multiple data scans to discover the knowledge (Abdelhamid

& Thabtah, 2014). A number of comparative studies have shown that AC is more

accurate than rule induction, decision trees, and probabilistic models (Abdelhamid, 2015;

Thabtah, et al, 2004). Nevertheless, associative classifiers demanded high computing

resources and may crash when the support is set to a low value. Hence, they are not

suitable for large datasets.

2.5.3 Support Vector Machine

Support vector machine (SVM) is a common approach that was initially developed to

improve the performance of current classification methods, particularly classification

accuracy (Boser, et al., 1992). SVM relies on decision planes, which split a set of data

objects using computed class memberships. The logic behind SVM learning methodology

is that it rearranges data instances within the problem space utilising quantitative

functions known as kernels. A kernel is a function that measures similarity between data

objects with respect to class labels (Joachims, 1999). Normally kernels are given by the

domain experts to the SVM algorithm and used during the classification process. The

46

entire procedure of changing the orientation or data instances is referred to as

transformation. Experimentation showed that SVM methods normally generate better

classifiers with respect to accuracy than traditional classification approaches such as

decision trees and rule induction (Joachims, 1999; Shawe-Taylor & Sun, 2011).

2.5.4 Boosting

Boosting is a supervised learning approach in ML that was mainly designed to minimise

the problem of bias in classification data (Schapire & Singer, 2000). The origin of the

Boosting learning approach was a question of whether a group of weak learners can make

one strong learner. A weak learner is basically a model/classifier that can help classify

unseen data better than random classification (Freund & Schapire, 1997). Therefore,

Boosting is based on the idea of repeatedly improving the accuracy of a classifier by

merging weak and inaccurate rules. Typically, after boosting has derived the weak

learners it reweighs the training data accordingly, where the performance is then boosted

(Schapire & Singer, 2000`).

The majority of current Boosting algorithms like AdaBoost repeatedly learn weak

classifiers then add them to make a final single classifier (Freund & Schapire, 1997).

When the classifiers are added, they are weighted based on the accuracies derived from

them and, when a particular weak classifier is added, the data gets reweighted. In the data

re-weighing, instances that were incorrectly classified gain higher weights and those that

were correctly classified drop their weights. This decrement and increment in training

data weights enable near future weak classifiers to focus more on data instances that have

been misclassified by previously weak classifiers.

2.5.5 Neural Network

An artificial neural network (ANN) often consists of an interconnected processing

components (neurons) that converts a set of inputs into desired output (Witten & Frank,

2005). The strength of ANN originates from the hidden neurons’ nonlinearity. The output,

is normally dependant on certain features of the components and weights linked with their

interconnections. Usually the ANN classification model is shaped after the training phase

on the input dataset in which information about the weights and features related to the

47

network’s components heavily impacts the performance quality of the formed predictive

system. The most used function of ANN is called the sigmoid function (Mohammad, et

al, 2012). During formation of the NN predictive model, weights keep amending to derive

accuracy closer to the desire value specified by the end-user.

2.6 Chapter Summary

Classification in ML is a vital task that commonly is accomplished by applying various

learning approaches. This chapter has reviewed common rule-based approaches in

classification, especially those that are based on separate-and-conquer including rule

induction and Covering approaches. In particular, we have critically analysed algorithms

that produce rules such as PRISM and its successors, REP, IREP, RIDOR, RIPPER,

RIONA, FURIA, and PART among others. Furthermore, we shed light on divide-and-

conquer and other non-rule-based classification systems such as decision trees,

probabilistic, Boosting, SVM, etc.

In the next chapter we propose our novel rule learning approach, which we called

enhanced Dynamic Rule Induction (eDRI) and highlight its major steps, strengths, and

weaknesses as well.

48

Chapter Three

A New Dynamic Rule Induction Approach

3.1 Introduction

As aforementioned, Covering algorithms such as PRISM usually produce “If-Then”

classifiers with comparable predictive performance to other traditional classification

approaches such as decision trees and associative classification. Thus, these classifiers

are favourable for users because they can be useful tools in decision making.

Nevertheless, Covering methods, including PRISM and its successors, suffer from a

number of drawbacks such as the large number of rules derived. This can be burdensome,

especially when input data is largely dimensional. Therefore, pruning unnecessary rules

becomes essential for the success of this type of algorithm.

This chapter proposes a new rule-based classification algorithm that reduces the search

space for candidate rules by pruning early on any irrelevant items during the process of

building the classifier. Whenever a rule is generated, this algorithm updates the candidate

items’ frequency to reflect the discarded data examples associated with the rules derived

and thus avoids unnecessary repetitive data scans. This methodology makes item

frequencies dynamic rather than static and it ensures that irrelevant rules are deleted in

preliminary stages when they do not hold enough data representation. The major benefit

will be the production of a concise set of rules, which facilitates their management by

users and therefore appealing as decision making tools.

This chapter proposes a classification method called enhanced Dynamic Rule

Induction (eDRI). After the initial scan of the training dataset, eDRI discovers the rule

one-by-one. It primarily uses a threshold value to limit the search space for rules by

discarding any items with insufficient data representation as early as possible. These

49

items are called weak items since they do not hold sufficient statistical significance. eDRI

appends the largest item with respect to accuracy into the current rule and continues

appending items until the current rule cannot improve any further, i.e. its strength is

above the Rule_Strength threshold, which is used to separate acceptable from

unacceptable rules.

Once a rule is produced, eDRI removes all of its training data instances and amends all

candidate items’ frequency that appeared within the deleted instances of the generated

rule. This approach leads to a natural pruning during the rule discovery phase and results

in a more realistic classifier with lower number of rules. This is unlike induction

algorithms that employ excessive divide-and-conquer pruning per rule after the rule

generation phase, which consequently makes the training phase slow. In addition, the

proposed eDRI algorithm limits the use of the default class rule by generating rules with

accuracy below 100% accuaracy. Often, other algorithms ignore these rules because they

do not have zero error. These rules are though used only during the class prediction phase

instead of the default class rule, when there is no rule with 100% accuracy to classify a

test data.

The proposed eDRI algorithm has been implemented in Java within the Waikato

Environment for Knowledge Analysis (WEKA) environment, making it available to be

utilised by different types of users such as managers, researchers, students in their own

research studies and experimentations (Hall, et al., 2009). This ML platform was initially

developed at the University of Waikato in New Zealand and contributors from all over

the world who are interested in data analysis have since contributed specific methods to

it.

Experimental results using real data from the security domain (Chapter 5) as well as

different classification datasets from the University of California Irvine (UCI) (Chapter

4) reveal that the proposed eDRI algorithm is competitive in regards to classification

accuracy when compared to known rule-based algorithms such as PRISM, OneRule,

ConjunctiveRule, Decision Trees (C4.5), RIPPER, and hybrid approaches such as PART

and Boosting. Moreover, classifiers produced by our eDRI algorithm are smaller in size,

which increases their usability in practical applications. Further details on the

implementation of eDRI and the experimentations carried out are provided in Chapter 4.

50

The rest of this chapter is structured as follows. Section 3.2 describe in detail the

different phases of eDRI along with corresponding pseudocodes. Section 2.3 presents a

thorough example using a dataset to show the pros and cons of eDRI and the classic

Covering algorithm PRISM. Section 2.4 is then devoted to the distinguished features of

eDRI, and lastly, the chapter summary is given in Section 2.5.

3.2 Enhanced Dynamic Rule Induction Algorithm (eDRI)

The proposed eDRI algorith (Algorithm 3.1) has two primary phases: rule production and

class assignment of test data. In phase 1, eDRI produces rules for each available class

label in the training dataset that has accuracy greater than or equal to Rule_Strength

parameter. This parameter aims to generate near perfect rules alongside rules with 100%

accuracy, like in classic PRISM, and it is used within eDRI to differentiate among

acceptable and unacceptable rules. eDRI’s learning procedure ensures the production of

rules that have no error as well as rules that survive the Rule_Strength parameter, i.e.

rules with expected accuracy greater than or equal to Rule_Strength parameter. The

algorithm terminates building the classifier when no more rules with an acceptable

accuracy are found, or when the training dataset becomes empty. When this occurs, all

rules are merged together to form the classifier.

Another important parameter is utilised in phase 1 of the eDRI algorithm in phase 1,

which aims to minimise the search space of items. The parameter freq is utilised

primarily to differentiate between strong items, having a high number of occurrences in

the training dataset, and weak items. This helps in removing weak items, i.e. items with

low frequencies (frequency below the freq threshold), as early as possible and thereby

saving computing resources as well as ensuring only strong items can be part of a rule’s

body. Weak items are maintained in PRISM in the hope of producing 100% accuracy

rules. However, this is seen as a major deficiency because the classifier may end having

too many specific rules covering small portions of the training dataset (Abdelhamid and

Thabtah, 2014). On the other hand, because eDRI discards weak items it generates highly

predictive general rules with large data coverage.

51

Input: Training dataset T, Rule_Strength, Frequency (freq) thresholds
Output: A classifier that consists of If-Then rules

Phase (1)

1. data transformation and discretisation (if necessary)

 (See Figure 3.2 for rule inducing phase)
2. for each Attribute in T Do
3. make an empty rule, rj: If Empty then Empty
4. calculate Attx accuracy in Ti p(classi = i| Attx);
5. append the Attx with the largest accuracy (classi = i| Attx) to the body of rj
6. repeat steps 1.1-1.3 until rj has either
7. 100% accuracy or no longer can be improved
8. rj accuracy >= Rule_strength
9. generate rj
10. discard all data examples from Ti that match rj’s body
11. update the frequency of all impacted candidate items to reflect step 3
12. repeat steps 1-4 until no items with acceptable frequency is found or no more data can be found
13. If (T does not contain any data examples)
14. generate the classifier
15. produce a default rule

Phase 2

16. predict test data (Algorithm 3.3)

Algorithm. 3.1 eDRI Pseudocode

The eDRI algorithm generates all rules in phase 1. Whenever a rule is generated,

training data examples linked with it are deleted and the frequencies of those waiting to

be added containing strong items that appear in the deleted data are instantly updated.

This update process involves decreasing their frequencies, thus some of these items may

no longer become strong and are discarded, which can be seen as a quality assurance

measure because it does not rely on the original frequency of items computed initially

from the training dataset. Rather, we have a dynamic dataset that reduces its cardinality

whenever a rule is generated. This reflects the true data coverage per rule in the final

classifier and it contributes in the production of controllable classifiers that can be used as

decision making tools in different application domains. Also, eDRI algorithm data

processing procedure is more efficient as a result of this update process. Indeed, other

advanced induction learners, such as RIPPER for example, scan the entire updated

training dataset each time a rule is derived, whereas eDRI avoids this expensive data

processing by actively updating item frequencies.

52

Whenever a rule is derived, its associated training data samples are removed; the

frequency of each affected item is continuously updated during rule learning until the rule

production phase is terminated. Having said this, eDRI is a special algorithm because it

does not allow items inside rules to share training data examples, therefore generating

classifiers that do not depend on a static training dataset. Rather, eDRI updates the

training data and item frequencies each time a rule is formed.

In phase 2 of eDRI, rules derived are used to guess the type of class for test cases.

Our algorithm assumes that the attributes inside the training dataset are nominal, and any

continuous attribute must be discretised before the rule inducing phase starts. Finally,

missing values are treated as any other values in the training dataset.

3.2.1 Data Representation and Data Processing

Before the eDRI starts searching for knowledge (rules), the training dataset is

transformed into a data structure of the form <Item, class, Line#’s / row IDs>. The item

and class are represented by <ColumnID, RowID>, where the first column and row

numbers that the item/class occurs in is the training data set denoting the item/class. This

data representation has been adopted from Thabtah and Hammoud (2013) because it

minimises the counting of items and it also decreases the number of data scans the

algorithm must go through during data processing. Another primary advantage of using

this data formatting method is that there is no attribute value frequency counting after

iteration 1, scanning the training dataset. This is because the algorithm stores both the

attribute values and class locations of the training data set inside a special data structure,

<Item, class>, which is utilised to locate the frequency of each item by just taking its size.

This is a simple process that normally reduces the number of passes over the training

dataset.

In eDRI, each data instance in the training dataset is linked to a unique integer value

(Item number). The first row number where the instance occurs within the training

dataset is called RowId, while ColumnIds is used for the variable (attribute) number in

the training dataset which generates the item’s values. Attributes are saved from left to

right where the first one being denoted by “0,” the second one by “1,” and so forth. This

53

data format helps in the data processing phase, especially while the algorithm is building

the rules and performing computations for all candidate items in the training dataset in

order to determine the survived items. Table 3.1b shows a data format example after

transforming the training dataset of Table 3.1a. In Table 3.1b, (0)0 corresponds to item

“X”, and (0)1 correspond to item “Z,” and so forth. This numbering method eases the

mining process and reduces needed computing resources, especially training time during

calculating and updating item frequencies, as it will be seen later on in Chapter 4.

The eDRI algorithm assumes that all variables or attributes are categorical, meaning they

have a finite set of possible values. Any continuous attribute must therefore be discretised

using a particular discretisation method such as the entropy based one. For datasets with

noise, eDRI takes advantage of the filtering procedures available in WEKA, with

“ReplaceMissingValues” filter being a possible one. First, missing values in the training

dataset should be replaced or treated as any other possible values. This filtering procedure

was modified and embedded within eDRI in WEKA platform.

3.2.2 Rule Discovery and Classifier Building

During the rule discovery phase and earlier after transforming the training dataset into the

designated format, the eDRI algorithm scans the training dataset to record items and their

frequencies as described. All <item, class> appearances are counted and stored in a

temporary data structure. Any item that appears with a class in the training dataset

accompanied by inadequate frequency is discarded as encountered. This minimises the

Table 3.1A Training dataset sample

ROWID Variables Class
0 X Y Z C1
1 Z Y Z C1
2 Z W Z C2
3 Z W Z C3
4 X Y X C2
5 X W X C3
6 Z W X C3
7 Z Y W C3
8 X Y X C3

 Table 3.1 B Transformation of Table 3.1A

ROWID:
Class

Variables

0:0 (0)0 (1)0 (2)0
1:0 (0)1 (1)0 (2)0
2:2 (0)1 (1)2 (2)0
3:3 (0)1 (1)2 (2)0
4:2 (0)0 (1)0 (2)4
5:3 (0)0 (1)2 (2)4
6:3 (0)1 (1)2 (2)4
7:3 (0)1 (1)0 (2)7
8:3 (0)0 (1)0 (2)4

54

 Table 3.2 Items occurrences after initial scan by eDRI

Variable Variable Frequency

(0) 0 0:0, 4:2, 5:3, 8:3

(0) 1 1:0, 2:2, 3:3, 6:3, 7:3

(1) 0 0:0, 1:0, 4:2, 7:3, 8:3

(1) 2 2:2, 3:3, 5:3, 6:6

(2) 0 0:0, 1:0, 2:2, 3:3

(2) 4 4:2, 5:3, 6:3, 8:3

(2) 7 7:3

search space of all candidate items and ensures that only strong items can be part of the

classifier’s rules. Table 3.2 shows the candidate items obtained from Table 3.1a by

eDRI, where the bold ones are strong items assuming that the freq threshold is set to 2.

All non-bold items of Table 3.2 will be removed by eDRI after passing over the dataset.

From Table 3.2 it is obvious that there is one weak and six strong items of size one.

It is important to mention that unlike other rule-based classifications that are not

covering-based, such as associative classification that require joining items and counting

beginning with strong items of size 1 until n, eDRI only keeps items of size 1 during its

rule discovery process. Therefore, eDRI relaxes one of the major burdens of associative

classification as well as the association rule mining method, which uses the candidate

generation function. This function normally necessitates passing over the training dataset

many times to discover frequent items of size 2, 3, 4, to n.

To elaborate on this, associative classification and associating rule algorithms, such as

CBA, find frequent items of size 1 (F1) after scanning the training dataset and keeping all

those which survived the minimum freq threshold. Then, disjoint items inside F1 are

appended to derive the candidate items of size 2 (C2), and based on counting all items in

C2 they determine the frequent items of size 2 (F2). Possible remaining candidate items of

size 3 (C2) are then obtained by merging disjoint items of F2, counting them again, and so

on. On the other hand, the proposed rule discovery method of eDRI relaxes this entire

candidate generation function and only utilises items size one F1 without the need for: (1)

joining disjoint items; (2) passing over the dataset multiple times; and (3) undergoing an

exhaustive counting process. Rather, the algorithm employs on the fly item frequency

update procedures that are invoked whenever a rule is built and its data instances

55

removed, which saves too many unnecessary costs associated with training time. It should

also be noted another difference between associative algorithms, which discover the

complete rules set and then adopt different pruning procedures, and Covering algorithms,

which employ the rule-by-rule induction strategy.

The eDRI algorithm stores all surviving strong one items (F1), items that are associated

with a frequency greater than freq threshold, and seeks the item among them that when

added to a class achieves the largest rule_strength (item with the lowest error regardless of

the class label). This item and class will be made an initial rule with the item placed in the

rule’s body and the class in the rule’s consequent. This process of adding other item(s) to

the rule is straightforward for eDRI since strong <item, class> of size one obtained from

the initial scan are already ranked based on their frequency with the class labels in a

descending manner. The candidate rule’s data is located by eDRI, which continues adding

items to the current rule’s body until the rule either derives a zero error or one above the

Rule_Strength threshold parameter. For the second scenario, i.e for any rule that cannot

reach zero error, the algorithm checks whether its accuracy is greater than the

Rule_Strength threshold. If the rule passes the Rule_Strength threshold, it will be created,

otherwise being ignored.

Noticeable differences between the eDRI algorithm and most of the current Covering

algorithms, such as PRISM and its successors, are as follows:

a) In eDRI, no item is added to the rule’s body unless it verifies the minimum

frequency requirement. Otherwise, the item is ignored and will not form part of

any rule.

b) In eDRI, there is a possibility of creating rules that have accuracy lower than

100%, whereas PRISM only allows generation of perfect rules.

c) eDRI does not need to revisit the training data to amend item frequencies, rather it

employs an efficient data structure procedure that guarantees dynamic update, thus

saving computing resources.

In eDRI, whenever a rule is generated, the following applies

1. The rule’s data samples in the training dataset are discarded.

56

Input: Training set D, Rule_Strength, Minimum Frequency (freq) thresholds

Output: Set of Rules (R)

Phase (1) Inducing the rules

1. R
2. 1r

3. DD '

4. for each (atti, class) in 'D do
5. compute p(ci = i| atti)/| 'D | and p(ci = i| atti)/ p(atti);
6. remove any atti such that p(ci = i| atti)/| 'D | <= freq
7. append the largest (atti, class) accuracy to the current rule, iattir

8. if p [(ci = i| atti)/ p(atti)] < = Rule_Strength {

9. (('' DD atti) |i = p(ci())
10. repeat steps 6-9 (keep adding single attribute values to the current rule in production)

11. until ir Rule_Strength

12. } //if

13. irR // adding the rule into the classifier

14.)('' DDD // setting the temporary data after generating the rule

15. 'DD // setting up the new training data after removing the derived rule’s data (after rj is generated)
16. ir // re-initialising the current rule to empty for the next iteration

17. repeat steps 3-14 and stop when D is empty or no atti) |i = p(ci >= freq

18. } // for loop

Algorithm. 3.2 eDRI learning phase

2. Before building the next in line rule, eDRI updates item frequencies that have

appeared in the removed data samples by decreasing them to reflect the rule’s

training data samples deletion, without the need to scan the data again.

The proposed algorithm continues creating rules until no more items with a sufficient

frequency can be found. At this point, eDRI moves to the remaining unclassified instances

in the training data, and chooses the class that is linked with the more frequent data as a

default class rule. In case the class labels in the remaining unclassified instances have

equal frequency, eDRI will choose the largest frequency class in the initial training

dataset. If class labels in the initial training dataset also have equal frequency, then eDRI

selects the class that appeared with more generated rules. The pseudocode of the learning

phase of eDRI is provided in Algorithm 3.2.

57

Input: Classifier (CL) and test dataset (Ts)

Output: One error rate

1. 0 ttingcounter_hi

2. for each test data tsm in Ts {

3. for each rule rn in CL {

4. if (tsm = rn body)

5. temp_rule rn }

6. for each rule temp_rule {

7. class_counter ++;

8. tsm (class) Max(class_counter) (class) }

9. tsm (class) default class rule

10. If (tsm (class) == rn (class))

11. counter_hitting Counter_hitting + 1

 8. }

10.
|Ts|

 ttingCounter_hi
Error

11. print Accuracy

Algorithm 3.3 Predicting test cases procedure of eDRI

 The rule discovery procedure keeps item ranks dynamic since item frequency with the

class is continuously updated whenever a rule is derived. This dynamism provides a

distinguishing advantage to the eDRI algorithm in determining items that become weak

during construction of the classifier without needing to again look them up in the training

dataset. By doing so, the search space of candidate items is minimised and should provide

smaller in size classifiers. In fact, the proposed algorithm develops a pruning procedure

that reduces over-fitting and results in rules with larger data coverage than PRISM (add a

reference when this is proved/shown; maybe the experimental section of the thesis where

this is covered). Indeed, the over-fitting is reduced for two reasons

1) There is a limit on the rule growth: a stopping condition that limits this growth is

adopted.

2) Items with limited statistical significance (weak items) are discarded early, and the

algorithm continuously cuts down item search space whenever a rule is discovered

because of the dynamic update of the items frequency.

 To clarify, PRISM keeps adding items to the rule’s body regardless of the number

58

of data examples that might be covered by the rule. The focus of most Covering

algorithms is maximising the rule’s accuracy, even when the derived rule covers only

one data example. This obviously may over-fit the training data and generates large

number of specific rules that only cover very limited parts of the training dataset. For

example, a simple run of the PRISM Covering algorithm over the “Weather.nominal”

(only 14 data samples) dataset from the UCI repository revealed two rules covering a

single data example each. In other words, 33.33% of the PRISM classifier’s (two out of

six rules) cover just two data examples (add a reference where this is actually reported).

This result, if limited, shows how classic covering methods over-fit the training data

without providing a red flag to stop rules during the learning process. In the case of the

eDRI algorithm, these two rules are basically discarded since they do not hold enough

data representation.

Since the PRISM algorithm creates only rules with 100% accuracy, there is no rule

preference procedure. Meanwhile, the eDRI classifier contains rules with good accuracy,

though not necessarily 100%, and thus the algorithm utilises a rule sorting procedure to

differentiate among results. The rule’s strength and frequency are the main criteria

employed to sort rules. When two or more rules have the same strength, eDRI uses a rule’s

frequency as a tie-breaker. Finally, whenever two or more rules have same strengths and

frequencies, the algorithm prefers rules with a lower number of items in their body. This is

because these rules are general rules with wider training representation that often hold

multiple specific rules.

3.2.3 Test Data Prediction

The eDRI classifier consists of two rule levels

a) Level 1: Rules with zero error: Primary rules (higher rank)

b) Level 2: Rules with good strength: Secondary rules (lower rank)

Whenever a test data sample is about to be classified, eDRI goes over the rules in the

classifier in a top down fashion starting with the primary rules. The first rule with items

identical to the test data classifies it. In other words, if the rule’s body is contained with

59

the test sample, then this rule’s class is assigned to the test data. If no rule in the primary

rules matches the test data, then eDRI moves into the lower rank rules and evaluates

whether any of its rules is able to assign a class to the test data sample. If one of the

secondary rules in level 2 matches the test case attribute values, it will classify it. A more

complicated scenario occurs when multiple rules are able to classify the test case. When

this happens, eDRI groups them with respect to the class label into groups. It then counts

the number of rules per group and the class label that belongs to the group with the

largest number of rules is used to classify the test case. Finally, when no rule in the

primary or secondary rules sets is able to classify the test case, eDRI invokes the default

class rule (the largest frequency class in the training dataset).

This class prediction procedure limits the use of the default class rule, and decrease the

number of misclassifications. In addition, eDRI also minimises the chances of arbitrary

choices and biased decisions favouring a specific rule. Rather, eDRI employs the best

first and combining with the group of rule prediction approach.

3.3 Example of the Proposed eDRI Algorithm and PRISM

This section provides an example to distinguish the learning process the typical covering

algorithms PRISM and the proposed eDRI algorithm. In particular, we show how the

rules are generated and the classifier building process is conducted alongside predicting

test data cases. The dataset displayed in Table 3.3 is used for the purpose of comparison,

assuming that the frequency threshold is set to 3 and the Rule_Strength to 80% for

presentation purpose only. First, the eDRI algorithm calculates the frequency of items

linked with each <item, class>. For presentation purposes, and because typical Covering

algorithms work per class during data processing, eDRI starts with the minority class

(No) and its items’ frequencies are provided in Table 3.4. The largest frequent items are

“Outlook=sunny” and “”Windy=true”, i.e. 3. The eDRI algorithm selects

“Outlook=sunny” because it has higher accuracy, separating this rule’s data samples as

shown in Table 3.5, and forms the following first rule:

RULE (1) If “Outlook=sunny” then NO (3/5)

60

Table 3.3: Sample training dataset from (Witten and Frank, 2005)

outlook temperature humidity windy play
covering

rule

sunny hot high FALSE no R1

sunny hot high TRUE no R1

overcast hot high FALSE yes R2

rainy mild high FALSE yes default

rainy cool normal FALSE yes R3

rainy cool normal TRUE no default

overcast cool normal TRUE yes R2

sunny mild high FALSE no R1

sunny cool normal FALSE yes R3

rainy mild normal FALSE yes R3

sunny mild normal TRUE yes default

overcast mild high TRUE yes R2

overcast hot normal FALSE yes R2

rainy mild high TRUE no default

All items highlighted in red in Table 3.4 have failed to pass the frequency threshold;

therefore they are ignored in the rule production of class “NO”. This means that the eDRI

algorithm has substantially minimised the search space for the rules by keeping only

three candidate items (the ones not highlighted red in Table 3.4). However, PRISM keeps

these candidate items, aiming to seek for specific rules with low data coverage.

The frequency of items in the data subset related to “Outlook=sunny” is computed to

find out whether the current rule’s strength can be improved, which is summarised in

Table 3.6. It is clear that the highest rule’s expected accuracy occurs when

“Humidity=high” is added to the current rule, so eDRI appends this item to Rule (1) and

the rule’s strength becomes 100%. Therefore, eDRI generated Rule (1), removed all

training samples connected with it (the red text of Table 3.3), and updated the frequency

for the remaining candidate items of class “NO” as shown in Table 3.4 (Column 3). It

should be noted that Table 3.5 is provided for presentation purposes although the eDRI

algorithm does not need to scan such training examples but PRISM does. Based on the

updated frequency of the items after Rule (1) is devised, item “Windy=true” becomes

weak since its frequency has been decremented from “3” to “2”. Therefore no more rules

can be produced for the current class “NO”, and the eDRI algorithm proceeds to the next

class “YES”.

RULE (1) If “Outlook=sunny and Humidity=high” then NO (3/3)

61

Table 3.4: Candidate items linked with class NO

 During Rule 1 Generation
After generating Rule
(1)

Item Status

Candidate Item

Original
Frequency
in the
training
data

Rule’s
Expected
Accuracy
(strength)

Freq.
status

 Item status

Outlook=sunny 3 60% Picked largest expected accuracy

Outlook= rainy 2 Initially Ignored (fails freq. test)

Temperature= hot 2 Initially Ignored (fails freq. test)

Temperature= mild 2 Initially Ignored (fails freq. test)

Temperature= cool 25% Ignored(fails freq. test)

Humidity= high 4 57.14%
 Ignored after Rule(1) production

(fails freq. test)

Humidity= normal 1 Initially Ignored (fails freq. test)

Windy= true 3 50%
2 Ignored after Rule(1) production

(fails freq. test)

Windy= false 2 Initially Ignored (fails freq. test)

Table 3.7 shows the candidate items associated with class “YES” along with their

frequency and accuracy. The highest rule strength is associated with item

“Outlook=overcast,” its accuracy being 100%, and thus the following rule is formed:

RULE (2) If “Outlook=overcast “then YES (4/4)

 After Rule (2) is generated, all data samples linked with it in Table 3.3 are discarded

(the rows highlighted green), and the frequency of remaining candidate items of Table

3.7 are updated as shown in columns 4-5 of the same table. After the generation of Rule

(2), the following three candidate items are pruned for having insufficient frequency as

shown in Table 3.7: ”Temperature= cool”, “Humidity= high”, and “Windy= true”. This

pruning, represented by constant item frequency updates whenever a rule gets generated,

is indeed useful. The search space has reduced by 37.5% by discarding three out of eight

candidate items after Rule (2) is derived. The algorithm then continues searching for

rules linked with class “YES” from the remaining unclassified training data. Item

“Humidity=normal” is then appended with the expected rule’s accuracy of 80% as

follow:

RULE (3) If “Humidity=normal“ then YES (4/5)

Since the current rule has not yet reached maximum accuracy, its data samples are

separated as shown in Table 3.8. Table 3.9 displays the remaining candidate item

frequencies obtained from Table 3.8. The highest accuracy item, “Windy=false,” is

appended to Rule (3), achieving 100% accuracy, as shown below

62

Table 3.5: Data samples associated with item “Outlook=sunny”

outlook temperature humidity windy play

sunny hot high FALSE no

sunny hot high TRUE no

sunny mild high FALSE no

sunny cool normal FALSE yes

sunny mild normal TRUE yes

Table 3.6: Candidate items linked with item “Outlook=sunny” Then NO in the training dataset with their frequencies
 None

Candidate Item Frequency
Rule’s
Expected Accuracy

Temperature= hot 2 100%

Temperature= mild 1 50%

Humidity= high 3 100%

Windy= true 2 66.67%

Windy= false 2 50%

RULE (3) If “Humidity=normal and Windy=false” then YES (3/3)

Therefore, Rule (3) gets produced and all its connected data samples are removed

(yellow rows of Table 1). The remaining items became weak because they have

frequencies lower than 3 and therefore the algorithm stops. The four instances remaining

in the training dataset are then covered by the default rule, which is the largest frequency

class in the remaining uncovered data samples. In this case, we have a tie between the

“NO” and the “YES” class labels, so the choice will be based on the largest frequency

class in the training dataset. This results in the class “YES” default rule being built. Thus,

the eDRI algorithm builds a classifier with following four possible rules:

RULE (1) If “Outlook=sunny and Humidity=high” then NO (3/3)

RULE (2) If “Outlook=overcast” then YES (4/4)

RULE (3) If “Humidity=normal and Windy=false” then YES (3/3)

Otherwise “YES”

In the above example, eDRI was able to induce three possible rules and a default class

whereas PRISM produced six possible rules and a default class as shown below. In fact,

most of the rules induced by PRISM cover very limited data examples (1 or 2 rows)

63

Table 3.8: Training data samples linked with “Humidity=normal”

outlook temperature humidity windy play

rainy cool normal FALSE yes

rainy cool normal TRUE no

sunny cool normal FALSE yes

rainy mild normal FALSE yes

sunny mild normal TRUE yes

Table 3.7: Candidate items linked with class YES

 During Rule 1 Generation
After generating Rule
(1)

Item Status

Candidate Item

Original
Frequency
in the
training data

Rule’s
Expected
Accuracy
(strength)

Freq.
status

 Item status

Outlook=overcast 4 100%

Outlook= sunny 2 Initially Ignored (fails freq. test)

Outlook= rainy 3 60% 3 60%

Temperature= hot 2 Initially Ignored (fails freq. test)

Temperature=
mild

4 66.67%
3 60%

Temperature=
cool

3 75%
2

Humidity= high 3 42.85%
1 Ignored after Rule(2) production

(fails freq. test)

Humidity= normal 6 85.71% 4 80%

Windy= true 3 50%
1 Ignored after Rule(2) production

(fails freq. test)

Windy= false 6 75% 4 66.67%

whereas the eDRI algorithm rules cover at least three data examples. This makes a

difference in practice, especially in large datasets or datasets with high dimensionality, as

we will see in the experimental study carried out (Chapter 4). The fact that the eDRI

algorithm derived a number of rules 42.85% lower than PRISM from a dataset of just 14

examples is evidence in itself of the power of the new pruning proposed which ensures

the imposition of dynamic learning.

64

Table 3.9: Candidate items linked with item “Outlook=sunny” Then NO in the training dataset
with their frequencies

 None

Candidate Item Frequency
Rule’s
Expected Accuracy (strength)

Outlook=rainy 3 66.67%

Outlook=sunny 2

Temperature= cool 3 66.67%

Temperature= mild 2

Windy= true 2

Windy= false 3 100%

Prism rules

1) If outlook = overcast then yes

2) If humidity = normal and windy = FALSE then yes

3) If temperature = mild and humidity = normal then yes

4) If outlook = rainy and windy = FALSE then yes

5) If outlook = sunny and humidity = high then no

6) If outlook = rainy and windy = TRUE then no

Otherwise “YES”.

3.4 Distinguishing Features of eDRI

In Covering classification, most of the different rule induction algorithms developed are

based on on PRISM and IREP. The vast majority of Covering algorithms have been

divised to deal with over-fitting or to enhance the processing of data during the induction

of rules. Hereunder, the primary distinctive differences between eDRI and these existing

induction algorithms are listed:

 PRISM and other Covering algorithms learn one rule then amend the training dataset,

learn the second rule and again amend the training dataset, then continue learning in the

same fashion. Therefore, each rule derived necessitates a full scan over the remaining

training instances, which is an expensive computational data processing approach. On

the other hand, eDRI adopts a special data structure and dynamic procedure and

65

whenever a rule is generated the remaining item frequencies are updated on the fly

without the necessity of training data scans, thereby saving processing time and

computing resources.

 eDRI employs a data processing procedure that limits the search space of items by

discarding items with limited statistical significance during the process of building

rules. Other Covering algorithms keep all items without paying attention to their

training data representation for the sake of inducing highly accurate rules, yet with low

data coverage which may increase the chance of over-fitted classifiers.

 The classification procedure employed by eDRI minimises random rule selection and

ensures that more than one rule is used for assigning the class of test data. This results

in less questionable prediction decisions and reduces the dependency on a single rule,

unlike most Covering methods that employ just one rule for class prediction.

 eDRI splits rules discovered in the classifier into two levels. In the secondary level,

eDRI keeps rules with some error in case rules in the primary level were unable to

predict a test data. This is unlike classic Covering approaches, like PRISM, which only

derive rules with zero error without considering their training data coverage. Overall,

eDRI allows the production of rules with small errors in order to reduce over-fitting of

the training data set and the number of discovered rules in the classifier.

 eDRI employs an implicit pruning procedure that is naturally integrated with the data

processing phase. In pruning, eDRI prevents items from participating in a rule early

and ignores rules that do not meet the Rule_Strength requirement. This significantly

cuts down both the search space of rules as well as the expected number of derived

rules. The result is a more efficient induction phase and smaller model that facilitates

their management and usage by users as efficient tools for making decisions.

 eDRI adopts a data structure from the distributed association rule that prevents level-

wise searching in rule induction algorithms such as IREP and RIPPER. This data

structure holds all information about items, classes, and their occurrences in the

training dataset and is used for rule and item pruning by eDRI.

66

3.5 Chapter Summary

Covering is a promising classification approach that has attracted researchers due to its

simplicity. This chapter dealt with major shortcomings associated with classic Covering

algorithms. Specifically, we investigated the problem of generating rules with limited

data coverage by PRISM and discarding good quality rules covering larger training data

portions, leading to massive classifiers. A new dynamic Covering algorithm called

Enhanced Dynamic Rule Induction (eDRI) has been proposed and built into the WEKA

environment (Chapter 4) to deal with these deficiencies. The eDRI algorithm minimises

the search space for rules by cutting down items with low data representation and

stopping learning when any rule meets the rule’s strength threshold. Moreover, eDRI

implements a multiple prediction rule method that reduces doubtful prediction decisions

and thus minimises random rule selection. In addition, eDRI reduces the need for

repetitive data scans during the data processing phase, resulting in a more efficient rule

induction method. These improvements guarantee smaller sized classifiers that do not

over-fit the training dataset and maintain their predictive performance.

Classifiers derived by the proposed eDRI algorithm are of benefit to managers,

particularly when making key business decisions since they can serve as a rich

knowledge base inside a decision making tool. This is due to the classifiers being easy to

understand, having high predictive accuracy, and being controllable as well as robust

(flexible to be amended without drastic change). Moreover, eDRI can be employed as a

prediction module embedded inside a decision support system in various domain

applications that necessitate both simplicity of the outcome and good accuracy, such as

medical diagnoses systems or anti-phishing models in computer security (Chapter 5).

Since general practitioners usually have busy clinics with tightly allocated time per

patient, they favour decision support systems with a concise set of knowledge similar to

the eDRI classifiers. Regarding computer security, eDRI is planned to be embedded by

researchers in Huddersfield University as an anti-phishing tool based on the case study

conducted in Chapter 5. This will raise awareness of public employees about phishing

because of eDRI's outcome simplicity, which can be understood by different users.

67

In Chapter 4, we present the detailed implementation of eDRI, its main thresholds

used, and the graphical user interface of the algorithm with which end-users interact. We

also highlight the evaluation measures used to evaluate the strengths and weaknesses of

eDRI, along with a full description of the large number of datasets used in the

experimentations. Furthermore, experiments using datasets from the UCI repository have

been conducted utilising a number of Covering, induction, and decision tree algorithms to

measure eDRI’s performance with reference to various evaluation measures in

classification.

68

Chapter Four

Implementation and Evaluation of the Enhanced

Dynamic Rule Induction Algorithm

4.1 Introduction

In this chapter, we discuss the implementation of the new proposed eDRI

algorithm and explain the different thresholds it utilises for the dynamic learning

process. Since the proposed algorithm has been implemented in the WEKA environment

(see Section 4.2), its primary Graphical User Interface (GUI) is also briefly highlighted

in Section 4.2 (Hall, et al., 2009). After this, the integration of eDRI within the classifier

package of WEKA under “Classifier.Rules” is covered and a discussion of the input

parameters used is provided. Furthermore, a few GUIs of eDRI within WEKA are

shown, in particular the different processes to go through until the predictive model is

generated. Section 4.3 explains the evaluation measures (one-error rate, confusion

matrix, number of rules derived, etc.) used to produce the results and test the

performance of the proposed eDRI algorithm and other known predictive models in

classification for their comparison (Diebold & Mariano, 1995; Powers, 2011).

 This Chapter also includes a number of experiments on datasets published at the UCI

data repository (see Section 4.4) (Lichman, 2013). In particular, twenty different

datasets that belong to various applications (credit card scoring, medicine, politics, and

agriculture among others) are utilised. The chosen datasets have different number of

variables, variable types, and data examples. Section 4.4 highlights the main

characteristics of the datasets used in the experiments. The experimental evaluation

validate eDRI’s advantages, particularly in predicting test data as well as limiting data

processing time. Later, in Chapter 6, a further specific evaluation and comparison of

69

eDRI with a wide range of algorithms on a phishing problem is reported. The choice of

the phishing application was based on the fact that it is a vital threat that necessitates not

only accurate detection but also useful knowledge for decision making.

4.2 eDRI Implementation

WEKA stands for Waikato Environment for Knowledge Analysis and is an open

source tool based on the Java platform that contains implementations for different DM

methods including filtering, classification, clustering, evaluation, and visualisation

among others. This tool was designed and implemented at New Zealand’s Waikato

University to assist students, researchers, and academic staff in conducting quantitative

research. Experiments on the datasets using the considered classification algorithms

were conducted using WEKA. The proposed eDRI algorithm has implemented in Java

and integrated into the WEKA environment.

Since WEKA is built with Java programming language, it organises the different

filtering, learning, and visualisation methods in packages. A package can be seen as a

container that holds and manages related Java classes and has its own subdirectories

(Bouckaert et al. 2008). In WEKA versions 3.7.2 and upward, information other than

classes can be held inside a package such as the functionalities of the JAR file, meta

data, source codes, and other related documentations of the classes. These enable users

to have better management of which methods can be stored in separate packages, and

therefore can use what they actually need. By default, WEKA keeps packages and their

related information in $WEKA_HOME, which is located in the user’s home directory

(i.e. user.home/WEKAfiles), although it can be using an environment variable (more

information can be found in Bouckaert et al. 2013).

The main class of the proposed algorithm, “EDRI,” has been integrated within the

Rules package inside WEKA. This Rules package contains implementation of a few

rule-based algorithms such as JRIP, PRISM, ZeroRule, Decision Table, PART, and

OneRule. Since the proposed algorithm generates classifiers with an “If-Then” rules

format, it was more relevant to include it inside “Classifiers.Rules. eDRI uses two input

parameters (shown in the appendix), “minFrequency” and “minRuleStrength,” in

addition to an optional selection to use a default rule during the classification process.

70

The proposed algorithm can be accessed from WEKA Explorer or the Command Line

platforms for data processing.

The minimum frequency threshold is used to reduce the number of items (variable

values) that may participate in creating the rules. By using this threshold, the eDRI

algorithm will be able to discard early items that their data representation is below the

minFrequency value (weak items) and thus to keep statistically significant items (strong

items). Moreover, the minRuleStrength threshold is employed by the proposed

algorithm to produce not only rules with 100% positive data examples, as in typical

Covering algorithms, but also rules that may cover a few negative data examples as long

as their computed strengths are greater than or equal to the minRuleStrength value. This

threshold sustains the predictive performance of eDRI by only keeping rules that are

effective yet have a large data coverage in the training dataset. Both the minFrequency

and minRuleStrength must be inputted as decimals by the end user in (see Appendix)

before eDRI starts data processing.

The minFrequency plays critical role in the data processing phase. If this threshold

has been set to very high value, i.e. 1, then more specific rules that cover limited

training data instances will be generated. On the other hand, if it has been set to very

low value, i.e. <1%, then possibly more rules are derived. We have conducted warming

up experiments to evaluate this threshold and found out that values between 1% to 4%

balance out the number of rules generated as well as data coverage. Unfortunately, no

ideal value for the minFrequency that works for any dataset simply because datasets

have different characteristics. A recently published distributed associative classification

(see Thabtah, et al., (2015)) showed that minFrequency has no ideal value and setting it

remains a challenging question in both association rule and classification domains.

Therefore, the requirements of both the decision maker and application play important

role in setting the minFrequency. Nevertheless, and based on our experiments as well as

Thabtah, et al., 2015, we recommend 1%-4% to be assigned for the minFrequency.

Finally, as mentioned before, there is an option within the eDRI interface,

“addDefaultRule”, which enables the user to utilise a default class rule in cases when all

derived rules are unable to classify an unseen data case. The user has this option so a

71

default class rule can be utilised when no other rules are available to classify a test case,

and thus the number of random classification will be minimised.

Three types of dataset format are possible to be received in eDRI; comma separated

formats in spreadsheet (CSV), text formats that are comma separated (TXT) similar to

WEKA’s ARFF file format, and an external database that can be connected with WEKA

using ODCB or JDCB connectivity objects. Furthermore, all evaluation measures and

cross validation testing method are offered in eDRI because we have taken advantages

of WEKA’s other classes and packages (Kohavi, 1995). Mathematical and explanatory

details on the evaluation measures are given in Section 4.3.

For model evaluations, eDRI can use separate test datasets, training datasets, or

cross validations with different variations in terms of the number of folds or split

percentages. In all experiments of eDRI, reported in Section 4.4, the testing method

used was tenfold cross validation. Appendix A provides a detailed example of data

processing using eDRI on one dataset from UCI for further graphical exposition.

4.3 Evaluation Measures

 A number of measures related to predictive models in classification that we used

are discussed in this Section. In particular, we describe the testing method, cross

validation, common predictive model evaluation criteria such as accuracy, one-error

rate, and confusion matrix related measures such as false positive, false negative, true

positive, true negative, etc. Moreover, methods related to computing resources utilised

through the data processing of the learning algorithms such as processing time and

numbers of data examples are also covered. We also present two new methods for rule

evaluation in this Section: average rule length (ARL) and weighted average rule length

(WARL).

4.3.1 Cross Validation

One of the major issues for minimising biased results in predictive models within

classification is the use of cross validation (Kohavi, 1995). Cross validation ensures that

72

the models derived from data processing are evaluated on data examples that have not

been seen during the training phase. In ten-fold cross validation, the dataset is randomly

partitioned into ten different parts. The model is trained on nine parts, and then

examines the remaining “hold out” part to derive an average error rate (Equation 4.1).

Error rate denotes the proportion of training examples in the hold out part that the model

has misclassified from the total number of data examples. In ten-fold cross validation,

the process of partitioning the training data is repeated ten times and the derived errors

are averaged.

One of the challenges in cross validation is random partitioning of the data

examples, which may cause a class imbalance problem. In binary classification, this

results in a majority class that has much larger data instances than the minority class in

the input data. Therefore, to guarantee each class is represented in each partition, so the

produced predictive model can be generalised, cross validation must be stratified.

Stratification ensures distribution of all available classes in the training data into each

partition when the random shuffling occurs.

4.3.2 Confusion Matrix

For DM and ML predictive models, a matrix called the error table, or the confusion

matrix, has been developed (Powers, 2011; Fawcett, 2006). The confusion matrix is

typically used to evaluate the performance of predictive models with respect to the

different metrics that are primarily related to the predictive power of the models.

Predicted and actual values of the class labels, as shown in Table 4.1, are then displayed

in the confusion matrix. Each row in the table represents data examples of the actual

class, while each column represents the data examples of the predicted class.

In measuring the performance of the models in classification, a test case is assigned a

predicted class by the model. If the test case class is identical to the predicted class, this

counts for a correct classification; otherwise it is considered a misclassification. For a

test dataset with M cases, the error rate (Equation 4.1) denotes the proportion of the

misclassified cases from M. On the other hand, classification accuracy (Equation 4.2)

denotes the proportion of correct classifications from M.

73

Table 4.1: Confusion matrix for ASD diagnosis problem
 Predicted Class

Actual Class
YES NO

YES True Positive(TP) False Negative (FN)
NO False Positive (FP) True Negative (TN)

Relevancy measures such as recall (Equation 4.3) and precision (Equation 4.4) are

also useful for evaluating predictive models (Rocchio, 1971). In Information Retrieval,

recall is the proportion of relevant data examples that are retrieved whereas precision is

the proportion of retrieved data examples that are relevant. In classification problems,

and for a test data with N (15 cases, ten cases have “yes” class and N-10 (5) cases

have “no” for the actual classes. For the cases with actual class=yes, assume the

predictive model was able to predict “yes” for seven (7) of them, and the remaining

three (3) cases were misclassified as “no”. For the cases with actual class = no, four (4)

were predicted correctly and one (1) wrongly. Thus, the model’s recall is 70%, while its

precision is 87.5%. Relevancy measures are usually used when the dataset is

imbalanced with respect to the class label since accuracy becomes a biased measure

toward the majority class label. Notice that there are measures more relevant to multi-

label classification problems and therefore these have been omitted from the

experimental section (Tsoumakas, et al., 2010).

AccuracyerrorOne 1(%)_ (4.1)

FNFPTNTP

TNTP
Accuracy

(%) (4.2)

FNTP

TP
call

(%)Re (4.3)

FPTP

TP
ecision

(%)Pr (4.4)

74

4.3.3 Computing Resources Evaluation Measures

Measuring the processing time taken for the predictive model to be constructed is a

useful indicator of the efficiency of the data processing phase. Moreover, the time taken

to predict data cases can be measured as part of the model’s efficiency. In the WEKA

environment, we recorded the time taken to build the predictive model in milliseconds

(ms) so we can compare eDRI processing time performance with other classification

algorithms. Moreover, we have also computed how many instances are necessary to

build the predictive model for the eDRI and PRISM Covering algorithms, and

implemented it as a Java class in the WEKA version. This class contains codes that

compute repetitive data scans, and can be seen as a performance indicator of the

proposed algorithm when compared with other Covering algorithms.

4.3.4 New Rules Evaluation Measures

Initially, we have used the number of rules produced by the classification algorithms

as a measure of goodness, that is the trade-off between the number of rules generated

and the predictive accuracy of the classifier. We have sought classifiers with a smaller

number of rules since users are able to manage them in a more effective manner.

Furthermore, new rule evaluation measures based on the number of variables inside the

rule and how many instances a rule may cover are proposed here. These measures

reflect the relationship between the rule length in the classifier and the number of

instances the rule has covered. The first rule measure is called the average rule length

(ARL) and the second is known as the weighted average rule length (WARL) as per the

following expressions (4.5) and 4.6, respectively:

ARL = 	 #	of	rules	of	length	 	 ∗ 	rule	length	n / 	#	 	 (4.5)

WARL = 	 ∗ 	#	 	 	 	 	 	

	 	 	 	
 (4.6)

To elaborate on these two measures, consider for instance the following two rules:

 Rule 1: (if a=windy and b = mild then yes)

 Rule 2: (if a=sunny then no)

75

Table 4.2: The UCI datasets characteristics

dataset
of
attributes

of
instances

of
classes

Continuous
attributes

Missing
values

Arrhythmia 280 452 16 Yes Yes

Balance‐scale 5 625 3 Yes No

Cleve 12 690 2 Yes Yes

Credit‐g 21 1000 2 Yes No

Cylinder‐bands 40 540 2 Yes Yes

Dermatology 35 366 6 Yes Yes

Pima_diabetes 9 768 2 Yes No

Hayes‐roth‐test 5 28 4 Yes No

Hayes‐roth‐train 5 132 4 Yes No

 Hepatitis 20 155 2 Yes Yes

Hypothyroid 30 3772 4 Yes Yes

Ionosphere 35 351 2 Yes No

Liver‐disorders 7 345 2 Yes No

Lung‐cancer 57 32 2 No Yes

 Lymph 19 148 4 Yes No

Mushroom 23 8124 2 No Yes

Sick 30 3772 5 Yes Yes

Tae 6 151 3 Yes No

Tic‐tac‐toe 10 958 2 No No

 Waveform 41 5000 3 Yes No

Rule 1 has a body length of two attribute values, and let us assumes that it covers three

data instances. On the other hand, rule 2 has one attribute value in its body and let us

assumes a coverage of 97 data instances. Based on this information, one can calculate

ARL and WARL as follows:

 ARL = (1+2)/2 = 1.5

 WARL = 2 * 3/100 + 1 * 97/100 = 1.03

It seems that the rules set has ARL=1.5 which indicates that the average rule length is

1.5 variables. On the other hand, the weighted averahe rule length of 1.03 indicates that

correlation between the rules set and the number of covered data instacnes in the

training dataset.

4.4 UCI Data Experimental Settings

In this section, different datasets from the University of California Irvine (UCI)

repository used to evaluate the proposed eDRI algorithm performance are described

(Lichman, 2013). In particular, twenty datasets along with their specifications as

displayed in Table 4.2 have been used. All numerical attributes of the chosen datasets

have been discretised, and missing values were replaced using ReplaceFilter in WEKA

(Hall, et al., 2009).

76

For fair comparison, datasets with different sizes have been chosen. Stratified ten-

fold cross validation method, as explained in Section 4.3.1, has been used for testing all

considered classification algorithms. This method is widely used in ML and DM

communities to produce average error rates of the classifiers (Witten and Frank, 2005).

In order to exhibit eDRI’s performance with respect to different measures when

contrasted with a wide range of ML algorithms that adopt a variety of learning

strategies, a number of highly competitive classification algorithms that generate rule-

based models are required to be utilised to conduct the experiments (Quinlan, 1993;

Cendrowska, 1987; Cohen, 1995; Holt, 1993; Witten & Frank, 2005; Freund &

Schapire, 1997; Liu, et al., 1998; Gaines & Compton, 1995). The selection of rule-based

classifier algorithms was based on four main factors:

a) Produce rules are in the format of “If-Then”, so they are similar to the proposed

eDRI algorithm;

b) They adopt different rule discovery mechanisms;

c) All are known algorithms that have been evaluated by previous researchers in the

DM and ML communities;

d) They are all implemented in the recent developer version of WEKA 3.7.

. The above criteria resulted in the following classification algorithms that generate

rule-based models to be selected for the experiments: decision trees C4.5, PRISM,

RIPPER, OneRule, Conjunctive Rule, Boosting (AdaBoost is the exception with respect

to criterion a) above), CBA, and Ridor were chosen.

It should be noted that the majority of PRISM successors such as P-PRISM and N-

PRISM focus on treating noise datasets and reducing computing resources (parallelism)

as described earlier in Chapter two. Thus, their rule learning strategy is identical to

PRISM learning startegy, and therefore PRISM WEKA’s version was selected for

comparison. Moreover, REP, IREP, IREP++ employ similar learning strategies to the

RIPPER one, and considering that RIPPER is more advanced because of its

optimisation procedure it was therefore the selected one to be part of the

experimentations.

77

All experiments have been run on a Core i5 computer with a 3.1 GHz processor and

8.0 GB RAM. The minimum frequency and rule strength thresholds for eDRI have been

set in all experiments to 1% and 50%, respectively. Minimum frequency threshold plays

a critical role in controlling the number of rules that may be generated, and therefore

following recent published studies (Thabtah, et al., 2015; Abdelhamid, et al., 2014) we

set it to 1%. On the other hand, rule strength has a low impact so was set to 50%. These

values normally balance between the classifier's size and the classification accuracy

performance measure as shown by other scholars (Thabtah, et al., 2016; Abdelhamid et

al., 2014; Li et al., 2001).

We utilised a number of evaluation measures to show the benefits and negatives of

the proposed algorithm when compared with other classification algorithms in DM.

Precisely, the below measures have been used to evaluate eDRI:

• One error rate (%)

• The classifier size (Number of rules derived)

• The time in ms taken to discover and extract the rules

4.5 UCI Data Results

The eDRI algorithm was tested against twenty generic classification datasets that belong

to different applications at the UCI data repository. The choice of the dataset was based

on different data features such as number of data examples, number of class values,

available number of variables in the dataset, attribute types, data application domain

type, and noise tolerance such as missing values, etc. Overall, datasets with small,

medium, and large dimensionalities have been selected as shown in Table 4.2 provided

before.

Figure 4.1 depicts the average one-error rate generated by the considered algorithms

on the twenty UCI datasets. The CBA algorithm was unable to produce rules from

twelve datasets (often large dimensionality ones) due to a combinatorial explosion

problem (running out of memory), so we omitted its average error results and will later

show its results on the eight datasets it produced rules. Figure 4.1 clearly shows that the

eDRI algorithm outperformed the considered algorithms on average, with an average

78

Figure 4.1 error rate generated by the considered classification algorithms against the 20 datasets

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

error,lower than PRISM, C4.5, PART, Ridor, OneRule, ConjunctiveRule, RIPPER, and

AdaBoost by 9.75%, 4.41%, 3.67%, 4.19%, 13.46%, 11.34%, 2.32%, and 8.49%,

respectively. Its dynamic rule production by live updating the frequency and rank values

of each candidate rules ensures fair and high quality rules. These play a major role in

decreasing the error rate of the classifiers produced by the eDRI algorithm when

compared with other rule learning algorithms. Furthermore, the proposed eDRI

algorithm eliminates any item with insufficient data representation from becoming part

of any rule’s body. This is done by evaluating each item’s frequency against the

frequency threshold while testing each rule-strength during the learning phase against

the minimum rule-strength threshold. These two early pruning tests ensure that only

high quality rules are kept for predicting test data cases.

79

Table 4.3: The considered algorithms error rate for the UCI datasets

Algorithms

Dataset Ridor C4.5 PART RIPPER PRISM OneRule ConjunctiveRule
Proposed
eDRI AdaBoost

Arrhythmia 38.94 38.49 42.69 29.64 61.50 42.47 46.68 39.38 44.46

Balance‐scale 20.48 35.52 22.72 20.96 36.32 43.68 37.28 16.16 27.68

Cleve 57.42 13.62 14.20 48.18 21.03 46.53 27.06 16.10 16.83

Credit‐g 28.10 27.20 30.70 28.30 36.20 33.90 30.5 28.08 30.50

Cylinder‐bands 31.11 42.22 40.74 34.81 44.80 50.37 34.44 26.22 27.40

Dermatology 6.83 6.01 5.19 13.11 15.56 50.27 49.72 8.46 49.72

Pima_diabetes 25.00 26.17 26.56 23.95 38.92 28.51 31.25 27.08 25.65

Hayes‐roth‐test 46.42 50.00 50.00 53.57 57.14 50.00 53.57 14.28 39.28

Hayes‐roth‐
train 18.93 27.27 25.75 14.39 31.05 56.06 57.57 20.45 56.81

 Hepatitis 21.29 18.70 19.35 21.93 22.57 20.00 21.29 20.64 17.41

Hypothyroid 0.55 6.73 7.26 0.66 8.77 3.76 2.94 6.70 6.78

Ionosphere 11.96 13.39 12.82 10.25 13.95 19.08 18.51 13.39 9.11

Liver‐disorders 36.81 38.84 37.68 35.36 44.34 44.92 42.31 35.36 33.91

Lung‐cancer 37.50 21.87 25.00 21.87 41.62 12.50 18.75 25.00 21.87

 Lymph 14.86 20.27 19.59 22.29 24.31 25.00 27.02 20.27 25.67

Mushroom 0.00 0.00 0.00 0.00 0.00 1.47 11.32 0.49 3.80

Sick 1.82 1.74 2.22 1.77 1.95 3.60 2.28 1.80 2.81

Tae 48.34 50.33 52.98 58.94 45.02 53.64 34.43 43.04 62.25

Tic‐tac‐toe 8.03 15.44 5.74 2.19 3.54 30.06 30.06 8.03 27.45

 Waveform 22.28 27.22 25.20 20.80 39.42 46.28 42.68 22.00 33.36

 In order to further evaluate the predictive power of the proposed eDRI algorithm,

the error rate per dataset for all considered algorithms are provided in Table 4.3. The

figures clearly show a consistent domination for the eDRI algorithm when compared to

the remaining algorithms. In particular, eDRI won-lost-tie record against PRISM, C4.5,

PART, Ridor, OneRule, ConjunctiveRule, RIPPER, and AdaBoost are 18-2-0, 9-9-2,

11-8-1, 11-8-1, 17-3-0, 17-3-0, 9-9-2 and 15-5-0, respectively. It seems that RIPPER,

Ridor, PART, C4.5, and the proposed eDRI algorithm are more predictive than the

remaining rule-based classifiers, as it is obvious from both the average error and the

per-dataset errors generated. This makes OneRule, ConjunctiveRule, and RPSIM the

least applicable algorithms due to the low predictive models derived. Models derived

from datasets such as “Arrhythmia”, “Balance-Scale” and “Ionosphere” make this

especially clear.

80

The advantage of eDRI becomes apparent whenever a rule is inserted into the

classifier and its covered data are discarded, thereby causing an immediate amendment

on the remaining potential rule rank. This is because the classifier constructed contains

rules with little to no redundancy, which ensures that:

a) No training example is used multiple times in inducing rules;

b) Each item has its real time frequency rather than the initial frequency computed

from the training dataset;

c) Rule rank, which is the primary measure for rule strength, is constantly updated.

This safeguards the rule discovery phase since insignificant rules are removed

during learning despite some of them having a high rank at the first scan.

The development of rules linked with constant frequency and rank values have

contributed to the decrease of the one-error rate in the classifiers derived by eDRI. As a

matter of fact, the algorithm ensures each rule is derived from the remaining instances

in the training data after removing instances associated with the already generated rules.

This only allows rules that are constantly fit statistically to participate in the classifier.

These rules are the ones utilised later on during the class prediction step.

The average number of rules in the classifiers produced by C4.5, PART, PRISM,

and eDRI is depicted in Figure 4.2. We omit the rules generated from OneRule and

ConjunctiveRule since both are single-rule learners. Moreover, RIPPER uses excessive

pruning based on a growing set and a pruning set, besides an optimisation procedure,

thus a very limited number of rules are generated. Therefore, for fair comparison, we

omitted the classifier of RIPPER. Later we show RIPPER classifiers for the phishing

problem since that problem necessitates small yet useful numbers of rules. Figure 4.1

illustrates that PRISM and C4.5 produce classifiers with a larger number of rules than

the remaining algorithms, which make it hard for end-users to manage and understand.

On the other hand, eDRI and Ridor were able to produce, on average, an acceptable size

of predictive model. Despite Ridor’s ability to get smaller classifiers than eDRI, the

predictive power of eDRI is still higher and may be seen as a definite advantage. Ridor

“must” perform extensive rule pruning, and therefore usually ends up with few rules.

81

Figure 4.2 Average # of rules generated by the selected rule based classification algorithms against the 20
datasets

0

50

100

150

200

250

PRISM C4.5 PART eDRI Ridor

Average # of rules in the classifier

PRISM generates larger classifiers than the rest of the considered algorithms and on

most of the datasets considered, which is due to the fact that PRISM prefers rules with

low data coverage (specific rules). However, eDRI on average generates a lower

number of rules in the classifier than C4.5, PART, and PRISM. We believe that this

rules reduction is attributed to two main reasons:

1) Each rule covers a large number of training instances because of incremental

data processing.

2) The new learning strategy employed by eDRI allows a rule to cover more

training instances.

The mechanism of rule learning in eDRI contributed to a decrease in the final

classifier because when each rule is inserted into the classifier eDRI reduces the search

space of remaining potential rules by only storing those that are linked with acceptable

frequency and rank values. Other algorithms, such as PART and C4.5, build trees based

on information gained and repeatedly evaluate all variables in the training data. When a

variable is linked with many possible values, this may result in many branches, each of

which can be linked to a leaf node and thus making a rule. During the building of the

classifier, these algorithms may generate a larger number of rules despite employing

backward and forward pruning. On the other hand, eDRI induces and evaluates each

rule in parallel until the dataset is empty or no item with sufficient data is present. This

82

Figure 4.3 Average time in ms generated by the considered classification algorithms against the 20
datasets

0

10

20

30

40

50

60

PRISM C4.5 PART eDRI Ridor RIPPER

Average time to induce the rules in ms

substantially decreases the available number of candidate items for the next possible

rules.

We also looked at the time required to build the predictive models in average

milliseconds (ms) (Figure 4.3) and per dataset (Table 4.4). According to Table 4.4,

eDRI consistently built classifiers in an efficient manner. In fact, eDRI was able to

outperform all tested algorithms with respect to average time taken to construct the

predictive models, and for each individual dataset. Figure 4.3 demonstrates that eDRI

achieved 7, 3, 9, 49, and 4 less milliseconds in inducing the rules than the PRISM, C4.5,

PART, Ridor, and AdaBoost algorithms respectively. These figures are clearer when the

number of input variables are large, as exhibited in cases such as the “Wavefor” dataset.

Therefore, we expect that when the dataset consists of a larger number of attributes the

gap in time taken to find the rules between eDRI and the remaining algorithm will

increase. Minimisation in time during the process of rule discovery in eDRI is attributed

to the fact that this algorithm has combined rule discovery and building the classifier

into a single phase. In eDRI, no separate classifier building procedure is included as in

traditional rule induction algorithms such as PART, Adaboost, Ridor, and C4.5.

83

Table 4.4: The considered algorithms time in ms to generate the rules from the 20 UCI datasets

Time to induce the rules in ms

dataset PRISM C4.5 PART eDRI Ridor RIPPER AdaBoost

Arrhythmia 22 17 38 8 688 72 32

Balance‐scale 3 10 2 0 2 3 0

Cleve 3 2 5 0 2 2 0

Credit‐g 6 3 5 2 5 9 2

Cylinder‐bands 5 0 11 2 3 5 2

Dermatology 0 2 2 0 8 3 2

Pima_diabetes 2 3 3 2 2 2 2

Hayes‐roth‐test 0 0 0 0 0 0 0

Hayes‐roth‐train 0 0 0 0 0 0 0

 Hepatitis 2 0 0 0 0 0 0

Hypothyroid 6 9 24 5 17 11 5

Ionosphere 2 3 5 0 2 3 2

Liver‐disorders 1 1 3 1 0 2 2

Lung‐cancer 1 1 1 1 0 0 0

 Lymph 0 0 0 0 0 0 0

Mushroom 2 5 4 2 14 29 11

Sick 7 8 8 2 6 22 12

Tae 3 4 1 2 0 0 1

Tic‐tac‐toe 1 2 2 1 2 3 2

 Waveform 119 23 108 5 278 266 35

 We have included a new rule-based associative classification algorithm called CBA

to see how eDRI performs in predictive accuracy and rule generation with this

competitive family of algorithms (Liu, et al., 1998). As indicated earlier, CBA crashed

when the number of attributes increased, so no results for CBA on twelve out of the

twenty datasets could be generated on the WEKA platform.

Figure 4.4 displays the error rate derived respectively by all considered algorithms on

the eight datasets that CBA was able to mine clearly shows that CBA results are

competitive when compared to those obtained by eDRI, PART, C4.5, and PRISM

algorithms, which support previous research findings in AC research literature

(Thabtah, et al., 2015; Abdelhamid net al., 2014). To be more precise, CBA was able to

produce, on average, higher predictive classifiers than C4.5, PART, and PRISM on the

eight datasets while eDRI slightly outperformed CBA in terms of error rate on the same

datasets. Nevertheless, classical AC algorithms have shown a significant drawback in

84

Figure 4.4 error rate generated by CBA and the considered classification algorithms against the 8 least # of
attributes datasets

0.00
5.00
10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

ERROR RATE %

eDRI CBA

mining datasets with moderate to large numbers of attributes, which can be seen as a

drawback of this family of algorithms because it limits their use in commercial

applications.

The fact that CBA failed to mine twelve datasets is evidence of its exhausting rule

discovery and evaluation phases. Relaxing such exhaustive mining by eDRI is a bonus

that not only produces higher quality classifiers in terms of predictive accuracy but also

smaller in size ones. It is clear from the experimentation that CBA produced larger

classifiers than eDRI on seven out of the eight datasets mined. In fact, CBA derived 38

rules more than eDRI on average for the eight datasets with a limited number of

attributes it was able to mine. We can only deduce that this average difference will

increase when mining datasets with higher dimensionality.

Finally, the runtime in milliseconds for the classification algorithms on these eight

datasets has been recorded in Table 4.5. The figures clearly point out that CBA is the

slowest algorithm to construct classifiers, which seems a new trend in AC mining

approaches. This has been attributed to two factors: CBA “must” discover all

correlations in the training dataset using the candidate generation function; and it

employs a tense rule evaluation step that requires for each training instance a full scan

over the complete set of candidate rules before selecting the classifier. These two steps

85

Table. 4.5 Runtime in ms generated by CBA and the considered classification algorithms against the 8
least # of attributes datasets

PRISM C4.5 PART eDRI CBA

3 10 2 0 7.7

3 2 5 0 1720

2 3 3 2 540

0 0 0 0 0

0 0 0 0 5.7

1 1 3 1 33.5

3 4 1 2 9.7

1 2 2 1 88

unfortunately consume a tremendous amount of time and are a substantial deficiency in

CBA. According to Table 4.5, CBA has to spend 299 ms more on average than eDRI to

build the classifiers, which places it in last place among the considered algorithms in

terms of efficiency.

We investigated the search space used by PRISM and eDRI to determine the major

differences between both algorithms in constructing the classifier since both are the only

classic Covering algorithms. The number of data samples (rows) scanned by both

algorithms in determining item frequencies and accuracy while building the rules were

recorded. Table 4.6 illustrates the findings. For most of the datasets considered, PRISM

had to scan more data samples to derive the final classifier except for the “Labor”

dataset. One example is the “Segment Challenge” dataset which consists of 19 attributes

and 1500 instances where PRISM has to pass over 7,147,542 rows while eDRI only

used 938,263 rows. On average for the datasets we examined, PRISM and eDRI had to

scan 1,075,551 and 203,350 times, respectively. This is clear evidence to support that

the proposed eDRI algorithm substantially reduces the search space for rules in its

classifier building process. The fact that eDRI on average reduces the search space by

around five times less than PRISM is significant since it stops building rules when

they have an acceptable error rate, rule strength, according to the user.

86

Table 4.6: # of scanned data samples during building the classifier by PRISM and eDRI on the UCI
datasets

Dataset
PRISM eDRI

Contact lenses 1503 168

Weather 1160 196

Labor 13796 19507

Glass 325951 58613

Iris 20613 15265

Diabetes 1979939 418680

Segment Challenge 7,147,542 938,263

Zoo 72,852 21,011

Tic-Tac 509,652 120,526

Pima 682,505 358,451

4.6 Chapter Summary

In this chapter, the details of eRDI implementation were provided and its integration in

the WEKA environment has been discussed, explaining the required parameters in the

graphical user interface. In addition, we described the different evaluation measures

used, the mathematical notations required, the experimental settings, and the algorithms

used in the experimental comparison conducted.

A number of experiments have been carried out in the WEKA environment using

twenty datasets from the UCI data repository to measure the success and failure of the

proposed eDRI algorithm. We utilised a number of evaluation metrics such as

predictive accuracy, number of rules, classifier content, time taken to construct the

predictive models in ms, etc. A wide range of predictive models that normally produce

classifiers with rule formats have been contrasted with eDRI with respect to the

aforementioned evaluation metrics. Experimental results revealed that eDRI is an

efficient DM algorithm that constantly derives highly competitive predictive models

when compared to those derived with Ridor, PRISM, PART, C4.5, and AdaBoost.

Specifically, eDRI was able to outperform the considered algorithms regarding average

error rate and for most datasets. Furthermore, the predictive models derived by eDRI

87

were often moderate in size and smaller than the rest of the contrasted algorithms except

for Ridor. Nevertheless, Ridor continuously consumed larger quantities of time in

producing the predictive models, making this algorithm the least applicable when

processing large amounts of data. The dynamic adjustment in item and rule frequencies

and rank contributed to the efficient data processing and higher predictive model

performance of eDRI. The results of the experiments can be summarised as follows:

1) eDRI outperformed the considered algorithms in regard to their predictive power

for most datasets and, on average, for the entire datasets.

2) The classifiers produced by eDRI were smaller than those of PRISM, C4.5, and

PART, which makes it applicable to applications that necessitate concise sets of

knowledge for decision making. In Chapter 6, we show the effectiveness of

eDRI in detecting phishing websites.

3) The efficiency of eDRI in processing small, medium, and large datasets have

been measured and it has been shown its superiority over the considered

algorithms.

4) The new dynamic Covering learning in eDRI scaled well when contrasted with

the high predictive learning in associated classification approaches such as CBA.

Results showed superiority not only in classification accuracy of the models

generated, but also in the time taken to build and size of the models.

 In the next chapter, the problem of phishing within the context of website security

is investigated. We then apply eDRI on a real dataset related to phishing detection in

order to measure the strengths and weaknesses of eDRI as an anti-phishing tool,

comparing its performance with a wider selection of ML algorithms (both rule and

none rule based).

88

Chapter Five

Applicability of eDRI on Cyber Security

Applications: Phishing Detection

5.1 Introduction

As the largest computer network, the Internet is considered a critical platform for

business success and expansion as most commercial trades are being conducted online.

With the majority of businesses competing in a global market, they seek to maximise

revenue by increasing user accessibility and promotion of products and services through

the web-based and mobile platforms. People not only use the internet for socialisation

and knowledge but purchasing goods, pay bills, and transfer money, and consequently

the internet has become a necessity for many individuals. Since the explosion of mobile

commerce applications access to the World Wide Web has become a daily essential

requirement, with people performing regular financial transactions regardless of their

geographical location (Ronald et al., 2007; Aburrous et al., 2010b).

With the advanced development of computer hardware, especially computer

networks and cloud technology services, online and mobile commerce have

significantly increased in the last few years (Abdelhamid & Thabtah, 2014). Indeed, the

number of customers who perform online purchase transactions has dramatically

increased and large monetary values are daily exchanged through electronic means,

such as private payment gateways, that are usually verified by secure socket layer (SSL)

(Sheng et al., 2010). Despite the convenience associated with online transactions from

both user and business prospectives, an online threat has emerged: phishing.

Phishing involves creating a well designed website that replicates an existing

authentic business website in order to deceive users and obtain illegally their credentials

and/or login information (Abdelhamid, 2015), so as for phishers to get access to

89

legitimate users’ financial information (Afroz, et al., 2011). Unfortunately, the

consequences of phishing are fatal because affected legitimate users become vulnerable

to identity theft and information breach and no longer trust online commerce and

electronic banking (Nguyen, et al., 2015). Phishing typically occurs via email sent to

users, from apparent trustworthy sources, urging them to adjust their login information

by clicking/following a hyper link within such email (Khadi & Shinde, 2014).

In 2011, Gartner Group published a report (McCall, 2011) that revealed an annual

loss over $2.8 billion as a result of phishing activities occurring within the United

States. For this reason, an international body that aims to minimise online threats

including pharming, spoofing, phishing and malware, the Anti-Phishing Work Group

(APWG), was created (Jevans, 2003). APWG periodically disseminates reports for the

online community on recent cyber-attacks, with a recent report stating the rapid increase

of phishing websites to 17,000 in the month of December 2014 alone (Aaron &

Manning, 2014). In the same report, the total number of monthly phishing activities

reported in the fourth quarter of 2014 was more than 197,000 websites, and increase of

18% compared with the previous quarter of the same year, with the United States

continued to be the top country hosting phishing websites.

It seems imperative that users, as well as businesses, adopt renewable anti-phishing

tools or strategies to reduce phishing activities and protect themselves from their

potential negative impacts. This is important because phishing attacks are constantly

changing and new deceptions are emerging all the time. Anti-phishing solutions

adopting DM (ML) are shown to be more practical and effective in combating phishing

because they work automatically and are capable of revealing concealed knowledge that

online users are not aware of, especially with respect to the relationship among website

features and phishing activities. This hidden knowledge, when combined with human

experience, can result in an effective shield for protecting users from phishing

(Abdelhamid, 2015).

In this Chapter, we investigate the phishing problem and define it in a ML context.

We then discuss common, traditional, strategies in addition to computerised techniques

developed to combat phishing. More importantly, this Chapter thoroughly investigates

ML anti-phishing techniques and critically analyses both their benefits and drawbacks.

90

Figure 5.1. Example of an early phishing attack (Blogonlymyemail.com)

Specifically, we evaluate the eDRI model proposed in Chapter three on the hard

problem of phishing detection in order to exhibit its applicability as an anti-phishing

tool. Using real data, we compare eDRI with other common ML algorithms and in

reference to different evaluation metrics.

5.2 Phishing Background

Phishing comes from the word “fishing,” in which the phisher throws a bait and

awaits for potential users to take a bite. Phishing is not recent as an online risk, with its

origin rooted in a social engineering method using telephones known as “phone

phreaking” (Rader & Rahman, 2015). It was during the 1990s period when the internet

community started to grow that phishing was originally observed as an online threat,

especially in the United States (Basnet, et al., 2008).

According to McFredies (2016), the first phishing incident was noticed in the mid-

1990s when phishers attempted to obtain registered online users’ account information

from the internet provider America Online (AOL). Phishers during this era frequently

utilised instant messages (IM) in AOL chat rooms or emails to reach users so that they

would reveal their passwords (Figure 5.1 illustrates an example of an early phishing

attack), which were sunsequently used by phishers to leverage the victims’ accounts and

begin emailing spam to other online users. Obvioulsy, phishers realised that they could

91

further trick victims if the IMs and emails requested them to update their billing

information. With this realisation, the attackers expanded their aim and using the same

electronic means (IMs and emails) attempted to access other financial information from

victims such as social security numbers, addresses, credit card information, etc.

One of the most common beliefs that ordinary users have about phishing websites is

that grammatical errors and typos are typical within these websites (Rader & Rahman,

2015). This has misled users into believing that a website without grammatical errors

must be trustworthy, which has proven not necessarily be true. Phishers in today’s

cyber world become more innovative and work systematically in groups sometimes

even orchestrating phishing campaigns motivated by potential financial gains. In fact,

phishers are continuously changing their spoofing methods based on the counterpart

security measures taken by organizations, and recently they have directed their attention

to the mobile commerce platform. This means that the profile of phishers has changed

from egocentric purposes into more organized and serious cybercrime that keeps

evolving, which makes it hard to detect.

5.2.1 Phishing Process

Phishing attacks are initiated through an email sent to potential users. Other ways a

phisher may start an attack include Instant Messaging, online blogs and forums, short

message services, peer to peer file sharing services, and social media websites

(Abdelhamid, et al., 2014). We can summarise the phishing lifecycle as follows (see

Figure 5.2):

1) A link is sent using one of the aforementioned channels to potential victims.

2) When clicked, the link will redirect potential victims to a malicious website.

3) Users become vulnerable as they try to login using their credentials on the

malicious website.

4) Login credentials are then transferred to a server, or a key logger is installed into

the user’s computing device.

5) The phisher can then utilise the credentials to perform additional cybercrimes.

92

Figure 5.2. Phishing life cycle (Abdelhamid et al., 2014)

 5.2.2 Phishing as a Classification Problem

Generally speaking, websites can be classified by hand-crafted methods based on

certain features such as URL length, prefix_suffix, domain, sub_domain, etc. Initially,

scholars in the area of online security (Aburrous et al., 2008; 2010b) developed different

knowledge bases using their experience and expertise to distinguish phishing from

legitimate websites. Rcently, there have been studies and proposals aiming at deriving

intelligent rules to detect the fine line between legitimate and phishing websites using

statistical analysis (Qabajeh and Thabtah, 2015; Mohammad et al., 2014b; Abdelhamid

et al., 2014). For instance, Aburrous et al. (2010a) and Mohammad et al. (2014b)

defined a number of hand crafted rules based on various website features using simple

statistical analysis on websites (instances) collected from different sources including

Phishtank and Yahoo directory (Phishtank, 2011). More advanced decision rules have

been developed in Abdelhamid et al. (2014) in which the authors used further statistical

analysis on a larger phishing dataset collected from varying sources.

ML and DM have proved to be powerful data analysis tools in many application

domains such as medical diagnosis, market basket analysis, weather forecasting and

events processing, to cite some (Abdelhamid & Thabtah, 2014). This is due to the fact

that ML and DM techniques usually reveal concealed meaningful information from

large datasets so they can be utilised in management decisions related to development,

planning, and risk management. Generally speaking, ML and DM can be seen as an

automated and intelligent tool embedded within management information systems to

guide decision making processes in both business and scientific domains. Common

93

tasks or problems that ML and DM handle are clustering, association rule discovery,

regression analysis, classification, pattern recognition, time series analysis, trends

analysis, and multi-label learning (Witten & Frank, 2005).

One of the frequent task of ML is the forecasting of a target variable within datasets

based on other available variables (Witten & Frank, 2005). This forecasting process

occurs in an automated manner using a classification model, normally named the

classifier, that is derived from a labelled training dataset. The goal of the classifier is to

“guess” the value of the target variable in unseen data, referred to as the test dataset, as

accurately as possible. This task description falls under the umbrella of supervised

learning and is known as classification. Abdelhamid and Thabtah (2014) defined

classification as the ability to “accurately” predict class attributes for a test instance

using a predictive model derived from a training dataset.

Since the problem of website phishing involves automatic categorisation of websites

into a predefined set of class values (legitimate, suspicious, phishy) based on a number

of available features (variables) then this problem can be considered a classification

problem. To be more specific, the training dataset will consist of a set of predefined

features and the class attribute and instances are basically the websites’ feature values.

These instances can be extracted from different sources such as Phishtank and online

directories. The aim will be to build an anti-phishing classifier that can predict the type

of website based on hidden knowledge discovered from the training set features during

the data processing phase. Usually the goodness of the classifier is measured using

accuracy, which primarily relies on the correlations of the features and the class

(Thabtah et al., 2016a). Figure 5.3 shows phishing as a classification problem from the

ML prospective. As discussed before, phishing websites are dynamics and consequently

it can modelled as a dynamic supervised learning classification problem. Therefore, an

effective anti-phishing classifier should be adaptable to any new features observed in

order to handle and manage the dynamic nature of the problem.

94

Figure 5.3. Phishing as a classification process

5.3 Common Traditional Anti-Phishing Methods

Since phishing causes serious breaching of user confidentiality, as well as

organizations including government agencies, there have been different methods

proposed to combat it. These approaches can be categorized into three main groups:

 Education and legal

 Computerized using human-crafted methods

 Intelligent ML methods

In this section, we examine the literature on phishing and critically analyse different

techniques based on the above categories. The focus, however, will be on the intelligent

anti-phishing solutions because that is the aim of this PhD dissertation but also because

it is our belief this will be the way forward in shielding the web from phishing threats as

promising recent results confirm (Thabtah et al. 2016b; Nguyen et al. 2015; Lee et al.

2015; Mohammad et al. 2014a; Jameel and George 2013; Khadi and Shinde 2013;

Sheng et al. 2010).

95

5.3.1 Legal Anti-phishing Legislations

Governments have been slow in responding and opposing started to oppose phishing.

California State in the US was the first to issue anti-phishing legislation in 2005

(InformationWeek, 2016). This legislation stated that it is unlawful to use any electronic

means such as websites, emails, or any other methods to ask or solicit information from

online users by claiming ones self as a business without the authority of that business.

Other US States such as Texas have also introduced new cybercrime legislations that

include phishing, and in 2005 the General Assembly of Virginia added phishing attacks

to their list of computer crimes (General Assembly of Virginia, 2005). These new laws

empowered companies such as America Online to file lawsuits in Virginia against

phishers in 2006 (Pike, 2006). However, most US States have not yet designated laws

for phishing and usually prosecute phishers using other computing crime laws such as

fraud.

At Federal level in US, lawmakers and congressional representatives have not passed

anti-phishing legislation either. There were a few attempts between 2004 and 2006

following the Anti-Phishing Act of 2004 to pass specific bills incriminating phishing

and instigating tougher prison sentences, but these bills were stopped at the committee

level in Congress. Nevertheless, federal law enforcement can incriminate phishers using

other laws that are related to identity theft and fraud such as “18 U.S.C. section 1028”

(Pike, 2006). Businesses have also joined the Government in fighting phishing. For

example, in 2005 Microsoft filed over 115 lawsuits in Washington’s Western District

Court accusing a single Internet user of utilising various deceptive methods to access

some of the company’s users’ information (Pike, 2006). In mid-2006, the then president

George W. Bush established a new cybercrime identity theft task force (Executive-

Order-13402, 2006), with a single goal: reduce the risks of cybercrime, especially

phishing.

The United Kingdom (UK) has followed the US by strengthening its legal system

against severe cybercrimes, including fraud and identity theft. In 2006, the UK

introduced the new Fraud Act, which increased prison sentences to up to ten-years for

online fraud offences (BBC News, 2005). This same act prevents possession of a

phishing website with the intent to deceive users and commit fraud. Further, Microsoft

96

decided to collaborate with other law enforcement agencies outside US to bring justice

to phishers. In doing so, the company signed an agreement with the Australian

government to train law enforcement agents in preventing phishing (Government of

Australia, 2011). Also, in 2010 Canada introduced an Anti-spam Act that incriminates

cybercrime and that aims to protect Canadian online consumers and businesses when

globally trading (ClickDimensions, 2014).

5.3.2 Educating Users: Simulated Training

One of the easier, yet helpful, policies to oppose cybercrimes is to educate users on

the ways employed to access their information. Users awareness of the circumstances

around phishing will undoubtedly hep minimise this risk or stop it as early as possible.

Unfortunately, most users are unaware of how phishing attacks start or how to recognise

visually an untruthful website and differentiate it from one that is trustworthy

(Mohammad et al., 2015). Moreover, basic security indicators and anti-phishing

software counterparts are still vague for many online shoppers (Qabajeh & Thabtah,

2015). All this contributes to phishing increase and, subsequently, motivate phishers to

launch further attacks. A security survey conducted by Julie et al. (2007) revealed the

lack of knowledge on cybercrimes, including phishing, held by online users, and that

some security aware respondents to the survey were reluctant to use their financial

information for payment purposes even within trustworthy websites.

There have been a number of studies on educating people as to the severity of

phishing. For example, Arachchilage and Love (2013) investigated whether mobile

games can be a helpful method for raising awareness of phishing attacks. The authors

evaluated learning curves of users who played with a mobile game about phishing

developed by Arachchilage and Cole (2011), and assessed whether an interactive mobile

platform is effective in educating users in contrast to traditional security training. A

comparison of user responsiveness to phishing has also been conducted using the

developed mobile game, along with a website designed by APWG. The results showed

that users who played the anti-phishing mobile game were able to spot non-genuine

websites with a higher rate of accuracy than other users who only used the APWG

website. A number of organizations and research studies (Arachchilage et al. (2007);

97

Ronald et al. 2007) have adopted training to warn users of phishing, which involves

sending participants simulated malicious emails from a genuine source to evaluate their

vulnerability to phishing. Embedded training is another way to measure users’

vulnerability to phishing. This type of training often mimics primary daily business

processes performed by employees by experimenting to measure a certain outcome

(Arachchilage, et al., 2013). Based on a preliminary pilot study conducted on a limited

number of students, Arachchilage et al. (2007) used embedded training methodology to

measure phishing awareness at a University. The authors sent malicious emails from the

administrator to participants without informing them of the training material content.

These emails urged users to click on a link that would redirect them to a malicious

website where they would input their login credentials. This aim was directed at

identifying the number of users who would actually click on the link. During the

experiment, the user was interrupted immediately when he clicked the link and was then

provided with the training material.

5.3.3 User Experience: Anti-phishing Online Communities

One of the simplest approaches to reducing the impact of phishing on online users

and organisations is to build an anti-phishing community to monitor recent phishing

activities and provide news to the different stakeholders. Users’ experiences are

practical and based on real cases related to different types of phishing. Such efforts by

users and organizations have resulted in new proactive online communities and data

repositories. These accumulated and useful resources are of interest since they can be

employed to study ways to make the Internet safer and free from phishing.

The Monitoring and Takedown (MaT) approach enables individuals who recognise

phishing activity to report it via public anti-phishing communities including APWG,

PhishTank, Millersmiles, and Symantec among others (Jevans, 2003; PhishTank, 2011;

Bright, 2011; Nahorney, 2011). These anti-phishing communities allow users to report

phishing content and warn other users and organisations as well. Users can also report

phishing content to the Federal Trade Commission’s Complaint Department, becoming

directly part of the campaign toward combating phishing. Many reputable companies

also have an internet fraud department that allows users to report any fraudulent or

98

suspicious activity such as phishing. PhishTank was created in 2003 as a subsidiary of

OpenDNS in order to provide the parent company, as well as the online community,

with a phishing repository. This large collection of stored phishing websites has given

computer security experts, users, researchers and business owners’ extensive

information about phishing attacks and the features of their associated emails and

websites. Another example of a good use of user experiences is Cloudmark, which is an

alerting-based anti-phishing method with user rating system (Cloudmark, 2002). When

a user is visiting a website and experiencing any kind of threat, they can then rate that

website to alert other online users. Finally, Web of Trust (WOT) is another example of

an anti-phishing approach based on the user feedback rating model (Web of Trust,

2006).

5.3.4 Discussion on Non Intelligent Anti-phishing Solutions

Legislators in the US, UK and Canada, among others countries, have approved

legislative bills that include serious jail sentences for incriminated phishers. This has

been made clear in several high profile cases, especially in the US. Nevertheless, these

legislative bills have not achieved a decrease of phishing attacks. On the contrary,

phishing has now become more severe than ever and businesses as well as individual

users have suffered from substantial financial losses as a result. One of the primary

reasons for legal actions not to be as effective as expected in minimising phishing is due

to the fact that often a phishing website has a short life span (normally about two days),

which helps the phisher to disappear quickly once the fraud has been committed,

making law enforcement difficult.

As previously mentioned, raising awareness of phishing risks and educating users

has shown promising initial results (Ronald et al. 2007). Computer security scholars

have adopted different ways to disseminate the seriousness phishing may cause to

society, with Jevans (2003) and PhishTank (2011) using web-based material to teach

novice users phishing fraud techniques; while others, such as Arachchilage et al. (2007),

developing contextual and embedded trainings based on simulated phishing emails

coming from genuine sources; or educational material on phishing based on mobile

99

games in order to increase the motivation factor among (Arachchilage et al. 2009;

2013)..

Even though educating users may positively impact the global efforts of combating

phishing, this approach demands high costs and requires users to be equipped with

computer security knowledge. Large organizations and governments are periodically

investing in the development of anti-phishing materials in both hard and soft forms as

well as websites and mobile applications. However, since phishing techniques keep

changing/evolving, small to medium enterprises might not have the resources large

organisations have to enable them to invest in their users’ education. Therefore, a large

portion of the online community realistically cannot afford the continuous additional

costs to keep updating current anti-phishing material. Furthermore, phishing techniques

are becoming more sophisticated because of the group efforts of phishers who employ

systematic attack strategies, which make it harder for even security experts and

specialised law enforcement agents to keep their skills updated. This makes ordinary

users vulnerable, even if they were equipped with basic knowledge about phishing.

Thus, more advanced, cheaper and intelligent approaches are needed for their

implementation both within educational and legislative solutions to further reduce

phishing attacks. We have seen thoughtful attempts that evolved from user experiences,

user ratings, and users’ social networking (such as Phishtank, Cloudmark, and APWG

among others helping novice users and enterprises avoid falling prey to phishing).

Effectiveness of these user community based approaches relies mainly on the following

factors: (1) User experience; (2) User knowledge; (3) User honesty; and (4)

Accessibility and validity of the user community’s website data . Unfortunately, these

factors are difficult to measure and validate, thus relying on user experience and

knowledge alone necessitates carful care and accuracy. We hypothesise that by “only”

considering users’ experience in judging a websites’ legitimacy is not enough to combat

phishing, although it can be a supporting approach to a more advanced intelligent

solution based on ML/DM.

100

5.4 Computerised Anti-Phishing Techniques

There has been development of anti-spam software tools that can block suspicious

emails, however, these programs constantly block a large number of genuine emails and

classify them as junk emails (Mohammad, et al., 2015). Emails misclassified as spam

are simply false positive instances. Thus, one of the ultimate goals of the computerised

anti-phishing tool is to reduce false positives and increase true positives so users can be

confident of their mailbox’s filter results without having to manually check their junk

email folder.

5.4.1 Databases (Blacklist and Whitelist)

A database driven approach to fight phishing, called blacklist, was developed by

several research projects (Site Advisor, 2006; Sheng, et al., 2009; Google SB, 2010).

This approach is based on using a predefined list containing domain names or URLs for

websites that have been recognised as harmful. A blacklisted website may lose up to

95% of its usual traffic, which will hinder the website’s revenue capacity and eventually

profit (Aburouse et al., 2010b). This is the primary reason that web masters and web

administrators give great attention to the problem of blacklisting. According to

Mohammad et al. (2015), there are two types of blacklists in computer security:

 Domain/URL Based. These are real time URL lists that contain malicious

domain names and normally look for spam URLs within the body of emails.

 Internet Protocol Based. These are real time URL or domain server blacklists

that contain IP addresses who, in real-time, change their status. Often, mailbox

providers, such as Yahoo for example, check domain server blacklists to

evaluate whether the sending server (source) is run by someone who allows

other users to send from their own source.

Users, businesses, or computer software enterprises can create blacklists. Whenever

a website is about to be browsed, the browser checks the URL in the blacklist. If the

URL exists in the blacklist, a certain action is taken to warn the user of the possibility of

a security breach. Otherwise, no action will be taken as the website’s URL is not

recognized as harmful. Currently, there are a few hundred blacklists which are

101

publically available, among which we can mention the ATLAS blacklist from Arbor

Networks, BLADE Malicious URL Analysis, DGA list, CYMRU Bogon list,

Scumware.org list, OpenPhish list, Google blacklist, and Microsoft blacklist (Return

Path 2016). Since any user or small to large organisation can create blacklists, the

currently public available blacklists have different levels of security effectiveness,

particularly with respect to two factors:

1) Times the blacklist gets updated and its consistent availability.

2) Results quality with respect to accurate phishing detection rate.

Marketers, users, and businesses tend to use Google and Microsoft blacklists when

compared with other publically available blacklists commonly use because of their

lower false positive rates. A study by Sheng et al. (2009) analysing blacklists concluded

that they contain on average 47% to 83% phishing websites.

Blacklists often are stored on servers, but can also be available locally in a computer

machine as well (Mohammad et al., 2014b). Thus, the process of checking whether a

URL is part of the blacklist is executed whenever a website is about to be visited by the

user, in which case the server or local machine uses a particular search method to verify

the process and derive an action. The blacklist usually gets updated periodically. For

example, Microsoft blacklist is normally updated every nine hours to six days, whereas

Google blacklist gets updated every twenty hours to twelve days (Mohammad et al.,

2015). Hence, the time window needed to amend the blacklist by including new

malicious URLs, or excluding a possible false positive URLs, may allow phishers to

launch and succeed in their phishing attacks. In other words, phishers have significant

time to initiate a phishing attack before their websites get blocked This is an obvious

limitation of using the blacklist approach in tracking false websites (Abdelhamid, et al.,

2014). Another study by APWG revealed that over 75% of phishing domains have been

genuinely serving legitimate websites and when blocked imply that several trustworthy

websites will be added to the blacklist, which causes a drastic reduction in the website’s

revenue and hinder its reputation (Aaron & Manning 2014).

After the creation of blacklists, many automated anti-phishing tools normally used

by software companies such as McAfee, Google, Microsoft, were proposed. For

instance, The Anti-Phishing Explorer 9, McAfee Site Advisor, and Google Safe Base

102

are three common anti-phishing tools based on the blacklist approach. Moreover,

companies such as VeriSign developed anti-phishing internet crawlers that gather

massive numbers of websites to identify clones in order to assist in differentiating

between legitimate and phishing websites.

There have been some attempts to look into creating whitelists, i.e. legitimate URL

databases, in contrast to blacklists (Chen & Guo, 2006). Unfortunately, since the

majority of newly created websites are initially identified as “suspicious,” this creates a

burden on the whitelist approach. To overcome this issue, the websites expected to be

visited by the user should exist in the whitelist. This is sometimes problematic in

practise because of the large number of possible websites that a user might browse. The

whitelist approach is simply impractical since “knowing” in advance what users might

be browsing for might be different to those actually visited during the browsing process.

Human decision is a dynamic process and often users change their mind and start

browsing new websites that they initially never intended to.

One of the early developed whitelist was proposed by (Chen & Guo, 2006), which

was based on users’ browsing trusted websites. The whitelist monitors the user’s login

attempts and if a repeated login was successfully executed this method prompts the user

to insert that website into the whitelist. One clear limitation of Chen and Guo’s method

is that it assumes that users are dealing with trustful websites, which unfortunately is not

always case.

Phishzoo is another whitelist technique developed by Afroz and Greenstadt (2011).

This technique constructs a website profile using a fuzzy hashing approach in which the

website is represented by several criteria that differentiate one website from another

including images, HTML source code, URL, and SSL certificate. Phishzoo works as

follows:

1) When the user browses a new website, PhishZoo makes a specific profile for

that website.

2) The new website’s profile is contrasted with existing profiles in the PhishZoo

whitelist.

 If a full match is found, the newly browsed website is marked trustful.

 If partly matching, then the website will not be added since it is suspicious

103

 If no match is found but the SSL certificate is matched, PhishZoo will

instantly amend the existing profile in the whitelist.

 If no match is found, then a new profile will be created for the website in the

whitelist.

Recently, Lee et al. (2015) investigated the personal security images whitelist

approach and its impact on internet banking users’ security. The authors utilised 482

users to conduct a pilot study on a simulated bank website. The results revealed that

over 70% of the users during the simulated experiments had given their login

credentials despite their personnal security image test not being performed. Results also

revealed that novice users do not pay high levels of attention to the use of personal

images in ebanking, which can be seen as a possible shortcoming for this anti-phishing

approach.

5.4.2 Intelligent Anti-Phishing Techniques based on DM

Since phishing is a typical classification problem, ML and DM techniques seem

appropriate for deriving knowledge from website features that can assist in minimising

the problem. The key to success in developing automated anti-phishing classification

systems is a website’s feature. Since there are a tremendous number of features linked

with a website, a necessary step to enhance the predictive system performance is to pre-

process the set of features in order to pick up the “most” effective. Feature effectiveness

can be measured using different computational intelligence methods such as

information gain, correlation analysis, and chi-square among others (Quinlan, 1979;

Hall, 1999; Liu & Setiono, 1995).

Once an initial features set is chosen, the intelligent algorithm can be applied on the

selected features to come up with the predictive system. There are many ML and DM

algorithms for classification that have been developed by scholars in the last two to

three decades as covered in Chapter 2. Most of these algorithms use one of the

following major classification approaches in deriving their predictive systems:

1) Decision trees (ID3, C4.5 and successors)(Quinlan, 1993).

104

2) Probabilistic models (Naïve Bayes, Bayesian Network and successors)(Duda &

Hart, 1973; Friedman et al., 1997).

3) Rule-based classification

a. Associative classification (AC)

i. Classification based Association (CBA and successors) (Liu et

al., 1998).

ii. Classification based on Multiple Association (CMAR and

successors) (Li et al., 2001).

iii. Multiclass Classification-based Association (MCAR and

successors) (Thabtah et al., 2005).

b. Rule induction such as FOIL, RIPPER and successors (Quinlan, 1979;

Cohen, 1995).

c. Covering or greedy, such as PRISM (Cendrowska, 1987) and eDRI

(Thabtah, et al., 2016).

4) Neural Networks (NN) methods and their successors (Grossberg, 1988).

5) Support Vector Machine (SVM) (Joachims, 1999)

6) Fuzzy Logic (FL) (Zadeh, 1965)

7) Boosting and paging methods, and their successors (Freund & Schapire, 1997).

8) Search methods such as Genetic Algorithms (GA) (Goldberg, 1989)

Among the aforementioned classification approaches, rule-based classification

systems are more suitable as an anti-phishing tool because: (1) their proven merits in

predicting target values in many domains, including medical diagnoses, stock market

analysis, email classification, text categorization, etc; and (2) the content of rule-based

classification systems is simply human knowledge that novice users can easily

understand and apply when necessary. Often the knowledge is formed as “If-Then”

rules in which the antecedent of the rule (“If” part) consists of the conjunction of

attribute values (Feature values) and the consequent of the rule (“Then” part) containing

the target attribute value (Website type).

The rest of this section critically analyses intelligent anti-phishing attempts based on

ML. We show how these approaches derive a classification anti-phishing system along

with their benefits and weaknesses.

105

5.4.2.1 Decision Trees

Fette et al. (2007) explored email phishing utilising the C4.5 decision tree classifier

among other methods including Random Forest, SVM and Naïve Bayes. As a result, a

new Random Forest method called "Phishing Identification by Learning on Features of

Email Received" (PILFER) was developed. Experiments on a set of 860 phishy and 695

ham emails were conducted. Various features for distinguishing phishing emails

identified included: IP URLs, time of space, HTML messages, number of connections

inside the email, and JavaScript. The authors claim that PILFER can be improved

towards grouping messages by joining all ten features discovered in the classifier apart

from "Spam filter output".

5.4.2.2 Rule Induction

 Mohammad et al. (2014b) investigated a number of rule induction algorithms on the

problem of website phishing classification. The authors compared RIPPER, C4.5

(Rules), CBA, and PRISM on a security dataset they collected containing 2500

instances and 16 features. A special hand crafted rule to collect the data was developed

by the authors based on simple statistical analysis performed on the initial dataset’s

features. Experiments of the four rule-based classification methods showed that there

are eight effective features that can be employed by the classification algorithm in

combating phishing: SSL and HTTPS, Domain-age, Site-traffic, Long-URL, Request-

URL Sub-domain, Multi—sub-domain, Suffix-prefix, and IP-address.

Khadi and Shinde (2013) studied the problem of email-based phishing and proposed

a potential solution based on combining a RIPPER classifier with fuzzy logic. The role

of fuzzy logic is to pick the main features of the email and rank them based on a

probability score. Meanwhile, the role of RIPPER is to automatically use these features

to classify the type of emails as ham or phishy. Two components of the email were

utilized by Khadi and Shinde: the email message (spelling errors, embedded link) and

URL (IP address, Length, Long URL, Suffix_Prefix, Crawler URL, Non matching

URL). Moreover, very limited data consisting of just 100 instances from phishtank was

106

in experiments involving the WEKA software tool. No comparison with other fuzzy

logic or rule-based classifications was conducted by the authors. Results showed that

there are twelve rules generated by RIPPER from the dataset with an 85.4% prediction

rate.

Aburrous et al. (2010a) investigated rule induction methods to seek their

applicability for categorising websites based on phishing features. Website features

were initially manually classified into six criteria as described in an earlier report on

phishing by Aburrous et al. (2008). Using WEKA, a number of experiments with four

classification algorithms (RIPPER, PART, PRISM, C4.5) were conducted against 1006

instances downloaded from Phishtank. The focus of the experiments was the

classification accuracy of the classifiers produced. Results revealed that rule induction

is a promising approach because it was able to detect, on average, 83% of phishing

websites. The authors suggested that results obtained could be further enhanced if a

careful feature selection were employed.

5.4.2.3 Associative Classification (AC)

The two AC methods CBA and MCAR have been evaluated on a Phishtank dataset

to seek their applicability in cracking phishing (Liu et al., 1998; Thabtah et al., 2005;

Abourrous et al., 2010b). Abourrous et al. (2010b) used a dataset consisting of over

1000 instances with 27 different features and applied CBA, MCAR, and four other rule-

based classifiers using the WEKA DM tool. The aim was to assist security managers

within organisations by building an intelligent anti-phishing tool within browsers that

can detect phishing as accurately as possible. Experimental results of the six ML

algorithms revealed that AC methods generated more rules than the rest of the

algorithms, yet had higher predictive classifiers. More specifically, the AC systems

produced showed high correlations among features linked with three major criteria:

URL, Domain Identity, and Encryption. Nevertheless, the massive number of rules

derived by MCAR and CBA may overwhelm end-users since they might not be able to

control the anti-phishing system. Furthermore, the authors did not implement the AC

rules within a browser to evaluate its real performance, which does not facilitate

measuring the success or failure of their classification systems.

107

Recently, more domain specific AC anti-phishing systems have been created

(Abdelhamid et al., 2014; Abdelhamid, 2015). These new models take into account not

only two class values of the phishing problem (legitimate, phishy) but also considers a

harder case to detect: the “suspicious” class label. Instances that cannot be fully classes

as phishy nor as legitimate are very hard to detect by typical ML algorithms, thus

increasing their false positive rates. Abdelhamid et al. (2014) and Abdelhamid (2015)

have therefore enhanced current intelligent classification systems by including two

distinct advantages: (1) extending the phishing problem to include suspicious cases,

making it more realistic; and (2) proposing a new multi-label learning phase that can

discover disjunctive in addition to conjunctive rules. These additional disjunctive rules

are tossed out by existing AC methods. This new multi-label phase enhances predictive

power and provides more useful knowledge to the end-user. The authors used a dataset

that has 16 features and over 1500 instances, comparing the performance of their

classifiers with other rule-based classifiers with respect to the knowledge derived and its

accuracy. The authors employed the chi-square testing method to measure the features

goodness and discriminate among features with respect to their impact on phishing.

Processed data results showed high competitive performance of the new multi-label

associative classifiers when compared with CBA, MCAR, rule induction, and decision

trees.

5.4.2.4 Neural Network (NN)

One of the common ways to train a NN is trial and error (Mohammad et al., 2014a).

However, this methodology has been criticised because of the time spent to tune the

parameters and the requirement of an available domain expert. Thabtah et al. (2016b)

proposed a NN anti-phishing model based on self-structuring the classification system

rather than using trial and error. The algorithm proposed by the authors updated several

parameters, like the learning rate, in a dynamic way before adding a new neuron to the

hidden layer. The process of updating these NN features is performed during the

building of the classification model and based on the network environment, behaviour

of the desired error rate, and the computed error rate at that point. The dynamic NN

model was applied to detect phishing on a large dataset from UCI containing over

108

11000 websites (Mohammad et al., 2015b). Experiments using different epoch sizes

(100, 200, 500, 1000) have been conducted, and the results obtained exhibited better

predictive systems when compared to Bayesian Network and Decision Trees.

The ANN Back Propagation algorithm (Rumelhart, et al., 1986) was investigated on

a security dataset concerning website phishing by Mohammad et al. (2013). The authors

collected a dataset with over 2000 instances from different legitimate and phishing

sources. Processing the dataset, they tried to measure the correlation between the

features and target attributes using basic univariate statistical analysis (frequency of

features values and the target attribute values). Finally, they applied the Back

Propagation ANN algorithm to derive anti-phishing models. The results of the study

indicated that ANN is a promising approach for combatting phishing, particularly since

the results showed increased accuracy of the models generated from the Back

Propagation algorithm when compared with decision trees and probabilistic.

Mohammad et al. (2014a) have developed an anti-phishing NN model that relies on

constantly improving the learned predictive model based on previous training

experiences, Since phishers continuously update their deception methods, new features

become apparent while others become insignificant. In order to cope with these

changes, the authors proposed a self-structuring NN classification algorithm that deals

with the vitality of phishing features. The algorithm employs validation data to track the

performance of the constructed network model and make the appropriate decision based

on results obtained against the validation dataset. For instance, when the achieved error

against the network is lower than the minimum achieved error, the algorithm saves the

network’s weights and continues the training process. However, when the achieved

error is larger than the minimum achieved error so far, the algorithm continues the

training process without saving the weights. Other important network parameters are

also updated when necessary during the building of the classification model without

waiting until the model has been entirely built. Results obtained against a phishing

dataset of thirty features and over 10000 instances showed that the self-structuring NN

model is able to generate anti-phishing models more accurately than traditional

classification approaches such as C4.5 and probabilistic approaches.

109

Feed Forward NN (FFNN) was applied on an email phishing classification problem

by Jameel and Georg (2013). Basic implementation of a multilayer FFNN based on

Back Propagation was used to differentiate suspicious from legitimate emails. Eighteen

binary features were extracted from the email (header and HTML body) and made

available as the training dataset attributes. These features were given values based on

human rules developed by security domain experts. To derive the NN models, 6000

emails were used. The results obtained showed that FFNN is able to categorise emails

with high speed and with an error rate below 2%. However, the authors have not yet

embedded their FFNN into browsers for live testing.

In 2007, an experimental study contrasting five ML algorithms on the problem of

classifying emails as ham or suspicious was conducted by Abu-Nimeh et al. (2007). The

authors chose Classification and Regression Trees (CART), NN, Random Forests (RF),

Bayesian Additive Regression Trees (BART), and Logistic Regression (LR) to measure

the most successful approaches in email phishing detection. A training dataset

consisting of 2889 emails and 43 email’s features was used. To produce the results, the

testing method employed was ten-fold cross validation and the evaluation measures

used were precision, recall, and harmonic mean. Results revealed that RF achieved a

lower error rate while NN generated the highest error rate among the tested classifiers.

Moreover, despite RF generating the highest predictive classifiers, it derived the least

false positive rate among all contrasted algorithms. The authors suggested though that

more carefully chosen features may improve the performance of the anti-phishing email

tool.

5.4.2.5 Support Vector Machine (SVM)

Proposed by Pan and Ding (2006), the SVM classification method evaluates the

discrepancy between a website’s identity, its HTTP transactions, and structural features.

The anti-phishing solution proposed contains two layers:

o Website Identity: The set of characters appearing inside the domain name.

o Structural Features Classifier: Features that are related to the website identity and

HTTP transactions.

110

Once a new website identity and its structural features are captured (Abnormal URL,

Abnormal anchors, Server Form Handler, Abnormal certificate in SSL, Abnormal DNS,

Abnormal cookies), then a SVM algorithm is trained on a historical data set consisting

of the same features in order to derive the new website type. Experimental results on

six features using the proposed SVM indicated that the first helps toward increasing the

detection rate since malicious websites are not correlated. Furthermore, the SVM model

achieved just over 83% prediction rate, and therefore more investigation is needed into

the feature selection phase by including other features that could improve the

performance of the classifier.

5.4.2.6 Fuzzy Logic

 Phishing in electronic banking (Ebanking) applications has been investigated by

Aburrous et al. (2008) utilizing Fuzzy Logic. A simulated phishing email was sent by

the authors with the help of the security manager at Jordan Ahli Bank to measure

security indicators of phishing among a sample of 120 employees after obtaining the

necessary authorization (www.ahlionline.com.jo). The email urged the chosen

employees to reactivate their accounts by logging in because server maintenance

conducted the previous two days required account reactivations. Shocking results were

obtained: 37% of the targetted employees submitted their credentials without

investigation, of which 7% were Information Technology employees. The authors’ goal

with the simulated email was to determine features that users may look for inside the

email when they suspect phishing to be used within a FL system to help in

differentiating types of email.

 FL has been used as an anti-phishing model to help classify websites into legitimate

or phishy in Aburrous et al. (2008). The authors claimed that FL could be effective in

identifying phishing activities because it provides a simple way of dealing with intervals

rather than specific numeric values. Their proposed FL classification model was built

manually to categorise websites using the six criteria listed in Table 5.1. Each of those

criteria contains a number of phishing indicators as described in the same table. Each

feature in the dataset was assigned three possible values by the authors: Phishy,

111

Table 5.1: Phishing Features per category (Aburrous, et al., 2008)

Criteria N Phishing Indicators

URL

1 IP address
2 Abnormal request URL

3 Abnormal URL of anchor

4 Abnormal DNS record

5 Abnormal URL

Encryption

1 Using SSL certificate (Padlock Icon)

2 Certificate authority

3 Abnormal cookie

4 Distinguished names certificate

Source Code 1 Redirect pages
2 Straddling attack

3 Pharming attack

4 OnMouseOver to hide the Link

5 Server Form Handler (SFH)

Page Style & Contents 1 Spelling errors
2 Copying website

3 Using forms with Submit button

4 Using pop-ups windows

5 Disabling right-click
Web Address 1 Long URL address

2 Replacing similar char for URL
3 Adding a prefix or suffix
4 Using the @ Symbol to confuse
5 Using hexadecimal char codes

Human 1 Emphasis on security

2 Public generic salutation

3 Buying time to access accounts

Genuine, and Doubtful. Limited results indicated that there are two effective indicators

to distinguish phishiness in websites: Domain Identity and URL.

 A fuzzy based ANN model was proposed in 2015 by Nguyen et al. (2015) to

classify websites based on a smaller set of phishing features related to the website’s

URL (PrimaryDomain, SubDomain, PathDomain) and its rank (PageRank, AlexaRank,

AlexaReputation). The proposed fuzzy ANN model does not use any rules set, rather it

employs a computational function to split data instances (websites) into “genuine” and

“non-genuine” categories. Their model was tested against 21600 websites from

legitimate and phishing sources such as Phishtank and DMOZ. They also compared the

112

generated results with that of Aburrous et al. (2010a) and Zhang and Yuan (2008). It

was discovered that their fuzzy NN model was able to slightly enhance the phishing

detection rate.

5.4.2.7 CANTINA Term Frequency Inverse Document Frequency

Approach

Carnegie Mellon Anti-phishing and Network Analysis Tool (CANTINA) is a

content based anti-phishing method that determines suspicious websites using the

statistical measure of Term Frequency Inverse Document Frequency (TF-IDF). Term

Frequency (TF) is a statistical formula that measures keyword significance in a

document while Inverse Document Frequency (IDF) measures the importance of that

keyword across a large collection of documents (Witten & Frank, 2005). CANTINA

evaluates the website content (links, anchor tags, forms tags, images, text, etc) for TF-

IDF to produce a lexical signature of the website. This signature (top ranked TF-IDF

key words) will be passed into the search engine to seek their rank in domain names and

decide the type of the website. The description of the CANTINA based classification

process is as follows:

1. Parse the webpage.

2. Compute the TF-IDF for the common terms of the website.

3. Select the top five terms according to the computed scores of all TF-IDF terms.

4. Add the top five terms to the URL to locate the lexical signature.

5. Input the lexical signature into a search engine.

6. Check whether the domain name of the current website matches the domain names of

the top N search results (often N=30).

7. Return “Legitimate” when there is a match or “Phishy” when there is no match.

When the search results in an empty set, the current website is classified as “phishy”. To

overcome the “no results” problem the authors merged TF-IDF with other content

features such as “IP Address,” “domain age.” “suspicious Images,” “suspicious Link,”

and “suspicious URL.”

113

Table 5.2 Common recent anti-phishing methods based on ML

Method name ML technique Reference
Dynamic rule induction Rule induction learning Qabajeh et al., 2014
Enhanced Dynamic rule induction Rule induction and Covering approaches Thabtah et al., 2016
Classification based association AC Aburrous, et al., 2010
Multi-label Classifier based
Associative Classification

AC Abdelhamid, et al., 2014

Self-structuring neural network NN Mohammad, et al., 2014
Neural Network trained with Back-
Propagation

NN Mohammad, et al., 2013

Feed Forward Neural Network NN Jameel & George, 2013
Fuzzy DM Fuzzy logic Aburrous, et al., 2008
Fuzzy DM Fuzzy logic Khadi & Shindi, 2014
PILFER Decision tree Fette, et al., 2007
Page classifier SVM Pan & Ding, 2006
CANTINA Term frequency and inverse document

frequency
Sanglerdsinlapachai &
Rungsawang, 2010

Biased SVM, LIBSVM, ANN,
Self-Organizing Map

NN, SVM and other ML techniques Basnet, et al., 2008

Sanglerdsinlapachai and Rungsawang (2010) have used CANTINA TF-IDF, and

added a few more features such as “Forms” and “Top pages’ similarity linked with the

domain,” and removed features such as “domain age” and “known images.” A dataset

consisting of 200 websites was used in the experiments, and three DM methods were

applied to the dataset. Results obtained, despite being limited, revealed that the reduced

features set maintained a similar detection rate with that of the CANTINA features set.

Moreover, adding the new features slightly enhanced the detection rate for most of the

learning methods considered in the experiments.

Table 5.2 shows a brief summary of the common anti-phishing approaches that are

based on automated learning along with the name of the method, the learning

approached used, the first author, and their reference details.

5.5 Phishing Data Experimental Results

5.5.1 Experiments Settings

In deriving the predictive models, the ten-fold cross validation procedure has been

adopted to compute the evaluation measures while constructing the classifiers. As

discussed earlier for the UCI data experimental settings (Chapter 4) all experiments

were run on a Core i5 machine with 3.1 GHz processor and 8.0 GB RAM. The

114

minimum frequency and rule strength thresholds for eDRI were set in all experiments to

1% and 50%. The same classification algorithms used in Section 4.5 have been utilised

in the phishing data experiments, including new classic non-rule based classification

algorithms given the specifics of the phishing problem at hand. To be precise, we

extended the algorithms to include probabilistic Bayes Net, SVM based on Sequential

Minimal Optimization (SVM-SMO), and Simple Logistic (Bouckaert, 2004; Platt,

1998; Sumner et al., 2005). This is in order to evaluate the predictive power as well as

the model content on the specific problem of website phishing classification. Another

aim of the set of experiments is to show the advantages and limitations of the proposed

eDRI algorithm when compared to other ML algorithms and rule classification

algorithms used to detect phishing websites.

We have conducted two major experiments: one that does not consider feature

filtering and one with feature filtering. Correlation Feature Set (CFS) filtering method

was chosen due to the fact it reduces feature-to-feature correlation and maximises

feature-to-class correlation (Hall, 1999). As a matter fact, CFS usually reduces the

dimensionality of the input dataset significantly when compared with other known

filtering and wrapping methods, such as Information Gain and Chi-Square, without

drastically hindering the predictive model’s performance. We also verified the filtering

results by calculating the information gain scores per variable in the phishing data. The

foundation of the experimental comparisons is as follows:

1) Predictive model content for decision makers, at least for rule based classifiers.

1) Predictive power measured in error rate (%).

2) Classifier size measured by the available number of rules.

3) Runtime measured by the time taken to construct the predictive models in ms.

4) Rule coverage by taking into account the number of instances covered by the

rule and the available number of items in the rule's body (rule's length), as well as

the earlier introduced two measures ARL and WARL (Chapter 4).

5) Number of data samples scanned to generate the classifier, to measure the

increase and decrease of search space by eDRI when compared to other Covering

algorithms such as PRISM.

115

Table 5.3: Sample of twelve websites from the dataset and for eight features

IP

address

URL

Length

Shortening

Service

@

symbol HTTPS

Request

URL

URL of

Anchor

Links in

Tags

Class

(1‐ Legitimate,

 ‐1 Phishy)

‐1 1 1 1 ‐1 1 ‐1 1 ‐1

1 1 1 1 ‐1 1 0 ‐1 ‐1

1 0 1 1 ‐1 1 0 ‐1 ‐1

1 0 1 1 ‐1 ‐1 0 0 ‐1

1 0 ‐1 1 1 1 0 0 1

‐1 0 ‐1 1 ‐1 1 0 0 1

1 0 ‐1 1 1 ‐1 ‐1 0 ‐1

1 0 1 1 ‐1 ‐1 0 ‐1 ‐1

1 0 ‐1 1 ‐1 1 0 1 1

1 1 ‐1 1 1 1 0 1 ‐1

1 1 1 1 1 ‐1 0 0 1

1 1 ‐1 1 1 1 ‐1 ‐1 ‐1

5.5.2 Data Description and Features

The size of the security dataset includes more than 11050 examples, each one

representing a website that can be either legitimate or phishy. The majority of existing

features are either binary or multi value (ternary). Available website features in the

dataset were extracted using a PHP script that was embedded in the web browser and

then applied on Phishtank and legitimate websites between the middle of 2012 and late

2015. The data instances have been collected from the Millersmiles and Phishtank

repositories (Bright 2011; PhishTank, 2011).

Before collecting the websites, a hand crafted rule was designed and then coded in

PHP for each feature. For example, for the IP Address, a rule was designed that maps a

website to phishy class when the IP address appears in the URL. Another rule examines

URL length, and assigns a website phishy status when the URL length exceeds 75

digits. Further details on the complete description of features and their hand crafted

rules can be found in Mohammad et al. (2015).

116

Table 5.3 shows twelve sample websites with only eight features of the dataset for

presentation purposes. The possible values (-1, 1, 0) correspond to phishy, legitimate,

and suspicious values. Three features appearing in Table 5.3 are linked with ternary

values, URL_Length, URL_of_Anchor, and Links in Tags while the rest are assigned

binary values (1, -1). The last column in the table represents the class and is based on

the twelve sample websites; four identified legitimate websites and eight phishy. Class

values have been assigned based on the possible feature values per website and using

the hand crafted feature rules developed in Mohammad et al. (2015) as explained above.

5.5.3 Phishing Data Results

Figure 5.4 shows the error rate generated by the rule-based predictive models

and traditional classification algorithms against the phishing dataset. It is obvious that

decision tree algorithms and eDRI produced the highest predictive models in regards to

accuracy, and both outperformed the remaining classifiers. Particularly, eDRI achieved

0.83%, 4.79%, 4.79%, 0.69, 0.07%, 0.06% and 1.49% higher percentages of accuracy

than Ridor, OneRule, ConjunctiveRule, Bayes Net, SVM-SMO, and Ada Boost

algorithms, respectively. Only the C4.5 and PART algorithms outperformed eDRI on

the phishing dataset, higher by 2.20% and 3.09% respectively, yet generated far more

rules than eDRI (see Figure 5.6). The increase in the accuracy by C4.5 and PART was

due to the fact that these algorithms utilise information gain metrics to choose the root

variable in a repetitive manner. Since we have several variables with ternary values in

the input dataset, when these variables are evaluated by decision tree algorithms a

branch is made and each path from the root node to any leaf denotes a rule. Therefore,

models generated by C4.5 and PART on the phishing dataset are very large with respect

to the number of rules derived when compared with the remaining classifiers, which

may limit their use in real domain applications including the dealt with here: phishing.

117

Figure 5.4 The One error rate (%) of the considered algorithms on the phishing dataset

0.00

2.00

4.00

6.00

8.00

10.00

12.00

The fact that eDRI was able to achieve consistently lower error rates than powerful

classic algorithms such as Naïve Bayes, SVM-SMO, and Simple Logistic as well as

rule-based classfiers such as OneRule, Ridor, Conjunctive Rule, and PRISM, is clear

evidence that the eDRI algorithm learning strategy has improved the classifier’s

predictive power. In fact, the ability to limit the use of the default class by eDRI has

increased the overall accuracy of the classifier. Despite the increased accuracy rate by

the C4.5 and PART algorithms, they discovered more rules than their counterparts. To

be precise, the PART algorithm extracted 130 and 144 additional rules more than eDRI

and RIDOR, respectively. C4.5 was worse, having generated from the phishing dataset

268 and 258 more rules than eDRI and RIDOR algorithms, respectively. These massive

classifiers may slightly increase classification accuracy yet are of no practical use for

decision makers since they are hard to understand, maintain, and manage. In other

words, the additional knowledge may contribute to increase C4.5 and PART predictive

performance, but results in uncontrollable classifiers that may overwhelm end-users.

Overall, classification algorithms that derived rule-based classifiers other than C4.5 and

PART, more specifically eDRI and RIDOR, were able to produce predictive models

with good levels of accuracy and maintainable sets of rules.

118

Table 5.4: Phishing features derived by Correlation Features Set filtering method along
with their information gain scores

Phishing Feature Name Information Gain Score

Prefix_Suffix 0.1230

having_Sub_Domain 0.1090
SSLfinal_State 0.4994

Request_URL 0.0460

URL_of_Anchor 0.4770

Links_in_tags 0.0470

SFH 0.0370

web_traffic 0.1145

Google_Index 0.0110

Phishing fetaures in the input dataset were assessed to determine the smallest set of

effective phishing features. Table 5.4 displays the top features after applying the CFS

filtering method, and the results were verified based on information gain scores. Nine

vital features for phishing detection were chosen using the CFS and information gain

filtering methods. The best scored feature was SSL_Final_State followed by

URL_Of_Anchor. As a result, it was decided to run the classification algorithms and

derived predictive models from the nine feature sets resulting after application of the

CFS filtering method. All remaining features are insignificant to the class variable in the

dataset, thus having a limited effect on phishing detection, and therefore they have been

ignored.

Figure 5.5 shows the error rate (%) results of all considered algorithms against

the top nine features listed in Table 5.4. These figures indicate strong and consistent

performance in regard to predictive power by eDRI, PART and C4.5 algorithms.

Specifically, the eDRI algorithm achieved the least error rate on the reduced phishing

data among the rule induction algorithms, while C4.5 and PART algorithms derived the

highest quantity of predictive classifiers. Moreover, pruning useless and redundant rules

have an obvious positive effect on performance by ensuring only effective rules are

utilised in the prediction. These rules, unlike other algorithms, cover a larger portion of

the training dataset. Decision tree algorithms (C4.5, PART) produced the least error

119

Figure 5.5. The One error rate (%) of the considered algorithms on the reduced nine features
phishing set chosen by CFS filtering

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

rate, yet still produced very large predictive models that are associated with an

excessive number of rules. To be precise, and for the nine feature dataset, C4.5 and

PART derived 60 and 59 more rules, respectively, than eDRI.

We looked at the number of rules eDRI and the remaining rule-based classfiers derive

from the complete phishing dataset and the nine-feature dataset, respectively. The

results, shown in Figures 5.6 and 5.7, illustrate that the proposed eDRI algorithm

substantially reduced the classifier size in comparison to the considered rule-based

algorithms. In fact, eDRI generated models with a lower number of rules than the

remaining algorithms from both the complete and reduced phishing dataset. For

instance, classic Covering algorithms such as PRISM derived 325 more rules than eDRI

without achieving any performance gain in classification accuracy. Many of PRISM’s

rules cover very limited data samples, which makes them overfit the training dataset.

120

Figure 5.7. Number of rules generated by the rule-based algorithms from the nine features phishing data

Figure 5.6. Number of rules generated by the rule-based algorithms from the phishing data

We looked further into the classifier produced by eDRI from the phishing dataset and

observed that some of its rules have errors greater than zero. Despite the fact that these

rules do not hold an accuracy of 100%, they are useful knowledge that the PRISM

classifier is unable to provide because it only poduces perferct rules with low data

coverage. This indicates that generating rules which are not necessarily perfect (100%

121

accuracy) not only minimises the classifier size but also covers a larger number of

training data examples per rule. Therefore, the overall performance of the classifier gets

enhanced in regard to predictive accuracy and human controllability. In other words,

having a smaller classifier is a definite advantage for managers and decision makers

since they are able to process a lower amount of data during the decision making

process. These classifiers work fine for applications such as medical diagnoses where

general practitioners can enjoy a concise set of rules for daily diagnoses of their

patients. Overall, eDRI consistently derived smaller classifiers than the rest of the

classification algorithms, yet sustained steady predictive performance.

The relationship between the rule length in the classifier and the number of instances the

rule was covered by the Covering algorithms (PRISM, eDRI) was also investigated. The

proposed average rule length (ARL) and weighted average rule length (WARL)

(Chapter 4) were used. For the dataset examined, PRISM’s classifier had associated

ARL and WARL values of 4.25 and 7.29 respectively; meanwhile eDRI’s classifier

ARL and WARL were 4.95 and 5.16, respectively. WARL measures how the training

attributes have been utilised to build the classifier. As such, it is clear that PRISM

needed more features (two more features on average) than eDRI to make the rules,

without achieving any enhancement in predictive performance. As a matter of fact,

PRISM excessively searched for more items to be added per rule during the classifier

building process. This explains the many specific rules (rules associated with a large

number of items) derived by PRISM, which classifies each very small portion of the

training dataset though in many cases is just a single data sample. We believe that the

above rationale is behind a larger WARLvalue for PRISM than eDRI. On the other

hand, it seems that there is consistency between both algorithms with respect to ARL.

We analysed the time in ms taken by the considered algorithms to construct the anti-

phishing models from both the complete and reduced datasets respectively, which is

shown in Figures 5.8 and 5.9 . Simple Logistic and SMO-SVM were excluded since

both took longer than expected to build the models with respect to time in ms: Simple

122

Logistic spent 3691 and 708 ms, while SMO-SVM spent 4327 and 1383 ms in

building the models, respectively. Thus, both of these predictive algorithms proved very

slow in mining the phishing data.

Data processing time figures clearly indicated that eDRI is the most efficient

algorithm among all those considered for detecting phishing activities, followed by

Bayes Net. In addition, the OneRule and ConjunctiveRule algorithms were able to

generate models quicker than decision trees due to the simplicity in their rule induction

mechanisms. Overall, Ridor was the slowest rule induction algorithm followed by

decision tree algorithms (PART, C4.5). The proposed eDRI algorithm showed

123

consistently more efficient classifiers than the remaining algorithms, for both the

complete and the reduced nine features dataset. This can be attributed to the efficient

rule induction strategy employed which automatically generates rules and dynamically

updates the remaining potential rule rank. Resultant is the integration of the classifier

building phase with the training phase in eDRI, thus saving computing resources.

We also investigated the number of times eDRI passed over training data

examples when compared to PRISM. The number of rows that both algorithms have to

scan while building rules during the learning process were recorded. It turns out that

PRISM passed over 34,465,178 training examples during the process of creating only

397 rules. Meanwhile eDRI scanned 9,388,208 data examples resulting in 25 rules.

These results show that the proposed algorithm has substantially reduced the search

space for rules. The fact that PRISM has to pass over many more millions of data

examples shows the poor mechanism employed by this algorithm which over fits the

training data while aiming to induce perfect yet low data coverage rules. This

mechanism requires overtraining by repetitively splitting data examples whenever an

item has to be added to a rule in order to increase the rule’s accuracy. The outcome

guarantees the production of rules having zero error, but it is time consuming and

demanding of computing resources. The frequency threshold employed in the eDRI

algorithm was able to successfully discard many infrequent items that are associated

with low data representation. This minimised the search space of items, therefore the

classifier size was reduced. Moreover, allowing rules which are not 100% accurate to be

generated decreased the number of data examples that eDRI had to pass over. The

proposed eDRI algorithm does not always generate rules that are perfect but rather

generates rules with large data coverage and only acceptable accuracy as it was obvious

from its classifier containing a much lower number of rules.

5.6 Chapter Summary

In this chapter, the history of the phishing problem has been described along with the

main phases in its lifecycle. Anti-phishing methods that depend on legal, educational,

and user experiences have been reviewed along with their associated advantages and

disadvantages. The main focus of the Chapter, however, has been on ML anti-phishing

124

techniques based on decision trees, SVM, NN, rule induction, AC, and computational

intelligence. Phishing was then investigated as a classification problem. The

experimental study on real phishing datasets was conducted in Section 5 to explore the

applicability of the proposed eDRI algorithm as an anti-phishing tool and how it

performs against other DM algorithms. Experiments were performed in two situations:

a) Complete thirty feature real phishing datasets

b) Applying the CFS filtering method to identify effective features and measure the

impact on the predictive model’s accuracy

The aim of these experiments was to evaluate how effective rule based models, and in

particular eDRI, are in classifying websites and producing useful knowledge for

decision makers. Classification accuracy, runtime and the number of rules were the

measures of evaluation of eDRI with respect to the following algorithms: decision trees

C4.5, OneRule, Conjunctive Rule, Bayes Net, Support Vector Machine (SMO), Simple

Logistic, Boosting (AdaBoost), PART, Ridor, and eDRI. The experimental results

showed that

1) eDRI is an efficient rule-based method that normally generates anti-phishing

models quicker than other rule-based algorithms and classic DM methods.

2) eDRI derives high quality models with respect to error rate, and outperformed all

rule-based classifiers. Moreover, decision tree algorithms derives higher predictive

models than eDRI yet with excessive additional rules, make them difficult to utilise as a

decision making tool and thus limiting their use.

3) The number of rules in eDRI models are consistently smaller than most of the

considered algorithms, therefore eDRI models are more appropriate knowledge base for

phishing classification.

4) Nine features with high information gain scores were selected by CFS as the

highest influential phishing features. The SSL_Final_State and URL_Of_Anchor

features were specifically the ones with more presence in the rule-based classifiers as

well as with higher information gain scores.

5) The highest ranked rules in eDRI, PRISM, RIDOR, C4.5, and PART are

associated with SSL_Final_State and URL_Of_Anchor features.

125

6) eDRI showed superiority over the remaining algorithms, other than decision trees

with respect to the predictive accuracy of models derived from the nine features dataset.

The PhD dissertation conclusions and future research directions are discussed in the

following chapter.

126

Chapter Six

Conclusions and Future Work

6.1 Research Summary

Key research issues related to the utilization of the Covering approach in

classification have been investigated. A number of improvements to the training phase,

efficiency, and classification steps in the Covering approach have been presented. The

final outcome is new dynamic rule induction algorithm, the eDRI algorithm, with novel

training, rule pruning, and class prediction procedures. Experimental results have shown

the ability of eDRI’s Covering methodology to produce efficient and predictive

accuracy in classification. Following a thorough evaluation of the eDRI algorithm on

generic classification datasets and domain specific data related to web security, the

different improvements presented in this PhD dissertation have been peer reviewed and

presented at IEEE conferences, and published in reputable data analysis journals such as

Expert system with Application and Management Analytics.

6.2 Research Contributions

The following main research contributions are summarised in this section.

1 Dynamic Rule Discovery

One of the major hurdles that classic Covering algorithms face is the need to

repeatedly scan part of the training dataset whenever a rule is constructed. Indeed, for

the first rule to be derived a complete scan over the training dataset is usually requires;

once the rule is derived and its training data instances discarded, a complete scan of the

remaining data instances is required to produce the second rule and so forth. These

repetitive data scans are computationally very expensive and demand high computing

resources, particularly runtime, to create a predictive model. To deal with this issue, the

127

proposed eDRI algorithm dynamically updates frequencies of the attribute values and

potential rules whenever a rule is produced. In particular, eDRI employs a data structure

that minimises passing over unnecessary data instances by storing attribute values in a

special data structure. This data structure is actively updated whenever a rule is

generated by decrementing the frequencies of all impacted attribute values without the

need to keep reading training data instances.

A number of experiments, using twenty datasets belonging to various application

domains, showed that eDRI is faster than both Covering and rule induction algorithms

when building predictive models. Specifically, eDRI was consistently more efficient

than Ridor, RIPPER, PRISM, and C4.5 algorithms on each of the twenty datasets. This

can be attributed as mentioned above to the dynamic training procedure that eDRI

adopts, which limits the scanning of training data instances and relies on a special data

structure that holds the necessary information to compute the rules’ strengths and

attribute value frequencies. Additional evidence supporting the efficiency of the

proposed eDRI algorithm was obtained via a thorough analysis on phishing application

data, which showed that that eDRI was the fastest algorithm among the rule-based and

classic machine learning classifiers. In addition, eDRI was compared to the classic

Covering algorithm PRISM; the results showed that eDRI scans 5 times less data

examples than PRISM to produce their corresponding predictive models.

2 Enhancing the Performance of the Classification Models (Classifiers)

Three specific improvements related to Covering classification performance have

been achieved:

A. Cutting down the items’ search space during the training phase

The proposed eDRI algorithm adopts a frequency threshold parameter that

substantially reduces the search space for attribute values during the training phase. This

parameter distinguishes attribute values that have a chance to make rules (strong

attribute values) from others that have a low statistical significance (weak attribute

values) in the input dataset during the training phase. This frequency threshold

parameter is used to eliminate weak attribute values as early as possible by testing the

128

actual frequency of attribute values whenever a rule is generated. This was

corroborated experimentally in Chapter 4, which also was reported in Qabajeh et al.

(2015), with an improvement on computing resources, especially run time reduction and

the number of passes required to build the classifier.

B. Minimising the number of rules for better controllability

A pruning procedure that removes rules having an insufficient strength in a dynamic

manner has been proposed. The eDRI rule pruning procedure discards rules whenever

they are unable to pass the required rule_strength parameter. Moreover, when a rule is

produced, and the remaining attribute value frequencies are decremented because of the

rule’s data removal, eDRI prunes other potential rules in real time if their updated

strengths fall below the required minimum strength. Thus, rules that are not only

statistically representative in the remaining training data but also have a higher rank in

the classifier are kept. This rule pruning procedure significantly decreases the number of

rules in the classifiers without hindering the predictive accuracy, as experiments on

twenty datasets reported in Chapter 4 and 5 revealed. Indeed, the number of rules

derived by the proposed eDRI algorithm is normally smaller than other Covering and

decision trees algorithms, such as PRISM and C4.5. More importantly, the classifiers

generated from the phishing dataset reported in Chapter 5 showed a fewer number of

rules for eDRI than for C4.5, PART, PRISM, and Ridor. Specifically, PART and C4.5

algorithms generated 130 and 268 more rules than eDRI, respectively, which has the

obvious consequence of making their models difficult to manage and understand by

end-users. Even the rule induction algorithm Ridor generated more rules than eDRI on

the phishing dataset.

C. Avoiding Over fitting and Under fitting, and Improving Class Prediction

Rule learning in Covering classification should be restricted so that the

discovered models will not over fit the training dataset. For example, in rule induction,

RIPPER stops learning when the rule achieves an error rate above 50%. Classic

Covering and rule induction approaches like PRISM and REP over fit the training

dataset because they continue adding items to the rule until it becomes perfect (0% error

129

rate). The proposed eDRI algorithm minimises over fitting by allowing a small window

of errors to some rules as long as:

1) They have a strength above the minimum required rule strength,

2) The attribute values in their bodies have acceptable training data

representation, and

3) They cover large training data examples.

The above three conditions together act as a quality assurance strategy to maintain rule

generation while reducing over fitting. One of the possible limitations to occur with the

eDRI algorithm is associated with setting the rule strength to 100% when the process of

making a rule can become excessive. This problem has been minimised by allowing the

user to determine the rule strength according to the sensitivity of the domain data.

Warming up experiments using a large number of values for the rule strength and

frequency thresholds have showed that the frequency threshold can be set to 1-2% in

order to balance the classifier size and predictive accuracy (Thabtah et al., 2015;

Abdelhamid, 2015). In addition, the results in (Thabtah et al., 2015; Abdelhamid, 2015)

showed that the rule_strength threshold does not directly influence model performance,

so it can be set to any value based on users’ experience and the application data

characteristics.

To improve the classification step, we examined two separate approaches; one

rule and multiple rules prediction (Thabtah, et al., 2011). We found that the differences

between both approaches are insignificant, yet when the multiple rules approach is

adopted for the classification of test data, this may reduce usage of the default class rule,

and therefore slightly enhance the predictive accuracy of the models. For this reason, we

developed a new prediction method (Chapter 3) that improved classification accuracy

for some of the datasets considered in chapters 4 and 5.

3 Rules Set as an Effective Anti-Phishing Tool: A Case Study

Phishing is a web threat that is continuously evolving. Phishing creates authentic

websites are supplanted by purposely created malicious websites to deceive online

users.

130

A predictive ML approach to phishing has been extensively presented in Chapter

five, in addition to a critical analysis of the advantages and disadvantages of traditional

educational, training, legal, and awareness solutions to it. Recent intelligent anti-

phishing approaches based on computational intelligence and ML, such as SVM, NN,

Fuzzy Logic, AC, CANTINA, etc., have been surveyed, with both their the impact on

detecting phishy websites and their advantages and drawbacks being identified.

Chapter five presented as well an important comprehensive experimental study on a

real phishing dataset that consisted of over 11000 websites from different sources such

as Millersmiles and Phishtank. A wide range of ML algorithms and the proposed eDRI

algorithm were applied to this dataset which aimed at identifying whether eDRI is an

effective anti-phishing detector. To such aim, a wide range of different performance

metrics were used, including phishing detection rate, runtime, classifier size and

knowledge presented to the decision maker. The experiment results showed that eDRI is

indeed an effective and efficient anti-phishing algorithm for detecting phishing

websites. The proposed eDRI algorithm achieved higher accuracy than rule-based

induction, probabilistic, boosting, SVM and even AC ML algorithms. Specifically,

eDRI achieved 0.83%, 4.79%, 4.79%, 0.69, 0.07%, 0.06% and 1.49% higher accuracy

than Ridor, OneRule, ConjunctiveRule, Bayes Net, SVM-SMO, and Ada Boost

algorithms, respectively. Furthermore, the experimental results also showed that smaller

sets of effective rules were produced by eDRI that can explain in detail the associations

among website features that have increased influence on detecting phishing activities.

Finally, when using filtering methods such as CFS, eDRI maintained its competitive

performance even when the dimensionality of the phishing data was significantly

reduced to nine features.

6.3 Future Work

The following challenges are considered for future avenues to research.

1 Data Representation for Fast Training Phase

There are two main approaches for presenting data: horizontal and vertical format.

Data in the horizontal format used in this PhD dissertation consists of a number of rows

131

and columns and similar to the relational database approach. In each data row, a number

of attribute values are provided. In reading a horizontal training dataset, the learning

algorithm usually moves sequentially, counting the number of occurrences for each

attribute value and the class value. These numbers are used to weigh the rule

significance and are often used within mathematical or statistical rule stopping formulas

such as information gain, foil gain, expected accuracy, or rule strength. Unfortunately,

the learning algorithm must perform multiple passes over part of or the complete

training dataset, especially in Covering classification. These repetitive data scans

negatively affect the efficiency of the data processing phase of the learning algorithm.

The other data format, rarely used within Covering algorithms, is the vertical

data format. Using this format, simple yet effective intersections among item locations

in the training dataset can be performed. This approach is popular in association rule

mining, and several algorithms such as DCLAT, CHARM, and MAC have adopted it

for fast data processing (Zaki & Gouda, 2003; Zaki & Hsiao, 2002; Abdelhamid, et al.,

2012). The vertical data format is believed to have the potential to enhance the

efficiency of the exhaustive search for rules in covering and other rule-based

classifications such as rule induction. This format could enable algorithms like eDRI,

and others such as RIPPER and RIDOR, to limit scanning of the database attribute

values. Experimental research is needed to ascertain or corroborate this research

hypothesis.

 2 Partly Matching Class Forecasting Methods

In classic Covering classification, the process of classifying a test instance is

primarily based on using the first rule that fully matches the test instances’ attribute

values. Often, the learning algorithm evaluates whether a rule’s body is contained inside

the test instance, and if so, allocates the class label of that rule to the test instance.

However, there are scenarios when no rule is fully contained in the test instance, and in

these cases the learning algorithm selects the default rule to assign the class to the test

instance. Unfortunately, this approach may increase the number of misclassifications,

and therefore might hinder the predictive accuracy of the model because default class

rule is a weak rule that is derived from the remaining unclassified training data during

132

the rule discovery phase. Therefore, the choice of the default rule and the way it is

constructed seems to be arbitrary rather than based on an intelligent based approach.

The improvement of the class-forecasting phase in Covering classification seems

to essentially require for partly matching of rules to play a role in classifying test

instances rather than applying the default class rule. For example, assuming that a test

instance needed a class with no rules fully contained in it, the learning algorithm could

then seek for all partly matching rules, i.e. rules with at least one-attribute values within

the test instance. Once those rules are determined, the learning algorithm could cluster

them into groups and a voting mechanism could be used to allocate the class, such as

the class that belongs to the cluster with the largest number of rules or that has the

largest average rules strength value (Thabtah et al. 2011). This strategy of class

forecasting may decrease the number of classifications since it limits the number of

times the default class is utilised in class predictions. Thus, the overall predictive

accuracy of the model could be improved. Experimental research is needed to ascertain

or corroborate this research hypothesis.

3 Distributed Covering

As a result of the literature review and critical analysis conducted in Chapter two, we

can conclude that most Covering and rule induction algorithms are time consuming

because of their exhaustive data processing and rule pruning phases. For instance, REP

generates a large rule set that is improved it by pruning each rule. To do that, each item

removal within the rule is examined to determine whether rule accuracy can be

enhanced for all rules that have been generated. RIPPER and IREP eliminate the

generation of a complete set of rules, deriving them instead one at a time. Both

algorithms adopt extensive pruning based on growing and pruning datasets. Moreover,

similarly to REP, each rule must also be taken for evaluation once it has been generated.

These learning approaches have been criticized for being slow when processing data

locally. The problem becomes more severe in real time applications that have data

distributed over different locations. Therefore, new approaches of mining distributed

data and big data are needed.

133

Spark and MapReduce seem appropriate parallel and distributed platforms for

data processing in these situations (Hammoud, 2010; Taylor, 2008). These platforms

are becoming increasingly popular for mining large scale training datasets that are

scattered over many locations. This is due to their efficiency, simplicity, and

effectiveness for data processing in a parallel manner. For instance, MapReduce has

been adopted by many organizations such as Google, Yahoo, and Amazon to construct

petabyte data centers. These centers consist of hundreds of thousands of nodes with

hardware and software capabilities that allow efficient parallel data analysis. A need

exists to amend current Covering algorithms to handle big data, especially in domains

that generate datasets with large dimensionality like Bioinformatics, text mining, and

medicine.

6.4 Limitation of the Proposal and Potential Improvements

This section explains the limitation of the proposed Covering algorithm and potential

ways to improve it.

Limitations and Potential Improvements

1 eDRI algorithm works only locally so if the datasets are scattered all over different

locations this can be a challenge. In today’s era of cloud computing and affordable

computing resources such as processing clusters, bandwidth and distributed platforms

eDRI can be extended to handle datasets that are not only very big but also distributed

on different locations. We recommended SPARK or Hadoop platforms for a distributed

version of eDRI to handle scattered datasets for parallel processing.

2 Unstructured, and multimedia applications’ data are increasing in the last few years.

Companies are collecting different types of variables in forms of audio, video and

images. In the current version of eDRI, these types of datasets are not considered

because of the complex nature, which requires extensive and expensive pre-processing.

134

There are good potential that eDRI learning mechanism to be linked with deep learning

research to handle one or more of the challenging datasets.

3 One possible improvement on eDRI is adopting forward pruning procedures such as

pessimistic error estimation into its learning phase in order to reduce further weak rules.

Moreover, we can also integrate backward pruning procedures such as sub tree

replacement to increase the chance of incorporating only variables that have low

correlation with each others but high correlation with the class labels. The results are

expected to be more concise classification systems with less number of variables.

4 The experimental methodology discussed in Chapter 4 was based on utilizing the

standard evaluation measures used by other scholars in predictive tasks within data

mining and machine learning. In particular, we have used tenfold cross validation

method as a testing methodology. This method ensures that the sample data examples

used during the training phase is different than the data examples used during the

classifiers’ evaluation phase. This consequently sustains fairness and legitimacy in the

classifiers’ performance of the different data mining algorithms utilized during the

experimentations.

Alternative non-parametric statistical analysis approaches can be potentially useful in

measuring the significance of the results achieved by a data mining method in

comparison with other methods. The application of these techniques is possible, yet

these alternative techniques might produce a completely different type of data analysis

to the one achieved. Non-parametric testing approaches are normally named

distribution-free tests since they have no pre-assumption that the data used follows a

certain distribution in statistics (Gravetter & Wallnau, 2016; Zhang & Zhou, 2005).

These tests can be used by comparing between learning algorithms in parwise or in

groups (SCI2S, 2017). For instance, Wilcoxon signed-rank-test (SCI2S, 2017) can be

adopted to figure out the performance of two data mining algorithms by

individual comparing the accuracy performance of the selected algorithms.

Overall, there are several useful non-parametric tests that can be employed to verify the

performance results of the classifiers including but not limited to

 · The Iman and Davenport Test

135

 ·Wilcoxon test

 · Friedman test

 · Quade Test

A investigation of non-parametric test can be potentially useful to reveal the statistical

significance of the classifiers’ performance results. Nevertheless, the sample dataset

size should be large enough in order to compare between paired to multiple classifiers

since the sample size ensures the power of the statistical test is sustainable. More

information about common non-parametric tests and other statistical procedures such as

hypothesis testing can be found at (SCI2S, 2017; Gravetter & Wallnau, 2016).

136

Bibliography

1. Aaron, G., Manning, R. (2014) APWG Phishing Reports.

http://docs.apwg.org/reports/apwg_trends_report_q4_2014.pdf [Accessed March

20 2016].

2. Abdehamid N. (2015) Multi-label rules for phishing classification. Applied

Computing and Informatics 11 (1), 29-46.

3. Abdelhamid, N., Jabbar, A. A., & Thabtah, F. (2016, August). Associative

Classification Common Research Challenges. In Parallel Processing Workshops

(ICPPW), 2016 45th International Conference on (pp. 432-437). IEEE.

4. Abdelhamid N., Thabtah F., Ayesh A. (2014) Phishing detection based associative

classification data mining. Expert systems with Applications Journal. 41 (2014)

5948–5959.

5. Abdelhamid N., Thabtah F., (2014) Associative Classification Approaches: Review

and Comparison. Journal of Information and Knowledge Management (JIKM). Vol.

13, No. 3 (2014) 1450027.

6. Abdelhamid N., Ayesh A., Thabtah F., Ahmadi S., Hadi W (2012b) MAC: A

multiclass associative classification algorithm. Journal of Information and

Knowledge Management (JIKM). 11 (2), 1250011-1 - 1250011-10. Worldscinet.

7. Abu-Nimeh, S., Nappa, D., Wang, X. and Nair (2007) A Comparison of Machine

Learning Techniques for Phishing Detection. In The 2nd annual Anti-Phishing

Working Groupse Crime researchers, eCrime '07. New York, NY, USA, 2007.

ACM.

8. Aburrous M.., Hossain M., Dahal K.P. and Thabtah F. (2010A) Experimental Case

Studies for Investigating E-Banking Phishing Techniques and Attack Strategies.

Journal of Cognitive Computation, Springer Verlag, 2 (3): 242-253.

9. Aburrous M., Hossain M., Dahal K.P. and Thabtah F. (2010B) Associative

Classification techniques for predicting e-banking phishing websites. Proceedings

of the 2010 International Conference on Information Technology, Las Vegas,

Nevada, USA, 2010, pp. 176-181.

137

10. Aburrous M., Hossain A., Dahal K., Thabtah F. (2008) Intelligent Quality

Performance Assessment for E-Banking Security using Fuzzy Logic. Proceedings

of the 7th IEEE International Conference on Information Technology (ITNG 2008).

Las Vegas, USA.

11. Afroz, & Greenstadt, R. (2011) PhishZoo: Detecting Phishing Websites by

Looking at Them. In Fifth International Conference on Semantic Computing

(September 18- September 21). Palo Alto, California USA, 2011. IEEE.

12. Aha, D.W., Kibler, D. and Albert, M.K. (1991). Instance-based learning algorithms.

Machine Learning, 6,pages 37-66.

13. Ng, A. Y.; Jordan, M. I. (2002). On discriminative vs. generative classifiers: A

comparison of logistic regression and naive Bayes. NIPS.

14. Arachchilage NAG, S Love S. (2013) A game design framework for avoiding

phishing attacks. Computers in Human Behavior 29 (3), 706-714

15. Arachchilage NAG., Cole M. (2011) Design a mobile game for home computer

users to prevent from “phishing attacks”. Information Society (i-Society), 2011

International Conference on, 485-489.

16. Arachchilage NAG,, Rhee Y., Sheng S., Hasan SH., Acquisti A., Cranor L. F.,

Hong J. (2007) Getting users to pay attention to anti-phishing education: evaluation

of retention and transfer. In eCrime '07 Proceedings of the anti-phishing working

groups 2nd annual eCrime researchers summit. Pittsburgh, PA, USA, 2007. ACM.

17. Ayyat Susan, Lu J., Thabtah F. (2014) Class Strength Prediction Method for

Associative Classification. Proceedings of the IMMM 2014, The Fourth

International Conference on Advances in Information Mining and Management, pp.

5-10. Paris, France, July 2014. Best Paper Award.

18. BBC News,

2005.http://news.bbc.co.uk/2/hi/uk_news/england/lancashire/4396914.stm

[Accessed 11 April 2016].

19. Basnet R., Mukkamala S., Sung AH (2008) Detection of phishing attacks: A

machine learning approach (2008) Soft Computing Applications Industry, pp. 373-

383.

138

20. Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., and

Scuse, D. (2008). WEKA Manual for version 3.6.0. University of Waikato,

Hamilton, New Zealand, 2008.

21. Bouckaert, R. R., Frank, E., Hall, M., Kirkby, R., Reutemann, P., Seewald, A., and

Scuse, D. (2013). WEKA Manual for version 3.7.8. University of Waikato,

Hamilton, New Zealand, 2013.

22. Bouckaert, R. R., (2004). Bayesian network classifiers in Weka. (Working paper

series. University of Waikato, Department of Computer Science. No. 14/2004).

Hamilton, New Zealand: University of Waikato.

23. Boser, B. E.; Guyon, I. M.; Vapnik, V. N. (1992). A training algorithm for optimal

margin classifiers. Proceedings of the fifth annual workshop on Computational

learning theory – COLT '92. p. 144. doi:10.1145/130385.130401. ISBN

089791497X.

24. Bramer, M.A. (2000) Automatic induction of classification rules from examples

using N-PRISM”, Research and Development in Intelligent Systems XVI, Springer-

Verlag, pp. 99–121, 2000.

25. Bramer A. (2002) An information-theoretic approach to the pre-pruning of

classification rules, in: B. N. M Musen, R. Studer (Eds.), Intelligent Information

Processing, Kluwer, 2002, pp. 201{212}.

26. Breiman L., Friedman J. H., Olshen R. A., and Stone C. J. (1984). Classification

and Regression Trees. Chapman and Hall/CRC, Boca Raton, FL, 1984.

27. Bright, M. (2011) MillerSmiles. [Online] Available at:

http://www.millersmiles.co.uk/ [Accessed 09 January 2016].

28. Brookhouse, J., & Otero, F. E. (2016, July). Using an Ant Colony Optimization

Algorithm for Monotonic Regression Rule Discovery. In Proceedings of the 2016

on Genetic and Evolutionary Computation Conference (pp. 437-444). ACM.

29. Caruana, R.; Niculescu-Mizil, A. (2006). An empirical comparison of supervised

learning algorithms. Proc. 23rd International Conference on Machine Learning.

CiteSeerX 10.1.1.122.5901Freely accessible.

139

30. Cendrowska, J. (1987) PRISM: An algorithm for inducing modular rules.

International Journal of Man-Machine Studies, Vol.27, No.4, 349-370.

31. Chen, J. & Guo, C. (2006) Online Detection and Prevention of Phishing Attacks

(Invited Paper). In First International Conference on Communications and

Networking in China. ChinaCom '06. Beijing, 2006. IEEE.

32. Clark P. and Niblett T. (1989). The CN2 induction algorithm. Machine Learning,

3:261–283, 1989.

33. Clark P. and Boswell R. (1991). Rule induction with CN2: Some recent

improvements. In Proceedings of the 5th European Working Session on Learning

(EWSL-91), pp. 151–163, 1991.

34. ClickDimensions (2014)

www.clickdimensions.com/sites/default/files/PDF/WhitePaper-CASL.pdf

[Accessed 12 May 2016].

35. Cloudmark Org. (2002) Cloudmark. http://www.cloudmark.com/en/home

[Accessed 10 February 2016].

36. Cohen, W., 1995. Fast Effective Rule Induction. In In Proceedings of the Twelfth

International Conference on Machine Learning. Tahoe City, California, 1995.

Morgan Kaufmann.

37. Cohen W. and Singer Y. (1999). A simple, fast and effective rule learner. In Proc.

16th Nat. Conf. on Artificial Intelligence, pages 335–342. AAAI/MITPress, 1999.

38. Coulter M. (2013) Strategic Management in Action. 6th Edition, Pearson Education.

39. Cortes, C., and Vapnik, V. (1995). Support-Vector Networks. Machine Learning,

20 (3), 273 – 297.

40. Cost, S. and Salzberg, S. (1993). A weighted nearest neighbor algorithm for

learning with symbolic features.Machine Learning, 10, pages 57-78.

41. Cover, T.M. and Hart, P.E. (1967). Nearest neighbor pattern classification. IEEE

Transactions on Information Theory, 13, pages 21-27.

42. Dasha R., Dashb P. K. (2016). A hybrid stock trading framework integrating

technical analysis with machine learning technique. The Journal of Finance and

140

Data ScienceVolume 2, Issue 1, March 2016, Pages 42–57.

43. Dain, O., Cunningham, R., and Boyer, S. (2004). Irep++, a faster rule learning

algorithm. Proceedings of the Fourth SIAM International Conference on Data

Mining.

44. Demšar, J. (2006). Statistical comparisons of classifiers over multiple data sets.

Journal of Machine learning research, 7(Jan), 1-30.

45. Diebold, F.X. and Mariano, R. (1995), Comparing Predictive Accuracy. Journal of

Business and Economic Statistics, 13, 253-265.

46. Dhamija, R. and Tygar, J. (2005) The battle against phishing: Dynamic Security

Skins. In The 1st Symposium On Usable Privacy and Security. New York, NY,

USA, 2005. ACM Press.

47. Domingos, P. (1996a). Unifying Instance-Based and Rule-Based Induction.

Machine Learning 24, 141–168 (1996)

48. Domingos, P. (1996b). Using Partitioning to Speed Up Specific-to-General Rule

Induction. In: Proceedings of the AAAI 1996 Workshop on Integrating Multiple

Learned Models, pp. 29–34. AAAI Press, Portland (1996).

49. Duda, R. O. and Hart P. E. (1973). Pattern Classification and Scene Analysis. New

York: John Wiley & Sons.

50. Eineborg, M. and Boström, H. (2001). Classifying uncovered examples by rule

stretching.

 In ILP ’01: Proceedings of the 11th International Conference on Inductive Logic

 Programming, pages 41–50. Springer-Verlag.

51. Elgibreen H. A., Aksoy M. S. (2013) Rules – Tl: A Simple And Improved Rules

Algorithm For Incomplete And Large Data. Journal of Theoretical and Applied

Information Technology, pp. 28-40.

52. Executive-Order-13402, 2006. Executive Order 13402.

http://www.gpo.gov/fdsys/pkg/FR-2006-05-15/pdf/06-4552.pdf [Accessed May 19,

2016].

53. Fawcett, Tom (2006). An Introduction to ROC Analysis. Pattern Recognition

141

Letters. 27 (8): 861–874.

54. Fette I., Sadeh N., Tomasic A. (2007). Learning to detect phishing emails.

Proceedings of the 16th international conference on World Wide Web. 649-656.

55. Freund, Y. and Schapire, R.E., (1997) A Decision-Theoretic Generalization of On-

Line Learning and an Application to Boosting. Journal of Computer and System

Sciences, 55(1), p.119–139.

56. Frank, E., and, Witten, I. (1998) Generating accurate rule sets without global

optimisation. Proceedings of the Fifteenth International Conference on Machine

Learning, (p. . 144–151). Madison, Wisconsin.

57. Franczak J. M. (2002) Fast Effective Rule Induction Overview. Technical report.

58. Friedman, N., Geiger, D. and Goldszmidt, M. (1997) Bayesian Network

Classifiers. Machine Learning - Special issue on learning with probabilistic

representations, 29(2-3), pp.131-63.

59. Fürnkranz J., Ullermeier E. H, Menc´ıa E. L., and Brinker K. (2008) Multilabel

classification via calibrated label ranking. Machine Learning, 73(2):133–153.

60. Fürnkranz J. (1999) Separate-and-conquer rule learning. Artificial Intelligence

Review, 13(1):3–54, 1999.

61. Fürnkranz J. and Widmer G. (1994). Incremental reduced error pruning. In Machine

Learning: Proceedings of the Eleventh Annual Conference, New Brunswick, New

Jersey,

 1994. Morgan Kaufmann.

62. Gaines B. R., Compton P. (1995). Induction of Ripple-Down Rules Applied to

Modeling Large Databases. J. Intell. Inf. System. 5(3):211-228.

63. General Assembly of Virginia, 2005. CHAPTER 827. http://leg1.state.va.us/cgi-

bin/legp504.exe?051+ful+CHAP0827 [Accessed April 01 2016].

64. Gini, C. (1909). Concentration and dependency ratios (in Italian). English

translation in Rivista di Politica Economica, 87 (1997), 769–789.

65. Goldberg, E. (1989) Genetic Algorithms in Search, Optimization, and Machine

Learning. MA: Addison Wesley.

142

66. Google Safe-Browsing, 2010. Google Safe Browsing.

http://code.google.com/p/google-safe-browsing/ [Accessed 10 April 2016].

67. Government of Australia (2011) Hackers, Fraudsters and Botnets: Tackling the

Problem of Cyber Crime. Report on Inquiry into Cyber Crime, 2011.

68. Gravetter, F. J., & Wallnau, L. B. (2016). Statistics for the behavioral sciences.

Cengage Learning.

69. Grossberg (1988) Nonlinear neural networks: Principles, mechanisms, and

architectures. Neural Networks, 1(1), p.17–61.

70. Grzymala-Busse J.W. (2010). Rule induction. O. Maimon, L. Rokach (Eds.), Data

Mining and Knowledge Discovery Handbook (second ed.), Springer, New York

(2010), pp. 249–265.

71. Hall M., Frank E., Holmes G., Pfahringer B., Reutemann P., Witten I. (2009) The

WEKA Data Mining Software: An Update; SIGKDD Explorations, Volume 11,

Issue 1.

72. Hall M. (1999) Correlation-based Feature Selection for Machine Learning. Thesis,

department of computer science, Waikaito University, New Zealand.

73. Hammoud S. (2010). MRSim: A discrete event based MapReduce simulator ,

Proceedings of the Seventh International Conference on Fuzzy Systems and

Knowledge Discovery, (2010) 2993-2997.

74. Hand, D. J., & Yu, K. (2001). Idiot's Bayes—not so stupid after all?. International

statistical review, 69(3), 385-398.

75. Hhn J., Hllermeier E., (2009) FURIA: An algorithm for unordered fuzzy rule

induction, Data Mining Knowl. Disc., vol. 19, no. 3, pp. 293-319, 2009.

76. Holte, R.C. (1993). Very Simple Classification Rules Perform Well on Most

Commonly Used Datasets. Machine Learning, 11, pp 63-90.

77. Information Week (n.d.) http://www.informationweek.com/california-enacts-tough-

anti-phishing-law-/d/d-id/1036636?. [Accessed March 17 2016].

78. Jagatic, N., Johnson, A., Jakobsson, M. & Menczer, F.,(2007) Social phishing.

Communications of the ACM, 50(10), pp.94-100.

143

79. Jameel N. Gh., George L. (2013) Detection of Phishing Emails using Feed Forward

Neural Network. Journal of Computer Applications 77(7):10-15, September 2013.

80. Jankowski, D., & Jackowski, K. (2014, November). Evolutionary algorithm for

decision tree induction. In IFIP International Conference on Computer Information

Systems and Industrial Management (pp. 23-32). Springer Berlin Heidelberg.

81. Jevans D. (2003) Anti-Phishing Working Group (APWG):

http://www.antiphishing.org/ [Accessed June 20th 2016].

82. Joachims H. (1999) Large-scale support vector machine learning practical,

Advances in kernel methods: support vector learning, MIT Press, Cambridge, MA,

1999.

83. Julie S., D., Mandy, H. & Cranor, L.F., 2007. Behavioral Response to Phishing

Risk. In The Anti-Phishing Working Groups, 2nd annual eCrime researchers

summite, Crime '07. New York, NY, USA, 2007. ACM.

84. Khadi A., Shinde S. (2014) Detection of phishing websites using data mining

techniques. International Journal of Engineering Research and Technology, Volume

2(12).

85. Kohavi, Ron (1995). A study of cross-validation and bootstrap for accuracy

estimation and model selection. Proceedings of the Fourteenth International Joint

Conference on Artificial Intelligence. San Mateo, CA: Morgan Kaufmann. 2 (12):

1137–1143. CiteSeerX 10.1.1.48.529Freely accessible.

86. Kothari R, Dong M (2000) Decision Trees for Classification: A Review and Some

New Results. Singapore: World Scientific.

87. Lee J., Bauer L., Mazurek L. M. (2015) The Effectiveness of Security Images in

Internet Banking. IEEE Internet Computing (Volume:19 , Issue: 1).Pp. 54 – 62.

88. Leung, K. M. (2007). Decision trees and decision rules. Polytechnic University,

Department of Computer Science, Finance and Risk Engineering.

144

89. Li, W., Han, J., and Pei, J. (2001) CMAR: Accurate and efficient classification

based on multiple-class association rule. Proceedings of the IEEE International

Conference on Data Mining –ICDM, 369-376.

90. Lichman, M. (2013). UCI Machine Learning Repository

[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California, School of

Information and Computer Science.

91. Liu, H. and Setiono, R. (1995) Chi2: Feature Selection and Discretization of

Numeric Attribute. Proceedings of the Seventh IEEE International Conference on

Tools with Artificial Intelligence, November 5-8, 1995, pp. 388.

92. Liu, B., Hsu, W., and Ma, Y. (1998) Integrating classification and association rule

mining. Proceedings of the Knowledge Discovery and Data Mining Conference-

KDD, 80-86. New York.

93. McAfee SiteAdvisor, 2006. McAfee SiteAdvisor. http://www.siteadvisor.com/

[Accessed 19 February 2016].

94. McCall (2007) Gartner, Inc. http://www.gartner.com/newsroom/id/565125

[Accessed June 5th 2016].

95. McFredies, P (n.d.) Phishing. http://www.wordspy.com/words/phishing.asp

[Accessed May 15th 2016].

96. Michalski, R.S. (1983). A Theory and Methodology of Inductive Learning,

Machine Learning: An Artificial Intelligence Approach, vol. 1, pp. 83-134, 1983.

97. Mohammad R., Thabtah F., McCluskey L., (2015) Tutorial and critical analysis of

phishing websites methods. Computer Science Review Journal. Volume 17, August

2015, Pages 1–24 Elsevier.

98. Mohammad R., Thabtah F., McCluskey L., (2014A) Predicting Phishing Websites

based on Self-Structuring Neural Network. Journal of Neural Computing and

Applications, 25 (2). pp. 443-458. ISSN 0941-0643. Springer.

99. Mohammad R., Thabtah F., McCluskey L., (2014B) Intelligent Rule based Phishing

Websites Classification. Journal of Information Security (2), 1-17. ISSN 17518709.

IET.

145

100. Mohammad, R. M., Thabtah, F. & McCluskey, L. (2013)Predicting Phishing

Websites using Neural Network trained with Back-Propagation. Las Vigas, World

Congress in Computer Science, Computer Engineering, and Applied Computing, pp.

682-686.

101. Mohammad R., Thabtah F., McCluskey L. (2012) An Assessment of Features

Related to Phishing Websites using an Automated Technique. In The 7th

International Conference for Internet Technology and Secured Transactions

(ICITST-2012). pp 492-497., London, UK.

102. Nguyen L. A. T., To B. L., and Nguyen H. K. (2015) An Efficient Approach for

Phishing Detection Using Neuro-Fuzzy Model. Journal of Automation and Control

Engineering Vol. 3, No. 6, December 2015

103. Pagallo, G. & Haussler, D. (1990). Boolean Feature Discovery in Empirical

Learning. Machine Learning 5: 71–99.

104. Pan Y., and Ding X. (2006) Anomaly Based Web Phishing Page Detection. In

The 22nd Annual Computer Security Applications Conference (ACSAC). Miami

Beach, Florida, USA, 2006. IEEE.

105. Pawlak Z. (1982). Rough Sets. International Journal of Computer and

Information Sciences 1982; 11: 341–356.

106. Pawlak Z. Rough Sets (1991). Theoretical Aspects of Reasoning about Data.

Kluwer Academic Publishers, Dordrecht, Boston, London, 1991.

107. Pawlak Z., Grzymala-Busse J.W., Slowinski R. and Ziarko, W. (1995) Rough

sets. Communications of the ACM 1995; 38: 88– 95.

108. Pazzani, M. & Kibler, D. (1992). The Utility of Knowledge in Inductive

Learning. Machine Learning 9: 57–94.

109. Pham D. T. and Soroka A. J. (2007) An Immune-network inspired rule

generation algorithm (RULES-IS). In Third Virtual International Conference on

Innovative Production Machines and Systems, Whittles Dunbeath, 2007.

110. PhishTank, 2011. PhishTank. http://www.phishtank.com/ [Accessed January 16

2016].

146

111. Phyu, T. N. (2009) Survey of classification techniques in Data Mining, IMECS

2009 Volume 1 Hong Kong pp. 1-5

112. Pike, G. H. (2006). Lost data: The legal challenges. Information Today, 23(10),

1–3.

113. Platt J. (1998) Fast training of SVM using sequential optimization, (Advances

in kernel methods – support vector learning, B. Scholkopf, C. Burges, A. Smola

eds), MIT Press, Cambridge, 1998, pp. 185-208

114. Powers, D. M. W. (2011). Evaluation: From Precision, Recall and F-Measure to

ROC, Informedness, Markedness & Correlation. Journal of Machine Learning

Technologies. 2 (1): 37–63.

115. Nahorney, B. (2015) The MessageLabs Intelligence Annual Security Report:

2009 Security Year in Review.

http://www.symantec.com/content/en/us/enterprise/other_resources/intelligence-

report-06-2015.en-us.pdf [Accessed June 09 2016].

116. Othman O. M. and Bryant C. H. (2015) Pruning Classification Rules with

Instance Reduction Methods. International Journal of Machine Learning and

Computing, Vol. 5, No. 3, June 2015.

117. Qabajeh I., Thabtah F., Chiclana F. (2015) Dynamic Classification Rules Data

Mining Method. Journal of Management Analytics.Volume 2, Issue 3, pp. pages

233-253. Wiley.

118. Quinlan, J. (2002). Data Mining Tools See5 and C5.0.

http://www.rulequest.com/see5-info.html.

119. Quinlan, J. (1993) C4.5: Programs for machine learning. San Mateo, CA:

Morgan Kaufmann.

120. Quinlan J.R. (1990) Learning Logical Definitions from Relations. Machine

Learning, Volume 5, Number 3, 1990.

121. Quinlan J., 1986. Induction of Decision Trees. Mach. Learn. 1, 1 (Mar. 1986),

81-106.

147

122. Quinlan 1987) J. Ross Quinlan. Simplifying Decision Trees. International

Journal of Man-Machine Studies, 27, 221-234, 1987.

123. Quinlan, J. (1979) Discovering rules from large collections of examples: a case

study. In Expert Systems in the Micro-electronic Age. Edinburgh, 1979.

124. R Development Core Team (2008) R: A Language and Environment for

Statistical Computing. R Foundation for Statistical Computing.

125. Rameshkumar, K., Sambath, M. and Ravi, S. (2013) Relevant association rule

mining from medical dataset using new irrelevant rule elimination technique.

Proceedings of ICICES , 300-304.

126. Ramon J., EDRIessens K., and Croonenborghs T. (2007) Transfer Learning in

Reinforcement Learning Problems Through Partial Policy Recycling: Machine

Learning. ECML 2007. vol. 4701, J. Kok, J. Koronacki, R. Mantaras, S. Matwin, D.

Mladenic, and A. Skowron, Eds., ed: Springer Berlin / Heidelberg, 2007, pp. 699-

707.

127. Rader M., Rahman S. (2015) Exploring historical and emerging phishing

techniques and mitigating the associated security risks. International Journal of

Network Security & Its Applications (IJNSA), Vol.5, No.4, July 2013 DOI :

10.5121/ijnsa.2013.5402 23.

128. Rijnbeek, P. R., & Kors, J. A. (2010). Finding a short and accurate decision rule in

disjunctive normal form by exhaustive search. Machine learning, 80(1), 33-62.

129. Ronald, D.J.C., Curtis, C. & Aaron, F.J., (2007) Phishing for user security

awareness. Computers & Security, 26(1), pp.73-80.

130. Retun Path (2016) https://blog.returnpath.com/blacklist-basics-the-top-email-

blacklists-you-need-to-know-v2/ [Accessed 22 March 2016].

131. Rocchio J. (1971). Relevance feedback in information retrieval. In G. Salton,

editor, The SMART Retrieval System: Experiments in Automatic Document

Processing, pages 313–323. Prentice-Hall Inc., 1971.

132. Rumelhart, David E.; Hinton, Geoffrey E.; Williams, Ronald J. (1986). Learning

representations by back-propagating errors. Nature 323 (6088): 533–536.

148

133. Sumner M., Frank E., Hall M. (2005) Speeding up logistic model tree induction

Knowl. Discov. Databases: Pkdd, 2005 (3721) (2005), pp. 675–683.

134. Sanglerdsinlapachai N., and Rungsawang, A (2010). Using Domain Top-page

Similarity Feature in Machine Learning-based Web. In Third International

Conference on Knowledge Discovery and Data Mining., 2010. IEEE.

135. SCI2S group, Soft Computing and Intelligent Information Systems, University of

Granada, http://sci2s.ugr.es/sicidm [Accessed May 25th 2017]

136. Sheng S., Holbrook M., Arachchilage NAG., Cranor L. Downs J. (2010) Who

falls for phish?: a demographic analysis of phishing susceptibility and effectiveness

of interventions. In CHI '10 Proceedings of the 28th international conference on

Human factors in computing systems. New York, NY, USA, 2010. ACM.

137. Stahl, F., Bramer, M.A. (2014) Random Prism: an alternative to Random Forests.

Research and Development in Intelligent Systems XXVIII, 2011, pp 5-18,

Springer.

138. Stahl F., Bramer M. (2012) Computationally efficient induction of classification

ruleswith the PMCRI and J-PMCRI frameworks, Knowledge-Based Systems 35,

(2012) 49–63.

139. Stahl F., and Bramer M. (2008) P-Prism: A Computationally Efficient

Approach to Scaling up Classification Rule Induction. Artificial Intelligence in

Theory and Practice II, IFIP – The International Federation for Information

Processing Volume 276, 2008, pp 77-86.

140. Shawe-Taylor J., Sun S., (2011) A review of optimization methodologies in

support vector machines, Neurocomputing 74 (17) (2011) 3609–3618.

141. Taiwiah C. A., and V. Sheng (2013) A study on Multi-label Classification.

Advances in Data Mining. Applications and Theoretical Aspects. Lecture Notes in

Computer Science, Volume 7987, 137-150.

142. Tan PN., Steinbach M., Kumar V. (2005). Introduction to Data Mining. Published

by Addison Wesley.

149

143. Taylor R.C., (2008). An overview of the Hadoop/MapReduce/HBase framework

and its current applications in bioinformatics. BMC Bioinformatics, 11 (2010) S1.

144. Thabtah F., Mohammad R., McCluskey L. (2016A) A Dynamic Self-Structuring

Neural Network Model to Combat Phishing. In the Proceedings of the 2016 IEEE

World Congress on Computational Intelligence. Vancover, Canada.

145. Thabtah F., Qabajeh I.., Chiclana F. (2016B.) Constrained dynamic rule induction

learning. Expert Systems with Applications 63, 74-85.

146. Thabtah F., Hammoud S. Abdeljaber H. (2015) Parallel Associative Classification

Data Mining Frameworks Based Mapreduce. To Appear in Journal of Parallel

Processing Letter. March 2015. World Scientific.

147. Thabtah F., Hadi W., Abdelhamid N., Issa A. (2011) Prediction Phase in

Associative Classification. Journal of Knowledge Engineering and Software

Engineering. Volume: 21, Issue: 6(2011) pp. 855-876. WorldScinet.

148. Thabtah, F., Cowling, P., and Peng, Y. (2005). MCAR: Multi-class classification

based on association rule approach. Proceedings of the 3rd IEEE International

Conference on Computer Systems and Applications, 1-7.

149. Thabtah F., Cowling P., and Peng Y. (2006): Multiple Label Classification Rules

Approach. Journal of Knowledge and Information System. Volume 9:109-129.

Springer.

150. Thabtah, F., Cowling, P., and Peng, Y. (2005) MCAR: Multi-class classification

 based on association rule approach. Proceedings of the 3rd IEEE International

 Conference on Computer Systems and Applications , 1-7

151. Thabtah, F., Cowling, P., and Peng, Y. (2004) MMAC: A new multi-class, multi-

label associative classification approach. Proceedings of the Fourth IEEE

International Conference on Data Mining (ICDM ’04), 217-224.

152. Tsoumakas G., Katakis I., and Vlahavas I. (2010) Mining multi-label data. In O.

Maimon and L. Rokach, editors, Data Mining and Knowledge Discovery

Handbook. Springer, Berlin.

150

153. Veloso A., Meira W., Gonçalves M., Zaki. M (2007) Multi-label Lazy

Associative Classification. Proceedings of the Principles of Data Mining and

Knowledge Discovery, PKDD, 605-612.

154. Webb, G. I (1995). OPUS: An Efficient Admissible Algorithm For Unordered

SearchOpens in a new window.Journal of Artificial Intelligence Research, 3, 431-

465, 1995.

155. Witten I. H. and Frank E. (2005). Data Mining: Practical Machine Learning Tools

and Techniques.

156. WOT (2006) Web of Trust. http://www.mywot.com/ [Accessed 24 March 2016].

157. Zaki, M., and Gouda, K. (2003) Fast vertical mining using diffsets. Proceedings of

the ninth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 326 – 335.

158. Zaki M., Hsiao CJ (2002) CHARM: an efficient algorithm for closed itemset

mining. Proceedings of the 2002 Siam International conference on data mining

(SDM’02),457–473.

159. Zaremotlagh, S., & Hezarkhani, A. (2017). The use of decision tree induction and

artificial neural networks for recognizing the geochemical distribution patterns of

LREE in the Choghart deposit, Central Iran. Journal of African Earth Sciences, 128,

37-46.

160. Zhang, M. L., & Zhou, Z. H. (2005, July). A k-nearest neighbor based algorithm

for multi-label classification. In Granular Computing, 2005 IEEE International

Conference on (Vol. 2, pp. 718-721). IEEE.

151

Appendices

Sample Screen Shots of our eDRI Algorithm in
WEKA Java Machine Learning Tool

Figure 1 Launching WEKA

152

Figure 2 Choosing the WEKA explorer platform

Figure 3 Loading the Balloon dataset

153

Figure 4 Balloon dataset characteristics

154

Figure 5 Choosing eDRI from “Classify” Tab

155

Figure 6 eDRI results on the Balloon dataset

	Title
	FIRST PAGES
	P-Chapter 1-Ver8
	P-Chapter 2-Ver 8
	P-Chapter 3-Ver8
	P-Chapter Implementation and Evaluation Chapter 4-Ver8
	P-Case Study Chapter - Chapter 5-Ver8
	P-Chapter 6-Ver8
	Thesis References
	Appendix-Ver8-A

