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Abstract 

Thermal storage heaters, charged using overnight off-peak electricity, have been used for 

domestic space heating in the UK and other countries since the 1980s.  However, they have 

always been difficult for consumers to manage efficiently and, with the advent of a high 

proportion of renewables in the electricity generation mix, the time of day when they are 

charged needs to be more flexible.  There is also a need to reduce peaks in the demand profile 

to allow distribution networks to support new sources of demand such as electric vehicles. 

We describe a trial of a smart control system that was retrofitted to a group of six dwellings 

with this form of heating, with the objectives of providing more convenient and efficient 

control for the users while varying the times at which charging is performed, to flatten the 

profile of demand and make use of locally-generated renewable electricity.  The trial also 

employs a commercially-realistic combination of a static time-of-day tariff with a real time 

tariff dependent on local generation, to provide consumers with the opportunity and incentive 

to reduce their costs by varying times of use of appliances.  Results from operation over the 
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2015-16 heating season indicate that the objectives are largely achieved.  It is estimated that 

on an annualised and weather-adjusted basis most of the users have consumed less electricity 

than before intervention and their costs are less on the trial tariffs.  Critical factors for success 

of this form of system are identified, particularly the need to facilitate hands-on control of 

heating by thrifty users and the importance of an effective and sustained user engagement 

programme when introducing the technology, to ensure users gain confidence through a 

readily-accessible source of support and advice.        

 

Keywords: Thermal storage; demand response; time-of-day tariff; electric heating; smart 

meter 
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1. Introduction 
 

In March 2016 the UK’s National Infrastructure Commission (NIC) published a report 

[1] entitled “Smart Power” arguing that investment in interconnection, storage, and demand 

flexibility “could save consumers up to £8 billion a year by 2030, help the UK meet its 2050 

carbon targets, and secure the UK’s energy supply for generations.”  These attractive benefits 

arise from the urgent need faced by many national electricity systems to adapt to an 

increasing level of intermittent and geographically distributed renewable generation on the 

supply side, while meeting rising demand from increasing adoption of technologies such as 

heat pumps and electric vehicles. Similar findings have been documented elsewhere, for 

example Pudjianto et al. [2] identify a potential value of up to £30 Bn in deferred or avoided 

network reinforcement costs up to 2050 that can be obtained from demand flexibility that 

reduces the peak load on local distribution networks. The regulatory changes needed to 

realise these benefits are now being actively pursued [3].   

  In this paper we report on a practical trial that realises part of the vision for storage 

and demand flexibility described in the NIC report. It exploits electrically-charged thermal 

storage heating (generally known as storage heating) - a form of electric space heating that is 

found in 1.3 million homes in England [4] and is employed in other temperate countries such 

as France and New Zealand.  Storage heating appliances comprise an insulated enclosure 

containing high thermal capacity ceramic bricks that are heated by a resistive heating 

element.  The heat energy held in the bricks is then progressively released depending on the 

setting of vents in the insulating enclosure.  Figures 1 and 2 illustrate a typical appliance.  

Conventionally in the UK these appliances are used in combination with an electricity tariff 

known as ‘Economy 7’ which allows them to be charged overnight during a fixed 7 hour 

interval at a low tariff.  The majority of dwellings with this form of heating are rented and 

relatively small [4] as is the case for those in this trial.  This implies that users are more likely 
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to suffer from poverty, while fuel poverty, a more specific measure of fuel costs in relation to 

income, currently arises in 16% of electrically-heated English households, compared with 

11% for all households [5]. The cost impact is therefore an important factor in the trial.   

                      

Fig.1  Storage heater                          Fig. 2 Storage heater simplified cross-section 

 

There are two major disadvantages in this system of heating as currently employed: 

 The appliances are actually quite difficult to use efficiently because energy 

charge and discharge are regulated by separate manual controls (seen at top 

right of the unit in Figure 1) whose interaction and weather dependence are hard 

to comprehend.  

 There is no flexibility to vary the time of day when charging is performed to 

reflect the dynamic availability of electricity supply, particularly from 

renewable generation. 
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 A form of “smart” control that can be retrofitted to these legacy appliances
1
 is 

therefore needed that addresses these weaknesses by providing user-friendly controls and 

allowing the charging time to be shifted throughout the day in a responsive way that 

reconciles the comfort needs of the user with grid and generation opportunities and 

constraints.  We describe a control system which provides these features and report results 

from a trial.  The rest of the paper is organised as follows. Section 2 provides more detail on 

the technical and human factors relating to storage heating.  Section 3 describes our control 

system and the form of prototype trial that has been undertaken, then Section 4 summarises 

results from the trial.  The implications of results are discussed in 5 and conclusions 

presented in 6.       

 

2. Background 
 

2.1 Storage heating   

 
In the UK storage heating tends to be deployed in smaller dwellings such as flats or 

maisonettes, motivated by the low installation and maintenance cost compared to gas central 

heating (which also gives rise to more stringent building construction requirements 

particularly for multi-storey buildings).  This results in a typical installation of one large and 

two or three smaller heaters having a total input power of about 8kW and thermal storage 

capacity of 56 kWh.  So the 1.3M households in England have an aggregate capacity in the 

region of 73 GWh.  As a resource for grid management it compares favourably with the UK 

grid’s total pumped storage capacity of 30 GWh [6].  This potential, combined with the need 

to avoid the network impact of large numbers of storage heaters switching on simultaneously, 

was recognised in the 1970s leading to the introduction of the Radio Teleswitch system [7] in 

1984.  This makes use of the BBC Radio 4 long wave transmission on 198 kHz to carry a 

                                                 
1
 A trial of new-generation, smartly-controlled storage heaters is under way in Ireland, German and Latvia, in 

the EC-funded project RealValue.  The project runs from 2015-18. 



6 

 

very low data rate signal to receivers linked to ‘Economy 7’ meters that record consumption 

on a two-band tariff that provides for cheap electricity during seven night-time hours.  The 

signal causes the meter to adjust the time window over which the connected storage heaters 

are charged.  However, the time variations are limited to the overnight period and constrained 

to 256 options by the signal format, while the introduction of an electricity market enabling 

consumers to switch suppliers easily has caused the contractual basis for operation of this 

functionality to be lost for many installations.  By 2013 the regulator Ofgem found that only 

550,000 Teleswitch installations were in use and some associated tariffs were poor value [8].  

Another similar system called CycloControl, providing weather-dependent control of storage 

heaters for flats in London, was abandoned by the service provider in 2015 [9].   

A more modern system of demand management is clearly needed.  The introduction of 

half-hour metering under the UK smart meter programme [10] will allow validation of any 

demand response mechanism from metering data so that consumers can be rewarded for 

participation.  Since heating homes with low carbon electricity is a major element in UK 

strategy for reducing carbon emissions [11] and the value to the electricity system of electric 

heating that can deliver demand response is likely to increase by 2030 to between £0.015 and 

£0.03 per kWh of renewable energy consumed [12] it is realistic to expect that this form of 

heating, which is cheap to install and very reliable, will become more economically 

attractive.  This potential for sustained and possibly increased use applies throughout 

northern Europe [13], [14], [15].     

 

2.2 User experience of legacy systems 

 
However, to realise this potential the legacy user interface to storage heaters is in need 

of modernisation. It comprises an input (charging) control, which is essentially a thermostat 

limiting the temperature of the storage bricks, and an output control that regulates the release 

of heat through circulation of air round the bricks.  For efficient operation the input control 
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needs to be set late in the day, to obtain the right amount of heat overnight given the weather 

expected the next day.  The output control has to be set to a minimum overnight to reduce 

losses during charging and then progressively opened during the day to maintain comfort.  

While some users have the patience and foresight to execute this procedure successfully, 

others struggle.   

Consequently many energy advice agencies and social housing organisations provide 

websites and videos explaining the use of these controls [16], [17].  But the absence of any 

direct relationship between control calibration and the room temperature outcome requires 

(even for users who understand the principles) considerable experience gained by trial and 

error for satisfactory results. The difficulties in controlling timing and intensity of storage 

heating are probably the single most important factor in explaining its relative unpopularity 

[18], [19].  This need for more intuitive and effective controls is a common theme from 

research into domestic heating [20], [21].         

 

2.3 The domestic demand response challenge 

 
The ability to operate time-of-day dependent tariff structures is usually given as one of 

the main reasons for the introduction of smart meters in the UK and elsewhere. However, a 

basic difficulty arises if an automated domestic appliance (such as a storage heater under 

“smart” control) is given the objective of minimising the cost incurred under a time-of-day 

tariff while meeting the consumer’s heating (or other) needs. There is a strong tendency for a 

population of such devices to ‘choose’ the same combination of time and tariff resulting in a 

peak in aggregate demand which is unhelpful for both electricity suppliers and distribution 

network operators [22], [23].  If the tariff is closely coupled to wholesale electricity pricing 

this effect could cause instability in the entire electricity system [24].  This issue must be 

resolved to deliver the smart grid vision described in [1].    
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Two of the present authors (Boait and Snape) have sought to investigate this problem 

using agent-based modelling techniques to simulate the electricity system.  This modelling 

project called CASCADE [25] included both weather and behaviour driven components of 

electricity demand such as electric heating and wet appliances.  The outcome was an 

approach to automated domestic demand response called “demand shaping” [26] with the 

following features: 

 The signal sent by electricity suppliers to a consumer’s smart appliance is a 

daily 48-value vector S that is not inherently a tariff, but structured so that high 

values deter, and low values attract, electricity use in each half hour timeslot of 

the next 24 hours. The length of 48 is employed because the electricity market 

conventionally operates in half-hour timeslots.  

 Automated appliance controls respond to this signal by scheduling demand 

within a time window that meets user needs but with a probability in proportion 

to the attractiveness of the signal in each timeslot. The user needs are either 

determined automatically from previously expressed preferences (such as the 

amount of heat needed to achieve a desired room temperature) or are entered by 

the user (such as the time window within which the dishwasher must run). The 

biased randomisation arising from this probabilistic response ensures there is no 

undesirable peaking of demand.  

The effect of this is to allow the supplier to obtain any shape of aggregate demand that 

is within the flexibility admitted by consumer needs, by choice of an appropriate signal. The 

supplier can minimise their balancing market and supply costs by setting the shape of S to 

induce demand that matches their generation contracts. A critical benefit of this method is 

that it is completely scalable – the same signal is sent to all consumers.  The desired shape of 

demand arises as the aggregate of the diverse individual responses.  The tariff offered to 
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consumers can be fixed or have a time-of-day form that is consistent with the signal.  If a 

time-of-day tariff is employed it simply acts to encourage consumers to choose suitable times 

to run appliances that are under wholly manual control. The trial described in the following 

sections provides a real-life test of this concept.  It also tests the usability and benefits of a 

complex tariff scheme (further detailed in Section 3.3) combining a time-of-day tariff with an 

additional discount dependent on the availability of local photovoltaic generation.  This 

overall concept, combining a non-tariff signalling scheme to manage randomised automated 

demand response with a complex tariff intended to influence demand response by human 

agency, has not been trialled previously.  Results should be of wide interest given the critical 

need for stable and predictable demand response to realise the smart grid [1], [12].      

 

2.4 Community energy policy  

 

In 2014 the Department of Energy and Climate Change (DECC) published its first 

Community Energy Strategy [27] aimed at establishing a policy framework that would 

encourage the formation and sustainability of energy saving and generating projects initiated 

by communities and local government.  The report recognised that to enable communities to 

benefit from the cost-saving potential of local electricity generation, both regulatory and 

technical innovation are required. In particular, “smart grid” technology is needed to enable 

local electricity consumption to be matched to generation. The strategy included a 

programme of pilot projects to stimulate this innovation under the rubric “Localised Energy 

Systems”.  The present trial, entitled Community Electricity Generation, Aggregation, and 

Demand Shaping (CEGADS) is one of these pilot projects.   

 

 

3. Storage heater control system 
 

3.1 Demand shaping implementation  
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Fig.3 User interface for space heating 

 

 
 

Fig. 4 Room temperature set point profiles 

 

The in-home storage heating control system implemented for this trial (branded as a 

Hestia Hub
2
) achieves the reconciliation of user needs with the signalling of grid preferences 

in the following way.  The user interface (shown in Figure 3) allows selection of one of four 

space heating temperature profiles indicated by a house icon. Each is associated with a 

nominal room temperature set point profile shown in Figure 4. These profiles are configured 

to be consistent with the range of actual temperatures found in UK homes [28], but they are 

not delivered by thermostatic control as there is no means of automatically adjusting the 

                                                 
2
 This device was designed by Exergy Devices Ltd. One of the authors (Boait) is a director and shareholder of 

this company. 
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output control of a storage heater. They are in effect target temperatures which are used on an 

open loop basis for charging the heaters.  Shortly before midnight each day the control 

system obtains a local weather forecast via the internet from the UK Meteorological Office 

using their DataPoint service [29].  The control system uses this forecast in two ways.  

Firstly, to make some adjustments to the target set point temperature profile, raising 

temperatures slightly if rain is forecast to reflect the chilling effect of higher humidity, and 

reducing them if sunshine is forecast to take advantage of solar gain, using a simple linear 

adjustment of the form: 

Tas = Tp + kpP – kgU    (1) 

where Tas is the adjusted set point at a given time of day, Tp is the profiled value 

at that time, P is the forecast probability of precipitation, U is the forecast ultraviolet index
3
, 

kp and kg are constants set so that maximum adjustment is +/- 1 
o
C. Secondly, it uses the 

forecast external ambient temperature Te in conjunction with the weather-adjusted room 

temperature set point Tas and a value for the specific heat loss rate L (in kW/K) of the 

dwelling to compute the expected heat load Qi in kWh for each ith half-hour of the day: 

 Qi = L (Tas – Te)/ 2    (2) 

An estimate of L is provided to the control unit as a configuration parameter, then it is 

adjusted during operation by a learning algorithm to reflect the actual heat loss of each 

dwelling (determined from measured room temperatures, energy consumption, and the 

external temperature forecast) and the averaged heating effect of other electrical appliances.  

The required energy Qi must be available as heat not later than the ith half-hour timeslot, but 

it can be supplied earlier as electricity charging a storage heater as long there is available 

capacity.  The scheduling algorithm chooses a charging timeslot for Qi randomly from those 

                                                 
3
 Ultraviolet index is published in DataPoint to indicate the risk of sunburn but has proven to be a satisfactory 

proxy for insolation. 
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that are possible, but with a bias to the random selection such that the probability Pj of the jth 

timeslot being selected is given by: 

Pj = Aj / ∑(A1…Ai)     (3) 

where A1 to A48 are attractiveness values obtained by inverting the supplier’s signal S 

using Ai = Smax-Si.  This scheduling process is repeated for all Qi with the assumption that at 

the start of the day (00:00) the heaters have no charge. The state of charge of the storage 

heaters is tracked during schedule creation using an empirical model for the output heat 

power Oi: 

 Oi = Vi Fi-1 I     (4) 

where Vi is the output control vent setting (0.1 = minimum, 1 = fully open), Fi is the 

charge fraction (0 = empty, 1 = fully charged) at the end of the ith timeslot, and I is the 

manufacturer’s nominal input electrical power rating, used as a proxy for the maximum 

output heat power which is not given in specifications. The assumed output control settings 

are 0.1 from 00:00 to 07:00, then 0.4 to 17:00, then 1 for the rest of the day.  For a set of 

storage heaters with total capacity C kWh the charge fraction when Qi is stored in the jth half-

hour timeslot is given by: 

 Fj = Fj-1 + (Qi – Oi/2)/C    (5) 

Values for I and C are provided to the control unit as configuration data. When full 

capacity is reached in a timeslot that timeslot is removed from the possible timeslots 

considered in the next iteration of equations (2) and (3).  The final outcome of this scheduling 

process is a charging plan for the next day determining when the input to the storage heaters 

is switched on and off.  Figure 5 shows the execution of a typical plan for storage heaters.  
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Fig. 5 Storage heater charging schedule and resulting electrical load 

Dwellings with storage heating also usually have domestic hot water (DHW) provided 

from an insulated tank of 100-200l capacity heated by an electric immersion heater.  

Conventionally the tank is heated overnight during the Economy 7 period using a simple 

timer so that most of the DHW demand is supplied using low cost electricity.  The present 

control system makes use of this valuable energy storage resource for demand response by 

varying the timing of water heating during the day depending on the same grid supply 

attractiveness values that are employed for space heating in equation (3).  Heating of the tank 

contents to 60
o
C is scheduled to commence in a timeslot that is randomly selected such that 

the probability Pj of the jth timeslot being selected is given by: 

Pj = Aj / ∑(A1…A48)     (6) 

Scheduled water heating can be seen in Figure 5 starting at 21:00.  Since this time may 

not correspond closely to DHW usage, a function is included that detects when the tank has 

cooled to below 45
o
C and reheats it to 50

o
C.  This ensures that consumers always have hot 

water available but a substantial proportion of the energy needed is subject to demand 

response.   
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Fig.6 System diagram 

 

3.2 System architecture and user interface   

A block diagram of the complete trial system is shown in Figure 6.  The central 

database collects half-hour metering data and also a room temperature measurement.  It 

publishes the signal S to the in-home units and also the time-of-day tariff offered to the users. 

The control unit executes the algorithms described above and switches power to the storage 

heaters and immersion heater accordingly.  It provides conventional “smart meter” 

functionality such as a display of current consumption and also allows the user to schedule 

operation of any appliance that can be supplied with electricity via a radio-controlled “smart 

plug” that switches on and off by command from the control unit.  The user enters a time 

window within which the appliance must run, and the required running time. The control unit 

then schedules operation within the time window using the same biased randomisation 

process as described for the heating appliances.  In the trial it is typically used for wet 

appliances that can be controlled simply by turning on and off at the mains and charging of 

battery-powered devices such as garden strimmers. 
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Fig. 7 User interface for hot water 

The user interface is presented by a web server in the control unit that is accessible 

from within the home via a smart phone, tablet, or computer.  Figures 3 and 7 show the user 

interface pages for space and water heating respectively.  For space heating the user selects a 

room temperature profile as described above and also has the ability to initiate or cease 

heating immediately using the boost or curtail buttons.  For hot water the graphic and icons 

indicate the volume of hot water available within the tank.  The boost button initiates re-

heating of the hot water tank if exceptionally required. 

      

3.3 Trial objectives and participants   

The CEGADS trial has the objective of using a combination of demand response, a 

realistic time-of–day tariff provided by a retail electricity supplier, and community 

engagement to influence the aggregate electricity demand of the participants so that it makes 

efficient use of electricity generated by roof-mounted photovoltaic panels on some of the 

participant dwellings. In total 48 households have been recruited to take part. Of these, six 

have storage heating and it is results from these participants that are the main focus here. The 
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homes with storage heating are single bedroom apartments arranged in two-storey buildings 

shown in Figure 8. 

 

 

Fig. 8. Trial apartments with storage heating 

 

A total of 52 kWp of photovoltaic generating capacity is installed on 14 buildings 

within the trial.  To enable participants in the trial to retain their existing electricity supplier 

and tariffs, the time-of-day tariff has been implemented as an incentive scheme where the 

difference between the actual cost of electricity to participants and the cost they would have 

incurred under the trial tariff is given to them in the form of credit vouchers exchangeable for 

goods at a supermarket chain associated with the supplier.  The time-of-day tariff profile is 

shown in Figure 9 with an example of the demand shaping signal S illustrating the alignment 

between the two.  The effect of the signal values of 1 between 17:00 and 21:00 is to set the 

probability values from equation (3) to zero so that no appliance under control is scheduled to 

run during the peak tariff time.  In addition to the time-of-day tariff, any exported electricity 

from the dwellings with PV that could be considered consumed by other participants 

(because their demand occurred at a time when PV export was available) was charged at 
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£0.065/kWh.  This created an incentive for all participants to use appliances in the middle of 

the day on sunny days.     

 

 
 

Fig. 9. Shaping signal and time-of-day tariff 

 

 

4. Results 
 

Results are presented to show the outcome against the two main goals outlined in Section 2: 

 to exercise flexible control over the timing of electricity use for space and water 

heating taking account of the availability of local renewable generation; 

 to provide automatic weather-dependent adjustment of storage heater charging and a 

convenient user interface.  

 

4.1 Electricity consumption 

Figures 10A – 10E show the average daily profiles of controlled electricity 

consumption by the user group for each of the months January, February and June 2016 with, 

as a comparator, the equivalent consumption profiles that would have occurred had these 
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dwellings remained under conventional “Economy 7” off-peak control.  These comparator 

profiles have been simulated with the assumption that the users would have successfully set 

their storage heaters manually to match the expected heating demand the following day – that 

is, a best case assumption that is not always realised.  All the profiles are limited to electricity 

use that is subject to demand management.  The dramatic reduction in peak demand from the 

six homes compared to that which would have occurred under conventional off-peak control 

can be seen by comparing the y-axis kWh scales for actual and simulated results.   
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Because the users are actually paying a conventional ‘Economy 7’ tariff (typically 

£0.07/kWh during the 7 hour overnight period and £0.16/kWh at other times) the demand 

shaping performed had to be quite cautious to avoid users experiencing high bills that would 

be distressing to receive and hence threaten their willingness to continue with the trial 

(although of course assurances of compensation were provided). The objectives of the 

shaping performed were therefore: 

1. to minimise demand during the 17:00-21:00 peak tariff period; 

2. to initially allocate about 33% of heating load outside the 7 hour overnight 

period in January, then increase this proportion as the year progressed, 

particularly in the hours when PV generation is available so that heating 

demand is satisfied by the local generation resource; 

3. to spread demand within the 7 hour overnight period, to show how this 

technique can reduce the local co-incidence of demand from similar heating 

appliances.    

The flexibility of demand was constrained by two factors.  Firstly it is inherent in operation 

of a storage heater that it must be charged to deliver a useful heat output.  So there is an 

unavoidable bias in demand towards the early part of a 24-hour cycle so that heat is available 
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to users on waking and during the day.  This effect is reinforced by the need to avoid the 

evening peak tariff period.  Secondly, although the main heating cycle for hot water can be 

placed anytime during the day, the top-up function described in 3.1 tends to be invoked 

following a substantial hot water draw-off event.  The small amounts of electricity use during 

the evening peak tariff period visible in Figures 10A, C and E are attributable to this cause, as 

are the higher levels of demand around 08:00-10:00.  Table 1 quantifies the degree of success 

in meeting the demand shaping objectives during January – June 2016 using metrics linked to 

the three objectives.   

 

 

Table 1. Demand shaping outcomes 

Objective no. and metric January Feb March April May June 

1.Heating demand during evening high 

tariff period as % of total heating 

demand in month 

1.8 4.0 4.1 6.3 5.8 6.2 

2. Daytime allocation of heating 

demand excluding high tariff period % 

32 38 37 40 48 55 

2.Proportion of heating demand when 

PV generated electricity available % 

15 25 33 37 41 46 

2. Proportion of heating demand when 

PV generation available actually 

satisfied by PV% 

5 23 43 66 100 100 

3. Reduction in peak heating demand 

relative to Economy 7 % 

54 65 70 83 87 86 

 

4.2 Heating performance 

The effectiveness of this system at adjusting the energy stored each day to match the 

weather-dependent actual heat load is illustrated by Figure 11.  This shows the day-by-day 

correlation between total electricity consumed and local degree-days for the month of January 

2016, for User 2.  Total consumption rather than electricity supplied to the storage heaters is 
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plotted because the Hestia control unit software takes account of all electricity consumed 

when calculating the thermal loss rate of the dwelling, and allows for typical appliance and 

lighting use when scheduling the storage heaters.  This is an essential function for these 

relatively small and well-insulated dwellings as without it the storage heaters would be 

overcharged.  However this means that the correlation is affected by day-to-day variations in 

appliance use.     

 

 

Fig. 11 Correlation between electricity consumed and degree days for User 2 

 

Four of the users in the group (Users 1,2,5,6) displayed similar correlation, with R
2
 

values ranging from 0.42 to 0.6 for the same month.  However, two users (3 and 4) show 

much lower correlation, one at 0.27 and the other effectively zero. The data collected by the 

control unit allows the extent of user intervention to be assessed, and it is clear that the two 

users with low correlation exercise much more “hands-on” control either through the web 

interface or by switching off the storage heaters and/or using auxiliary electric heating.  In the 

case of User 4 this behaviour is associated with very low total energy consumption as can be 

seen in Figure 10, and a low measured room temperature.  Figure 12 shows the daily average 

y = 0.9774x + 10.415
R² = 0.5458

0

5

10

15

20

25

30

35

0 5 10 15 20

kWh

Degree days 



22 

 

room temperatures measured for the user group in January showing consistent temperatures 

for 4 of the 6 and lower values for the other 2.  This arose because the sensor was located in 

the hallway of each dwelling, and Users 4 and 6 chose to close internal doors and not heat the 

hallway. 

 

Fig. 12. Daily average internal temperature of the trial apartments and external 

temperature in January 2016 

 

It was hoped that this automatic control of heater charging would provide energy 

savings for at least some users and would not increase consumption for others.  This was 

assessed for the six users based on their billing data for the year prior to the start of the trial.  

Table 2 summarises the results.  The consumption during the trial is an estimate correcting 

the measured data for differences in the degree-days of heating demand over the two heating 

seasons and including a prediction of each user’s consumption during August and September 

2016. Both adjustments use the applicable regression equation similar to that illustrated in 

Figure 11 but using monthly data which gives stronger correlation for all users (R
2
 values 

between 0.4 and 0.92). The table also shows the expected contribution of local PV-generated 
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electricity to each user’s total consumption for the trial year, calculated by doubling the 

amount actually consumed during January-June 2016. 

Table 2.  Weather-adjusted estimates of annual electricity consumption before and after 

intervention, with expected PV contributions 

 User 1 User 2 User 3 User 4 User 5 User 6 

Year prior to trial kWh 6583 6205 3731 2383 4345 5362 

Year of trial adjusted kWh 6131 3919 4201 2360 4023 4849 

Indicated reduction/rise % -6.9% -37% 13% -0.9% -7.4% -10% 

Local PV generation 

consumed in year of trial kWh 

630 370 488 356 442 390 

 

 The impact on the users’ costs of electricity from demand shaping and the 

project’s tariff model is summarised in Table 3.  The calculation method for this comparison 

was as follows: 

 The estimated consumption for the trial year from Table 2 was costed using the Figure 

9 tariffs and the tariff for local PV consumption of £0.065/kWh. 

 An Economy 7 based counterfactual cost was estimated for the trial year assuming 

that each user continued to consume the same proportion of overnight electricity as 

before the trial and that the reduction or rise in consumption indicated in Table 2 did 

not occur. 

 A common Economy 7 tariff for all users was assumed of £0.0735 for the overnight 7 

hour period and £0.16 for other times, with a standing charge of £0.157/day.  This 

tariff was actually being paid by 3 of the users who had the same supplier. 

 The standing charge of £0.157/day was also applied to the project tariffs. 
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Table 3.  Estimated annual electricity cost with and without intervention 

 User 1 User 2 User 3 User 4 User 5 User 6 

Cost at project tariffs £634 £435 £563 £308 £493 £536 

Cost using Economy 7 £627 £583 £606 £372 £559 £548 

Indicated cost reduction/rise % +1% -25% -7% -17% -12% -2% 

 

 

4.3 User experience 

Semi-structured interviews were conducted by telephone with five out of the six trial 

participants who had electric storage heaters. The interviews were conducted between one 

and three weeks after installation of the Hestia Hub equipment, thus were in the early stages 

of the trial.  The responses below illustrate the participants’ overall attitude to the trial and to 

their electricity use, followed by their reaction to the Hestia device. 

Trial participation. There were a variety of motivations for participating in the trial. 

One participant who had prior interest in energy saving said that the information and 

participation in the trial was very interesting: ‘I'm very very interested and I'm behind the 

trial. Very interested in the power that can be obtained by these natural resources’ (User 1). 

Another participant was also interested in the potential benefits: ‘I know it’s a trial system, if 

and when it could be used, so we could be using local energy, then in due course that could 

be a good advantage. I don't know if that will ever come about’ (User 6). One participant, 

who was not interested in the trial or reasons behind it, also appeared to be satisfied with 

participation: ‘as far as I'm concerned, it does what it says on the tin. They promised me no 

inconvenience and that's what I've got’ (User 4). 
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Flexibility of consumption. When asked if they would be able to reduce electricity 

consumption at peak times the next day, three out of five participants mentioned that they 

would be able to do this easily or somewhat easily. Examples given were that they may be 

out during the afternoon, or change cooking habits, for example: ‘I don't very often use the 

cooker anyway, it's usually a sandwich for me. … But when you're living on your own, it's not 

worth really putting the cooker on just for one person. I might put the stove top on and heat 

up a tin of soup or something like that, but then I can usually put that in the microwave, it's 

quicker in there than anywhere else’ (User 3) 

Two participants mentioned that they wouldn’t feel able to be flexible with electricity 

use in the evening, for example: ‘Well, not the way I live at the moment ... the main meal is in 

the evening if I'm home, so that would be difficult. There's nothing much else ... so there's not 

much else I could reduce really’ (User 6). 

Demand reduction.  All five respondents said that they had limited potential to reduce 

electricity demand. Of the three who mentioned there wasn’t much they could do, three 

considered they were already at their minimum electricity usage, such as ‘There's not a lot I 

could do really, because I'm all electric so I haven't any gas, I've no alternative.... I don't 

think I could reduce apart from the storage heaters, they could be turned  down. I haven't had 

this one in the sitting room up to its maximum at all. When I last talked to Southern Electric, 

they said that the biggest part of your bill is the economy 7 part’ (User 6). The other two 

mentioned small behavioural changes, such as ‘Might not use the cooker. I definitely don't 

use the TV during the day. Probably in the weekend maybe for an hour or so’ (User 3); and ‘I 

believe I'm already at the minimum [consumption]’ (User 4). 

 

Understanding the Hestia equipment. Two participants said that they understood a 

little what the equipment was doing (User 1, User 2); and one mentioned that they 
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understood, but would like more explanation:  ‘the graph ... when you look at the data, 

there's a graph on there, I don't understand that as much ... but probably when someone 

comes to see me they can explain more about it. ...all in the booklet that was left with me, 

which I read.’ (User 3) 

Understanding the display. One participant looked at the display several times a day 

‘I've had it now for it must be a week now, I check it every day, it’s fascinating, I've never 

had the opportunity to see usage.’ (User 1); while three other participants look at it once a 

day (User 2, User 3, User 6): ‘I check it daily, just to see what I'm using at that time.’ (User 

6). 

Controlling heating. There were mixed experiences of understanding the display and 

control interface. One participant understood and was using it well, for example: ‘Oh yes you 

can put the heating up, yes I've used it yes, I'm using it through the tablet for the living room. 

The living room I've had to put up … it was very cold Sunday night’ (User 2). Another 

participant had problems understanding the interface: ‘They provided me with a tablet, and I 

cannot use it. I am not computer literate’ (User 4).  

 

5. Discussion 
 

The results indicate that this system for managing thermal storage has broadly met its 

objectives. The shaping of demand is very effective in lowering the peak demand from 

electric heating, so would free up headroom in distribution network capacity for growth in 

electric heating and electric car charging. An increasing proportion of heating demand has 

been diverted to the middle of the day where it was partly or wholly supplied by PV 

generation.  However it was found that because of the need to charge a storage heater before 

the heat it holds is delivered there is a limit to the proportion of space heating energy that can 

be supplied within the mid-day low tariff period that also corresponds to the time when useful 
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PV generation is available.  In the case of water heating it is evident that the automatic 

mechanism that ensured some hot water was always available caused some demand to occur 

during the early evening tariff peak. In contrast under ‘Economy 7’ no automatically 

controlled demand can be placed outside the 7 hour overnight interval.  

The marked differences in energy consumption between users, despite all being single 

occupants of nearly identical dwellings, give a strong indication of the interaction between 

energy use behaviour and the impact of this technology.  Users 1, 2 and 5 made relatively 

little use of the user interface so the control unit determined the amount of energy delivered 

to both the storage heaters and hot water tank.  User 6 intervened to manage hot water heating 

manually, as can be seen in hour 1 of Fig. 9E, but left the control unit to manage the storage 

heaters. For users 1, 5, and 6 this results in a modest energy saving over a year, whereas for 

User 2 the saving is substantial, probably because prior to intervention they did not use the 

manual storage heater input control effectively.  User 4 made frequent use of the user 

interface to control heating, while User 3 intervened to turn storage heating off at the wall 

switch preventing the control unit from having any effect.  These two had the lowest energy 

use prior to intervention, but the control unit was unable to deliver energy savings that were 

additional to the users’ own efforts and for User 3 caused an increase in consumption.  This 

outcome is consistent with wider research concerning heating controls. For example a DECC 

study [30] identified five behavioural archetypes including “rationers” who manually control 

heating to minimise cost and “hands-off” who leave controls alone if they are delivering 

adequate comfort. Users 3 and 4 correspond to the former group and 1, 2 and 5 the latter.   

  The cost comparison in Table 3, showing useful potential savings for four out of six 

users and no significant impact for the other two, suggests that the business model 

represented by the project tariffs combined with the demand shaping technology can produce 

benign outcomes for a range of user behaviours and consumption patterns.  The cost saving 
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shown for User 3 despite an increase in consumption arises because their usage matches the 

project tariffs better than ‘Economy 7’, as does that of User 4.  Had the users actually been 

paying the project tariff it would have been possible to optimise the control signal more 

closely to that tariff and thereby deliver further cost savings, whereas under the trial the 

signal was a compromise that mitigated the increase in their incurred costs resulting from 

movement of demand out of the low tariff 7-hour overnight period.  This provides some 

confirmation of the conclusion in [31] that fuel-poor households could benefit from time-of-

use and real time tariffs, given supportive technology that allows them to place demand when 

surplus renewable energy is available and avoid high cost peak demand periods.  In the 

longer term, the more efficient use of the distribution network demonstrated by this system 

should give rise to the considerable “smart grid” savings identified in [1].   

With effective regulation these savings, which could not be reflected in the project 

tariffs, should be passed on to the consumers who generate them through their acceptance and 

use of demand response technology combined with more complex tariffs.  However it is 

important to note that the users in this project have been assisted by intensive engagement of 

the project team to explain and discuss the novel aspects of the concept and respond to the 

kind of concerns exemplified by the user quotations above.  This confidence-building activity 

will be essential in any larger deployment. 

To fully exploit the investment involved in a large scale deployment of this technology, 

further work is needed to develop its potential for contributing to the balancing services 

procured by the UK national system operator (National Grid).  These services [32] require the 

provider to deliver a short term increase or decrease in electricity demand in response to a 

signal from the system operator, or in response to variations in the supply frequency.  This 

trial has demonstrated the capability of the Hestia control units to reconcile user needs and 

preferences with those of the retail electricity supplier, so it is a logical and feasible step to 
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include requests for balancing services in the reconciliation.  The server system shown in 

Figure 6 could aggregate and record a valuable overall response from the subset of Hestia 

units, within a potentially large population, that would be able to act on a given service 

request without compromise to the user needs or comfort.    

 

 

6. Conclusions 
 

  This trial has sought to show how legacy storage heating can be updated to provide a 

valuable service to its users and the community at large in the era of smart metering and the 

smart grid.  This has required a fully integrated realisation of many of the features widely 

regarded as necessary in an electricity system that can cope with increasing renewable 

generation and increasing demand from electric heating and vehicles.  These include: 

 automated demand response that prioritises user needs; 

 automated demand control that responds to signalling from the electricity 

supplier in a way that flattens the daily profile of demand and increases 

consumption of local generation; 

 a complex tariff scheme combining static time-of-day and real-time pricing; 

 an accessible and supportive user interface that combines smart meter functions 

with heating control to make efficient use of energy storage; 

 an effective programme of user engagement.       

The quantitative and qualitative results obtained show that this synthesis of smart grid 

elements has been broadly successful in achieving its aims for this small group of consumers. 

There are three critical lessons learned from the user experience that should be applied to any 

larger scale implementation. First, that it must be easily possible for users who prefer to 

manage their energy use in a hands-on way to continue to do so even if this means overriding 
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the demand response.  These are often very frugal users.  Secondly, complex tariffs need not 

be unacceptably confusing if their exploitation is supported by the technology and they are 

reasonably intuitive.  In this case users needed only to look out of the window to know when 

cheap PV electricity was available. The third, related, lesson has been that the demand 

response was achieved through a combination of carefully-designed technology, knowledge 

transfer and confidence-building, with skilled friendly people available to explain the new 

arrangements and respond to concerns. 
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