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Abstract. As a three-dimensional object, there are a number of ways
of slicing a generalised type-2 fuzzy set. In the context of the Mam-
dani Fuzzy Inferencing System, this paper concerns three accepted slic-
ing strategies, the vertical slice, the wavy slice, and the horizontal slice
or α-plane. Two ways of defining the generalised type-2 fuzzy set, ver-
tical slices and wavy slices, are presented. Fuzzification and inferencing
is presented in terms of vertical slices. After that, the application of all
three slicing strategies to defuzzification is described, and their strengths
and weaknesses assessed.
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1 Introduction

Type-2 fuzzy sets are an extension of type-1 fuzzy sets in which the sets’ mem-
bership grades are type-1 fuzzy sets. The concept dates back to Zadeh’s seminal
paper of 1975 [30]. They take two forms, the interval, for which all secondary
membership grades are 1, and the generalised, where the secondary membership
grade may take any value between 0 and 1. For the computationally simpler inter-
val type-2 Fuzzy Inferencing System (FIS) [24] applications in areas such as con-
trol, simulation and optimisation have been developed [1–6]. So far, generalised
type-2 fuzzy applications are few in number [18, 20, 24]. This is attributable to
the enormous computational complexity of generalised type-2 fuzzy inferencing.
Strategies have been developed that reduce the computational complexity of all
stages of the generalised type-2 FIS [14, 15, 22, 33], and of particular relevance
to this paper, [21]. In [11] three of these strategies are evaluated.

Uncertainty is ineradicably present in the factors upon which decisions are
made. The ability to deal with uncertainty is desirable in an FIS because better
uncertainty handling gives more accurate outputs. The interval type-2 fuzzy set,
an enhancement of the ubiquitous type-1 fuzzy set, has an inbuilt facility to han-
dle uncertain inputs. However the generalised type-2 fuzzy set, an augmentation
of the interval type-2 fuzzy set, provides uncertainty handling that is subtle and
sophisticated [16]. More generalised type-2 applications are desirable, since at
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present the generalised type-2 fuzzy set’s remarkable facility for dealing with
uncertainty is not being fully exploited (Subsection 5.1).

The focus of this paper is the Mamdani FIS3 (Fig. 1), in which a crisp
numerical input passes through three stages of processing: fuzzification, infer-
encing, and lastly, the crucial stage of defuzzification. Through defuzzification,
the aggregated set produced during the inferencing stage is converted into a crisp
number which is the output of the FIS. For discretised type-1 fuzzy sets, defuzzi-
fication is a simple procedure, with several defuzzification techniques available
including the centroid, centre of maxima and mean of maxima [19]. In contrast,
defuzzification of a discretised type-2 fuzzy set (as formed in a type-2 FIS) is a
process consisting of two stages [23]:

1. Type-reduction, which converts a type-2 fuzzy set to a type-1 fuzzy set known
as the Type-Reduced Set (TRS), and

2. defuzzification of the type-1 TRS.

FUZZIFICATION

INFERENCING

CRISP INPUTS

ANTECEDENT 

COMPUTATION

IMPLICATION

AGGREGATION

AGGREGATED TYPE-2 

FUZZY SET

TYPE-2 FUZZY INPUTS

TYPE-2 

DEFUZZIFI-

CATION

TYPE-REDUCTION

TYPE-1 

DEFUZZIFICATION

CRISP OUTPUT

TYPE-2 

FUZZY 

SETS

FUZZY 

RULES

Fig. 1. The Mamdani Type-2 FIS.

3 The alternative is the Takagi-Sugeno-Kang FIS for which the output membership
functions are either linear or constant; defuzzification is superfluous as the outputs
may be aggregated via a simple weighted sum.
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The paper is structured as follows: The next section presents two ways of
defining the generalised type-2 fuzzy set (vertical slices and wavy slices). Section
3 describes the join and meet inferencing algorithms which employ vertical slices.
Section 4 concerns type-2 defuzzification approaches based on wavy slices, ver-
tical slices and horizontal slices (α-planes). Lastly, Sect. 5 concludes the paper.

2 Defining the Type-2 Fuzzy Set

This section describes how the type-2 fuzzy set may be defined through either
vertical slices or wavy slices.

2.1 The Vertical Representation

Let X be a universe of discourse. A type-1 fuzzy set A on X is characterised by
a membership function µA : X → [0, 1] and can be expressed as follows [29]:

A = {(x, µA(x))| µA(x) ∈ [0, 1] ∀x ∈ X}. (1)

Let P̃ (U) be the set of fuzzy sets in U . A type-2 fuzzy set Ã in X is a fuzzy
set whose membership grades are themselves fuzzy [30–32]. This implies that
µÃ(x) is a fuzzy set in U for all x, i.e. µÃ : X → P̃ (U) and

Ã = {(x, µÃ(x))| µÃ(x) ∈ P̃ (U) ∀x ∈ X}. (2)

It follows that ∀x ∈ X ∃Jx ⊆ U such that µÃ(x) : Jx → U. Applying (1) gives:

µÃ(x) = {(u, µÃ(x)(u))| µÃ(x)(u) ∈ U, ∀u ∈ Jx ⊆ U}. (3)

X is called the primary domain and Jx the primary membership of x while U
is known as the secondary domain and µÃ(x) the secondary membership of x.
Putting (2) and (3) together we obtain

Ã = {(x, (u, µÃ(x)(u)))| µÃ(x)(u) ∈ U, ∀x ∈ X ∧ ∀u ∈ Jx ⊆ U}. (4)

Definition 1 (Vertical Slice [24]). A vertical slice of a type-2 fuzzy set is a
plane through the x-axis, parallel to the u− z plane.

2.2 The Wavy Slice Representation Theorem

An embedded type-2 fuzzy set (embedded set) or wavy slice [11, 24] (Fig. 2) is a
special kind of type-2 fuzzy set, which relates to the type-2 fuzzy set in which it
is embedded in this way: For every primary domain value, x, there is a unique
secondary domain value, u, plus the associated secondary membership grade
that is determined by the primary and secondary domain values, µÃ(x)(u).
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Fig. 2. Two embedded type-2 fuzzy sets, indicated by different flag styles. The flag
position in the x − u plane shows the primary membership grade. The flag height
indicates the secondary membership grade.

Definition 2 (Embedded Set). Let Ã be a type-2 fuzzy set in X. For discrete
universes of discourse X and U , an embedded type-2 set Ãe of Ã is defined as
the following type-2 fuzzy set

Ãe = {(xi, (ui, µÃ(xi)(ui)))| ∀i ∈ {1, . . . , N} : xi ∈ X ui ∈ Jxi
⊆ U}. (5)

Ãe contains exactly one element from Jx1
, Jx2

, . . . , JxN
, namely u1, u2, . . . ,

uN , each with its associated secondary grade, namely µÃ(x1)(u1), µÃ(x2)(u2),
. . ., µÃ(xN )(uN ).

Mendel and John have demonstrated that a type-2 fuzzy set is definable as
the union of its embedded type-2 fuzzy sets [11, 24]. This result is known as the
type-2 fuzzy set Representation Theorem or wavy slice Representation Theorem,
and is formally stated thus [24, Page 121]:

Let Ãj
e denote the jth type-2 embedded type-2 fuzzy set for type-2 fuzzy

set Ã, i.e.,

Ãj
e ≡

{(
xi,
(
uji , µÃ(xi)(u

j
i )
))

, i = 1, . . . , N
}
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where {uji , . . . , u
j
N} ∈ Jxi

. Then Ã may be represented as the union of
its embedded type-2 fuzzy sets, i.e.,

Ã =

n∑
j=1

Ãj
e, where n ≡

N∏
i=1

Mi.

3 Type-2 Fuzzy Inferencing using Vertical Slices

In this section the join and meet algorithms for fuzzification of, and inferencing
with, discretised generalised type-2 fuzzy sets are presented [23].

The formula for the join operation of two discretised type-2 fuzzy sets Ã and
B̃ is

µÃ∪B̃(x) =
∑
u∈Ju

x

∑
w∈Jw

x

fx(u) ? gx(w)/(u ∨ w) x ∈ X, (6)

and the formula for the meet operation is

µÃ∩B̃(x) =
∑
u∈Ju

x

∑
w∈Jw

x

fx(u) ? gx(w)/(u ∧ w) x ∈ X, (7)

where ∨ is the maximum operator, ∧ is the minimum operator, ? signifies a
t-norm, and

∑∑
represents union over Ju

x × Jw
x .

Join and meet operations proceed vertical slice by vertical slice4, so it is
sufficient to specify how these operations may be applied to two slices. Let Ã
and B̃ be two type-2 fuzzy sets, in which the co-domains are discretised into N
slices, and the domains sliced vertically at the points xÃ and xB̃ respectively.
Two type-1 fuzzy sets,

SÃ = {zA1
/uA1

+ zA2
/uA2

+ · · ·+ zAN
/uAN

},

SB̃ = {zB1/uB1 + zB2/uB2 + · · ·+ zBN
/uBN

},

are generated. To join these two slices necessitates that all N2 possible min /max
pairings of SÃ and SB̃ be created: min(zA1 , zB1)/max(uA1 , uB1)+min(zA1 , zB2)/
max(uA1

, uB2
)+ · · ·+min(zAN

, zBN
)/ max(uAN

, uBN
). Similarly, for meet, pair-

ings are generated as follows: min(zA1
, zB1

)/min(uA1
, uB1

) + min(zA1
, zB2

)/
min(uA1

, uB2
) + · · ·+ min(zAN

, zBN
)/ min(uAN

, uBN
).

The next stage is the same for join and meet. For every resultant domain
value (‘denominator’) generated, the maximum membership grade (‘numerator’)
is selected. The resultant set of pairs is the join or meet of the two slices.

4 Approaches to Type-2 Defuzzification

This section summarises and evaluates generalised type-2 defuzzification ap-
proaches based on wavy slices, vertical slices and horizontal slices.

4 The optimised inferencing algorithms described in [15] employ vertical slices.
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4.1 Exhaustive Defuzzification

The strategy known as Exhaustive Defuzzification, (so called because every em-
bedded set is processed in turn), is built upon the foundation of the wavy slice
Representation Theorem [24] and is therefore precise 5 [24]. However it is a very
inefficient method owing to its high computational complexity deriving from the
large number of embedded sets. Its first and main stage consists of type-reduction
of the type-2 fuzzy set to form the TRS [11], defined thus:

Definition 3. The TRS associated with a type-2 fuzzy set Ã with primary do-
main X discretised into N points X = {x1, x2, . . . , xN}, is

CÃ =

{(∑N
i=1 xi · uki∑N

i=1 uki

, µÃ(x1)(uk1
) ∗ . . . ∗ µÃ(xN )(ukN

)

)∣∣∣∣∣
∀(uk1

, uk2
, . . . , ukN

) ∈ Jx1
× Jx2

× . . .× JxN
⊆ UN

}
,

(8)

where ∗ is a t-norm.

Embedded sets (Fig. 2) are referred to implicitly in 8 and explicitly in Algorithm
1.

Input: a discretised generalised type-2 fuzzy set
Output: a discrete type-1 fuzzy set (the TRS)

1 forall the embedded sets do
2 find the minimum secondary membership grade (z) ;
3 calculate the primary domain value (x) of the type-1 centroid of the

embedded type-2 fuzzy set ;
4 pair the secondary grade (z) with the primary domain value (x) to give set

of ordered pairs (x, z) {x-values may correspond to multiple z-values} ;

5 end
6 forall the primary domain (x) values do
7 select the maximum secondary grade {make each x correspond to a unique

value} ;

8 end

Algorithm 1: Exhaustive type-reduction of a discretised type-2 fuzzy set
to a type-1 fuzzy set, adapted from Mendel [23].

4.2 Vertical Slice Centroid Type-Reduction

VSCTR is a highly intuitive method employed by John [17]; the paper of Lucas
et al. [22] renewed interest in this strategy. In this approach each vertical slice of

5 Discretisation in itself brings an unavoidable element of approximation. However the
exhaustive method does not subsequently introduce further inaccuracies.
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the type-2 fuzzy set is defuzzified as a type-1 fuzzy set. By pairing the domain
value with the defuzzified value of the vertical slice, a type-1 fuzzy set is formed,
which is easily defuzzified to give the defuzzified value of the type-2 fuzzy set.
Though chronologically preceding it, this method is a generalisation of the Nie-
Tan Method for interval type-2 fuzzy sets.

Input: a discretised generalised type-2 fuzzy set
Output: a discrete type-1 fuzzy set (the TRS)

1 forall the vertical slices do
2 find the defuzzified value using the centroid method ;
3 pair the domain value of the vertical slice with the defuzzified value to

give set of ordered pairs (i.e. a type-1 fuzzy set) ;

4 end

Algorithm 2: VSCTR of a discretised type-2 fuzzy set to a type-1
fuzzy set.

In [10], VSCTR performed well for both efficiency and accuracy when com-
pared experimentally with other generalised type-2 defuzzification techniques
against benchmark values generated by exhaustive defuzzification. The exper-
iments reported in [9] demonstrate that the Nie-Tan defuzzified value (of the
interval type-2 fuzzy set) approximates to the exhaustive defuzzified value more
closely as domain discretisation becomes finer.

4.3 The α-Plane Representation

Another recognised technique for the defuzzification of generalised type-2 fuzzy
sets employs the α-Planes Representation, proposed by Liu in 2008, [21, 25]6.
In this strategy a generalised type-2 fuzzy set is decomposed into a set of α-
planes, which are horizontal slices equivalent to interval type-2 fuzzy sets. Each
α-plane is then defuzzified via the Karnik-Mendel Iterative Procedure (KMIP)
[21], so forming an approximation to the TRS. Defuzzifying the resultant type-1
fuzzy set gives a defuzzified value for the generalised type-2 fuzzy set. Below this
method is presented algorithmically (Algorithm 3), and diagrammatically (Fig.
3).

Though the α-Planes Method was envisaged by Liu as being used in conjunc-
tion with the KMIP [21], any interval defuzzification method may be used. Any
variation on the KMIP, such as the Enhanced Iterative Algorithm with Stop
Condition (EIASC) [28] will locate the endpoints of the TRS interval. Other in-
terval methods, such as the Greenfield-Chiclana Collapsing Defuzzifier [12, 13],
or the Nie-Tan Method [26], will defuzzify the α-plane [8]; their defuzzified val-

6 Independently of Liu, and at about the same time, Wagner and Hagras introduced
the notion of zSlices [27], a concept very similar to that of α-planes
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Input: a discretised generalised type-2 fuzzy set
Output: a discrete type-1 fuzzy set

1 decompose the type-2 fuzzy set into α-planes ;
2 forall the α-planes do
3 find the left and right endpoints using the KMIP ;
4 pair each endpoint with the α-plane height to give set of ordered pairs,

i.e. a type-1 fuzzy set {each α-plane is paired with two endpoints } ;

5 end

Algorithm 3: Type-reduction of a type-2 fuzzy set to a type-1 fuzzy
set using the α-Plane Method.

Alpha-Plane

Representation
Union

Centroid Type-

Reduction for Interval

Type-2 Fuzzy Set

Centroid Type-

Reduction for Interval

Type-2 Fuzzy Set

Type-2

Fuzzy Set

Alpha-Plane #1

Alpha-Plane #M

Alpha-Cut #1

Alpha-Cut

#M

Type-1

Fuzzy Set

Fig. 3. Type-reduction using the α-Planes Representation (from Liu [21]).

ues (located in the vicinity of the centre of the interval) may then be formed
into a type-1 fuzzy set equivalent to the TRS.

In [10] the α-Planes Method has been shown to be inferior to two generalised
defuzzification techniques, the Sampling Defuzzifier [14] and Vertical Slice Cen-
troid Type Reduction (VSCTR) [22], in relation to both accuracy and efficiency.
The concept of the truncated generalised type-2 fuzzy set is introduced in [7],
where it is shown that applying the α-planes strategy to the truncated type-2
fuzzy set makes for more efficient defuzzification, since there are fewer α-planes
to process. Intuitive, one might expect that accuracy would also be improved, as
irrelevant α-planes (between the maximum secondary membership grade and the
truncation grade) would be eliminated and therefore not be able to distort the
defuzzified value. However experiments show this not to be the case; in 22 out of
25 instances truncation worsens accuracy [7]. This points to deeply entrenched
issues with the method’s accuracy.

5 Conclusion

Generalised type-2 fuzzy sets may be defined through vertical slices, or equiva-
lently, through wavy slices. The join and meet algorithms which drive the fuzzi-
fication and inferencing stages of the FIS are always implemented via vertical
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slices. Regarding defuzzification, approaches have been derived from each of the
three slicing techniques. Exhaustive defuzzification, based on the wavy slice rep-
resentation, is absolutely precise but prohibitively inefficient. VSCTR has been
shown experimentally to provide an excellent approximation to the exhaustive
method, and to be the fastest of the three techniques. Experiments have shown
the α-Planes Method to be inferior to VSCTR as regards both speed and accu-
racy [10].

5.1 Further Work

In order to exploit the generalised type-2 fuzzy set’s particular ability for uncer-
tainty handling, more generalised type-2 applications need to be created. This
requires the development of optimised algorithms to overcome the problem of
computational complexity in generalised type-2 fuzzy inferencing. The research
reported in [10, 15] shows the progress already made towards this objective.
However further efficiencies are feasible in both inferencing and defuzzification.

ExpressJAM: The FastJAM (Fast Join and Meet) optimisation [15] reduces
computational complexity in the FIS inferencing stages. Initial work has begun
on ExpressJAM (Express Join and Meet), a further optimisation of FastJAM
that applies to the particularly complex aggregation substage of the inferencing
stage, and is optimisable yet further in software via parallel processing.

Generalised Greenfield-Chiclana Collapsing Defuzzifier: The Greenfield-
Chiclana Collapsing Defuzzifier is an interval type-2 method whose superiority
over other interval methods is demonstrated in [10]. Generalisation of this inter-
val technique to the generalised type-2 fuzzy set will result in the Generalised
Greenfield-Chiclana Collapsing Defuzzifier.
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