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ABSTRACT

Standard security mechanism such as Access control, Firewall and Encryption only

focus on controlling the release of information but no limitations are placed on con-

trolling the propagation of that confidential information. The principle problem of

controlling sensitive information confidentiality starts after access is granted. The

research described in this thesis belongs to the constructive research field where the

constructive refers to knowledge contributions being developed as a new framework,

theory, model or algorithm. The methodology of the proposed approach is made up

of eight work packages. One addresses the research background and the research

project requirements. Six are scientific research work packages. The last work pack-

age concentrates on the thesis writing up.

There is currently no monitoring mechanism for controlling information flow

during runtime that support behaviour configurability and User interaction. Con-

figurability is an important requirement because what is considered to be secure

today can be insecure tomorrow. The interaction with users is very important in

flexible and reliable security monitoring mechanism because different users may have

different security requirements. The interaction with monitoring mechanism enables

the user to change program behaviors or modify the way that information flows while

the program is executing. One of the motivation for this research is the information

flow policy in the hand of the end user.
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The main objective of this research is to develop a usable security mechanism for

controlling information flow within a software application during runtime. Usable

security refers to enabling users to manage their systems security without defining

elaborate security rules before starting the application. Our aim is to provide us-

able security that enables users to manage their systems’ security without defining

elaborate security rules before starting the application. Security will be achieved by

an interactive process in which our framework will query the user for security re-

quirements for specific pieces of information that are made available to the software

and then continue to enforce these requirements on the application using a novel

runtime verification technique for tracing information flow.

The main achievement of this research is a usable security mechanism for con-

trolling information flow within a software application during runtime. Security will

be achieved by an interactive process to enforce user requirements on the application

using runtime verification technique for tracing information flow. The contributions

are as following.

� Runtime Monitoring: The proposed runtime monitoring mechanism en-

sures that the program execution are contains only legal flows that are defined

in the information flow policy or approved by the user.

� Runtime Management: The behaviour of a program that about to leak

confidential information will be altered by the monitor according to the user

decision.

� User interaction control: The achieved user interaction with the monitoring

mechanism during runtime enable users to change the program behaviors while

the program is executing.
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Chapter 1

Introduction

Objectives

� Motivate the needs of information flow control.

� Highlight the original contribution and identify the research question.

� Provide the research methodology and define the success criteria.

� Provide the thesis organization.
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CHAPTER 1. INTRODUCTION

1.1 Introduction

As our businesses, government and military become increasingly dependent on mod-

ern information technology, computer application security protection against mali-

cious code and software system bugs become increasingly important. The more sen-

sitive the information, such as credit card data, government intelligence, military

or personal medical information being processed by software, the more important

it is to ensure information confidentiality. The leakage of confidential information

may cause financial damage in case of loss or destroy private or sensitive secret in-

formation. As an example Trusted Solaris Sun Microsystems (2000) uses a security

technique that determines which information is accessible by users, using a manda-

tory access control mechanism.

However, in many cases discretionary access mechanisms that are usable, reliable

and can protect the confidentiality and integrity of sensitive information accessed

by any untrusted software are more suitable as they do not involve the source level

of administration and grant users discretion about how their information is being

used. Information flow occurs from a source (subject) to a target or destination

(object) whenever information stored in a source is propagated directly or indirectly

to a target object. An example flow would be the copying of a file into an email that

is subsequently sent through the network. The following informal example illustrate

this.

Assuming that some sensitive information is stored on a computer system, how

can we prevent it from being leaked? The first approach that comes to mind is to

limit access to this sensitive information, by using any type of access control mecha-

nisms or using encryption or firewalls mechanisms. These are very useful approaches

which, however, have their limitations. Standard security mechanisms are focused

only on controlling the release of information but no restrictions are placed on the
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propagation of that information and thus are unsatisfactory for protecting confiden-

tial information. For this reason, the proposed approach of this thesis is controlling

the flow of the information from source to destination during runtime based on Java

bytecode instrumentation.

1.2 Scope of the Thesis

Standard security mechanisms such as Access control, Firewall and Encryption (An-

derson 2001, Bishop 2003) only focus on controlling the release of information but

no limitations are placed on controlling the propagation of that confidential informa-

tion. The approach controls the flow of the information only within one application.

The scope of the thesis includes in particular.

� Configurable information flow Configurability is an important requirement

because what is considered to be secure today can be insecure tomorrow. A

property of configurable information flow is that it provides flexible security

mechanisms that can control changeable security requirements.

� User interaction control Interaction with users is very important in flexible

and reliable security monitoring mechanism because different users may have

different security requirements. These cannot always be anticipated prior to

the execution of the program. Users interact with a monitoring mechanism

during runtime, enabling them to change program behaviours or modify the

way that information flows.

This research is part of a wider research project that addresses information flow

and dissemination control in a wider information system context. The focus is on a

single Java application that represents untrusted code. This is particularly relevant

in the light of increasing smart phone applications that are freely available to a very
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large number of users. End users have little or no assurance that the execution of

there (apps) does not communicate their personal information to untrusted parties.

1.3 Research Question

The overall and the central research question investigated in this thesis is.

How to control information flow from source to destination during the

runtime of an application and with support of user interaction.

In order to answer the central research question, a set of common issues has been

defined to address the problems of information flow control in detail:

� Dynamic information flow policy.

� User ability to modify the flow policy during runtime in response to incidents.

� Changing the programs behaviour that is leaking confidential information ac-

cording to the user decision.

1.4 Original Contribution

The main contribution of this research is to develop a usable security mechanism for

controlling information flow within a software application during runtime. Usable

security refers to enabling users to manage their systems security without defining

elaborate security rules before starting the application. Security will be achieved by

an interactive process in which our framework will query the user for security re-

quirements for specific information that are made available to the software and then

continue to enforce these requirements on the application using runtime verification

technique for tracing information flow. The original contributions of the thesis are

as follows:

4
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� Runtime Monitoring: The monitoring mechanism ensures that the program

contains only legal flows those are defined in the information flow policy or

approved by the user. Traditional runtime monitoring are not suitable for

monitoring information flow or managing the program behaviour at runtime,

as there is no feedback from the monitor to the observed software.

� Runtime Management: The behaviour of a program leaking confidential

information will be altered by the monitor according to the user decision.

Analysing the impact of a user or policy induced program alteration with the

program original functional requirements is an open question.

� User interaction control: The achieved user interaction with the monitor-

ing mechanism during runtime enable users to change program behaviours or

modify the way that information flows while the program is executing. To our

knowledge these have not been done before.

1.5 Research Methodology

The research method used in this approach is a typical scientific research technique

(Wilson 1991). As in the majority of the computer science approaches the described

research belongs to the constructive research field where the constructive refers to

knowledge contributions being developed as a new framework, theory, model or

algorithm.

The methodology of the proposed approach is made up of eight work packages. One

addresses the research background and the research project requirements. Six are

scientific research work packages. The last work package concentrates on the thesis

writing up. The investigation work packages are illustrated in Figure 1.1.

5
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Theory of information flow

Prototype implementation of tracing information flow

Evaluation

Writing up

Research background

Policy based management framework to express information flow

Algorithmic Development

Information flow policy and user interaction

Architecture

Figure 1.1: Research work packages

� Work package 1: The research background.

The research background will start with a theoretical literature review in-

cluding understanding of all approaches related to the research question. To

achieve the objective of this step, digital resources such as the Google search

engine, IEEE Xplore, SpringerLink, ACM Digital Library and CiteSeer are

going to be used.

� Work package 2: Architecture.

This work package will focus on the design of the framework architecture to

6
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capture the research objectives as expressed in the research question. This

work package will specify all components of the proposed framework. The

research in this work package explicitly states how the framework components

interact to achieve the research objectives. In this work package the work is

split into two tasks.

1. Policy model for information flow control.

2. User interaction.

� Work package 3: Theory of information flow.

The research investigation in this stage will focus on the development of a

novel theory for controlling information flow which supports user interaction

during runtime. This work package is split into two tasks.

1. Direct information flow control.

2. Indirect information flow control.

� Work package 4: Algorithmic Development.

This research work package investigates each of the Java program phases be-

fore execution such as loading, linking and initialization. The main part of

this work package is focused on providing a new instrumentation algorithm

to monitor the program behaviour and to provide a flexible instrumentation

mechanism that is applicable to Java bytecode. In this work package the

research will concentrate on describing the architecture used to validate infor-

mation flow requirements expressed as policies using runtime verification. This

work package focus on the Java bytecode instrumentation process to monitor

and control the target program behaviour with the respect of the information

flow policy. This work package is split into two tasks.

1. Loading of Java bytecode.

7
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2. Java bytecode instrumentation algorithms.

� Work package 5: Information flow policy and user interaction.

The investigation in this work package will concentrate on how to monitor and

control the flow of the information with respect to an information flow policy.

The main objective is to show how the user interacts with the monitoring

mechanism, the user ability to change the program behaviour and modifying

the information flow policy during runtime. The research in this work package

is split into two tasks.

1. Development of an information flow policy.

2. User feed back.

� Work package 6: Prototype implementation of tracing information flow.

This work package of the research will describe the design and implementa-

tion of our prototype for tracing the information flow which depends on the

completion of work package 5.

� Work package 7: Evaluation.

After building the architecture of the runtime monitoring mechanism the ef-

fectiveness evaluation of the proposed approach will take place using small but

representative case studies.

This work package is split into two tasks.

1. A small scale case study that shows how a Java program will be traced.

2. A medium scale case study of file sharing system showing how the infor-

mation flow will be controlled.

This work package demonstrates the practical applicability of the presented

research. A conclusion was provided from the experiences of the evaluation

8
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phase. A number of potential extensions for this research study was raised to

motivate further investigation in the field of information flow.

� Work package 8: Write up.

Writing up of the thesis which is based on the results of all work packages.

1.6 Success Criteria

The measure of success is that both the framework model and their supporting

algorithm indeed resolve the proposed research question and demonstrate it by ex-

periments through the implementation prototype. The prototype demonstrates that

the research output results match the research objectives as follows:

� User ability to modify the flow policy during runtime in response to incidents.

� Modifying the behaviour of the program that is leaking confidential informa-

tion according to the user decision.

� With reasonable performance. Some experiments will be used to measure the

performance overhead in both computation time and memory usage.

1.7 Thesis Organisation

The previous sections have provided an overview of the thesis scope, original contri-

butions and research question of this thesis. The research was undertaken along a

theoretical to applied axis and was structured in work packages and was transformed

into thesis chapters in the writing up stage. The rest of the thesis is organised in

chapters as follows.

� Chapter 2 introduces basic concepts of security and information flow. This

chapter provides an introduction to the principles of security, static informa-

9
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tion flow analysis and dynamic information flow analysis. It gives an overview

of existing approaches of bytecode instrumentation and information flow con-

trol and discusses the difficulties and problems of the related research. This

chapter provides an introduction and critically reviews related work in the

areas of access control model and take grant model; Static information flow

analysis, dynamic information flow analysis, bytecode instrumentation, infor-

mation flow control, information flow analysis, program slicing and program

dependences techniques.

� Chapter 3 provides a general overview of the proposed framework and de-

scribes the framework architecture. In this chapter the focus is on how compo-

nents of the proposed framework interact to trace and control the information

flow within a Java application.

� Chapter 4 provides an introduction to Java bytecode, class loader in the

Java virtual machine and how Java class file will be instrumented in order to

monitor and control information flow within a Java application. The focus in

this chapter is on loading and instrumenting a target program. This chapter

also shows how Java bytecode instructions will be instrumented.

� Chapter 5 describes the second step of our runtime monitoring mechanism:

how a class file will be executed and monitored to control information flow

based on the information flow policy. This chapter describes the event recog-

nizer and runtime checker algorithms for controlling information flow within

a Java application.

� Chapter 6 discusses the information flow policy and user feedback compo-

nent. The chapter provides a general overview of information flow require-

ments and describes the information flow policy language. This chapter also

10
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focused on the user interaction with the runtime monitoring mechanism dur-

ing runtime to change the program behavior and modify the information flow

policy.

� Chapter 7 provides an introduction to high level design of the developed

prototype for controlling information flow. It also gives a brief introduction to

the runtime monitoring mechanism components that are used in the prototype

and how they interact to load, instrument and control the flow of information

in the target class files.

� Chapter 8 provides two case studies to illustrate the practical applicability

of the presented research. The first case study is provided to demonstrate the

work of instrumentation process, event recognizer and the runtime checker.

The second case study is presented to show how a Java class file will be traced

and monitored.

� Chapter 9 evaluates the research which has been described in this thesis and

discusses the limitations of the proposed approach.

� Chapter 10 summarises the research and proposes future work.

11



Chapter 2

Background and Related Research

Objectives

� Provide an introduction to the security principles, static information flow anal-

ysis and dynamic information flow analysis.

� Give an overview of existing approaches.

� Identify the difficulties and problems of the related research.

12



CHAPTER 2. BACKGROUND AND RELATED RESEARCH

2.1 Introduction

This chapter provides an introduction to the principles of security, static information

flow analysis and dynamic information flow analysis. It gives an overview of existing

approaches of bytecode instrumentation and information flow control and discusses

the difficulties and problems of the related research. This chapter is divided into

nine sections. Section 2.2 provides an introduction to security and a critical review

of related work in the areas of access control model and take grant model. Sec-

tion 2.3 introduces the notion of information flow control and highlights its different

types. Section 2.4 provides an introduction to static information flow analysis and a

critical review of related research in the areas of type system approaches and seman-

tic approaches. Section 2.5 discusses dynamic information flow analysis and gives

a critical review of related approaches in the areas of dynamic analysis at binary

code level, source code level and event level. Section 2.6 provides different mecha-

nisms of Java bytecode instrumentation. Section 2.7 critically reviews the related

research in the area of information flow control including explicit information flow

control and implicit information flow control. Section 2.8 presents some examples

of existing implementations of information flow analysis (JFlow, Flow Caml and

Bytecode verifier). Section 2.9 discusses different types of program slicing including

forward slicing, backward slicing, static slicing and dynamic slicing. Finally 2.10

presents program dependencies techniques including control dependencies and data

dependences.

2.2 Security

Security in information flow control can be defined as the prevention of sensitive

information to leak. Security in the context of information flow has the following

13



CHAPTER 2. BACKGROUND AND RELATED RESEARCH

three components.

� Requirements Information flow requirements should define the information

flow goals. They should provide the answer the question.

How the information should flow in the system?

� Information flow policy The information flow policy defines the meaning

of secure information flow. It provides the answer to the question.

What steps should be taken to detect and prevent the leak of the information?

� Information flow mechanisms The information flow mechanism enforces

the information flow policy. That should provide the answer to the question.

What tools and methods are used to ensure that the previous steps are followed?

2.2.1 Access Control Model

Access control mechanism is the first technique that has been developed and it is

widely deployed because of the assumptions that it enforces confidentially. This

assumption comes from the fact that the subject user and process can not leak

confidential information about any object without having access to that object.

Therefore, the main idea behind access control techniques is to place access restric-

tion on processes to limited the access to a number of objects. There exist various

access control models.

Discretionary Access Control (DAC) is the most used way of access control.

In this type of access the access rights of every subject on every object file should be
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explicitly stated by the owner of that object in a policy. The owner should also state

what privileges the subjects have on that object as in UNIX discretionary access

control used for data protection in a file system, where the owner of the object can

modify the access policy to control the access to it.

Mandatory Access Control (MAC) in this type of access control the policy is

under the control of an administrator not under the control of the owner. Each sub-

ject and object in mandatory access control has an associated security level security

clearance. The most popular example of mandatory access control is Bell-LaPadula

model (LaPadula & Bell 1973). In this model the decision of accessing an object

is taken by comparing the subject security level with the target or object security

level and the security levels form a lattice. Therefore, the subject can (access, read,

write, execute) object only if the subject security level is greater than or equal to

the object security level. In mandatory access control the Trusted Computing Base

(TCB) (H.Saltzer & D.Schroeder 1975) is usually used to compute the security level

of newly created data. Another example of MAC is the Chinese Wall Security Policy

(Brewer & Nash 1989).

Non-Discretionary Access Control (NDAC) is the third common access con-

trol mechanism which is based on the subject’s role or tasks assigned to the subject

to allow or reject object access. Non-discretionary access control is also called task-

based access control or role-based access control. It works well when security based

on roles or tasks is needed. As mentioned by Bandara (Bandara et al. 2007) ”au-

thority is vested in some users, but there are explicit controls on delegation and

propagation of authority”.

Of course these techniques are important and very useful for limiting the access of

data. However, these techniques are insufficient for protecting the confidentiality

of the information because, once the access is granted there is not any control the

propagation of that information.
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2.2.2 Take Grant Model

Another important security model that should be mentioned is provided by the Lip-

ton and Snyder (1977) Take Grant Protection Model. It is a formal model provided

to disprove or establish safety properties in a given system. This model uses directed

graph to present the subject access to an object. The nodes in the graph represent

subjects and objects. The edges between the subject and object are labeled and

indicate the access rights that the subject of the edge has over an object. The two

fundamental access rights in this model are take and grant rules.

� Take allows any subject s1 in the graph to take the rights of any other subject

s2.

� Grant allows any subject s1 in the graph to grant its own rights to any other

subject s2.

This model of dynamically rewriting rules in the graph describes acceptable changes

in the graph, e.g. adding new entities or creating new edges with respect to take

and grant rights (Janicke 2007).

2.3 Information flow control

Information flow control aims to fill the gaps left by standard security mechanism

(Anderson 2001, Bishop 2003) by considering the flow of the information within a

system when enforcing an information flow security policy. Information flow occurs

from source objects to target objects, whenever information is read from a source it

is potentially propagated to the target object. There are two types of information

flow direct information flow and indirect information flow (Genaim & Spoto 2005,

Denning & Denning 1977).
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2.3.1 Direct Information Flow

Direct information flow is defined as the operation that generates a flow between a

source and a target independent of any other objects. Direct information flow can

be explicit or implicit.

Direct explicit information flow

Direct explicit information flow is a data flow that arises at for example assignment

statements Listing 2.1 is an example of direct explicit information flow.

Listing 2.1: Example of direct explicit information flow

Dest := Source;

For statement Dest = Source in Listing 2.1 there is direct explicit flow

Source −→ Dest. i.e. a value is directly passing from the Source object to the Dest

object (see Figure 2.1).

Dest

Public Confidential

Leak
Source

Figure 2.1: Directly passing data value from Source to Destination

Direct implicit information flow

Direct implicit information flow is a data flow that arises from for example a condi-

tional statement, see Listing 2.2.

Listing 2.2: Example of direct implicit information flow

low:=0;

if high==1 then

low:=2

else

skip;

For statement if High==1 then in Listing 2.2 there is a direct implicit information
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flow High −→ Low since changes of the values of the High object are observable

from the values of the Low object.

Low = 2

High == 1

Public
Low = 0

True False

Leak high information to low

Figure 2.2: High process updates a low variable.

2.3.2 Indirect Information Flow

Indirect information flow means that there is an operation generating a flow from

a source to destination and the operation is dependent on the value of other ob-

jects. Indirect information flow, also called transitive flow arises for example as a

composition of direct information flow, see Listing 2.3.

Listing 2.3: Example of indirect information flow

x = y + z;,

w = x;

For statement x = y + z; in Listing 2.3 there is a direct information flow from

y and z to x (y −→ x , z −→ x) and in the second statement w = x; there is direct

information flow from x to w (x −→ w) which leads to an indirect information flow

from y to w and z to w (y −→ w and z −→ w), see Listing 2.3. Hence, direct

information flow does not require any mediation between the objects to exchange,

read, write or execute information. In contrast indirect information flow always

requires mediation between two objects (Zhang & Yang 2002, Herrmann 2001).
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Direct

Y

X W

Z

Direct

Direct

Indirect

Indirect

Figure 2.3: High process updates a low variable.

2.4 Static Information Flow Analysis

The static verification involves the analysis of source text by humans or software

which can help to discover errors early in the software process (Havelund & Gold-

berg 2005). Security requirements in information systems change more frequently

than functional requirements especially when new users or new data is added to the

system. Runtime verification (Janicke et al. 2005, Kim et al. 1999, Lee et al. 1998)

has been used to increase the confidence that the system implementation is correct

by making sure it conforms to its specification at runtime. Static information flow

analysis is a form of information flow analysis that does not require the system to

be executed or operated. The majority of information flow analyses approaches are

based on static information flow analysis, that attempt to analyse how information

flows in the software to determine whether it obeys some predefined policy with

respect to an information flow without running the program (Banerjee & Naumann

2005, Myers 1999). Software inspection is one of the most important form and

widely used techniques for static analysis in the earlier stages of the software de-

velopment. Software inspection is concerned with detecting software defects such

as Fagan inspection (Fagan 1986, Michael Fagan Associates 2010) that is a process

focused on detecting faults in the software development life cycles. NASA also has

another process that inspect software statically called Software Formal Inspection
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Process Standard (NASA 1993, SATC 2002).

The research domain in the field of static analysis for information flow has been

influenced by the proposed work of Goguen and Meseguer (1982) where they define

the notion of non-interference as handling the occurrence of illegitimate information

flow in a system specification. Suppose that two security level of confidentiality high

and low exist and that highly secret data should never flow to low level subjects.

Non-interference declares that information cannot flow from high to low whenever

high level cannot interfere with low level. It can also be defined as that the process

is said to be non interfering if its low outputs do not depend on it is higher inputs.

Sabelfeld and Myers (2003) in their recent survey present about 147 research ref-

erences on information flow security. The vast majority of these publications are

concerned with describing and defining the notion of Non-interference, e.g. (P.Allen

1991, Bieber & Cuppens 1992, McCullough 1988, Sutherland 1986, Wittbold &

M.Johnson 1990). Most of these approaches are based on Goguen and Meseguer

(1982) approach for non-interference, the idea of non-interference is based on, how

to characterise the absence of any flow that resides at a more abstract level than

the security access control models and providing it as a formal semantics to the one

path flow intuition behind terms like read and write. The most important categories

of static analysis approaches are type system approaches and semantic approaches.

2.4.1 Type System Approaches

Security type system can be expressed as a set of typing rules in the form of judg-

ments that can used to describe which security level is allocated to a program (or

expression) based on security levels of sub-programs or sub-expressions. The idea of

security type system comes from a lattice L, ≤, where L is a set of security levels,

e.g. Top-secret, secret, confidential and unclassified including a lowest or bottom

element ⊥ and highest or top element >. The most earlier and useful work related
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to certification of secure information flow is done by Denning et al. (1977). They

provided a static certification mechanism that verifies secure information flow in the

program. Their certification method is essentially a type based approach based on

a lattice structure of security classes to validating secure information flow. In their

method each object is assigned a security class with respect to a lattice structure.

A partial order relation is a class of binary relations with the following characteris-

tics.

1. Reflexivity.

a ≤ a if the relation ≤ returns true for the input (a,a).

2. Anti symmetry.

if a ≤ b and b ≤ a then a equal b.

3. Transitivity.

if a ≤ b and b ≤ c then a ≤ c.

The relation ≤ is a partial order relation if it satisfies all previous properties. A

partially ordered set is a set together with a partial order relation and is called a

poset. A lattice is a poset in which all non-empty finite subsets have both a least

upper bound and a greatest lower bound. Denning (1976) describes a lattice of

subset of W = {a, b ,c} as follows.

Security class = powerset(W)

a −→ b iff a ⊆ b

a ⊕ b = a ∪ b

a ⊗ b = a ∩ b

L=φ , H=W

Description
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{a,b,c}

{b,c}{a,b} {a,c}

{b}{a}

{φ}

{c}

Figure 2.4: Lattice representation

In their certification method (Denning & Denning 1977) the security classes are

declared in the declaration part of the program with respect to a lattice structure

e.g.

Listing 2.4: Declaration of security classes

i,j:integer security class L;

a,b:boolean security class L;

x : file security class L;

h :integer security class H;

y,z:file security class H;

Their approach is sufficiently simple so that it can be used in the analysis phase

of any compiler. They tried to prove that a program can not cause public output

that depend on secret input. However, their method certifies only secure programs

because it doesn’t distinguish between secure and insecure executions of the same

program. Thus, the whole program will be rejected as insecure because the set of

all possible paths of the program execution must be secure. Andrews and Reitman

(1980), Denning and Denning (1977) build their argument for secure information

flow on the intuition that a secure information flow can be produced from a com-

bination of secure information flows. However, both of them never formally prove

that, the rules of secure information flow in type system approach are used to verify
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weather a typing environment y is compatible with a given software. A typing en-

vironment can be mapped to a security class according to variables identified with

respect to the lattice structure (L, ≤). The rules of a sound type system approach

for secure information flow as provided by Volpano, Smith and Irvine (1996) is that

if a typing environment (y) is compatible with a given program S and y(x) ≤ y(x)

then the output of x after the execution of given program S is not affected by the

value of y.

Listing 2.5 shows the language grammar of Volpano, Smith and Irvine which has

been proposed for non-interference analysis of sequential program.

Listing 2.5: Grammar of the language of Volpano Smith and Irvine

s::= var := exp

| s; s

| If exp then s else s end

| While exp do s

| skip

Where var stands for variables, exp stands for expressions and S stands for

program statements. They provided a syntax directed security type system for

annotating all program components including variables, procedure parameters and

commands with specific security levels. Figure 2.5 illustrates a typing system equiv-

alent to a security type system of Volpano, Smith and Irvine (2003).

The typing rules ` exp: τ in Figure 2.5 means that the expression (exp) has

a type τ . The judgement [pc]` S means the program S is typable in pc security

context. The security level can be low or high. Considering the rules E1 and E2

any expression (exp) can have high security level and also a low security level if exp

has no occurrence of h. In C1, C2 and C3 the rules [pc] ` skip and [pc] ` h:= exp

means that Skip and h:= exp are typable in any security context and l := low is

typable only if the expression has low security type. In C4 the judgement [pc]` S1

and [pc]` S2 means that the programs S1 and S2 are typable in the security context
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Figure 2.5: Security type system equivalent to the one of Volpano, Smith and Irvine

pc. Rules C5 and C6 considers the if and loop statements where all branches should

be typable in high security context. The last rule C7 ensures that if the program

S is typable in a high security context it leads to the program is typable in a low

security context. Another function of rule C7 is that it allows to reset the PC to low

security level after any high statement, e.g. loop or condition (Sabelfeld & Myers

2003). Banerjee and Naumann (2002) considered the problem of a sequential object

oriented language with Volpano’s security type system. Therefore, they extended

the Volpano approach to support more sequential object oriented language, e.g.
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pointers, private field, inheritance, recursive classes, methods, dynamic binding,

class based visibility and type tests where programs have specific security classes.

However, these type system approaches are unable to compute the security level

associated with each variable in the program neither output nor input. In order to

automatically analyse the information flow based on type system it is necessary to

include any security mechanism that is able to compute the security level of these

variables. Such as the security control mechanism described by Weissman that is

able to compute the security level of new created files dynamically (Weissman 1969).

In addition, these type system approaches for information flow control are simple to

implement, but they are often too imprecise. Consider this sub program:

Listing 2.6: Example of Non-interference

low := high;

low := 0;

Most type system approaches reject this program based on the directly passing

of a high security level to a low security one as illustrated Figure 2.6, but clearly the

program satisfies Non-interference while the output of the low level variable does not

depend on the value of the high level variable. Therefore, the majority of security

type system approaches would reject any program with insecure sub-programs.

2.4.2 Semantic Approaches.

The semantic approach is concerned with controlling information flow based on se-

mantic security models that controls information flow in terms of program behaviour

(Agat 2000, Sabelfeld & Sands 2000, Pottier & Conchon 2000, Sabelfeld & Sands

2001). Leino and Joshi (2000, 1998) provide a new technique that statically analyse

the secure information flow based on a semantic notion of program equality. In their

approach they define the equality between two program terms as follows.
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S is secure iff (HH ; S ; HH
.
= S ; HH)

They denote program equality by symbol
.
=. They wrote (S is secure) to denote

that the program S has only secure flow. A key component in their definition is that

the high security variable has been assigned to h an arbitrary value in the program

which they denote by HH (havoc on h). S is secure if and only if the initial value

of any variable with high security level has not any effect on the final value of any

variable with low security level in the program. Assume that they denote h to be

the variables with high security level and L denote to be low security level variables.

Thus, the definition may be described as follows. The occurrence of HH on both

sides means that the final value of L is of an interest and an observation of the prefix

HH means that both programs are equal based on the output of S (final value of L)

independent on the initial value of the high level variables h. Finally, they tried using

their definition to prove that the observations of the values (initial or final) of low

level variables do not leak information about the initial value of high security level

variables. Sabelfeld and Sands (2001, 1999) extended the semantic approach of Leino

and Joshi (2000, 1998) to formalize a security specification of secure information flow

in sequential program by partial equivalence relations (PERa). The semantics of the

program in information flow control can be defined as a mapping over the probability

distributions of the information flow in the program. Most of the information flow

semantic approaches are semi-semantics because they are not analysis all the possible

program behaviours. The advantage of semantic models of secure information flow

is that it can be applied to any program structure whose semantics is defined.

2.5 Dynamic Information Flow Analysis

Dynamic information flow analysis attempts to analyze the flow of the information

while a program is executing. Dynamic information flow analysis does not require
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that all possible paths in the program must be operated or executed. Dynamic

information flow analysis always supports a modifiable information flow policy to

overcome changeable security requirements which can not be captured statically.

Using dynamic information flow analysis it is more easy to handle language fea-

tures, e.g. arrays, pointers and exceptions than static analysis. Finally and the

most important, it is user centric which allows user interaction because the security

requirement depends on the type of the user. Despite a long history and a huge

amount of research on controlling information flow (Banerjee & Naumann 2005,

Volpano et al. 1996, Smith & Volpano 1998, Pottier & Simonet 2003, Fenton 1974b),

it seems to be very little work done on dynamic information flow analysis and en-

forcing information flow based policies. Dynamic information flow analysis (Fenton

1974b, Brown & Knight 2001, Lam & Chiueh 2006, Birznieks 1998, Vachharajan

et al. 2004) has less development than static analysis. Dynamic analysis started

very early by the BLP model which attempted to deal with military information

flow confidentiality (LaPadula & Bell 1973, Binder et al. 1973). The model aimed

to annotate each data element with a security level (label) to dynamically control

information flow with their two security properties of information flow.

� The simple security property no read up

� The star property no writes down

Dynamic information flow analysis can be described at machine code level (binary),

source code level (program) and system level (event).

2.5.1 Dynamic Analysis at Binary Code Level

Applying dynamic analysis at binary code level does not require the source code of

the program. Several work has been done in dynamically ensuring security of data

flow. Fenton (1974b) proposed the data mark machine which is an abstract model
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of implementing memoryless subsystems confinement. In this machine each variable

has an associated security class. In his small machine the program counter’s PC

data mark is computed dynamically for the other storage location is fixed which can

be null or priv. Null denotes to non-private (input or output) and priv denotes

private (input or output) which means that the storage location can only contain

(public or secret) information. The data mark machine also includes a stack return

address that can be used for program counter declassification. Any return address

may be pushed into the stack and any other classified process may then pop the

unclassified address into program counter to declassify itself.

Brown and Knight (2001) describes the problem of ensuring secure information

flow supported by hardware extension as a set of hardware mechanisms. They prac-

tically implemented their model in Hash execution unit (HEX). Simply they add

a few hardware mechanisms and software routines to the Trusted Computing Base

(TCB) to dynamically guarantees that the flow of the information is secure. The

main ideas of Fenton (1974b) and Brown (2001) is that they enforce a security pol-

icy with respect to the lattice structure where ⊥ is the greatest lower bound or

least restrictive class and > is greatest upper bound or the most restrictive class.

Therefore, storing any data value X to a fixed data mark location L requires that

the machine checks the data mark security level greater than or equal to > most

restrictive class of the data mark value of X and of the program counter if not the

storage operation will be ignored. Vachharajani et al. (2004) addresses an informa-

tion flow security using RIFLE. They designed this architecture to support users

interaction to enforce their information flow policy using both hardware extension

and binary instrumentation. The main goal of their architectural framework is the

users ability to set data policies rather than relying on some one else. The main

disadvantage of dynamic information flow analysis at binary code level is the dif-

ficulty to deal with implicit information flow. Suppose that there are information
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flows created by any piece of software that are not operated or executed. Therefore,

many researchers have restricted their work of tracing and monitoring information

flow only on explicit information flow.

2.5.2 Dynamic Analysis at Source Code Level

Dynamic analysis of information flow at source code level is easier than the one at

binary code level because of the fact that understanding the program binary code

to control the flow of the information is harder than understanding the source code.

However, there has been a little work done on dynamic information flow analysis

at source code level. For example, Birznieks (1998) provided Special mode called

(Perl Taint Mode) in Perl script language that deals with the notion of taint. In

this model each data element is tagged with tainted or untainted security level to

prevent users from relying on data that are outside his/her script in order to prevent

the operation of any bad commands. Perl taint mode is widely deployed because of

the believe that it prevents buffer overflows. However, it is not sufficient to protect

confidentiality. Perl also uses taint check (Schwartz et al. 2005) to check perl scripts

from any security bugs. When the taint check started all user input will be tagged

as tainted. The interpreter will detect any operation that uses taint data which will

be considered as an unsafe state of execution that will lead to termination of the

execution with an error. Recently, Lam and Chiueh (2006) provided a framework

for dynamic taint tracking called GIFT. In their framework each variable in the

program is associated with a 4-byte tag that can be used to present different type

of information such as security class, user ID, file name. These tags are not inter-

preted by the GIFT compiler but are interpreted by the application programmer.

Therefore, the main idea behind the GIFT compiler is to insert a piece of code to

call programmer provided tag.

Unfortunately all previous work in dynamic information flow analysis at source code
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level did not take in their consideration implicit information flow. Shroff, Smith and

Thober in (2007) provided a new approach for dynamic monitor of information flow

dependency. The main goal of their approach is to handle any information flow

created by a piece of program that is not executed. Their approach is based on

the simple idea that implicit information flow appears only if there exist another

explicit information flow path. The analysis will get information about all explicit

and implicit information flow after an undetermined number of program executions.

Therefore, their approach is sound regarding to detecting all information flow types.

Of course this approach is of dynamic analysis type but not sufficient to enforce

confidentiality from the beginning. Masri and Podgurski (2005) described a new

approach of dynamic information flow analysis to detect attacks against a program.

In their monitoring approach they tried to detect and prevent any violation of spec-

ified information flow policies in multi-threaded program. Thus, their monitoring

mechanism does not support configurable information flow policies.

2.5.3 Dynamic Analysis at Event Level

Dynamic information flow analysis at event or system level does not require the study

of program code either at source or binary code level. The dynamic analysis at this

level attempts to detect and prevent information to flow to any unauthorized part

or lower security level in a large system. One of the foundational work on dynamic

information flow analysis at event level is Bell and LaPadula Model (1973). This

model describes how subjects can write to or read from shared objects. Weissman

describes a security control mechanism which dynamically computes the security

level of newly created files (Weissman 1969). Weissman provides a security control

mechanism that is able to classify the security level of created files dynamically.

His mechanism is based on a set of access rights as a theoretical model for security

control where each process executing on the machine is associated with a security
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level. Nagatou and Watanabe provided a monitoring approach for runtime detection

of unauthorized information flow using covert channel in a system that is serving

multiple users (Nagatou & Watanabe 2006). In their approach they tried to detect

and prevent principals to transfer any sensitive information to unauthorized parts

or lower security levels. A covert channel is a mechanism that used to transmit

information from one principal of a system to another one. More recently, Guernic

in 2009 proposes a dynamic non-interference analysis to enforce confidentiality of

secret information at run time (Guernic 2009). His approach is partly dynamic

because the approach uses dynamic analysis to detect explicit information flow and

static analysis to detect implicit information flow. The approach is restricted to only

sequential programs. Thus, the approach did not consider concurrent programs.

Cavadini and Cheda presented two information flow monitoring techniques that use

dynamic dependence graphs to track information flow during runtime (Cavadini &

Cheda 2008). But, their two approaches did not consider the users ability to modify

the flow policy at runtime and the security requirements to be dependent on the

requirement of individual users and their interaction with the monitoring system.

2.6 Java Bytecode Instrumentation

Several research approaches deal with bytecode instrumentation. For the rest of this

section, some existing projects and approaches in the area of bytecode instrumen-

tation will be presented.

Many tools use techniques based on program instrumentation to carry out differ-

ent tasks such as program tracing and optimization techniques (Srivastava & Wall

1994a, 1993). Many tools have been developed using program instrumentation tech-

niques that are used for studying program behavior such as Pixie (Smith 1991),

Epoxie (Wall 1992) and QPT (Larus & Ball 1994) that rewrite program executables
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to generate address traces and instruction counts. MPTRACE (Susan L. Graham

& McKusick. 1993) and ATUM (Agarwal et al. 1986) used techniques to report in-

formation about the timing and structure of the program. Also, there are software

testing and quality assurance tools that detect memory leaks and access errors such

as Purify (Hastings & Joyce 1992) they catch programming errors by using these

techniques. Purify inserts instructions directly into the object code produced by ex-

isting compilers. These instructions check every memory read and write performed

by the program, to report any error. One of the limitations of these tools that they

are designed to perform a specific task and are difficult to modify to meet the user

needs. Modification of a customized tool to obtain less of more trace information

requires a user to access the tool’s source code and understand the low level details

of the tool. The above mentioned tools operate on object codes for a variety of op-

erating systems and architectures, but none of them works on Java virtual machine

class files. There is a tool called NetProf (Parthasarathy et al. 1996) that visualizes

Java profile information by translating Java byte codes to Java source code. Srivas-

tava and Eustace provided an analysis tools with OM called ATOM (Srivastava &

Wall 1994b). ATOM is a framework for building a number of customized program

analysis tools. BIT (Lee & Zorn 1997) is a set of interfaces that brings the function-

ality of ATOM (Srivastava & Eustace 1994) to the Java world by allowing a user

to instrument the Java virtual machine class file to observe the runtime behavior of

programs for optimization.

Binary Component Adaption provided by (Keller & Horlzle 1998) is a tool that

rewrites Java bytecode at load time. The idea of BCA is to add a method to a class

to perform symbolic manipulation without doing any operations at the bytecode

level. The Java Object Instrumentation Environment JOIE (Cohen et al. 1998) is

a tool that enables the rewriting or modification of Java bytecode at load time. In

fact, most instrumentation frameworks (Parthasarathy et al. 1996, Tatsubori et al.
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2001, Tilevich & Smaragdakis 2002) void instrumenting system classes, modifying

only user created classes or limit their functionality to only user classes. FERRARI

(Binder et al. 2007b,a) instruments all system classes statically including those that

are never used by an application. Chander in 2001 provided a Java bytecode instru-

mentation mechanism for mobile code security (Chander et al. 2001). This approach

replaces each method call that attempts to access any private or secret data with an-

other method call to restrict and limit the functionality. The approach discusses the

replacement of target objects with other classes called safe subclasses to implement

the security of the mobile code. The obvious limitation of most of the presented

techniques is that the bytecode instrumentation process does not cover the execu-

tion code of the native methods. (Binder et al. 2006) provides an instrumentation

mechanism using a new JVMTI feature in JDK 1.6 called native method prefixing

that instruments the native method invocations.

2.7 Information Flow Control Approaches

The field of Information flow control has a long history and a huge amount of re-

search (Banerjee & Naumann 2005, Volpano et al. 1996, Smith & Volpano 1998,

Pottier & Simonet 2003, Fenton 1974b). Denning in (1975) proposed a secure infor-

mation flow approach in computer systems. His proposed approach is at compiler

time to solve all problems of an implicit information flow. Fentons Data Mark Ma-

chine (1974a, 1974b) was one of the earliest systems that was used for information

flow control during runtime to enforce security policies. However, his machine is an

abstract machine. RIFLE’S architecture (Vachharajan et al. 2004) is provided to

be implemented to control information flow security during runtime. Their architec-

ture was designed with the aim of supporting end user choice of the policy decision.

Their approach uses a combination of hardware architecture and program binary

33



CHAPTER 2. BACKGROUND AND RELATED RESEARCH

translation to trace the flow of the information.

Beres and Dalton (2003) proposed a dynamic instruction stream modification frame-

work to track individual data movements within an application. However, the pro-

posed approach ignored implicit information flow. Chandra in 2006 proposed a

hybrid approach that instruments the bytecode with taint propagation code (Chan-

dra 2006) and Haldar (2005) use instrumentation mechanism to enforce security

policies. However, both approaches do not consider the native functions call and

implicit information flow. Newsome and Song (2005) use the concept of tainting to

track untrusted data from potentially unsafe input channels, like networks. How-

ever, when detecting attacks a flag will be raised and the execution will be halted.

There is no chance of recovery or change of program behaviour.

Other approaches such as Brown and Knight (2001) describe the problem of ensur-

ing secure information flow supported by hardware extension as a set of hardware

mechanisms. Their approaches work well for dynamically guaranteeing that the in-

formation flow is secure but only if the security class is explicitly specified to high

or low.

Another approach of information flow control that should be mentioned is provided

by Haffman and Davis (1990). They proposed adding a processor named security

pipeline interface (SPI) to be as intermediate between a data host and destination.

All data that is send from the host to the destination goes through the SPI. The SPI

can analyse, change or delete the data being output. However, using their security

pipeline interface they tried to address the integrity of the information flow rather

than the confidentiality of the information flow.
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2.8 Existing Implementation

In spite of a long history and a huge amount of work, there is a very little practical

software that enforces and analyses information flow based policies. This might be

due to the restrictions and limitations of many existing mechanism of information

flow analysis. But, there are some interesting examples that should be mentioned.

� JFlow Myers provided Jif or JFlow which is an extension to the Java language

that adds statically checked information flow primitives. It is an imperative

language. Jflow compiler works as a source to source translator for Java to

check information flow safety. Therefore, its output code can be compiled by

any Java compiler. JFlow supports some language features including objects,

access control, sub classing, exceptions and dynamic type tests. JFlow uses

a decentralized label model where every data item has an associated security

label with security policies (Myers 1999).

� Flow Caml is an extension of the functional language called Objective Caml

language Flow Caml. Flow Caml supports multilevel security with respect

to suitable lattice structure where each data item is annotated with acon-

stant security level for tracing information flow. Flow Caml uses a source to

source translator that takes a source code to statically check the flow of the

information with respect to the information flow policy as specified by the

programmers and then produces Caml code. Its objective Caml code can be

compiled by any compiler (Simonet 2003).

� Bytecode verifier The Java runtime environment contains a bytecode verifier

that enables Java to check untrusted code before running it. The compilation

of the source program is to ensure that control flow, type safety and memory
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are correct. That may be help of security guarantees (Lindholm & Yellin

1997).

2.9 Program Slicing

Program slicing is an analysis mechanism that was originally provided by Weiser

(1979, 1981). The program slicing techniques used while debugging or re-engineering

the program. It involves focusing on some parts of a given program that are currently

of interest. Weiser used a control flow graph to implement his slicing algorithm as

an intermediate representation. There are the following types of program slicing:

� Forward slicing: for any statement in the program, all program statements

that id may be affected by a given statement (Horwitz et al. 1990). The

forward slice concerned with what statements in the program are affected by

the variables value in a given statement.

� Backward slicing: In this the slice is computed from the point of interest

finding all statements in the program that can affect the specified variables at

the point of interest and discarding the other program statements. (Herrmann

2001).

� Static slicing: is computed symbolically to solve the static analysis problem

without considering the input of the program (Weiser 1979).

� Dynamic slicing: a slice is calculated for a fixed input or data value. Dy-

namic slicing is smaller than static slicing, but with restriction of applicability

to particular input (Korel & Laski 1988).

Dynamic slicing is closely related to dynamic information flow analysis because

both of them are concerned with execution tracing to data dependency and control
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Program Slicing

Input a,b;Input a,b;

Program

i:=a;i:=a;

j:=0; j:=0;

Repeat Repeat

i:=i-b;i:=i-b;

j:=j+1;j:=j+1;

until i>=b;until i>=b;

output j;output j;

output i;output i;

Figure 2.6: Backward slicing of a statement (output i)

flow relationship; while, dynamic slicing is focusing on identifying any subset of

program statements that influence a particular statement, dynamic information flow

analysis is focusing on identifying any subset of program objects that influence a

particular object action (Masriand & Podgurski 2005).

2.10 Program Dependencies

The program dependencies techniques are concerned with dependence relations in

the program. Dependencies in the program are usually represented by a direct graph

between the program statements as nodes for expressions, statements and edges for

the dependence relation. To differ between control dependence and data depen-

dence, suppose that the value of expression B controlled by the execution of the

statement A then statement A is control dependent on B. If a statement A uses

any variable from statement B then statement A is said to be data dependent on B

(Ferrante et al. 1987, Cavadini & Cheda 2008). Consider this example below for a

program dependence graph.
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Dependence graph

1: Start

Program

2: input G

3: if G<50 then

4: output(fail)

5: else

6: output(pass)

7: endif

8: output G

9: End

1

2 3 8 9

6 4

T F

Figure 2.7: Program and its dependence graph

Note the numbered cycles in the graph stands for program statements and square

nodes stands for control dependence conditions. From Figure 2.7 one can conclude

that.

� Statements 2,3,8 and 9 are guaranteed to execute with respect to control de-

pendencies on statement 1.

� If statement number 3 determines that statement 4 is being executed then

statement 4 is control dependent on statement 3.

� In addition, if the same statement 3 determines that statement 6 is being

executed then statement 6 is control dependent on statement 3.

Statement 8 is data dependent on statement 2. Program dependencies are closely

related to information flow, that is due to the fact that if statement A depends on

statement B either direct or indirect then the information flow can occur from B

to A. If there is not any type of dependencies between A and B then it can be

guaranteed that, there is not any possibility of information flow between A and B.
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2.11 Summary

The presented chapter has discussed the related research of this thesis. It has pro-

vided an introduction to the principles of security, static information flow analysis

and dynamic information flow analysis. It has provided an overview of existing ap-

proaches of bytecode instrumentation and information flow control and discussed the

difficulties and problems of the related research. The following are some common

problems of the previous mentioned works in this chapter either static or dynamic

information flow analysis.

� Fixed information flow policy.

� Works well for sequential programs, but not for concurrent ones. Concurrence

refers to programs that are executed in parallel.

� The previous information flow security mechanisms are not usable in practice.

� The user is unable to modify the information flow policy during runtime in

response to incidents.

� The behaviour of a program leaking confidential information can not be alter

by the monitor according to the user decision.
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Architecture

Objectives

� General overview of the proposed framework.

� Describe the framework architecture.

� Show how the framework components interact.
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3.1 Introduction

This chapter provides a general overview of the proposed framework and describes

the framework architecture. In this chapter the focus is on how each component of

the proposed framework interacts to trace and control the information flow within a

Java application. The remainder of this chapter is structured as follows. Section 3.2

provides general overview of the framework. Section 3.3 provides a brief description

of the security requirements specification. Section 3.4 describes the information

flow policy. Section 3.5 introduces the assertion points. Section 3.6 provides a brief

description of the event recognizer. Section 3.7 provides a brief introduction to

the runtime checker component. Finally Section 3.8 describes the user feed back

component.

3.2 General Overview of the Framework

In static program analysis all possible paths of the program execution must be free

of any illegal information flow. If any illegal information flow is detected then the

static analysis mechanism will reject the whole program as insecure.

Graphically we can depict the set of possible program behaviours by a blank circle

and the set of all insecure program behaviour (defined in the policy) by a hashed

circle. In these terms a program is rejected by static analysis if the intersection of

both is not empty. In Figure 3.1 we depict the case for dynamic information flow

analysis. Consider that a program is in a state 0 and performs an operation α that

causes an information flow. We can distinguish two cases:

1. After the execution of α the program is in a secure state.

2. After the execution of α the program is in an insecure state.

41



CHAPTER 3. ARCHITECTURE

0

1 2 3

α α α

0
0

2
22a

α

α

α’

Policy

Policy’
Policy

System observation
behavior

2

A B

Figure 3.1: Monitoring mechanism

The hypothetical third case, that the program exhibits a behaviour that is defined

by the policy as insecure, but is outside of the set of possible behaviours, can be

ignored. In our framework we check whether the program is about to enter an

insecure state by intercepting the operation α.

� In case 1, that α leads to another secure state the program will be allowed to

perform α.

� In case 2, the runtime monitoring mechanism will send feedback to the user

asking about the violation of information flow.

The user has two options on how to proceed:

A. The user changes the operation α to another operation α’ so that the resulting

state is secure with respect to the policy. Such changes can for example be

the termination of the program or (manually) sanitizing the information that

flows in α.
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B. The other option is to modify the Policy into a Policy’ such that α leads to

a secure state. This could for example be introducing a one-off exception for

the current flow or defining a separate context in which the information flow

is considered legal.

Our approach is based on the observation of information flow during application

run time. The user feedback component handles all interactions with the system

and the user. It runs in a separate thread of control so that user interaction can be

overlapped with information flow control. The user feedback component also allows

the user to administrate the policy.

When the software is running, the user feedback component receives feedback from

the runtime checker (Steering). If the software is about to enter an insecure state

then the user will be asked to determine whether the information flow should be

aborted or allowed to flow and continue under a modified policy as illustrated in

Figure 3.2. For example given a policy that states that Bob’s password must not be

0

1 2 3

α α α

0
0

2
22a

α

α

α’

Policy

Policy’
Policy

System observation
behavior

Bob

Disallow Alice Allow Alice

Figure 3.2: Monitoring mechanism
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shared with any other user (Alice and Eve). If Bob now wants to give his password

to Alice to perform some function on his behalf, our approach will detect this viola-

tion of information flow and ask Bob how to proceed. Bob can then choose to stop

the operation that would violate the flow (i.e. Alice does not obtain the password)

or he allows this flow and changes the policy accordingly to reflect this decision.

Moreover, this change can be temporary (a one of exception) or permanent (He can

pass the password again to Alice).

Security will be achieved by an interactive process in which our framework will query

the user for security requirements for specific information that are made available

to the software and then continue to enforce these requirements on the application

using runtime verification technique for tracing information flow. The assertion

points will be inserted in the application bytecode and the event recognizer receives

low level information from the assertion points and sends any event that attempts

to make information flow to the runtime checker. The runtime checker checks the

received event against the flow policy and sends a feedback to the user throughout

the user feedback component.
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Figure 3.3: Runtime verification of information flow
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As illustrated in Figure 3.2 the runtime verification of information flow frame-

work consist of several components:

3.3 Security Requirements Specification

Stakeholders normally have a number of concerns that come with their desired sys-

tem and are typically high-level strategic goals. In this component the stakeholders

specify the desired characteristics that a system or subsystem must possess with

respect to sensitive information flow. In our previous example Figure 3.2, this is the

requirement that Bob’s password must not be shared with any other user (Alice and

Eve). The stakeholders should provide the source of the information and the out-

put channel a destination which will be formally expressed in the information flow

policy, to enable our runtime monitoring mechanism to (dis)allow the information

flows from source to destination. Such properties can ensure the confidentiality of

the information flow.

3.4 Information Flow Policy

An information flow policy is a type of security policy that defines the authorized

paths or the way information moves throughout the system (Bishop 2003) as ob-

tained from the stakeholders, which can be a set of rules, axioms and laws that are

provided to regulate how information must flow to prevent leak of sensitive informa-

tion. The information flow policy is designed to preserve information confidentiality.

In our framework, the information flow policy expresses the security requirements

as specified by the stakeholder/user as a set of rules that are understandable by

our runtime monitoring mechanism. The goals of the information flow policy is to

prevent secret information from flowing to a user or client software not authorized
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to receive it. For example, an information flow policy can state more context depen-

dent flows, such as (Bob’s password can only flow to Alice if Bob explicitly agrees).

Chapter 6 describes the notion of information flow policy in detail.

3.5 Assertion Points

Assertion points are program fragments as a collection of probes that will be added

into the target software. The main functionality of the assertion point is to send the

relevant state information to the event recognizer. This will ensure the monitoring

of relevant objects during the execution of the software. The probes are inserted

into all locations where monitored objects are updated such as (program variables

and function calls); unlike traditional runtime verification approaches our assertion

points are inserted before the operation to be able to intercept updates and thus

prevent the system from entering an insecure state. In order to send state informa-

tion to the event recognizer our framework uses a novel instrumentation mechanism

(Chapter 4) to insert assertion points.

3.6 Event Recognizer

The event recogniser is the part of the framework that detects an event from the

information received from the assertion point. The event recognizer is used as a

communication interface between the assertion points and the runtime checker. The

event recognizer sends any event that attempts to change the state of the software to

the runtime checker (according to the information flow policy). Although, it is pos-

sible to combine these two components the assertion point and the event recognizer,

we separated them to make the implementation of our architecture more extensible

and to minimize the interference with the monitored application, such as allowing
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the integration of several runtime checkers that verify different type of requirements.

For example, the management of obligations related to information flow could be

placed in a logically separate component. Chapter 5 provides a description of how

the events will be recognized and sent to the runtime checker.

3.7 Runtime Checker

The runtime checker component checks whether the execution trace belongs to the

set of all acceptable behaviours as defined by the security requirements specifica-

tion and expressed in the information flow policy. The runtime checker verifies and

decides whether or not the current execution trace as obtained from the event rec-

ognizer satisfies the information flow policy and sends feedback to the user feedback

component when it determines that the software is about to enter an insecure state,

e.g. any information flow that violates the policy. Chapter 5 describes how the

runtime checker checks the information flow policy and sends a feedback to the user

feed back component.

3.8 User Feedback Component

The user feedback component is an interface between the system and the user. An

essential functionality of the user feedback component is that all user interaction

passes through this component. The user feedback component informs the user

about policy violations detected by the runtime checker. As illustrated in Figure

3.1 if the runtime checker determined that this state execution would violate the

information flow policy then it sends feedback to the user, the system behaviour

will be changed accordingly, or the policy will be modified according to the user

decision. The user feedback component is described in Chapter 6.
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3.9 Summary

The presented chapter has provided a brief overview of the proposed framework ar-

chitecture. It describes all components of our framework and identifies the technol-

ogy that will be used in the framework. The following chapters give the specification

of each component of the presented framework. An instrumentation mechanism for

inserting different type of assertion points is provided in Chapter 4. The event rec-

ognizer and runtime checker algorithms are given in Chapter 5. The definition of

the information flow policy and user feedback component is provided in Chapter 6.
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Chapter 4

Bytecode Instrumentation

Objectives

� Introduction to Java bytecode and virtual machine.

� Class loading, linking and initialization.

� Instrumentation algorithm.

� Instrumentation examples.
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4.1 Introduction

This chapter provides an introduction to Java bytecode, class loader in Java virtual

machine and how a Java class file will be instrumented in order to monitor and

control the information flow within a Java application. All computations in the Java

virtual machine are centred on the stack. Due to that the Java virtual machine do

not deal with registers for storing any arbitrary values, whereas everything is pushed

onto the stack frame of the current executed method before it can be used in the

computation. The focus in this chapter is on the loading and instrumentation of the

target program. This chapter also provides examples of Java bytecode instructions

and how they are instrumented. Our approach consist of two main steps:

� Loading and Instrumentation of class files of the target program.

� Execution of the target program and monitoring the information flow with

respect to the information flow policy.

Figure 5.1 shows a flowchart of our runtime monitoring mechanism.

Load & Instrument

Execute & Monitor

Figure 4.1: Monitoring mechanism flow chart

The bytecode instrumentation is a process that inserts method calls in the byte-

code, such that information can be extracted from the target program while it is

being executed. The remainder of this chapter is structured as follows. Section 4.2

introduces Java bytecode. Section 4.3 provides an example of a Java source file and
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its bytecode format. Section 4.4 describes the class loader in Java virtual machine.

Section 4.5 explores the loading phase. Section 4.6 describes the linking process

phase. Section 4.7 describes the initialization process. Section 4.8 describes the

instrumentation of assertion points and provides examples of Java bytecode instruc-

tions before and after instrumentation. Section 4.9 shows the instrumentation of

explicit information flow instructions. Finally Section 4.10 shows the instrumenta-

tion of implicit information flow instructions.

4.2 Bytecode

Bytecode is object code that is the result of program compilation, usually executed

by a virtual machine, rather than by hardware. The virtual machine converts each

bytecode instruction into specific machine instructions that are understandable by

the computer’s processor. Hence, Java bytecode makes it possible for Java code to

run on many different platforms. Each instruction of bytecode has a size of one byte

(Lindholm & Yellin 1997, Meyer & Dowing 1997). This bytecode representation of

a Java source file is also known as a Java class file. The bytecode (Opcode) of each

Java instruction is provided in Appendix A.

4.3 Example: Java Bytecode

This section provides an example of a Java source file and its corresponding class

file after compilation. Listing 4.1 represents a Java source file before converted into

Java bytecode (class file).

Listing 4.1: Source file of Add.java

1 public class Add {

2 public static void main(String[] args) {

3 int i=2;
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4 int j=3;

5 System.out.println(i+j);

6 }

7 }

Listing 4.2 shows the class file (Generated bytecode) of the Java source file presented

in Listing 4.1.

Listing 4.2: Class File of Add.java

0: iconst_2 // push int constant 2 onto the stack

1: istore_1 // pop 2 into local variable position 1,

2: iconst_3 // Push int constant 3 onto the stack

3: istore_2 // pop 3 into local variable position 2,

4: getstatic #2 =Field java.lang.System.out(Ljava/io/PrintStream;)//push field onto the stack.

7: iload_1 // push 2 from local variable position 1 onto the stack

8: iload_2 // push 3 from local variable position 3 onto the stack

9: iadd // pop top two values from stack, add and push the result onto stack

10: invokevirtual #3 = Method java.io.PrintStream.println((I)V)// Call println method, print i+j

13: return // Return void.

In Java bytecode each invoked method has a corresponding bytecode array. These

bytecode values correspond to the index within the bytecode array where each op-

code and its arguments are stored. The numbers that appears on the left of each

bytecode instructions line (0,1,2,3,4,7,8,9,10 and 13) are the index of each instruc-

tion in the opcode array that contains the bytecode of the Java virtual machine for

this method.

As illustrated in Listing 4.2 the opcodes indexes are not sequential. The opcodes

indexes are not sequential because some of the opcodes have parameters that take

up space in the bytecode array, e.g. the iconst 2 instruction has no parameters and

it occupies one byte in the bytecode array. Therefore, the next opcode, istore 1, is

at Opcode index 1. The opcode, getstatic is at index 4. However, iload 1 is Opcode

index 7 because the getstatic opcode and its parameters occupy location 4, 5, and

6. Index 4 is used for the getstatic opcode, Opcode indexes 5 and 6 are used to hold
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the getstatic opcode parameters. These parameters are used to construct an index

into the runtime constant pool for the class reference, where its value is stored. In

JVM each method has its own stack frame. Such a frame is composed by a local

variable array that contains all the local variables used in the current method and

by the operand stack to execute the bytecode instruction. Considering our example

Listing 4.1, a snap shot of the local variable array and the operand stack required

to execute such program are illustrated in Figure 4.2.

VariableSlot

1

...

...

2

i

j

...

...

(a) Variable Array

Operand StackBytecode Instruction

iadd

invokedvirtual

Value of i, 2

Value of j, 3

Value of i+j, 5

Value of i, 2

...

...

iload 1

iload 2
...

(b) Operand Stack

Figure 4.2: JVM - Bytecode instruction execution

An important feature of the JVM is that the bytecode instructions are typed.

In the first four Opcode indexes, index 7 and 8 (iconst 2, istore 1 and iload 1 ) as

shown in Listing 4.2, the prefix is a representative of the type that the opcode is

working with (prefix i means integer). Other opcodes prefixes are (a) for object

reference (b) for byte, (c) for char, (d) for double, etc. This prefix gives immediate

knowledge about what data type is being manipulated. The iadd instruction in

Opcode index 9 requires that the stack initially contains at least two elements and

these two elements are of type int. Then iadd pushes back a result of type int onto

the stack.

Similarly, for the getstatic #2 instruction at Opcode index 4 in Listing 4.2.

The #2 represents a runtime constant pool index with a hash sign and follow the

instruction is a comment identifying the runtime constant pool item referenced to

access the instance field out of type Ljava/io/PrintStream; declared in the class
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Java.lang.System. This opcode requires that the top of the stack contains a reference

to an instance of class Java.lang.System. Then the value of the class is pushed onto

the stack. The same is true for all other Java virtual machine instructions that are

prefixed by a hash sign. More generally, in JVM the code must meet the following

conditions:

� Type correctness, instruction arguments must be of expected type.

� No stack overflow or underflow.

� Code containment, the program counter must always point to the appropriate

instruction.

� Register initialization, a load from a register must follow at least one store in

this register.

� Object initialization, when an instance of a class is created, one of the initial-

ization method of this class must be invoked.

� Access control, class reference, method invocation and field access must respect

the different types (public, protected, private, etc) of class, method or field.

4.4 Class Loader in Java Virtual Machine

A Java program is composed of many individual class files, each of which corresponds

to a single Java class. These class files are loaded as needed by the program (De-

veloperWorks 2001, Liang & Bracha 1998), by a special class called a class loader.

The concept of the class loader is responsible for the loading, linking and file system

interaction transport to JVM. This means that the class files can be loaded from

remote locations, e.g applets loaded their classes via HTTP, without requiring a

change in the JVM. The loading, linking and initialization of classes or interfaces
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used by an application are necessary steps before any application is executed by

JVM (Meyer & Dowing 1997, Lindholm & Yellin 1997). Figure 4.3 shows the JVM

processes.

Loading

Linking

Verification

Preparation

Resolution (Option)

Initialization

(a) Class Loading,
Linking and Initializa-
tion

Loading

Linking

Verification

Preparation

Resolution (Option)

Initialization

Instrumentation

(b) Class Loading, In-
strumenting, Linking
and Initialization

Figure 4.3: Processes in JVM

4.5 Loading

Loading is the first operation performed by the class loader. The aim of the loading

process is to obtain a binary form of a class file (Meyer & Dowing 1997, Lindholm

& Yellin 1997). The main components of this process are the Java Class file and the

Class loader.
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4.5.1 Java Class File

A Java class file contains all necessary information that are used by JVM to define

a class or interface during runtime:

� Bytecode of the methods declared and implemented in a Java class.

� Symbolic reference to the super class of the class defined by a class file.

� List of all fields defined in the class.

� Constant pool containing literals, descriptor of methods and fields declared in

or used by the class.

� Other information of a Java class such as local variable table and exception

table.

4.5.2 Class Loader

The main aim of this component is to dynamically load and instrument a class

represented by a given class file. To generate a complete trace during execution, the

class loader is not only expected to load a class represented by a given class file, but

all classes used by a class corresponding to the given class file (Chiba 2007, Liang &

Bracha 1998). Generally, whenever a class is used for the first time the class loader

will load, link and initialize it.

4.6 Linking

In the linking process, the binary form of a class or interface is converted into a

runtime state for use within the JVM. This phase is divided into three different

steps (Meyer & Dowing 1997, Lindholm & Yellin 1997).
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4.6.1 Verification

Verification is the first step of the linking process. The main aim of the verification

step is to ensure that the binary representation of the given class file (Bytecode)

is structurally valid. To ensure that every bytecode instruction has a valid opcode,

each method has a correct signature and that the bytecode instruction sequence does

not violate the type discipline of Java (Meyer & Dowing 1997, Lindholm & Yellin

1997), e.g. if the bytecode tries to load an integer value from the local variable array

using a bytecode instruction for loading float values then the verifier will throw an

exception as it will violate the type discipline of Java.

4.6.2 Preparation

During preparation, the JVM will create static field for the class or interface and

then initialize them with their default values. This step is only the preparation of

an execution, thus, no virtual machine code is executed, yet.

4.6.3 Resolution

During resolution, the Java virtual machine will replace all the symbolic references

to class and fields stored into the constant pool to actual references. It is not

mandatory to resolve a symbolic reference until it is used for the first time, it is up

to the implementation to decide when to resolve symbolic references (Lindholm &

Yellin 1997, Venners 1999, Liang 1999).

4.7 Initialization

Initialization is the process of executing defined class static initializers and initializers

for static fields. In case of an interface only initializers for static fields are executed
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(Lindholm & Yellin 1997). The initialization process has two steps:

1. Initialize the direct super class of the class (if not initialized already)

2. Execute the class or interface initializer (if present)

4.8 Assertion Points

Assertion points are program fragments that act as a collection of probes (filters)

that will be inserted into the class file. The essential functionality of an assertion

point is to send pertinent state information to the event recognizer. This will ensure

monitoring of relevant objects during the execution of the software. Our assertion

points are inserted before the monitored bytecode instruction to be able to intercept

updates and thus prevent the system from entering an insecure state as specified in

the information flow policy.

4.8.1 Overview of Instrumentation Process

Instrumentation is an effective technique against well specified attacks, which in-

clude denial of service and information leaks via specific pathways from source to

destination (Chander et al. 2001). Bytecode instrumentation is a process to insert

assertion points in the bytecode, that should be performed after loading and before

linking and initialization of the class file as show in Figure 4.3(b).

The following presents the technical details of our instrumentation process. Our

instrumentation process illustrated in Figure 4.4 uses a special Java library called

Java agent.
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Bytecode

Instrumented

Filter

class file

Bytecode

Bytecode

Load

Executable

Figure 4.4: Instrumentation process

4.8.1.1 Java Agent

A Java agent is a pluggable library that runs embedded in a Java virtual machine

and intercepts the class loading process. This allows our instrumentation process

to monitor the class loading process and instrument (insert assertion points) the

bytecode of the classes to provide the required information. Our instrumentation

process uses the Java agent and Javassist open source because the core Java pack-

ages do not have support for programmatic manipulation of bytecode.

The agent class implements a public static premain method similar in principle to

the main application entry point. After the Java Virtual Machine has initialized,

each premain method will be called in the order the agents were specified, then

the real application main method will be called. The premain method allows the

instrumentation process to manipulate classes in two ways: class file transformation

and class file redefinition.

� Class file redefinition is used to redefine (replace) the definition of already

loaded classes.

� Class file transformation. Registering a transformer allows that all future class
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definitions will be seen by the transformer. The transformer is called when

classes are loaded and redefined.

The bytecode instructions are divided into 20 different categories, according to

their relation with the information flow at bytecode level. Table 4.1 illustrates

these instructions categories. The categorization is based on the instruction manip-

ulation of the operand stack. Our instrumentation process considers the following

constraints to ensure the class file validation.

1. The stack can not overflow or underflow.

2. The operands will always be the correct type.

3. Branches will be within its bounds of the code array for the method.

4. The target addresses of all control flow instructions are points to the start of

an instruction.

5. No instruction can access or modify a local variable at an index greater than

or equal to the number of local variables that its method indicates it allocates.

6. All references to the constant pool must be to an entry of the appropriate

type.

7. The code does not end in the middle of an instruction.

4.8.2 Bytecode Filters

The bytecode filter analyses the loaded class file and inserts assertion points prior

to the verification and linking of the bytecode. In this way, JVM only receives

bytecode that has been analysed. The essential functionality of the filter is to keep

track of all application objects, such as program variables and function calls to

send pertinent state information to the event recognizer. Instrumentation can be
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Category Instruction Description

aconst null, iconst m1, iconst 0, iconst 1, iconst 2, This category includes all
iconst 3, iconst 4, iconst 5,lconst 0, lconst 1, instructions that pushed

Const fconst 0, fconst 1, fconst 2, dconst 0, dconst 1, constant onto operand stack
bipush, sipush, ldc, ldc w, ldc2 w
iload,lload,fload,dload,aload,iload 0,iload 1,

Load iload 2,iload 3,lload 0,lload 1,lload 2,lload 3, Push the local variable value
fload 0,fload 1,fload 2,fload 3,dload 0,dload 1, onto the operand stack
dload 2,dload 3,aload 0,aload 1,aload 2,aload 3
istore,lstore,fstore, dstore, astore, istore 0,
istore 1, istore 2, istore 3, lstore 0, lstore 1, Pop value from the top of

Store lstore 2, lstore 3, fstore 0, fstore 1, fstore 2, operand stack, and store it
fstore 3, dstore 0, dstore 1, dstore 2, dstore 3, in the local variable.
astore 0, astore 1, astore 2, astore 3

Astore iastore, lastore, fastore, dastore, aastore, bastore, Pop the arrayref, index, and
castore, sastore value from the operand stack.

Pps pop, pop2, swap Pop 1 or 2 values on the top
of the operand stack.

Dup dup, dup x1, dup x2, dup2, dup2 x1, dup2 x2 Duplicates the value on the
top of the operand stack

Return ireturn, lreturn, freturn, dreturn, areturn, return pop the return value from stack
LoadField getfield, getstatic Fetch the objectref value

and push it onto the stack
Storefield putfield, putstatic Pop the top stack value

iadd, ladd, fadd, dadd, isub, lsub, fsub,dsub, imul,
lmul, fmul, dmul, idiv, ldiv, fdiv, ddiv, irem, lrem,

Union frem, drem,ishl, lshl, ishr, lshr, iushr, lushr, iand, Pop two values from the stack
land, ior, lor, ixor, lxor, iaload, laload, faload, and push the result onto stack
caload, saload, arraylength,daload, aaload, baload,

New new Push the objectref onto the stack
NewArray newarray, anewarray, multianewarray Push the arrayref onto the stack
Monitor monitorenter,monitorexit Pop the objectref from the stack

Pop the argument and objectref
Invoked invokevirtual, invokespecial, invokestatic, from the stack. In invokestatic

invokeinterface the argument only popped
Ifcond ifeq, ifne, iflt, ifge, ifgt, ifle, ifnull, ifnonnull Pop the top value on the stack

and compare it against zero
Ifcmp if icmpeq, if icmpne, if icmplt, if icmpge, Pop 2 values on the top of the

if icmpgt,if icmple, if acmpeq, if acmpne stack and compare them.
Endif goto,, goto w, Pop the objectref from the stack
Switch tableswitch, lookupswitch Pop int value from the stack.

ineg, lneg, fneg, dneg, iinc, i2l, i2f, i2d, l2i, l2f,
Out l2d, f2i, f2l, f2d, d2i, d2l, d2f, i2b, i2c, i2s, lcmp, Instructions in this category
of fcmpl, fcmpg, dcmpl, dcmpg, jsr, jsr w, ret, wide, have no implication for
scope checkcast, instanceof, breakpoint, impdep1, impdep2, information flow

Table 4.1: Instruction categories
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done either statically or dynamically. Static instrumentation means inserting the

assertion points after loading and before linking the class file Figure 4.3(b), whereas

dynamic instrumentation involves inserting the assertion points at runtime.

Our runtime monitoring mechanism uses static instrumentation to avoid incur extra

overhead at run-time to determine when it is secure to insert and remove filters. Also,

dynamic instrumentation requires a complex instrumentation mechanism (Miller

et al. 1995). Instrumentation can be done in two ways. The user has access to the

source code of the program, then inserts filters into the system according to the

source code. The automatic instrumentation determines what assertion points are

suitable for each bytecode instruction to be inserted. Our approach uses automatic

instrumentation however, the weak points of automatic instrumentation are that it

may not be easy to define an event of high level behaviour based on low level state

information and it may not be easy to handle complex programs. All classes being

loaded within an application will be instrumented in terms of keeping track of all

application objects.

4.8.3 Class Instrumentation

Java programs are composed of classes. Classes are composed of members. Members

are either fields or methods. The purpose of class instrumentation is to instrument

bytecode of a given class file such that the instrumented class file produces required

trace information to be sent to the event recognizer.The class instrumentation algo-

rithm is in Listing 4.3.

Listing 4.3: Class instrumentation algorithm

Let Mc be the set of methods detected in the class C.

Let Super(C) be the super class of C.

Load(C):

Read bytecode of C

If Super(C) is not loaded then
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load(Super(C))

else

For each m in Mc

if m is not native then

Instrument Method(m)

Listing 4.3 shows the class instrumentation algorithm that loads class and its super

classes. The algorithm also stated that all not native methods in class and its super

classes will be instrumented.

4.8.4 Method Body Instrumentation

The method body instrumentation instruments the byte code of the method in such

a way that whenever an instruction of the method causes an information flow, then

the assertion point sends the required trace information to the event recognizer.

Listing 4.4: Method instrumentation algorithm

Step 1: Get method m code.

Step 2: for each opcode x in m

x is Const: Instrument const.

x is Load: Instrument load.

x is Store: Instrument store.

x is Astore: Instrument astore.

x is Pps: Instrument pps.

x is Dup: Instrument dup.

x is Return: Instrument return.

x is Loadfield: Instrument loadfield.

x is Storefield: Instrument storefield.

x is Union: Instrument union.

x is New: Instrument new.

x is Newarray: Instrument newarray.

x is Monitor Instrument monitor.

x is Invoked method

x is native:

x is NativeWrite : Instrument write.

x is NativeMethod: Instrument native.

x is method: Instrument method.
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x is constructor: Instrument SpecialMethod.

x is Ifcond: Instrument ifcond.

x is Ifcmp: Instrument ifcmp.

x is Switch: Instrument switcth.

Step 3: Get method m code.

Step 4: for each opcode x in m

x is Ifcond: Instrument Endif.

x is Ifcmp: Instrument Endif.

The method body is a sequence of opcodes. The method instrumentation algorithm

categories the method opcodes and shows how to examine each opcode to deter-

mine in which opcode category it belongs as indicated in Table 4.1. In order to send

appropriate state information the method instrumentation algorithm has two itera-

tions. The first iteration is performed by steps 1 and 2 of Listing 4.4 to instrument

all types of Java bytecode. The second iteration is performed by steps 3 and 4 of

Listing 4.4 to instrument Endif assertion point. Because Java bytecode instructions

do not have end if statement. In addition, the offset address of the if conditions

may changes while method instrumentation as will be shown in Examples 1 and 2

of Section 4.10.4.

The method instrumentation algorithm has different subcategories for invoked method

such as native write method and normal method otherwise instrumented as native

method invocation. This distinction allows for capturing the required code informa-

tion to enable event recognizer and runtime checker to control the information flow.

Our instrumentation mechanism has divided the instrumentation of the instructions

into two types.

� Explicit information flow instrumentation to control the explicit flow of the

information.

� Implicit information flow instrumentation to control the implicit flow of the

information.

65



CHAPTER 4. BYTECODE INSTRUMENTATION

The algorithm in Listing 4.4 is performed for all class methods. The categories

and subcategories in the method instrumentation algorithm of Listing 4.4 are ex-

plained in detail in the next sections by showing each instruction before and after

instrumentation.

4.9 Explicit Information Flow Instrumentation

In Java bytecode, explicit information flow occurs with an assignment statement

and may occur with the method invocation. The next subsections show the instru-

mentation of the categories that deal with the explicit information flow indicated in

the method instrumentation algorithm (Listing 4.4).

4.9.1 Instrument const

Const comprises all instructions that push a constant value onto the top of the stack

as illustrated in Table 4.1. All types of this category will be instrumented as follows:

Listing 4.5: Constant instrumentation

Before instrumentation:

iconst_1

After instrumentation:

invokestatic #387 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const(()V)

iconst_1

Listing 4.5 indicates that const assertion point involves one line of opcode that

inserted to call const() method in the event recognizer.
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4.9.2 Instrument load

All instructions that belong to category load in Table 4.1 push one value from the lo-

cal variable array to the top of the stack will be instrumented as follows. Listing 4.6

indicates that Aload assertion point involves three lines of opcode that inserted to

duplicate the loaded object, push label 1 into the stack and calling Aload() method

in the event recognizer.

Listing 4.6: Load instrumentation

Before instrumentation:

aload_1

After instrumentation:

aload_1

dup

ldc w #352 = ”1”

invokestatic #354 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Aload((ILjava/lang/String;)V)

4.9.3 Instrument store

Store involves all instructions that pop values from the current method stack and

store it in the local variable table as indicated in Table 4.1. Store instrumentation

is as follows:

Listing 4.7: Store instrumentation

Before instrumentation:

astore_2

After instrumentation:

dup

ldc w #514 = ”2”

invokestatic #517 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Store((Ljava/lang/Object;Ljava

/lang/String;)V)
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astore_2

Listing 4.7 indicates that Store assertion point involves three lines of opcode

that inserted to duplicate the loaded object, push label 2 into the stack and calling

Store() method in the event recognizer.

4.9.4 Instrument astore

Astore includes all instructions that pop three values from the top of the current

method stack and store them as an array. These popped three values represent

(Array object reference, value and an index in the array). Astore instrumentation

is as follows:

Listing 4.8: Astore instrumentation

Before instrumentation:

iastore

After instrumentation:

invokestatic #125 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Astore(()V)

iastore

Listing 4.8 indicates that Astore assertion point involves one line of opcode that

inserted to call Astore() method in the event recognizer.

4.9.5 Instrument pps

Pps comprises three instructions that are provided for the direct manipulation of

the stack as indicated in Table 4.1.

� Pop: pops the top value from the stack.

� Pop2: pops the top one or two values from the stack.
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1. Pop one if the value is of type long or double.

2. Pop two if the value is of type (Boolean, byte, char, short, int, float,

reference or returnAddress)

� Swap: swaps the top two values on the top of the stack.

The instrumentation is as follows:

Listing 4.9: Pop instrumentation

Before instrumentation:

pop

After instrumentation:

iconst 1

invokestatic #252 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Pps((I)V)

pop

Listing 4.9 indicates that Pps assertion point involves one line of opcode that

inserted to call Pps() method in the event recognizer.

4.9.6 Instrument dup

Dup instructions are provided for the direct manipulation of the stack values as

described in Table 4.1.

The instrumentation is as follows:

Listing 4.10: Dup instrumentation

Before instrumentation:

dup

After instrumentation:

iconst 1

iconst 0

invokestatic #112 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Dup((II)V)

dup
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Listing 4.10 indicates that Dup assertion point involves one line of opcode that

inserted to call Dup() method in the event recognizer.

4.9.7 Instrument return

Return comprises five instructions that pop values from the method stack as return

values and one instruction return that does not pop any value from the stack because

its method does not has a return value.

The instrumentation is as follows:

Listing 4.11: Return instrumentation

Before instrumentation:

return

After instrumentation:

iconst 1

invokestatic #117 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Return((I)V)

return

Listing 4.11 indicates that Return assertion point involves two lines of opcode

that inserted to push constant 1 into the stack and calling Return() method in the

event recognizer.

4.9.8 Instrument loadfield

Loadfield includes two instructions getfield and getstatic. Our instrumentation pro-

cess prefixes fields name with 0 to distinguish between local variables and fields as

shown in Listing 4.12.

The instrumentation is as follows:

Listing 4.12: Load field instrumentation

Before instrumentation:

getstatic #35 = Field java.lang.System.out(Ljava/io/PrintStream;)
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After instrumentation:

ldc #205 = ”0out”

invokestatic #207=Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.LoadField((Ljava/lang/String;)V)

getstatic #35 = Field java.lang.System.out(Ljava/io/PrintStream;)

Listing 4.12 indicates that LoadField assertion point involves two lines of opcode

that inserted to push label 0out into the stack and calling LoadField() method in

the event recognizer.

4.9.9 Instrument storefield

Storefield involves two instructions putfield and putstatic. Again 0 will be added to

the left of the field name.

The instrumentation is as follows:

Listing 4.13: Store field instrumentation

Before instrumentation:

putfield #54 = Field java.lang.String.hash(I)

After instrumentation:

ldc w #2631 = ”0hash”

invokestatic #264=Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.StoreField((Ljava/lang/String;)V)

putfield #54 = Field java.lang.String.hash(I)

Listing 4.13 indicates that StoreField assertion point involves two lines of opcode

that inserted to push label 0hash into the stack and calling StoreField() method in

the event recognizer.

4.9.10 Instrument union

Each of union instruction in Table 4.1 is responsible for popping two values from

the top of the stack. These popped two values will be pushed as one element after

combined them.

The instrumentation is as follows:
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Listing 4.14: Union instrumentation

Before instrumentation:

iadd

After instrumentation:

invokestatic #2670 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Union(()V)

iadd

Listing 4.14 indicates that Union assertion point involves one line of opcode that

inserted to call Union() method in the event recognizer.

4.9.11 Instrument new

New includes creating new object (class, array, or interface type). The object

reference name will again be prefixed with 0.

The instrumentation is as follows: Example:

Listing 4.15: New instrumentation

Before instrumentation:

new #94 = Class java.io.File

After instrumentation:

ldc w #393 = ”0java.io.File”

invokestatic #395 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.New((Ljava/lang/Object;)V)

new #94 = Class java.io.File

Listing 4.15 indicates that New assertion point involves two lines of opcode that

inserted to push label 0java.io.File into the stack and calling New() method in the

event recognizer.

4.9.12 Instrument newarray

Newarray includes three instructions:

� newarray: Create new array.
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� anewarray: Create new array of reference.

� multianewarray: Create new multidimensional array.

Newarray instructions pop the count (array size) from the stack and push the ar-

rayref onto the top of the stack.

The instrumentation is as follows:

Listing 4.16: Newarray instrumentation

Before instrumentation:

newarray byte

After instrumentation:

ldc w #298 = ”0NewArray”

invokestatic#301=Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.NewArray((Ljava/lang/String;)V)

newarray byte

Listing 4.16 indicates that NewArray assertion point involves two lines of opcode

that inserted to push label 0NewArray into the stack and calling NewArray() method

in the event recognizer.

4.9.13 Instrument monitor

Monitor category includes two instruction monitorenter and monitorexit. These

instructions should be instrumented because they manipulate the stack as follow

� monitorenter pushes the monitored object onto the stack.

� monitorexit pops the monitored object from the stack.

Thus, these two instructions may change the way that information flow.

The instrumentation is as follows:

Listing 4.17: Monitor instrumentation

Before instrumentation:

monitorenter
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After instrumentation:

invokestatic #1557 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Monitor(()V)

monitorenter

Listing 4.17 indicates that Monitor assertion point involves one line of opcode

that inserted to call Monitor() method in the event recognizer.

4.9.14 Instrument invoke

There are several different mechanisms for invoking methods in the JVM.

� Invokevirtual : invoke instance method; dispatch based on class.

� Invokespecial : invoke instance method; special handling for superclass, private,

and instance initialization method invocations.

� Invokestatic: invoke a class (static) method.

� Invokeinterface: invoke interface method.

Let m be the method name. The actual method to be instrumented is selected

according to Listing 4.4.

4.9.14.1 Instrument native write

If m is native and named write then it will be instrumented as follows.

Listing 4.18: Write native method instrumentation

Before instrumentation:

invokevirtual #110 = Method java.io.OutputStream.write((I)V)

After instrumentation:

iconst 1

iconst 0
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invokestatic #394 = Method Monitor.EventRecognizer.NativeWrite((II)V)

invokevirtual #110 = Method java.io.OutputStream.write((I)V)

Listing 4.18 indicates that NativeWrite assertion point involves three lines of

opcode that inserted to push constant 1 (parameters) and constant 0 (return values)

into the stack and calling NativeWrite() method in the event recognizer.

4.9.14.2 Instrument native method

If m is another native method then it will be instrumented as follows:

Listing 4.19: Native method instrumentation

Before instrumentation:

invokevirtual #30 = Method java.io.Writer.flush(()V)

After instrumentation:

iconst 1

iconst 0

invokestatic#886=Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.NativeMethod((II)V)

invokevirtual #30 = Method java.io.Writer.flush(()V)

In the Listing 4.19 the flush() method is instrumented as native method with

one parameter (iconst 1 ) and 0 return value (iconst 0 ).

4.9.14.3 Instrument method

If m is another method then it will be instrumented as follows:

Listing 4.20: Method instrumentation

Before instrumentation:

invokevirtual #45 = Method java.nio.ByteBuffer.position(()I)

After instrumentation:

ldc w #1560 = ”position”

iconst 1

iconst 1

invokestatic #152=Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Method((Ljava/lang/String;II)V)
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invokevirtual #45 = Method java.nio.ByteBuffer.position(()I)

As shown in Listing 4.20 the following information about position() method is

sent to the event recognizer:

� The method name: position

� The method parameters number: iconst 1

� The number of expected return values: iconst 1

All this information is detected from the method signature before instrumentation.

4.9.14.4 Instrument special method

If m is constructor then it will be instrumented as follows.

Listing 4.21: Special method instrumentation

Before instrumentation:

invokespecial #96 = Method java.io.File.<init>((Ljava/lang/String;)V)

After instrumentation:

invokestatic #401 =Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.SpecialMethod(()V)

invokespecial #96 = Method java.io.File.<init>((Ljava/lang/String;)V)

Listing 4.21 indicates that SpecialMethod assertion point involves one line of

opcode that inserted to call SpecialMethod() method in the event recognizer.

4.10 Implicit Information Flow Instrumentation.

In Java bytecode, the scope of the implicit information flow occurs within condition

or repetitive commands. The stack maybe manipulated in different ways according

to the branch of branching instruction offset address that may cause performing a

different number of pop and push operations. The following subsections show the
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instrumentation of the instructions that deals with the implicit information flow as

indicated in the method body instrumentation Listing 4.4.

4.10.1 Instrument ifcond

Ifcond involves all condition instructions that pop one value from the stack as illus-

trated in Table 4.1.

The instrumentation is as follows:

Listing 4.22: If condition instrumentation

Before instrumentation:

ifle 31

After instrumentation:

invokestatic #1141 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.ifcond(()V)

ifle 43

As shown in List 4.22 that the offset address of the condition ifle is addresses to

31. However, after instrumenting all bytecode instructions the offset address may

changed according to the size of the inserted assertion points as is illustrated in

Listing 4.22 the offset address has changed to 43.

4.10.2 Instrument ifcmp

Ifcmp includes all condition instructions that pop two values from the stack as

indicated in Table 4.1.

The instrumentation is as follows:

Listing 4.23: Ifcmp condition instrumentation

Before instrumentation:

if_icmpeq 75

After instrumentation:

invokestatic #378 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.ifcmp(()V)

if_icmpeq 94
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4.10.3 Instrument switch

Switch includes compound conditional branch instructions:

� Tableswitch: Access jump table by index and jump.

� Lookupswitch: Access jump table by key match and jump

The instrumentation is as follows:

Listing 4.24: Table switch instrumentation

Before instrumentation:

tableswitch {

default: 34

0: 28

1: 30

2: 32

}

After instrumentation:

invokevirtual #39 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.ifcond(()V)

tableswitch {

default: 93

0: 55

1: 67

2: 81

}

4.10.4 Instrument endif

Similar to (Ball 1993), a condition region should be created for each If <cond> to

control implicit information flow. The condition region will be created according to

the offset address of the if statement. The start of the region is at the beginning

of the if statement and the end of the region is at the end of the if statement.

As indicated in the instrumentation algorithm Listing 4.4 the assertion point of the

start of the region is inserted after step 2 as illustrated in Sections 4.10.1 and 4.10.2
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respectively. The end of the region is where the Endif should be instrumented which

is after fourth step of the instrumentation algorithm.

Each type of ifcmp and ifcond statements in Table 4.1 has its own offset address.

Endif will be instrumented according to the offset address of the If <cond> in-

struction opcode. The offset address must be within the method that contains the

If <cond> instruction. If the opcode instruction before the target opcode index is

not a goto statement then the assertion point Endif will inserted in the index as

specified in the If <cond> offset address. as illustrated in the examples of Listings

4.25 and 4.26 respectively.

Example 1:

Assume that the if statement has a conditional form as illustrated in Figure 4.5.

When the condition is true, the statements between the if condition and the en-

if <cond> then
statement1;
statement2

.....

.....
endif

Figure 4.5: Condition statement form example 1

dif will be performed. Listing 4.25 shows the if condition original bytecode, the

instrumented bytecode after performing step 2 of the method body instrumentation

algorithm in Section 4.8.4 and the changes in the bytecode after performing step 4

of the method body instrumentation algorithm after inserting the Endif assertion

point.

Listing 4.25: Example 1 Endif instrumentation

Before instrumentation:

03: ifne 8

06: iconst_1

07: istore_1

08: iconst_2
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After step 2 of the method body instrumentation algorithm:

18: invokestatic #44 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.ifcond(()V)

21: ifne 35

24: invokestatic #46 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const(()V)

27: iconst_1

28: dup

29: ldc #47 = ”1”

31: invokestatic #49 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Store((Ljava/lang/Object;

Ljava/lang/String;)V)

34: istore_1

35: invokestatic #51 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const(()V)

38: iconst_2

After step 4 of the method body instrumentation algorithm:

18: invokestatic #44 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.ifcond(()V)

21: ifne 38

24: invokestatic #46 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const(()V)

27: iconst_1

28: dup

29: ldc #47 = ”1”

31: invokestatic #49 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Store((Ljava/lang/Object;

Ljava/lang/String;)V)

34: istore_1

35: invokestatic #61 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Endif(()V)

38: invokestatic #51 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const(()V)

41: iconst_2

The if condition in the original bytecode Listing 4.25 is started at opcode index

03 and has offset address 8. The end of the if condition is at opcode index 8 as

illustrated in Figure 4.6 (Before instrumentation). However, after performing step

2 of the method body instrumentation algorithm of Section 4.8.4, all original byte-

code are instrumented and the start of the region is inserted in the first iteration of

the instrumentation process. The offset address of the if condition will be changed

according to the instrumented bytecode inside the if condition as shows in Listing

4.25 at opcode index 21.

The offset address is changed to 35 as illustrated in Figure 4.6 (after step 2 of the

80



CHAPTER 4. BYTECODE INSTRUMENTATION

method body instrumentation algorithm). Finally, step 4 of the method body instru-

mentation algorithm is performed where the end of the region (Endif ) is inserted.

The offset address of the if condition will be modified to point to the opcode index

38. The Endif assertion point will be inserted before offset address of the if condi-

tion as show in Listing 4.25 at opcode index 35. Figure 4.6 illustrates the creation

of the region in the instrumentation process.

8:

35:

38:
35: Endif

21: If <cond> offset address 353: If <cond> offset address 8

Before instrumentation After step 2 of
the method instrumentation

After step 4 of
the method instrumentation

21: If <cond> offset address 38

Figure 4.6: Region creation of example 1

Example 2:

Assume that the if statement has a conditional form as illustrated in Figure 4.7.

if <cond> then
statements;

.....
else

statements;
.....

endif

Figure 4.7: Condition statement form example 2

When the condition is true, the statements between the if condition and else will

be performed, otherwise the statements between else and endif will be performed.
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Listing 4.25 shows the if condition original bytecode, the instrumented bytecode

after performing step 2 of the method body instrumentation algorithm of Section

4.8.4 and the bytecode after inserting the Endif assertion point. In this form of the

condition both cases true or false will cause an information flow, thus the end of the

region will be inserted at the end of the if condition.

Listing 4.26: Example 2 of Endif instrumentation

Before instrumentation:

03: ifne 11

06: iconst_1

07: istore_1

08: goto 13

11: iconst_2

12: istore_1

13: iconst_1

After step 2 of the method body instrumentation algorithm:

18: invokestatic #45 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.ifcond(()V)

21: ifne 38

24: invokestatic #47 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const(()V)

27: iconst_1

28: dup

29: ldc #48 = ”1”

31: invokestatic #50 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Store((Ljava/lang/Object;

Ljava/lang/String;)V)

34: istore_1

35: goto 49

38: invokestatic #52 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const(()V)

41: iconst_2

42: dup

43: ldc #53 = ”1”

45: invokestatic #55 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Store((Ljava/lang/Object;

Ljava/lang/String;)V)

48: istore_1

49. invokestatic #57 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const(()V)

52: iconst_1
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After step 4 of the method body instrumentation algorithm:

18: invokestatic #45 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.ifcond(()V)

21: ifne 38

24: invokestatic #47 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const(()V)

27: iconst_1

28: dup

29: ldc #48 = ”1”

31: invokestatic #50 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Store((Ljava/lang/Object;

Ljava/lang/String;)V)

34: istore_1

35: goto 49

38: invokestatic #52 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const(()V)

41: iconst_2

42: dup

43: ldc #53 = ”1”

45: invokestatic #55 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Store((Ljava/lang/Object;

Ljava/lang/String;)V)

48: istore_1.

49:invokestatic #69 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Endif(()V)

52: invokestatic #57 = Method uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const(()V)

55: iconst_1

In this example the opcode instruction before the target address is a type of goto

statement then the assertion point Endif will be inserted at the target address of

the goto statement as illustrated in Listing 4.25. The if condition in the original

bytecode of Listing 4.25 starts at opcode index 03 and has offset address 11. The end

of the if condition is at opcode index 8 as illustrated in Figure 4.8 (Before instru-

mentation). However, after performing step 2, all original bytecode is instrumented

and the start of the region is inserted in the first iteration of the instrumentation

process. The offset address of the if condition will be changed according to the

size of the instrumented bytecode inside the if condition as shown in Listing 4.25

at opcode index 21. The offset address is changed to 38 as illustrated in Figure 4.8

(after step2 of the method instrumentation algorithm). Finally in the fourth step

of the method body instrumentation algorithm the second iteration of the method
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bytecode is performed to insert the end of the region (Endif ).

The instrumentation process gets the offset address of the if condition which is 38

as specified at opcode index 21. Checks the instruction that just before the index of

the offset address which is the instruction goto because the index of the instruction

that is before the offset address 38 is opcode index 35. If the checked instruction

is of type goto as in the example, then the instrumentation process gets the offset

address of the goto which is 49 and inserts the Endif assertion point at the offset

address 49. Figure 4.8 illustrates the creation of the region in the instrumentation

process for this form of the if condition.

11:

49: Endif

21: If <cond> offset address 383: If <cond> offset address 11

Before instrumentation After step 2 of
the method instrumentation

After step 4 of
the method instrumentation

21: If <cond> offset address 38

8: goto 13

13:

12

3
38:

35: goto 49

49:

1
2

3
38:

35: goto 49
12

3

Figure 4.8: Region creation of example 2

However, in case of a return statement inside a region, the return assertion

point of Section 4.9.7 has a parameter that holds a counter of the If condition.

This counter will be increased by 1 each time that If condition is performed and

decreased by 1 for each performed Endif.

4.11 Summary

The presented chapter has introduced the Java bytecode, class loader in Java vir-

tual machine and how a Java class file will be instrumented in order to monitor

and control the information flow within a Java application. The chapter provided
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example of a Java source file and its bytecode format. This chapter has described

the class loader in Java virtual machine and explored the loading phase. The pre-

sented chapter has also described the linking process and the initialization process

phases. This chapter has discussed a novel instrumentation mechanism for inserting

assertion points and provided some examples of Java bytecode instructions before

and after instrumentation. Finally, it has discussed the instrumentation of explicit

information flow instructions and implicit information flow instructions.
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Chapter 5

Runtime Monitoring

Objectives

� Describe how a class file will be executed.

� Describe how information flow will be monitored with respect to an informa-

tion flow policy.

� Provide the event recognizer and runtime checker algorithms for controlling

information flow.

86



CHAPTER 5. RUNTIME MONITORING

5.1 Introduction

This chapter describes the event recognizer and runtime checker algorithms for con-

trolling information flow within an Java application (the second step of our runtime

monitoring mechanism as illustrated in Figure 5.1).

Load & Instrument

Execute & Monitor

Figure 5.1: Monitoring mechanism flow chart

The chapter is structured as follows. Section 5.2 describes the event recognizer.

Section 5.3 provides the explicit information flow algorithms for tracing and con-

trolling explicit information flow. Section 5.4 extends this algorithm for implicit

information flow. Section 5.5 describes the runtime checker process. Section 5.6 de-

scribes the user feed back component. Finally Section 5.7 describes the information

flow policy and its enforcement.

5.2 Event Recognizer

The Java virtual machine is stack oriented, with most operations taking one or

more operands from the operand stack of the Java virtual machine’s current frame or

pushing results back onto the operand stack (Lindholm & Yellin 1997). Our runtime

monitoring mechanism is similar as the Java virtual machine runtime frames. In our

runtime monitoring mechanism a new runtime frame is created each time a method

is invoked. The runtime frame consists of a stack called information flow stack (IFS)
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and Symbol Table for the use by the current method to store its variables. At any

point of the execution, there are thus likely to be many frames and equally many

information flow stacks (IFS) and Symbol Tables per method invocation. Only the

runtime frame (IFS and Symbol table) of the current method is active. The event

recognizer receives an event that attempts to change the state of the information

flow within the application. The event recognizer manipulates all labels of variables

using the current runtime frame (IFS and Symbol table) and implicit information

flow stack (IMFS) as illustrated in Figure 5.2.

IFS

Runtime frames

Method
Symbol table

Method

IFS
Method

Symbol table
Method

IFS
Method

Symbol table
Method

runtime
frame

Current

IMFS

Figure 5.2: runtime frame of the current method and IMFS

5.2.1 Symbol Tables

An information flow Symbol Table holds information needed to trace the informa-

tion flow during runtime. To reduce the time of searching our event recognizer uses a

hash table data structure to implement the information flow Symbol Table as shown

in Figure 5.3.
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Position Labels

0

1

2
...
...

label 1, ...........

label 1, label 2, ...........

label 1, label 2, ...........
...
...

Figure 5.3: Information flow Symbol Table

As shown in Figure 5.3 the information flow Symbol Table consists of positions

and labels. The position holds the location of the stored information in the Sym-

bol Table. Labels are implemented as a set of strings that can hold any number of

labels. The event recognizer performs the following operations on the information

flow Symbol Table:

1. Get labels from a specific position.

2. Put labels at a specific position.

5.2.2 Information Flow Stack (IFS)

Each runtime frame contains a last-in-first-out (LIFO) stack known as its informa-

tion flow stack (IFS). The event recognizer supplies instructions to load labels from

Symbol Tables onto the IFS. The information flow stack is also used to prepare

parameters to be passed to other runtime frames and to receive results of other

method traces. Our event recognizer uses the information flow stack to control

explicit information flow.

5.2.3 Implicit Information Flow Stack (IMFS)

An implicit information flow stack (IMFS) is smiler to the information flow stack

(IFS). Our event recognizer uses a shared implicit information flow stack between

all runtime frames as illustrated in Figure 5.2. The implicit information flow stack
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is shared to control any implicit information flow that may occurs during runtime

such as a method invocation inside a conditional statement.

We now move on to the technical details of the event recognizer. The following two

Sections 5.3 and 5.4 provide algorithms for inserting assertion points to trace and

control information flow.

5.3 Explicit Information Flow Algorithm

As mentioned in Section 4.9 the explicit information flow occurs when using the

assignment statement and may occur when using method invocations. The next

subsections provide explicit information flow algorithms for all categories of opcodes

in Table 4.1 that may cause explicit information flow.

5.3.1 Const Algorithm

The Const assertion point is informing the event recognizer to push the constant

label [Const] onto the current runtime frame IFS as indicated in the Const algorithm

Listing 5.1.

Listing 5.1: Const algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Const()

1. Let x be a List containing the label Const. // [Const]

2. IFS.push(x).

Figures (5.4a and 5.4b) illustrate the changes in the runtime frame of the current

method and IMFS after performing the Const assertion point.

As shown in Figure 5.4b the constant label [Const] is pushed onto the top of the

current runtime frame IFS.
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Symbol table of the current method IFS IMFS

Current Runtime Frame

Figure 5.4a: Runtime frame and IMFS before performing the Const assertion point

Symbol table of the current method IFS IMFS

Current Runtime Frame

[Const]

Figure 5.4b: Runtime frame and IMFS after performing the Const assertion point

5.3.2 Load Algorithm

A load assertion point has different types as described in Table 4.1. A load assertion

point causes the event recognizer to get a label from the current runtime frame Sym-

bol Table and push it onto the top of the current runtime frame (IFS) as indicated

in Listing 5.2.

Listing 5.2: Load algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Load(String keyInSymbolTable)

1. Let temp= Symbol Table.get(keyInSymbolTable)

2. IFS.push(temp)

Assuming that both current runtime frame IFS and IMFS are empty, the cur-

rent runtime frame Symbol Table location 0 contains Const and location 1 contains

object named 0java,io,File as illustrated in Figure 5.5a.

The event recognizer receives information that a load operation is going to be

performed on location 1. The event recognizer pushes the contents of the Sym-

bol Table location 1 onto the current runtime frame IFS. Figure 5.5b illustrates the

changes in the current runtime frame and IMFS after performing the load asser-
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Symbol table of the current method

IFS IMFS

Current Runtime Frame

Const0

1 0java.io.File

Figure 5.5a: Runtime frame and IMFS before performing the Load assertion point

Symbol table of the current method

IFS IMFS

Current Runtime Frame

Const0

1 0java.io.File

[0java.io.File]

Figure 5.5b: Runtime frame and IMFS after performing the Load assertion point

tion point where the contents of current runtime frame Symbol Table location are

is pushed onto the current runtime frame IFS and there is no change in the IMFS.

5.3.3 Store Algorithm

A store assertion point has different instructions as described in Table 4.1. A store

assertion point causes the event recognizer to pop the top element from the current

runtime frame IFS and combine it with all contents of the IMFS in one list.Then

store the list in current runtime frame Symbol Table as indicated in Listing 5.3.

Listing 5.3: Store algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Store(String keyInSymbolTable)

1. Let V and S be an empty lists

2. V = V U {IFS.pop()}

3. V = V U IMFS

5. Symbol Table.put(KeyInSymbolTable, V).

Assuming that the current runtime frame IFS contains one label [0java.io.File],

IMFS contains [/home/secret/file.txt] and Symbol Table location 0 has label Const

and location 1 contains [0java.io.File] as illustrated in Figure 5.6a. The event
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Symbol table of the current method

IFS IMFS

Current Runtime Frame

Const0

1 0java.io.File

[home/secret/file.txt][0java.io.File]

Figure 5.6a: Runtime frame and IMFS before performing the Store assertion point
Symbol table of the current method

IFS IMFS

Current Runtime Frame

Const0

1 0java.io.File

[home/secret/file.txt]

0java.io.File
home/secret/file.txt

2

Figure 5.6b: Runtime frame and IMFS after performing the Store assertion point

recognizer receives information that the store operation is going to be performed

on location 2. The event recognizer pops the top element from the current runtime

frame IFS 0java.io.File and pops all contents of the IMFS /home/secret/file.txt.

Then the event recognizer combines all popped elements from both stacks in one

list 0java,io,File, /home/secret/file.txt. Finally, it stores the combined elements

in the current runtime frame Symbol Table location 2. Figure 5.6b illustrate the

changes in the runtime frame and IMFS after performing the Store assertion point.

5.3.4 Astore Algorithm

The Astore assertion point includes eight different instructions (iastore, lastore,

fastore, dastore, aastore, bastore, castore, sastore) as indicated in Table 4.1. An

Astore assertion point is reporting to the event recognizer that the Astore operation

will be the next operation. Then the event recognizer pops the top element from

the current runtime frame IFS (object reference) and gets the location Key of this

popped label from the current runtime frame Symbol Table. It pops the top two

elements from the current runtime frame IFS the value and array index. It then pops
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all contents of the IMFS and combine them with the two popped elements from the

current runtime frame IFS into one list. It then stores the list in the current runtime

frame Symbol Table location key and pushes all popped elements from the IMFS

back in the same order as indicated in Listing 5.4.

Listing 5.4: AStore algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Astore()

1. Let ObjectRef, V and S be empty lists

2. ObjectRef = IFS.pop()

3. Let Key be a string contains the Objectref location in the current runtime frame

Symbol Table

4. Let V = IFS.pop() U IFS.pop

5. V = V U IMFS

6. Symbol Table.put(Key, V).

Figures 5.7a and 5.7b illustrate the current runtime frame and the IMFS before

and after performing the Astore assertion point.

Symbol table of the current method

IFS
IMFS

Current Runtime Frame

0out

[I@1decdec, 0NewArray]

[Const]

[Const]

I@1decdec, 0NewArray
0

1

Figure 5.7a: Runtime frame and IMFS before performing the Astore assertion point
Symbol table of the current method

IFS IMFS

Current Runtime Frame

[0out]

[Const]
0

1

Figure 5.7b: Runtime frame and IMFS after performing the Astore assertion point

As shown in Figure 5.7a the current runtime frame IFS contains three elements

the first element is a label to array reference [I@1decdec, 0NewArray] and the next
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two elements are labels to constants [Const] and [Const]. The current runtime

frame Symbol Table location 0 contains 0out and location 1 contains I@1decdec,

0NewArray. The event recognizer pops the top element [I@1decdec, 0NewArray]

from the current runtime frame IFS and get its location 1 from the current runtime

frame Symbol Table. The event recognizer compares the first element in the IFS

with all values in the current runtime frame (Symbol Table) to get the location of

the array reference in the Symbol Table as shown in Figure 5.7a. Then the top

two labels [Const] and [Const] are popped from the current runtime frame IFS

and all contents of the IMFS which in our example is empty. All popped elements

from both stacks will be combined together and stored in the current runtime frame

Symbol Table location 1 as shown in Figure 5.7b.

5.3.5 Pps Algorithm

The Pps assertion point includes three different instructions as described in Table

4.1. The Pps assertion point has an integer value to specify which type of pps

instruction (pop, pop2, swap) will be performed as indicated in the Pps algorithm

Listing 5.5.

Listing 5.5: Pps instructions algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Pps(int type)

if type = 1 // pop

1. IFS.pop()

else if type = 2 // pop2

1. x=IFS.pop().

2. if x is of type (long | double)

2.1 IFS.pop()

else if type = 3 // Swap

1. Let x = IFS.pop().

95



CHAPTER 5. RUNTIME MONITORING

2. Let y = IFS.pop().

3. IFS.push(x)

4. IFS.push(y)

As indicated in Listing 5.5, if the event recognizer receives:

� Type 1, the top element on the current runtime frame IFS will be popped.

� Type 2, the top element on the current runtime frame IFS will be popped and

if the type of popped element is long or double then another element will be

popped from the current runtime frame IFS.

� Type 3, the two top elements on the current runtime frame IFS will be

swapped.

5.3.6 Dup Algorithm

The Dup assertion point includes six different instruction types (dup, dup x1, dup x2,

dup2, dup2 x1 and dup2 x2 ). The Dup assertion point has two integer values to

specify the instruction type as illustrated in the Dup algorithm Listing 5.6.

Listing 5.6: Dup instructions algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Dup(int category, int type) // in

instrumentation.

if ( category = 1 | (category = 4 & type=1)) // duplicated

Dup1()

else if ((category = 2) | (category = 5 & type=1)

| (category = 3 & type= 1) | (category = 6 & type =1)) // dup x1

Dup2()

else if ((category = 3 & type= 2) | (category = 6 & type =2)) // dup x2

Dup3()

else if category = 4 & type=2 // dup2

Dup4()

else if category = 5 & type = 2 // dup2 x1

Dup5()
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else if category = 6 & type = 3 // dup2 x2

Dup6()

else if category = 6 & type = 4

Dup7()

Dup1()

1. Let x = IFS.pop()

2. IFS.push(x)

3. IFS.push(x)

Dup2()

1. Let x = IFS.pop()

2. Let y =IFS.pop()

3. IFS.push(x)

4. IFS.push(y)

5. IFS.push(x)

Dup3()

1. Let x = IFS.pop()

2. Let y = IFS.pop()

3. Let z = IFS.pop()

4. IFS.push(x)

5. IFS.push(y)

6. IFS.push(z)

7. IFS.push(x)

Dup4()

1. Let x = IFS.pop()

2. Let y = IFS.pop()

3. IFS.push(x)

4. IFS.push(y)

5 IFS.push(x)

6. IFS.push(y)

Dup5()

1. Let x = IFS.pop()

2. Let y = IFS.pop()

3. Let z = IFS.pop()

4. IFS.push(x)

5. IFS.push(y)

6. IFS.push(z)
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7. IFS.push(x)

8. IFS.push(y)

Dup6()

1. Let x = IFS.pop()

2. Let y = IFS.pop()

3. Let z = IFS.pop()

4. IFS.push(y)

5. IFS.push(x)

6. IFS.push(z)

7. IFS.push(y)

8. IFS.push(x)

Dup7()

1. Let x = IFS.pop()

2. Let y = IFS.pop()

3. Let z = IFS.pop()

4. Let w = IFS.pop()

5. IFS.push(y)

6. IFS.push(x)

7. IFS.push(w)

8. IFS.push(z)

9. IFS.push(y)

10.IFS.push(x).

As indicated in Listing 5.6, if the event recognizer receives:

� Category 1, the top element on the current runtime frame IFS will be popped,

duplicated and the duplicated elements pushed onto the current runtime frame

IFS.

� Category 2, duplicate the top element on the current runtime frame IFS and

insert the duplicated element two elements down in the current runtime frame

IFS.

� Category 3 and type 1, duplicate the top element on the current runtime

frame IFS and insert the duplicated element two elements down in the current

runtime frame IFS.
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� Category 3 and type 2, duplicate the top element on the current runtime frame

IFS and insert the duplicated element three elements down in the current

runtime frame IFS.

� Category 4 and type 1, duplicate the top element on the current runtime frame

IFS and push the duplicated element onto the current runtime frame IFS.

� Category 4 and type 2, duplicate the top two elements on the current runtime

frame IFS and push the duplicated elements back onto the current runtime

frame IFS in the original order.

� Category 5 and type 1, duplicate the top element on the current runtime frame

IFS and insert the duplicated value two elements down in the current runtime

frame IFS.

� Category 5 and type 2, duplicate the top two elements on the current runtime

frame IFS and insert the duplicated elements in the original order, one element

beneath the original elements in the current runtime frame IFS.

� Category 6 and type 1, duplicate the top element on the current runtime frame

IFS and insert the duplicated value two elements down in the current runtime

frame IFS.

� Category 6 and type 2, duplicate the top element on the current runtime frame

IFS and insert the duplicated value three elements down in the current runtime

frame IFS.

� Category 6 and type 3, duplicate the top two elements on the current runtime

frame IFS and insert the duplicated elements, in the original order, three

elements down in the current runtime frame IFS.
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� Category 6 and type 4, duplicate the top two elements on the current run-

time frame IFS and insert the duplicated elements, in the original order, four

elements down in the current runtime frame IFS.

5.3.7 Return Algorithm

A return instruction has twp different types (Return and Treturn). The Return

type does not return any value from the current method. The Tretrun type has five

different categories (ireturn, lreturn, freturn, dreturn, areturn) that returns the value

from the current method. The event recognizer will perform according to the type

of the return assertion point (Return and Treturn) as indicated in Return algorithm

Listing 5.7.

Listing 5.7: Return algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Return(IfCounter)

1. Loop until IFCounter = 0 //IfCounter is if Statement counter of the current method

1.1 IMFS.pop()

1.2 IFCounter−−

2. Destroy the current runtime frame (Current method IFS and Symbol table)

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.TReturn(IfCounter)

1. Let ReturnValues, IMFSValues be lists

2. Loop until IFCounter = 0 //IfCounter is if Statement counter of the current method

2.1 IMFSValues = IMFS.pop()

2.2 IFCounter−−

3. ReturnValues = IFS.pop()

4. Parent method IFS.push(IMFSValues U ReturnValues).

5. Destroy the current runtime frame (Current method IFS and Symbol table)

Suppose that, the current runtime frame IFS has one element 0out, IMFS is

empty and the event recognizer receives information from the Treturn assertion

point.

The event recognizer pops one element from the current runtime frame IFS, and

checks the IMFS whether it has any elements to be popped and combined with
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Current method Symbol table

Parent method Symbol table

IMFS

[0out]

Parent IFS

Current IFS

Current runtime Frame

Parent runtime frame

Figure 5.8: Runtime frame and IMFS after performing the TReturn assertion point

the popped element from the current runtime frame IFS. Then the event recognizer

pushes all popped elements [0out] onto the parent runtime frame IFS. The last

step of the Treturn assertion point is to Destroy the current runtime frame (IFS

and Symbol Table) as illustrated in Figure 5.8. The event recognizer pushes the

current method return label onto the parent method IFS to trace and control the

information flow of the returned labels.

5.3.8 Load Field Algorithm

The load field assertion point has two types (getstatic and getfield). These report

to the event recognizer that a field is about to be loaded. Then the event recognizer

pushes the field label onto the current runtime frame IFS.

Listing 5.8: Load field algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.LoadField(String fieldName)

2. Let V= Symbol Table.get(fieldName)

3. If V == null

3.1 IFS.push(fieldName)

else

3.1 IFS.push(V)
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As indicated in load field algorithm Listing 5.8 that if the type of the loaded

field is getstatic then the current runtime frame Symbol Table returns null. Then

the event recognizer pushes the field name as received from load field assertion point.

Assuming that the current runtime frame Symbol Table location 0 contains 0out,

location 0fd contains Const, both stacks (current runtime frame IFS and IMFS)

are empty and the event recognizer receives from the load field assertion point the

load field named 0fd. Then the event recognizer gets the 0fd value from the current

runtime frame Symbol Table and pushes the 0fd value onto the current runtime

frame IFS as illustrated in Figures 5.9a and 5.9b.

Symbol table of the current method

IFS IMFS

Current Runtime Frame

0

0fd

0out

Const

Figure 5.9a: Runtime frame and IMFS before performing the LoadField assertion
point

Symbol table of the current method

IFS IMFS

Current Runtime Frame

0

0fd

[Const]

0out

Const

Figure 5.9b: Runtime frame and IMFS after performing the LoadField assertion
point

5.3.9 Store Field Algorithm

The store field assertion point has two types of instructions (putfield and putstatic).

The store field algorithm causes the event recognizer to pop the top element from

the current runtime frame IFS and all contents of the IMFS. It then combines all
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popped elements into one list and stores the list in location FieldName of the current

runtime frame Symbol Table.

Listing 5.9: StoreField algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.StoreField(String fieldName)

1. Let Values and S be a lists

2. Values = IFS.pop()

3. Values = Values U IMFS

4. Symbol Table.put(FieldName, Values).

Suppose that the current runtime frame IFS has one label [Const], IMFS has

two elements the top element is [Const] and the bottom element is [/home/file.txt]

and the current runtime frame Symbol table has one label 0out in location 0.

The event recognizer receives information from the store field assertion point that the

field named 0fd is about to be stored. The event recognizer pops the top element

from the current runtime frame IFS Const and all elements of the IMFS Const,

/home/file.txt. Then all popped elements will be combined as Const, /home/file.txt

and stored in the current runtime frame Symbol table location 0fd as illustrated in

Figures 5.10a and 5.10b.

Thus, the popped label from the current runtime frame (IFS) [Const] is explicitly

flowing to the field named 0fd and all labels in the IMFS ([Const] and [/home/-

file.txt]) are implicitly flowing to the same field 0fd as illustrated in Figure 5.10b.

5.3.10 Union Algorithm

Each of the union instruction family (Table 4.1) is responsible for popping two labels

from the top of the current runtime frame IFS. These two labels will be pushed as

one element after combining them, independent of their types.
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Symbol table of the current method

IFS IMFS

Current Runtime Frame

0 0out

[/home/file.txt]

[Const]

[Const]

Figure 5.10a: Runtime frame and IMFS before performing the StoreField assertion
point

Symbol table of the current method

IFS IMFS

Current Runtime Frame

0

0fd

0out

[/home/file.txt]

Const, /home/file.txt

[Const]

Figure 5.10b: Runtime frame and IMFS after performing the StoreField assertion
point

Listing 5.10: Union algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Union()

1. Let x = IFS.pop()

2. Let y = IFS.pop()

3. IFS.push(x U y)

Assume that, the current runtime frame IFS has two elements, the top one is a

label [Const] and the bottom element is a label of static field named [0out]. The

event recognizer receives information from the union assertion point that one of the

union instruction is going to be performed. The event recognizer will pop the two

top elements from the current runtime frame IFS. These values are combined and

pushed as one element onto the current runtime frame IFS as shown in Figure 5.11a

and 5.11b.
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Symbol table of the current method

IFS IMFS

Current Runtime Frame

0

0fd

0out

Const

[0out]

[Const]

Figure 5.11a: Runtime frame and IMFS before performing the Union assertion point

Symbol table of the current method

IFS IMFS

Current Runtime Frame

0

0fd

[Const, 0out]

0out

Const

Figure 5.11b: Runtime frame and IMFS after performing the Union assertion point

5.3.11 New Algorithm

The event recognizer receives the new object name from the New assertion point

and pushes the object reference name onto the current runtime frame IFS.

Listing 5.11: New object algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.New(String objectName)

1. IFS.push(objectName)

Symbol table of the current method

IFS
IMFS

Runtime frame of the current method

[0java.io.FileInputStream]

Figure 5.12: Runtime frame and IMFS After performing the New assertion point

The new assertion point will inform the event recognizer that a new object is

about to be created. The event recognizer will push the object reference name
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[0java.io.FileInputStream] onto the current runtime frame IFS as illustrated in Fig-

ure 5.12.

5.3.12 New Array Algorithm

The new array assertion point has three different instructions (newarray, anewarray,

multianewarray) as indicated in Table 4.1. The new array assertion point will inform

the event recognizer that a new array object is about to be created. The event

recognizer pops the top element from the current runtime frame IFS indicating the

array size and pushes the reserved array object name 0NewArray onto the current

runtime frame IFS as shown in Figure 5.13.

Listing 5.12: NewArray object algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.NewArray(ArrayObjectName)

1. IFS.pop() // Array size

2. IFS.push(ArrayObjectName)

Symbol table of the current method

IFS
IMFS

Current Runtime Frame

[0NewArray]

Figure 5.13: Runtime frame and IMFS After performing the New array assertion
point

5.3.13 Monitor Algorithm

The monitor assertion point has two different instructions (monitorenter, moni-

torexit) as indicated in Table 4.1. The Monitor assertion point is asking the event

106



CHAPTER 5. RUNTIME MONITORING

recognizer to pop the top element in current runtime frame IFS as indicated in

Listing 5.13.

Listing 5.13: Monitor algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Monitor()

1. x= IFS.pop()

Assuming that the current runtime frame IFS has two elements, the top one is

a label to object reference [I@5fec4ec] and the bottom one is a label to constant

[Const]. The event recognizer receives information from the monitor assertion point

and then the event recognizer pops the top element from the current runtime frame

IFS as shown in the Figures 5.14a and 5.14b.

Symbol Table IFS
IMFS

Runtime frame of the current method

[I@5fec4ec]

[Const]

Figure 5.14a: Runtime frame and IMFS before performing the Monitor assertion
point

Symbol Table IFS
IMFS

Runtime frame of the current method

[Const]

Figure 5.14b: Runtime frame and IMFS after performing the Monitor assertion
point

5.3.14 Native Method Algorithm

The Native method is a method that is written in a language other than the Java

programming language. The event recognizer deals with the native method assertion

point in a way that all its parameters will be combined together as one element and

this element will be returned many times according to the number of the native
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method return values. The Native method assertion point will report to the event

recognizer that the native method is about to be invoked with the parameters and

return value numbers. Then the event recognizer pops the top label or labels from

the current runtime frame IFS according to the parameters number and combine all

popped labels into one list. Then it combines all the contents of the IMFS in the

same list. Finally, it pushes the list of the labels onto the current runtime frame IFS

many times according the return value numbers as indicated by the Native write

method algorithm Listing 5.14.

Listing 5.14: Native method algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.NativeMethod(int parametersNumber, int

returnValues)

1. Let L be lists

2. For parametersNumber

2.1 L = L U IFS.pop()

3. L = L U IMFS

4. For returnValues

4.1 IFS.push(L)

Symbol table of the current method IFS IMFS

Runtime frame of the current method

[Const][0out]

[/home/file.txt]

Figure 5.15a: Runtime frame and IMFS before Native method assertion point

Symbol table of the current method IFS IMFS

Runtime frame of the current method

[Const][/home/file.txt, 0out, Const]

Figure 5.15b: Runtime frame and IMFS after Native method assertion point

As an example suppose that the current runtime frame IFS has two elements.

The top element is a label [/home/file.txt] and the bottom element is label [0out] and
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the IMFS has one value [Const]. The event recognizer receives information about

a native method with two parameters and one return value. The event recognizer

pops the top two labels [/home/file.txt] and [0out] from the current runtime frame

IFS and pop all contents of the IMFS [Const]. Then all popped elements from both

stacks will be combined as one element /home/file.txt, 0out, Const. The combined

values will be pushed onto the current runtime frame IFS one time according to the

return value number and the popped elements from the IMFS will be pushed back

in the same order as illustrated in Figures 5.15a and 5.15b

5.3.15 Native Write Method Algorithm

The Native write method assertion point will inform the event recognizer that a

native write method is about to be invoked with its parameters numbers. The event

recognizer deals with the native write method different by than other native meth-

ods because it is the method where the runtime monitoring mechanism intercepts

because there the information flow may take place. To control this flow the event

recognizer pops the label or labels from the current runtime frame IFS according to

the method parameters number. It combines all contents of IMFS with all popped

labels from the IMFS into one list. Finally it sends the popped labels to the runtime

checker as indicated by the Native write method algorithm in Listing 5.15.

Listing 5.15: Native write method algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.NativeWrite(int parametersNumber)

1. Let source, destination be empty lists

2. if parametersNumber = 3 then

2.1 Let source = IFS.pop U IFS.pop U IFS.pop // 3 parameters

else

2.1 Let source = IFS.pop // 1 parameter

3. Let destination = IFS.pop

4. source = source U IMFS

5. Let programState = Call uk.ac.dmu.msarrab.vif.framework.RuntimeChecker.Check(source,

destination)
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6. If programState = false

6.1 Call uk.ac.dmu.msarrab.vif.framework.EventRecognizer.ExecutionExit()

The event recognizer sends two sets of events containing the execution trace to

the runtime checker. If the runtime checker checks the received set of events and

returns true the execution will continue as normal otherwise the event recognizer

will terminate the program execution.

5.3.16 Invoked Method Algorithm

The invoked Method assertion point reports to the event recognizer that a method

is about to be invoked with the method name and parameters number. Then the

event recognizer pops the top label or labels from the current runtime frame IFS

according to the parameters number and combine all popped labels into one list.

It combines all contents of the IMFS with each popped label in the list of popped

labels from the current runtime frame IFS. Then it stores each element in the list

in new created runtime frame (Symbol Table) as indicated in the invoked method

algorithm List 5.16.

Listing 5.16: Invoked method algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Method(String methodName, int

parametersNumber)

1. Let L be list

2. Let i= parametersNumber

3. for i downto 1

3.1 L[i]= IMFS U IFS.pop()

4. Create new runtime frame

5. Let i=0

6. for i to parametersNumber

6.1 New runtime frame Symbol table.put(i,L[i])

Assuming that, the current runtime frame IFS has two elements the top ele-

ment is a label [0out] and the bottom element is a label [Const] and the IMFS
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is empty. The event recognizer is informed about a method invocation named

java.io.PrintStream.println with two parameters. Then the event recognizer cre-

ates a new runtime frame (new IFS and New Symbol table) and pops the top two

elements from the current runtime frame IFS. Finally, it combines each popped el-

ement with the contents of the IMFS and stores them in the new runtime frame

Symbol table as illustrated in Figures 5.16a and 5.16b.

Current method Symbol table
IMFS

Current IFS
Current runtime frame

[0out]

[Const]

Figure 5.16a: Runtime frame and IMFS before performing the invoked Method
assertion point

New method Symbol table

Current method Symbol table

IMFS

Current IFS

New IFS

New runtime Frame

Current runtime frame

[0out]
[Const]

0
1

Figure 5.16b: Runtime frame and IMFS after performing the invoked Method as-
sertion point

5.3.17 Special Method Algorithm

The Special method algorithm is used for instance initialization method invocations.

Each invokespecial method invocation takes three parameters (two arguments val-
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ues and objectref). The Special method assertion point will report to the event

recognizer that a special method is about to be invoked. Then the event recognizer

will pop the top three elements from the current runtime frame IFS and push all

popped elements as one element into the current runtime frame IFS as indicated in

the Special method algorithm Listing 5.17.

Listing 5.17: Special method algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.SpecialMethod()

1. Let L be a list

2. L = IFS.pop() U IFS.pop() U IFS.pop()

3. IFS.push(L)

Suppose that the current runtime frame IFS has three elements, the top value

is a label to object reference [0java.io.File], the next label is [0java.io.File] and the

bottom label is [/home/file.txt].

Symbol table of the current method

IFS

IMFS

Runtime frame of the current method

[/home/file.txt ]

[0java.io.File]

[0java.io.File]

Figure 5.17a: Runtime frame and IMFS before the Special method assertion point

Symbol table of the current method

IFS

IMFS

Runtime frame of the current method

/home/file.txt ]

[0 java.io.File,
0java.io.File,

Figure 5.17b: Runtime frame and IMFS after the Special method assertion point

The three elements in the current runtime frame IFS will be popped and pushed

onto the current runtime frame IFS as one element [0java.io.File, 0java.io.File,

/home/file.txt] as shown in Figures 5.17a and 5.17b.

112



CHAPTER 5. RUNTIME MONITORING

5.4 Implicit Information Flow Algorithm

As mentioned in Section 4.10 implicit information flow occurs within conditional

or repetitive commands. The stack maybe manipulated in different ways according

to the condition type. Section 5.2.3 described that the event recognizer uses a

shared implicit information flow stack between all runtime frames to control implicit

information flow. The next subsections show the algorithms for all instructions that

deal with the implicit information flow.

5.4.1 Ifcond Algorithm

The Ifcond assertion point has eight different instructions (ifeq, ifne, iflt, ifge, ifgt,

ifle, ifnull, ifnonnull) as indicated in Table 4.1. The Ifcond assertion point causes

the event recognizer to pop the top element from the current runtime frame IFS and

push the popped element onto the top of IMFS as indicated in the Ifcond algorithm

in Listing 5.18.

Listing 5.18: Ifcond algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Ifcond()

1. Let L be a list

2. L = IFS.pop()

3. IMFS.push(L)

Suppose that the current runtime frame IFS has two elements, the top element is

label [home/file.txt] and the bottom element is label [Const]. The event recognizer

receives an event from the assertion point and Ifcond then the top element in the

current runtime frame IFS [/home/file.txt] will be popped from the IFS and pushed

onto the IMFS as illustrated in Figures (5.18a and 5.18b.
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Symbol table of the current method IFS IMFS

Current Runtime Frame

[Const]

[/home/file.txt]

Figure 5.18a: Runtime frame and IMFS before Ifcond assertion point

Symbol table of the current method IFS IMFS

Current Runtime Frame

[Const] [/home/file.txt]

Figure 5.18b: Runtime frame and IMFS after Ifcond assertion point

5.4.2 ifcmp Algorithm

The Ifcmp assertion point includes eight different instructions (if icmpeq, if icmpne,

if icmplt, if icmpge, if icmpgt, if icmple, if acmpeq, if acmpne) as indicated in Table

4.1. The Ifcmp assertion point causes the event recognizer to pop the top two labels

from current runtime frame IFS and pushes them as one element onto the top of

IMFS as indicated in the Ifcmp algorithm in Listing 5.19.

Listing 5.19: Ifcmp algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Ifcmp()

1. Let L be a list

2. L = IFS.pop() U IFS.pop()

3. IMFS.push(L)

Assume that the current runtime frame IFS has two elements, the top one is a

label [home/file.txt] and the bottom one is a label [Const]. The event recognizer

receives information from the assertion point Ifcmp and then the top two elements in

the current runtime frame IFS [Const], [/home/file.txt] will be popped and pushed

after combining them [/home/file.txt, Const] onto the IMFS as illustrated in Figures

5.19a and 5.19b.
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Symbol table of the current method IFS IMFS

Current Runtime Frame

[/home/file.txt]

[Const]

Figure 5.19a: Runtime frame and IMFS before Ifcmp assertion point

Symbol table of the current method IFS IMFS

Current Runtime Frame

[/home/file.txt, Const]

Figure 5.19b: Runtime frame and IMFS after Ifcmp assertion point

5.4.3 Endif Algorithm

The Endif assertion point reports to the event recognizer about the end of the

conditional region. Then the event recognizer pops the top element from the IMFS

as indicated in the Endif algorithm in Listing 5.20.

Listing 5.20: Endif algorithm

uk.ac.dmu.msarrab.vif.framework.EventRecognizer.Endif()

1. IMFS.pop()

Symbol table of the current method IFS IMFS

Current Runtime Frame

[/home/file.txt]

[Const]

Figure 5.20a: Runtime frame and IMFS before performing the Endif assertion point

Symbol table of the current method IFS IMFS

Current Runtime Frame

[/home/file.txt]

Figure 5.20b: Runtime frame and IMFS after performing the Endif assertion point
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Assuming that the IMFS has two elements, the top one is label [Const] and the

bottom element is label [/home/file.txt]. Then the event recognizer will pop the top

element as illustrated in Figures 5.20a and 5.20b.

5.5 Runtime Checker

The runtime checker receives events from the event recognizer that may cause in-

formation flow within the application. The runtime checker determines whether or

not the current events of the execution trace as obtained from the event recognizer

satisfies the information flow policy and sends feedback to the user feedback compo-

nent when it determines that the software is about to enter an insecure state. The

runtime checker essentially checks the received set of events that potentially causes

information flow. Listing 5.21 presents the events check algorithm.

Listing 5.21: Runtime checker check algorithm

uk.ac.dmu.msarrab.vif.framework.RuntimeChecker.Check(list source, list destination)

1. Let i,j = 0

2. for i to source.Length

2.1 Let s = source[i]

2.2 for j to destination.Length

2.2.1 Let d = destination[j]

2.2.2 Let PolicyCheck = uk.ac.dmu.msarrab.vif.framework.InformationFlowPolicy.Check(s, d)

2.2.3 If PolicyCheck = false

2.2.4 return true

else

2.2.4 uk.ac.dmu.msarrab.vif.framework.Userfeedbackcomponent(s, d)

5.6 User Feedback Component

The user feedback component is an interface between our system and the user. An

essential functionality of the user feedback component is that all user interaction

passes through this component. The user feedback component informs the user
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about any feedback received from the runtime checker. As illustrated in our frame-

work Figure 3.2, if the runtime checker determined that this execution would violate

the information flow policy then it sends feedback to the user, the system behaviour

will be changed accordingly, and the policy will be modified according to the user

decision. Chapter 6 describes the user feedback component in detail.

Listing 5.22: User feed back component algorithm

uk.ac.dmu.msarrab.vif.framework.Userfeedbackcomponent(List s, List d)

1. If the user agree about the flow.

1.1 uk.ac.dmu.msarrab.vif.framework.InformationFlowPolicy.Update(s, d)

1.2 Return true

else

1.1 Return false

5.7 Information Flow Policy

An information flow policy is a security policy that defines the authorized paths,

which will be a set of rules that regulate how information must flow to prevent

leak of information. As described in our framework in Section 3.2, the information

flow policy expresses the security requirements as specified by the stakeholder/user

to a set of rules that are understandable by our runtime monitoring mechanism.

However, it is necessary to detect conflicts in information flow policies. For example

if the user defines a new rule it must not conflict with the previous rules. The user

must also be able to modify the flow policies during runtime. Policies are dynamic

and can be changed in response to the user interaction. Chapter 6 describes our

information flow policy in detail.
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5.8 Summary

The presented chapter has discussed the second step, a novel runtime monitor-

ing mechanism and shows how the event recognizer and runtime checker deal with

the information send by the various assertion points. It has provided different al-

gorithms for tracing and controlling explicit and implicit information flow. Our

runtime monitoring mechanism ensures that the program contains only legal flows

that are approved by the user. Traditional runtime monitoring only addresses the

monitoring of safety properties, i.e. Functional requirements. They are not suitable

for monitoring information flow or managing the program behaviour at runtime, as

there is no feedback from the monitor to the observed software.
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Chapter 6

Information Flow Policy and User

Interaction

Objectives

� General overview of information flow requirements.

� Describe the information flow policy.

� Explore the user feed back component.
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6.1 Introduction

An information flow policy expresses the stakeholders information flow requirements

with focus on the different sources and destinations of information that exist within

a system and how information may flow between these sources and destinations. In

this chapter the focus is on the information flow policy and user feedback component.

The remainder of this chapter is structured as follows. Section 6.2 provides a general

overview of the information flow requirements. Sections 6.3 and 6.4 describes the

information flow policy language. Finally Section 6.5 describes the user feed back

component.

6.2 Information Flow Requirements

Information flow requirements are the stakeholders concerns of information flow

that come with their system at a high level of abstraction. The main target of

the proposed approach is to identify known critical subjects (sources that contain-

ing confidential information) and untrusted objects (destinations that should not

consume that confidential information). Information flow requirements in our ap-

proach are path authorization requirements with constraints on an action that may

be performed to allow or deny subjects flowing to an object. In our framework,

as described in Section 3.2, in the security requirements specification component,

the stakeholders provide the specification of the desired behaviour that a system or

subsystem must possess with respect to sensitive information flow. The stakeholders

should provide the sources of the information and the output channel a sink or a

destination which will be formally expressed in a precise and unambiguous informa-

tion flow policy. To enable our proposed mechanism to allow or deny the flow of

information from source to destination.
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6.3 Information Flow Policy

This section is describes how to specify an the information flow policy. An informa-

tion flow policy expresses the stakeholders requirements in precise and unambiguous

form. An information flow policy defines which sources are (dis)allowed to flow to

which destinations and in which sources that attempt to flow to specific destinations

the user should be asked. An information policy consist of a list of information flow

rules.

An Information Flow Rule consists of the following three components:

� Action A.

� Source S.

� Destination D

A S −→ D

Possible actions are + for allowing the flow of the information, - disallowing the

information flow or ? for asking the user to allow or disallow the flow of the infor-

mation.

� A positive information flow form is denoted by + S −→ D to (+ denote

an action, S a source and D a destination) and is used to explicitly allow

information from source S to flow to the destination D. So + is an action that

can leak information from source to destination.

� A negative information flow form is denoted by - S −→ D. Similar to the

positive information flow form but it used to explicitly deny or disallow the

flow of the information from source S to destination D. So - is an action that

can prevent the leak of information from source to destination.
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� A user decision form is denoted by ? S −→ D. Similar to the previous two

forms but it is used in case that user should be asked whether the flow of

the information from source S to destination D is possible. (?) is an action

that can be used to ask the user whether information can flow from source to

destination.

Hence, a positive information flow expresses a flow permission and a negative infor-

mation flow expresses a denial or disallowed flow. Finally, a user decision form flow

expresses that decides interactively whether flow is possible or not. An information

flow policy consisting of a list of policy rules specifies the restrictions on the possible

paths of the information flow.

6.4 Information Flow Policy Language

An information flow policy determines the information flow security measures to

be employed within an application to keep the system secure. An information flow

policy is a set of policy rules that defines the information flow criteria required to

be maintained. The information flow policy works as the reference that controls the

flow of the information while the target program is executing.

6.4.1 Syntax

The syntax of the information flow policy language is described in Listing 6.1. The

policy definition is introduced by the key word policy and three identifiers.

� <ACTION> which can be (+) positive information flow, (-) negative infor-

mation flow or user decision (?).

� <ID> is used for the sources S and destinations D names.
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Listing 6.1: Information flow policy syntax

Policy = (<ACTION> <ID> ”>>>” <ID> )

<ACTION> = ”+” | ”−” | ”?”

<ID> = <LETTER> (<LETTER> | <CHARACTER>)*>

<LETTER>= ”a”−”z”,”A”−”Z”,”0”−”9”,” ”,”/”

<CHARACTER>= ”.”,”:”

6.4.2 Semantic of Information Flow Policy Rules

The semantics of an information flow policy defines the possible behaviour of the

target program that capture the information flow decisions. An information flow

policy rules define the authorized and unauthorized paths of the information flow

and when the system user should be asked about the flow decision.

Allowed flow rule example : Assume that

Action A= +

Source S = /home/msarrab/secret.txt

Destination D = 127.1.66.127:2000

Then the information flow rule is

+ /home/msarrab/secret.txt −→ 127.1.66.127:2000

Hence, information contained in file named /home/msarrab/secret.txt is allowed to

leak to internet socket address 127.1.66.127:2000.
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Disallowed flow rule example : Assume that

Action A= -

Source S = /home/msarrab/secret.txt

Destination D = System.out

Then the information flow rule is.

- /home/msarrab/secret.txt −→ System.out

Hence, file named /home/msarrab/secret.txt is not allowed to leak out of the run-

ning system.

User decision rule example : Assume that

Action A= ?

Source S = /home/msarrab/secert/msarrab.sec

Destination D = 127.1.66.177:3000

Then the information flow rule is.

? /home/msarrab/secert/msarrab.sec −→ 127.1.66.177:3000

According to the rule the user will be asked whether to allow or disallow the leak of

information from the source /home/msarrab/secert/msarrab.sec to the destination

127.1.66.177:3000.

6.4.3 Information Flow Policy Rules Conflict

The problem of the information flow policy rules conflicts has been addressed using

the conflict keyword as indicated in Listing 6.1 Information flow policy syntax.

Whereas, in case of a conflict between allow and denial of the flow of the information

and ask the user one of the three actions has to have the priority. Listing 6.2 provides

the information flow policy with conflicts syntax.
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Listing 6.2: Information flow policy with conflicts syntax

Policy = (<ACTION> <ID> ”>>>” <ID> )* [<CONFLICT>]

<ACTION> = ”+” | ”−” | ”?”

<ID> = <LETTER> (<LETTER> | <CHARACTER>)*>

<LETTER>= ”a”−”z”,”A”−”Z”,”0”−”9”,” ”,”/”

<CHARACTER>= ”.”,”:”

<CONFLICT>= ”Conflict:” (((”+−”) ”>>>” (”+” | ”−” | ”?”))

((”+? ”) ”>>>” (”+” | ”−” | ”?”))

((”−? ”) ”>>>” (”+” | ”−” | ”?”))

((”+−? ”) ”>>>” (”+” | ”−” | ”?”)))

<CONFLICT> is used to address the information flow policy rules conflicts as

follows. In the information flow policy four conflict roles can be specified.

� Conflict between allow and denial the flow, +- >>> + denotes allow the flow

of the information has the priority.

� Conflict between allow the flow and ask user, +? >>> ? denotes ask user has

the priority.

� Conflict between disallow the flow and ask user, -? >>> ? denotes ask user

has the priority.

� Conflict between allow, disallow the flow and ask user, +-? >>> ? denotes

ask user has the priority.

Hence, an information flow policy defines the possible paths that information can

travel securely throughout an application and ultimately between the application

and the outside world. In addition, an information flow policy must precisely specify
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which action has the priority when there is a conflict between the policy rules. List

6.3 illustrates an example of an information flow policy.

Listing 6.3: Example of information flow policy

/* Information flow policy − Written By Mohamed Sarrab, 17/11/10

*/

+/home/msarrab/secret.txt >>> 127.1.66.127:2000

−/home/msarrab/secret.txt >>> System.out

+/home/msarrab/Public/ >>> 162.66.1.123:1000

−/home/msarrab/Public/ >>> System.out

?/home/msarrab/Public/ >>> 162.66.1.177:1000

?/home/msarrab/Public/MSarrab.sec >>> System.out

Conflict: +− >>> +

+? >>> ?

−? >>> ?

+−? >>> ?

As indicated in Listing 6.3 the information flow policy has addressed the conflict

between two or three actions.

6.5 User Feedback Component

The user feedback component is an interface between a user and the monitored

system. An essential functionality of the user feedback component is that all user

interaction passes through this component. The user feedback component informs

the user about any feedback received from the runtime checker. As illustrated in Fig-

ure 3.2 of the framework, if the runtime checker determined that this state execution

would violate the information flow policy then it sends feedback to the user through

the user feedback component, the system behavior will be changed accordingly, and

the information flow policy will be modified according to the user decision.

Assume for example that a program attempts to leak information from source

S=/home/ msarrab/secert/msarrab.sec to destination D=127.1.66.177:3000 then

the runtime checker will check the information flow policy to figure out if the source
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S is allowed or denial to flow this information to destination D. The runtime checker

compares all sources in the information flow policy to find any policy rule that has

the same source as the present source S= /home/ msarrab/secert/msarrab.sec and

then checks the same rule destination if is it equal to the present destination D=

127.1.66.177:3000 and checks the action of the rule, assuming that the action is (?)

as indicated in the next information flow policy rule:

? /home/msarrab/secert/msarrab.sec −→ 127.1.66.177:3000

Figure 6.1: A snapshot of monitored flow

According to the action (?) of the information flow policy rule the user should

be asked as shown in Figure 6.1. The runtime checker sends feedback to the user

through the user feedback component where the user made the decision to approve or

deny the flow of the information from the source /home/msarrab/secert/msarrab.sec

to the destination 127.1.66.177:3000.

The user feedback component may receive information from the runtime checker

about conflicts in the policy rules, where the conflict rule explicitly stated that user

should be asked about the conflict e.g. Listing 6.4 shows an example of information

flow policy rule conflicts.

Listing 6.4: Example of information flow policy rule conflicts

/* Information flow policy − Written By Mohamed Sarrab, 11/12/10

*/

+/home/msarrab/* >>> 127.1.66.127:2000

−/home/msarrab/private/* >>> 127.1.66.127:2000

Conflict: +− >>> ?

+? >>> ?

−? >>> ?

+−? >>> ?
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As indicated in Listing 6.4 there is a conflict between two rules. The first rule

states that the information can flow from any source in path /home/msarrab/ to

destination 127.1.66.127:2000, while the second rule states that any information in

the path /home/msarrab/private/ can not flow to destination 127.1.66.127:2000.

Assuming that the runtime checker received an event from the event recognizer

that source named /home/msarrab/private/secret.txt will flow to destination named

127.1.66.177: 2000. The runtime checker creates a list to store the actions and

checks the information flow policy rules for the source path /home because the

first part of the source path is /home folder. Then checks the second part of the

path /home/msarrab/, the runtime checker will find that any information from this

path can flow (the rule action is +) to destination 127.1.66.127:2000. Which is

applicable to the received source /home/msarrab/private/secret.txt and destination

127.1.66.177: 2000 from the event recognizer, then the runtime checker stores the

action (+) of the current rule in the created list.

However, the runtime checker continues comparing the source /home/msarrab/pri-

vate/* and the destination 127.1.66.127: 2000 of the second rule. The runtime

checker will find that any information from this path /home/msarrab/private/ can

not flow (The rule action is -) to destination 127.1.66.127:2000. Which is ap-

plicable to the received source /home/msarrab/private/secret.txt and destination

127.1.66.177:2000 from the event recognizer, then the runtime checker stores the

action (-) of this rule in the list.

Thus, both rules are applicable to the received source and destination. The runtime

checker compares the stored actions in the list to find out differences. In this case

the actions are different, the first rule action is (+) and the second is (-). The run-

time checker checks the conflict rules in the information flow policy for in-conflict

any flow rules. However, one of the conflict rules stated that +- >>> ? if there

is conflict between allow + and disallow - then the user will be asked. The user
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will receive information through the user feedback component about the conflict as

shown in Figure 6.2.

Figure 6.2: A snapshot of user received information (Rules conflict)

The system execution will proceed according to the user decision. If the user re-

sponds with Yes, that means the source /home/msarrab/private/secret.txt is allowed

to flow to destination 127.1.66.127:2000 and the execution continues as normal. If

the user answers No that means the source /home/msarrab/private/secret.txt is not

allowed to flow to destination 127.1.66.127:2000 and the execution will be termi-

nated.

6.6 Summary

The present chapter introduces the information flow requirements in Section 6.2

where the stakeholders specify the desired strategy and goals about the flow of the

information as illustrated in the framework Figure 3.2. Section 6.4 explains the in-

formation flow policy language and provides examples of the information flow policy

rules. This chapter also addresses the problem of the information flow policy rules

conflicts and how the runtime checker, information flow policy and user feedback

component interact to monitor in-conflict policy rules. Finally, Section 6.5 explores

the user feedback component functionality with more focusing in the user interaction

with runtime monitoring mechanism and the user ability to change and modify the

program behaviour during runtime. As discussed in Chapter 3 that the only channel
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between the user and the monitoring mechanism is the user feedback component. A

user interaction with the runtime monitoring provides a flexible security mechanism

that can control changeable security requirements.

The main motivation of this proposed approach is that most of the previous research

in the information flow control the information flow policy is not in the hand of the

end user. The novelty is the user feedback component in which the user interacts

with the monitoring mechanism during runtime to manage the program behaviours.

One of the key advantage of the user interaction with the monitoring mechanism

during runtime is the ability of the user to change program behaviour or modify

the way that information flows while the program is executing. An interaction with

user provides a flexible and reliable security monitoring mechanism where different

users may have different information flow requirements.
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Chapter 7

Prototype

Objectives

� Design the prototype of the runtime monitoring mechanism.

� Discuss the implementation of the framework components.

� Support the research that is presented in this thesis.
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7.1 Introduction

This chapter provides an introduction to the high level design of the prototype used

to control information flow. It also gives a brief introduction to the runtime moni-

toring mechanism components that are used in the prototype and how they interact

with each other to load, instrument and control the flow of the information in the

target class file or class files. The rest of this chapter is structured as follows. Sec-

tion 7.2 introduces which Java library chosen for instrumentation process. Section

7.3 describes the Java agent and its specification. Section 7.4 describes the proto-

type architecture of the runtime monitoring mechanism and provides the structure

of each component. Section 7.5 describes all classes in the system and the static

relationships between them. Section 7.6 discusses the execution sequence diagram

of runtime monitoring mechanism.

7.2 Java Library for Instrumentation

The development tool selection is the general decision that was taken at prototype

development stage. Each bytecode instrumentation library has a different way of

working (Chiba & Nishizawa 2003, Aarniala 2005). The selection of the instrumen-

tation library can have a considerable impact on the design and implementation

of the whole runtime monitoring mechanism. Three main libraries were compared

(BCEL, ASM and Javassist). However after considering for each library the ad-

vantages and disadvantages (Joshi 2009), Javassist was chosen as the most suitable

library to achieve our approach objectives.
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7.3 Java Agent Specification

Java agent is deployed as a JAR file. An attribute in the agent file manifest specifies

the agent target class which must be loaded to start the agent. Our framework uses

dynamic instrumentation mechanism (Chapter 4) where all classes that are actually

loaded will be instrumented including the Java core classes. The class loader (Section

4.5.2) can only provide the classes it defines, not the classes that are delegated to

other classes loader thus our approach uses a Java agent to allow all loaded class

files (bytecode) to be instrumented and redefined during runtime on one Java virtual

machine. In our framework the Java agent is started by specifying an option on the

command line. Implementations may also support a mechanism to start agents some

time after the JVM has been started. For example, Listing 7.1 shows the command

line interface for starting our runtime monitoring mechanism.

Listing 7.1: Command line interface

:˜$java −javaagent:JavaAgent.jar uk.ac.dmu.msarrab.vif.testtargets.Welcome

As illustrated in Listing 7.1 on the implementation an agent is started by adding

this option -javaagent:JavaAgent.jar to the command line. The JavaAgent.jar is the

name of the agent. An agent JAR file must conform to the JAR file specification

(Oracle 2010). After the Java Virtual Machine is initialized, the premain method

will be invoked in the order the agents were specified, then the target application

main method will be invoked.

Listing 7.2: Manifest

Manifest−Version: 1.0

Premain−Class: Agent.JavaAgent

Boot−Class−Path: /home/msarrab/workspace/UK.AC.DMU.MSARRAB.RVIF/javassist.jar /

home/msarrab/desktop/JavaAgent.jar

Can−Retransform−Classes: true

Can−Redefine−Classes: true
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As illustrated in Listing 7.2 the following manifest attributes are defined for an

agent JAR file JavaAgent.jar :

Premain-Class

The manifest of the agent JAR file in Listing 7.2 must contain the attribute Premain-

Class. In our framework this is Premain-Class: Agent.JavaAgent. The agent class

implements a public static premain method similar in principle to the main appli-

cation entry point.

Boot-Class-Path

A list of paths to be searched by the bootstrap class loader. Paths represent direc-

tories or libraries that can be referred to as JAR on many platforms. These paths

are searched by the bootstrap class loader after the platform specific mechanisms

of locating a class have failed. Paths are searched in the order listed. Paths in

the list are separated by one or more spaces. A path takes the syntax of the path

component of a hierarchical URI as shown in Listing 7.2.

Boot-Class-Path:

/home/msarrab/workspace/UK.AC.DMU.MSARRAB.RVIF/javassist.jar

/home/msarrab/desktop/JavaAgent.jar

Whereas the first path is to javassist.jar library and the second path is to JavaA-

gent.jar.

Can-Redefine-Classes

Can-Redefine-Classes is the ability to redefine classes needed by this agent. Values

other than true are considered false.

Can-Retransform-Classes

Can-Retransform-Classes is the ability to retransform classes needed by this agent.

Values other than true are considered false.

In order to instrument all loaded classes our runtime monitoring approach uses Java

agent to allow all loaded classes (bytecode) to be instrumented and redefined during

134



CHAPTER 7. PROTOTYPE

runtime on the Java virtual machine.

7.4 Prototype Architecture

As depicted by the Figure 7.1, the runtime monitoring mechanism prototype has

been divided into seven major components to fulfil the requirements for controlling

the flow of the information within a single Java program as specified in the Section

6.2. It must be noted that none of these components is standalone and all compo-

nents need to work and interact with each other to achieve the proposed approach

goals as indicated in Section 1.4.

JavaAgent Transformer

Class instrumentation Method instrumentation

Event Recognizer Stack

Runtime Checker

Figure 7.1: Prototype classes

7.4.1 JavaAgent

Agent.JavaAgent

The main aim of this class is to provide services that allow a Java class file to be

instrumented during runtime on the Java Virtual Machine as mentioned in Section
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7.3. This class has two methods premain and redefineClass. The premain method

is similar in principle to the main method application entry point. After the Java

Virtual Machine has initialized the premain method it allows our runtime monitor-

ing mechanism to instrument all loaded classes before the target class file is actually

loaded. The redefineClass method is used to redefine all instrumented classes dur-

ing runtime. At this stage of our runtime monitoring mechanism the Java agent

component should perform the following tasks.

� Get all loaded class files.

� Send all loaded class files to be instrumented.

� Redefine all instrumented classes.

Figure 7.2 describes the JavaAgent class structure.

Agent.JavaAgent

Attributes

Operations

public static void premain(String agentArgs, Instrumentation inst)

private static void redefineClass(Instrumentation inst, Class cc)

Figure 7.2: Structure of JavaAgent.java

7.4.2 Transformer

Agent.MyTransformer

This class provides services to transform all instrumented class files. The class file

transformation occurs before the class is defined by the Java virtual machine. This

class controls all loaded classes after the main class file is loaded. This class has

one method named transformer. The main aim of this method is to transform the

supplied class file and return a new replacement class file. This should be done
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after the transformer is registered with addTransformer. The transformer will be

invoked for all new class definitions and all class redefinitions. Figure 7.3 shows the

MyTransformer class structure.

Agent.MyTransformer

Attributes

Operations

public MyTransformer( )

public byte[] transform(ClassLoader loader, String className,Class
<?> redefiningClass, ProtectionDomain domain, byte[] bytes)

Figure 7.3: Structure of MyTransformer.java

7.4.3 Class Instrumentation

Uk.ac.dmu.msarrab.vif.framework.InstrumentClass

This class aims to instrument the given class file’s bytecode such that the instru-

mented class file produces the required trace information in the given class file. As

illustrated in Figure 7.4 this class has one method named instrument. The main

aim of this method is to send the bytecode of each method in the given class file to

the method body instrumentation.

Uk.ac.dmu.msarrab.vif.framework.InstrumentClass

Attributes

Operations

public static byte[] instrument(String arg, EventRecognizer er)

Figure 7.4: Structure of InstrumentClass.java

7.4.4 Method Instrumentation

Uk.ac.dmu.msarrab.vif.framework.InstrumentMethod

The main aim of this class is to instrument all instructions of the received method
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bytecode according to the method body instrumentation algorithm Listing 4.4 and

as specified in the instruction categories Table 4.1. This class has two methods

methodInstrument and methodPrameters as shown in Figure 7.5. The main aim of

the methodInstrument is to iterate through the code attribute of a given method

and instrument all bytecode instructions based on the instruction’s pushes onto or

pops from the method stack. The methodPrameters method receives the invoked

method signature and returns the parameters number of the invoked method.

Uk.ac.dmu.msarrab.vif.framework.InstrumentMethod

Attributes

Operations

public static void methodInstrument(CtClass cc, CtMethod cm)

public static int methodPrameters(String MethodSignature)

Figure 7.5: Structure of InstrumentMethod.java

7.4.5 Event Recognizer

Uk.ac.dmu.msarrab.vif.framework.EventRecognizer

This class is responsible for manipulating all variables and their values using the

explicit information flow stack, the implicit information flow stack and the symbol

table as well as creating a new runtime frame for each invoked method and destroy

it when that method returns. As mentioned in Section 5.2 the event recognizer

uses the current runtime frame (IFS and Symbol table) and implicit information

flow stack (IMFS) to trace the current variables change and uses shared implicit

information flow stack (IMFS) to control the implicit information flow stack. This

class has a number of methods as shown in Figure 7.6. Each method in this class

is responsible for pushing values onto or popping values from the explicit/implicit

information flow stack and store or get data from the symbol table. Method method
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is responsible for creating a new runtime frame (explicit information flow stack and

symbol table) and calling the Return method will destroy the runtime frame. All

other methods in this class manipulating variables and their values according to

each method algorithm as described in the explicit information flow algorithms in

Section 5.3 and implicit information flow algorithms in Section 5.4.

Uk.ac.dmu.msarrab.vif.framework.EventRecognizer

Attributes

static MyStack RuntimeFrame = new MyStack()

static Stack<HashSet<String>> IMFS = new Stack<HashSet<String>>()

Operations

public static void Store( Object ss, String s)
public static void Load(Object s, String ss)

public static void LoadField(String s)

public static void StoreField(String s)

public static void Const()

public static void Dup()

public static void lookupswitch()
public static void Union()

public static void tableswitch()

public static void NewArray(String s)

public static void Return(int counterOfCondition)

public static void ifcmp()
public static void ifcond()

public static void Method(String s, int j)
public static void Endif()

public static void Pps()

public static void NativeMethod(int parameter, int returnValues)

public static void SpecialMethod()

public static void Athrow()

public static void NativeWrite(int Parameters, int rr)

public static void New(Object s)

Figure 7.6: Structure of EventRecognizer.java

7.4.6 Stack

Uk.ac.dmu.msarrab.vif.framework.MyStack

The main aim of this class is to trace the flow of the information using runtime frames

(Explicit information flow stack and Symbol table) and implicit information flow

stack as mentioned in Section 5.2. This class has a number of methods (openframe,

currentframe, closeframe, push, pop, peek, get, put and tostring) as shown in Figure

7.7.
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Uk.ac.dmu.msarrab.vif.framework.MyStack

Attributes

Operations

public void openframe()

Stack<StackFrame> stack = new Stack<StackFrame>()

public StackFrame closeframe()

public StackFrame currentframe()

public void push(Set<String> element)

public Set<String> pop()

public Set<String> peek()

public HashSet<String> put(String key, HashSet<String> value)

public String toString()

public HashSet<String> get(String key)

Figure 7.7: Structure of MyStack.java

7.4.7 Runtime Checker

Uk.ac.dmu.msarrab.vif.framework.RunTimeChecker

This class receives the state information from the event recognizer class to check

whether or not the current execution trace as obtained from the event recognizer

satisfies the information flow policy. This class also sends feedback to the user

when it determines that the application is about to enter an insecure state as men-

tioned in Section 5.5. The Runtime checker class essentially checks the received set

of information that potentially causes information flow according to the runtime

checker algorithm shown in Listing 5.21. This class has two methods PolicyCheck

and AskUser. The PolicyCheck method is checking the potential information flow

against a set of rules that are defined in the information flow policy to regulate

the flow of the information within the application. The AskUser method provides

the user with a set of information flow according to the runtime checker algorithm

in Section 5.21. Appindex C shows the source code of the runtime checker class.

Figure 7.8 shows the RunTimeChecker class structure.
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Uk.ac.dmu.msarrab.vif.framework.RunTimeChecker

Attributes

Operations

public static void AskUser(Set<?> st)

public static void Check(Set<String> st1)

Figure 7.8: Structure of RunTimeChecker.java

7.5 Prototype Class Diagram

As shown in Section 7.4 that each class structure is made up of attributes and oper-

ations. Where, attributes define the available information that each class will know

about itself and operations are the available processes that a class can perform.

These processes in class are called methods. The class diagram in Figure 7.9 de-

scribes all classes in the system and the static relationships between these classes.

Table 7.1 lists all used classes in the prototype and their related component in the

proposed framework shown in Figure 3.2.

Class Related Component

Agent.JavaAgent Assertion points
Agent.MyTransformer Assertion points

Uk.ac.dmu.msarrab.vif.framework.InstrumentClass Assertion points
Uk.ac.dmu.msarrab.vif.framework.InstrumentMethod Assertion points

Uk.ac.dmu.msarrab.vif.framework.MyStack Event Recognizer
Uk.ac.dmu.msarrab.vif.framework.EventRecognizer Event Recognizer

Runtime Checker
Uk.ac.dmu.msarrab.vif.framework.RunTimeChecker Information flow policy

User feedback

Table 7.1: Class and related component
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Figure 7.9: Prototype class diagram
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7.6 Sequence Diagram

Figure 7.10 illustrates the sequence diagram of execution for the runtime monitor-

ing mechanism. This diagram is based on the prototype implementation of runtime

monitoring mechanism.

JavaAgent MyTransformer InstrumentClass InstrumentMethod EventRecognizer MyStack RuntimeChecker

            Class File

ClassFile

MethodInstrument

Method Instrumented 

Class Instrumented 

     Run

Operation

Performed

 Check

TargetClass

Monitor

Figure 7.10: Prototype sequence diagram

As shown in Figure 7.10 the sequence diagram is a diagram that depicts the inter-

actions among the runtime monitoring mechanism components, including system

participating objects and actors in order to perform the required task.
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7.7 Summary

This chapter has presented and discussed the fundamentals of the prototype im-

plementation. This chapter has introduced a high level design of the prototype

developed for controlling information flow. It also provided an introduction to the

runtime monitoring mechanism components that are used in the prototype and how

they interact with each other to load, instrument and control the flow of the infor-

mation in the target class files. It also described the runtime monitoring mechanism

class diagram and sequence diagram.
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Case Studies

Objectives

� Give appropriate case study that shows how a Java program will be traced.

� Give appropriate case study of file sharing system showing how the information

flow will be controlled.

� Demonstrate the need and practical applicability of the presented research.
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8.1 Introduction

This chapter provides two case studies to illustrate the practical applicability of the

presented research. The first case study is a small helloWorld program to demon-

strate the work of the instrumentation process as described in Chapter 4 and 5.

The second case study is a file sharing application to show how the contents of the

file will be traced while transfered between a client and a server program. In both

case studies the Java source code, the original bytecode and the instrumented byte-

code will be provided to show how the flow of the information will be traced and

controlled.

8.2 Case Study 1

The presented case study is a small helloWorld Java program to demonstrate the

interaction of instrumentation process, event recognizer and runtime checker com-

ponents in more detail. Listing 8.1 shows that the case study consists of one Java

class named helloWorld.java.

Listing 8.1: Source code of helloWorld.java

1 public class Test {

2 public static void main(String[] args) {

3 System.out.print(”hello world”);

4 }

5 }

The given program in Listing 8.1 has only one method named helloWorld.main().

The class execution starts at the main method’s first line. Statements are executed

one at a time, as ordered in the main method, until the end of the method or another

method invocation as shown at line 3 in our example java.io.PrintStream.print()

method. Table 8.1 lists the execution flow of class helloWorld.java.
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Table 8.1: Execution flow of class helloWorld.java
helloWorld.main()
−→java.io.PrintStream.print()
−→java.io.PrintStream.write()
−→java.io.PrintStream.ensureOpen()
−→java.io.Writer.write()
−→java.lang.String.length()
−→java.io.Writer.write()
−→java.lang.String.getChars()
−→java.lang.System.arraycopy()

−→java.io.Writer.write()
−→java.io.BufferedWriter.flushBuffer()
−→java.io.BufferedWriter.ensureOpen()
−→java.io.Writer.write()

−→java.io.OutputStreamWriter.flushBuffer()
−→sun.nio.cs.StreamEncoder.flushBuffer()
−→sun.nio.cs.StreamEncoder.isOpen()
−→sun.nio.cs.StreamEncoder.implFlushBuffer()
−→sun.nio.cs.StreamEncoder.writeBytes()
−→java.nio.channels.WritableByteChannel.write()
−→java.io.OutputStream.write()
−→java.io.OutputStream.write()

−→java.nio.Buffer.clear()
−→java.nio.Buffer.clearMark()

−→java.lang.String.indexOf()
−→java.lang.String.indexOf()

−→java.io.OutputStream.flush()
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Invoking the built-in method java.io.PrintStream.print(), causes another de-

tour of the execution flow to the java.io.PrintStream.write() method and when

the java.io.PrintStream.write() method completes, it picks up where it left off in

java.io.PrintStream.print(). Finally, it gets back to helloWorld.main() until the

last statement in the program and then terminates. Technically, the helloWorld.java

does not terminate yet at the end of the helloWorld.main() because the Java inter-

preter takes care of cleanup of all created objects and then the execution terminates.

As discussed in Section 4.8 at start up all loaded classes will be instrumented to trace

the execution flow. Table 8.1 lists only the methods used in the execution of hel-

loWorld.main(). There are about 200 Java classes that are instrumented during the

loading phase. A snapshot of our example execution flow has been taken to show

the generated and instrumented bytecode of the first two methods (helloWorld.main,

java.io.PrintStream.print()) and the method that our monitoring mechanism inter-

cepts in java.io.Writer.write(). All the loaded classes original and instrumented

bytecode can be found in Appendix D. Listing 8.2 presents the generated bytecode

of the method helloWorld.main.

Listing 8.2: Original bytecode code of helloWorld.java

0: getstatic #16 = Field java.lang.System.out(Ljava/io/PrintStream;)

3: ldc #22 = ”hello world”

5: invokevirtual #24 = Method java.io.PrintStream.print((Ljava/lang/String;)V)

8: return

List 8.3 shows the instrumented bytecode of the method helloWorld.main.

Listing 8.3: Instrumented bytecode of helloWorld.java

00: ldc #35 = ”0out”

02: invokestatic #40 = Method Monitor.EventRecognizer.LoadField((Ljava/lang/String;)V)

05: getstatic #16 = Field java.lang.System.out(Ljava/io/PrintStream;)

08: invokestatic #43 = Method Monitor.EventRecognizer.Const(()V)

11: ldc #22 = ”hello world”
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13: ldc #44 = ”print”

15: iconst 1

16: iconst 0

17: invokestatic #48 = Method Monitor.EventRecognizer.Method((Ljava/lang/String;II)V)

20: invokevirtual #24 = Method java.io.PrintStream.print((Ljava/lang/String;)V)

23: iconst 0

24: invokestatic #52 = Method Monitor.EventRecognizer.Return((I)V)

27: return

After instrumenting all loaded classes one gets bytecode where assertion points

are inserted. The instrumented classes are ready to execute. When helloWorld.main()

start executing, the event recognizer of the runtime monitoring mechanism in Sec-

tion 5.2 creates a new implicit flow stack (IMFS) and a new runtime frame consisting

of an information flow stack (IFS) and a Symbol able as illustrated in Figure 8.1.

Test.Main Symbol Table

IFS IMFS

[Const]

0out

Figure 8.1: The helloWorld.main runtime frame and IMFS

As depicted in Listing 8.3 Opcode index 02 sends an event to the event recognizer

to load field named 0out. The event recognizer pushes 0out onto the IFS. The second

event is at Opcode index 08 that sends a load constant. The event recognizer

pushes an empty string onto the top of the IFS. The third event is at Opcode

index 17 that informs the event recognizer that another method is about to be

invoked with the name print, 1 parameter and 0 return value as specified at Opcode

indexes 13, 15 and 16 respectively. The event recognizer creates a new runtime frame

(new Symbol table and IFS) for the print method. The print method Symbol table
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has the object reference and the parameter in location 0 and 1 because the event

recognizer popped the top two elements from the current method helloWorld.main

IFS and checks the IMFS if it has any element to combine with each popped element

from the IFS to handle the implicit flow. In our case the IMFS is empty. Then the

event recognizer stores the popped elements in the Print method Symbol table as

illustrated in Figure 8.2.

Test.Main Symbol Table

IFS

IMFS

...

...

[Const]

0out

Print Symbol Table

0

1

Test.Main

Print

Figure 8.2: Runtime frame and IMFS of the current method Print

As mentioned in Section 5.2 only the frame of the executing method, i.e. Print,

is active. This frame will be referred to as the current frame and its method Print

is known as the current method. Listing 8.4 presents the original bytecode of the

current method java.io.PrintStream.print().

Listing 8.4: Original bytecode code of java.io.PrintStream.print

00: aload_1

01: ifnonnull 7

04: ldc #52 = ”null”

06: astore_1

07: aload_0

08: aload_1

09: invokespecial #45 = Method java.io.PrintStream.write((Ljava/lang/String;)V)

12: return
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Listing 8.5 shows the instrumented bytecode of method java.io. PrintStream.print().

Listing 8.5: Instrumented bytecode of java.io.PrintStream.print

00: aload_1

01: dup

02: ldc w #1249 = ”1”

05: invokestatic #1251 = Method Monitor.EventRecognizer.Aload((Ljava/lang/Object;Ljava/lang/String;)V)

08: invokestatic #1253 = Method Monitor.EventRecognizer.ifcond(()V)

11: ifnonnull 30

14: invokestatic #1255 = Method Monitor.EventRecognizer.Const(()V)

17: ldc #52 = ”null”

19: dup

20: ldc w #1256 = ”1”

23: invokestatic #1258 = Method Monitor.EventRecognizer.Store((Ljava/lang/Object;Ljava/lang/String;)V)

26: astore_1

27: invokestatic #1270 = Method Monitor.EventRecognizer.Endif(()V)

30: aload_0

31: dup

32: ldc w #1259 = ”0”

35: invokestatic #1261 = Method Monitor.EventRecognizer.Aload((Ljava/lang/Object;Ljava/lang/String;)V)

38: aload_1

39: dup

40: ldc w #1262 = ”1”

43: invokestatic #1264 = Method Monitor.EventRecognizer.Aload((Ljava/lang/Object;Ljava/lang/String;)V)

46: ldc #1244 = ”write”

48: iconst 1

49: iconst 0

52: invokestatic #1266 = Method Monitor.EventRecognizer.Method((II)V)

55: invokespecial #45 = Method java.io.PrintStream.write((Ljava/lang/String;)V)

58: iconst_1

59: invokestatic #1268 = Method Monitor.EventRecognizer.Return((I)V)

62: return

As indicated in Listing 8.5, Opcode index 05 sends an event to the event recog-

nizer to load the contents of Symbol table location 1 as specified in Opcode index

02. The event recognizer pushes the contents of label 1 onto the current runtime

frame IFS. The second event is at Opcode index 08 that informs the event recognizer

151



CHAPTER 8. CASE STUDIES

about the if statement. The event recognizer pops one element from the top of IFS

which is in our case the contents of label 1 [Const] and pushes it onto the top of the

IMFS to control the implicit information flow of [Const] as illustrated in Figure 8.3.

IFS
IMFS

0out

Print Symbol Table

0

1 [Const]

[Const]

Event 1

Event 2
Event 3

Figure 8.3: Runtime frame and IMFS of method Print

The next event will be sent according to the condition at Opcode index 11.

Assuming that the condition is false, the execution flow will jump to Opcode index

27. Because our runtime monitoring creates a region for each condition statement

and manipulates the instruction offset address as described in Section 5.4.

Then the third event is at Opcode index 27 that informs the event recognizer that

the if statement ends, then the event recognizer pops the top element on the IMFS.

Now both stacks (IFS and IMFS) are empty. The next event is at Opcode index 35

that sends the contents of Symbol table location 0 as specified in Opcode index 32.

IFS IMFS

[0out]

Print Symbol Table

[Const]

0
1

0out
[Const]

Figure 8.4: Runtime and IMFS of current method Print
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The event recognizer pushes the contents of label 0 which is [0out] onto the IFS.

The next call to the event recognizer is at Opcode index 43 to load the contents of

Symbol table location 1 as specified in Opcode index 40. Again the event recognizer

pushes the contents of label 1 which is [Const] onto the IFS. Figure 8.4 shows the

current runtime frame and IMFS of print method.

The next event is at Opcode index 52 that informs the event recognizer that another

method is about to be invoked with the name write, 1 parameter and 0 return value

as specified at Opcode indexes 46, 48 and 49 respectively. The event recognizer

creates a new runtime frame (new Symbol table and IFS) for the write method.

Print

Write Symbol Table

Write

0
1

0out
[Const]

IFS

IMFS

...

Print Symbol Table

...0
1

0out
[Const]

Figure 8.5: Runtime and IMFS of current method Write

The event recognizer will pop the top two elements ([Const], [0out]) from the

current method IFS and checks the IMFS if there is any element to be combined

with the popped elements from IFS, in our case IMFS has no element. Figure 8.5

shows the runtime frame and IMFS of the current method write. The execution will

continue in this way creating a runtime frame for each invoked method and pass the

parameters between the methods frame until returning from the method to destroy

its runtime frame. Listing 8.6 presents a snapshot of the instrumented bytecode
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of the method java.io.Writer.write, where our runtime monitoring mechanism will

intercept.

Listing 8.6: A snapshot of instrumented bytecode of java.io.Writer.write

227: aload_0

228: dup

229: ldc w #336 = ”0”

232: invokestatic #338 = Method Monitor.EventRecognizer.Aload((Ljava/lang/Object;Ljava/lang/String;)V)

235: aload 5

237: dup

238: ldc w #339 = ”5”

241: invokestatic #341 = Method Monitor.EventRecognizer.Aload((Ljava/lang/Object;Ljava/lang/String;)V)

244: invokestatic #343 = Method Monitor.EventRecognizer.Const(()V)

247: iconst_0

248: iload_3

249: dup

250: ldc w #344 = ”3”

253: invokestatic #346 = Method Monitor.EventRecognizer.Iload((ILjava/lang/String;)V)

256: ldc w #347 = ”write”

259: iconst 3

260: iconst 0

261: invokestatic #349 = Method Monitor.EventRecognizer.NativeWrite((Ljava/lang/String;II)V)

264: invokevirtual #7 = Method java.io.Writer.write(([CII)V)

As indicated in Listing 8.6, Opcode index 232 sends an event to the event rec-

ognizer to load the contents of label 0 as specified at Opcode index 229. The event

recognizer gets the contents of label 0 [0out] from the current method Symbol table

and pushes it onto the top of IFS of the current method Write. Opcode index 241

sends another event to load the contents of label 5 [Const] as specified at Opcode

index 238. The event recognize pushes [Const] onto the top of IFS. Opcode index

244 sends an event to load constant [Const]. The event recognizer pushes [Const]

onto the IFS. The next event is at Opcode index 253 to load the contents of label

3. The event recognizer gets the contents of label 3 [Const] and pushes it onto the

top of the IFS as shown in Figure 8.6.
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IFS

IMFS

[0out]

Test.Main

Print

Write

[Const]

Write Symbol Table

0

1

2

3

4

5

0out

[Const]

[Const]

[Const]

[Const]

0lock

Write [Const]
[Const]

Figure 8.6: Current runtime frame and IMFS at Opcode index 253

Opcode index 261 informs the event recognizer that a NativeWrite method is

about to be invoked with the name java.io.Write.write, 3 parameter and 0 return

value as specified at Opcode indexes 256, 259 and 260 respectively. The event recog-

nizer pops the top four elements from the IFS 3 parameters and the object reference

([Const], [Const], [Const] and [0out]) and sends them to the runtime checker. The

runtime checker will find out that constants are going to flow to the System.out.

In this case no need to check the information flow policy and send a message to

the UserFeedBack component. Therefore, the execution will continue as normal

without any intercept from our run time mechanism. Figure 8.7 shows the runtime

frame and IMFS of the current method java.io.Writer.write when the execution is

at Opcode index 261.

IFS

IMFS

Test.Main

Print

Write

Write Symbol Table

0

1

2

3

4

5

0out

[Const]

[Const]

[Const]

[Const]

0lock

Write

Figure 8.7: Current runtime and IMFS frame at line 261
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8.3 Case Study 2

To show the feasibility of our approach, this case study presents a peer to peer file

sharing application. In this case study peers are programs that can share information

(files) over the network with other known peers. A peer can transfer files from the

local machine to remote peers using sockets as a means of communication for the

transfer itself. Each peer is an interactive program, asking the user for a file to

transfer to a destination in the network. Once entered the program will open, load

and transfer the file in sizeable chunks to the peer at the destination address. The

case study will show how the information flow is controlled for a single peer executing

on the user’s behalf. The programs that are used in the scope of this case study, the

original byte codes and the instrumented byte codes are presented in Appendix D.

Snapshots of the instrumented bytecode will be provided in this section to show how

our runtime monitoring mechanism can trace and control the flow of information.

The information flow policy of this case study is as shown in Listing 8.7.

Listing 8.7: Case study 2 information flow polic

/* Case study 2 information flow policy − Written By Mohamed Sarrab, 27/12/10

*/

+/home/msarrab/* >>> 127.1.66.122:2000

?/home/Secret/SecretInfo.s >>> 146.227.66.150:2000

Conflict: +− >>> ?

+? >>> ?

−? >>> ?

+−? >>> ?

Listing 8.7 shows the information flow policy for this case study, which consist

of two rules the first rule states that any source from folder /home/msarrab/ is

allowed to flow to destination 127.1.66.122:2000. The second rule states that the

user should be asked if the source /home/Secret/SecretInfo.s is attempt to flow to

destination 146.227.66.150:2000. The source code of the client class is as shown in
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Listing C.7.

Listing 8.8: Source code of Kclient.java

1 public class Kclient {

2 public static void main(String[] args) throws IOException {

3 Socket kkSocket = null;

4 BufferedReader stdIn = new BufferedReader(new InputStreamReader(

5 System.in));

6 while (true) {

7 System.out.println(”Enter file destination <ip:port>”);

8 String dest = stdIn.readLine();

9 String destsplit[] = dest.split(”:”);

10 if (destsplit.length != 2) {

11 System.out.println(”Wrong format! Try again.”);

12 continue;

13 }

14 try {

15 kkSocket = new Socket(destsplit[0], Integer.parseInt(destsplit[1]));

16 }

17 catch (IOException e) {

18 System.err.println(”Couldn’t get I/O for the connection to: ” + dest);

19 continue;

20 }

21 System.out.println(”Enter Source file name:”);

22 String f = stdIn.readLine();

23 File file = new File(f);

24 if (file.exists()) {

25 FileInputStream fis = new FileInputStream(file);

26 OutputStream os = kkSocket.getOutputStream();

27 byte b = 0;

28 while (b != 1) {

29 b = (byte) fis.read();

30 os.write(b);

31 }

32 os.flush();

33 os.close();

34 } else {

35 System.out.println(”The specified file is not exist”);

36 System.exit(0);

37 }

38 kkSocket.close();
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39 }

40 }

41 }

The given program in Listing C.7 has only one method named Kclient.main. Table

8.2 shows a snapshot of the possible execution flow of class Kclient.java

Table 8.2: A snapshot of the execution flow of class Kclient.java
Client.main()
−→............
−→............
−→java.net.Socket.getOutputStream()
−→............

−→java.io.FileInputStream.read()
−→java.io.OutputStream.write()
−→java.io.OutputStream.flush()
−→java.io.OutputStream.close()
−→java.net.Socket.close()

Listing 8.9 shows the first snapshot of the instrumented bytecode of the method

Kclient.main, when the client program asks the user to enter the IP address and

port number of the machine.

Listing 8.9: First snapshot of instrumented bytecode of Kclient.main

66: ldc #194 = ”0out”

68: invokestatic #196 = Method Monitor.EventRecognizer.LoadField((Ljava/lang/String;)V)

71: getstatic #35 = Field java.lang.System.out(Ljava/io/PrintStream;)

74: invokestatic #198 = Method Monitor.EventRecognizer.Const(()V)

77: ldc #39 = ”Enter file destination <ip:port>”

79: ldc #199 = ”println”

81: iconst 1

82: iconst 0

83: invokestatic #203 = Method Monitor.EventRecognizer.Method((Ljava/lang/String;II)V)

86: invokevirtual #41 = Method java.io.PrintStream.println((Ljava/lang/String;)V)

89: aload_2

90: dup
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91: ldc #204 = ”2”

93: invokestatic #207 = Method Monitor.EventRecognizer.Aload((Ljava/lang/Object;Ljava/lang/String;)V)

96: ldc #208 = ”readLine”

98: iconst 0

99: iconst 1

100: invokestatic #210 = Method Monitor.EventRecognizer.Method((Ljava/lang/String;II)V)

103: invokevirtual #47 = Method java.io.BufferedReader.readLine(()Ljava/lang/String;)

106: dup

107: ldc #212 = ”3”

109: invokestatic #214 = Method Monitor.EventRecognizer.Store((Ljava/lang/Object;Ljava/lang/String;)V)

112: astore_3

Figure 8.8 illustrates the runtime frame of the current method Kclient.main

and IMFS when the execution is at Opcode index 66 of Listing 8.9 of the method

Kclient.main.

Kclient.main Symbol Table IFS
IMFS[Const]

0in,
0java.io.InputStreamReader,
0java.io.BufferedReader

1

2

main

Figure 8.8: Current runtime frame and IMFS at Opcode index 66

Opcode index 68 sends an event to the event recognizer to load field named 0out

which means System.out. The event recognizer pushes 0out onto the IFS of the

current method. Next event is at line 74 and informs the event recognizer to push

constant [Const] onto the top of the IFS. Figure 8.9 show the runtime frame and

the IMFS of the current method after pushing ([0out], [Const]).

At Opcode index 83 the event recognizer is informed about the next invoked

method named println with one parameter and no return values as specified at

Opcode indexes 79, 81, 82 respectively in Listing 8.9. The event recognizer pops

the top two elements (One parameter [Const] and Object reference [0out]) from the

current method Kclient.main IFS and checks the contents of the IMFS to control

159



CHAPTER 8. CASE STUDIES

Kclient.main Symbol Table IFS
IMFS[Const ]

0in,
0java.io.InputStreamReader,
0java.io.BufferedReader

1

2

main

[0out]

[Const]

Figure 8.9: Current runtime frame and IMFS at Opcode index 77

the implicit information flow. Then it sends the popped elements to the new created

Symbol table of the invoked method println.

Kclient.main Symbol Table

IFS

IMFS

[Const ]

0in,
0java.io.InputStreamReader,
0java.io.BufferedReader

1

2

main

[0out]

[Const]

Java.io.Println Symbol Table

1

0

Println

Figure 8.10: Current runtime frame and IMFS at Opcode index 86

The trace of the information flow of the Println method is as has been described

in the first case study 8.2. Figure 8.10 shows the runtime frame and the IMFS at

the invocation of Println Opcode index 86 of Listing 8.9.

Assuming that the execution has been returned from the Println method. The next

event is at Opcode index 93 and informs the event recognizer to load the contents of

label 2 onto the IFS of the current method Kclient.main. Opcode index 100 sends

an event to inform the event recognizer that the next invoked method is readline

with no parameter and one return value as indicated at Opcode indexes 96, 98 and

99 of Listing 8.9. The event recognizer pops one element (0 parameters and the
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object reference) from the IFS and again checks the contents of the IMFS for any

implicit flow and then sends the popped elements (0in, 0java.io.InputStreamReader

and 0java.io.BufferedReader) to the new runtime frame Symbol table.

Figure 8.11: User enters file destination

Assuming that the execution returns from readline which returns a line of text.

Kclient.main Symbol Table

IFS
0in,
0java.io.InputStreamReader,
0java.io.BufferedReader

1

2

main

IMFS

[Const]

146.227.66.150:2000

Figure 8.12: Current frame after return from method readLine

As shown in Figure 8.11, the entered line of text will be pushed onto the top of

IFS of the mother method Kclient.main as it is the return value from the readLine

method as specified at Opcode index 99 in Listing 8.9. Figure 8.12 shows the current

runtime frame and IMFS after return from the readLine method. The next event

is at Opcode index 109 of Listing 8.9 that informs the event recognizer to pop the

top element from the IFS and store it in the Symbol table location 3 of the current

method Kclient.main. Figure 8.13 shows the runtime frame of the current method

and IMFS when the execution is at Opcode index 112.

Suppose that the execution is at Opcode index 354 of the current method

Kclient.main. Listing 8.10 shows a snapshot of the instrumented bytecode of the

method Kclient.main, when the client program asks the user to enter the source file

name.
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Kclient.main Symbol Table

IFS
0in,
0java.io.InputStreamReader,
0java.io.BufferedReader

1

2

main

IMFS

[Const]

146.227.66.150:20003

Figure 8.13: Current runtime frame and IMFS at Opcode index 112

Listing 8.10: Second snapshot of instrumented bytecode of Kclient.main

354: ldc w #302 = ”0out”

357: invokestatic #304 = Method Monitor.EventRecognizer.LoadField((Ljava/lang/String;)V)

360: getstatic #35 = Field java.lang.System.out(Ljava/io/PrintStream;)

363: invokestatic #306 = Method Monitor.EventRecognizer.Const(()V)

366: ldc #88 = ”Enter Source file name:”

368: ldc w #307 = ”println”

371: iconst 1

372: iconst 0

373: invokestatic #309 = Method Monitor.EventRecognizer.Method((Ljava/lang/String;II)V)

376: invokevirtual #41 = Method java.io.PrintStream.println((Ljava/lang/String;)V)

379: aload_2

380: dup

381: ldc w #310 = ”2”

384: invokestatic #312 = Method Monitor.EventRecognizer.Aload((Ljava/lang/Object;Ljava/lang/String;)V)

387: ldc w #313 = ”readLine”

390: iconst 0

391: iconst 1

392: invokestatic #315 = Method Monitor.EventRecognizer.Method((Ljava/lang/String;II)V)

395: invokevirtual #47 = Method java.io.BufferedReader.readLine(()Ljava/lang/String;)

398: dup

399: ldc w #316 = ”5”

402: invokestatic #318 = Method Monitor.EventRecognizer.Store((Ljava/lang/Object;Ljava/lang/String;)V)

405: astore 5

Opcode indexes 357, 363, 373, 384 and 392 send events to the event recognize is

similar to the scenario of entering IP address and port number as indicated in Listing

8.10 but in this case for the source file name as shown in Figure 8.14. Assuming that

the execution returns from readline method and is at Opcode index 395 of Listing
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8.10 which returns a line of text.

Figure 8.14: User enters file name

Figure 8.15 illustrates the changes in the current runtime frame and IMFS after

returning from method readline.

Kclient.main Symbol Table
IFS

0java.net.Socket,
146.227.66.150:2000,

0in,
0java.io.InputStreamReader,
0java.io.BufferedReader

1

2

main

146.227.66.150:2000

/home/Secret/SecretInfo.s

3

IMFS

146.227.66.150:2000,4

Figure 8.15: Current method runtime frame and IMFS at Opcode index 395

The next event is at Opcode index 402 that informs the event recognizer to pop

the contents of IFS and combine it with the IMFS elements and then store them in

the Symbol table location 5 of the current method. Figure 8.16 shows the runtime

frame of the current method and IMFS when the execution is at Opcode index 405.

Kclient.main Symbol Table
IFS

0java.net.Socket,
146.227.66.150:2000,

0in,
0java.io.InputStreamReader,
0java.io.BufferedReader

1

2

main

146.227.66.150:2000

/home/Secret/SecretInfo.s

3

IMFS

146.227.66.150:2000,4

5

Figure 8.16: Current runtime frame and IMFS at Opcode index 405
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Listing 8.11 shows a snapshot of the instrumented bytecode of Kclient.main

method, when the runtime monitoring mechanism intercept before the file flows to

the target socket.

Listing 8.11: Third snapshot of instrumented bytecode of Kclient.main

582: aload 8

584: dup

585: ldc w #385 = ”8”

588: invokestatic #387 = Method Monitor.EventRecognizer.Aload((Ljava/lang/Object;Ljava/lang/String;)V)

591: iload 9

593: dup

594: ldc w #388 = ”9”

597: invokestatic #391 = Method Monitor.EventRecognizer.Iload((ILjava/lang/String;)V)

600: iconst 1

601: iconst 0

602: invokestatic #394 = Method Monitor.EventRecognizer.NativeWrite((II)V)

605: invokevirtual #110 = Method java.io.OutputStream.write((I)V)

Figure 8.17 shows the runtime frame of the current method Kclient.main and

IMFS when the execution is at Opcode index 582.

Kclient.main Symbol Table

0java.net.Socket,
146.227.66.150:2000,

0in,
0java.io.InputStreamReader,
0java.io.BufferedReader

1

2

146.227.66.150:20003

146.227.66.150:2000,4

5 /home/Secret/SecretInfo.s

/home/Secret/SecretInfo.s
0java.io.File

/home/Secret/SecretInfo.s
0java.io.File
0java.io.FileInputStream

0java.net.Socket,
146.227.66.150:2000,

6

7

8

9

IFS

main

IMFS

/home/Secret/SecretInfo.s
0java.io.File

/home/Secret/SecretInfo.s
0java.io.File
0java.io.FileInputStream

Figure 8.17: Current method runtime frame and IMFS at line 582

Opcode index 588 in Listing 8.11 sends an event to load the contents of label 8

as specified in Opcode index 585. The event recognizer gets the contents of label

164



CHAPTER 8. CASE STUDIES

8 from the current method Symbol table ([0java.net.Socket, 146.227.66.150:2000])

and push it onto the IFS. Opcode index 597 sends an event to load the contents of

label 9. The event recognizer gets the contents of label 9 from the Symbol table of the

current method ([/home/Secret/SecretInfo.s, 0java.io.File, 0java.io.FileInputStream])

and pushes them onto the top of the IFS. Figure 8.18 illustrates the changes in the

current runtime frame and IMFS at Opcode index 597.

Kclient.main Symbol Table

0java.net.Socket,
146.227.66.150:2000,

0in,
0java.io.InputStreamReader,
0java.io.BufferedReader

1

2

146.227.66.150:20003

146.227.66.150:2000,4

5 /home/Secret/SecretInfo.s

/home/Secret/SecretInfo.s
0java.io.File

/home/Secret/SecretInfo.s
0java.io.File
0java.io.FileInputStream

0java.net.Socket,
146.227.66.150:2000,

6

7

8

9

IFS

main

IMFS

/home/Secret/SecretInfo.s
0java.io.File

/home/Secret/SecretInfo.s
0java.io.File
0java.io.FileInputStream

0java.net.Socket,
146.227.66.150:2000,

/home/Secret/SecretInfo.s
0java.io.File
0java.io.FileInputStream

Figure 8.18: Current method runtime frame and IMFS at Opcode index 597

Opcode index 602 informs the event recognizer that the next invoked method is

NativeWrite with 1 parameter and 0 return value. The event recognizer pops the

top two elements from the IFS ([/home/Secret/SecretInfo.s, 0java.io.File, 0java.io.

FileInputStream] and [0java.net.Socket, 146.227.66.150:2000]) and all elements of

the IMFS ([/home/Secret/SecretInfo.s, 0java.io.File]).

Figure 8.19 shows the runtime frame of the current method and IMFS when the

execution is at Opcode index 602. The event recognizer destroys any value’s name

started by 0 and sends the remaining contents (/home/Secret/SecretInfo.s, 146.227.

66.150:2000 ) to the runtime Checker. The runtime Checker checks this flow against

the information flow policy in Listing 8.7. The second rule in the policy stated that:
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Kclient.main Symbol Table

0java.net.Socket,
146.227.66.150:2000,

0in,
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0java.io.BufferedReader
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Figure 8.19: Current method runtime frame and IMFS at Opcode index 602

?/home/Secret/SecretInfo.s >>> 146.227.66.150:2000

The user should be asked for the flow of the source /home/Secret/SecretInfo.s to

destination 146.227.66.150:2000. Then the runtime Checker will monitor the flow

and ask the user as illustrated in Figure 8.20.

Figure 8.20: Monitoring the flow

Our runtime monitoring mechanism asks the user for the next step as shown in

Figure 8.20. If the user rejects the flow then the runtime monitoring mechanism

stops the program execution and if the user allow the flow the runtime Checker

modifies the information flow policy according to the user’s decision.
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8.4 Summary

The presented chapter has discussed two case studies that describe how information

flow can be traced and controlled. The first case study has been provided to show

how the instrumentation process, event recognizer and runtime checker components

interact together to find out any possible information flow within a Java applica-

tion. The general aim of this case study was to show how our runtime monitoring

mechanism works and how information flow can be traced. The second case study

has been provided to show the feasibility of our approach to control the information

flow in a file sharing application, where the actual flows that take place at runtime

are traced and the program is only interrupted when a policy violation does occur.

This means that even unsafe programs may be executed within safe parameters,

i.e. as long as they do not actually violate the information flow policy. The main

purpose of this case study was to demonstrate the work of our approach to control

the information flow.
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Chapter 9

Evaluation

Objectives

� Evaluate the research which has been described in this thesis.

� Discuss the limitations of the proposed approach.
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9.1 Introduction

While the previous Chapters 4, 5, 6 discussed some implementation characteristics

relating to individual components, this chapter examines the overall system perfor-

mance. The goal is to provide a runtime verification framework for monitoring and

controlling information flow within Java applications. This chapter will evaluate our

approach based on the success criteria:

� Feasibility of implementation.

� User ability to modify the flow policy during runtime in response to incidents.

� Modifying the behaviour of the program that is leaking confidential informa-

tion according to the user decision.

� Performance overhead, which is broken down further into overhead in compu-

tation time and overhead in memory usage.

The feasibility of the implementation is discussed in Section 9.2. Section 9.3 eval-

uates the user ability to modify the flow policy during runtime in response to in-

cidents. Section 9.4 discusses the modification of the program behaviour that is

leaking confidential information according to the user decision. The examples show-

ing the performance overhead associated with information flow control is described

in Section 9.5.

9.2 Evaluating the Feasibility of Implementation

A straightforward prototype implementation without any optimisation has been de-

scribed in Chapter 7. The prototype shows how the components of the proposed

framework interact together to load, instrument and control the flow of the infor-

mation in the target class file or class files. Limitations of the prototype are both
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functional and performance related. Firstly, not all the functions and algorithms

explained in Chapters 4 and 5 are implemented and thus the prototype will not be

able to trace all information flows. For example the information flow introduced by

exception handling mechanisms are not covered. The performance of the prototype

is certainly worse than technically possible using the presented approach. For ex-

ample string comparisons are not optimised and there is no code level optimisation

to avoid redundant comparisons. The limitations are due to the limited amount of

implementation time. This does not constitute a conceptual problem, but is due to

the amount of effort that would be needed to implement the runtime verification

framework for controlling information flow based on policies. This is out of scope of

this PhD project.

Of course this implementation presents only a prototype to show that monitoring

at runtime can be done with an acceptable performance hit (see section 9.5). It is

not implemented to a level at which it could be readily commercially exploited. For

example the following functionalities are currently missing or are limited in their

applicability:

� Exception, athrow instruction deals with exceptions, but since the current

prototype does not support it yet, so the proposed framework will first have

to be implemented completely, before athrow can do anything useful.

� The Jump subroutine jsr w and jsr are for jump to subroutines are miss-

ing. The execution proceeds at that offset from the address of the instruction.

These instructions can be implemented similar to the goto instruction as de-

scribed in Section 4.10.4 but jsr needs two branch addresses and jsr w needs

four branches addresses.

� Modifying an information flow policy needs more work since the current pro-

totype has not a fully working version.
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In order to give an insight into the current implementation performance and anal-

ysis results, the Section 9.5 presents some examples that are used to evaluate the

prototype performance.

9.3 The User Ability to Modify the Flow Policy

The conceptually most important component is the user feedback component that

acts as an interface between a user and the monitored application. An essential func-

tionality of the user feedback component is that all user interaction passes through

this component. The user feedback component informs the user about any feedback

received from the runtime checker, if the runtime checker determined that this exe-

cution would violate the information flow policy then it sends feedback to the user

through the user feedback component, the information flow policy will be modified

according to the user decision. In other words, while the application is running, the

user feedback component receives feedback from the runtime checker (Steering). If

the application is about to enter an insecure state then the user will be asked to

determine whether the information flow should be aborted or allowed to flow and

continue under a modified policy. One of the motivation of this research is that with

most of the previous work the information flow policy was not in the hand of the

end user.

9.4 Modifying the Behaviour of the Program

Modifying the behaviour of the program that is leaking confidential information

according to the user decision. An interaction with the user is very important in

flexible and reliable information flow control systems because different users may

have different security requirements. An interaction with monitoring mechanism
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during runtime enables the user to change application behaviours or modify the way

that information flow while the program is executing.

9.5 Performance

The ability to monitor and control information flow within a Java application comes

at the expense of performance overhead. This overhead is introduced at two distinct

points: memory usage and computation time. The experiments that measures the

performance overhead were conducted on an Intel(R) Core(TM)2 Duo CPU E4600

@ 2.40GHz, running Ubuntu 10.04.1 LTS with the 2.6.32-27-generic (i686) Linux

Kernel.

9.5.1 Memory Usage

This section discusses the target class size before and after instrumentation, memory

used during class loading as part of the instrumentation code for the target classes,

dynamic overhead that may be caused by the runtime classes of the proposed frame-

work and finally it discusses the overall memory used.

In the following we present four programs that measure this overhead. The first

program is a helloworld program and the second is another version of the helloworld

program that prints hello world ten times. The third one considers a program that

opens a file, reads the contents one line at a time and prints the entire contents to

the screen. The file size is 1.6 KB. The last program involves measuring performance

of a QuickSort algorithm for 1000 integer random numbers. The full details and the

code of these examples can be found in Appendix B.
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9.5.1.1 Class Size

As the bytecode of the original target program is instrumented when loading its

classes, the memory size of the target program is expected to be increased when

executing within the framework. In Chapter 4 the instrumentation of bytecode

instructions that cause information flow has been discussed in detail. Revisiting the

presented algorithms 4.9.1 to 4.10.4 it is clear that every instrumentation will add at

least 74 bytes to the original bytecode in the case of a constant instrumentation, see

Section 4.9.1. In the worst case 106 bytes are added to the original bytecode, in the

case of Invokevirtual and Invokestatic operations, see Section 4.9.14.3. Consequently

we expect a program to expand by at least a factor 1 and at most 4. The set up of

the class size experiment is as follows:

� Measure target program size.

� Instrument target program (only target classes)

� Measure size of instrumented target classes.

The results of this experiment show that:

Table 9.1: Comparing original and instrumented class size

Experiment Original size Instrumented size Expansion Ratio

1 582 bytes 778 bytes 1.3
2 690 bytes 1334 bytes 1.9
3 1843 bytes 3328 bytes 1.8
4 2612 bytes 6423 bytes 2.4

The results show that the instrumented bytecode of the target program increases

the size. The first program has the minimum expansion ratio 1.3 due to the fact that

the target program consist of only one method. That program has four bytecode

instructions, one of these bytecode instructions is instrumented 1 to 4 but the others
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are instrumented 1 to 1 and 1 to 2. Program 4 has a larger expansion ratio 2.4 than

the other programs due to the fact that the target program involves eight methods.

Figure 9.1: Comparison of original and instrumented class size

These methods have many operations such as (Invokevirtual and Invokestatic)

which are instrumented as 1 to 4 instructions and many load and store operations

that instrumented as factor 1 to 3 instructions. However, the obtained results are

as expected, i.e. instrumentation will increase the target program size by at least a

factor 1 and at most 4. All assertion points calls in our prototype implementation

are inserted as class methods that use static (early) binding. With a better imple-

mentation that changes all assertion points to be inserted as instance methods that

use dynamic (late) binding may reduce the overall size.

9.5.1.2 Memory Used during Class Loading as part of the Instrumenta-

tion Code

The set up of the experiment is as follows:

� Measure free memory size after run JVM.

� Instrument target program (only target classes).
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� Measure free memory size after instrumenting target classes.

The results of this experiment are as the follows:

Table 9.2: Memory usage of original and instrumented class

Experiment Original class Instrumented class Expansion Ratio

1 243880 bytes 487856 bytes 2.0
2 243899 bytes 731760 bytes 3.0
3 251898 bytes 1223504 bytes 4.8
4 487704 bytes 1955752 bytes 4.0

The results show that compared original and instrumented bytecode of the target

program increases the size of the memory used during loading stage. The third

program has a larger expansion ratio 4.8 than the other programs because its target

class requires more classes to be loaded in order to execute. All these classes are

instrumented during loading stage as explained in Section 4.5.

Figure 9.2: Memory usage of original and instrumented class

9.5.1.3 Dynamic Overhead

The runtime classes of the proposed framework are Event Recognizer, Runtime

Checker and MyStack. Table 9.3 lists each of these runtime classes and their size.
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Table 9.3: The size of framework runtime classes

Class Size

Event Recognizer 8929 bytes
Runtime Checker 2512 bytes

MyStack 2465 bytes

Figure 9.3: Size of framework runtime classes

As indicated in Table 9.3 the Event recognizer has the largest size due to the

fact that all assertion points operations are defined in this class and all trace data

are manipulated in this class which increases the memory usage during runtime. As

explained in Chapter 5 a new runtime frame is created each time a method is invoked.

The runtime frame consists of an information flow stack (IFS) and a Symbol Table.

At any point of the execution, there are thus likely to be many frames and equally

many information flow stacks (IFS) that as expected will increase the used memory

compared to the original application used memory. Thus, the size is as big as the

target program and the data manipulated in the runtime frame.

9.5.1.4 Overall Memory usage

The set up of the experiment as follows:

� Measure free memory size.

� Instrument user and system classes (target and rt.jar classes).

� Measure free memory size after instrumenting user and system classes.

176



CHAPTER 9. EVALUATION

Table 9.4: Original and instrumented overall Memory usage

Experiment Original Instrumented Expansion Ratio

1 2071646 bytes 11829419 bytes 5.7
2 2086133 bytes 12138858 bytes 5.8
3 2286748 bytes 12852374 bytes 5.6
4 2136934 bytes 13526455 bytes 5.6

As indicated in Table 9.4 that the lowest expansion ratio 5.6 is in the third and

fourth programs and the highest is in the second program. The amount of overall

used memory is increased because the measurement of the memory size is done after

all framework classes, the Java agent class, transformer class, the javaassist package

classes are loaded and all other loaded classes are instrumented during loading stage.

The amount of overall memory usage can be reduced using static analysis techniques

such as (Banerjee & Naumann 2005, Myers 1999) for the system classes. That

analysis how information will flow in the program to determine whether it obeys

some predefined policy with respect to an information flow without running the

program.

Figure 9.4: Original and instrumented overall Memory usage

Overall the experiments show that the memory usage are different between the origi-

nal target program and the same program executing within the proposed framework

due to two main factors. The first factor is that programs loaded different number
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of required classes that they demand to run. The other factor is the Java garbage

collection. The JVM’s heap stores all objects created by the executing program.

The garbage collection is the process that automatically free objects that are no

longer referenced by the program. In addition to freeing unreferenced objects, a

garbage collector may also combat heap fragmentation. Heap fragmentation occurs

through the course of normal program execution. New objects are allocated, and

unreferenced objects are freed such that free blocks of heap memory are left in be-

tween blocks occupied by live objects. Requests to allocate new objects may have to

be filled by extending the size of the heap even though there is enough total unused

space in the existing heap.

As can be seen in the Appendix B that running the same program many time may

uses different amount of memory. These are the main factors impacting on the

memory overhead of the proposed framework is confirmed by measuring the overall

memory usage of both the original target program and the same program executing

within the runtime verification framework for controlling information flow

9.5.2 Computation Time

This section discusses the overhead in loading the target classes, rt.jar classes and

the overhead in executing assertion points. The same presented four programs that

are used to measure the expansion ratio of the memory usage will be used to measure

the computation time. The details of these programs can be found in Appendix B.

9.5.2.1 Overhead in loading and instrumenting target classes

During the loading stage of the target program classes, the framework classes, Javaa-

gent class, transformer class and Javaassist package classes, all required system

classes (rt.jar classes) will be loaded and the target program classes will be loaded

and instrumented. Consequently, the expected time for loading a program is ex-
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panded by at least a factor 5 and at most 11. The set up of the loading target

classes experiment is as follows:

� Measure the elapsed time for loading the target classes.

� Measure the elapsed time for loading and instrument the target classes.

Table 9.5: Target classes loading and instrumented time

Experiment Loading and Instrumenting Time Loading time Expansion Ratio

1 0.043 seconds 0.0055 seconds 7.8
2 0.0561 seconds 0.0059 seconds 9.5
3 0.0905 seconds 0.0089 seconds 10.1
4 0.1230 seconds 0.0159 seconds 7.7

Figure 9.5: Target classes loading and instrumented time

The results show that the loading of original classes and instrumented bytecode

of the target program classes increases the elapsed loading time. The third program

has a larger expansion ratio (10.1) than the other programs due to the fact that

loading this program requires more system classes (rt.jar classes) to be loaded than

the other programs 1, 2 and 4. During the loading stage of all of these programs,

the framework classes, Javaagent class, transformer class and Javaassist package

classes, all required system classes (rt.jar classes) will be loaded and the target
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program classes will be loaded and instrumented. Thus, that time is a reasonable

time to be elapsed for loading all required class to control information flow.

9.5.2.2 Overhead in instrumenting and reloading system (rt.jar) classes

During the instrumentation stage of the system (rt.jar) classes, the framework

classes, Javaagent class, transformer class and Javaassist package classes, will be

loaded. The system (rt.jar) classes will be instrumented and reloaded again. How-

ever, these classes does not require any extra classes to be loaded. Thus the expected

time for instrumenting and reloading system (rt.jar) classes is expand by at least a

factor 1 and at most 4.

The set up of the loading target classes experiment is as follows:

� Measure the elapsed time for loading the system (rt.jar) classes.

� Measure the elapsed time for instrumenting and reloading system (rt.jar)

classes.

Table 9.6: Original loading Time and Instrumenting, reloading time

Experiment Loading and Instrumenting time Loading time Expansion Ratio

1 3.2496 seconds 1.0593 seconds 3.0
2 3.2960 seconds 1.0767 seconds 3.0
3 3.3055 seconds 1.1036 seconds 2.9
4 3.2893 seconds 1.1884 seconds 2.7

The results in Table 9.6 show that the loading of system (rt.jar) classes and

instrumented and reloaded system (rt.jar) classes increases the elapsed loading time.

The first and the second programs have the same expansion ratio 3.0 because both

of them requires approximately the same number of the system (rt.jar) classes to be

loaded and instrumented. Thus, the consumed time is as expected to be at least a

factor 1 and at most 4. The amount of instrumentation and reloading time can be

reduced using static analysis techniques such as (Banerjee & Naumann 2005, Myers

1999) for the system classes e.g. java.lang, java.system and java.security.
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Figure 9.6: Original loading Time and Instrumenting, reloading time

9.5.2.3 Overhead in executing assertion points

The Java language provides two basic kinds of methods, instance methods and class

(or static) methods. When the JVM invokes a class method, it selects the method

to be invoked based on the type of the object reference, which is known at compile-

time. On the other hand, when the virtual machine invokes an instance method, it

selects the method to be invoked based on the actual class of the object, which can

be known at run time. The JVM uses two different instructions to invoke instance

or static methods:

� invokevirtual for instance methods, that pops the objectref and args, invoke

the method at constant pool index

� invokestatic for class methods, that pops args, invoke the static method at

constant pool index.

The proposed approach inserts assertion points as a static method call. Table 9.7

shows the results of a calling class method invokestatic and instance method invoke-

virtual doing nothing for a number of times.

The set up of the experiment is as follows:
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� Measure the elapsed time for n times calling the static method.

� Measure the elapsed time for n times calling the instance method.

Table 9.7: Time cost of static and instance methods

Experiment Number loop Static Method Instance Method

1 1000 0.0 seconds 0.0 seconds
2 10000 0.0 seconds 0.001 seconds
3 100000 0.002 seconds 0.004 seconds
4 1000000 0.006 seconds 0.007seconds

Figure 9.7: Time cost of static and instance methods

Table 9.8 compares the elapsed time for calling static and instance methods. The

results show that in the first experiment equal time from both methods instance

and static. However, in the other experiments the elapsed time for calling instance

method is always greater than the static methods. Due to the fact the calling

instance method involves overhead that the program must first examine the object

to determine its type, select the appropriate method, and then call it. The elapsed

time for calling any type of methods (instance or static) always depends on its

number of arguments (parameters).
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9.5.2.4 Overhead in manipulating runtime frames’ stacks

As described in Section 5.2 the proposed approach creates a new runtime frame

each time a method is invoked. The runtime frame consists of the information flow

stack (IFS) and a Symbol Table for use by the current method. At any point in the

execution, there are thus likely to be many frames and equally many information

flow stacks (IFS) per method invocation and one implicit information flow stack

(IMFS) to control implicit information flow. Thus, the expected elapsed time for

manipulating information flow stack is expanded by at least a factor 3 and at most

7. The set up of the experiment is as follows.

� Measure the execution time of the original classes.

� Measure the execution time of the original classes using our approach.

Table 9.8: Execution time of original classes and using our approach

Experiment Original Using our approach Expansion Ratio

1 0.0008 seconds 0.0025 seconds 3.1
2 0.001 seconds 0.0066 seconds 6.6
3 0.0518 seconds 0.3438 seconds 6.6
4 0.2334 seconds 0.8253 seconds 3.5

Figure 9.8: Execution time of original classes and using our approach
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The results in Table 9.8 show that the first experiment has the smallest expansion

ratio 3.1 and the largest expansion ratio 6.6 is for experiments 2 and 3. These

expansion ratios depends on the number of operations that the inserted assertion

point has, e.g. const assertion point has one operation that push a label to the

information flow stack however, union assertion point pops the top two labels from

the information flow stack, combines them and push them as one element to the

information flow stack as described in Sections 5.3.1 and 5.3.10 respectively.

Next experiment shows a comparison between the execution time using our approach

and the execution time using our approach for only explicit information flow. As

explained in Section 5.2.3 the proposed approach uses a shared implicit information

flow stack to control any possible implicit information flow. Thus, we expected no

much time to be added for manipulating implicit information flow stack. The set

up of the experiment is as follows.

� Measure the execution time of the original classes using our approach.

� Measure the execution time of the target classes using our approach for con-

trolling explicit information flow.

Table 9.9: Execution time using our approach with/without implicit information
flow

Experiment With implicit Without implicit Expansion Ratio

1 0.0025 seconds 0.0023 seconds 1.0
2 0.0066 seconds 0.0058 seconds 1.1
3 0.3438 seconds 0.3410 seconds 1.0
4 0.8253 seconds 0.7976 seconds 1.0

The results in Table 9.9 show that the largest expansion ratio 1.1 is at experiment

2. Generally, as expected there is not much time added for manipulating a shared

implicit information flow stack.

184



CHAPTER 9. EVALUATION

Figure 9.9: Execution time using our approach with/out implicit information flow

9.5.3 Summary of Experiments

The results of the overall experiments show that the original and the same program

executing within the proposed framework introduces an overhead in load and ex-

ecution time. The overhead is due to two main factors. The first factor is that

programs load a different number of required classes that it originally demanded to

run. The other factor is that the proposed approach instruments all loaded classes

and reloads them again to be executed after inserting the required assertion points.

While this is not a negligible overhead, we feel that this penalty is a reasonable

price to pay for the additional security offered by the information flow control and

policy enforcement functionality. We are confident that the overhead can be reduced

by further optimizations in the bytecode instrumentation and runtime monitoring

mechanism.

Reducing the overhead that are due to all loaded classes instrumentation during

compilation time could potentially improve performance furthers, e.g. loading time

can be reduced using static information flow analysis for all system classes. Further-

more, the execution time can be further reduced by skipping the repeated assertion

points and assertion points that are inside a loop could potentially called once.
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9.6 Summary

The core aim of this work was to develop a runtime verification framework for con-

trolling information flow based on policies within a Java application. This chapter

has analysed and evaluated the proposed framework. The beginning of this chapter

considered the feasibility of the prototype implementation The second part of this

chapter evaluates the performance overhead, which was broken down into overhead

in memory usage and overhead in computation time. Memory usage discusses tar-

get class size before and after instrumentation, memory used during class loading as

part of the code instrumentation, dynamic overhead, overall memory usage. Com-

putation time discusses the overhead in loading and instrumenting target classes,

instrumenting and reloading system (rt.jar) classes, executing assertion points and

manipulating runtime frames’ stacks.
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Conclusion and Future Work

Objectives

� Summary of the research which has been described in this thesis.

� Propose future work.
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10.1 Summary of the Thesis

The thesis presented a new framework for policy-based runtime verification of in-

formation flow that supports user interaction during runtime and explicitly states

how the framework components interact to control the flow of information (Chapter

3). The thesis described a flexible approach to information security management so

that the information flow within a program execution conforms to a defined set of

information flow rules (Chapter 6).

The thesis discussed how to control information flows during untrusted program

execution. The approach concentrates on providing a dynamic and adaptable in-

formation security solution by interacting with the user during system execution

in response to information flow events. This approach is advantageous over static

verification as it is configurable and also places control in the hand of the user.

The thesis provided a new instrumentation algorithm to monitor and trace the

program execution, that is applicable to any Java bytecode (Chapter 4). The thesis

presented new algorithms for dynamically tracing and controlling the flow of the

information during runtime, using a new runtime monitoring technique to control

both explicit and implicit information flow (Chapter 5).

The presented approach does not treat the application as a black box (with the

general assumption that once information has passed into it can find its way to any

destination). Instead the actual flows that take place at runtime are traced and the

program is only interrupted when a policy violation does occur. This means that

even unsafe programs, i.e. as long as they do not actually violate the information

flow policy, can be executed within safe parameters.
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The presented approach works for Java bytecode and does not require any modi-

fication to the underlying hardware/software architecture. The prototype implemen-

tation of the presented approach is independent of any specific JVM. The verification

in this approach is performed inside the Java environment and does not rely on any

extra verification tool.

Finally, the thesis demonstrated that security can be achieved by an interactive

process in which the presented framework queries the user for specific information

as security requirements (Chapter 6). These are made available to the software and

are then enforced on the application using a novel runtime verification technique for

tracing information flow.

10.2 Achieving Success Criteria

To answer the research questions that were highlighted in Chapter 1, a new frame-

work for policy-based runtime verification of information flow that supports user

interaction has introduced:

� User ability to modify the flow policy during runtime. The thesis discussed

the user interaction with the monitoring mechanism in Chapters (Chapter

3, 6 and 8). The interaction with users is very important in any flexible

and reliable security monitoring mechanism because different users may have

different security requirements. One of the motivations of this research is that

most of the previous work, the information flow policy is not in the hand of the

end user. To the best of our knowledge it is the first monitoring mechanism

for controlling information flow during runtime that support user interaction.
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� Modifying the behaviour of the program that is leaking confidential infor-

mation according to the user decision. Our monitoring mechanism enables

the user to interact with the monitoring mechanism to change the program

behaviours or modify the way that information flow while the program is ex-

ecuting.

� The functionality and performance of the prototype tool were evaluated by

employing it in several cases studies. The performance results indicates that

the prototype tool is suitable for use within Java applications.

10.3 Contributions

The main contribution of this research is a novel usable security mechanism for

controlling information flow within a software application during runtime. Usable

security refers to enabling users to manage their systems security without defining

elaborate security rules before starting the application. Security will be achieved by

an interactive process to enforce user requirements on the application using runtime

verification technique for tracing information flow. The contributions are detailed

in the following list.

� Runtime Monitoring: The proposed runtime monitoring mechanism en-

sures that the program execution are contains only legal flows that are defined

in the information flow policy or approved by the user. The presented approach

provides a high degree of flexibility to support detecting and monitoring of po-

tential leaking behaviour of a program and the user decides whether to abort

or continue the program execution. The approach ensures that the program

contains only those flows approved by the user.
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� Runtime Management: The behaviour of a program that about to leak

confidential information will be altered by the monitor according to the user

decision. The interaction process enables users to manage their security re-

quirements during runtime.

� User interaction control: The achieved user interaction with the monitoring

mechanism during runtime enable users to change the program behaviours

while the program is executing. The presented approach provides a high degree

of flexibility to support the user’s ability to modify the way that information

flow.

10.4 Future Work

The most immediate need in our current prototype implementation is the dynamic

policy modification by the user. Currently, the information flow policy is simply

written out as code that is read by our prototype implementation. The prototype

implementation should be able to manage complex information policies that can

succinctly capture a wide range of user information flow requirements.

Performance measurements using the proposed approach show that the system

incurs expected overhead. Optimisations are needed to reduce this overhead, some

of which have been outlined in Section 9.2.

The prototype would require an expansion of the implementation to include more

of Java bytecode features, e.g. exceptions are heavily used in Java, and can intro-

duce new control flows, and therefore new indirect leaks. Other works have already

addressed this issue (Myers 1999, Pottier & Simonet 2003), and it should not be too

difficult to add these to the proposed approach.
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Another future work direction is the examination of how much information is

leaked, and the amount of the information flow to allow users to make more in-

formed decisions.

The presented research only addresses the information flow within one applica-

tion. This is sufficient to protect against untrusted applications executed in user

space, but fails to address mandatory information flow control within open multi-

user environments. One aspect of future work that is already addressed in ongoing

research projects is the integration of the proposed approach in a wider information

system context.
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Appendix A

Instructions and its Opcodes

Opcode Instruction Opcode Instruction Opcode Instruction Opcode Instruction

0x00 nop 0x01 aconst null 0x02 iconst m1 0x03 iconst 0
0x04 iconst 1 0x05 iconst 2 0x06 iconst 3 0x07 iconst 4
0x08 iconst 5 0x09 lconst 0 0x0a lconst 1 0x0b fconst 0
0x0c fconst 1 0x0d fconst 2 0x0e dconst 0 0x0f dconst 1
0x10 bipush 0x11 sipush 0x12 ldc 0x13 ldc w
0x14 ldc2 w 0x15 iload 0x16 lload 0x17 fload
0x18 dload 0x19 aload 0x1a iload 0 0x1b iload 1
0x1c iload 2 0x1d iload 3 0x1e lload 0 0x1f lload 1
0x20 lload 2 0x21 lload 3 0x22 fload 0 0x23 fload 1
0x24 fload 2 0x25 fload 3 0x26 dload 0 0x27 dload 1
0x28 dload 2 0x29 dload 3 0x2a aload 0 0x2b aload1 1
0x2c aload 2 0x2d aload 3 0x2e iaload 0x2f laload
0x30 faload 0x31 daload 0x32 aaload 0x33 baload
0x34 caload 0x35 saload 0x36 istore 0x37 lstore
0x38 fstore 0x39 dstore 0x3a astore 0x3b istore 0
0x3c istore 1 0x3d istore 2 0x3e istore 3 0x3f lstore 0
0x40 lstore 1 0x41 lstore 2 0x42 lstore 3 0x43 fstore 0
0x44 fstore 1 0x45 fstore 2 0x46 fstore 3 0x47 dstore 0
0x48 dstore 1 0x49 dstore 2 0x4a dstore 3 0x4b astore 0
0x4c astore 1 0x4d astore 2 0x4e astore 3 0x4f iastore
0x50 lastore 0x51 fastore 0x52 dastore 0x53 aastore
0x54 bastore 0x55 castore 0x56 sastore 0x57 pop
0x58 pop2 0x59 dup 0x5a dup x1 0x5b dup x2
0x5c dup2 0x5d dup2 x1 0x5e dup2 x2 0x5f swap
0x60 iadd 0x61 ladd 0x62 fadd 0x63 dadd
0x64 isub 0x65 lsub 0x66 fsub 0x67 dsub
0x68 imul 0x69 lmul 0x6a fmul 0x6b dmul
0x6c idiv 0x6d ldiv 0x6e fdiv 0x6f ddiv
0x70 irem 0x71 lrem 0x72 frem 0x73 drem
0x74 ineg 0x75 lneg 0x76 fneg 0x77 dneg
0x78 ishl 0x79 lshl 0x7a ishr 0x7b lshr
0x7c iushr 0x7d lushr 0x7e iand 0x7f land
0x80 ior 0x81 lor 0x82 ixor 0x83 lxor
0x84 iinc 0x85 i2l 0x86 i2f 0x87 i2d
0x88 l2i 0x89 l2f 0x8a l2d 0x8b f2i
0x8c f2l 0x8d f2d 0x8e d2i 0x8f d2l
0x90 d2f 0x91 i2b 0x92 i2c 0x93 i2s
0x94 lcmp 0x95 fcmpl 0x96 fcmpg 0x97 dcmpl
0x98 dcmpg 0x99 ifeq 0x9a ifne 0x9b iflt
0x9c ifge 0x9d ifgt 0x9e ifle 0x9f if icmpeq
0xa0 if icmpne 0xa1 if icmplt 0xa2 if icmpge 0xa3 if icmpgt
0xa4 if icmple 0xa5 if acmpeq 0xa6 if acmpne 0xa7 goto
0xa8 jsr 0xae freturn 0xaa tableswitch 0xa9 ret
0xac ireturn 0xad lreturn 0xab lookupswitch 0xaf dreturn
0xb0 areturn 0xb2 getstatic 0xb6 invokevirtual 0xb1 return
0xb4 getfield 0xb3 putstatic 0xb7 invokespecial 0xb5 putfield
0xb8 invokestatic 0xbd anewarray 0xb9 invokeinterface 0xbb new
0xbc newarray 0xbe arraylength 0xba xxxunusedxxx1 0xbf athrow
0xc0 checkcast 0xc3 monitorexit 0xc2 monitorenter 0xc1 instanceof
0xc4 wide 0xc6 ifnull 0xc5 multianewarray 0xc7 ifnonnull
0xc8 goto w 0xc9 jsr w 0xca breakpoint 0xfe impdep1
0xff impdep2
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Experiments Result

Example 1:

This example considers a HelloWorld program.

Listing B.1: Source code of HelloWorld.java

package uk.ac.dmu.msarrab.vif.testtargets;

/**

*

* @author Mohamed Sarrab (STRL, DMU, UK)

* Msarrab@dmu.ac.uk

*/

public class HelloWorld {

public static void main(String[] args) {

System.out.println(”Hello World”);

}

}

For the over all memory usage we achieved the following result:
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Table B.1: Comparing Memory Usage

Original Instrumented

2050512 11831128
2046720 11828928
2047920 11826968
2046696 11828928
2047920 11831128
2046696 11828928
2284408 11831583
2047920 11837064
2050896 11828856
2046776 11820680

Mean Mean
2071646 Bytes 11829419 Bytes

Max deviation Max deviation
237712 Bytes 16384 Bytes

For the speed we achieved the following result for ten different run:

Table B.2: Original system and user classes elapsed time

System Classes - Loading time User Class - Loading time Execution Time

1.067 0.005 0.001
1.061 0.005 0.000
1.048 0.005 0.001
1.066 0.005 0.001
1.063 0.004 0.001
1.046 0.005 0.001
1.059 0.007 0.000
1.057 0.006 0.001
1.070 0.007 0.001
1.056 0.006 0.001

Mean Mean Mean
1.0593 seconds 0.0055 seconds 0.0008 seconds

Max deviation Max deviation Max deviation
0.024 seconds 0.003 seconds 0.001 seconds
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Table B.3: Instrumented system and user classes elapsed time

System Classes - Load and instrument time User Class - Load and instrument time Execution Time

3.244 0.003
3.242 0.002
3.247 0.002
3.246 0.003
3.239 0.043 0.002
3.249 0.003
3.269 0.003
3.245 0.002
3.249 0.003
3.266 0.003

Mean Mean Mean
3.2496 seconds 0.043 seconds 0.0025 seconds

Max deviation Max deviation Max deviation
0.03 seconds 0.0 seconds 0.001 seconds

Table B.4: Using our approach for only explicit information flow

Execution Time

0.002
0.002
0.002
0.003
0.002
0.002
0.003
0.002
0.003
0.002

Mean
0.0023 seconds

Max deviation
0.001 seconds
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Example 2:

This example considers a program that involves one class has one method with ten

lines. This example has been presented as one method with ten lines of println

instead of using for loop due to measure the memory usage and instrumentation of

the required assertion points.

Listing B.2: Source code of HelloWorldProgram.java

package uk.ac.dmu.msarrab.vif.testtargets;

/**

*

* @author Mohamed Sarrab (STRL, DMU, UK)

* Msarrab@dmu.ac.uk

*/

public class HelloWorldProgram {

public static void main(String[] args) {

System.out.println(”Hello World”);

System.out.println(”Hello World”);

System.out.println(”Hello World”);

System.out.println(”Hello World”);

System.out.println(”Hello World”);

System.out.println(”Hello World”);

System.out.println(”Hello World”);

System.out.println(”Hello World”);

System.out.println(”Hello World”);

System.out.println(”Hello World”);

}

}

For speed we achieved the following result.
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Table B.5: Comparing Memory Usage

Original Using our approach

2040532 12327992
2264387 12067752
2041736 12070037
2036715 12330264
2040512 12249488
2284347 12078240
2036715 12067792
2041755 12061856
2037920 12065872
2036715 12069295

Mean Mean
2086133 Bytes 12138858 Bytes

Max deviation Max deviation
247632 Bytes 268408 Bytes

Table B.6: Original system and user classes elapsed time

System Classes - Loading time User Class - Loading time Execution Time

1.073 0.005
1.076 0.005
1.084 0.005
1.070 0.004
1.075 0.005 0.001
1.084 0.006
1.081 0.005
1.071 0.006
1.070 0.007
1.083 0.007

Mean Mean Mean
1.0767 seconds 0.0055 seconds 0.001 seconds

Max deviation Max deviation Max deviation
0.014 seconds 0.003 seconds 0.0 seconds

Table B.7: Instrumented System and user classes elapsed time

System Classes - Load and instrument time User Class - Load and instrument time Execution Time

3.296 0.056 0.007
3.295 0.057 0.006
3.296 0.056 0.005
3.296 0.056 0.007
3.297 0.056 0.008
3.297 0.056 0.006
3.296 0.056 0.005
3.296 0.056 0.008
3.295 0.056 0.009
3.296 0.056 0.005

Mean Mean Mean
3.296 seconds 0.0561 seconds 0.0066 seconds

Max deviation Max deviation Max deviation
0.0 seconds 0.001 seconds 0.004 seconds
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Table B.8: Using our approach for only explicit information flow

Execution Time

0.005
0.006
0.005
0.006
0.006
0.007
0.005
0.006
0.007
0.005

Mean
0.0058 seconds

Max deviation
0.002 seconds

Example 3:

This example considers a program that opens a file, reads the contents one line at

a time and prints the entire contents into the screen. The file size is 1.6 KB.

Listing B.3: Source code of ReadFileAndPrint.java

package uk.ac.dmu.msarrab.target;

/**

*

* @author Mohamed Sarrab (STRL, DMU, UK)

* Msarrab@dmu.ac.uk

*/

import java.io.*;

public class ReadFileAndPrint {

public static void main(String[] args) throws IOException {

try {

String file = ”/home/msarrab/a/a1.txt”;

File f = new File(file);

if (!f.exists()) {

System.out.println(”The specified file is not exist”);

System.exit(0);

} else {

FileInputStream finp = new FileInputStream(f);

byte b = 0;

do {

b = (byte) finp.read();

System.out.print(b);

} while (b != −1);

finp.close();
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}

} catch (IOException e) {

System.out.println(e.getMessage() + ” in the specified directory.”);

}

}

}

For the memory usage we achieved the following result:

Table B.9: Comparing Memory Usage

Original Using our approach

2284336 13046232
2286784 12820108
2286784 13042008
2286784 12808392
2287928 12848387
2287928 12764576
2286744 12766776
2286744 12808280
2286704 12808392
2286744 12810592

Mean Mean
2286748 Bytes 12852374 Bytes

Max deviation Max deviation
3592 Bytes 281656 Bytes
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For speed we achieved the following result.

Table B.10: Original system and user classes elapsed time

System Classes - Loading time User Class - Loading time Execution Time

1.104 0.009 0.054
1.105 0.008 0.045
1.103 0.009 0.054
1.104 0.013 0.054
1.103 0.008 0.052
1.103 0.008 0.051
1.103 0.008 0.048
1.103 0.009 0.051
1.106 0.008 0.057
1.102 0.009 0.052

Mean Mean Mean
1.1036 seconds 0.0089 seconds 0.0518 seconds

Max deviation Max deviation Max deviation
0.004 seconds 0.005 seconds 0.012 seconds

Table B.11: Instrumented system and user classes elapsed time

System Classes - Load and instrument time User Class - Load and instrument time Execution Time

3.3 0.087 0.341
3.305 0.096 0.345
3.297 0.088 0.346
3.301 0.089 0.342
3.320 0.089 0.345
3.290 0.089 0.341
3.325 0.088 0.345
3.308 0.095 0.347
3.315 0.095 0.342
3.297 0.09 0.344

Mean Mean Mean
3.3058 seconds 0.0905 seconds 0.3438 seconds

Max deviation Max deviation Max deviation
0.035 seconds 0.009 seconds 0.006 seconds
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Table B.12: Using our approach for only explicit information flow

Execution Time

0.340
0.341
0.341
0.340
0.343
0.341
0.341
0.343
0.340
0.340

Mean
0.341 seconds

Max deviation
0.003 seconds

Example 4:

This example considers a program that involves measuring performance with Quick-

Sort algorithm for 1000 integer random numbers.

Listing B.4: Source code of QuickSort.java

package uk.ac.dmu.msarrab.target;

/**

*

* @author Mohamed Sarrab (STRL, DMU, UK) Msarrab@dmu.ac.uk

*/

public class QuickSort {

private long[] data;

private int len;

public QuickSort(int max) {

data = new long[max];

len = 0;

}

public void insert(long value) {

data[len] = value;

len++;

}

public void display() {

System.out.print(”Data: ”);
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for (int j = 0; j < len; j++)

System.out.print(data[j] + ” ”);

System.out.println(””);

}

public void quickSort() {

recQuickSort(0, len − 1);

}

public void recQuickSort(int left, int right) {

if (right − left <= 0) // if size <= 1 already sorted

return;

else // size is 2 or larger

{

long pivot = data[right]; // rightmost item

// partition range

int partition = partitionData(left, right, pivot);

recQuickSort(left, partition − 1); // sort left side

recQuickSort(partition + 1, right); // sort right side

}

}

public int partitionData(int left, int right, long pivot) {

int leftPtr = left − 1; // left (after ++)

int rightPtr = right; // right−1 (after −−)

while (true) { // find bigger item

while (data[++leftPtr] < pivot);

// find smaller item

while (rightPtr > 0 && data[−−rightPtr] > pivot);

if (leftPtr >= rightPtr) // if pointers cross, partition done

break;

else

swap(leftPtr, rightPtr);

}

swap(leftPtr, right); // restore pivot and return pivot location

return leftPtr;

}

public void swap(int d1, int d2) {

long temp = data[d1];

data[d1] = data[d2];
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data[d2] = temp;

}

public static void main(String[] args) {

int maxSize = 1000; // array size

QuickSort arr = new QuickSort(maxSize); // create array

for (int j = 0; j < maxSize; j++) // fill array with random numbers

{

long n = (int) (java.lang.Math.random() * 99);

arr.insert(n);

}

arr.display();

arr.quickSort();

arr.display();

}

}

For the memory usage we achieved the following result:

Table B.13: Comparing Memory Usage

Original Using our approach

2136712 13518541
2136712 13539021
2136691 13504627
2137828 13518541
2136868 13514953
2136728 13515408
2136728 13523079
2137634 13524177
2136728 13577191
2136712 13529017

Mean Mean
2136934 Bytes 13526455 Bytes

Max deviation Max deviation
1137 Bytes 72564 Bytes

For speed we achieved the following result.
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Table B.14: Original system and user classes elapsed time

System Classes - Loading time User Class - Loading time Execution Time

1.186 0.018 0.240
1.186 0.015 0.208
1.191 0.018 0.207
1.188 0.014 0.217
1.190 0.015 0.243
1.188 0.018 0.221
1.189 0.017 0.253
1.191 0.015 0.245
1.185 0.015 0.221
1.190 0.014 0.280

Mean Mean Mean
1.1884 seconds 0.0159 seconds 0.2334 seconds

Max deviation Max deviation Max deviation
0.006 seconds 0.004 seconds 0.073 seconds

Table B.15: Instrumented system and user classes elapsed time

System Classes - Load and instrument time User Class - Load and instrument time Execution Time

3.322 0.122 0.797
3.268 0.123 0.861
3.291 0.127 0.802
3.284 0.120 0.763
3.294 0.125 0.812
3.282 0.121 0.851
3.285 0.126 0.819
3.292 0.115 0.833
3.293 0.127 0.864
3.282 0.125 0.852

Mean Mean Mean
3.2893 seconds 0.1230 seconds 0.8253 seconds

Max deviation Max deviation Max deviation
0.054 seconds 0.012 seconds 0.089 seconds

Table B.16: Using our approach for only explicit information flow

Execution Time

0.754
0.802
0.783
0.788
0.809
0.822
0.817
0.791
0.812
0.798

Mean
0.7976 seconds

Max deviation
0.068 seconds
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Source Code

As can be seen from the source code that most of the methods and classes are

declared with the access modifier public, where classes are visible to all classes

everywhere and methods can be called by any object. Declaring a public method

defines its access level. Of course this implementation presents only a prototype to

show that monitoring at runtime can be done with an acceptable performance hit.

It is not implemented to a level at which it could be readily commercially exploited.

For example the the public modifier can be change to private modifier.

Listing C.1: Source code of JavaAgent.java

package Agent;

import java.lang.instrument.ClassDefinition;

import java.lang.instrument.Instrumentation;

import java.lang.instrument.UnmodifiableClassException;

import uk.ac.dmu.msarrab.vif.framework.EventRecognizer;

import javassist.NotFoundException;

/**

*

* @author Mohamed Sarrab (STRL, DMU, UK)

* Msarrab@dmu.ac.uk

*/

public class JavaAgent {

/**

* JavaAgent defines already loaded classes.
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* and registers the transformer

*/

private static MyTransformer transformer = new MyTransformer();

@SuppressWarnings(”unchecked”)

public static void premain(String agentArgs, Instrumentation inst) {

if (inst.isRedefineClassesSupported()) {

{

System.err.println(”IsRedefineClassesSupported? Supported ”);

}

if (inst.isRetransformClassesSupported()) {

System.err.println(”IsRetransformClassesSupported? Supported”);

EventRecognizer.RuntimeFrame.openframe();

}else

System.err.println(”IsRetransformClassesSupported? Not supported”);

Class[] loaded = inst.getAllLoadedClasses();

for (Class<?> cc : loaded) {

try {

redefineClass(inst, cc);

} catch (NotFoundException e) {

// TODO Auto−generated catch block

e.printStackTrace();

} catch (ClassNotFoundException e) {

// TODO Auto−generated catch block

e.printStackTrace();

} catch (UnmodifiableClassException e) {

// TODO Auto−generated catch block

e.printStackTrace();

}

}

} else {

System.err.println(”isRedefineClassesSupported Not Supported”);

}

inst.addTransformer(transformer);

EventRecognizer.initialising = false;

}

@SuppressWarnings(”unchecked”)

private static void redefineClass(Instrumentation inst, Class cc)

throws NotFoundException, ClassNotFoundException,

UnmodifiableClassException {
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if ((cc.getName().equalsIgnoreCase(”java.io.PrintStream”)) ||

(cc.getName().equalsIgnoreCase(”java.io.InputStream”))||

(cc.getName().equalsIgnoreCase(”java.io.FileInputStream”))||

(cc.getName().equalsIgnoreCase(”java.nio.channels.WritableByteChannel”)))

{

byte bytes[] = uk.ac.dmu.msarrab.vif.framework.InstrumentClass.instrument(cc.getName());

if (bytes != null) {

ClassDefinition definition = new ClassDefinition(cc, bytes);

inst.redefineClasses(definition);

} else {

System.err.println(”Class: ” + cc.getName()

+ ” could not be instrumented.”);

}

}

}

}

Listing C.2: Source code of MyTransformer.java

package Agent;

import java.lang.instrument.ClassFileTransformer;

import java.lang.instrument.IllegalClassFormatException;

import java.security.ProtectionDomain;

/**

* @author Mohamed Sarrab (STRL, DMU, UK)

* Msarrab@dmu.ac.uk

*/

import uk.ac.dmu.msarrab.vif.framework.InstrumentClass;

import javassist.NotFoundException;

public class MyTransformer implements ClassFileTransformer {

/**

* all future class definitions will be seen by mytransformer.

*/

public MyTransformer() {

super();

}

public byte[] transform(ClassLoader loader, String className,

Class<?> redefiningClass, ProtectionDomain domain, byte[] bytes)

throws IllegalClassFormatException {
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char CA[] = className.toCharArray();

System.out.println();

System.out.println(”In The Transformer ” + className);

for (int i = 0; i < CA.length − 1; i++) {

if (CA[i] == ’/’)

CA[i] = ’.’;

}

String classn = new String(CA);

System.out.println(”Transformer to Transform Class: ” + classn);

try {

if (classn.startsWith(”uk.ac.dmu.msarrab.target”)) // after the

{

bytes = InstrumentClass.instrument(classn);

System.out.println(”Transfer class= ” + className);

}

} catch (NotFoundException e) {

// TODO Auto−generated catch block

e.printStackTrace();

System.out.println(”Error: ” + e.getMessage());

}

return bytes;

}

}

Listing C.3: Source code of InstrumentClass.java

package uk.ac.dmu.msarrab.vif.framework;

import java.io.IOException;

import javassist.CannotCompileException;

import javassist.ClassPool;

import javassist.CtClass;

import javassist.CtMethod;

import javassist.Modifier;

import javassist.NotFoundException;

import javassist.bytecode.InstructionPrinter;

/**

* @author Mohamed Sarrab (STRL, DMU, UK)

* Msarrab@dmu.ac.uk

*/

public class InstrumentClass {
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public final static boolean DEBUG = true;

/**

* Returns the instrumented bytecode for the class named as <code>arg</code>

* Linked to the EventRecognizer er.

*

* @param arg The fully classified name of the class to be instrumented

* @param er The reference to the EventRecognizer that the instrumentation code

* will invoke.

* @return The instrumented bytecode or <code>null</code> if the class could not be instrumented.

*

* @throws NotFoundException If class named <code>arg</code> could not be found.

*/

public static byte[] instrument(String arg)

throws NotFoundException {

ClassPool pool = ClassPool.getDefault();

CtClass cc = pool.get(arg);

if (cc.isFrozen()) {

System.out.println(”Class is frozen ”+ cc);

return null;

} else {

if (cc.getName().startsWith(”uk.ac.dmu.msarrab.target”)){

}

CtMethod[] declaredMethods = cc.getDeclaredMethods();

System.out.println(”cc= ”+cc);

for (CtMethod cm : declaredMethods) {

if(cm.getMethodInfo().isMethod()){

int modf = cm.getModifiers();

if (

(!Modifier.isNative(modf))

&& (!Modifier.isAbstract(modf))

)

{

if (DEBUG) {

System.out.println();

System.out.println(”Original Method code: ”+ cm.

getMethodInfo());

InstructionPrinter.print(cm, System.out);

System.out.println();

}

if (DEBUG) {
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System.out.println(”Instrumented Method: ”+cm.

getMethodInfo());

}

InstrumentMethod.methodInstrument(cc, cm);

}

}

}

}

byte[] bytes = null;

try {

System.out.println(”getting bytecode...”);

bytes = cc.toBytecode();

} catch (IOException e) {

// TODO Auto−generated catch block

e.printStackTrace();

} catch (CannotCompileException e) {

// TODO Auto−generated catch block

e.printStackTrace();

} finally {

cc.defrost();

}

return bytes;

}

}

Listing C.4: Source code of InstrumentMethod.java

package uk.ac.dmu.msarrab.vif.framework;

import java.io.ByteArrayOutputStream;

import java.io.PrintStream;

import javassist.CannotCompileException;

import javassist.ClassPool;

import javassist.CtClass;

import javassist.CtMethod;

import javassist.Modifier;

import javassist.NotFoundException;

import javassist.bytecode.*;

import javassist.expr.ExprEditor;

import javassist.expr.MethodCall;

/**
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* @author Mohamed Sarrab (STRL, DMU, UK)

* Msarrab@dmu.ac.uk

*/

public class InstrumentMethod {

public final static boolean DEBUG = true;

static int PrametersNumber = 0;

static int ReturnNumber = 0;

static String MethodName = null;

static String MethodrefType = null;

static String MethodN = null;

static int temp = 0;

static int Native=0;

/**

* Returns the instrumented bytecode for the CtMethod named as

* <code>cm</code> Linked to the EventRecognizer er.

*

* @param cc

* The CtClass of the class to be instrumented

* @param cm

* The CtMethod of the method to be instrumented

* @param er

* The reference to the EventRecognizer that the instrumentation

* code will invoke.

*/

public static void methodInstrument(CtClass cc, CtMethod cm) {

int IF_Condition = 0;

StringBuffer sb = new StringBuffer();

ClassPool pool = ClassPool.getDefault();

CodeAttribute ca = cm.getMethodInfo().getCodeAttribute();

ByteArrayOutputStream out = new ByteArrayOutputStream();

PrintStream p = new PrintStream(out);

InstructionPrinter.print(cm, p);

sb.append(out.toString());

ConstPool cp = ca.getConstPool();

ClassFile cf = cc.getClassFile();

try {

CtClass cc1 = pool.get(EventRecognizer.class.getName());

ClassFile cf1 = cc1.getClassFile();

int index = 0;

CodeIterator ci = ca.iterator();

while (ci.hasNext()) {

224



APPENDIX C. SOURCE CODE

index = ci.next();

int op = ci.byteAt(index);

switch (op) {

case Opcode.ACONST_NULL:

case Opcode.ICONST_M1:

case Opcode.ICONST_0:

case Opcode.ICONST_1:

case Opcode.ICONST_2:

case Opcode.ICONST_3:

case Opcode.ICONST_4:

case Opcode.ICONST_5:

case Opcode.LCONST_0:

case Opcode.LCONST_1:

case Opcode.FCONST_0:

case Opcode.FCONST_1:

case Opcode.FCONST_2:

case Opcode.DCONST_0:

case Opcode.DCONST_1:

case Opcode.BIPUSH:

case Opcode.SIPUSH:

case Opcode.LDC:

case Opcode.LDC_W:

case Opcode.LDC2_W:

MethodInfo minf1 = cf1.getMethod(”Const”);

Bytecode b1 = new Bytecode(ca.getConstPool());

b1.addInvokestatic(cc1, minf1.getName(), minf1

.getDescriptor());

byte[] code = b1.get();

ci.insert(index,code);

break;

case Opcode.ILOAD:

String instrI = InstructionPrinter.instructionString(ci,index, cp);

String OpStackI3 = instrI.substring(6);

MethodInfo mi3 = cf1.getMethod(”Iload”);

Bytecode I3 = new Bytecode(ca.getConstPool());

I3.add(89);

I3.addLdc(OpStackI3);

I3.addInvokestatic(cc1, mi3.getName(), mi3.getDescriptor());

byte[] Icode3 = I3.get();

ci.insertEx(Icode3);

break;
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case Opcode.LLOAD:

String instrL = InstructionPrinter.instructionString(ci,

index, cp);

String CharOpStackL3 = instrL.substring(6);

MethodInfo minL3 = cf1.getMethod(”Lload”);

Bytecode L3 = new Bytecode(ca.getConstPool());

L3.add(89);

L3.addLdc(CharOpStackL3);

L3.addInvokestatic(cc1, minL3.getName(), minL3

.getDescriptor());

byte[] Lcode3 = L3.get();

ci.insertEx(Lcode3);

break;

case Opcode.FLOAD:

String instrF = InstructionPrinter.instructionString(ci,

index, cp);

String CharOpStackF3 = instrF.substring(6);

MethodInfo minF3 = cf1.getMethod(”Fload”);

Bytecode F3 = new Bytecode(ca.getConstPool());

F3.add(89);

F3.addLdc(CharOpStackF3);

F3.addInvokestatic(cc1, minF3.getName(), minF3

.getDescriptor());

byte[] Fcode3 = F3.get();

ci.insertEx(Fcode3);

break;

case Opcode.DLOAD:

String instrD = InstructionPrinter.instructionString(ci,

index, cp);

String CharOpStD3 = instrD.substring(6);

MethodInfo minD3 = cf1.getMethod(”Dload”);

Bytecode D3 = new Bytecode(ca.getConstPool());

D3.add(89);

D3.addLdc(CharOpStD3);

D3.addInvokestatic(cc1, minD3.getName(), minD3

.getDescriptor());

byte[] Dcode3 = D3.get();

ci.insertEx(Dcode3);

break;

case Opcode.ALOAD:

String instrType3 = InstructionPrinter.instructionString(
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ci, index, cp);

char CharOpStack3 = instrType3.charAt(6);

MethodInfo minf3 = cf1.getMethod(”Aload”);

Bytecode b3 = new Bytecode(ca.getConstPool());

b3.add(89);

b3.addLdc(Character.toString(CharOpStack3));

b3.addInvokestatic(cc1, minf3.getName(), minf3

.getDescriptor());

byte[] code3 = b3.get();

ci.insertEx(code3);

break;

case Opcode.ILOAD_0:

case Opcode.ILOAD_1:

case Opcode.ILOAD_2:

case Opcode.ILOAD_3:

String inI4 = InstructionPrinter.instructionString(ci,

index, cp);

String ChOpStackI4 = inI4.substring(6);

MethodInfo mifI4 = cf1.getMethod(”Iload”);

Bytecode Ib4 = new Bytecode(ca.getConstPool());

Ib4.addLdc(ChOpStackI4);

Ib4.addInvokestatic(cc1, mifI4.getName(), mifI4

.getDescriptor());

byte[] Icode4 = Ib4.get();

ci.insertEx(Icode4);

break;

case Opcode.FLOAD_0:

case Opcode.FLOAD_1:

case Opcode.FLOAD_2:

case Opcode.FLOAD_3:

String inf4 = InstructionPrinter.instructionString(ci,

index, cp);

String ChOpStackf4 = inf4.substring(6);

MethodInfo miff4 = cf1.getMethod(”Fload”);

Bytecode Fb4 = new Bytecode(ca.getConstPool());

Fb4.add(89);

Fb4.addLdc(ChOpStackf4);

Fb4.addInvokestatic(cc1, miff4.getName(), miff4

.getDescriptor());

byte[] Fcode4 = Fb4.get();

ci.insertEx(Fcode4);
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break;

case Opcode.DLOAD_0:

case Opcode.DLOAD_1:

case Opcode.DLOAD_2:

case Opcode.DLOAD_3:

String ind4 = InstructionPrinter.instructionString(ci,

index, cp);

String ChOpStackd4 = ind4.substring(6);

MethodInfo mid4 = cf1.getMethod(”Dload”);

Bytecode db4 = new Bytecode(ca.getConstPool());

db4.add(89);

db4.addLdc(ChOpStackd4);

db4.addInvokestatic(cc1, mid4.getName(), mid4

.getDescriptor());

byte[] dcode4 = db4.get();

ci.insertEx(dcode4);

break;

case Opcode.ALOAD_0:

case Opcode.ALOAD_1:

case Opcode.ALOAD_2:

case Opcode.ALOAD_3:

String instrType4 = InstructionPrinter.instructionString(

ci, index, cp);

String CharOpStack4 = instrType4.substring(6);

MethodInfo minf4 = cf1.getMethod(”Aload”);

Bytecode b4 = new Bytecode(ca.getConstPool());

b4.add(89);

b4.addLdc(CharOpStack4);

b4.addInvokestatic(cc1, minf4.getName(), minf4

.getDescriptor());

byte[] code4 = b4.get();

ci.insertEx(code4);

break;

case Opcode.LLOAD_0:

case Opcode.LLOAD_1:

case Opcode.LLOAD_2:

case Opcode.LLOAD_3:

String inT4 = InstructionPrinter.instructionString(ci,

index, cp);

String ChOpStack4 = inT4.substring(6);

MethodInfo mif4 = cf1.getMethod(”Lload”);
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Bytecode Lb4 = new Bytecode(ca.getConstPool());

Lb4.add(89);

Lb4.addLdc(ChOpStack4);

Lb4.addInvokestatic(cc1, mif4.getName(), mif4

.getDescriptor());

byte[] Lcode4 = Lb4.get();

ci.insertEx(Lcode4);

break;

case Opcode.IALOAD:

case Opcode.LALOAD:

case Opcode.FALOAD:

case Opcode.DALOAD:

case Opcode.AALOAD:

case Opcode.BALOAD:

case Opcode.CALOAD:

case Opcode.SALOAD:

case Opcode.IADD:

case Opcode.LADD:

case Opcode.FADD:

case Opcode.DADD:

case Opcode.ISUB:

case Opcode.LSUB:

case Opcode.FSUB:

case Opcode.DSUB:

case Opcode.IMUL:

case Opcode.LMUL:

case Opcode.FMUL:

case Opcode.DMUL:

case Opcode.IDIV:

case Opcode.LDIV:

case Opcode.FDIV:

case Opcode.DDIV:

case Opcode.IREM:

case Opcode.LREM:

case Opcode.FREM:

case Opcode.DREM:

case Opcode.ISHL:

case Opcode.LSHL:

case Opcode.ISHR:

case Opcode.LSHR:

case Opcode.IUSHR:
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case Opcode.LUSHR:

case Opcode.IAND:

case Opcode.LAND:

case Opcode.IOR:

case Opcode.LOR:

case Opcode.IXOR:

case Opcode.LXOR:

MethodInfo minf5 = cf1.getMethod(”Union”);

Bytecode b5 = new Bytecode(ca.getConstPool());

b5.addInvokestatic(cc1, minf5.getName(), minf5

.getDescriptor());

byte[] code5 = b5.get();

ci.insert(index, code5);

break;

case Opcode.LSTORE:

case Opcode.FSTORE:

case Opcode.DSTORE:

case Opcode.ASTORE:

case Opcode.ISTORE_0:

case Opcode.ISTORE_1:

case Opcode.ISTORE_2:

case Opcode.ISTORE_3:

case Opcode.LSTORE_0:

case Opcode.LSTORE_1:

case Opcode.LSTORE_2:

case Opcode.LSTORE_3:

case Opcode.FSTORE_0:

case Opcode.FSTORE_1:

case Opcode.FSTORE_2:

case Opcode.FSTORE_3:

case Opcode.DSTORE_0:

case Opcode.DSTORE_1:

case Opcode.DSTORE_2:

case Opcode.DSTORE_3:

case Opcode.ASTORE_0:

case Opcode.ASTORE_1:

case Opcode.ASTORE_2:

case Opcode.ASTORE_3:

String instrType6 = InstructionPrinter.instructionString(

ci, index, cp);

String CharOpStack6 = instrType6.substring(7);
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MethodInfo minf6 = cf1.getMethod(”Store”);

Bytecode b6 = new Bytecode(ca.getConstPool());

b6.add(89);

b6.addLdc(CharOpStack6);

b6.addInvokestatic(cc1, minf6.getName(), minf6

.getDescriptor());

byte[] code6 = b6.get();

ci.insert(index, code6);

break;

case Opcode.ISTORE:

String instrType7 = InstructionPrinter.instructionString(

ci, index, cp);

String CharOpStack7 = instrType7.substring(7);

MethodInfo minf7 = cf1.getMethod(”iStore”);

Bytecode b7 = new Bytecode(ca.getConstPool());

b7.add(89);

b7.addLdc(CharOpStack7);

b7.addInvokestatic(cc1, minf7.getName(), minf7

.getDescriptor());

byte[] code7 = b7.get();

ci.insert(index, code7);

break;

case Opcode.IASTORE:

case Opcode.LASTORE:

case Opcode.FASTORE:

case Opcode.DASTORE:

case Opcode.AASTORE:

case Opcode.BASTORE:

case Opcode.CASTORE:

case Opcode.SASTORE:

MethodInfo minf8 = cf1.getMethod(”astore”);

Bytecode b8 = new Bytecode(ca.getConstPool());

b8.addInvokestatic(cc1, minf8.getName(), minf8

.getDescriptor());

byte[] code8 = b8.get();

ci.insert(index, code8);

break;

case Opcode.GETSTATIC:

byte bb1 = ca.getCode()[index + 1];

byte bb2 = ca.getCode()[index + 2];

int index1 = (bb1 << 8) | bb2;
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String FieldName = ”0”

+ cf.getConstPool().getFieldrefName(index1);

Bytecode be1 = new Bytecode(ca.getConstPool());

MethodInfo minff1 = cf1.getMethod(”LoadField”);

be1.addLdc(FieldName);

be1.addInvokestatic(cc1, minff1.getName(), minff1

.getDescriptor());

byte[] cd = be1.get();

ci.insert(index,cd);

break;

case Opcode.GETFIELD:

byte bee1 = ca.getCode()[index + 1];

byte bee2 = ca.getCode()[index + 2];

int indeex1 = (bee1 << 8) | bee2;

String FieldN = ”0”

+ cf.getConstPool().getFieldrefName(indeex1);

Bytecode bbe1 = new Bytecode(ca.getConstPool());

MethodInfo minfff1 = cf1.getMethod(”LoadField”);

bbe1.addLdc(FieldN);

bbe1.addInvokestatic(cc1, minfff1.getName(), minfff1.getDescriptor()

);

byte[] cdd = bbe1.get();

ci.insert(index, cdd);

break;

case Opcode.PUTSTATIC:

case Opcode.PUTFIELD:

byte bb11 = ca.getCode()[index + 1];

byte bb21 = ca.getCode()[index + 2];

int index10 = (bb11 << 8) | bb21;

String FieldName10 = ”0”

+ cf.getConstPool().getFieldrefName(index10);

MethodInfo minf10 = cf1.getMethod(”StoreField”);

Bytecode b10 = new Bytecode(ca.getConstPool());

b10.addLdc(FieldName10);

b10.addInvokestatic(cc1, minf10.getName(), minf10

.getDescriptor());

byte[] code10 = b10.get();

ci.insert(index, code10);

break;

case Opcode.NEW:
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byte bb3 = ca.getCode()[index + 1];

byte bb4 = ca.getCode()[index + 2];

int index33 = (bb3 << 8) | bb4;

String ObjectRefName11 = cf.getConstPool().getClassInfo(

index33);

MethodInfo minf11 = cf1.getMethod(”New”);

Bytecode b11 = new Bytecode(ca.getConstPool());

b11.addLdc(ObjectRefName11);

b11.addInvokestatic(cc1, minf11.getName(), minf11

.getDescriptor());

byte[] code11 = b11.get();

ci.insert(index, code11);

break;

case Opcode.DUP:

case Opcode.DUP_X1:

case Opcode.DUP_X2:

case Opcode.DUP2:

case Opcode.DUP2_X1:

case Opcode.DUP2_X2:

MethodInfo minf12 = cf1.getMethod(”Dup”);

Bytecode b12 = new Bytecode(ca.getConstPool());

b12.addInvokestatic(cc1, minf12.getName(), minf12

.getDescriptor());

byte[] code12 = b12.get();

ci.insert(index, code12);

break;

case Opcode.SWAP:

MethodInfo minf13 = cf1.getMethod(”Swap”);

Bytecode b13 = new Bytecode(ca.getConstPool());

b13.addInvokestatic(cc1, minf13.getName(), minf13

.getDescriptor());

byte[] code13 = b13.get();

ci.insert(index, code13);

break;

case Opcode.POP:

MethodInfo minf14 = cf1.getMethod(”Pop”);

Bytecode b14 = new Bytecode(ca.getConstPool());

b14.addInvokestatic(cc1, minf14.getName(), minf14

.getDescriptor());

byte[] code14 = b14.get();

ci.insert(index, code14);
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break;

case Opcode.POP2:

MethodInfo minf15 = cf1.getMethod(”Pop2”);

Bytecode b15 = new Bytecode(ca.getConstPool());

b15.addInvokestatic(cc1, minf15.getName(), minf15

.getDescriptor());

byte[] code15 = b15.get();

ci.insert(index, code15);

break;

case Opcode.NEWARRAY:

case Opcode.ANEWARRAY:

MethodInfo minf16 = cf1.getMethod(”NewArray”);

Bytecode b16 = new Bytecode(ca.getConstPool());

b16.addLdc(”0NewArray”);

b16.addInvokestatic(cc1, minf16.getName(), minf16

.getDescriptor());

byte[] code16 = b16.get();

ci.insert(index, code16);

break;

case Opcode.IF_ACMPEQ:

case Opcode.IF_ACMPNE:

case Opcode.IF_ICMPEQ:

case Opcode.IF_ICMPGE:

case Opcode.IF_ICMPGT:

case Opcode.IF_ICMPLE:

case Opcode.IF_ICMPLT:

case Opcode.IF_ICMPNE:

IF_Condition++;

MethodInfo minf17 = cf1.getMethod(”ifcmp”);

Bytecode b17 = new Bytecode(ca.getConstPool());

b17.addInvokestatic(cc1, minf17.getName(), minf17

.getDescriptor());

byte[] code17 = b17.get();

ci.insertEx(index, code17);

break;

case Opcode.IFEQ:

case Opcode.IFGE:

case Opcode.IFGT:

case Opcode.IFLE:

case Opcode.IFLT:

case Opcode.IFNE:

234



APPENDIX C. SOURCE CODE

case Opcode.IFNULL:

case Opcode.IFNONNULL:

IF_Condition++;

MethodInfo minf19 = cf1.getMethod(”ifcond”);

Bytecode b19 = new Bytecode(ca.getConstPool());

b19.addInvokestatic(cc1, minf19.getName(), minf19

.getDescriptor());

byte[] code19 = b19.get();

ci.insertEx(index, code19);

break;

case Opcode.INVOKEVIRTUAL:

case Opcode.INVOKEINTERFACE:

case Opcode.INVOKESTATIC:

Native=0;

byte by1 = ca.getCode()[index + 1];

byte by2 = ca.getCode()[index + 2];

int indexx1 = (by1 << 8) | by2;

PrametersNumber = 0;

ReturnNumber = 0;

String className = null;

MethodName = null;

MethodrefType = null;

if (op == Opcode.INVOKEINTERFACE) {

MethodName = cf.getConstPool()

.getInterfaceMethodrefName(indexx1);

MethodrefType = cf.getConstPool()

.getInterfaceMethodrefType(indexx1);

} else

{

className = cf.getConstPool().getMethodrefClassName(indexx1);

if (className != null)

{

MethodName = cf.getConstPool().getMethodrefName(

indexx1);

MethodrefType = cf.getConstPool().getMethodrefType(indexx1);

PrametersNumber = methodPrameters(MethodrefType);

ReturnNumber = methodReturnValue(MethodrefType);

cm.instrument(new ExprEditor() {

public void edit(MethodCall m)
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throws CannotCompileException {

String MthodN = m.getMethodName();

if (MthodN.equalsIgnoreCase(MethodName)) {

try {

if (Modifier.isNative(m.getMethod()

.getModifiers())

|| (Modifier.isAbstract(m

.getMethod()

.getModifiers()))) {

PrametersNumber = methodPrameters(m.getSignature());

ReturnNumber = methodReturnValue(m.getSignature());

Native=1;

}

} catch (NotFoundException e) {

// TODO Auto−generated catch block

e.printStackTrace();

}

}

}

});

}else

{

cm.instrument(new ExprEditor() {

public void edit(MethodCall m)

throws CannotCompileException {

MethodName = m.getMethodName();

try {

if (Modifier.isNative(m.getMethod()

.getModifiers())

|| (Modifier.isAbstract(m

.getMethod()

.getModifiers()))) {

PrametersNumber = methodPrameters(m

.getSignature());

ReturnNumber = methodReturnValue(m

.getSignature());

Native=1;

}

} catch (NotFoundException e) {

e.printStackTrace();

}
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}

});

}

if (op == Opcode.INVOKEVIRTUAL)

PrametersNumber++;

}

if (Native==0){

MethodInfo minfMethod = cf1.getMethod(”Method”);

Bytecode bby4 = new Bytecode(ca.getConstPool());

//bby4.addIconst(InstrumentClass.run);

bby4.addLdc(MethodName);

bby4.addIconst(PrametersNumber);

//bby4.addIconst(ReturnNumber);

bby4.addInvokestatic(cc1, minfMethod.getName(),

minfMethod.getDescriptor());

byte[] ccode = bby4.get();

ci.insert(index, ccode);

break;

}

else{

if (MethodName.equalsIgnoreCase(”write”))

{

MethodInfo minfWrite = cf1

.getMethod(”NativeWrite”);

Bytecode bby2 = new Bytecode(ca.getConstPool());

bby2.addIconst(PrametersNumber);

bby2.addIconst(ReturnNumber);

bby2.addInvokestatic(cc1, minfWrite.getName(),

minfWrite.getDescriptor());

byte[] codeee = bby2.get();

ci.insert(index, codeee);

temp = 1;

break;

}

else

{

MethodInfo minfN = cf1.getMethod(”NativeMethod”);
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Bytecode bby3 = new Bytecode(ca.getConstPool());

//bby3.addIconst(InstrumentClass.run);

bby3.addIconst(PrametersNumber);

bby3.addIconst(ReturnNumber);

bby3.addInvokestatic(cc1, minfN.getName(), minfN

.getDescriptor());

byte[] coode = bby3.get();

ci.insert(index, coode);

break;

}

}

case Opcode.INVOKESPECIAL:

byte bb6 = ca.getCode()[index + 1];

byte bb7 = ca.getCode()[index + 2];

int index67 = (bb6 << 8) | bb7;

String className1 = null;

if (op == Opcode.INVOKEINTERFACE) {

MethodN = cf.getConstPool()

.getInterfaceMethodrefName(index67);

MethodrefType = cf.getConstPool()

.getInterfaceMethodrefType(index67);

className1=cf.getConstPool().

getInterfaceMethodrefClassName(index67);

}

else

{

className1=cf.getConstPool().getMethodrefClassName(index67

);

MethodrefType = cf.getConstPool().getMethodrefType(

index67);

MethodN = cf.getConstPool().getMethodrefName(index67);

if (MethodN == null) {

cm.instrument(new ExprEditor() {

public void edit(MethodCall m)

throws CannotCompileException {

MethodN = m.getMethodName();

PrametersNumber = methodPrameters(m

.getSignature());

ReturnNumber = methodReturnValue(m

.getSignature());
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}

});

}

}

if (!MethodN.equalsIgnoreCase(”<init>”)) {

if (MethodN.equalsIgnoreCase(”readBytes”)) {

CtClass ct = pool.get(className1);

CtMethod ccm = ct.getDeclaredMethod(MethodN);

int modf = ccm.getModifiers();

if ((Modifier.isNative(modf))

|| (Modifier.isAbstract(modf))) {

MethodInfo minfreadbyte = cf1.getMethod(”

NativeMethod”);

Bytecode bby1 = new Bytecode(ca.getConstPool());

bby1.addIconst(methodPrameters(MethodrefType));

bby1.addIconst(methodReturnValue(MethodrefType));

bby1.addInvokestatic(cc1, minfreadbyte.getName(),

minfreadbyte.getDescriptor());

byte[] codde = bby1.get();

ci.insert(index, codde);

}

}

else if(op==Opcode.INVOKESPECIAL)

{

MethodInfo mfMethod = cf1.getMethod(”Method”);

Bytecode be4 = new Bytecode(ca.getConstPool());

be4.addLdc(MethodN);

be4.addIconst(methodPrameters(MethodrefType)+1);

be4.addInvokestatic(cc1, mfMethod.getName(),

mfMethod.getDescriptor());

byte[] cde = be4.get();

ci.insert(index, cde);

break;

}

}else if (MethodN.equalsIgnoreCase(”<init>”)) {

MethodInfo minf67 = cf1.getMethod(”SpecialMethod”);

Bytecode b67 = new Bytecode(ca.getConstPool());

b67.addInvokestatic(cc1, minf67.getName(), minf67

.getDescriptor());
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byte[] code67 = b67.get();

ci.insert(index, code67);

break;

}

case Opcode.MONITORENTER:

case Opcode.MONITOREXIT:

MethodInfo minf373 = cf1.getMethod(”Monitor”);

Bytecode b373 = new Bytecode(ca.getConstPool());

b373.addInvokestatic(cc1, minf373.getName(), minf373 .getDescriptor

());

byte[] code373 = b373.get();

ci.insert(index, code373);

break;

case Opcode.IRETURN:

case Opcode.LRETURN:

case Opcode.FRETURN:

case Opcode.DRETURN:

case Opcode.ARETURN:

MethodInfo minf20 = cf1.getMethod(”TReturn”);

Bytecode b20 = new Bytecode(ca.getConstPool());

b20.addIconst(IF_Condition);

b20.addInvokestatic(cc1, minf20.getName(), minf20

.getDescriptor());

byte[] code20 = b20.get();

ci.insert(index, code20);

break;

case Opcode.RETURN:

MethodInfo minf23 = cf1.getMethod(”Return”);

Bytecode b23 = new Bytecode(ca.getConstPool());

b23.addIconst(IF_Condition);

b23.addInvokestatic(cc1, minf23.getName(), minf23

.getDescriptor());

byte[] code23 = b23.get();

ci.insert(index, code23);

break;

}

}

int i = 0;

CodeIterator cii = ca.iterator();

int ifoffsetAddress;

int gotoffsetAddress;
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while (cii.hasNext()) {

i = cii.next();

int op = cii.byteAt(i);

if (op==Opcode.IFEQ ||

op==Opcode.IFGE ||

op==Opcode.IFGT ||

op==Opcode.IFLE ||

op==Opcode.IFLT ||

op==Opcode.IFNE ||

op==Opcode.IFNULL||

op==Opcode.IFNONNULL||

op==Opcode.IF_ACMPEQ ||

op==Opcode.IF_ACMPNE ||

op==Opcode.IF_ICMPEQ ||

op==Opcode.IF_ICMPGE ||

op==Opcode.IF_ICMPGT ||

op==Opcode.IF_ICMPLE ||

op==Opcode.IF_ICMPLT ||

op==Opcode.IF_ICMPNE ) {

byte bb1 = ca.getCode()[i + 1];

byte bb2 = ca.getCode()[i + 2];

int offset = (bb1 << 8) | (bb2);

ifoffsetAddress =i+offset;

if (i>ifoffsetAddress){

IF_Condition−−;

MethodInfo minif2 = cf1.getMethod(”Endif”);

Bytecode b23 = new Bytecode(ca.getConstPool());

b23.addInvokestatic(cc1, minif2.getName(), minif2

.getDescriptor());

byte[] code23 = b23.get();

cii.insert(i, code23);

}

if (i<ifoffsetAddress){

int opp = cii.byteAt(ifoffsetAddress −3);

if (opp!= Opcode.GOTO){

IF_Condition−−;

MethodInfo minif2 = cf1.getMethod(”Endif”);

Bytecode b23 = new Bytecode(ca.getConstPool());

b23.addInvokestatic(cc1, minif2.getName(),

minif2

.getDescriptor());
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byte[] code23 = b23.get();

cii.insertEx(ifoffsetAddress, code23);

}

if (opp== Opcode.GOTO){

IF_Condition−−;

byte bby1 = ca.getCode()[i+offset−2];

byte bby2 = ca.getCode()[i+offset−1];

int offs = (bby1 << 8) | (bby2);

gotoffsetAddress=i+offset+offs−3;

int insert= ifoffsetAddress−3;

if (offs<0){

MethodInfo minif1 = cf1.getMethod(”Endif”);

Bytecode b23 = new Bytecode(ca.

getConstPool());

b23.addInvokestatic(cc1, minif1.

getName(), minif1

.getDescriptor());

byte[] code23 = b23.get();

cii.insertEx(insert, code23);

}

else{

MethodInfo minif1 = cf1.getMethod(”Endif”);

Bytecode b23 = new Bytecode(ca.getConstPool());

b23.addInvokestatic(cc1, minif1.getName(), minif1

.getDescriptor());

byte[] code23 = b23.get();

cii.insert(gotoffsetAddress, code23);

}

}

}

}

}

InstructionPrinter.print(cm, p);

InstructionPrinter.print(cm, System.out);

cc.writeFile();

cc.defrost();

} catch (Exception e) {
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e.printStackTrace(System.out);

System.out.println(”Error occured while redefining method ”

+ cm.getLongName());

}

}

public static int methodPrameters(String s) {

int PrametersNumber = 0;

String ss;

if (s!=null){

if (s.indexOf(”(”) + 1 != (s.indexOf(”)”))) {

ss = s.substring(s.indexOf(”(”) + 1, s.indexOf(”)”));

int i = 0;

while (i < ss.length()) {

if (Character.isLetter(ss.charAt(i))) {

PrametersNumber++;

if (ss.charAt(i) == ’L’) {

while (ss.charAt(i) != ’;’) {

i++;

}

}

if (ss.charAt(i) == ’[’) {

i++;

}

if (ss.charAt(i) == ’(’) {

i++;

}

}

i++;

}

}

}

return PrametersNumber;

}

public static int methodReturnValue(String s) {

int ReturnNumber = 0;

if (s!=null){

String ss = s.substring(s.indexOf(”)”) + 1);

int i = 0;

while (i < ss.length()) {
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if (Character.isLetter(ss.charAt(i))) {

ReturnNumber++;

if (ss.charAt(i) == ’L’) {

while (ss.charAt(i) != ’;’) {

i++;

}

}

if (ss.charAt(i) == ’[’) {

i++;

}

}

i++;

}

if (ss.equals(”V”) == true) {

ReturnNumber = 0;

}

}

return ReturnNumber;

}

}

Listing C.5: Source code of EventRecognizer.java

package uk.ac.dmu.msarrab.vif.framework;

import java.lang.String;

import java.util.HashSet;

import java.util.Iterator;

import java.util.Stack;

import javassist.NotFoundException;

/**

* @author Mohamed Sarrab (STRL, DMU, UK)

* Msarrab@dmu.ac.uk

*/

public class EventRecognizer {

/**

* Manipulates the Symbol tables, IFSs and IMFSs using stack and frame class

*/

static Stack<HashSet<String>> IMFS = new Stack<HashSet<String>>();

public static MyStack RuntimeFrame = new MyStack();

public static void Store(Object ss, String s) {
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HashSet<String> st = (HashSet<String>) RuntimeFrame.pop();

HashSet<String> st1 = new HashSet<String>();

Iterator<String> ci = st.iterator();

while (ci.hasNext()) {

Object e = ci.next();

st1.add(e.toString());

}

Object[] rray = st1.toArray();

for (int i = 0; i < rray.length; i++) {

st1.add(rray[i].toString());

}

if (ss != null)

st1.add(ss.toString());

RuntimeFrame.put(s, st1);

StackPrint();

}

public static void iStore(int ss, String s) {

HashSet<String> st = (HashSet<String>) RuntimeFrame.pop();

HashSet<String> st1 = new HashSet<String>();

Iterator<String> ci = st.iterator();

while (ci.hasNext()) {

Object e = ci.next();

st1.add(e.toString());

}

Object[] rray = st1.toArray();

for (int i = 0; i < rray.length; i++) {

st1.add(rray[i].toString());

}

st1.add(String.valueOf(ss));

RuntimeFrame.put(s, st);

StackPrint();

}

public static void astore() {

RuntimeFrame.pop();

RuntimeFrame.pop();

RuntimeFrame.pop();

StackPrint();

}

public static void Load(Object s, String ss) {

HashSet<String> set = (HashSet<String>) RuntimeFrame.get(ss);

set.add(s.toString());
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RuntimeFrame.push(set);

StackPrint();

}

public static void Aload(Object s, String ss) {

if (!RuntimeFrame.get(ss).equals(null)) {

System.out.println(”not null”);

HashSet<String> set = (HashSet<String>) RuntimeFrame.get(ss);

set.add(s.toString());

RuntimeFrame.push(set);

} else {

HashSet<String> set = new HashSet<String>();

set.add(s.toString());

RuntimeFrame.push(set);

}

StackPrint();

}

public static void Lload(Long s, String ss) {

HashSet<String> set = (HashSet<String>) RuntimeFrame.get(ss);

set.add(s.toString());

RuntimeFrame.push(set);

StackPrint();

}

public static void Fload(int run, Float s, String ss) {

HashSet<String> set = (HashSet<String>) RuntimeFrame.get(ss);

set.add(s.toString());

RuntimeFrame.push(set);

StackPrint();

}

public static void Iload(String ss) {

System.out.println(”ss= ” + ss);

HashSet<String> set = (HashSet<String>) RuntimeFrame.get(ss);

set.add(”Const”);

System.out.println(”s= ” + set);

RuntimeFrame.push(set);

StackPrint();

}

public static void Dload(Double s, String ss) {

HashSet<String> set = (HashSet<String>) RuntimeFrame.get(ss);

set.add(Double.toString(s));
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RuntimeFrame.push(set);

StackPrint();

}

public static void LoadField(String s) {

HashSet<String> st = new HashSet<String>();

st.add(s.toString());

RuntimeFrame.push(st);

StackPrint();

}

public static void LoadIntField(int s) {

HashSet<String> st = (HashSet<String>) RuntimeFrame.get(Integer

.toString(s));

String aString = Integer.toString(s);

st.add(aString);

RuntimeFrame.push(st);

StackPrint();

}

public static void StoreField(String s) {

HashSet<String> st = (HashSet<String>) RuntimeFrame.pop();

RuntimeFrame.put(s, st);

StackPrint();

}

public static void Const() {

HashSet<String> st = new HashSet<String>();

st.add(”Const”);

RuntimeFrame.push(st);

StackPrint();

}

public static void tableswitch() {

HashSet<String> st1 = (HashSet<String>) RuntimeFrame.pop();

IMFS.push(st1);

StackPrint();

}

public static void lookupswitch() {

HashSet<String> st1 = (HashSet<String>) RuntimeFrame.pop();

IMFS.push(st1);

StackPrint();

}

public static void Dup() {
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HashSet<String> st = (HashSet<String>) RuntimeFrame.pop();

RuntimeFrame.push(st);

RuntimeFrame.push(st);

StackPrint();

}

public static void Union() {

HashSet<String> set1 = (HashSet<String>) RuntimeFrame.pop();

HashSet<String> set2 = (HashSet<String>) RuntimeFrame.pop();

set1.addAll(set2);

RuntimeFrame.push(set1);

StackPrint();

}

public static void New(Object s) {

HashSet<String> st = new HashSet<String>();

st.add(s.toString());

RuntimeFrame.push(st);

StackPrint();

}

public static void Return(int counterOfCondition) {

while (counterOfCondition > 0) {

IMFS.pop();

counterOfCondition−−;

}

RuntimeFrame.closeframe();

StackPrint();

}

public static void TReturn(int counterOfConditions) {

HashSet<String> ReturnValue = (HashSet<String>) RuntimeFrame.pop();

HashSet<String> set = new HashSet<String>();

while (!IMFS.empty()) {

HashSet<String> set1 = (HashSet<String>) IMFS.pop();

ReturnValue.addAll(set1);

set.addAll(set1);

}

Iterator<String> it = ReturnValue.iterator();

while (it.hasNext()) {

String element = it.next();

HashSet<String> s = new HashSet<String>();

s.add(element);

IMFS.push(s);

248



APPENDIX C. SOURCE CODE

}

while (counterOfConditions > 0) {

IMFS.pop();

counterOfConditions−−;

}

StackPrint();

RuntimeFrame.closeframe();

RuntimeFrame.push(ReturnValue);

StackPrint();

}

public static void Swap() {

HashSet<String> st = (HashSet<String>) RuntimeFrame.pop();

HashSet<String> st1 = (HashSet<String>) RuntimeFrame.pop();

RuntimeFrame.push(st);

RuntimeFrame.push(st1);

StackPrint();

}

public static void ifcmp() {

HashSet<String> st = (HashSet<String>) RuntimeFrame.pop();

HashSet<String> st1 = (HashSet<String>) RuntimeFrame.pop();

st.addAll(st1);

System.out.println(”1= ” + st);

System.out.println(”2= ” + st1);

IMFS.push(st);

StackPrint();

}

public static void ifcond() {

HashSet<String> st = (HashSet<String>) RuntimeFrame.pop();

IMFS.push(st);

StackPrint();

}

public static void Endif() {

IMFS.pop();

StackPrint();

}

public static void Pop() {

RuntimeFrame.pop();

StackPrint();

}

public static void Pop2() {

RuntimeFrame.pop();
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RuntimeFrame.pop();

StackPrint();

}

public static void Method(String s, int j) {

int f = 0;

for (int i = 0; i < j; i++) {

HashSet<String> st = (HashSet<String>) RuntimeFrame.pop();

System.out.println(”Start Method: ” + s + ” , pop()= ” + st);

if (f == 0) {

RuntimeFrame.openframe();

f++;

}

RuntimeFrame.put(Integer.toString(i), st);

}

StackPrint();

}

public static void NativeMethod(int parameter, int returnValues) {

HashSet<String> set1 = new HashSet<String>();

for (int i = 0; i < parameter; i++) {

HashSet<String> st = (HashSet<String>) RuntimeFrame.pop();

set1.addAll(st);

}

for (int i = 0; i < returnValues; i++) {

RuntimeFrame.push(set1);

}

StackPrint();

}

public static void NewArray(String s) {

HashSet<String> st = new HashSet<String>();

st.add(s);

RuntimeFrame.push(st);

StackPrint();

}

public static void SpecialMethod() {

HashSet<String> set1 = (HashSet<String>) RuntimeFrame.pop();

HashSet<String> set2 = (HashSet<String>) RuntimeFrame.pop();

HashSet<String> set3 = (HashSet<String>) RuntimeFrame.pop();

set1.addAll(set2);

set1.addAll(set3);

RuntimeFrame.push(set1);

StackPrint();
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}

public static void NativeWrite(int Parameters, int rr) {

HashSet<String> set1 = new HashSet<String>();

for (int i = 0; i <= Parameters; i++) {

HashSet<String> st = (HashSet<String>) RuntimeFrame.pop();

set1.addAll(st);

}

System.out.println(”Flow where? i do not know ” + set1);

for (int i = 0; i < rr; i++) {

RuntimeFrame.push(set1);

}

}

public static void Monitor() {

RuntimeFrame.pop();

StackPrint();

}

public static void StackPrint() {

System.out.println(”Runtime Frames : ”

+ RuntimeFrame.currentframe().IFS);

System.out.println(”Runtime Frames : ”

+ RuntimeFrame.currentframe().Symbol_Table);

System.out.println(”Contens of IMFS: ” + IMFS);

}

}

Listing C.6: Source code of MyStack.java

package uk.ac.dmu.msarrab.vif.framework;

import java.util.HashSet;

import java.util.Hashtable;

import java.util.Iterator;

import java.util.Set;

import java.util.Stack;

/**

* @author Mohamed Sarrab (STRL, DMU, UK)

* Msarrab@dmu.ac.uk

*/

public class MyStack {

Stack<StackFrame> stack = new Stack<StackFrame>();

public void openframe() {
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stack.push(new StackFrame());

}

public StackFrame closeframe() {

return stack.pop();

}

public StackFrame currentframe() { return stack.peek(); }

public void push(Set<String> element) {

currentframe().IFS.push(element);

}

public Set<String> pop() {

return currentframe().IFS.pop();

}

public Set<String> peek() {

return currentframe().IFS.peek();

}

public HashSet<String> put(String key, HashSet<String> value) {

return currentframe().Symbol_Table.put(key, value);

}

public HashSet<String> get(String key) {

return currentframe().Symbol_Table.get(key);

}

public String toString() {

return stack.toString();

}

class StackFrame {

Hashtable<String, HashSet<String>> Symbol_Table = new Hashtable<String, HashSet<

String>>();

Stack<Set<String>> IFS = new Stack<Set<String>>();

public HashSet<String> put(String key, HashSet<String> value) {

System.out.println(key+” ”+ value);

return Symbol_Table.put(key, value);

}

public HashSet<String> get(String key) {

return Symbol_Table.get(key);

}

public void clear() {

IFS.clear();

}

public boolean empty() {
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return IFS.empty();

}

public Iterator<Set<String>> iterator() {

return IFS.iterator();

}

public Set<String> lastElement() {

return IFS.lastElement();

}

public Set<String> peek() {

return IFS.peek();

}

public Set<String> pop() {

return IFS.pop();

}

public Set<String> push(Set<String> item) {

return IFS.push(item);

}

public int size() {

return IFS.size();

}

public Object[] toArray() {

return IFS.toArray();

}

public <T> T[] toArray(T[] a) {

return IFS.toArray(a);

}

public String toString() {

return IFS.toString() + Symbol_Table.toString();

}

}

}

Listing C.7: Source code of RunTimeChecker.java

package uk.ac.dmu.msarrab.vif.framework;

import java.io.BufferedReader;

import java.io.IOException;

import java.io.InputStreamReader;

import java.lang.String;

import java.util.ArrayList;

import java.util.Iterator;
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import java.util.List;

import java.util.Set;

/**

* @author Mohamed Sarrab (STRL, DMU, UK)

* Msarrab@dmu.ac.uk

*/

public class RunTimeChecker {

/**

* Checks the flow of the information against the information flow policy

* and monitor the flow to the user

*/

public static void Check(Set<String> st1) throws IOException {

List<String> list = new ArrayList<String>(st1);

for (int j = 0; j < list.size(); j++) {

String value = list.get(j);

if (!value.startsWith(”java.”) && (!value.startsWith(”[”))

&& (!value.startsWith(”0”)) && (!value.startsWith(”1”))

&& (!value.isEmpty())) {

System.err.println(value + ” will flow to −−> System.out”);

BufferedReader stdIn = new BufferedReader(

new InputStreamReader(System.in));

stdIn.readLine();

break;

}

}

}

public static void AskUser(Set<?> st) {

System.out.println(”Checked Set= ” + st);

Iterator<?> rr = st.iterator();

while (rr.hasNext()) {

Object element = rr.next();

System.out.println(”==========” + element.toString());

}

}

}
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Byte Code of Case Studies 1 and 2

Due to the big size of the instrumented bytecode of the class files that are used

in case studies 1 and 2, the thesis has an associated CD that has the original and

instrumented bytecode of both case studies (Section 8.2 and Section 8.3).
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