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Highlights 

• A reciprocating air system was applied to large laminated battery ingeniously. 

• A DOD-associated timing was optimized for when to reverse air-flow direction. 

• A uniform-temperature distribution was achieved by the optimized reversing strategy. 

• The temperature rise was restrained by the variation of cell layout and air flow rate. 

 

Abstract: 
Thermal safety issues are increasingly critical for large-size laminated Lithium-Ion Batteries (LIBs). 

Despite a number of investigations conducted on the Battery Thermal Management System (BTMS) with 

reciprocating air-flow cooling, large laminated power LIBs are still not sufficiently investigated, 

particularly in the view of battery thermal characteristics. The present study investigates the thermal 

behaviors of an air-cooled NCM-type LIB (LiNi1−x−yCoxMnyO2 as cathode) from an experimental and 

systematic approach. The temperature distribution was acquired from different Depth of Discharge 

(DOD) by the infrared imaging (IR) technology. A reciprocating air-flow cooling method was proposed 

to restrict the temperature fluctuation and homogenize temperature distribution. Results showed that 

there was a remarkable temperature distribution phenomenon during the discharge process, the 

temperature distribution was affected by direction of air-flow. Forward air-flow (from current collector 

side to lower part of battery) was always recommended at the beginning of the discharge due to the 

thermal characteristics of the battery. After comprehensive consideration on battery temperature limit 

and cooling effect, the desired initial reversing timing was about 50% DOD at 3 C discharge rate. 

Different reversing strategies were investigated including isochronous cycles and aperiodic cycles. It was 

found that the temperature non-uniformity caused by heat accumulation and concentration was mitigated 

by reciprocating air-flow with optimized reversing strategy. 
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Nomenclature 

A Tab distance (mm) 

B1 Cathode tab width (mm) 

B2 Anode tab width (mm) 

C Anode tab apothem (mm) 

D Sealant height (mm) 

H Humidity (%) 

h Cell height (mm) 

h1 Tab height (mm) 

h2 Cell top sight height (mm) 

h3 Cell bottom side height (mm) 

T Cell thickness (mm) 

Tamb Ambient temperature (℃) 

Tb Backward air flow cycle (s) 

Tf Forward air flow cycle (s) 

hT  The highest temperature (℃) 

iT  The initial temperature (℃) 

incT  The maximum temperature increase (℃) 

lT  The lowest temperature (℃) 

maxT∆  The maximum temperature difference (℃) 

Tmax The highest temperature point in IR image (℃) 
2

varT  
The temperature variance (℃) 

W Width of battery (mm) 

W1 Side width (mm) 

  

 

Acronyms and Abbreviations 

BTMS Battery Thermal Management System  

C Discharge rate 

CC-CV Constant voltage and constant current 

CFD Computational fluid dynamics  

DOD Depth of Discharge  

EV Electric Vehicles  

IR Infrared imaging  

LIBs Lithium-Ion Batteries  

PCM Phase-change material 

PHEV Plug-in hybrid electric vehicles  

NCM Ni1−x−yCoxMnyO2 



  

 

1. Introduction 

Lithium-ion batteries (LIBs) have great potential for Electric Vehicles (EV) due to high energy density 

and long cycle life [1]. Nevertheless, since the performance and life of lithium-ion batteries are very 

sensitive to temperature, it is important to maintain the proper temperature range. local overheating and 

large temperature variation during the charging and discharging processes are still critical challenges for 

the laminated LIBs [2]. In fact, the thermal issues of large lithium-ion power batteries have always been 

a bottleneck which restricts the development of the EV. The thermal imbalance among the cells 

significantly affects short and long term performances of the vehicle battery systems. According to the 

Arrhenius law of battery electrochemistry, the battery reaction increases exponentially with the battery 

cell temperature. As a result, cells in high temperature degrade more quickly than that in proper 

temperature. In addition, the thermal safety of LIBs is becoming increasingly critical, as it gets much 

more difficult to curb the thermal runaway of large power LIBs caused by the local overheating compared 

to ordinary batteries [3]. Thermal runaway is highly hazardous with every effort made to prevent it from 

happening.  

 

In order to solve the thermal related issues of LIBs and improve thermal safety performance, numbers of 

experimental studies have been conducted to investigate the thermal management of battery packs. In all 

kinds of thermal management systems, liquid cooling, heat pipe and PCM thermal management systems 

have drawn extensive attention [4-7], however, the traditional air-cooling system is still highly preferred 

by most of EVs manufacturers due to low manufacturing cost and energy loss, simple layout requirement 

and superior security. Lu et al. [8] designed a thermal resistance model of single irregular air passage to 

validate the numerical scheme. It was found that the appropriate cooling channel size of 1 mm for 18650 

lithium-ion battery was achieved based on three key parameters: the maximum temperature, the space 

utilization and the energy efficiency factor. Wang et al. [9] created a three-dimensional computational 

fluid dynamics (CFD) model to discuss the factors that influence the cooling capability of forced air 

cooling. The temperature distributions of batteries were quantitatively described and an optimized inter-

cell distance in battery module structure was recommended. Fan et al. [10] investigated a battery module 

of plug-in hybrid electric vehicles (PHEV) by three-dimensional transient thermal analyses. It was 

concluded that considering the variety of the design change options and their combinations, the 

temperature gradients along the air flow direction can be affected but are generally unavoidable. Giuliano 

et al. [11] designed an air-cooled thermal management system employing metal-foam based heat 

exchanger plates. It was found that an airflow of 1100 mls−1 per cell restricts the temperature rise of the 

coolant air to less than 10°C over ambient at 200 A charge-discharge cycles. The results indicate that air-

cooled systems can be an effective method for the thermal management of automotive battery packs. Zhu 

et al. [12] developed an electrochemical-thermal model of the Li-ion battery pack with a forced air-

cooling system based on a porous electrode and concentrated solution theory. The developed model was 

verified by charge/discharge cycling experiments under natural and forced convection conditions.  

 



The conventional battery air cooling systems utilize the one-directional air flow moving from the inlet 

and outlet of the battery cooling systems. As a result of the convective heat transfer along the air stream, 

the air temperature at the outlet is always higher than the inlet and the downstream cells near to the outlet 

are likely hotter than the upstream cells. The traditional air-cooling system has a great effect on maximum 

temperature rise. However, the temperature of air flow will increase continually along air flow channel 

and heat transfer effect was not ideal at the end part of flow channel, thus a huge temperature difference 

was formed within battery pack. Due to this highly hazardous phenomenon, reciprocating air-flow 

cooling method was proposed to restrict the temperature gradients. The basic principle of reciprocating 

or directional air-flow cooling was periodically reversing the direction of air flow or change air flow path. 

Studies have shown that reciprocating air-flow cooling method has postive effect on uniform temperature 

distribution of batteries. Studies that improved the cooling performance of the battery by changing the 

air flow path listed as follows: Mahamud et al. [13] studied a reciprocating cooling system that 

periodically reverses the flow of air to mitigate the inherent temperature uniformity problem of existing 

unidirectional air flows systems. The numerical results show that the reciprocating flow of a 120 second 

period can reduce temperature difference of battery cell by 72% and the maximum cell temperature by 

1.5°C compared to unidirectional flow method due to the thermal redistribution and disturbance of the 

boundary layers formed in the cell. Yu et al. [14] proposed a new BTMS that includes a common air 

channel in which air flows in one direction, an air channel at the bottom of the pack with vertical turning 

air channels and jet holes for mitigating the heat accumulations in the battery pack. Research shows that 

the proposed system has significantly improved heat accumulation in the intermediate cells and ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 

in each cell did not exceed 5°C. Lu et al. [15] numerically investigated air cooling performance in two 

kinds of flow paths (15 and 59 vents) and air flow rates through a densely packed battery box with 252 

cylindrical Li-ion batteries and five air baffles. They found that the densely packed battery box with 59 

vents further reduced 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  and ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  compared to the 15 vents case due to the improvement in 

effective heat transfer area between the air coolant and the battery surface. Liu et al. [16] designed a 

battery pack with reciprocating air-flow cooling system, and their experiment result showed that the 

temperature uniformity of battery increases by 12.1% and 62.4% respectively under discharge current 

rates of 1 C and 13.33 C (Charge and discharge rates of a battery are governed by C-rates, the capacity 

of a battery is commonly rated at 1C, meaning that a fully charged battery rated at 1Ah should provide 

1A for one hour). Na et al. [17] proposed a battery chamber with the cooling fluid in adjacent channels 

(multi-layered flow channel by partitions) flowing in the opposite direction, and their CFD results 

showed that the reverse layered flow improved the temperature uniformity and heat dissipation of the 

battery pack. He et al. [18] investigated the thermal management of a Li-ion battery module employing 

active temperature control and reciprocating cooling flow. Compared with results of unidirectional 

cooling flow, temperature non-uniformity was reduced from 4.2 to 1.0°C among cells and the amount of 

cooling flow consumed was reduced by 38%. 

 

Panchal et al. [19] designed a thermal management system with indirect liquid cooling using dual cold 

plates approach. This BTMS was created in the view of thermal characteristics of batteries. The thermal 

characteristics include the surface temperature distribution, heat flux, and the heat generation from 



batteries under various charge/discharge profiles. Panchal’s team also make a contribution to the thermal 

modeling of temperature distributions in a prismatic lithium-ion battery [20]. The average surface 

temperature distributions with varying boundary conditions and the voltage profile at different discharge 

rates were comprehensive studied. The results show that the increased discharge rates result in increased 

surface temperature distributions on the principal surface of the battery and changing the operating or 

boundary conditions considerably affect the surface temperature distributions. 

 

Saeidi et al. [21] presented a finite-volume-based computational study of transient laminar flow and heat 

transfer (neglecting natural convection) leading to periodic state within a square cavity. Experimental 

result show that the heat transfer is directly linked to the relation between the period of oscillation and 

the convection time scale. Khodadadi [22] investigated the analytic solution to the fully developed 

oscillatory fluid flow through a porous medium. The result show that when a highly viscous fluid 

undergoes slow pulsation in a high porosity medium, the phase lag vanishes and similar velocity profiles 

are observed. Siegel et al. [23] obtained the heat transfer solutions for pulsating laminar flow between 

parallel plates, the pulsations are caused bt superposing an oscillating pressure gradient on the steady 

driving pressure of the flow.  

 

There was a remarkable temperature distribution of large battery during charge and discharge processes. 

An uneven temperature distribution originated from ionic concentration (different chemical reaction rates 

within different parts of a battery), uneven electrical resistance (different joule heat within different parts 

of a battery) and thermal resistance (different heat conduction rates within different parts of a battery). 

The uniformity of such temperature distributions is sensitive to both the heat flux (battery generated) and 

the air flow direction, so an all-sided consideration was needed to design a BTMS, the cooling methods 

should match up with thermal characteristics of battery. Several studies have been conducted on the 

validation of battery thermal characteristics. Kim et al. [24] developed a thermal model to study the effect 

of the electrode configuration on the thermal behaviors of a lithium-polymer battery. The results 

indicated that the current collecting tabs have a significant impact on the thermal behaviors of the battery. 

Dong [25] developed a numerical model for predicting the thermal behaviors of the lithium-ion battery. 

It was indicated that the increase in the temperature rising during the discharging process is higher than 

that during the charging process. In addition, it was found that the thermal behaviors were closely 

affected by the entropy change. Lee et al. [26] designed a flexible micro temperature/ voltage sensor and 

embedded into lithium-ion battery to acquire in situ temperature and voltage data. These temperature and 

voltage data are useful for improving the safety of lithium-ion batteries. Daud et al. [27] presented an 

electro-thermal model of a stack of three lithium ion batteries for automotive applications. This method 

can help to predict thermal behavior of battery cells inside a stack. Lei et al. [28] proposed a new heating 

method to improve low-temperature performance of battery. a lithium-ion battery is heated for some time 

and stopped heating for some time instead of continuing heating. Through simulation analysis and 

comparison, heating for 0.1 s and stopping heating for 0.3 s is most ideal to decrease the temperature 

gradient. 

 



Another major design variable that affects the cooling performance is the cell layout. Wang et al. [29] 

studied the thermal performance of battery modules in various cell layouts and in various fan position to 

improve temperature uniformity within the module. This study described the optimum cooling 

performance was obtained when the fan was located at the top of the module. They also developed a 

transient thermal model of a three-dimensional 5×5 rectangular cell array module based on an empirical 

heat source model to characterize the thermal behavior of the Li-ion battery. Yang et al. [30] discussed 

the thermal performances of the battery pack in which the arrangement of 6×10 cylindrical battery cells 

were in a staggered or aligned arrangement. Considering the temperature rise, temperature uniformity, 

power consumption and cooling index, battery pack with longitudinal interval and transverse interval of 

34 mm and 32 mm, respectively, were most reasonable. 

 

From the above, reciprocating air-flow cooling was a valid approach of BTMS among all kinds of air-

cooling systems. Nevertheless, most researches were devoted to cylindrical battery, the application of 

reciprocating air-flow cooling method in large laminated power LIBs was not sufficiently investigated 

in existing research. Furthermore, for the cylindrical battery like the 18650 type, the temperature 

difference within a single cell was not prominent due to its winding structure and small size. However, 

the laminated type battery has a prominent temperature distribution because of its layer structure and 

large size. Most existing studies focus on the maximum temperature difference between cells, but the 

temperature difference within a single cell was neglected which is highly hazardous and significant in 

large cells. In addition, there was a certain thermal characteristic for each battery, the battery thermal 

behavior has a strong impact on thermal management effect. Therefore the BTMS design should match 

up with thermal characteristics of battery. Last but certainly not least, the battery chamber layout and 

other parameters such as air flow rate always have an immediate impact on the overall effect of thermal 

management. In the current study, a novel reciprocating air-flow cooling system was set up and 

experimentally studied. IR was adopted to investigate the thermal characteristics of laminated LIBs in 

different discharge rates and discharge depth under the condition of natural convection and reciprocating 

air-flow. Based on thermal characteristics of battery, the optimized control strategy of reciprocating air-

flow was found, also including desired initial direction and reversing timing, duration of isochronous 

cycle and aperiodic cycle. The basic setting of battery chamber layout and air flow rate were investigated 

thoroughly. It provides a valuable reference for further optimization and development of BTMS with 

reciprocating air-flow cooling. 

 

2. Experimental setup 

2.1. Experimental system 

Fig. 1 shows the experimental system of the reciprocating air-flow cooling. The charge and discharge 

cycles were regulated by the battery testing system controlled by the programmable software. The current, 

voltage and resistant data can be collected in the experimental system. In the current study, the industrial 

infrared imager measures the thermal performance of the battery cell in the charge/discharge processes, 

while the T-type thermocouples calibrate the temperature measurement from IR. The measured 

temperature difference between the infrared imager and the thermocouples has a maximum tolerance of 



0.1℃ allowed. It was noted that the ambient light contains infrared ray and may form a reflection on the 

batteries surface to affect the measurement error of the infrared imager. Therefore, to eliminate such 

effects, a light shade was applied to block the infrared ray of the ambient light, as shown in Fig. 1. As a 

result, the maximum measurement error by the infrared imager was less than 0.1℃. The infrared imager 

was fixed on a tripod and 1.2 meters from the surface of the battery cell and the lens, which was 

perpendicular to the measured surface. An IR glass sheet was adopted as the upper cover of battery 

chamber, the transmittance of IR glass was 90%, and temperature attenuation caused by this was 

calibrated as well. 
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Fig. 1. The experimental system. 

 

The NCM pouch Cell (T 7.1 mm × H 268 mm × W 211 mm) has a nominal capacity of 37 Ah and a rated 

voltage of 3.65 V, as shown in Fig. 2 and Table 1. The positive current collecting tabs are made of 

aluminum in light color while the negative current collecting tabs are made of copper in dark color. The 

javascript:void(0);
javascript:void(0);


battery cell was fixed by adiabatic plastic clamps at the edge parts to ensure that the battery core was 

only exposed to air and not touched by any other experimental components. 

 
Table 1. Battery cell parameters 

Items Parameters(mm) Items Parameters(mm) 

Cell with (W) 211 Cell side width (W1) 8 

Cell height (h) 268 Cell thickness (T) 7.1 

Tab distance (A) 100 Cathode tab width (B1) 60 

Anode tab width (B2) 60 Anode tab apothem (C) 25.5 

Sealant height (D) 2.0 Tab height (h1) 19 

Cell top sight height(h2) 19 Cell bottom side height (h3) 8 

 

Forward air flow

Backward air flow

 

Fig. 2. Cell dimension schematic diagram. 

 

2.2. Experimental procedures 

This study aims to investigate the thermal behavior of the NCM battery cell in an air-cooling system. 

Therefore, the temperature of inlet air should be consistent during the experimental process. The ambient 

temperature was maintained at 25 ± 0.5℃ with the maximum variation of 1℃. The battery temperature 

was measured under different charge/discharge rates with a cut-off voltage of 2.80 V. The charge process 

follows the standard CC-CV method, in which a battery was initially charged at a constant current of 0.5 

C until the voltage reaches 4.20 V, and then charged at a constant voltage mode. The charging process 

was ended when the charging current drops to less than 0.05 C. The IR imager was of the VC360 model 

manufactured by Victor® with a sharpness of 160×140 (19200 pixels), wavelength of 8-12µm, frequency 

of 50 Hz, sensitivity of 0.06℃ at 30℃ and a measurement range of -20 to +350℃. The parameters of IR 

imager are shown in Table 2, which was well calibrated and applied to measure the battery temperature 

in both charging and discharging processes. As the thickness of the laminated cell is rather thin, the 

maximum temperature difference within the battery cell along the thickness direction is safely neglected. 



The temperature distribution can be acquired by the infrared imager with a high accuracy and resolution 

since there was no physical contact and the influence of the ambient was eliminated by the shield in the 

experiment.  

 

Table 2. Infrared imager parameters. 
Items Parameter Items Parameter 

Environmental Tamb 25℃ Thermal infrared emissivity 0.60 

Environmental Hamb  55% Measuring distance  1.2 meter 

 

Measurement error of infrared imager was restricted by the following aspects: degree of accuracy, T-

type thermocouples were calibrated by ice water mixture in a vacuum bottle to ensure the difference 

between the measured value and the real temperature was no more than 0.1℃; degree of precision, the 

measured temperature difference between the infrared imager and the thermocouples was allowed to be 

no more than 0.1℃ during the experiments by adjusting battery surface emissivity; repeatability, at room 

temperature (25℃), the surface temperature of the battery was measured several times, the measured 

temperature difference between the infrared imager and the thermocouples was no more than 0.1℃; 

reproducibility, at 50℃ high-temperature test chamber, the surface temperature of the battery was 

measured several times, the measured temperature difference between the infrared imager and the 

thermocouples is no more than 0.1℃. 

 

In the experimental system, cooling air was provided by a variable frequency fan. The direction of air 

flow was regulated by the valves shown in Fig. 1, where the path of forward air flow was defined as: fan 

(inlet) - valve 1 - valve 3 - outlet. The path of backward air flow was defined as: fan (inlet) - valve 1 - 

valve 3- valve 2 - outlet.  

 
2.3. Key parameters  

The maximum temperature increase (𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖) represents the temperature difference between the highest 

temperature (𝑇𝑇ℎ) and the initial temperature (𝑇𝑇𝑖𝑖) of the battery cell, which is defined and calculated 

by Eq. (1):  

                               𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑇𝑇ℎ − 𝑇𝑇𝑖𝑖                                   (1) 

The maximum temperature difference (∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚) denotes the temperature difference between Th and the 

lowest temperature Tl , as shown in Eq. (2),  

∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑇𝑇ℎ − 𝑇𝑇𝑙𝑙                                 (2) 

The temperature variance (𝑇𝑇𝑉𝑉𝑚𝑚𝑉𝑉2) is defined to show the temperature uniformity of the battery cell. As 

the temperature distribution of the battery cell can be obtained from the infrared imager, 𝑇𝑇𝑉𝑉𝑚𝑚𝑉𝑉2 can be 

estimated by accounting the temperatures of each pixel dot and is described as: 

                          𝑇𝑇𝑉𝑉𝑚𝑚𝑉𝑉2 = ∑ 𝑓𝑓𝑖𝑖(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2𝑖𝑖
𝑖𝑖=1     (3) 

where 𝑓𝑓𝑖𝑖  denotes the frequency of a certain temperature range, and 𝑥𝑥 denotes the average temperature.  

 



3. Results and discussions 

3.1 Thermal characteristics of the battery 

During the discharge process, heat generation rates were heterogeneously distributed in different parts 

of the battery cell. Therefore, the design of a thermal management system for the battery should be treated 

differently in the high-temperature zones and the low-temperature zones. The thermal characteristics of 

battery were experimentally studied under the condition of nature convection. Fig. 3 shows the IR images 

at a discharge rate of 3C at DOD of 10%, 30%, 50%, 70% and 90% respectively, which are used to 

demonstrate variations of the visualized temperature field. The non-uniform of temperature distribution 

occurred and variation of the temperature became stronger during the discharge process. According to 

these infrared images, in the condition of a high discharge rate, the upper part of the battery was the high-

temperature region from the very beginning of discharge, and the lower part was the low-temperature 

region. Then with increase of DOD, the heat was conducted downward and the temperatures of the whole 

battery tended to be uniform. The experiment results illustrated the basic control strategy of reciprocating 

air-flow cooling for a large laminated battery. The direction of air flow at the beginning of discharge 

should be forward and then change at a certain DOD.  

 
+ -+ - + - + - + -

25℃  56℃   
    （a）10% DOD      （b）30% DOD       （c）50% DOD       （d）70% DOD      （e）90% DOD 

Fig. 3. Visualized temperature distribution with the increase of DOD (natural convection) 

 

3.2 Effect of air flow direction 

Fig. 4 shows the temperature variation of both forward and backward air flow. Then experiment was 

conducted under the condition of discharge rate of 3 C and flow rate of 15 m2 /h. The thickness channel 

was set to 3 mm. Fig. 4 (c) (d) was photographed near the end of discharge (90% DOD), where the 

temperature distribution of battery surface was greatly changed compared to Fig. 3 (e) under natural 

convection cooling. Specifically, in the forward air flow case the high-temperature area was pushed down 

to the battery bottom, while the direction of temperature gradient was the opposite in the backward air 

flow case. Fig. 4 (a) (b) shows that both forward and backward air flow had a positive impact on heat 

management compared to the natural convection case. However, the forward air flow case performed 

better than the backward air flow in both maximum temperature rise and temperature difference, due to 

the thermal characteristics aforementioned. This also revealed that in a non-reciprocating air-flow system 

for a large pouch cell, the forward air flow was always preferred. 
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（c）Temperature distribution of forward air flow         （d）Temperature distribution of backward air flow 
Fig. 4. Effect of forward and backward air flow on temperature distribution 

 

3.3 Timing for reversing start 

 
As discussed above, the forward air flow was adopted from the very beginning of discharge according 

to battery thermal characteristics. Nevertheless, in the forward air flow case, the heat was accumulated 

along air-flow with 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  and ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  showing an undesirable increasing trend. In order to deliver a 

uniformed temperature distribution, reciprocating air-flow was proposed. Experimental result showed 

that it was not ideal to start reciprocating air-flow from the very beginning of the discharge process. A 

systematic exploration was therefore conducted on when and how to start reversing air-flow. Here the 

experimental settings were exactly the same with section 3.2, the duration of the forward Tf and backward 

air flow Tb was equal and set as 30 seconds. Thus, a reciprocating cycle was 1 minute (Tf  = 30 s, Tb  = 

30 s). the start timing of control groups was set as 30%, 50% and 100% DOD, respectively. As shown in 

Fig. 5, the maximum temperature difference of all three reciprocating flow cases had remarkably 

decreased compared to the forward air flow case. However, there were differentiations in these cases. 

For the 30% DOD case, ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 was higher than that in the forward air flow case most of the time, 

indicating that it was not effective to prevent temperatures difference increase at an early stage of 

discharge. In the 80% DOD case, temperatures difference decreased rapidly after the reverse due to large 

temperature difference between the upper and lower prat of battery ( ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 was about 7.1℃ at 80% 

DOD). Compared to other cases, it had the lowest temperatures difference at the end of discharge. 

However, ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 was over the recommended ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  of 5℃ most of the time. In the 50% DOD case, 



the curve of temperatures difference had the lowest temperatures difference between 50-85% DOD 

compared to the other two cases. The growth rate of temperatures difference increased at the end of 

discharge indicating that an optimization of reversing strategy was needed to further improve temperature 

distribution. 
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Fig. 5. Forward and reciprocating air-flow reversing start point of different DOD (Tf = 30 s, Tb = 30 s) 
 

3.4 Effect of reciprocating cycle 

As seen in Fig. 6. (a), in the case of 50% DOD, in end of discharge the growth rate of temperature 

difference decreased compared to the case in Fig. 5, this indicated that extended the period of Tf 

appropriately may help to uniform temperature distribution, due to the high-temperature area located in 

the upper part of battery for majority DOD. Another set of experiment was conducted, reciprocating 

cycle was set as Tf = 60 s, Tb = 30 s. As demonstrated in Fig. 6. (b), it was indicated that the extension 

of Tf period decreased the temperature difference efficiently in all isochronous cycle cases. The 

improvement was reflected in both final ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 cut down and the prolong duration of DOD that battery 

operated under  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  of 5℃. For instance, the 50% DOD case in Fig. 6 (b) almost met the 

requirements of BTMS, while there was a fraction of DOD (80-100% DOD) which did not fulfil  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  

of 5℃. Therefore, an aperiodic control strategy was proposed to further improve the temperature 

distribution of battery. The optimization goal of  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 was set as 5℃ during the whole discharge 

process. 
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（a）Tf = 60 s, Tb = 60 s                          （b）Tf = 60 s, Tb = 30 s 
Fig. 6. Forward and reciprocating air-flow with different reversing conditions 

 

It was observed from the cases above, the patterns of  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  changes were almost constant, there was 

a periodic fluctuation within a cycle, including a peak and trough. Pesaran [31] suggested that the 

maximum temperature difference from cell should be below 5°C to avoid adverse effects and prolong 

the service life of Li-ion batteries. Here an aperiodic reciprocating air-flow control strategy was designed 

by limiting the peak value of 4.9℃, once the temperature difference reached 4.9 ℃, the air-flow direction 

was reversed automatically. Experimental results are shown in Fig. 7 (a): after 9 directional changes 

∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 was restrained below 5℃ successfully. A typical cycle was demonstrated in Fig. 8 (b) (c) and 

(d), for the point b the temperature difference was mainly caused by the high and low temperature area 

in the upper and low part of battery, then the forward airflow was applied to the cell pushing the high 

temperature area to move downward meanwhile with ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  beginning to drop. When  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  

became wave troughs (point c) along with interchanged locations of high and low temperature area, 

∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 began to rebound. It was noticed that at the end of discharge process, a high-frequency direction 

reverse was required. This was due to the battery high temperature area moving downward to the central 

of battery and ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 become insensitive to air flow direction changes. Comparing Fig. 8 (b) and (d), it 

had the same ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  of 4.9℃; however, due to different locations of high temperature area, the 

temperature gradient in Fig. 8 (d) was much higher than that in Fig. 8 (b). In the subsequent peaks of this 

curve the temperature gradient increased continuously, thus the effect of reciprocating air-flow on BTMS 

performance was degraded. Such an aperiodic reciprocating air-flow control strategy is also applicable 

to other ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  limit. The contrast experiments of aperiodic reciprocating air-flow were conducted 

under ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 limits of 4℃, 4.5℃, 5.5℃ and 6℃, respectively. As shown in Fig. 7 (b), the times of air 

flow reversing increased rapidly with a stricter ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  limit. This also indicated that a high-frequency 

direction reverse of system was required when pursuing an ideal uniform temperature distribution. even 

so, due to the limitation of the valve rotation time and the inertia of air flow, the minimum reciprocating 

cycle was set as 20 seconds. 
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（a）Point a            （b）Point b            （c）Point c             （d）Point d 

Fig. 8. Optimized temperature distribution by aperiodic reciprocating air-flow 

 

Fig. 8 shows the optimized temperature distribution by aperiodic reciprocating air-flow, with Fig. 8 (a) 

(b) (c) (d) corresponding to points a, b, c, d in Fig. 7, respectively. As mentioned above, such a control 

strategy was introduced according to actual circumstances. Points a and c were the troughs of temperature 

difference fluctuation, and showed an ideal homogeneous temperature distribution. Points b and d were 

the curve peaks and were also acceptable on temperature difference,  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  decreased 49.5% 

compared to forward air flow case. In this case,  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 was mainly caused by a small area of the low 

temperature. 

For a comprehensive assessment of battery thermal condition, temperature variance was introduced to 

quantify the temperature fluctuation. As demonstrated in Table 3, under the same  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 of 4.9℃, 

𝑇𝑇𝑉𝑉𝑚𝑚𝑉𝑉2 of points b and d were 0.52 and 0.51, respectively, which was much lower than point 0. This 

indicated that reciprocating air-flow not only decreased temperature difference but also helped to 

homogeneous temperature distribution. 

 

Table 3. Temperature values from infrared imager. 

Point  ∆𝑻𝑻𝒎𝒎𝒎𝒎𝒎𝒎 𝑻𝑻𝑽𝑽𝒎𝒎𝑽𝑽𝟐𝟐 

0 (Initial reverse point) 4.9 ℃ 0.61 

a  4.1 ℃ 0.39 

b 4.9 ℃ 0.52 

c 3.4 ℃ 0.24 



d 4.9 ℃ 0.51 

 

3.5 Effect of flow rate and thickness of air channel 

Table 4 illustrated that, the reciprocating air-flow have a conspicuous and positive impact on temperature 

distribution but limited effect on 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 , which decreased by up to 5.8% compared to the forward air-flow 

case. 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  cannot be improved by only relying on reciprocating air-flow or its control strategy. Like any 

traditional thermal management, 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  can be optimized by adjusting the flow rate and thickness of the 

air channel. The effect of flow rate and channel thickness on 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  and  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 were experimentally 

explored. The layout of battery chamber was demonstrated in Fig.9, where the thickness of air channel 

was set as 2, 3 and 4 mm respectively. The experimental results shown in Fig. 10, it can be concluded 

that the 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  decreased with increased air flow rate, and under a certain air flow rate a smaller channel 

has better performance on 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 . However, in the terms of temperature difference, both less thickness of 

channel and higher rate flow have adverse effect. Due to the increased flow velocity, decreased section 

area of air flow resulted in increased convective heat transfer. Heat exchange with air is performed via 

forced convection which depends on air velocity, The air velocity in different channel and air flow rate 

shown in Table 5. There were more factors to consider when designing a BTMS with reciprocating air-

flow, besides the tradeoff of 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  and  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. For example, both thinner channel and higher rate flow 

require a higher energy consumption of air blower. As the air flow velocity was increased, the convective 

heat transfer on the cells was expected to increase, thus the cell temperatures would decrease but at the 

expense of higher pressure drop and pumping power. Furthermore, the channel thickness may affect the 

size of battery pack directly, for instance, 14.3 % increase in battery pack volume for every 1 mm increase 

in air channel thickness. This may lead to a loose structure and decrease energy density of battery pack. 

For practical engineering applications, the trade-offs and optimization between the thermal load, weight 

and volume should be further investigated. 

 

 
 

 

 

 

 

 

 

Fig. 9. Side view of the battery cooling chamber 

 

Table 4. The maximum temperature in different reciprocating cases (the same condition as section 3.2) 

Tf  and Tb 
Maximum temperature /℃ 

30% DOD start 50% DOD start 80% DOD start 

30s-30s 42.5 43.0 43.4 

60s-60s 43.5 43.6 43.9 



30s-60s 42.2 42.7 42.9 

Forward air-flow case  44.8  
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Fig. 10. Effect of flow rate and channel thickness on the maximum temperature rise and difference  

 

Table 5. The air velocity in different channel and air flow rate. 

           Air flow rate  

Channel thickness 

10 m3/h 15 m3/h 20 m3/h 

2 mm 6.58 m/s 9.31 m/s 13.16 m/s 

3 mm 4.38 m/s 4.93 m/s 8.77 m/s 

4 mm 3.29 m/s 3.95 m/s 6.58 m/s 

 

4. Conclusion 

Thermal safety issues have been the main obstacle to restrict the application of lithium-ion batteries in 

large size and high energy density development. In the current study, the thermal characteristics of an 

NCM LIB in the condition of natural convection were comprehensively assessed and experimentally 

investigated with the infrared imaging (IR) technology. Furthermore, the temperature distribution of 

battery surface was greatly improved in different directions of air flow. Reciprocating air-flow cooling 

method was therefore proposed. The experimental results and analysis indicated that reciprocating air-

flow cooling was an effective method of BTMS, especially in controlling temperature difference. The 

current study revealed different thermal behaviors under a variety of reciprocating air-flow control 

strategies and provided a certain reference for the battery thermal management in reciprocating air-flow 

cooling and relevant research. 

The results showed that during the discharge process of natural convection, the overall temperature 

distribution can be concluded that the part near to the electrode showed the highest temperature, and the 

lowest temperature region was far from the electrode. Heat generation rate was significantly higher on 

the electrode side and the maximal surface temperature difference was about 12.2℃ at 3 C discharge. 

At the end of discharge process, the high-temperature area showed a downward-moving trend.  

 



In a non-reciprocating air-flow system, the air flow direction affected temperature distribution to a great 

extent. The forward air flow case performed better than the backward air flow in both  𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  and  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  

due to the thermal characteristics of batteries. This also revealed that in a non-reciprocating air-flow 

system for the large pouch cell, forward air flow was always preferred. 

 

Experimental results showed that it was not effective to prevent temperatures difference from increasing 

by starting air reciprocation at an early stage of discharge. However, in the 50% DOD case, the curve of 

temperatures difference was most ideal. Compared to other cases, it had the lowest temperatures 

difference in a large proportion of DOD. Therefore, reciprocating air-flow started from middle stage of 

DOD was recommended. 

 

In the isochronous cycles, the extension of Tf period can decrease the temperature difference efficiently, 

giving a valuable clue for further development of aperiodic cycles. In the aperiodic cycles, the 

temperature distribution was almost ideal by means of optimized control strategy set according to actual 

circumstances, with  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  decreased by 49.5% and 25.5% compared to the forward air flow and 

isochronous case. In the optimized case  ∆𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  was mainly caused by a small area of the low 

temperature and 𝑇𝑇𝑉𝑉𝑚𝑚𝑉𝑉2 was remarkably decreased indicating that reciprocating air-flow had effect on 

balancing the overall temperature distribution. Meanwhile a stricter requirement of temperature 

difference can be achieved by optimized control strategy, indicating that a higher reversing frequency 

and lower response time of system was needed. 

 

Finally, reciprocating air-flow had conspicuous and positive impact on smoothing temperature 

distribution but limited effect on 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 , the maximum temperature of battery cannot be improved by only 

relying on reciprocating air-flow or its control strategy. 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖  can be restrained by adjusting the flow rate 

and thickness of air channel. The maximum temperature rise decreased with increased air flow rate, and 

under a certain air flow rate the thinner channel showed better performance on 𝑇𝑇𝑖𝑖𝑖𝑖𝑖𝑖 . However, in the 

terms of temperature difference, both thinner channel and higher rate flow had an adverse effect.  
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