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Abstract. Reciprocating compressors are widely used in oil and gas industry for gas transport, lift and injection. Critical
compressors that compress flammable gases and operate at high speeds are high priority equipment on maintenance improve-
ment lists. Identifying the root causes of faults and estimating remaining usable time for reciprocating compressors could
potentially reduce downtime and maintenance costs, and improve safety and availability. In this study, Canonical Variate
Analysis (CVA), Cox Proportional Hazard (CPHM) and Support Vector Regression (SVR) models are employed to identify
fault related variables and predict remaining usable time based on sensory data acquired from an operational industrial recip-
rocating compressor. 2-D contribution plots for CVA-based residual and state spaces were developed to identify variables
that are closely related to compressor faults. Furthermore, a SVR model was used as a prognostic tool following training with
failure rate vectors obtained from the CPHM and health indicators obtained from the CVA model. The trained SVR model
was utilized to estimate the failure degradation rate and remaining useful life of the compressor. The results indicate that the
proposed method can be effectively used in real industrial processes to perform fault diagnosis and prognosis.
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1. Introduction21

Modern industrial facilities such as natural-gas22

processing plants are becoming increasingly complex23

and large-scale as a result of increased mechaniza-24

tion and automation. The complexity of large-scale25

industrial facilities makes it difficult to build first-26

principle dynamic models for health monitoring and27

prognostics [9]. The existing condition monitoring28
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approaches for industrial processes are typically 29

derived from routinely collected system operating 30

data. With the rapid growth and advancement in 31

sensing and data acquisition technologies, long-term 32

continuous measurements can be taken from different 33

sensors mounted on machinery systems. However, 34

using condition monitoring data for reliable faults 35

diagnosis and prognosis remains a challenge for 36

researchers and engineers. 37

A number of multivariate statistical techniques 38

have been developed based on condition monitoring 39

data for diagnostic and prognostic health monitor- 40

ing, such as filtering based models [6], multivariate 41
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time-series models [11] and neural networks [22].42

Some of the key challenges in the implementation43

of these techniques are strongly correlated variables,44

high-dimensional data, changing operating condi-45

tions and inherent system uncertainty [4]. Recent46

developments of dimensionality reduction techniques47

have shown improvements in identifying faults from48

highly correlated process variables. Conventional49

dimensionality reduction methods are principal com-50

ponent analysis (PCA) [10], independent component51

analysis (ICA) [1] and partial least-squares analysis52

(PLSA) [21]. These basic multivariate methods have53

been proven to perform well under the assumption54

that process variables are time-independent. How-55

ever, this assumption might not hold true for real56

industrial processes (especially chemical and petro-57

chemical processes) because sensory signals affected58

by noises and disturbances often show strong correla-59

tion between the past and future sampling points [4].60

Therefore, a few variants of the standard multivariate61

approaches [13, 20, 24] were developed later to solve62

the time-independency problem, making them more63

suitable for dynamic processes monitoring. Aside64

from approaches derived from PCA, ICA and PLSA,65

the canonical variable analysis (CVA) is a subspace66

method which takes serial correlations between dif-67

ferent variables into account. Hence, is particularly68

suitable for dynamic process modelling [19]. The69

effectiveness of CVA has been verified by exten-70

sive simulation study [16, 19] and data captured from71

experimental test rigs [7]. However, the effectiveness72

of CVA in real complex industrial processes has not73

been fully studied.74

Once a fault is detected in industrial processes, a75

fault identification tool is desired to find the variables76

that are most likely related to the specific fault (e.g.77

the candidate faulty variables). Contribution plots are78

one of the most popular tools for identifying the vari-79

ables with the largest deviations when a fault occurs80

[26]. The traditional one-dimensional contribution81

maps can only be used to perform fault identifica-82

tion at one time instant, and is useful when the fault83

propagation is fast and localized. In comparison, 2-D84

contribution plots, which assemble the variations at85

multiple time instants, can clearly demonstrate the86

contributions of different process variables over the87

entire fault propagation process. In this investigation,88

2-D contribution maps are applied to both the canoni-89

cal residual and state space to perform faulty variable90

identification. The combination of the two types of91

statistics (residual and state space) can provide more92

insights into the fault than using a single statistic.93

Typical condition monitoring procedures involve a 94

prognostic step after the detection of a fault to esti- 95

mate the failure time of the system. In this study, 96

a combined CVA-CPHM-SVR method is proposed 97

to perform fault prognostics based on both condition 98

monitoring and lifetime data. CVA is utilized to trans- 99

form the multidimensional data obtained from diverse 100

sensors into a one-dimensional vector, which can be 101

used to indicate the health condition of the compres- 102

sor. The calculated health indicators are subsequently 103

utilized together with CPHM and SVR to predict the 104

failure time of the machine. 105

In medical research field, the Cox Proportional 106

Hazard Model (CPHM) has been widely used for 107

analyzing death rate or the probability of recurrence 108

of a disease with censored survival data [5]. But 109

its effectiveness in mechanical prognostic area has 110

not been fully studied and only a limited number 111

of publications have addressed its applicability for 112

failure prediction of rotating machines [2, 3]. In this 113

study, the CPHM model is utilized to estimate the 114

failure degradation rate of the compressor using life- 115

time data. The degradation rate vectors obtained from 116

the CPHM model are treated as input vectors and 117

the health indicators derived from the CVA model 118

are regarded as target vectors to train a SVR model. 119

After training, the SVR model is utilized to make pre- 120

dictions of compressor degradation rate and failure 121

time. 122

2. Methodology 123

2.1. CVA-based contributions for faulty variable 124

identification 125

The objective of CVA is to find the maximum cor- 126

relation between two sets of variables [9]. In order to 127

generate two data matrices from the measured data 128

yt ∈ Rn (n indicates that there are n variables being 129

recorded at each sampling time t), it was expanded 130

at each sampling time by including p number of pre- 131

vious and f number of future samples to construct 132

the past and future sample vectors yp,t ∈ Rnp and 133

yf,t ∈ Rnf . 134

yp,t =

⎡⎢⎢⎢⎢⎢⎣
yt−1

yt−2

...

yt−p

⎤⎥⎥⎥⎥⎥⎦ ∈ Rnp (1) 135
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yf,t =

⎡⎢⎢⎢⎢⎢⎣
yt

yt+1

...

yt+f−1

⎤⎥⎥⎥⎥⎥⎦ ∈ Rnf (2)136

To avoid the domination of variables with larger137

absolute values, the past and future sample vectors138

were then normalized to zero mean vectors ỹp,t and139

ỹp,t , respectively. Then the vectors ỹp,t and ỹp,t at140

different sampling times were rearranged according141

to Equations (3) and (4) to produce the reshaped142

matrices Ŷp and Ŷf :143

Ŷp = [
ŷp,t+1, ŷp,t+2, . . . , ŷp,t+N

] ∈ Rnp×N (3)144

Ŷf = [
ŷf,t+1, ŷf,t+2, . . . , ŷf,t+N

] ∈ Rnf×N (4)145

Where N = l − p − f + 1, and l represents the
total number of samples for yt.Ŷp and Ŷf are then
processed by using the Cholesky decomposition
to form a Hankel matrix H [18]. The purpose of
using Cholesky is to form a new correlation matrix
with reduced dimensionality such that the subse-
quent calculations could be conducted in a stable
and fast manner. To find the linear combination that
maximizes the correlation between the two sets of
variables, the truncated Hankel matrix H is then
decomposed by using Singular Value Decomposition
(SVD):

H =
∑−1/2

p,p

∑
p,f

∑−1/2

f,f
= U

∑
VT (5)

Where �p,p and �f,f are the sample covari-146

ance matrices and �p,f denotes the cross-covariance147

matrix of Ŷp and Ŷf .148

If the order of the truncated149

Hankel matrix H is d, then U, V and
∑

have the150

following form:151

U = [u1, u2, . . . , ud] ∈ Rnp×d
152

V = [v1, v2, . . . , vd] ∈ Rnf×d
153

∑
=

⎡⎢⎢⎣
d1 . . . 0
...

. . .
...

0 · · · dd

⎤⎥⎥⎦ ∈ Rd×d
154

The columns of U = [u1, u2, . . . , ud] and the155

columns of V = [v1, v2, . . . , vd] are called the left-156

singular and right-singular vectors of H, respectively.157 ∑
is a diagonal matrix, and its diagonal elements158

are called singular values, which depict the degree of159

correlation between the corresponding left-singular 160

and right-singular vectors. The right-singular vec- 161

tors in V corresponding to the largest r singular 162

values were retained in the truncated matrix Vr = 163

[v1, v2, . . . , vr] ∈ Rnp×r. This matrix will be used 164

later to perform dimension reduction on the measured 165

data. 166

With the truncated matrix Vr, the np dimensional
past vector Ŷp ∈ Rnp×N can be further converted
into a reduced r-dimensional matrix � ∈ Rr×N (the
columns of � are zt , which are called state or canon-
ical variates) by:

� = [zt=1, zt=2, . . . , zt=N ] = J · Ŷp (6)

Similarly, the residual variates � ∈ Rnp×N can be
calculated according to Equation (7):

� = [εt=1, εt=2, . . . , εt=N ] = L · Ŷp (7)

where J and L are the projection matrices, and can 167

be computed as: J = VT
r

∑−1/2
p,p ∈ Rr×np and L = 168

VT
e

∑−1/2
p,p ∈ Rnp×np. Where VT

r contains the first r 169

columns of matrix V and VT
e contains the e = nf − r 170

columns of V . 171

For a new observation yt , the CVA-based state 172

space contributions at time instant t can be computed 173

from the state variates as: 174

cstate
t = (

J · Ŷp,t

)T (
J · Ŷp,t

)
175

= (
J · Ŷp,t

)T r∑
i=1

(
Ŷp,tJ

T
i

)T
176

=
∑r

i=1

(
Ŷp,tJ

T
i

) (
Ŷp,tJ

T
i

)T
(8) 177

Where Ŷp,t denotes the column vector of Ŷp at time 178

instant t. Ji is the ith row of matrix J . Similarly, CVA- 179

based residual space contributions at time instant t 180

can be computed as: 181

cresidual
t = (

L · Ŷp,t

)T (
L · Ŷp,t

)
182

= (
L · Ŷp,t

)T np−r∑
i=1

(
Ŷp,tL

T
i

)T
183

=
np−r∑
i=1

(
Ŷp,tL

T
i

) (
Ŷp,tL

T
i

)T
(9) 184

The higher the contribution of a performance vari- 185

able is, the larger the deviation of the specific variable 186

from its normal value can be seen. Candidate faulty 187

variables found in the canonical state space are related 188

to large deviations of the system state present in 189
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healthy datasets. Whereas candidate faulty variables190

found in the canonical residual space are related to191

new system states generated during the monitoring192

process, which can no longer be fully described by193

the state space variates [12]. According to the lit-194

erature [4], a limitation of CVA model is that the195

calculated contributions can be excessively sensitive196

because the inversion procedure of
−1/2∑
p,p

, which would197

result in incorrect identification of faulty variables. In198

order to alleviate this sensitivity, the combination of199

residual and state space contributions was adopted200

for the identification of variables most closely asso-201

ciated with the fault in this study, and this topic will202

be discussed in detail in Section 3.203

2.2. CVA-based health monitoring204

Aside from faulty variable identification, CVA205

is also a dimensionality reduction technique to206

monitor the machine operation by transferring the207

high-dimensional process data into one-dimensional208

health indicators. Condition monitoring data captured209

from the system operating under healthy conditions210

were used to calculate the threshold for normal211

operating limits. Abnormal operating conditions can212

be detected when the value of the health indicator213

exceeds the pre-set limits.214

The canonical variates matrix � obtained from
Equation (6) consists of valuable information that
is needed to construct health indicators. The health
indicator adopted in this study is the Hotelling statis-
tics T 2 (introduced by Hotelling in 1936 [14]), which
is the locus on the ellipse-like confidence region in
the canonical variate space [15]. The Hotelling health
indicator can be calculated as:

T 2
t =

r∑
i=1

z2
t,i (10)

Process data acquired during normal operating215

conditions were used to identify optimal thresh-216

old values of the Hotelling health indicator T 2
t .217

Since the Gaussian distribution doesn’t hold true for218

non-linear processes, the actual probability density219

function of the health indicator was calculated by220

using a method named Kernel Density Estimation221

(KDE) [17]. Machine faults were considered every222

time when the health indicator exceeds the calcu-223

lated threshold. The number of false detections was224

used in this study to determine the optimal num-225

ber of retained state r, and the false detection was226

considered in two situations: (1) there is a violation 227

of the Hotelling health indicator T 2
t before the occur- 228

rence of fault; (2) the value of T 2
t is smaller than the 229

threshold determined by KDE after the occurrence 230

of fault. 231

2.3. Cox proportional hazard model 232

Machinery fault degradation can be predicted by 233

analyzing either condition monitoring measurements 234

or historical lifetime data [25]. The CPHM, proposed 235

by Cox [8], attempts to use both types of information 236

for prognostic analysis of machinery fault degrada- 237

tion and failure times. A lifetime data set consists of 238

failure times T of the machine under study, recorded 239

either at failure time or before the final failure. In 240

some cases, maintenance actions may be taken prior 241

to failure to prevent a device or component from fail- 242

ing. Then these cases are considered as censoring 243

since the actual failure time is unknown. In these 244

cases, the recorded lifetime data is called censored 245

data. The condition monitoring measurements used 246

in CPHM can be any sensory signal that reflects the 247

machine health condition. 248

CPHM assumes that the hazard rate or failure rate
of a machine depends on two factors: the baseline
hazard rate and the effects of covariates (condition
measurements). Hence, the hazard rate of a machine
at service time t can be written as:

h (t) = h0 (t) exp

(
p∑

k=1

βkZk

)
(11)

Where h0 (t) is called the baseline hazard func-
tion (It reflects the failure rate due to aging);

exp

(
p∑

k=1
βkZk

)
is the covariate function that

describes how the covariates Zk influence health
degradation. The covariates are weighted through
the regression parameters βk. The estimation of
the regression parameters is achieved by using a
method called partial likelihood approach, which
was proposed by Cox in 1972 [8]. According to
Cox’s theory, the partial likelihood of βk can be
written as:

L (β) =
n∏

i=1

exp
(∑p

k=1 βkZik (ti)
)∑

j∈R(ti) exp
(∑p

k=1 βkZjk

(
tj
)) (12)

Then the optimal regression parameters can be esti- 249

mated by maximizing the log likelihood of βk:
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LL (β)250

=
n∑

i=1

p∑
k=1

βkZik (ti) −
n∑

i=1

ln

⎡⎣ ∑
j∈R(ti)

exp

(
p∑

k=1

βkZjk

(
tj
))⎤⎦ (13)251

After model parameters are estimated, the hazard
function can be calculated as:

ĥ0
(
ti; β̂

) = 1∑
j∈R(ti)

exp
(∑p

h=1 β̂hZjh

(
tj
))

(14)
Then the cumulative hazard function and machine252

degradation rate can be approximated by formula (12)253

and (13), respectively:254

Ĥ (t) =
∑
ti≤t

ĥ
(
ti; β̂

)
(15)255

Ŝ (t) = exp
[−Ĥ (t)

]
(16)256

2.4. Support vector regression257

SVR is a supervised nonlinear regression
approach. Application of the SVR model in the field
of rotating machinery health monitoring and prog-
nostics has been reported in [23, 27]. The target of
SVR is to learn the dependency of an input vector
{xi}Ni=1 on a target vector {yi}Ni=1 to make accurate
forecast of y based on unseen values of x. When
performing nonlinear regression, a kernel function
is often chosen to map nonlinear inputs into a higher
dimensional feature space, after which a minimum
linear margin fit can be found in that space to per-
form linear regression. The form of the model is
given as:

y = f (x, w) =
N∑

i=1

wiK (x, xi) + b (17)

where w = (w1, w2, . . . , wN )T is a weight vec-258

tor, which elucidates the links between the high259

dimensional space and the target output; and260

K (x, xi) denotes the kernel function, and b denotes261

the bias.262

A SVR model is first built based on the health263

indicators generated by CVA and the degradation264

rates obtained from CPHM. Then the trained SVR265

model is employed to predict degradation rate and266

failure time of the compressor given unseen input267

health indicators. The flowchart of the combined268

CVA-CPHM-SVR prognostic method is shown in269

Fig. 1.

Fig. 1. Schematic diagram of the proposed prognostic method.

3. Validation using reciprocating compressor 270

condition monitoring data 271

3.1. Data acquisition 272

Reciprocating compressors are widely used in oil 273

and gas industry for gas transport, lift and injection. 274

They typically operate under high rotating speed, 275

high pressure and high load conditions, and are 276

therefore subject to performance degradations. These 277

machines are highly automated with various sensors 278

being mounted all over the system, and signals from 279

different sensors can be stored and accessed through 280

an e-maintenance system. The data used in this 281

study were gathered from a two-stage, four-cylinder, 282

double-acting reciprocating compressor used in a 283

refinery in Europe. 284

The compressor experienced twelve valve failures 285

at cylinder 4 from July 2013 to December 2014. 286

Machine inspections revealed that the failure mode 287

under study was valve leakage caused by broken valve 288

plate. The failed valves were either the head end or 289

the crank end discharge valve. A total of 12 fault cases 290

were obtained from the site engineer and each sam- 291

ple was a multivariate time series consisting of 39 292
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Fig. 2. CVA-based contribution plots for faulty variable identification in fault case 3: (1) faulty variables identified in residual space (upper);
(2) faulty variables identified in state space (lower). Contributions are normalized to a range of 0 to 1.

variables. The sampling rate was 1 Hz and the failure293

degradation duration for each sample was different.294

3.2. CVA-based contributions for faulty variable295

identification296

Once a fault occurs in industrial heavy-duty com-297

pressors, it is important to identify which components298

are most likely associated with the root-cause of the299

malfunction. Contribution plot analysis [4] is one of300

the most popular tool for identifying “fault related”301

variables in multidimensional statistical analysis. In302

this section, CVA-based state space and residual303

space contributions were used to identify candidate304

faulty variables for the compressor under study. The305

contributions of different process variables in fault306

case 3 were depicted in Fig. 2 using color map with307

variable number being the vertical axis and sampling308

time being the horizontal axis. As stated previously,309

the root cause of the fault was discharge valve failure310

in cylinder 4, meaning that the most fault related vari-311

ables were variable 17 and 18 (highlighted in bold in312

Table 1). As shown in Fig. 2, the residual space 2-D313

Fig. 3. Trends of the HE and CE discharge valve temperature in
cylinder 4 for fault case 3.

map indicates high contributions of both variable 17 314

and 18 during the early stage of fault case 3. Then the 315

contribution of variable 18 dropped to a lower level 316

after around the 1500th sampling point, whereas vari- 317

able 17 continued to show high contributions until 318

the end of the sampling period. By looking closely 319

at the trends of variable 17 and 18 (see Fig. 3), it 320

was found that with the compressor controller applied 321

to the system, variable 18 stabilized to its normal 322

operating range after about the 1500th sample. How- 323

ever, due to the malfunction of HE discharge valve 324
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Table 1
Identified candidate faulty variables for all fault cases

in cylinder 4, large deviations from normal operating325

conditions were observed in variable 17 until the end326

of the sampling period. Therefore, variable 17 rather327

than variable 18 was considered as a candidate faulty328

variable in this case.329

It is worth noting that in addition to variable 17330

and 18, several other faulty variables were revealed331

by the residual and state space contributions. The rea- 332

son these variables have large contributions is that the 333

fault has propagated from cylinder 4 into other com- 334

ponents, resulting in loss of performance of the entire 335

compressor. 336

The identified candidate faulty variables for all 337

fault cases are summarized in Table 1. Collectively, 338
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Fig. 4. Difference between CE and HE discharge temperature in
cylinder 4 – failure sample No. 2.

CVA-based contributions are very effective at identi-339

fying the root cause of the compressor fault as the340

CE/HE discharge valve temperature in cylinder 4341

has been successfully reported as a faulty variable342

in most cases. Collectively the identified candidate343

faulty variables would provide valuable information344

to a site engineer as to the fundamental cause of the345

fault. In addition, it was found that the root cause346

was more often linked to faulty variables identified in347

the residual space rather than in the state space. This348

demonstrates the necessity of combining residual and349

state space contributions for fault identification as uti-350

lizing merely the state space information can lead to351

wrong decision making.352

3.3. Determination of fault start time fault353

end time354

Since the failure mode under study is head355

end/crank end valve damage took place in cylinder356

4, the method employed to determine the fault start357

and end time, as suggested by the site engineers, is358

to look at the difference between crank end (CE)359

discharge temperature and head end (HE) discharge360

temperature in cylinder 4. To be specific, during361

healthy operating conditions and after the failure362

point, as shown in Fig. 4, the temperature difference363

between CE and HE is relatively constant. However,364

the temperature difference grows continuously once365

the valve fault occurs.366

As shown in Fig. 4, the fault start time for fault case367

2 was identified when the value of temperature dif-368

ference starts to increase, whereas the fault end time369

was identified when the temperature difference sta-370

bilized at its new steady state value. The degradation371

duration for all failure cases can be found in Table 2.372

3.4. CVA model building373

A CVA model was firstly built in order to trans-374

form the multivariate condition monitoring data into375

Table 2
Degradation duration for all failure cases

Sample No. Degradation Length (s)

6 171
11 191
3 231
1 371
13 381
10 391
5 401
8 441
2 451
4 501
12 601
9 641

Fig. 5. Autocorrelation of the root summed squares of all variables
in training dataset.

a one-dimensional health indicator. This process can 376

be considered as a data fusion and dimensionality 377

reduction procedure as it incorporates the informa- 378

tion from all the measured 39 variables to generate 379

a health indicator which can reflect the health con- 380

dition of the system. For each fault case, a normal 381

operating dataset was used to train the CVA algo- 382

rithm to obtain the normal operating limits of T 2
t , and 383

a deteriorating dataset was used to construct a health 384

indicator. 385

In order to build a CVA model as described in 386

Equations (1 to 7), three tuning parameters need to be 387

determined, namely, the number of time lags p and 388

f , and the number of dimensions retained r Accord- 389

ing to the literature [17], the number of time lags p 390

and f were determined by calculating the autocor- 391

relation function of the root summed squares of all 392

variables against a confidence bound of ± 5%. The 393

autocorrelation function indicates how long the mea- 394

sured time series is correlated with itself, and thus 395

can be used to determine the maximum number of 396

significant lags. As shown in Fig. 5, the sample auto- 397

correlation analysis of the training data demonstrates 398

that the maximum number of significant lags was 25. 399

Therefore, the number of time lags p and f were set 400

to 25 in this study.
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Fig. 6. False alarm rate of all fault cases with different values of r.

Fig. 7. Averaged false alarm rate with different values of r.

In order to determine the optimal number of r, CVA401

was implemented to perform fault detection for all 12402

fault cases using different values of r. The false alarm403

rate versus the number of retained states for all fault404

cases were depicted in Fig. 6. False alarm rate in this405

study was calculated by dividing the number of false406

detections by the length of the testing dataset. Then407

the calculated false alarm rates were averaged with408

the purpose of selecting the optimal value of r that409

minimizes the false alarm rate for all fault cases. r = 3410

was finally adopted according to the results shown in 411

Fig. 7. 412

As discussed previously, the fault start and end 413

times in this study were determined by looking at the 414

difference between CE and HE discharge temperature 415

in cylinder 4. The health indicators generated by the 416

trained CVA model were further truncated according 417

to the fault duration of specific fault cases. Figure 8 418

depicts the truncated health indicators for all 12 fail- 419

ure cases. They will be used hereafter as target vectors 420

for SVR training. 421

3.5. CPHM model building 422

In order to build a CPHM model, lifetime data 423

of 12 fault cases were used to estimate the baseline 424

hazard function. In addition, the difference between 425

CE and HE discharge temperature in cylinder 4 was 426

assumed as a covariate and the regression parame- 427

ter βk was calculated as per Equations (12 and 13) 428

Fig. 8. Truncated health indicators of all fault cases.
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Fig. 9. Hazard rate of failure sample no. 9.

for each failure case. For example, Fig. 9 shows the429

calculated degradation rate of fault case 9.430

3.6. SVR model building and testing431

In this section, health indicators and failure rate432

vectors obtained previously were used to train a SVR433

model. Then the trained SVR was employed as a prog-434

nostic method to predict the failure degradation of435

individual failure case. To build a SVR model, we uti-436

lized a Radial Basis Function (RBF) kernel function437

to map input vectors into the high-dimensional feature438

space. The RBF kernel parameter γ and the soft mar-439

gin parameter C were determined using grid search440

[28] together with 5-fold cross validation. For grid441

search, parameter γ and C take the following values:442

The health indicator and degradation rate vector of443

fault case no. 10 were firstly utilized to train a SVR444

model. The optimal parameters determined by grid445

search were 1024 and 64 for γ and C, respectively.446

They were determined by searching for the min-447

imum Root-Mean-Squared Error (RMSE) between448

the actual degradation rate and the estimated degrada-449

tion rate for each combination of γ and C candidates450

(as shown in Fig. 10). Moreover, the health indicator451

of fault case no. 13 was used as an input vector to test452

the performance of the trained SVR model. The pre-453

Fig. 11. SVR prediction for fault case no. 13.

dicted degradation rate of fault no. 13 is depicted in 454

Fig. 11. It can be observed that the predicted failure 455

time is 381 s. 456

γ = 2{−10,−9,−8,..., 10}
457

C = 2{−10,−9,−8,..., 10}
458

In order to fully capture the dynamics of the com- 459

pressor, a SVR model was further trained by 8 fault 460

cases (F1, F13, F10, F5, F8, F4 and F12). The input 461

vectors used to perform the training were obtained 462

using the CVA method. In addition, the target vectors 463

were acquired by an estimation of the degradation rate 464

by means of CPHM. The optimal value of γ and C 465

was 128 and 256 respectively according to the results 466

of grid search. Figure 12 depicts the RMSE between 467

the actual and the estimated target vectors for each 468

combination of γ and C candidates. The trained SVR 469

model was utilized to predict the hazard rate of fault 470

case no. 2, and the predicted result is shown in Fig. 13. 471

The predicted failure time is 449 s while the actual 472

failure happens at 452 s. 473

The performance of the prognostic model can be 474

assessed using the following metrics, namely Accu- 475

racy, root mean squared error (RMSE), mean absolute 476

error (MAE)andPearson’scorrelationcoefficient (R). 477

Formulae of the above metrics are listed as follows:

Fig. 10. RMSE for various values of � and C model parameters.
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Fig. 12. RMSE for various values of � and C model parameters (using f1, f13, f10, f5, f8, f4, and f12 for training).

Fig. 13. Predicted failure rate of sample no. 2.

Accuracy =
(

1 − Tactual − Tpredicted

Tactual

)
× 100% (18)478

RMSE =
[

N∑
i=1

(
S (t)actual,i − S (t)predicted,i

)2
/N

]1/2

(19)479

MAE = 1

N

N∑
i=1

∣∣S (t)actual,i − S (t)predicted,i

∣∣ (20)480

R =
∑N

i=1

(
S (t)act,i − S (t)act

) (
S (t)pre,i − S (t)pre

)√∑N
i=1

(
S (t)act,i − S (t)act

)2
√∑N

i=1

(
S (t)pre,i − S (t)pre

)2
(21)481

A higher value of Accuracy indicates a better482

the prediction. Meanwhile, the higher the value of483

RMSE/MAE is, the lower the prediction accuracy is.484

A high Pearson’s correlation coefficient means a high485

accordance between the actual and predicted degra-486

dation rate. The performance of the predictive model,487

based on the proposed four metrics, is summarized in488

Table 3. The predicted degradation rate of fault case489

no. 2 seems overestimated between 370 s and 430 s490

and underestimated between 431 s to 449 s, yield-491

ing a relatively high MAE value. But the accuracy492

is 99.33%, which is admissible for constructing the493

prognostic model.

Table 3
Model performance based on four statistical indexes

Sample No. Accuracy RMSE MAE R

13 99.74% 0.02 0.0082 0.9485
2 99.33% 0.0076 0.0482 0.933

4. Conclusion 494

In this study, condition monitoring data acquired 495

from an operational industrial reciprocating compres- 496

sor have been used to test the capabilities of CVA for 497

498

fault identification. In addition, CVA combined with 499

CPHM and SVR were applied for the first time to 500

perform prognostics based on condition monitoring 501

and lifetime data. 2-D contribution plots based on 502

the variations in the residual and state spaces were 503

utilized to identify candidate faulty variables for com- 504

pressor faults. It was found that the fundamental 505

causes are more likely to be related to the residual 506

space. Furthermore, CPHM was utilized to calcu- 507

late the fault degradation rate based on lifetime data 508

obtained from the compressor, and the calculated 509

degradation vectors were regarded as the target vec- 510

tors for training a SVR model. Grid search and 5-fold 511
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cross validation were used to determine the optimal512

SVR model parameters during the training process.513

Finally, the trained SVR was employed to predict514

degradation rate and failure time of the compressor.515

Four metrics were utilized to evaluate the accuracy516

of the proposed scheme. The results illustrate that517

the prognostic performances were satisfied.518

Although, the results of this study clearly show519

the superior performance of the proposed methods520

for fault identification and failure prediction, some521

aspects require further investigation are listed as522

follows. Firstly, apart from CE/HE discharge valve523

temperature in cylinder 4, several other faulty vari-524

ables were reported by both the residual and state525

space contributions. A consideration for future work526

is to alleviate the smearing effect and reduce the527

number of reported faulty variables, thereby allow-528

ing for more accurate fault identification. Secondly,529

due to the approximative nature of hazard function,530

the degradation vectors used in this investigation are531

stair functions with jumps at failure times. Thus, a532

degradation curve might not truly reflect the dete-533

rioration process when the number of historical534

failures is small, which would lead to inaccurate535

failure time prediction. Hence, techniques should536

be developed to calculate machine degradation rates537

accurately regardless of the scarcity of lifetime538

data.539
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