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Data Envelopment Analysis Models with Ratio Data: A revisit 

Abstract 

The performance evaluation of for-profit and not-for-profit organisations is a unique tool to 

support the continuous improvement process. Data envelopment analysis (DEA) is literally 

known as an impeccable technique for efficiency measurement. However, the lack of the 

ability to attend to ratio measures is an ongoing challenge in DEA. The convexity axiom 

embedded in standard DEA models cannot be fully satisfied where the dataset includes ratio 

measures and the results obtained from such models may not be correct and reliable. There is 

a typical approach to deal with the problem of ratio measures in DEA, in particular when 

numerators and denominators of ratio data are available. In this paper, we show that the 

current solutions may also fail to preserve the principal properties of DEA as well as to 

instigate some other flaws. We also make modifications to explicitly overcome the flaws and 

measure the performance of a set of operating units for the input- and output orientations 

regardless of assumed technology. Finally, a case study in the education sector is presented to 

illustrate the strengths and limitations of the proposed approach. 

Keywords: Data envelopment analysis; Ratio measures; Efficiency measure; Technology. 

1. Introduction 

Analysing and managing the performance of organisations is a key responsibility of the top-

level management team that can be carried out by different techniques. Data envelopment 

analysis (DEA) originated by Charnes, Cooper, & Rhodes (1978) is recognised as a 

successful tool in measuring the relative efficiency of organisations.  

In a great variety of applications, the consideration of ratios such as financial ratio data in 

addition to absolute data for assessing the performance of organisations is undeniable. This 

regard may be essential to estimate the underlying production frontier in DEA. 

Mathematically speaking, a ratio (A/B) is a quantitative relationship between two numbers, A 

and B, showing the number of times A contains within B. To tackle ratio measures, 

Thanassoulis, Boussofiane, & Dyson (1995) use an approach where ratio measures are 

replaced by absolute measures.  

Hollingsworth & Smith (2003) originally discuss that, in the presence of ratio measures, 

the results of the original DEA models may not be correct and acceptable thanks to being 

inconsistent with the production axioms. To address and argue this imperative problem, the 

relevant literature can be divided into two main streams. The first stream aims to deal 
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efficiently with the situations where the numerator and denominator of each ratio measure are 

known (Emrouznejad & Amin, 2009). Emrouznejad & Amin (2009) propose the input- and 

output-orientated DEA models by revisiting the axioms to deal with ratio measures. 

Khoshnevis & Teirlinck (2018) evaluate the efficiency of R&D active firms in Belgium using 

Emrouznejad & Amin (2009)’s approach in which net added value per employee, turnover 

per employee and R&D intensity are ratio measures. Of late, Gidion, Hong, Adams, & 

Khoveyni (2019) argue that urban water utilities performance involves multiple scaled weight 

components which utilise key performance indicators as ratio input in the yardstick 

competition regime. They formulate a network DEA model with ratio data according to 

Emrouznejad & Amin (2009) to evaluate 40 urban water utilities in Africa, Asia, and Europe.   

The main purpose of forming the second stream is to tackle the conditions that the 

underlying absolute data associated with ratios are not available (Olesen & Petersen, 2009). 

Olesen, Petersen, & Podinovski (2015) develop a pair of production technologies to present 

ratio constant returns-to-scale (R-CRS) and ratio variable returns-to-scale (R-VRS) models in 

which ratio measures are allowed to incorporate into inputs and outputs without data 

transformation. In what follows, they adapt the traditional production axioms to state the new 

axioms of convexity and proportionality in the presence of ratio measures. Furthermore, 

Olesen et al. (2015) classify ratio measures into different groups and argue that the R-CRS 

technology of each group is modelled differently to respond to the proportional changes in 

absolute inputs. These ratio groups are proportional ratios (those that increase proportionality 

with the increase in absolute measures), fixed ratios (those that do not change when absolute 

measures change), downward proportional ratios (are proportional when absolute measures 

decrease but fixed when they increase), and upward proportional ratios (are proportional 

when absolute measures increase, but fixed when absolute measures decrease).  

Carayannis, Grigoroudis, & Goletsis (2016) propose a multi-objective DEA approach to 

evaluate innovation systems of 23 European countries and their 185 corresponding regions in 

the presence of ratio data. Innovation systems are first modelled as two sub-processes; 

knowledge production process (KPP) and knowledge commercialization process (KCP), and 

then the DEA model proposed by Kao & Hwang (2008) is adopted to evaluate the overall and 

stage regional efficiencies. Due to the fact that several ratio factors such as “participation 

percentage in lifelong learning” and “percentage of employment in knowledge intensive 

services/manufacturing” are used in a ratio form, Carayannis et al. (2016) accommodate the 

two-process DEA model by Olesen et al. (2015). 
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Following Olesen et al. (2015), Olesen, Petersen, & Podinovski (2017) introduce the potential 

ratio inefficiency concept in DEA to show that strong efficient DMUs with ratio measures are 

plausible to be identified as inefficient DMUs in the presence of absolute data. They employ 

the R-CRS and R-VRS technologies suggested by Olesen et al. (2015) to formulate input 

radial, output radial, and non-radial DEA models.   

Silva (2018) assess the performance measures of Portuguese courts where ratio measures 

are available. The author thinks of three variants of linkages between inputs and outputs, 

which are (i) separate assessments; (ii) ratios between linked outputs and inputs; and (iii) 

differences between linked outputs and inputs. Regarding ratio measures, the DEA model 

developed by Olesen et al. (2015) is adapted in which a single input is absolute and all 

outputs are in the form of ratios.  

Not only the employment of ratio measures within applications has been increasingly 

popping up, but also the literature lacks adequate and deep attention to the existing theory of 

this area. This encourages us to instil one of the most popular and widely used DEA-models 

and we only lay great emphasis on Emrouznejad & Amin (2009)’s work placed in the first 

stream.  

Emrouznejad & Amin (2009) (hereafter called EA) treat the problems from the input and 

output orientations by presenting two different solutions when the data includes output- 

and/or input- ratio variables. The first solution of EA is dependent on whether a ratio measure 

is an input or output with the aim of transforming it into the auxiliary input and output that 

are consumed and produced by each decision-making unit (DMU). More precisely, the 

numerator and denominator of each input-ratio (output-ratio) measure are considered as an 

additional output (input) and input (output), respectively. The second solution of EA makes 

an attempt to re-define the axiom of convexity for ratio measures. The majority of DEA 

models associated with this solution are nonlinear. 

Emrouznejad & Amin (2009) proclaims the weakness of the first solution that is the lack 

of sufficient discrimination power along with the weakness of the second solution that 

necessitates deploying a nonlinear programming model in many situations. In this study, we 

show several flaws in both of the solutions developed by Emrouznejad & Amin (2009) 

besides the aforesaid problems. The inspection of Emrouznejad & Amin (2009)’s solutions 

allows us to get supplementary properties of DEA model in the presence of ratio measures. 

We then introduce the modified multiplier and envelopment DEA models for measuring 

performance in a way that avoid the problems associated with Emrouznejad & Amin (2009)’s 
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models. We finally present a case study in the education sector to highlight the flaws of the 

existing models as well as to show the advantage of the models proposed in this study. 

The remainder of this study is organised as follow: Section 2 presents a critical discussion 

of both the solutions of Emrouznejad & Amin (2009). In Section 3, we discuss a premise to 

make any necessary modifications to the models in order to treat the flaws. Section 4 presents 

a simple case study in the education sector to illustrate the flaws coupled with the 

applicability of the proposed models. Finally, we sum up our conclusions in Section 5.  

2. A critical discussion on the EA models  

The EA method introduces two various solutions to deal with ratios in DEA. In this section, 

we first present the input and output orientations EA models in the general cases as well as 

providing some remarks and theorems.  

2.1. Solution 1 of EA 

Assume that there are   DMUs where each                  consumes   inputs 

                          to produce   outputs                  

        . Furthermore, let      and      be the sub-index representing ratio inputs and 

ratio outputs, respectively, and         and         are the sub-index of absolute 

inputs and outputs, respectively. It is assumed that           (         ) is calculated as 

the numerators             divided by the denominator          , i.e.,     
    

   
            

    

   
       . EA suggests the following input- and output-oriented models as Solution 1 to 

treat ratio inputs and outputs: 

IN-Sol.1 model OUT-Sol.1 model 

     
     
   

 
               

   
 
              

   
 
                 

   
 
              

   
 
               

   
 
                

        

  (1) 

     
     
   

 
              

   
 
               

   
 
                

   
 
               

   
 
              

   
 
                 

        

  (2) 

where                     and                     ,            

      
 
            ,                  

 
            , and        

          
 
             represent CRS, VRS, IRS, and DRS models, respectively. In 
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the above models, each input numerator      and output denominator     associated with ratio 

measures play the role of the absolute inputs, and each input denominator     and output 

numerator      play the role of the absolute outputs. In other words, in these models the input 

and output vectors for      are                             and             

               , respectively, where     denotes the cardinality (number of elements) of a set. 

Note that though EA also discusses the special cases of models (1) and (2) under the VRS 

assumption, we concentrate on these general models which allow us to adapt them to 

different configurations. The discriminatory power of the above models can be reduced 

thanks to increase in the number of inputs and outputs (Emrouznejad and Amin, 2009).  

The following three flaws hinder the applicability of models (1) and (2). 

Flaw 1. The purpose of standard input-oriented DEA models based on Farrell measure is to 

radially reduce the amount of input vector    to      with output vector held fixed while 

regardless of our expectation, in model (1), the radial reduction in the output numerator 

          is not acting in a similar manner and output vector    is partially expanded to 

     
 

        where      and      . Put differently, an optimal solution for model (1) 

does not provide an optimal solution to the original DEA problem with ratio data, and vice 

versa. 

Analogously, model (2), in contrast to standard output-oriented DEA model, partially 

reduces the input vector    to      
 

        where      and       and it bespeaks that 

model (1) is unable to result in an optimal solution which corresponds to an optimal solution 

calculated from the original DEA problem with ratio data.          

Flaw 2. Unlike the standard VRS models, we point out a DMU is not necessarily BCC-

efficient by employing models (1) and (2) with             even if a minimum ratio 

input value between every ratio input or a maximum ratio output value between every ratio 

output. 

Flaw 3. Let            ,                      for    , and      

                  for    .      and      are identified as BCC-efficient in models 

(1) and (2) (see Cooper et al. 2007; p. 93). 

2.2. Solution 2 of EA 

EA states that solution 1 may not be appropriate to differentiate among efficient units, 

especially when one evaluates the performance of a small number of DMUs against many 
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ratios and absolute variables. EA, therefore, presents an alternative solution, so-called 

solution 2. Given that some inputs and/or outputs in the form of ratios may violate the typical 

convexity axioms in DEA, EA revisits this underlying axiom by defining the alternative 

convex combination for ratio measures. Their general input- and output-oriented models in 

the presence of input and output ratios are expressed as follows: 

IN-Sol.2 model OUT-Sol.2 model 

     
     
   

 
               

   
 
              

   
 
               

 
          

   
 
                      

        

  (3) 

     
     
   

 
              

   
 
               

   
 
                      

   
 
               

 
          

        

  (4) 

Models (3) and (4) are nonlinear programming models due to the multiplier terms     and 

   . However, when      in model (3) and      in model (4), the models turn into to 

be linear. EA lays the emphasis on the VRS technology (      ) for input- and output-

oriented for three cases; (1) the problem includes the ratio inputs, absolute inputs and 

absolute outputs, i.e., {  ,    and   }, (2) the problem consists of the ratio outputs, absolute 

inputs and absolute outputs, i.e., {  ,    and   }, and (3) the problem entails the ratio 

inputs, ratio outputs, absolute inputs and absolute outputs {  ,   ,    and   }. In total, EA 

presents six VRS models to cover various situations where two of their models are solely 

linear.  

Remark 1. The production possibility set (PPS) of models (3) and (4) can be defined as 

follows: 

        

 
 
 

 
 

     
 

 

      
 
                 

   
 
       

   
 
      

        

      
 
                  

   
 
       

   
 
      

          

             
 
 

 
 

       

  

Remark 2. The IN-Sol.2 model (3) treats the output ratio                for      as 

an absolute output  
    

 
    

      

   

 
   

  where its     component becomes always zero, that 
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is, the absolute output vector for      is the zero vector      
1
. Analogously, in the OUT-

Sol.2 model (4), the input ratio                for      is considered as an absolute 

input  

    

 
    

      

   

 
   

  where the absolute input vector for      is      .  

Referring to Cooper et al. (2007; p. 93), a DMU with a minimum input value among any 

input, or a maximum output value among any output is BCC-efficient. However, the 

following lemmas show that a given DMU with a maximum output ratio or a minimum input 

ratio value, regardless of the assumed technology, is efficient. 

Lemma 1. A      that has a maximum output ratio is efficient in model (3). 

Proof. Without the loss of generality, let 
    

   
 

    

   
       . Apropos of Remark 1, 

                   and the constraint    
 
                   of model (3) has the 

unique solution                where    is the     unit vector
2
 which implies that      

is efficient. ■ 

Lemma 2. A      that has a minimum input ratio is efficient in model (4). 

Proof. There is no loss of generality in assuming 
    

   
 

    

   
       . Then,             

         apropos of Remark 1 and the constraint    
 
                   of model (4) 

has the unique solution                which implies that      is efficient. ■ 

Let us look at the following flaws and improper characteristics of the EA models: 

 

Flaw 4.  Let          and          be the feasible region of models (1) and (3), 

respectively. Although EA (Theorem 3, p. 491) tries to prove that            

           in the absence of ratio inputs, i.e.,     , it does not succeed. Consider the 

following counterexample involving two DMUs with single absolute input  , single absolute 

output   , and single ratio output    
   

  
 : 

Table 1. A counterexample 

DMUs             

     1 2 3 2 

     2 3 5 4 

                                                
1
       stands for the origin in       space, i.e.                    . 

2     unit vector is a vector having a zero components, except for a   in the     position (see Bazaraa, Jarvis, 

& Sherali (2010) p. 46) 
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It is straightforward to verify that                              when      is 

evaluated but                   3
. On the other hand, since            for       is a 

subset of           ,            and           , we can conclude in general that 

                 . Analogously, let          and          be the feasible region of 

models (2) and (4), respectively. It is obvious that                  , regardless of the 

assumed technology. 

Flaw 5. Though the proposed models of EA are developed based on the VRS assumption, the 

authors (p. 495) claims that their proposed models can be extended to other technologies such 

as CRS, IRS and DRS. However, we here show that apart from the VRS and IRS models this 

claim apropos of Solution 2 is no longer valid under some conditions.  

Let us disregard absolute outputs in the IN-Sol.2 model (3), i.e.      , and absolute 

inputs in the OUT-Sol.2 model (4), i.e.     . Consequently, we arrive at the following 

nonlinear models without absolute outputs and absolute inputs in models (3) and (4), 

respectively:  

     
     
   

 
               

   
 
               

 
          

   
 
                      

        

  (5) 

     
     
   

 
               

   
 
                      

   
 
               

 
          

        

  (6) 

 

Consequently, the following lemmas prove that models (5) and (6) are not capable of 

evaluating the DMUs for        and        because the optimum solution of the former 

model is always equal to zero and there is no optimal solution for the latter model. 

Lemma 3. The optimal objective value of (5) is zero under the CRS and DRS assumptions. 

Proof. Let          and     . An easy computation shows that the vector                 

is a feasible solution of model (5) which is optimum as well. ■  

Lemma 4. The optimal objective value of model (6) is unbounded under the CRS and DRS 

assumptions. 

                                                
3 It should be noted that a feasible (non-optimal) solution is here presumed and this is due to 

    in the input-oriented models.  
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Proof. Let            and       . The vector         is a feasible solution of model (6) 

for any     . Therefore, the objective value can be driven to   , or it is unbounded. ■  

Flaw 6. The CRS model exhibits that the optimal objective value of the output-oriented 

model   links to that of the inverse of the optimal objective value     obtained from the 

input-oriented model. However, the optimal objective value of IN-Sol.2 model (3) under the 

CRS (      ) does not necessarily relate to the optimal objective value of OUT-Sol.2 model 

(4). In other words, in contrast to the traditional DEA models, the IN-Sol.2 model (3) is not 

equivalent to the OUT-Sol.2 model (4) when            . We will prove that our 

improved models keep this important feature.   

It is ultimately worth noting that the nonlinear IN-Sol.2 model (3) can be transformed to 

the linear programming model if there is no ratio input, i.e.,     ; however, the OUT-Sol.2 

model (4) is still nonlinear as follows: 

     
     
   

 
              

   
 
               

   
 
              

 
          

        

  (7) 

The same issue exists for the OUT-Sol.2 model (4) in the absence of ratio output. 

 

3. Proposed solutions 

In this section, we provide a sort of remedies to treat the flaws of the EA models listed and 

explained in the preceding section.  

3.1. Remedy for Solution 1 

In order to tackle the problems argued in Subsection 2.1, we propose the following input- and 

output-oriented models in which ratio measures are deemed to be non-discretionary variables: 

Modified IN-Sol.1 model Modified OUT-Sol.1 model 

     
     
   

 
               

   
 
              

   
 
                

   
 
              

   
 
              

   
 
                

        

  (8) 

     
     
   

 
              

   
 
               

   
 
                

   
 
              

   
 
              

   
 
                

        

  (9) 
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The modified input-oriented model (8) reduces the input vector              ,         

   to              where the output vector    is fixed. Analogously, in the modified output-

oriented model (9) the output vector                    ,       is increased to 

                while the input vector    is kept unchanged. It is conspicuous that at 

least one absolute input and one absolute output are the essence of models (8) and (9), 

respectively. If one is only searching for the relative efficiency and the model orientation 

does not play a part in the evaluation process, models (9) and (8) can be utilized in the case of 

no absolute input and no absolute output, respectively.  

Models (8) and (9) therefore enable us to satisfy the proportionality assumption of 

standard DEA models. It is worthwhile to spell out that these models are no longer valid 

when considering ratio measures as discretionary variables is indispensable.  

The following lemmas show the relationship between the optimal solutions of the above 

models and the original DEA models. 

Lemma 5. The optimal objective value of model (8) is a lower bound for the optimal 

objective value of model (1). 

Proof. Let         and           be the optimal solution of models (1) and (8), respectively. It 

is plain to verify that         is a feasible solution of model (8) and hence       . ■ 

Lemma 6. The optimal objective value of model (9) is an upper bound for the optimal 

objective value of model (2).  

Proof. The proof is similar to that of Lemma 5 (omitted). 

3.2. Remedy for Solution 2 

With the aim of coping with Flaws 5 and 6, we first improve the nonlinear IN-Sol.2 model. 

To do this, we [temporarily] assume      and             to utilize an interesting 

property in which the input-and output-oriented DEA models are equivalent. However, these 

assumptions will be relaxed later.   

Consider the primal envelopment IN.Sol.2 model and its dual multiplier formulation 

without ratio input under the CRS assumption: 

Primal IN.Sol.2 model 
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  (10) 

 

Dual IN.Sol.2 model 

              
     
             

                                               

            

  (11) 

 

Under the CRS assumption, there is a direct link between an optimal solution of the input- 

and output-oriented models (see Cooper, Seiford & Tone, 2007, p.59). As a result, the input-

oriented [dual] multiplier model can be adapted to formulate the output-oriented [dual] 

multiplier model (12). Model (12) and its dual are expressed below: 

Dual OUT.Sol.2 model 

              
     
             

                                               

            

  (12) 

 

Primal OUT.Sol.2 model 

     
     
   

 
              

   
 
               

   
 
                      

     

  (13) 
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Model (13) is called the primal envelopment OUT.Sol.2 model. At present, let us return to 

the OUT.Sol.2 model with      and             proposed by EA as formulated 

below: 

     
     
   

 
              

   
 
               

   
 
                        

     

  (14) 

The major difference between models (13) and (14) is the set of output-ratio constraints 

that includes the source of nonlinearity in (14). One instant thrust to overcome this 

inconsistency is to classify the ratio output into a non-discretionary factor as appropriate. It 

should be emphasized that the above argument can be extended to the OUT-Sol.2 model with 

     and            . However, it should not be extendable and applicable to all 

situations and it sheds light on future research directions. 

It is now supposed that the problem includes at least one absolute input for an input- 

orientation and one absolute output for an output orientation. We generalize our idea and 

propose the following pair of input- and output-oriented [envelopment] models to deal with 

ratio factors, regardless of the assumed technology: 

Improved IN-Sol.2 model 

     
     
   

 
               

   
 
              

   
 
                          

                
 
             

        

  (15) 

 

Improved OUT-Sol.2 model 

     
     
   

 
              

   
 
               

   
 
                          

                
 
             

        

  (16) 
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In the above-modified models, we assume that all input and output ratios are considered as 

non-discretionary variables and the symbol “ND” refers to these variables. The following 

theorem proves that contrary to the IN-Sol2 and Out-Sol2 models, an optimal solution of 

model (15) is related to that of model (16) under CRS assumption: 

Theorem 1. Models (15) and (16) are equivalent under CRS assumption.  

Proof. Let an optimal solution of model (15) be        . It is plain to verify that  
 

   
  

    is a 

feasible solution for model (16). Suppose, contrary to our claim, that          is the optimal 

solution for model (16) and    
 

  . Then  
 

     
   is a feasible solution for model (15) 

which its objective function value is strictly smaller than the optimal objective value but this 

contradicts the optimality of        . The reverse can be analogously proved. ■ 

The following lemma is an important consequence of Theorem 1:  

Lemma 7.      if and only if      when            .  

 

It should be underlined here that the feasible region of modified IN- (OUT-) Sol.1 model 

is not a subset of the feasible region of improved IN- (OUT-) Sol.2 model. Hence, the 

suggested remedy cannot deal with Flaw 4. On the other hand, the PPS of the improved IN- 

(OUT-) Sol.2 model is not identical and hence the proposed models suffer the multi-PPS 

issue. Another limitation of the proposed models is that the problem in Lemma 3 is still 

available, that is, the above models under the CRS or DRS assumption are not capable of 

assessing the efficiency of DMUs in the situations where we do not have any absolute outputs 

in model (15) and absolute inputs in model (16).  

Interestingly, the pair of multiplier models are formulated for both input- and output 

orientations as follows: 

Improved dual IN-Sol.2 model 

                  

     

              

                                     

                                                  

       ,         

          

(17) 
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Improved dual OUT-Sol.2 model 

                  

     

              

                                   

                                                

       ,         

          

(18) 

 

where                                                          and 

                  . 

The above DEA models are capable of measuring the performance of DMUs by the ratio and 

absolute factors. In such cases, both the numerator and denominator of a ratio are numeric 

measures (the set of positive real numbers) such as Return on Equity that is calculated as the 

ratio of net income to equity in which both the numerator and denominator belong to   . 

However, many real-life applications include an indicator where the numerator and 

denominator are in a ratio form, and we call it the “ratio of ratios”. For example, the savings 

ratio is defined as the average household savings divided by the average household 

disposable income in which both the numerator and denominator are represented by ratios. 

Let us now discuss how one adapts the standard (radial) DEA models where there are ratio of 

ratios measures. Let       and       stand for the sub-index representing “ratio of 

ratios” inputs and “ratio of ratios” outputs, respectively. We also assume that      
    

 

    
      

         
    

 

    
           and     

   
 

   
              

   
 

   
          . Consequently, 

         is expressed as the ratio of ratios 
    

     
    

   
    

   
 

    
     

    

   
    

   
   or equivalently the ratio of 

    
    

   

   
     

   
    

    
   

   
     

   . To incorporate the above sub-sets into our proposed models, one is in need of 

adding the following two sets of constraints to the input- and output-oriented [envelopment] 

models (15) and (16);    
 
        

    
         

     
             and         

    
    

   

      
     

  
          , and regarding the input- and output-oriented [multiplier] models 

(17) and (18) one requires adding the following component,              
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and subtracting         
    

         
     

         to and from the second constraint, i.e., 

                                             
    

         
     

       

                                        
    

         
     

             .  

 

4. Efficiency assessment of universities 

This section provides a simple case study to illustrate the shortcomings of the EA approach 

and the advantages of our developed models. We consider a dataset involving 20 universities 

with two inputs and two outputs shown in Table 2. In this problem,    and    represent 

"percentage of full-time faculty members" and "total cost" which are ratio (i.e.,       ) and 

absolute factors, respectively, and    and    represent "research income in million £" and 

"percentage of degree awarded" which are absolute and ratio (i.e.,       ) factors, 

respectively. 

Table 2. The input and output values for 20 universities  

University 

Input-Ratio 

      

Output-Ratio 

                    

U1 171 130 0.76 165 30  6500 1300 0.20 

U2 220 150 0.68 200 40  8000 2000 0.25 

U3  70  50 0.71 80  12  2000  300 0.15 

U4 110  87 0.79 120 30  4000  720 0.18 

U5 139 130 0.93 150 30  6000  600 0.10 

U6 250 205 0.82 210 45 10000 2500 0.25 

U7 268 250 0.93 330 30  5000  500 0.10 

U8 277 255 0.92 310 40  4909  540 0.11 

U9 298 245 0.82 300 60 10000 1500 0.15 

U10  59  40 0.67 90  12  2000  320 0.16 

U11 112 100 0.89 190 20  6666 1000 0.15 

U12 191 140 0.73 180 30 14000 1400 0.10 

U13 141 129 0.91 150 12  9090 1000 0.11 

U14 123 110 0.89 130 10  3000  360 0.12 

U15 156 130 0.83 190 35  4500  450 0.10 

U16 156 155 0.99 155 20 10000 1000 0.10 

U17 162 135 0.83 185 25  3545  390 0.11 

U18 216 134 0.62 335 30  2241  650 0.29 

U19 211 133 0.63 300 35  2000  700 0.35 

U20 555 500 0.90 190 12  2909  320 0.11 

 

Let us first solve the conventional input- and output-oriented CCR and BCC models with 

  ,   ,    and   . The 2
nd

 column of Table 3 shows the results associated to the input- and 

output-oriented CCR model, and the 3
rd

 and 4
th

 columns of Table 3 report the results 
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associated to the input- and output-oriented BCC model, respectively. However, due to ratio 

measures, these models are not able to correctly measure the efficiency of universities. We 

thereby utilize models (1) and (2) as Solution 1 of EA under the CRS and VRS assumptions 

as presented in the last three columns of Table 3.  

Table 3. The efficiency scores of solution 1 for different cases. 

University 

Efficiency score 

CCR model 
Input-oriented 

BCC model 

Output-oriented 

BCC model 

Sol.1 

model        

IN-Sol.1 

model        

OUT-Sol.1 

model        

U1 0.8866 0.9217 0.9044 0.9141 0.9371 0.9297 

U2 1 1 1 1 1 1 

U3 1 1 1 0.9401 1 1 

U4 1 1 1 1 1 1 

U5 0.8163 0.8341 0.8571 0.8623 0.8627 0.8681 

U6 1 1 1 1 1 1 

U7 0.4628 0.6973 0.5397 0.7815 0.7835 0.8471 

U8 0.6355 0.7355 0.6825 0.8571 0.9266 0.9769 

U9 1 1 1 0.9270 1 1 

U10 1 1 1 1 1 1 

U11 0.5623 0.7468 0.6109 0.7622 0.8452 0.8088 

U12 0.7674 0.9236 0.7872 0.9430 0.9525 0.9493 

U13 0.4662 0.7318 0.5187 0.7814 0.8439 0.8051 

U14 0.5427 0.7511 0.6117 0.8245 0.8482 0.8412 

U15 0.8326 0.8686 0.8400 0.9238 0.9639 0.9739 

U16 0.5214 0.7112 0.5581 0.7511 0.8251 0.7812 

U17 0.6068 0.8087 0.6122 0.8788 0.8877 0.8832 

U18 0.8616 1 1 1 1 1 

U19 1 1 1 1 1 1 

U20 0.4016 0.7333 0.4427 1 1 1 

 

Note that models (1) and (2) take numerators and denominator of ratio measures into 

account to evaluate the performance of universities. It is clear that models (1) and (2) fails to 

satisfy the concept of Farrell measure. For example, the efficiency of U1 for the input-

oriented model (1) under the CRS is 0.9141, meaning that all the inputs of U1 are 

proportionally reduced by 0.9141 without changing the amount of its outputs. That is, 

considering the denominator of output ratio (       ) as an input in model (1) leads to 

changing the value of    to 5941.65 and consequently increasing in the corresponding output 

   

  
  0.219 which contradicts the concept of Farrell measure that says the outputs are fixed. 

Similarly, the output-oriented model (2) suffers from this fundamental shortcoming. Given 

that                                and                               
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          , U20 is BCC-efficient in model (1) under the VRS and U3, U10 and U20 are BCC-

efficient in terms of model (2) under the VRS. In comparison with conventional BCC models 

(both orientations) U20 is classified in the set of BCC-inefficient units. To deal with these 

inevitable problems of Solution 1 of EA, we introduce the input- and output-oriented models 

(7) and (8) where the ratio factors are assumed to be non-discretionary variables. The results 

computed from models (7)  and (8) under the CRS and VRS assumptions are listed in Table 

4. As can be seen, in line with our expectation, the efficiency calculated under CRS does not 

exceed that calculated under VRS. It also is observed that the efficiency of each university 

calculated from (7) and (8) is not greater than the corresponding efficiency calculated from 

(1) and (2) as input and/or output ratio factors are considered as non-discretionary variables. 

 

Table 4. The efficiency scores of improved solution 1 for different cases. 

University 

Efficiency scores 

Modified 

IN-Sol.1 

model        

Modified 

OUT-Sol.1 

model        

Modified 

 IN-Sol.1 

model        

Modified 

OUT-Sol.1 

model        

U1 0.8784 0.8005 0.9146 0.8201 

U2 1 1 1 1 

U3 0.8300 0.7965 1 1 

U4 1 1 1 1 

U5 0.8549 0.8042 0.8574 0.8571 

U6 1 1 1 1 

U7 0.4971 0.5784 0.5123 0.7066 

U8 0.7493 0.8205 0.8818 0.9650 

U9 0.8740 0.8240 1 1 

U10 1 1 1 1 

U11 0.4904 0.6286 0.6388 0.6297 

U12 0.8625 0.7672 0.8982 0.7843 

U13 0.6467 0.3252 0.8304 0.3429 

U14 0.4973 0.3975 0.7262 0.4252 

U15 0.8378 0.9130 0.9300 0.9739 

U16 0.6802 0.5368 0.8251 0.5581 

U17 0.6645 0.7688 0.6759 0.7804 

U18 1 1 1 1 

U19 1 1 1 1 

U20 1 1 1 1 

 

Let us now focus on Solution 2 of EA. We measure the efficiency of each university using 

the input- and output-oriented models (3) and (4) that are nonlinear at large. We utilize 
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BARON as a popular solver in general algebraic modelling system
4
 (GAMS) to solve these 

nonlinear problems. Table 5 presents the efficiency scores for twenty universities under the 

CRS and VRS assumptions by means of models (3) and (4). Note that “lo” and “gl” in the 

parentheses represent the local and global optimal solutions.  As can be seen, units {2, 4, 6, 

18, 19} are efficient in both CRS orientations and units {2, 3, 4, 6, 9, 10, 18, 19} are efficient 

in both VRS orientations. U19 is efficient from the input-oriented viewpoint since this unit has 

a maximum output ratio value, i.e.,                              (see Lemma 1), 

and U18 is efficient from the output-oriented viewpoint since this unit has a minimum input 

ratio value, i.e.,                              (see Lemma 2).  

Table 5. The efficiency scores of solution 2 for different cases. 

University 

Efficiency score 

IN-Sol.2 

model        

OUT-Sol.2 

model        

IN-Sol.2 

model        

OUT-Sol.2 

model        

U1 0.8998 (lo) 0.8403 (lo) 0.9162 (lo) 0.8538 (lo) 

U2 1 (lo) 1 (lo) 1 (lo) 1 (lo) 

U3 0.9323 (lo) 0.6959 (gl) 1 (lo) 1 (lo) 

U4 1 (lo) 1 (lo) 1 (lo) 1 (lo) 

U5 0.8270 (lo) 0.8000 (gl) 0.8299 (lo) 0.8571 (gl) 

U6 1 (lo) 1 (lo) 1 (lo) 1 (lo) 

U7 0.6911 (lo) 0.4134 (lo) 0.6932 (lo) 0.5455 (lo) 

U8 0.7286 (lo) 0.5373 (lo) 0.7390 (lo) 0.6848 (lo) 

U9 0.8897 (lo) 0.8070 (lo) 1 (lo) 1 (lo) 

U10 0.9962 (lo) 0.7553 (gl) 1 (lo) 1 (lo) 

U11 0.7321 (lo) 0.5838 (lo) 0.7420 (lo) 0.6046 (lo) 

U12 0.9207 (lo) 0.7407 (gl) 0.9254 (lo) 0.7827 (gl) 

U13 0.6919 (lo) 0.4306 (lo) 0.7237 (lo) 0.4674 (lo) 

U14 0.7049 (lo) 0.4591 (lo) 0.7473 (lo) 0.5315 (lo) 

U15 0.8551 (lo) 0.7368 (gl) 0.8564 (lo) 0.8400 (gl) 

U16 0.6824 (lo) 0.5245 (lo) 0.7122 (lo) 0.5581 (gl) 

U17 0.8024 (lo) 0.5559 (lo) 0.8097 (lo) 0.6122 (gl) 

U18 1 (lo) 1 (lo) 1 (lo) 1 (lo) 

U19 1 (lo) 1 (lo) 1 (lo) 1 (lo) 

U20 0.6898 (lo) 0.4099 (lo) 0.7189 (lo) 0.4420 (lo) 

 

Table 6 shows the efficiency of universities in modified linear models (19) and (20). One 

of main advantages of our proposed method is the linearity of models (21) and (22) against 

the nonlinear (3) and (4) that guarantees the global optimal solution. The lack of relationship 

between the efficiency measures of input- and output-oriented models under the CRS 

assumption are observable in Solution 2 of EA (see Flaw 6). For example, the efficiency 

                                                
4
 Free demo version is available at www.gams.com. 

http://www.gams.com/
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score of U1 is 0.8998 and 0.8403 in the IN-Sol.2 model (3) and OUT-Sol.2 model (4), 

respectively, under the CRS, which are not plainly identical.  Interestingly, this issue is 

treated by dint of the modified models (23) and (24) as shown in Table 6.  

Table 6. A comparison with the EA and our approaches 

University 

Efficiency score 

Improved 

IN-Sol.2 model 

       

Improved 

OUT-Sol.2 model 

       

Improved 

IN-Sol.2 model 

       

Improved 

OUT-Sol.2 model 

       

U1 0.7650 0.7650 0.7850 0.8187 

U2 1 1 1 1 

U3 0.6959 0.6959 1 1 

U4 1 1 1 1 

U5 0.8000 0.8000 0.8000 0.8571 

U6 1 1 1 1 

U7 0.3636 0.3636 0.3636 0.5000 

U8 0.5161 0.5161 0.5806 0.6667 

U9 0.8000 0.8000 1 1 

U10 0.7553 0.7553 1 1 

U11 0.4211 0.4211 0.5146 0.4800 

U12 0.7407 0.7407 0.7627 0.7827 

U13 0.3200 0.3200 0.5333 0.3429 

U14 0.3077 0.3077 0.6154 0.3158 

U15 0.7368 0.7368 0.7895 0.8400 

U16 0.5161 0.5161 0.6308 0.5581 

U17 0.5405 0.5405 0.5886 0.6122 

U18 1 1 1 1 

U19 1 1 1 1 

U20 0.2526 0.2526 0.4211 0.2880 

 

If one removes the first output    (research income in million £) as an absolute measure 

from the performance evaluation process, the efficiency of all universities calculated from 

model (5) under the CRS and DRS leads to zero, that is, Solution 2 of EA fails to evaluate the 

performance of units in this situation (see Lemma 3 and Flaw 6). Analogously, removing the 

absolute input    (total cost) from the evaluation analysis under the CRS and DRS causes 

zero value of efficiency for all universities. It should be emphasized that our proposed models 

are also unable to assess the universities in the aforesaid special cases.  

5. Concluding remarks 

Ratio measures such as the ratio of government expenditures to GDP are the typical type of 

indicators in public and private sectors. Although the employment of conventional DEA 

models often fail the basic axioms such as the convexity, the DEA literature is not rich in 

tackling ratio measures and Emrouznejad & Amin (2009)’s work that includes two solutions 
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is the most appealing approach among them to treat ratio measure in the standard DEA 

model. 

Emrouznejad & Amin (2009) studied the problem from input and output orientations with 

emphasis on the VRS technology where the data encompasses output- and/or input- ratio 

variables. Emrouznejad & Amin (2009) admitted that the first solution has insufficient power 

to discriminate between DMUs and the second solution requires to think of a nonlinear 

programming model in many cases. Besides these problems, we show several flaws in both of 

the solutions which degrade the applicability of the models developed by Emrouznejad & 

Amin (2009). We provide an auxiliary investigation of Emrouznejad & Amin (2009)’s 

solutions so as to propose the modified models which enable to handle the problems involved 

in their models. A numerical illustration is presented to demonstrate minutely the flaws 

together with the results of the modified models proposed in this paper as alternative ways for 

DEA efficiency assessment and ranking in the presence of ratio measures.  

Future work is needed to develop DEA models for ratio data when the underlying 

measures of all ratios (the numerator and denominator) are available. Particularly, the 

efficiency evaluation of those problems that do not include absolute input and absolute output 

in output- and input-oriented models, respectively, could be an interesting path of further 

work. 
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 We criticize some developed DEA models to deal with ratio data. 

 We make modifications to explicitly overcome the flaws. 

 We provide a case study in the education sector to validate our proposed approach. 

 


