
1

ARM-AMO: An Efficient Association Rule Mining Algorithm

Based on Animal Migration Optimization

Le Hoang Son
a, g,

*, Francisco Chiclana
b
, Raghavendra Kumar

c
,

Mamta Mittal
d
, Manju Khari

e
, Jyotir Moy Chatterjee

f
, Sung Wook Baik

g

a VNU University of Science, Vietnam National University, Vietnam

sonlh@vnu.edu.vn
b School of Computer Science and Informatics, De Montfort University, The Gateway, Leicester, LE1 9BH

UK

chiclana@dmu.ac.uk
c Computer Science and Engineering Department, LNCT College, MP, India

raghvendraagrawal7@gmail.com
d Department of Computer Science & Engineering, G.B. Pant Govt. Engineering College, Delhi, India

mittalmamta79@gmail.com
e Department of Computer Science & Engineering, AIACT&R, Delhi, India

manjukhari@yahoo.co.in
f Department of Computer Science and Engineering, GD-RCET, Bhilai, CG, India

jyotirm4@gmail.com
g College of Electronics and Information Engineering, Sejong University, Seoul, Republic of Korea

sbaik@sejong.ac.kr

*: Corresponding author. Tel.: (+84) 904.171.284. Address: 334 Nguyen Trai, Thanh Xuan, Hanoi,

Vietnam

Abstract: Association rule mining (ARM) aims to find out association rules that satisfy

predefined minimum support and confidence from a given database. However, in many cases

ARM generates extremely large number of association rules, which are impossible for end users

to comprehend or validate, thereby limiting the usefulness of data mining results. In this paper,

we propose a new mining algorithm based on Animal Migration Optimization (AMO), called

ARM-AMO, to reduce the number of association rules. It is based on the idea that rules which

are not of high support and unnecessary are deleted from the data. Firstly, Apriori algorithm is

applied to generate frequent itemsets and association rules. Then, AMO is used to reduce the

number of association rules with a new fitness function that incorporates frequent rules. It is

observed from the experiments that, in comparison with the other relevant techniques, ARM-

AMO greatly reduces the computational time for frequent item set generation, memory for

association rule generation, and the number of rules generated.

Keywords: Association rules mining; Animal Migration Optimization (AMO); Apriori

algorithm; Particle Swarm Optimization (PSO).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228196900?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sonlh@vnu.edu.vn
mailto:chiclana@dmu.ac.uk
mailto:raghvendraagrawal7@gmail.com
mailto:mittalmamta79@gmail.com
mailto:manjukhari@yahoo.co.in
mailto:jyotirm4@gmail.com
mailto:sbaik@sejong.ac.kr

2

1. INTRODUCTION

Data mining emerges as a mean for identifying patterns and trends from large quantities of

data (Jerry et al., 2016). It encompasses various algorithms such as clustering, classification,

association rule mining, and sequence detection (Thabtah, Qabajeh & Chiclana, 2016). Among

all, association rule mining (ARM) aims to extract interesting correlations, frequent patterns,

associations or casual structures among sets of items in transaction databases and other data

repositories (Ratner, 2017). Association rules are widely used in various areas such as

telecommunication networks, market and risk management and inventory control (Martínez-

Ballesteros, Bacardit, Troncoso & Riquelme, 2015). The main aim of ARM is to find out rules

that satisfy predefined minimum support and confidence from a given database (Mai, Vo &

Nguyen, 2017). This task is usually decomposed into two sub problems. Problem one is to find

those item sets whose occurrences exceed a predefined threshold in the database such as

candidate large item sets and frequent item sets generation processes (Nithya & Duraiswamy,

2015). Problem two is to generate association rules from large item sets with constraints of

minimal confidence (Nguyen et al., 2012; Rauch, 2015; Song, Ding, Chen, Li, Cao & Pu, 2016).

In many cases, ARM generates extremely large number of association rules, which are

impossible for end users to comprehend or validate, thereby limiting the usefulness of data

mining results (Mlakar, Zorman, Fister & Fister, 2017). Numerous algorithms have been

proposed to reduce the number of association rules (Chen, Shen, Chen, Shang & Wang, 2011;

Shirsath & Verma, 2013; Mlakar, Zorman, Fister & Fister, 2017), such as generating only

interesting rules or non-redundant rules, or rules satisfying certain criteria such as coverage,

leverage, lift or strength (Yan, Sun & Liu, 2016). One of the most effective strategies for this

problem is integrating optimization techniques with association rule mining for increasing its

performance. Among the proposed algorithms are ARM-PSO (Kuo, Chao & Chiu, 2011), GA

(Oladele & Sadiku, 2013), Cuckoo Search (Yun, Kim, Ryang, Lee & Lee, 2016; Mlakar et al.,

3

2017), WFIM (Wensheng et al., 2017), HUIM-MMU (Jerry et al., 2016), CP-Miner (Thanh-

Long, Bay & Vaclav, 2017), dynamic superset bit-vector (Tahrima et al., 2017) and lattice

(Thang, Bay & Loan, 2017). However, most of the relevant algorithms for controlling large

number of association rules are often computationally expensive and possibly generate much

irrelevant rules.

To overcome these problems, this paper proposes a new association rule mining algorithm

based on Animal Migration Optimization (AMO). AMO is one of the most typical

optimization algorithms based on the behavior of animal migration. In the proposed method,

rules which are not of high support and unnecessary are deleted from the data. Only frequent

rules are kept and displayed. All these criteria are incorporated into the fitness function of the

AMO for better generation of rules. ARM-AMO significantly improves ARM-PSO in solving

complex swarm optimization problems in terms of number of rules, time and memory

consumption by adopting the new algorithm.

The cohesion and structure of the article is demonstrated as follows: Section 1 introduces the

problem of reducing the number of association rules existed in the current ARM algorithms and

highlights the idea of the new algorithm called ARM-AMO, which is based on Animal Migration

Optimization for reducing rules that are not of high support and unnecessary from the data. In the

Sections 2 and 3, we give an overview of the related works and background of ARM. In Section

4, we present details of new algorithm starting from the idea (Section 4.1), pseudo-code (Section

4.2), an illustrative example (Section 4.3), and the theoretical comparison between the new and

previous algorithms (Section 4.4). Section 5 explains experimental environment (Section 5.1)

and comparative results by various cases (Section 5.2) consisting of both tables and figures

accompanied by discussion. Finally, Section 6 draws conclusions and further works,

respectively.

4

2. RELATED WORKS

Finding frequent rules with the help of association rule mining faces many issues such as

irrelevant rules and computational time, which can degrade performance (Chen et al., 2011;

Rauch, 2015; Nithya & Duraiswamy, 2015). Some efforts have been made to overcome these

issues with number of rules generation, time and fitness function Weighted Frequent Item set

Mining (WFIM) algorithm proposed by Slim et al. (2014), Jerry et al. (2016) and Wensheng et

al. (2017), and further extension by Das et al.(2012), considering not only the frequency of items

but also their relative importance. Lin et al. (2015) proposed a rundown based FFI-Miner method

(Fast Frequent Itemset) to find rules from quantitative databases. Yan et al. (2016) proposed

FARMA which is an extension of the Apriori algorithm by reducing time complexity and space

complexity. Again, Wang et al. (2016) enhanced prediction accuracy by employing quantitative

association base on the improved Apriori. Thanh-Long et al. (2017) proposed an algorithm for

mining colossal patterns for reducing candidates. Tahrima et al. (2017) introduced a new

memory efficient data structure called the dynamic superset bit-vector to establish the

relationship among frequent closed item sets in a lattice, while Thang et al. (2017) proposed an

algorithm for mining high utility association rules using a lattice.

Besides, association rule mining was also integrated with optimization techniques for

upgrading its performance. Kuo et al. (2011) proposed Particle swarm optimization (PSO) based

ARM algorithm (ARM-PSO) in an application of stock market to gauge speculation conduct and

stock class buying. Oladele and Sadiku (2013) proposed a hybrid Genetic Algorithm for multi-

target outline tricky abusing divergent parent decision. Martínez-Ballesteros et al. (2015)

enhanced the versatility of quantitative association rule mining systems in light of genetic

calculations. Yun et al. (2016) suggested a modified single-objective binary cuckoo search for

association rule mining (MBCS-ARM) including a novel representation of individuals, which

tackles the problems of large dimensionality with an increasing number of attributes. It also

5

supports the mining of rules, where intervals of attributes can either be negative or positive. Song

et al. (2016) proposed a multi-objective binary at algorithm (MBBA) based on Pareto for

association rule mining. Mlakar et al. (2017) presented a single-objective binary cuckoo search

using a novel individual representation. Other works can be found in (Pears & Koh, 2011; Song

& Lee, 2017; Anuradha & Kumar, 2017; Feng et al., 2016; Huang et al., 2017; Vo, Pham, Le &

Deng, 2017; Kieu, Vo, Le, Deng & Le, 2017).

3. BACKGROUND

3.1. Association Rule Mining

Association Rule Mining (ARM) is a process to determine accessible association rules for

regularities amongst items in large-scale interchange info recorded (Yun et al., 2016). Let I=I1,

I2, ….Im be a set of m targeted attributes and T be a transaction that contains a group of objects

such that T→I. D is a database with exclusive transaction files. An association rule is an

implication of type X→Y where X and Y are attributes and X ∩ Y = ø. X is known as the

antecedent event and Y is known as the consequent. Two important criteria for association rule

mining are support (S) and confidence (C), which indicates how frequently items are in the

database and how many times the item sets are presented, respectively. The following includes

some important definitions in ARM (Shirsath & Verma, 2013; Barati et al., 2017).

Definition 1. Given a collection of n transactions T= {t1, …tn} and m items I = {i1,… im}, an

association rule is expressed in the form:

 → , (1)

where YXIYX ,, , the left-hand and right-side rules are the antecedents and the

consequents, respectively.

Definition 2.Support(X) describes the proportion of transactions in T including X.

6

(2)

Definition 3.If Support(S) ≥ Min_Support then S is known as frequent item set where

Min_Support is a threshold value described by users.

Definition 4. Transactions Count is N=|T|.

Definition 5. Largest transaction length is E=Max (|ti|).

Definition 6. The rule confidence is the proportion of transactions in T including item set X

which also include item set Y. Rules with both Support(X→Y) ≥ Min_Support and

Confidence(X→Y) ≥ Min_Confidence are called strong rules. These thresholds values are

described through customers.

 →

. (3)

3.2. Animal Migration Optimization

The key scheme of AMO is implemented by means of concentric zones around each animal,

which means that each animal looks for keeping safe itself from its neighbor to avoid collision.

AMO is divided into two parts: animal migration process and animal updating process. During

the migration process, an animal should follow three rules: avoid collisions with your neighbors,

move in a similar direction as your neighbors, and stay close to the neighbors.

The idea of restricted neighborhood of an individual is described through the topological

ring, which is stationary and described on the indices of vectors. The suggestion of neighboring

area is described by topological circle (Li et al., 2014). If an animal index is i, then its nearest

neighbor has index of i − 2,i − 1,i,i + 1,i + 2. Once the topology of nearest neighbor is built, the

nearest is determined as follows (Badhe et al., 2015):

7

 (4)

where is the neighborhood’s current position, is the current position of

individual, is the new position of individual, and is a random number generator

controlled through a Gaussian distribution. After producing new results, an objective fitness is

computed (Li et al., 2014).

4. THE PROPOSED ARM-AMO

4.1. Description

The basic idea of ARM-AMO is to derive rules based on Animal Migration Optimization in

which those which are not of high support and are not necessary will be deleted from the data.

Only frequent rules are kept and displayed. Figure 1 indicates a broad view about the proposed

algorithm in which the first step finds rules by Apriori algorithm (Lin et al., 2015; Nguyen et al.,

2012). It generates candidate item set and frequent item set by joining and pruning. In the second

and third steps, the support and confidence for the rules and the fitness function for the animal

migration are calculated. The fitness function of rules and velocity of particles are then updated

iteratively until the global optimum solution is reached. In the fifth step, the rules having high

fitness value are removed.

After this, the remaining rules are optimized. It comes from the fact that evaluating the rules

which are below the fitness value is significant as they are less fit rules and need to be migrated.

Animal migration is applied to the rules having small fitness values by calculating their

migrating probability. For every instance, probability is updated and next position for the

movement is evaluated. In this method, those rules which are less fit will be initially moved to a

better place. This increases their survival probability and thus better rules can be mined (Mai, Vo

& Nguyen, 2017).

8

Fig. 1. Flow chart of the proposed algorithm

Specifically, ARM-AMO comprises of two parts: rules calculation and rule optimization. In

the first part, data are transformed to binary values for storage purposes. This in turn hastens the

database scanning operation and results in quick calculation of the support value. Let us

consider, as shown in in Figure 2, that there are five customers, namely, T1 to T5 in the

9

transactional database. All the transactions are transformed into binary form and stored. In the

above example, as there are four different products, hence four columns will exist. Consider T3,

because he/ she has purchased the products P1, P2, P3 and P4. Therefore, for B3, the rows under

P1, P2, P3 and P4 will have the value “1”.Consider another example T1, because he / she has

purchased the products P1, P2 and P4. Therefore, for B1, the rows under P1, P2 and P4 will have

the value “1” and P3 have the value “0”.

Fig. 2. Data types Transformation

After that, the fitness value is computed based on the confidence and support derived from

the Apriori algorithm. Also, a net fitness value is calculated for the overall fitness. The fitness

analysis is exploited to decide rules that are to be modified using AMO. Less suitable rules are

found by comparing their fitness value with net fitness. If it is less than net fitness, they are weak

rules.

ARM-AMO takes the result obtained from the Apriori algorithm as input to generate the

optimized association rules, which are helpful to analyze the products frequently purchased by

customer and to discover customer shopping patterns and to find interesting rules with derived

shopping patterns. This helps organizations, i.e. supermarkets, to increase sales growth by

getting customers data and obtaining customer behavioral pattern for developing new business

10

strategies. The optimized rule generation process in ARM-AMO is shown as follows. In ARM-

AMO, fitness value is employed to estimate the importance of each rule. The fitness value of

any rule depends on the support and confidence which are mathematically formulated below

(Indira & Kanmani, 2012).

 . (5)

In equation (5), Fit(x) is the fitness value of rule type x, Sup(x) and Con(x)are discussed in

equations(2) and (3), and Length(x) is the length of rule type x. ARM-AMO maximizes the

fitness value function since large support and confidence values result in great association, which

represents significant rules. The particle in the population of AMO that has the highest fitness

value is selected as gbest, and its support and confidence are employed as the minimum

thresholds.

In ARM-AMO, each particle characterizes a rule and each rule includes of a series of

decision variables which signify the status of every item in the rule. Each particle in ARM-AMO

has a ‘position’ and ‘velocity’, where position is represented as a solution suggested by the

particle and velocity is the rate of changes to the next position with respect to current position.

The position and velocity are arbitrarily initialized in ARM-AMO, thus containing a collection of

random particles i.e. rules. During each iteration, all particles are updated using pbest and gbest

values. Herein, pbest represents the best solution it has achieved so far. Afterward, the particle

updates its velocity as follows:

 (6)

For solving the AMO problems, De-Jong’s function is used (Randy & Haupt, 2003):

(7)

11

The position of a particle is updated at each iteration as follows:

 (8)

where FF is the fitness function within (0, 1), P is the particle position, d is the current particle,

p(b) is the best value of a particle, g(b) is the global best value, and Pold(i, d) is the velocity of

particle i
th

. By the above strategies, rules are optimized in an efficient way.

4.2. Pseudo code

The pseudo code of ARM-AMO for optimizing association rules is explained in Table 1.

Table 1. Pseudo code of ARM-AMO

ARM-AMO

Input X,Y-Attributes, T-Total Number of Transactions, i-Current Rule, D- Dimensions

(Lower, Upper, Middle), d-last rule, Minimum Support, Minimum Confidence, Length

(dataset), Pold(i, d)-i
th

 particle velocity, n-Number of iteration, OD- Original

data, BD- Binary Data

Output The best solution g(b) // Global best

1

Calculating support and confidence

2 Calculating fitness for Animal Migration

3 Evaluate the overall fitness and fitness value of each records by fitness

function

12

 // Define lower and upper bounds

 // Population initialization

 // Popsize=Population Size

 // Searching for neighbors

4 Updating the velocity of animal

// DeJong function is used for solving the

AMO problem

 // New particle position

5

 // Update the best local position

 // Update the global best position

As shown in Table 1, ARM-AMO initially takes association rules generated from Apriori as

inputs. Then, it initializes particles with random positions and velocities where each particle

represents a rule. After that, ARM-AMO computes fitness value for each particle to evaluate the

importance of each rule. With the support of determined fitness value, the particle with highest

fitness value is selected as gbest. The particles update their positions and velocities, at each

iteration, and choose gbest. This process is continued until a maximal number of iterations or a

minimum error criterion is attained.

13

4.3. An illustrative example

To illustrate the ARM-AMO algorithm, an example of supermarket analysis is shown below

(Table 2).

Table 2. Supermarket dataset

TID Item purchased

1 Laptop, Fan, Headphone, Keyboard, Mouse, Hard disk, Power bank, Charger, processor,

battery, Wi-Fi

2 Laptop, Fan, Headphone, Mouse, Hard disk, Power bank, Charger, processor, battery,

Wi-Fi

3 Laptop, Fan, Headphone, Keyboard, Hard disk, Power bank, Charger, processor,

battery, Wi-Fi

4 Headphone, Keyboard, Mouse, Hard disk, Power bank, Charger, processor, battery, Wi-

Fi

5 Laptop, Headphone, Keyboard, Mouse, Hard disk, Power bank, Charger, processor,

battery, Wi-Fi

6 Laptop, Fan, Headphone, Keyboard, Mouse, Hard disk, Power bank, Charger, processor,

battery

7 Laptop, Fan, Headphone, Keyboard, Mouse, Hard disk, Power bank, Charger, processor

After converting the original dataset into binary values, we have the results in Table 3.

Table 3. Binary dataset

TID Item purchased

1 {1,1,1,1,1,1,1,1,1,1,1}

2 {1,1,1,0,1,1,1,1,1,1,1}

3 {1,1,1,1,0,1,1,1,1,1,1}

4 {0,0,1,1,1,1,1,1,1,1,1}

5 {1,0,1,1,1,1,1,1,1,1,1}

6 {1,1,1,1,1,1,1,1,1,1,0}

7 {1,1,1,1,1,1,1,1,1,0,0}

A. Measurement of Number of Rules Generated:

In ARM-AMO, the number of rules is generated based on the support and confidence values.

When the number of rules is low, the method is said to be more efficient. In what follows, we

present the number of rules created by ARM-AMO and the relevant algorithms namely HUIM-

14

MMU (Lin et al., 2015), WFIM (Wensheng et al., 2017), HUIL (Mai et al., 2017), CP Tree

(Thanh-Long et al., 2017), AMO (Li et al., 2014) and ARM-PSO (Kuo et al., 2011).

Table 4 shows the number of rule of the algorithms by different support and confidence

values. It is clear that the number of rules generated by the proposed ARM-AMO method is

smaller than those generated by the above mentioned relevant algorithms.

Table 4. Number of rules generated (Bold values indicate the best among all in a row)

Support and

Confidence

HUIM-

MMU

WFIM HUIL CP Tree AMO ARM-

PSO

ARM-

AMO

0.1 and 0.1 3350 3231 3212 3210 4210 3521 3120

0.2 and 0.2 3241 3214 3210 3142 3952 3412 2832

0.3 and 0.3 3124 3124 3142 3125 3852 3321 2752

0.4 and 0.4 3020 3085 3085 3014 3720 3310 2652

0.5 and 0.5 2752 2785 2742 2785 3342 3104 2541

0.6 and 0.6 2140 2142 2135 2054 2952 2421 1952

0.7 and 0.7 1985 1965 1946 1854 2254 1989 1853

0.8 and 0.8 1758 1795 1754 1768 1984 1854 1652

0.9 and 0.9 1487 1354 1325 1421 1798 1524 1324

1 and 1 654 698 712 612 958 785 514

B. Measurement of Memory Consumption for Association Rule Generation:

Memory consumption refers to the amount of memory taken for generating the association

rule, which is measured in terms of Mega Bytes (MB) (Sathya & Thangadurai, 2016):

 (9)

where M is the memory consumption for association rule generation, n is the number of

frequent generated rules, and M(n) is the memory required for generation of rules. When the

memory consumption for association rule generation is low, a method is said to be more

efficient. Table 5 shows the memory consumption of the algorithms by different support and

confidence values. It has been realized that in most cases of support and confidence, ARM-AMO

requires less memory consumption than the other algorithms used for comparison.

15

Table 5. Memory consumption of all algorithms for generating rules (MB) (Bold values

indicate the best among all in a row)

Support and

Confidence

HUIM-

MMU

WFIM HUIL CP Tree AMO ARM-

PSO

ARM-

AMO

0.1 and 0.1 45.0 43.1 45.2 42.1 48.1 45.2 41.2

0.2 and 0.2 34.1 33.4 34.1 31.4 38.5 32.1 30.3

0.3 and 0.3 22.4 22.4 23.2 31.2 38.5 33.2 27.5

0.4 and 0.4 22.0 28.5 22.5 30.1 37.2 33.1 26.5

0.5 and 0.5 21.2 24.1 21.2 27.8 33.4 31.0 21.2

0.6 and 0.6 21.0 21.2 21.3 20.5 29.5 24.2 19.5

0.7 and 0.7 18.5 16.5 21.1 18.5 22.5 19.8 16.5

0.8 and 0.8 15.8 14.4 19.4 17.6 19.8 18.5 13.9

0.9 and 0.9 11.7 11.4 12.5 14.2 17.9 15.2 11.2

1 and 1 5.4 5.8 5.9 5.1 9.5 7.8 3.1

C. Measurement of computational time:

The computational time for frequent item set generation measures the amount of time taken

for generating the frequent item sets with respect to given support and confidence values (Sathya

& Thangadurai, 2016). It is measured in terms of milliseconds (ms) and mathematically

formulated as follows,

 (10)

where RT is the running time, n represents the number of frequent item sets generated, and

T(n) represented time taken for frequent item set generations. When the running time for

frequent item set generation is low, the method is said to be more efficient. Table 6 shows the

total running time of the algorithms by different support and confidence values. From this table,

we realize that ARM-AMO runs quickly than the other algorithms in most case.

It has been realized that the association rule mining is modified using animal migration

optimization is in most cases the best optimization approach among few. The weaker rules are

migrated to have better fitness value so that the rules derived can be better.

16

Table 6. Total running time of all algorithms for generating rules (sec) (Bold values indicate

the best among all in a row)

Support and

Confidence

HUIM-

MMU

WFIM HUIL CP Tree AMO ARM-

PSO

ARM-

AMO

0.1 and 0.1 350 331 352 312 421 352 312

0.2 and 0.2 241 234 241 314 395 341 241

0.3 and 0.3 224 224 232 312 385 332 275

0.4 and 0.4 220 285 225 301 372 331 220

0.5 and 0.5 212 241 212 278 334 310 212

0.6 and 0.6 210 212 213 205 295 242 195

0.7 and 0.7 185 165 211 185 225 198 165

0.8 and 0.8 158 144 194 176 198 185 165

0.9 and 0.9 117 114 125 142 179 152 116

1 and 1 54 58 71 61 95 78 31

4.4. Theoretical comparison

In what follows, we demonstrate the comparative analysis of all algorithms in Tables 7 and 8.

Table 7. Theoretical comparison of the algorithms

No. Algorithms Data Support Advantage Disadvantage Published Year

1 HUIM-MMU Minor Item set Better than

Apriori

algorithm with

minimum

utility threshold

Takes lots of

memory for

large dataset

2016

2 WFIM Closed item set Consider both

frequency and

relative

importance

Real life

applications

2017

3 HUIL Lattice item set Mining all high

association

rules

Does not used

to whole

database to

count frequent

item set

2017

4 CP-Tree Small dataset Generate

colossal

patterns

Using tree

structure create

complexity

2017

5 AMO Not frequently

used

Better than

Apriori and

easy to use

Candidate set

generated on

the fly and size

of the

candidate set

are large

2014

17

6 ARM-PSO Small and large

dataset

Generate

interesting and

understandable

association

rules only

single scan

Takes lots of

memory, time

and memory

consumption

for large

dataset

2014

7 The proposed

algorithm

(ARM-AMO)

Small and large

dataset

Frequent item

set generation

only single

scan

Useful for

small and large

dataset and

generate

minimum

number of

rules, memory

consumption

and time

Table 8. Comparison by different criteria

Features HUIM-

MMU

WFIM HUIL CP Tree AMO ARM-

PSO

ARM-AMO

Speed in

Initial Phase

Slow Slow High High Slow Slow High

Speed in

latter phase

High Medium Slow Medium Slow Medium High

Time Medium Medium Less Less High Medium Very less

Memory

Consumption

Medium Medium Less Less High Medium Very less

Accuracy Less More

accurate

than

Apriori,

Medium

Medium Medium Less High and

more

accurate

than

Apriori

Tid,

Medium

Very High

and more

accurate

Table 8 indicates the performance measurement in term of speed at initial and later phases,

time, memory consumptions and accuracy by five different measures namely Less, Medium,

High, Very less and Very high. Specifically, ARM-AMO has high speed at initial and later

phases, very less time and memory consumptions (e.g.~100 ms), and very high accuracy. Details

of quantitative comparison will be performed in the next section. However, we aim to give the

18

first sight on the comparison between all methods based on our trials on many simulated and real

datasets. Table 8 is a summary of those trials with the main aim for theoretical comparison.

5. EXPERIMENTS

5.1. Environment

The proposed algorithm (ARM-AMO) has been implemented in Matlab against the relevant

algorithms namely HUIM-MMU (Lin et al., 2015), WFIM (Wensheng et al., 2017), HUIL (Mai

et al., 2017), CP Tree (Thanh-Long et al., 2017), AMO (Li et al., 2014) and ARM-PSO (Kuo et

al., 2011). They were executed in a computer with configuration: Microsoft Windows 7,

1.60GHz hard disk and 512MB RAM. Each algorithm is run 20 times for a case, and the average

results are recorded.

Table 9. Experimental datasets

Name Size Total

transaction

Total items Average number of

Items per transaction

Mushroom 3 MB 8124 497 23

Retails 3.97MB 11020 524 26

Accidents 33.8MB 189364 143 34

T10I4D100K 16MB 100000 119 10

The validation of the performance of all algorithms is carried out using experimental datasets

were taken from Frequent Item-set Mining Dataset Repository named as Mushroom, Retails,

Accidents and T10I4D100K (http://fimi.ua.ac.be/data/). Their statistics are shown in Table 9.

They are well known data sets for the association rule mining with different sizes, total numbers

of transaction, total items and average number of items in per transactions. The largest dataset is

Accidents with 33.8 MB size (total transaction: 189364, total item: 143 and the average number

of items per transactions: 34). The dataset contains largest number of items is Retails with 524

items and the average number of item per transaction is 26.

http://fimi.ua.ac.be/data/

19

Parameters setting: Some values of parameters such as minimum support and confidence are

ranged from 0.1 to 0.8. Pold (i,d) is (1, 3) and n=4.

Objectives: We aim to evaluate the performance of association rule mining algorithms

through the number of rules, the computational time and the memory consumption by various

cases of parameters (Glass, 2013).

5.2. Comparative results by various cases

Experiments are divided into different typical cases (Cases 1 to 3) according to the minimum

support (or support) and the minimum confidence (or confidence) values as follows.

5.2.1. Case 1: support = 0.4 and confidence = 0.3

Table 10. Comparison of algorithms in terms of number of rules, time and memory

consumption in Case 1 (Bold values indicate the best among all in a row)

Dataset Parameters HUIM

-MMU

WFIM HUIL CP

Tree

AMO ARM-

PSO

ARM-

AMO

Mushroom Number of Rules (%) 77.18 77.35 77.14 77.54 75.82 77.24 72.14

Time (Milliseconds) 159 158 158 157 164 158 151

Memory Consumption

(MB)

5.64 5.65 5.62 5.66 6.66 5.66 4.65

Retails Number of Rules (%) 74.52 75.34 75.47 76.52 75.98 77.84 73.97

Time (Milliseconds) 202 204 203 205 206 205 192

Memory Consumption

(MB)

5.85 5.84 5.85 5.86 6.88 5.88 4.87

Accidents Number of Rules (%) 86.25 86.54 85.87 86.85 87.45 86.92 81.18

Time (Milliseconds) 2121 2122 2121 2122 2201 2105 1915

Memory Consumption

(MB)

34.98 34.99 34.96 34.97 35.89 34.94 32.96

T10I4D100K Number of Rules (%) 78.02 77.46 76.52 77.44 75.41 78.16 71.10

Time (Milliseconds) 1205 1205 1204 1202 1213 1202 1101

Memory Consumption

(MB)

18.82 18.83 18.82 18.81 18.78 18.82 17.80

Table 10 indicates the average number of rules, the average computational time and the

memory consumption of all algorithms. It is obvious that the proposed ARM-AMO algorithm

20

has better performance than all the others. For instance, in Mushroom dataset, the average

number of rules and the time of ARM-AMO are 77.14 and 156 milliseconds respectively which

are smaller than those of the other algorithms. Again, in the Accidents, the number of rule, the

computational time and the memory consumption of ARM-AMO are 86.18, 2115 milliseconds

and 34.96 MB which are much better as compared to the other algorithms. Similar cases happen

in the T10I4D100K and Retails dataset.

Figures 3-5 indicate the overall performance of HUIM-MMU, WFIM, HUIL, CP Tree,

AMO, ARM-PSO and ARM-AMO of all algorithms with different datasets in terms of the

number of rules, time and memory consumption, respectively. It is clear that the ARM-AMO

algorithm has smaller numbers of rules (Fig. 3), computational time (Fig. 4), and memory

consumption (Fig. 5) than the other algorithms on all datasets namely Mushroom, Retails,

Accidents and T10I4D100K.

Fig. 3. Performance analysis in term of number of rules in Case 1

21

Fig. 4. Performance analysis in term of time in Case 1

Fig. 5. Performance analysis in term of memory consumption in Case 1

22

5.2.2. Case 2: support = 0.5 and confidence = 0.6

Table 11 indicates the average number of rules, the average computational time and the

memory consumption of all algorithms in this case. Herein, the value of support is smaller than

that of the confidence. It can be seen that the proposed ARM-AMO algorithm has better

performance than the others.

Table 11. Comparison of algorithms in terms of number of rules, time and memory

consumption in Case 2 (Bold values indicate the best among all in a row)

Dataset Parameters HUIM

-MMU

WFIM HUIL CP

Tree

AMO ARM-

PSO

ARM-

AMO

Mushroom Number of Rules (%) 64.18 64.35 62.13 65.54 62.81 63.21 52.14

Time (Milliseconds) 154 152 152 153 154 153 131

Memory Consumption

(MB)

4.77 4.76 4.74 4.75 4.69 4.73 4.78

Retails Number of Rules (%) 88.52 87.74 85.77 86.82 89.88 88.84 74.97

Time (Milliseconds) 195 196 192 195 198 194 181

Memory Consumption

(MB)

4.85 4.82 4.82 4.84 5.01 4.87 4.81

Accidents Number of Rules (%) 77.25 78.54 75.47 76.85 77.45 76.95 65.98

Time (Milliseconds) 2104 2105 2202 2103 2112 2103 1852

Memory Consumption

(MB)

34.05 34.04 34.02 34.05 35.05 34.95 34.01

T10I4D100K Number of Rules (%) 77.52 76.46 76.52 76.64 76.52 77.36 58.42

Time (Milliseconds) 1128 1125 1125 1131 1152 1132 985

Memory Consumption

(MB)

17.79 17.78 17.76 17.79 18.07 17.78 17.29

23

Specifically on Mushroom dataset, the average number of rules generated by ARM-AMO is

52.14 which is equal to (79%-83%) of those of the other algorithms. Likewise, the average

computational time of ARM-AMO is 131 (seconds) which is equal to (85%-86%) of those of the

other algorithms. However, memory consumption of ARM-AMO is 4.78 MB which is not

smaller than memory of the others. We also made another test on the Retails dataset and got the

results of average number of rules, computational time, and memory consumption of ARM-

AMO are 74.97, 181 seconds, and 4.81 MB respectively. These numbers are approximately 85%,

93%, and 98% of those of the other algorithms respectively. If we take the average results on all

datasets, the average number of rules, computational time, and memory consumption of ARM-

AMO are 62.8, 787 seconds, and 15.2 MB respectively. They are still smaller than those of the

other algorithms which the reduced percentages being 18%, 14%, and 1%.

Figures 6-8 indicate the overall performance of HUIM-MMU, WFIM, HUIL, CP Tree,

AMO, ARM-PSO and ARM-AMO of all algorithms with different datasets in terms of the

number of rules, time and memory consumption, respectively in this case. It can be seen that the

ARM-AMO holds the best results among all. Specifically, ARM-AMO has smaller numbers of

rules (Fig. 6), computational time (Fig. 7), and memory consumption (Fig. 8) than the other

algorithms on all datasets namely Mushroom, Retails, Accidents and T10I4D100K.

24

Fig. 6. Performance analysis in term of number of rules in case 2

Fig. 7. Performance analysis in term of time in case 2

25

Fig. 8. Performance analysis in term of Memory Consumption (MB) in case 2

5.2.3. Case 3: support = 0.6 and confidence = 0.7

Table 12 indicates the average number of rules, the average computational time and the

memory consumption of all algorithms in this case. Again, the value of support is smaller than

that of the confidence. However, its values are larger than those in Case 2. It can be seen that the

proposed ARM-AMO algorithm has better performance than the others. For instance, in

Mushroom, Retails, Accident and T10I4D100K datasets, the number of rules generated by

ARM-AMO are51.24, 52.97, 45.98 and 55.12 respectively. The computational time taken to

generate these rules is 119, 185, 1850 and 1074, respectively. The memory consumption is 3.86,

3.52, 33.32 and 17.06, respectively. They are all better than those of the other algorithms. Thus,

it has been concluded that the proposed algorithm performs better in term of large data size and

maximum support values.

26

Table 12. Comparison of algorithms in terms of number of rules, time and memory

consumption in Case 3 (Bold values indicate the best among all in a row)

Dataset Parameters HUIM

-MMU

WFIM HUIL CP

Tree

AMO ARM-

PSO

ARM-

AMO

Mushroom Number of Rules (%) 54.28 55.15 52.14 54.54 51.82 54.24 41.24

Time (Milliseconds) 123 125 124 123 129 126 119

Memory Consumption

(MB)

3.85 3.85 3.82 3.86 3.81 3.83 2.86

Retails Number of Rules (%) 54.52 55.34 55.47 56.52 59.98 57.84 48.97

Time (Milliseconds) 188 189 188 187 195 191 175

Memory Consumption

(MB)

3.89 3.88 3.87 3.84 3.85 3.88 2.98

Accidents Number of Rules (%) 49.25 48.14 48.47 46.85 47.45 48.95 42.98

Time (Milliseconds) 1860 1861 1863 1862 1869 1865 1550

Memory Consumption

(MB)

33.85 33.86 33.86 33.85 34.85 33.86 27.32

T10I4D100K Number of Rules (%) 57.42 57.46 57.52 57.64 57.42 57.36 51.12

Time (Milliseconds) 1091 1189 1196 1086 1093 1089 874

Memory Consumption

(MB)

17.73 17.74 17.74 17.75 18.71 17.75 14.06

Figures 9-11 indicate the overall performance of HUIM-MMU, WFIM, HUIL, CP Tree,

AMO, ARM-PSO and ARM-AMO of all algorithms with different datasets in terms of the

number of rules, time and memory consumption, respectively in Case 3. Similar results to the

two previous cases are realized herein where ARM-AMO has smaller numbers of rules (Fig. 9),

computational time (Fig. 10), and memory consumption (Fig. 11) than the other algorithms on all

datasets namely Mushroom, Retails, Accidents and T10I4D100K.

27

Fig. 9. Performance analysis in term of number of rules in case 3

Fig. 10. Performance analysis in term of time in case 3

28

Fig. 11. Performance analysis in term of memory consumption in case 3

5.2.4. Summary

Besides three above cases, in order to verify the efficiency of the proposed algorithm, we

made more cases of support and confidence values as in Table 13. These values are chosen

within [0, 1] so that we have 15 cases in total. By the similar calculation process indicated above,

we derive the results in Figures 12-14 demonstrating performance of HUIM-MMU, WFIM,

HUIL, CP Tree, AMO, ARM-PSO and ARM-AMO in terms of the number of rules, time and

memory consumption, respectively (Table 13). It can be seen that the proposed algorithm has

better performance than the related ones.

Table 13. Values of support and confidence in other cases

CASE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.1

and

0.1

0.2

and

0.2

0.2

and

0.1

0.3

and

0.2

0.4

and

0.3

0.3

and

0.4

0.5

and

0.4

0.4

and

0.5

0.6

and

0.5

0.5

and

0.6

0.7

and

0.6

0.6

and

0.7

0.8

and

0.7

0.7

and

0.8

0.8

and

0.8

29

Fig. 12. Performance analysis for number of rule generation in other cases

Fig. 13. Performance analysis for time in other cases (Milliseconds)

30

Fig. 14. Performance analysis for memory consumption in other cases (MB)

6. Conclusions

In this paper, we proposed a new association rule mining method based on Animal Migration

Optimization to reduce the number of rules, computational time and memory consumption. It is

based on the idea that rules which are not of high support and unnecessary are deleted. Only

frequent rules are kept and integrated into the fitness function of Animal Migration Optimization.

The experiments in the benchmark Frequent Item-set Mining Dataset Repository datasets

affirmed that the number of rules, the computational time and memory consumption of the

proposed ARM-AMO method are better than those of the other existing algorithms. It has been

indicated that ARM-AMO provides better performance with minimization of running time for

frequent item set generation by 39% and also reduces the number of rules generated by 52%,

31

when compared with the other algorithms in large datasets using maximum support and

confidence values. The finding is significant to mining association rules in real applications.

Future works of this research will investigate the incorporation of ARM-AMO with the

parallel strategy to both enhance the computational time and the quality of rules. Besides, new

methods of updating rule and rule optimization should be researched intensively to boost the

performance of ARM-AMO. Lastly, a framework for distributed databases like in (Goyal et al.,

2017) or clustering models (Son, Cuong & Long, 2013; Thong & Son, 2016; Son & Hai, 2016;

Son & Phong, 2016; Son, Viet & Hai, 2017; Wang et al., 2017) is also our target.

REFERENCES

Anuradha, R., &Rajkumar, N. (2017). Mining generalized positive and negative inter-cross fuzzy

multiple-level coherent rules. Journal of Intelligent & Fuzzy Systems, 32(3), 2269-2280.

Badhe, V., Thakur, R. S., & Thakur, G. S. (2015).Vague Set Theory for Profit Pattern and

Decision Making in Uncertain Data. International Journal of Advanced Computer Science

and Applications, 6(6), 58-64.

Barati, M., Bai, Q., & Liu, Q. (2017). Mining semantic association rules from RDF

data. Knowledge-Based Systems, 133, 183-196.

Chen, C. X., Shen, J. J., Chen, B., Shang, C. X., & Wang, Y. C. (2011). An improvement apriori

arithmetic based on rough set theory. In Circuits, Communications and System (PACCS),

2011 Third Pacific-Asia Conference on IEEE, 1-3.

Das, S. R., Panigrahi, P. K., Das, K., & Mishra, D. (2012).Improving rbf kernel function of

support vector machine using particle swarm optimization. International Journal of

Advanced Computer Research, 2(4), 130-135.

Feng, F., Cho, J., Pedrycz, W., Fujita, H., & Herawan, T. (2016). Soft set based association rule

mining. Knowledge-Based Systems, 111, 268-282.

32

Glass, D. H. (2013). Confirmation measures of association rule interestingness. Knowledge-

Based Systems, 44, 65-77.

Goyal, L. M., Beg, M. M., & Ahmad, T. (2017). An Efficient Framework for Mining Association

Rules in the Distributed Databases. The Computer Journal, 1-13.

Huang, Y., Li, T., Luo, C., Fujita, H., & Horng, S. J. (2017). Matrix-based dynamic updating

rough fuzzy approximations for data mining. Knowledge-Based Systems, 119, 273-283.

Indira, K.& Kanmani, S.(2012).Association Rule Mining using Self Adaptive Particle Swarm

Optimization. International journal of computer application, Special Issue on

“Computational Intelligence & Information Security" CIIS (1), 27-31.

Jerry, C. W. L., Wensheng G., Philippe F.-V., Tzung-P. H., Vincent S. T. (2016). Fast algorithms

for mining high-utility itemsets with various discount strategies.Advanced Engineering

Informatics, 30(2), 109-126.

Kieu, T., Vo, B., Le, T., Deng, Z. H., & Le, B. (2017). Mining top-k co-occurrence items with

sequential pattern. Expert Systems with Applications, 85, 123-133.

Kuo, R. J., Chao, C. M., & Chiu, Y. T. (2011). Application of particle swarm optimization to

association rule mining. Applied Soft Computing, 11(1), 326-336.

Li, X., Zhang, J., & Yin, M. (2014). Animal migration optimization: an optimization algorithm

inspired by animal migration behavior. Neural Computing and Applications, 24(7-8),

1867-1877.

Lin, J. C. W., Li, T., Fournier-Viger, P., & Hong, T. P. (2015).A fast Algorithm for mining fuzzy

frequent itemsets. Journal of Intelligent & Fuzzy Systems, 29(6), 2373-2379.

Mai, T., Vo, B., & Nguyen, L. T. (2017). A lattice-based approach for mining high utility

association rules. Information Sciences, 399, 81-97.

33

Martínez-Ballesteros, M., Bacardit, J., Troncoso, A., &Riquelme, J. C. (2015).Enhancing the

scalability of a genetic algorithm to discover quantitative association rules in large-scale

datasets. Integrated Computer-Aided Engineering, 22(1), 21-39.

Mlakar, U., Zorman, M., Fister Jr, I., & Fister, I. (2017).Modified binary cuckoo search for

association rule mining. Journal of Intelligent & Fuzzy Systems, (Preprint), 1-12.

Nguyen L. T., Vo B., Hong T.-P., and Thanh H. C.. (2012). Classification based on association

rules: A lattice-based approach.Expert Systems with Applications,39(13), 357–366.

Nithya, N. S., & Duraiswamy, K. (2015). Correlated gain ratio based fuzzy weighted association

rule mining classifier for diagnosis health care data. Journal of Intelligent & Fuzzy

Systems, 29(4), 1453-1464.

Oladele, R. O., & Sadiku, J. S. (2013).Genetic algorithm performance with different selection

methods in solving multi-objective network design problem. International Journal of

Computer Applications, 70(12).

Pears, R., & Koh, Y. S. (2011).Weighted association rule mining using particle swarm

optimization. In Pacific-Asia Conference on Knowledge Discovery and Data Mining (pp.

327-338).Springer, Berlin, Heidelberg.

Randy L. &Haupt S. (2003).Practical Genetic Algorithms. Wiley-IEEE Publication.

Ratner, B. (2017). Statistical and Machine-Learning Data Mining. CRC Press.

Rauch, J. (2015). Formal Framework for Data Mining with Association Rules and Domain

Knowledge–Overview of an Approach. Fundamenta Informaticae, 137(2), 171-217.

Sathya M. & Thangadurai K. (2016).Association Rule Generation Using E-ACO Algorithm.

International Journal of Control Theory and Applications, 27(9), 513-521.

Shirsath, P. A., & Verma, V. K. (2013).A Recent Survey on Incremental Temporal Association

Rule Mining. International Journal of Innovative Technology and Exploring Engineering,

3(1), 85-92.

http://serialsjournals.com/journal-detail.php?journals_id=268

34

Shmueli, G., & Lichtendahl Jr, K. C. (2017), Data Mining for Business Analytics: Concepts,

Techniques, and Applications. John Wiley & Sons.

Slim B., Rabie S., Sadok B. Y., Engelbert M. N. (2014). Mining Undominated Association Rules

Through Interestingness Measures. International Journal on Artificial Intelligence Tools,

23(4), 95-102.

Son, L. H., & Phong, P. H. (2016). On the performance evaluation of intuitionistic vector

similarity measures for medical diagnosis. Journal of Intelligent & Fuzzy Systems, 31(3),

1597-1608.

Son, L.H., Cuong, B. C., & Long, H. V. (2013).Spatial interaction–modification model and

applications to geo-demographic analysis. Knowledge-Based Systems, 49, 152-170.

Son, L.H., Hai, P.V. (2016). A novel multiple fuzzy clustering method based on internal

clustering validation measures with gradient descent. International Journal of Fuzzy

Systems, 18(5), 894-903.

Son, L.H., Viet, P.V., Hai, P.V. (2017). Picture inference system: a new fuzzy inference system

on picture fuzzy set. Applied Intelligence, 46(3), 652-669.

Song, A., Ding, X., Chen, J., Li, M., Cao, W., & Pu, K. (2016). Multi-objective association rule

mining with binary bat algorithm. Intelligent Data Analysis, 20(1), 105-128.

Song, K., & Lee, K. (2017). Predictability-based collective class association rule mining. Expert

Systems with Applications, 79, 1-7.

Tahrima H., Rezaul K., Samiullah, Chowdhury F. A. (2017). An efficient dynamic superset bit-

vector approach for mining frequent closed itemsets and their lattice structure. Expert

Systems with Applications, 67,252-271.

Thabtah, F., Qabajeh, I., & Chiclana, F. (2016).Constrained dynamic rule induction

learning. Expert Systems with Applications, 63, 74-85.

35

Thang M., Bay V., Loan T.T. N.(2017). A lattice-based approach for mining high utility

association rules. Information Sciences, 399, 81-97.

Thanh-Long N., Bay V., Vaclav S. (2017). Efficient algorithms for mining colossal patterns in

high dimensional databases. Knowledge-Based Systems, 122, 75-89.

Thong, P. H., Son, L.H. (2016).A novel automatic picture fuzzy clustering method based on

particle swarm optimization and picture composite cardinality. Knowledge-Based

Systems, 109, 48-60.

Vo, B., Pham, S., Le, T., & Deng, Z. H. (2017). A novel approach for mining maximal frequent

patterns. Expert Systems with Applications, 73, 178-186.

Wang L., Li, S. L., Sun, H., & Peng, K. X. (2016). A classification and regression algorithm

based on quantitative association rule tree. Journal of Intelligent & Fuzzy Systems, 31(3),

1407-1418.

Wang, G., Zhang, G., Choi, K. S., & Lu, J. (2017). Deep Additive Least Squares Support Vector

Machines for Classification With Model Transfer. IEEE Transactions on Systems, Man,

and Cybernetics: Systems. DOI: 10.1109/TSMC.2017.2759090.

Wensheng G, Jerry C.-W. L., Philippe F.-V., Han-C. C., Jimmy M.-T. W., Justin Z. (2017).

Extracting recent weighted-based patterns from uncertain temporal databases. Engineering

Applications of Artificial Intelligence, 61, 161-172.

Yan, C., Sun, H., & Liu, W. (2016).Study of fuzzy association rules and cross-selling toward

property insurance customers based on FARMA. Journal of Intelligent & Fuzzy

Systems, 31(6), 2789-2794.

Yun, U., Kim, D., Ryang, H., Lee, G., & Lee, K. M. (2016). Mining recent high average utility

patterns based on sliding window from stream data. Journal of Intelligent & Fuzzy

Systems, 30(6), 3605-3617.

