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Abstract

This paper presents a method to construct an interval-valued fuzzy set from a fuzzy set
and the representation of the lack of knowledge or ignorance that experts are subject to
when they define the membership values of the elements to that fuzzy set. With this con-
struction method, it is proved that membership intervals of equal length to the ignorance
associated to the elements are obtained when the product t-norm and the probabilistic
sum t-conorm are used. The construction method is applied to build interval-valued fuzzy
preference relations (IVPRs) from given fuzzy preference relations (FRs). Afterwards,
a general algorithm to solve decision making problems using IVFRs is proposed. The
decision making algorithm implements different selection processes of alternatives where
the order used to choose alternatives is a key factor. For this reason, different admissible
orders between intervals are analysed. Finally, OWA operators with interval weights are
analysed and a method to obtain those weights from real-valued weights is proposed.

Keywords: Interval-valued fuzzy preference relation; Weak ignorance function;
Admissible orders for intervals; Interval OWA operators; Interval weights; Decision
making

1. Introduction

It is widely acknowledged that there exist problems for which the solution obtained
using fuzzy techniques sometimes are very good, but some others not. Usually, this
discordance is due to the experts’ selection of a particular type of membership function
to represent the information. For instance, in decision making problems, depending on the
level of knowledge, experts might express their preferences using precise numerical values.
Clearly, there are cases when the experts’ level of knowledge about the environment where
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the decision making is to be applied is rather low or imprecise. It may also happen, when
alternatives are pairwise compared, that experts do not know with certainty whether they
prefer one alternative to another, in which case they might choose to assign membership
values close to 0.5 to reflect this ignorance situation. In these cases, it is appropriately
argued though that precise numerical values to represent preferences might not be the
most suitable choice in these cases , and hence the final decision arrived at might not the
be the best one (see [27, 28, 43]).

Another difficulty arises sometimes in decision making: depending on the method
used to solve a given problem it may happen that it is not possible to choose a single best
alternative. For example, assume that we have the set of alternatives X = {x1, x2, x3, x4}
and the following fuzzy preference relation:

R =


− 0.3149 0.1605 0.3640

0.6851 − 0.0407 0.0624

0.8395 0.9593 − 0.3874

0.6360 0.9376 0.6126 −


where Rij represents the degree of preference of alternative xi over alternative xj. If
the well-known voting decision strategy that adds the preference values assigned to each
alternative by rows and selects as best solution the alternative with the largest sum is
applied, then both alternatives x3 and x4 are best in this particular scenario.

All previous considerations lead us to set the following research objectives:

1. To build, from fuzzy preference relations (fuzzy sets), interval-valued fuzzy pref-
erence relations (interval-valued fuzzy sets) where each element is associated an
interval value representing the membership degree of that element to the set and
with

(a) the original (numerical) membership value of the element to the set being a
point of the interval value;

(b) and the length of the interval value represents the degree of uncertainty of the
expert when giving the fuzzy membership degree (see [11, 42]).

2. To use different aggregation functions and methods for choosing the best alternative
from an interval-valued fuzzy preference relation;

3. To analyse the influence of the order between intervals used for choosing the solution
alternative.

Bivariate functions are proposed to achieve objective (1). The first value of the bi-
variate function will be the numerical value provided by the expert, i.e. the degree of
membership of the element to the original FR; while the second value is derived from
the ignorance function to represent the lack of knowledge of the expert in the assigna-
tion of the first value. From these two values, an (IVFR) is built. For objective (2),
different approaches to select an alternative as solution are considered. In particular,
interval-valued OWA operators with interval weights constructed from real weights and
weak ignorance functions are proposed to generalise well-known non-dominance criteria.
Finally, for objective (3), the processing of IVFR makes necessary to deal with the issue
of ordering interval values, for which admissible orders given by Bustince et al. in [12]
are implemented in the decision making algorithm.
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This paper is organised as follows: To make the paper self-contained, in the next
section we introduce the main concepts needed and used throughout it. In Section 3 we
recall the concept of strict binary preference relation. Section 4 is devoted to the analysis
of some properties of IVFR. Section 5 presents the construction method of interval
values from two numerical values. This is used in Section 6 to obtain interval-valued
fuzzy sets from fuzzy sets, whereas in Section 7 these results are used to build an IVFR
from an FR. In Section 8 an algorithm for decision making that makes use of interval-
valued fuzzy sets is developed. In Section 9 consideration is given to the extension of the
decision making algorithm to the following four well-known methods: the voting method,
the method based on the use of real-valued OWA operators, the method based on the use
of interval-valued OWA operators with interval-valued weights, and the non-dominance
method. Section 10 proposes a consensus algorithm to apply in those cases when the
outcomes of the different algorithms do not coincide. Section 11 provides an example
to illustrate and make easier to understand the full extent of the application of all the
developments of previous sections. Finally, conclusions are drawn in Section 12.

2. Preliminary definitions

In this section we recall some well-known definitions and results used throughout the
paper.

A strictly decreasing and continuous function N : [0, 1] → [0, 1] such that N(0) = 1
and N(1) = 0 is called a strict negation. If, in addition, it is involutive, i.e. N(N(x)) = x
∀x ∈ [0, 1], then N is said to be a strong negation. In this paper only strong negations
will be considered.

Definition 1 (Fuzzy set). A fuzzy set A on a finite universe U 6= ∅ is a mapping
A : U → [0, 1].

We denote by FS(U) the set of all fuzzy sets on U . Let us denote by L([0, 1]) the set
of all closed subintervals in [0, 1]:

L([0, 1]) = {x = [x, x]|0 ≤ x ≤ x ≤ 1}.

Then L([0, 1]) is a partially ordered set with respect to the relation ≤L defined in the
following way: given x,y ∈ L([0, 1]),

x ≤L y if and only if x ≤ y and x ≤ y .

Moreover (L([0, 1]),≤L) is a complete lattice [19] with smallest element 0L = [0, 0] and
largest element 1L = [1, 1]. Note that it is not a linear lattice, since there are elements
which are not comparable.

The following definition can be found in [9, 34] (see also [10, 20, 25, 51]).

Definition 2 (Interval-valued fuzzy set). An interval-valued fuzzy set (IVFS) (or interval
type 2 fuzzy set) A on a finite universe U 6= ∅ is a mapping A : U → L([0, 1]).

Let us denote by W the function that associates to a closed subinterval of [0, 1] its
length or width, i.e. W : L([0, 1]) → [0, 1] with W ([x, x]) = x − x. If x = [x, x] ∈
L([0, 1]), by interval arithmetics [26] it is 1 − x = [1, 1] − [x, x] = [1 − x, 1 − x] and
we have that W (x) = W (1 − x). Note that given an IVFS A the membership of each
element ui ∈ U is represented by an interval value A(ui) = [A(ui), A(ui)] with length
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W (A(ui)) = A(ui)−A(ui). A study on the evolution of the IVFSs and several results on
their representation, connective types and operations can be found in [9, 19, 35, 45]. We
denote by IVFS(U) the set of all IVFSs on U .

Definition 3 (Interval-valued negation). An interval-valued (IV) negation is a function
NIV : L([0, 1]) → L([0, 1]) that is decreasing, with respect to ≤L,with NIV (1L) = 0L and
NIV (0L) = 1L.

An IV negation NIV is said to be involutive if it verifies: NIV (NIV (x)) = x, ∀x ∈
L([0, 1]). The following result links involutive IV negations with strong negations:

Theorem 1 (Deschrijver, Cornelis and Kerre [19]). NIV is an involutive IV negation if
and only if there exists a strong negation N such that NIV ([x, x]) = [N(x),N(x)].

Throughout this paper we use the involutive IV negation NIV generated from the
standard strong negation N(x) = 1− x, i.e. NIV ([x, x]) = [1− x, 1− x].

Definition 4 (Triangular norm). A triangular norm (t-norm) T : [0, 1]2 → [0, 1] is an
associative, commutative, non-decreasing function such that T (1, x) = x for all x ∈ [0, 1].

The three basic and mostly used t-norms are: the minimum TM(x, y) = min(x, y), the
product TP (x, y) = x · y and the  Lukasiewicz T L(x, y) = max(x + y − 1, 0). A t-norm T
is called idempotent if T (x, x) = x for all x ∈ [0, 1]. The only idempotent t-norm is the
minimum. A t-norm T is called strict if it is a strictly increasing function in each place
on ]0, 1[2. A t-norm T is called nilpotent if it is continuous and each element a ∈]0, 1[ is

a nilpotent element of T , i.e., if there exists an n ∈ {1, 2, ...} such that T (
n−times︷ ︸︸ ︷
a, ..., a) = 0 for

any a ∈]0, 1[.

Definition 5. An automorphism of the unit interval is a strictly increasing bijective
mapping ϕ : [0, 1]→ [0, 1].

Note that any automorphism ϕ is continuous and: ϕ(0) = 0 and ϕ(1) = 1. We have
the following representation theorem for nilpotent t-norms:

Theorem 2 (Klement, Mesiar and Pap [33]). For a function T : [0, 1]2 → [0, 1] the
following statements are equivalent:

(i) T is a nilpotent t-norm.

(ii) T is isomorphic to the  Lukasiewicz t-norm T L, i.e., there is an automorphism ϕ of
the unit interval such that ∀(x, y) ∈ [0, 1]2

T (x, y) = ϕ−1(T L(ϕ(x), ϕ(y))) = ϕ−1(max(ϕ(x) + ϕ(y)− 1, 0)).

In 1949, Aczél [1] proved the following theorem:

Theorem 3 (Aczél [1]). A continuous t-norm T is strict if and only if there exists an
automorphism ϕ of the unit interval such that

T (x, y) = ϕ−1(ϕ(x) · ϕ(y)).
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Definition 6 (Triangular conorm). A triangular conorm (t-conorm) S : [0, 1]2 → [0, 1]
is an associative, commutative, non-decreasing function such that S(0, x) = x for all
x ∈ [0, 1].

The three basic and mostly used t-conorms are: the maximum SM(x, y) = max(x, y),
the probabilistic sum S+(x, y) = x+y−x·y and the  Lukasiewicz S L(x, y) = min(x+y, 1).
It is well known that t-norms and t-conorms on [0, 1]2 can be used to model the union and
intersection, respectively, of fuzzy sets (see [4, 13, 23]). A t-norm T and a t-conorm S are
dual with respect to the negation N if T (x, y) = N(S(N(x),N(y))) for all x, y ∈ [0, 1].
For instance, TP and S+ are dual with respect to the standard strong negation.

In the following, we will extend these concepts to the case of interval-valued fuzzy
sets [9, 19].

Definition 7. A function T : L([0, 1])2 → L([0, 1]) is said to be an interval-valued t-norm
(IV t-norm) if it is commutative, associative, increasing in both arguments (with respect
to the order ≤L), and has the neutral element 1L. Similarly, a function S : L([0, 1])2 →
L([0, 1]) is said to be an interval-valued t-conorm (IV t-conorm) if it is commutative,
associative, increasing, and has the neutral element 0L.

Definition 8. a) An IV t-norm is said to be t-representable if there are two t-norms
Ta and Tb in [0, 1] such that T(x,y) = [Ta(x, y), Tb(x, y)] ∈ L([0, 1]) for all x, y ∈
L([0, 1]).

b) An IV t-conorm is said to be s-representable if there are two t-conorms Sa and Sb in
[0, 1] such that S(x,y) = [Sa(x, y), Sb(x, y)] ∈ L([0, 1]) for all x, y ∈ L([0, 1]).

In this paper we only use t-representable IV t-norms and s-representable IV t-conorms.
In [12] the notion of admissible orders on L([0, 1]) was introduced and investigated.

The authors established that a binary relation � on L([0, 1]) is an admissible order if it
is a linear order on L([0, 1]) refining ≤L, i.e. if for all [a, b], [c, d] ∈ L([0, 1]) such that
[a, b] ≤L [c, d] then it is also [a, b] � [c, d]. The use of admissible orders allow us to
compare intervals using total orders between them. Next some examples of admissible
orders are given.

Example 1. Let [a, b], [c, d] ∈ L([0, 1]) :

• [a, b] �L1 [c, d]⇔ a < c or (a = c and b ≤ d);

• [a, b] �L2 [c, d]⇔ b < d or (b = d and a ≤ c);

• [a, b] �XY [c, d]⇔ a+ b < c+ d or (a+ b = c+ d and b− a ≤ d− c) (defined by
Xu and Yager in [47]);

• [a, b] �α,β [c, d] ⇔ Kα(a, b) < Kα(c, d) or (Kα(a, b) = Kα(c, d) and Kβ(a, b) ≤
Kβ(c, d)), being Kα : [0, 1]2 → [0, 1] a mapping defined by Kα(a, b) = a+ α · (b− a)
for α, β ∈ [0, 1] and α 6= β.

Definition 9. An n-ary (n ∈ N, n ≥ 2) aggregation function is a non-decreasing mapping
in each argument, M : [0, 1]n → [0, 1], verifying M(0, · · · , 0) = 0 and M(1, · · · , 1) = 1.

Bustince et al. [12] described different construction methods of admissible orders by
means of aggregation functions, as well as the notion of aggregation function of interval
values.
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Definition 10 (Aggregation function of interval values). Let (L([0, 1]),�) be a bounded
partially ordered set (poset) with smallest element 0L and greatest element 1L. A map-
ping M : L([0, 1])n → L([0, 1]) is a n-ary (n ∈ N, n ≥ 2) aggregation function on
(L([0, 1]),�) if it is �-increasing, i.e., for all x,y ∈ L([0, 1])n, M(x) � M(y) when-
ever x1 � y1, · · · , xn � yn, and satisfies the boundary conditions M(0L, · · · , 0L) = 0L,
M(1L, · · · , 1L) = 1L.

The concept of ignorance functions is defined in [11] to measure the degree of igno-
rance/lack of knowledge of an expert when he/she assigns numerical value as membership
degree of an object to a given class and another numerical value for the membership of
the same element to a different class. An adaptation of this concept using a variable and
its negation was defined as a weak ignorance function in [41].

Definition 11 (Sanz et al. [41] ). A weak ignorance function is a continuous mapping
g : [0, 1]→ [0, 1] verifying:

1. g(x) = g(1− x) for all x ∈ [0, 1];

2. g(x) = 0 if and only if x = 0 or x = 1;

3. g(0.5) = 1.

Note that the symmetry property of function g wrt to the value 0.5 makes the explicit
declarations of properties to verify by g be enough for one of the two subdomains [0, 0.5]
or [0.5, 1]. Consequently, if it is asserted that g is a monotonic function then it is meant
that g is increasing (decreasing) in [0, 0.5] and decreasing (increasing) in [0.5, 1].

Example 2. The following function

g(x) = 2 ·min(x, 1− x) for all x ∈ [0, 1] (1)

is a weak ignorance function.

Given a fuzzy set A ∈ FS(U) and a weak ignorance function g, the considerations
and reasoning provided in [11] imply that the value g(A(ui)) represents the ignorance
associate to the value A(ui).

3. Strict Fuzzy binary preference relations

A fuzzy preference relation R on a set of alternatives X = {x1, . . . , xn} is a fuzzy
subset of the Cartesian product X ×X, that is R : X ×X → [0, 1] ([14, 16, 23, 27, 37]);
for each pair of alternatives xi and xj, Rij = R(xi, xj) represents a degree of (weak)
preference of xi over xj, namely the degree to which xi is considered as least as good as
xj (by definition, Rii = 1). The preference relation may be conveniently represented by
the n× n matrix R = (Ri,j) for all i, j ∈ {1, . . . , n} . We denote by FR(X ×X) the set
of all the fuzzy preference relations on X.

From a weak preference relation R, Fodor and Roubens [23] (see also [16]) derive the
following relations:

1. Strict preference Pij = P(xi, xj) is a measure of strict preference of xi over xj,
indicating that xi is (weakly) preferred to xj but xj is not (weakly) preferred to xi.
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2. Indifference Iij = I(xi, xj) is a measure of the simultaneous fulfillment of Rij and
Rji. Roughly speaking, xi and xj are considered equal in the sense that both xi is
as good as xj and the other way around.

3. Incomparability Jij = J (xi, xj) is a measure of the incomparability of xi and xj.

More specifically, Fodor and Roubens [23] propose the following expressions of the
above relations in terms of a t-norm T and a strict negation N:

Pij = T (Rij,N(Rji)) for all i, j ∈ {1, . . . , n}; (2)

Iij = T (Rij,Rji) for all i, j ∈ {1, . . . , n}; (3)

Jij = T (N(Rij),N(Rji)) for all i, j ∈ {1, . . . , n}. (4)

Fuzzy preference structures, (P , I,J ), have been studied deeply (see [17, 23, 24, 29, 36,
38, 39]).

We say that R ∈ FR(X ×X) satisfies the property of reciprocity if Rij +Rji = 1 for
all i, j ∈ {1, · · · , n} (i 6= j). In reciprocal preference relations it is usual practice not to
define the elements of the main diagonal (see [31]).

Given a fuzzy preference relation R∗ ∈ FR(X × X), a reciprocal fuzzy preference
relation R can be constructed using Eq. (5):

Rij =

{ R∗
ij

R∗
ij+R∗

ji
if R∗ij +R∗ji 6= 0

0 othercase
(5)

In this paper we only work with reciprocal fuzzy preference relations. We have the
following result:

Theorem 4. Let R be a reciprocal fuzzy preference relation and N(x) = 1 − x for all
x ∈ [0, 1]. Then,

Pij = Rij if and only if T ≡ TM

for all Rij ∈ R.

Proof. Reciprocity of R and definition of N implies

Pij = T (Rij,N(Rji)) = T (Rij, 1−Rji) = T (Rij,Rij).

Therefore we have the following equivalences:

Pij = Rij ⇔ Rij = T (Rij,Rij)⇔ T is idempotent⇔ T ≡ TM

Orlovsky in [36] gives the following definition of strict fuzzy preference relation:

Definition 12 (Orlovsky [36]). Given a fuzzy preference relation R ∈ FR(X × X) a
strict fuzzy preference relation Rs ∈ FR(X ×X) is given by:

Rs
ij =

{
Rij −Rji if Rij > Rji

0 otherwise
. (6)

7



Next, we present the relationship between the strict fuzzy preference relation (2) given
by Fodor and Roubens and the one given by Orlovsky (6):

Theorem 5. Let R be a fuzzy preference relation and N(x) = 1 − x for all x ∈ [0, 1].
The following equivalence holds:

Pij = Rs
ij, ∀i, j ∈ {1, . . . , n} ⇔ T ≡ T L.

Proof. Firstly, the strict preference value Rs
ij can be written as follows:

Rs
ij = max(Rij −Rji, 0) = max(Rij + 1−Rji − 1, 0) = T L(Rij, 1−Rji).

Secondly, because N(x) = 1 − x we have that Pij = T (Rij, 1 − Rji). Therefore, the
following equivalence is true

Pij = Rs
ij, ∀i, j ∈ {1, . . . , n} ⇔ T (Rij, 1−Rji) = T L(Rij, 1−Rji), ∀i, j ∈ {1, . . . , n}.

Consequently, we have proved that

Pij = Rs
ij, ∀i, j ∈ {1, . . . , n} ⇔ T ≡ T L

It is worth remarking that the fuzzy preference relation, R, in Theorem 5 does not
necessarily need to be reciprocal.

4. Interval-valued fuzzy binary preference relations. Interval-valued strict
preference, interval-valued indifference and interval-valued incomparability

An approach that adds flexibility to represent uncertainty in decision making problems
consists of using interval-valued fuzzy relations [25, 44, 46]. An interval-valued fuzzy

preference relation R̃ on X is defined as an interval-valued fuzzy subset of X ×X; that
is, R̃ : X ×X → L([0, 1]). The interval R̃(xi, xj) = rij = [rij, rij] denotes the degree to
which elements xi and xj are related (representing the degree of preference of xi over xj)

in the relation R̃ for all xi, xj ∈ X. As usual, the elements of the main diagonal of an
interval-baled fuzzy preference relation will not be considered and therefore in the rest of
the paper we are assuming that i 6= j.

By IVFR(X ×X) we denote the set of all interval-valued fuzzy preference relations
on X ×X.

Definition 13. Let R̃ ∈ IVFR(X×X). We say that R̃ satisfies the reciprocity property

if for all rij, rji ∈ R̃ the following identities hold:

rij + rji = 1

rji + rij = 1
(7)

For a comprehensive study on interval-valued fuzzy relations the reader is advised to
read the following literature[5–7, 18].

Given an IVFR, R̃ = (rij), in the following we define its corresponding Interval-valued
strict preference (P), interval-valued indifference (I) and interval-valued incomparability
(J). These concepts are based on the corresponding ones given by Fodor and Roubens :
strict preference P (eq. (2)), indifference I (eq. (3)), and incomparability J (eq. (4)),
respectively. The new concepts here presented are based on the previously given concepts
of t-representable IV t-norms (Definition 8) and IV negations (Theorem 1) generated from
the standard strict negation:

8



(1) Interval-valued strict preference

Pij = TIV (rij, NIV (rji)) = (8)

= TIV ([rij, rij], [1− rji, 1− rji]) =

= [Ta(rij, 1− rji), Tb(rij, 1− rji)] for all i, j ∈ {1, . . . , n},

(2) Interval-valued indifference

Iij = TIV (rij, rji) = (9)

= TIV ([rij, rij], [rji, rji]) =

= [Ta(rij, rji), Tb(rij, rji)] for all i, j ∈ {1, . . . , n},

(3) Interval-valued incomparability

Jij = TIV (NIV (rij), NIV (rji)) = (10)

= TIV (NIV ([rij, rij]), NIV ([rji, rji])) =

= [Ta(1− rij, 1− rji), Tb(1− rij, 1− rji)] for all i, j ∈ {1, . . . , n}.

It is necessary to notice that these concepts can be generalised for any IV t-norms
and IV negation. The following results extends Theorem 4 to the case of IVFRs.

Theorem 6. Let R̃ ∈ IVFR(X ×X) be reciprocal and let Pij be its associated interval-
valued strict fuzzy preference relation given by Eq. (8). The following equivalence holds:

Pij = rij for all i, j ∈ {1, . . . , n} ⇔ Ta = Tb = TM .

Proof. Fistly, note that because R̃ is reciprocal we have:

Pij = [Ta(rij, 1− rji), Tb(rij, 1− rji)] = [Ta(rij, rij), Tb(rij, rij)]

Secondly,
Pij = rij for all i, j ∈ {1, . . . , n}

is equivalent to
∀i, j : Ta(rij, rij) = rij ∧ Tb(rij, rij) = rij

Thus, both Ta and Tb are idempotent t-norms and consequently, because there is only
one idempotent t-norm, both are the same and equal to the minimum t-norm:

Ta = Tb = TM .

5. Construction of intervals from two numbers

Our aim in this section is to build elements of L([0, 1]), satisfying a determined set
of properties, by means of two numbers in [0, 1] such that: (i) The first value is a point
inside the interval; (ii) The second value is proportional to the width of the interval.

For this reason we consider functions of the type:

F : [0, 1]2 → L([0, 1])

F (x, y) = [F (x, y), F (x, y)]

verifying
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(A) x ∈ F (x, y) for all x, y ∈ [0, 1];

(B) If y1 ≤ y2, then W (F (x, y1)) ≤ W (F (x, y2)) for all x, y1, y2 ∈ [0, 1];

The following two properties are also demanded:

(C) F (x, 0) = [x, x] and F (x, 1) = [0, 1] for all x ∈ [0, 1];

(D) For all x, y ∈ [0, 1] we have

F (x, y) + F (1− x, y) = 1

F (x, y) + F (1− x, y) = 1.

Note that property (D) is related with the reciprocity property of preferences. An example
of such a function F is provided next.

Example 3. The following function satisfies properties (A)-(D):

F (x, y) =

{
[x, x] if y 6= 1

[0, 1] if y = 1
.

I n the following we will study function F that are constructed using aggregation
functions for both F and F functions. This is later followed by a characterisation of
functions F using t-norms and t-conorms.

Let M1 and M2 be two binary aggregation functions with function F defined as follows:

FM1,M2(x, y) = [M1(x, y),M2(x, y)].

We observe that function F constructed as above does not satisfy property (C). Indeed,
if property (C) was true then it would also be true that

M1(x, 1) = 0 ∀x ∈ [0, 1].

In particular, we would have that M1(1, 1) = 0, in contradiction with the fact that
M1(1, 1) = 1.

We note that if M1(x, 1 − y) is used as the first argument of function F instead of
M1(x, y) then we would avoid the particular contradiction of M1(1, 1) = 0 found above,
although complementary conditions are necessary to fulfil properties (A)-(D). This is
expressed in the following result.

Proposition 1. Let M1 and M2 be two aggregation functions such that M1(x, 1 − y) ≤
M2(x, y) for all x, y ∈ [0, 1]. Consider the function

FM1,M2 : [0, 1]2 → L([0, 1])

FM1,M2(x, y) = [M1(x, 1− y),M2(x, y)].

Then it holds that:

1. FM1,M2 satisfies (A) if and only if M1(x, 1) ≤ x and M2(x, 0) ≥ x for all x ∈ [0, 1];

2. FM1,M2 satisfies (B);

10



3. FM1,M2 satisfies (C) if and only if M1(x, 1) = x, M1(x, 0) = 0, M2(x, 0) = x and
M2(x, 1) = 1 for all x ∈ [0, 1];

4. FM1,M2 satisfies (D) if and only if M1 and M2 are dual with respect to the standard
negation.

Proof. Direct.

The following result states that function F can be constructed using a pair of dual
t-norm and t-conorm.

Proposition 2. Let (T, S) a pair of dual t-norm and a t-conorm with respect to the
standard strong negation, N(x) = 1− x. The function

FT,S : [0, 1]2 → L([0, 1])

FT,S(x, y) = [T (x, 1− y), S(x, y)]
(11)

satisfies properties (A), (B), (C), (D) and FT,S(0, y) = [0, y] for all y ∈ [0, 1].

Proof. Note that T is a t-norm and therefore we have that 0 ≤ T (x, 1−y) ≤ min(x, 1−y).
Also, S is a t-conorm and therefore max(x, y) ≤ S(x, y) ≤ 1. The following inequality
min(x, 1− y) ≤ x ≤ max(x, y) implies that FT,S(x, y) ∈ L([0, 1]), and therefore F is well
defined. It also implies that x ∈ FT,S(x, y), and therefore property (A) is proved. The
proof of properties (B), (C) and (D) are direct and left for the reader.

The following results characterises the t-norms and t-conorms to use in function FT,S
to produce intervals of length equal to the second argument y .

Theorem 7. Let (T, S) a pair of dual t-norm and a t-conorm with respect to the standard
strong negation, N(x) = 1− x, with T being continuous and strict. Then:

y = W (FT,S(x, y)) ∀y ∈ [0, 1]⇔ T ≡ TP ∧ S ≡ S+

Proof. Starting with y = W (FT,S(x, y)), and using the duality property between T and
S we have:

y = S(x, y)−T (x, 1−y) = 1−T (1−x, 1−y)−T (x, 1−y)⇔ T (x, 1−y)+T (1−x, 1−y) = 1−y.

Denoting a = 1− y, b = x and taking into account the symmetry of T , we have that

T (a, b) + T (a, 1− b) = a for all a, b ∈ [0, 1] (12)

Because T is strict and continuous, by Theorem 3, there is an automorphism ϕ of the
unit interval such that

T (a, b) = ϕ−1(ϕ(a) · ϕ(b)) ∀a, b ∈ [0, 1]

From [23], Eq. (12) holds if and only if ϕ(x) = xp for some p ∈]0,∞[, and then T (a, b) =

ϕ−1(ϕ(a) ·ϕ(b)) = (ap · bp)
1
p = a · b. Consequently, we have that T ≡ TP , which completes

the proof.

11



Corollary 1. In the setting of Theorem 7 it is true that

y = W (FT,S(x, y)) = W (FT,S(N(x), y)) ∀x, y ∈ [0, 1] (13)

with N any negation operator.

Proof. Note that this result is obvious because the length of the interval constructed with
the function FT,S is equal to y and this value is not affected by the x value when y is
fixed.

The main contribution of the method contained in Theorem 7 is that an interval-
valued fuzzy set can be constructed from a fuzzy set. Indeed, given A ∈ FS(U) an

interval-valued fuzzy set Ã ∈ IVFS(U) can be obtained using an ignorance function g, by
assigning to each element ui ∈ U the following membership interval value: [TP (A(ui), 1−
g(A(ui))), S+(A(ui), g(A(ui)))].

6. Construction of fuzzy sets from interval-valued fuzzy sets

In 1983 Atanassov introduced a new operator [2, 3] allowing to associate a fuzzy set
with each Atanassov intuitionistic fuzzy set or interval-valued fuzzy set. In fact, this
operator takes a value from the interval representing the membership to the IV FS and
defines that value to be the membership degree to a fuzzy set.

Definition 14. The operator K colonL([0, 1])→ [0, 1] is given by K = (Kα)α∈[0,1], with
each operator Kα : L([0, 1]) → [0, 1] defined as a convex combination of its boundary
arguments by Kα(x) = x+ α(x− x).

A different and new operator P : L([0, 1]) → [0, 1] to associate a fuzzy set with each
interval-valued fuzzy set is proposed here:

P (x) =


x

1−W (x)
if W (x) 6= 1

0 if W (x) = 1
(14)

Recall that for x = [x, x], we have that W (x) = x− x is the width or length of x.
The following set of properties tare verified by P :

Proposition 3. Operator P verifies the following:

1. x ≤ P (x) ≤ x for all x ∈ L([0, 1]);

2. P ([x, x]) = x for all x ∈ [0, 1];

3. If W (x) 6= 1, then P (x) + P (1− x) = 1;

4. If W (x) = 1, then P (x) + P (1− x) = 0.

Proof. 1. From Eq. (14) we have x = P (x)(1 − W (x)) ≤ P (x). Besides x = x +
W (x) = P (x)(1−W (x)) +W (x) = P (x) +W (x)(1− P (x)) ≥ P (x). Obviously if
W (x) = 1, then x = [0, 1] and therefore P (x) ∈ [0, 1].

2. If we take x = [x, x], then W (x) = 0, therefore by Eq. (14) we have P ([x, x]) = x.

12



3. We know that W (x) = W (1−x), therefore P (x)+P (1−x) = x+1−x
1−W (x)

= 1−(x−x)
1−W (x)

= 1.

4. If W (x) = 1, then by Eq. (14), we obtain directly that P (x) + P (1− x) = 0.

Corollary 2. In the setting of Theorem 7, the following properties hold:

1. P (FTP ,S+(x, y)) = x for all x ∈ [0, 1] and for all y ∈ [0, 1);

2. P (FTP ,S+(x, 1)) = 0 for all x ∈ [0, 1].

Proof. 1. P (FTP ,S+(x, y)) = P ([x(1 − y), x(1 − y) + y]) = x(1−y)
(1−y) = x for all x ∈ [0, 1]

and y ∈ [0, 1).

2. If y = 1, then from Eq. (14) we have P (FTP ,S+(x, 1)) = P ([0, 1]) = 0.

The following results provides a method to derive a fuzzy sets AFS(U) from an

interval-valued fuzzy set Ã ∈ IVFS(U).

Proposition 4. Given an interval-valued fuzzy set Ã ∈ IVFS(U), the following

A = {(ui, P (Ã(ui)))|ui ∈ U} (15)

is a fuzzy set on U .

Proof. Direct.

7. Construction of interval-valued fuzzy preference relations from fuzzy rela-
tions and weak ignorance functions

The aim of this section is to build an interval-valued fuzzy preference relation R̃ = (rij)
from a given fuzzy preference relation R = (Rij). For this purpose, the construction
method of intervals presented in Section 5 will be used with function FT,S and following
argument values:

• Rij – the value given by an expert representing the degree of preference of alterna-
tive xi over alternative xj; and

• g(Rij) – the lack of knowledge (ignorance) of the expert when he/she provides Rij.

Moreover, R̃ will have elements with length equal to the weak ignorance associated with
the membership degree of the same element of the original fuzzy preference relation R.

Proposition 5. Let R̃ = (rij) be defined as follows

rij = FT,S(Rij, g(Rij)) ∀i, j ∈ {1, · · · , n},

with R ∈ FR(X × X) being a fuzzy preference relation on X × X, and g be a weak
ignorance function. The following statements hold:

1. R̃ is an interval-valued fuzzy preference relation on X ×X;
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2. W (rij) = W (FTP ,S+(Rij, g(Rij))) = g(Rij) for all Rij ∈ R;

3. P (rij) = P (FTP ,S+(Rij, g(Rij))) = Rij for all g(Rij) 6= 1.

4. If g(Rij) = 1 then, P (rij) = P (FTP ,S+(Rij, g(Rij))) = 0.

Proof. This is left for the reader as it is derivative from Proposition 2, Theorem 7, and
Corollary 2.

The following result guarantees that R̃ ∈ IVFR(X × X) is reciprocal when R ∈
FR(X ×X) is reciprocal.

Proposition 6. Let g be a weak ignorance function and R ∈ FR(X × X). If R is

reciprocal then R̃ ∈ IVFR(X ×X) with elements

rij = FTP ,S+(Rij, g(Rij)) ∀i, j ∈ {1, · · · , n}

is reciprocal.

Proof. For being g a weak ignorance function it is (see Definition 11):

g(Rij) = g(1−Rij) ∀i, j ∈ {1, · · · , n}.

Reciprocity of R implies
g(Rij) = g(Rji).

By definition we have:

rij = [Rij · (1− g(Rij)),Rij · (1− g(Rij)) + g(Rij)]

and
rji = [Rji · (1− g(Rji)),Rji · (1− g(Rji)) + g(Rji)].

Hence:

rij + rji = Rij · (1− g(Rij)) +Rji · (1− g(Rji)) + g(Rji)

= Rij · (1− g(Rij)) +Rji · (1− g(Rij)) + g(Rij)

= (1− g(Rij)) · (Rij +Rji) + g(Rij)

= 1− g(Rij) + g(Rij) = 1.

Similarly, we prove that rij + rji = 1.

The following result provides conditions for a weak ignorance function to guarantee
that a fuzzy preference relations R ∈ FR(X ×X) is reciprocal.

Proposition 7. Let R ∈ FR(X × X) be a fuzzy preference relation with t Rij 6=
0.5, i.e.Rij 6= Rji,∀i, j. If a weak ignorance function g is monotonic and verifies that
g(Rij) = g(Rji) (∀i, j), then R is reciprocal.

14



Proof. Without loss of generality we can assume that Rij > 0.5. From Definition 11,
item 1., it is

g(Rij) = g(1−Rij).

As we are assuming that g(Rij) = g(Rji) (∀i, j), then it is

g(Rji) = g(1−Rij).

Note that the restriction of g in [0,0.5] is bijective because it is continuous and monotonic.
Therefore, it is

Rji = 1−Rij.

The following result is a consequence of Propositions 6 and 7.

Corollary 3. Let R ∈ FR(X×X) be a fuzzy preference relation with Rij 6= 0.5, i.e.Rij 6=
Rji, ∀i, j. If a weak ignorance function g is monotonic, then we have that

g(Rij) = g(Rji) ∀i, j ⇔ R̃ = (rij) ∈ IVFR(X ×X) is reciprocal

with rij = FTP ,S+(Rij, g(Rij)) ∀i, j.
Example 4. Let X = {x1, x2, x3, x4} be the set of alternatives. Consider the following
reciprocal fuzzy preference relation R:

R =


− 0.3149 0.1605 0.3640

0.6851 − 0.0407 0.0624

0.8395 0.9593 − 0.3874

0.6360 0.9376 0.6126 −


Take as weak ignorance function: g(x) = 2 ·min(x, 1− x). The reciprocal interval-valued

fuzzy relation R̃ generated by FTP ,S+(Rij, g(Rij)) is:

r12 = FTP ,S+(R12, g(R12)) = FTP ,S+(0.3149, 0.6298) = [0.1166, 0.7464];

r13 = FTP ,S+(R13, g(R13)) = FTP ,S+(0.1605, 0.3210) = [0.1090, 0.4300];

r14 = FTP ,S+(R14, g(R14)) = FTP ,S+(0.3640, 0.7280) = [0.0990, 0.8270];

r21 = FTP ,S+(R21, g(R21)) = FTP ,S+(0.6851, 0.6298) = [0.2536, 0.8834];

r23 = FTP ,S+(R23, g(R23)) = FTP ,S+(0.0407, 0.0814) = [0.0374, 0.1188];

r24 = FTP ,S+(R24, g(R24)) = FTP ,S+(0.0624, 0.1248) = [0.0546, 0.1794];

r31 = FTP ,S+(R31, g(R31)) = FTP ,S+(0.8395, 0.3210) = [0.5700, 0.8910];

r32 = FTP ,S+(R32, g(R32)) = FTP ,S+(0.9593, 0.0814) = [0.8812, 0.9626];

r34 = FTP ,S+(R34, g(R34)) = FTP ,S+(0.3874, 0.7748) = [0.0872, 0.8620];

r41 = FTP ,S+(R41, g(R41)) = FTP ,S+(0.6360, 0.7280) = [0.1730, 0.9010];

r42 = FTP ,S+(R42, g(R42)) = FTP ,S+(0.9376, 0.1248) = [0.8206, 0.9454];

r43 = FTP ,S+(R43, g(R43)) = FTP ,S+(0.6126, 0.7748) = [0.1380, 0.9128];

R̃ =


− [0.1166, 0.7464] [0.1090, 0.4300] [0.0990, 0.8270]

[0.2536, 0.8834] − [0.0374, 0.1188] [0.0546, 0.1794]
[0.5700, 0.8910] [0.8812, 0.9626] − [0.0872, 0.8620]
[0.1730, 0.9010] [0.8206, 0.9454] [0.1380, 0.9128] −
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8. A general decision making algorithm based on interval-valued fuzzy pref-
erence relations

Next, we present the three first steps to solve decision making problems using IVFR
from a given fuzzy preference relation R∗ and the lack of knowledge of the expert when
given the values of such relation, g:

1. Using the normalisation Equation (5), we obtain from R∗ the reciprocal preference
relation R;

2. The interval-valued fuzzy preference relation R̃ is built using FTP ,S+(Rij, g(R∗ij));

3. The strict interval-valued fuzzy preference relation P associated to R̃ is computed
using Equation (8).

The ranking of the alternatives can be done by applying a particular selection strategy to
P. In Section 9, we describe a general selection method based on the use of aggregation
functions, followed by an analysis of the following particular cases: the weighted voting
procedure ([21, 29]); the OWA operator with crisp weights [49]; the OWA operator with
interval weights [53]; and the Non-dominance criterion ([22, 36]), among others.

Our proposal, for the first three steps, is the following:

Input: X = {x1, · · · , xn} set of alternatives; R∗ ∈ FR(X ×X): fuzzy preference
relation, g: weak ignorance function; Ta, Tb: two t-norms in [0, 1] such that
Ta ≤ Tb.

Output: P: An interval-valued strict fuzzy preference relation.

(IVFR1) Obtain R ∈ FR(X ×X) from R∗ ∈ FR(X ×X) using Eq. (5);

(IVFR2) Build R̃ ∈ IVFR(X ×X) as follows:

rij = FTP ,S+(Rij, g(R∗ij));

(IVFR3) Construct the interval-valued strict fuzzy preference relation, P, using
Eq. (8):

Pij = TIV (rij, NIV (rji)) = [Ta(rij, 1− rji), Tb(rij, 1− rji); ]

Algorithm 1: IVFR Algorithm

The following two examples are provided for illustration purposes:

Example 5. Assuming: X = {x1, x2, x3, x4}; R∗ and g the fuzzy preference relation and
ignorance function given in Example 4; and Ta = Tb = TM .

(IVFR1) R = R∗ (R∗ is reciprocal)

(IVFR2) R̃ =


− [0.1166, 0.7464] [0.1090, 0.4300] [0.0990, 0.8270]

[0.2536, 0.8834] − [0.0374, 0.1188] [0.0546, 0.1794]
[0.5700, 0.8910] [0.8812, 0.9626] − [0.0872, 0.8620]
[0.1730, 0.9010] [0.8206, 0.9454] [0.1380, 0.9128] −


(IVFR3) P = R̃ (Theorem 6)
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Example 6. Assume now that we have the same input than in Example 5 but for the
t-norms: Ta = Tb = T L. Note that the only difference wrt Example 5 is step (IVFR3),
i.e. the construction of P using the  Lukasiewicz t-norm:

(IVFR3) P =


− [0, 0.4928] [0, 0] [0, 0.654]

[0, 0.7668] − [0, 0] [0, 0]
[0.14, 0.782] [0.7624, 0.9252] − [0, 0.724]

[0, 0.802] [0.6412, 0.8908] [0, 0.8256] −


9. Selection of an alternative

Once Algorithm 1 has been executed, the following two steps selection algorithm is
applied to get the final solution alternative to the decision making problem:

Input: P: An interval-valued strict fuzzy preference relation.
Output: Solution alternative: xselection

(IVFR4) Select an admissible � order between intervals;
(IVFR5) Choose an alternative from X using an interval aggregation function M
and the admissible order �:

xselection = arg max
k

M
k,l∈{1,··· ,n}
1≤l 6=k≤n

Pkl;

Algorithm 2: Selection Algorithm

Different approaches are possible in step (IVFR5). IN the following, some of the
numerical approaches mostly used in the literature to select an alternative are generalised
to the case of interval values.

9.1. Case 1: Voting method

If we take as aggregation function the arithmetic mean we obtain a generalisation of
the well known numerical voting-decision strategy to the case of interval values. This first
technique is one of the simplest and most widely used aggregation method in pairwise
learning [30]. The final class is assigned by computing the maximum vote by rows from
the values of the strict fuzzy preference relation P.

A generalisation of this method is presented in [29] where the authors consider a
fuzzy preference structure (P , I,J ). Again, this method is generalised here by using
the interval-valued concepts of strict preference relation (P), indifference relation (I) and
incomparability relation (J), yielding the following expression:

xselection = arg max
k

M
k,l∈{1,··· ,n}
1≤l 6=k≤n

∑
Pkl −

1

2
Ikl +

Nk

Nk +Nl

Jkl.
(16)

Recall that the construction of both I and J use the same the t-norms Ta, Tb used to
construct P to maintain the concept of preference structure.
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9.2. Case 2: OWA operators with numeric weights

In 1988, Yager introduced an aggregation technique based on the ordered weighted
averaging (OWA) scheme.

Definition 15 (Yager [49]). An OWA operator of dimension n is a mapping Φ : [0, 1]n →
[0, 1], which has an associated set of weights W = (w1, · · ·wn)T to it, so that wi ∈ [0, 1]

and
n∑
i=1

wi = 1,

Φ(a) = Φ(a1, · · · , an) =
n∑
i=1

wi · bj

where bj is the j-th largest element of the set {a1, · · · , an}.

OWA operators can incorporate the concept of fuzzy majority by means of a relative
linguistic quantifier [31, 32, 50, 52] used to compute the weighting vector W . A non-
decreasing proportional quantifier is a mapping Q : [0, 1]→ [0, 1] with Q(0) = 0, and such
that there exists r ∈ [0, 1] for which Q(r) = 1. Non-decreasing proportional quantifiers
can be used to build membership functions as follows ([52]):

Q(r) =


0 if 0 ≤ r < a
r−a
b−a if a ≤ r ≤ b

1 if b < r ≤ 1
(17)

with a, b, r ∈ [0, 1].
Some of the most used linguistic quantifiers are “at least half”, “most of” and “as

many as possible”, which can be represented using the values (0, 0.5), (0.3, 0.8) and (0.5, 1)
for (a, b), respectively [14, 27, 28, 31, 32, 40].

red The linguistic quantifier that represents the concept of fuzzy majority is used
to calculate the weighting vector of Φ, W = (w1, . . . , wn) according to the following
expression [49]:

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
. (18)

Therefore, an OWA operator guided by a linguistic quantifier Q representing the
concept of fuzzy majority to implement in the decision making problem can be applied
in step (IVFR5). Obviously, the order chosen in step (IVFR4) is used:

• in each row, to establish the order between the intervals before applying the OWA
operator; and

• for producing the final ranking of the alternatives.

It is necessary to remark that if all the weights are equal we obtain the voting method
with the arithmetic mean described in Subsection 9.1.

Alternative representations for the concept of fuzzy majority can be found in the
literature. For example, Yager in [50] considered the family of non-decreasing propor-
tional quantifiers Q(r) = ra (a ≥ 0) for such representation. This family of quantifiers
guarantees that [15]: (i) all the experts contribute to the final aggregated value (strict
monotonicity property), and (ii) associates, when a ∈ [0, 1], higher weight values to the
aggregated values with associated higher importance values (concavity property).
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9.3. Case 3: OWA operators with interval weights

In most of the applications of interval-valued OWA operators, the weights are taken
as real numbers. However, in the presence of uncertainty the knowledge of the weights
values with total precision is questionable [53, 54]. Therefore, there are cases when it
might be necessary and practical to carry out aggregation of uncertain information with
uncertain weights.

In the following, interval-valued weights are built from numerical weights using Propo-
sition 2, Theorem 7 and weak ignorance functions. Given W = (w1, · · ·wn) a weighting

vector such that wi ∈ [0, 1] and
n∑
i=1

wi = 1, interval weights are calculated as follows:

wi = FTP ,S+(wi, g(wi)) = [wi · (1− g(wi)), wi + g(wi)− wi · g(wi)] . (19)

To comply with the addition of 1 of the numerical weights, the sum of the upper
bounds of the interval-valued weights is also set to be equal to 1. To achieve this constrain,
the interval-valued weights are normalised as follows:

wi =

[
wi · (1− g(wi))

S+T

,
wi + g(wi)− wi · g(wi)

S+T

]
, (20)

with

S+T
=

n∑
i=1

S+(wi, g(wi)) =
n∑
i=1

[wi + g(wi)− wi · g(wi)] = 1 +
n∑
i=1

(1− wi) · g(wi).

In the particular case of using the weak ignorance function g(x) = 2 ·min(x, 1 − x),
we observe the following:

1. If w1 = · · · = wn = 1
n

(n ≥ 2), then wi = 1
n
·
[
n−2
3·n−2 , 1

]
∀i.

2. If w1 = 1 and wj = 0 ∀j > 1 (n ≥ 2), then w1 = [1, 1], and wj = [0, 0] ∀j > 1.

Note that if a linguistic quantifier Q is used to compute the numerical weights wi then
Eq. (19) can be rewritten in terms of Q and g using Eq. (18). These will be referred to as
the quantifier guided interval-valued weights. After the normalisation process described
above is being applied we get the corresponding normalised quantifier guided interval-
valued weights.

9.4. Case 4: Non-dominance criterion

In this subsection we present a generalisation of the non-dominance criterion given by
Orlovsky in [36] using IVFR. The main idea is to define the non-dominance criterion
using interval-valued fuzzy preference relations to derive an ordering of the alternatives
and therefore to allow the selection of the ‘best’ alternatives. We must point out that
it could happen that there exist two or more alternatives with the same non-dominance
degree, i.e. a total ordering of the set of alternatives is not guaranteed. This fact has led
many authors to propose alternative algorithms (see [22, 27, 43, 48]).

Next, we propose an alternative selection algorithm that replaces step (IVFR5) of
Algorithm 2 using the non-dominance concept applied to IVFR. The new selection
algorithm is given below:
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(ND-IVFR5) Build the non-dominance interval-valued fuzzy set:

NDIV = {(xj, NDIV (xj))|xj ∈ X}

NDIV (xj) = [
n∨
i=1

(rij),
n∨
i=1

(rij)];
(21)

(ND-IVFR6) Apply NIV , generated by the standard strong negation, to the set
NDIV :

NIV (NDIV )(xj) = [1−
n∨
i=1

(rij), 1−
n∨
i=1

(rij)]; (22)

(ND-IVFR7) Order the elements of the set NIV (NDIV ) in a decreasing way with
respect to the admissible order of the membership intervals selected in (IVFR4);

Algorithm 3: Non-dominance Selection Algorithm

10. Consensus

Next we present an algorithm for those cases in which, after using different methods
to choose an alternative, we have more than one alternative tied as ‘best’. Thus the
following algorithm is used to brake the and select the final solution of the decision
making problem.

(C1) if most of the methods return the same alternative xi as ‘best’ solution then
choose xi as the final solution of the decision making problem;

else
(C2) Choose among the tied alternatives the one with smallest interval length
as the final solution of the decision making problem;

end

Algorithm 4: Consensus Algorithm

The rationale of (C2) resides in the interpretation of the the length of the interval as
a measure of the lack of knowledge of the expert when providing the membership degree
of an element to a fuzzy set [10, 11, 42].

11. Illustrative example

Following Example 5 and the IVPR, R̃, obtained there, we present the results the
application of the Selection Algorithm 2 results in at each one of the four cases described
in Section 9, when the following admissible orders between intervals are used: �L1,�L2
,�XY . Obviously, in the case of the non-dominance criterion the selection will be made
applying tyne corresponding Algorithm 3. Finally, in case of having a tie between two or
more alternatives the Consensus Algorithm 4 will be applied.

11.1. Voting method

Table 1 show the sum of the interval values of each row of R̃.
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x1 x2 x3 x4

[0.1082, 0.6678] [0.1152, 0.3939] [0.5128, 0.9052] [0.3772, 0.9197]

Table 1: Voting method: The interval aggregation function for each row of R̃

Table 2 provides the ordering of the alternatives for each one of the three admissible
orders between intervals, �L1,�L2,�XY , with the interval aggregation operatorM being
being the arithmetic mean.

�L1 �L2 �XY
x1 �L1 x2 �L1 x4 �L1 x3 x2 �L2 x1 �L2 x3 �L2 x4 x2 �XY x1 �XY x4 �XY x3

Table 2: Voting method: Ordering of alternatives for the three different admissible orders

11.2. OWA operator with numeric weights

The results obtained by applying Selection Algorithm 2 to R̃ using the OWA operator
”at least half”, and the admissible orders between intervals �L1,�L2,�XY is given in
Table 3. For information, the numeric weights associated to this OWA operator are
w1 = 0.7, w2 = 0.3, w3 = 0.

�L1 �L2 �XY
x1 [0.1143, 0.6515] [0.1043, 0.8028] [0.1043, 0.8028]

x2 [0.1939, 0.6722] [0.1939, 0.6722] [0.0494, 0.1612]

x3 [0.7878, 0.9411] [0.7878, 0.9411] [0.7878, 0.9411]

x4 [0.6263, 0.9321] [0.6158, 0.9356] [0.6263, 0.9321]

Table 3: OWA operator “at least half”: Results for R̃ and admissible orders �L1, �L2 and �XY .

Table 4 provides the ordering of the alternatives for each one of the three admissible
orders between intervals, �L1,�L2,�XY , applied to the data of Table 3.

11.3. OWA operators with interval weights

Taking g(x) = 2 · min(x, 1 − x) as the weak ignorance function and the same OWA
operator “at least half” with numeric weights as above w1 = 0.7, w2 = 0.3, and w3 = 0,
we have the following quantifier guided interval-valued weights

w1 = [0.28, 0.88], w2 = [0.12, 0.72], w3 = [0, 0].

. Because S+T
= 1.6, the normalised quantifier guided interval weights are :

w1 = [0.175, 0.55], w2 = [0.075, 0.45],w3 = [0, 0].

.
The results obtained by applying Selection Algorithm 2 to R̃ using the OWA operator

“at least half” with these interval weights, and the admissible orders between intervals
�L1,�L2,�XY is given in Table 5 .

Table 6 provides the ordering of the alternatives for each one of the three admissible
orders between intervals, �L1,�L2,�XY , applied to the data of Table 5.
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�L1 �L2 �XY
x1 �L1 x2 �L1 x4 �L1 x3 x2 �L2 x1 �L2 x4 �L2 x3 x2 �XY x1 �XY x4 �XY x3

Table 4: OWA operator “at least half”: Ordering of alternatives for the three different admissible orders

�L1 �L2 �XY
x1 [0.0286, 0.6040] [0.0261, 0.7907] [0.0261, 0.7907]

x2 [0.0485, 0.5666] [0.0485, 0.5666] [0.0485, 0.5666]

x3 [0.1970, 0.9304] [0.1970, 0.9304] [0.1970, 0.9304]

x4 [0.1566, 0.9254] [0.1540, 0.9307] [0.1566, 0.9254]

Table 5: OWA operator “at least half” with interval weights: Results for R̃ and admissible orders �L1,
�L2 and �XY .

11.4. Non-dominance criterion

The application of the Selection Algorithm 3 to R̃ with admissible orders between
intervals �L1,�L2,�XY is shown below:

(ND-IVFR5) Non-dominance interval-valued fuzzy set:

NDIV = {(x1, [0.5700, 0.9010]), (x2, [0.8812, 0.9626]),

(x3, [0.1380, 0.9128]), (x4, [0.0990, 0.8620])}

(ND-IVFR6) Apply NIV to the set NDIV :

NIV (NDIV ) = {(x1, [0.0990, 0.4300]), (x2, [0.0374, 0.1188]),

(x3, [0.0872, 0.8620]), (x4, [0.1380, 0.9010])}

(ND-IVFR7) Ordering of alternatives:

Finally, we observe that in seven cases we obtain x3 as the ‘best’ solution alternative,
while x4 is classed as ‘best’ in five cases the alternative. The application of the first
rule (C1) of the Consensus Algorithm 4 leads to the selection alternative x3 as the final
solution of the decision making problem. If both alternatives had been declared ‘best’ in
the same number of cases (six each) then we would have to apply the second rule (C2) of
the of the Consensus Algorithm 4 to brake the tie, an option that is not possible in the
numerical case.

12. Conclusions

In this paper we have presented different approaches to solve decision making problems
based on the use of interval-valued fuzzy preference relations. Taking a fuzzy preference
relation as a starting point and (1) using weak ignorance functions to penalise indifference
situations; that is, situations in which the preference of one alternative against another is
close to 0.5; and (2) representing the preference degree of a relation by means of interval
values with length equal to the weak ignorance of the expert when he or she assigns a
numeric preference value,we have developed and designed decision making procedures to
select the ‘best’ alternative solution to the decision making problem.
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�L1 �L2 �XY
x1 �L1 x2 �L1 x4 �L1 x3 x2 �L2 x1 �L2 x3 �L2 x4 x2 �XY x1 �XY x4 �XY x3

Table 6: OWA operator “at least half” with interval weights: Ordering of alternatives for the three
different admissible orders

�L1 �L2 �XY
x2 �L1 x3 �L1 x1 �L1 x4 x2 �L2 x1 �L2 x3 �L2 x4 x2 �XY x1 �XY x3 �XY x4

Table 7: Non-dominance criterion: Ordering of alternatives for the three different admissible orders

The general algorithm presented in this paper is based on a thorough study and formal
design of a novel construction method of interval-valued fuzzy sets from ordinary fuzzy
sets. We have proved that the product t-norm and the probabilistic sum t-conorm are the
only ones that allow the generation of interval values of length equal to the weak ignorance
associated with the membership degree of the same element of the original fuzzy set.
This main result is the driver of a new general algorithm to build IVFR where the lack of
knowledge of the expert in giving numerical preference values in the pairwise comparison
of alternatives plays a crucial role. This general algorithm is complemented with different
selection processes of the alternative solution of the decision making problem. Finally,
we propose to construct interval weights for OWA operators considering also the weak
ignorance function. Because selection processes based on interval-valued information
are very much dependent of the particular admissible ordering applied, we have argued
that a set of admissible orders should always be applied in the selection of the final
solution of the decision making problem. This methodology could lead to the appearance
of ties between different alternatives at the selection process. To overcome this issue,
a consensus algorithm to break ties is proposed, an option that is not possible in the
context of numerical preferences.
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for intervals by means of aggregation functions, Fuzzy Sets and Systems (2012)
http://dx.doi.org/10.1016/j.fss.2012.07.015
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