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Abstract

The operational pressure control is a cost-effective way to leakage reduction and
many pressure control methods and algorithms have been developed. Whilst the pres-
sure control algorithm is model-based, the hydraulic model of the considered distribu-
tion network is not always available. Therefore, this paper will focus on the development
of an aggregated hydraulic model of the network considered, in particular, identifica-
tion of a leakage enhanced model using the operational measurements or the available
historical data. This will enable a pressure optimisation algorithm to calculate the
optimal pressure schedules for the implementation of a pressure control scheme. The
identification problem is formulated as a parameter estimation problem in this paper
and a least-square based method is derived for estimating the parameters in the model.
A case study provided by a UK water company is performed to illustrate the use of the
method and the identification results from real operational data are presented.

Introduction

Leakage from water distribution networks is a source of major concern for water
companies worldwide and leakage reduction is a key factor of water distribution network
management. It is well known that water leakage in a distribution network is directly
related to the system service pressure, hence pressure control is an effective way to
reduce background leakage and various methods and algorithms have been developed
for optimising the operational pressure so as to minimize background leakage and, at
the same time, to satisfy pressure requirements at critical points (see e.g. Jowitt and
Xu (1990), Ulanicki et al (2000, 2008) and references therein). Before implementing a
pressure control scheme, it is necessary to perform planning studies to investigate the
economical aspects of such a scheme. Such studies are usually based on the knowl-
edge about the particular network considered and a convenient form of such knowledge
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is a hydraulic model of the network. However, it is often the case that such a hy-
draulic model is not available from the water company and has to be obtained by some
identification procedures using measurements or historical operational data.

This paper focuses on the development of an aggregated hydraulic model of the
network considered, in particular, identification of a leakage enhanced model using
the operational measurements or the available historical data for the implementation
of supervisory pressure control. The rest of the paper is organized as follows. Next
section gives the problem statement, which is followed by the derivation of a least-
square based method for estimating the parameters in both pipe element model and
leakage model of the network. A case study provided by a UK water company is then
performed to illustrate the use of the method and the identification results from real
operational data are presented. The conclusions are given in the last section.

Problem statement

To facilitate monitoring and control activities, it is common practice for water
companies to split the water distribution network into district metered areas (DMAs)
that are typically small areas and are isolated apart from designated inlets and out-
lets through which flows are monitored. Pressure reducing valves (PRVs) are used to
maintain a specified pressure to the inlets of a DMA against the fluctuations in PRV
inlet pressure and the changes of demand from the DMA. This structure also facilitates
application of a pressure control scheme.

A prerequisite for pressure control design is an appropriate model of the network to
be controlled, but such a model is not always available in practice, therefore some kind
of identification procedure is needed so as to estimate an equivalence model from the
available measurements or historical data. The equivalence hydraulic model will contain
only boundary nodes, target (critical) nodes and fictitious pipes with which these nodes
are connected (Ulanicki et al 2000). The data available for model identification are
boundary heads and flows, target heads and flows, and the aim of the identification is
to obtain a leakage enhanced network model for pressure control. More specifically, the
parameters to be identified are the resistance/conductance of the fictitious pipes, the
leakage coefficients and leakage exponent.

Hydraulic model identification

The aforementioned equivalence network structure can be conveniently represented
by a node-branch incidence matrix Λ (see e.g. Ulanicki et al 2000). The matrix has a
row for each node and a column for each branch. A row contains information about
which branches are connected to a particular node. The elements of Λ take one of
the three values −1, 0 and +1. The value −1 indicates that the flow of the branch
is oriented towards the node, the value +1 indicates the flow of the branch is leaving
the node and value 0 indicates that a branch is not connected to the node. Therefore,
each column of Λ contains only two non-zero entries, +1 for the branch origin node
and −1 for the branch destination node. Let Nnode denote the total number of the
(boundary and target) nodes in the equivalence network, in the most general case, the
total number of branches (fictitious pipes) will be Npipe = 1

2(Nnode − 1)Nnode and Λ
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will be a Nnode × 1
2(Nnode − 1)Nnode matrix.

Pipe model parameter estimation

The main components in the aforementioned equivalence network are the (fictitious)
pipes which can be described by many different formulae. In this paper, the head-flow
relationship for the jth pipe element is expressed by Hazen-Williams formula (see e.g.
Walski et al 2003):

∆hj = hj,o − hj,d = Rjqj |qj |0.852 (1)

where hj,o and hj,d are heads in [m] at origin and destination nodes of the jth pipe
element respectively; Rj is the resistance of the jth pipe element; qj is the flow in [l/s]
through the element.

Let Λi denote the ith row of Λ; ΛT
j denote the jth column of Λ; the heads at each

node and the flows in each branch are collected in the nodal head vector h and the
branch flow vector q respectively, i.e. h = [h1, h2, · · · , hNnode

]T , q = [q1, q2, · · · , qNpipe ]
T .

The head-flow relationship for the pipe elements in the network can then be written as
follows:

ΛT
j h = Rjqj |qj |0.852 j = 1, 2, · · · , Npipe (2)

The mass balance equations at nodes can be written as:

Λiq = −qt,i + qb,i i = 1, 2, · · · , Nnode (3)

where qt,i is the total target flow (i.e. demand and leakage) for node i, qb,i is the
boundary flow (qb,i = 0 for non-boundary node) for node i. The above mass balance
equations at nodes can be written in a compact form:

Λq =




−qt,1 + qb,1

−qt,2 + qb,2
...

−qt,Nnode
+ qb,Nnode




︸ ︷︷ ︸
qt,b

(4)

To estimate the pipe resistance Rj , the pipe model (1) is rewritten in a reverse form:

qj = Gj∆hj |∆hj |−0.46 j = 1, 2, · · · , Npipe (5)

where Gj = 1/R0.54
j is the conductance of the jth pipe in the network. The pipe

equations (5) can be assembled in a vector form as follows:

q=




q1

q2
...

qNpipe


=




∆h1|∆h1|−0.46 0 · · · 0
0 ∆h2|∆h2|−0.46 · · · 0
...

...
. . .

...
0 0 · · · ∆hNpipe |∆hNpipe |−0.46




︸ ︷︷ ︸
∆H




G1

G2
...

GNpipe




︸ ︷︷ ︸
G

(6)
Substituting (6) into (4), the following compact network model can be derived:

Λ∆HG = qt,b (7)

3

230World Environmental and Water Resources Congress 2009: Great Rivers © 2009 ASCE



Since all heads, target flows and boundary flows are measured or available from his-
torical data, the model equation (7) is linear with respect to the parameter vector
G (from which the resistance Rj , j = 1, 2, · · · , Npipe can be derived). Assume that a
time history measurement data set of length K (i.e. {∆hj(k), qt,i(k), qb,i(k)}K

k=1 for
j = 1, 2, · · · , Npipe and i = 1, 2, · · · , Nnode) is selected, the parameter estimation can
then be formulated as a least-square problem. For the model defined by (7), it is
straightforward to write the explicit linear regression form in terms of the parameter
vector G to be estimated:




qt,b(1)
qt,b(2)

...
qt,b(K)




︸ ︷︷ ︸
Qt,b

=




Λ∆H(1)
Λ∆H(2)

...
Λ∆H(K)




︸ ︷︷ ︸
Φ

G (8)

where, for k = 1, 2, · · · ,K

qt,b(k) =




−qt,1(k) + qb,1(k)
−qt,2(k) + qb,2(k)

...
−qt,Nnode

(k) + qb,Nnode
(k)


 (9)

and

∆H(k)=




∆h1(k)|∆h1(k)|−0.46 0 · · · 0
0 ∆h2(k)|∆h2(k)|−0.46 · · · 0
...

...
. . .

...
0 0 · · · ∆hNpipe(k)|∆hNpipe(k)|−0.46




(10)
G can then be estimated by solving the above linear regression problem with the LS
method as follows:

Ĝ = Φ+Qt,b (11)

where Φ+ is the pseudo-inverse of Φ. From equations (8), (9) and (10), it is clear that
the matrices Qt,b and Φ in equation (11) are formed entirely using the available mea-
surement data {∆hj(k), qt,i(k), qb,i(k)}K

k=1 for j = 1, 2, · · · , Npipe and i = 1, 2, · · · , Nnode.
Equations (8)∼(11) provide a method for identifying an equivalence network model

in the general case. If, however, the mass balance equation (4) can be solved, hence
branch flows qj , j = 1, 2, · · · , Npipe are available; the identification algorithm can be
greatly simplified. Since qj is available, it is straightforward to write the explicit linear
regression form in terms of the Rj from equation (1) for each pipe:




∆hj(1)
∆hj(2)

...
∆hj(K)




︸ ︷︷ ︸
∆Hj

=




qj(1)|qj(1)|0.852

qj(2)|qj(2)|0.852

...
qj(K)|qj(K)|0.852




︸ ︷︷ ︸
Qj

Rj j = 1, 2, · · · , Npipe (12)
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Similar to (11), the resistance Rj can then be estimated as follows:

R̂j = Q+
j ∆Hj j = 1, 2, · · · , Npipe (13)

Assume that the measurement errors are independent, identically distributed (i.i.d.),
the estimation error, i.e. the standard deviation of the estimate R̂j can also be evalu-
ated, this is given by:

σ(R̂j) =

√
S

K − 1
(QT

j Qj)−1 (14)

where S is the sum of squared residuals defined as follows:

S =
K∑

k=1

(∆hj(k)− qj(k)|qj(k)|0.852R̂j)2 (15)

Leakage model parameter estimation

The pressure management for leakage reduction requires an enhanced hydraulic
model, which incorporate pressure dependent leakage terms. Several mathematical
models relating the leakage and the operating pressure based on experimental results
have been proposed. The leakage-pressure relationship as shown in equation (16) (Ulan-
icki et al 2008) is assumed in this paper:

li = kip
αi
i = ki(hi −Hi)αi (16)

where ki is the leakage coefficient; αi is the leakage exponent, hi is the head of node i and
Hi is the elevation of node i. The leakage exponent αi ranges from 0.5 to 2.5 depending
on many factors described in the literature. In this paper, the leakage exponent will
be estimated along with the leakage coefficient ki using the leakage measurement data
{hi(k),Hi, li(k)}K

k=1. In practice, the leakage li, i = 1, 2, · · · , Nnode may not be available,
some kinds of estimation or approximation have to be used. The minimum night flow
(MNF) will be used in the following case study to approximate the leakage.

The linear least-square method can not directly be used for estimating the parame-
ters ki and αi in leakage model (16) as the model is not linear in terms of αi. However,
the problem can be resolved by taking logarithms of equation (16):

ln li = ln ki + αi ln pi (17)

For the given data set {hi(k),Hi, li(k)}K
k=1 of size K, the following standard linear

regression form in terms of the transformed variables θ =
[

ln ki αi

]T can readily be
derived from equation (17):




ln li(1)
ln li(2)

...
ln li(K)




︸ ︷︷ ︸
L

=




1 ln pi(1)
1 ln pi(2)
...

...
1 ln pi(K)




︸ ︷︷ ︸
Φ

θ (18)
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The LS estimates of ki and αi is then given by:

θ̂ =
[

ln k̂i

α̂i

]
= Φ+L and k̂i = eln k̂i (19)

The variance-covariance matrix of the estimate θ̂ is given by:

σ(θ̂) =
ST

K − 2
(ΦTΦ)−1 (20)

where ST is the sum of squared transformed residuals defined as follows:

ST =
K∑

k=1

(ln li(k)− ln k̂i − α̂i ln(pi(k)))2 (21)

The standard deviations of the model parameter estimates is then given by (see e.g.
Bevington and Robinson 2003):

σ(k̂i) = σ(θ̂)11/
d(ln k̂i)

dk̂i

= k̂iσ(θ̂)11 and σ(α̂i) = σ(θ̂)22 (22)

where σ(θ̂)ii(i = 1, 2) is the main diagonal element of the matrix σ(θ̂) defined by (20).

Case study

Pressure management in UK water industry has been an ongoing process for a
period of time and an event-driven pressure management trial was recently carried
out at a UK water company. As a part of the UK Engineering & Physical Science
Research Council (EPSRC)-funded project NEPTUNE, a supervisory pressure control
scheme covering wide areas and the associated implementation through the hardware
used in the aforementioned trial are proposed for minimizing leakage and customer
interruptions. However, the water company does not have a hydraulic model for the
area considered. Without a model it is also difficult to estimate how much savings
would result from the implementation of the proposed pressure control scheme.

In this section, an aggregated hydraulic model for the area considered will be de-
veloped using the available measurements for the implementation of the proposed su-
pervisory pressure control scheme. The network extracted from the schematics of the
considered area is shown in Figure 1. It has one boundary node (PRV in the figure)
which is connected to six target (critical) nodes (DMAs in the figure). As there is
no connections between target (DMA) nodes, the mass balance equation (4) can be
solved and the branch flows qj , j = 1, 2, · · · , 6 will be available, which are equal to the
measured target flows in this case. The PRV node is the common origin for all the pipe
elements in the network, and the destination nodes are the associated DMAs. The total
leakage for each target (DMA) node will be approximated by its MNF for estimation
of parameters in leakage model (16).

6
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Figure 1: Schematic structure of the considered network

Historical data for parameter estimation

The available historical data files associated with the considered area are provided
by a UK water company and they are summarized in Table 1. As can been seen, from
this table, the data is not complete. Figure 2 shows the typical plots of the daily PRV
outlet head and a DMA node flow over a week.

Table 1: Available data for identification

Nodes DG2 pressure data DG2 elevation Flow data
C043 04/05/07∼04/08/08 130[m] 12/06/08 (Thur)
C044 01/04/07∼04/08/08 140[m] 01/04/07∼13/06/08
C045 01/04/07∼04/08/08 148.6[m] 01/04/07∼07/07/08
C046 01/04/04∼19/06/08 148.55[m] 01/04/07∼07/07/08
C047 01/04/07∼04/08/08 141.38[m] 01/04/07∼31/07/08
C048 09/07/08∼18/07/08 141.9[m] 09/07/08∼18/07/08
PRV 25/09/07∼12/02/08 149[m] 01/01/06∼10/10/07

It can be seen that the flow and head plots on weekdays approximately follow the
same pattern which are obvious different from the plots on weekends. The minimum
night flow occurs between 2:00am and 3:00am and there are two peaks in a daily flow
plot. The first peak occurs around 6:45am in weekdays and two hours later on the
weekends, the second peak occurs around 6:00pm.

The data collected between 11/01/2008 and 06/02/2008 are selected for modelling
because this is the latest period of time over which the measurements for the PRV and
most of the DMAs are available as shown in Table 1.

Identification results

Since there is no overlap between the PRV outlet head data and the C043, C048
head data as shown in Table 1, it would not be possible to estimate the resistances
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Figure 2: Daily PRV outlet head and DMA flow over a week

between PRV and C043, C048 DMAs. However, as shown in Figure 2, the PRV outlet
heads on the weekdays approximately follow the same pattern, the PRV outlet heads
taken in the different dates will be used as the replacement data for estimating the
resistances between PRV and C043, C048 DMAs. Having removed all the outliers
detected in the original data sets, model identification is performed and the results of
parameter estimation are summarized in Table 2.

Table 2: Results of parameter estimation with the outliers being removed

DMA Rj σ(Rj) kj σ(kj) αj σ(αj)
C043 0.7739 4.0945× 10−2 3.4763× 10−2 1.1
C044 2.7862 1.8876× 10−2 9.6198× 10−5 1.0191× 10−3 2.5111 3.0285
C045 1.3865 1.4331× 10−2 2.2914× 10−2 1.1
C046 0.1495 5.4148× 10−4 1.9783× 10−1 7.1931× 10−1 1.0091 1.0915
C047 0.4480 3.2228× 10−3 5.3411× 10−2 7.2589× 10−1 0.9741 3.8450
C048 0.3971 1.5554× 10−2 4.7983× 10−2 1.1

The Rjs in the table are estimated with equation (13) with the associated standard
deviations σ(Rj) being estimated with equation (14). Figure 3 shows the results of
data fitting for C046 and C047 using their Rj estimates. The kjs and αjs of the
leakage model in Table 2 are estimated by equation (19) with the associated standard
deviations being evaluated with equations (20)∼(22), where the leakage measurements
are approximated by their MNFs.

However, the estimate of leakage exponent for C045 takes negative value (α̂j =
−3.4095×10−1). To investigate the problem, the results of leakage data fitting for C045
DMA with the outlier being removed is plotted in Figure 4 and it shows, in overall, a
slightly negative correlation between the MNF and pressure. This may indicate that the
MNF is not a good estimate of the leakage for C045 DMA. As a remedy, the minimum
MNF over the dates between 11/01/2008 and 06/02/2008 (excluding the outlier) is
used as the estimate of leakage for C045 DMA and αj takes the value of 1.1. kj is then
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Figure 3: Results of Rj data fitting for C046 and C047 with outliers being removed
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Figure 4: C045 MNF-pressure plot with outlier being removed

obtained as:
kj =

minimum MNF
p1.1

minMNF

(23)

and this result is shown in Table 2.
The αjs for C043 and C048 are also assumed to be 1.1 as shown in Table 2 and the

corresponding kjs are estimated with equation (23). This is because: (i) only one-day
flow data (i.e. only one MNF) is available for C043 DMA; (ii) there are many missing
data in flow and DG2 files for C048, therefore the averages of MNFs and the associated
pressures over 09/07/2008-18/07/2008 are used for estimating kj for C048 DMA with
equation (23).

It needs to be pointed out that the estimation errors (standard deviations) of leakage
model parameters kj and αj evaluated with equations (20)∼(22) are quite large in
comparison with the values of the corresponding parameter estimates as shown in Table
2. This is because the matrix ΦTΦ in (20) is ill-conditioned. This occurs when the
measurements have only a marginal effect on the estimated parameters. In our case
study, this is because we do not have the leakage measurements over a sufficient range
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of pressure points. The MNFs have to be used in this study to approximate the leakage
measurements for parameter estimation and the corresponding pressure range is very
small (the pressure variations are not more than 1m at the most). This results in a
nearly rank-deficient Φ matrix defined in (18) which implies that the measurements are
not “informative” enough and the identified leakage model will not be reliable when
the pressure is outside the range of the measured pressure data used for identification.

Conclusions

A method for identifying a steady-state leakage enhanced hydraulic model of a water
distribution network from measurements or historical operational data is presented in
this paper. Only the head and flow data of the considered nodes are required by the
method for identification. The method has been applied for a case study where a
model of a real water distribution network provided by a UK water company has been
identified from the available historical operational data. The case study also shows that
the MNF alone is not “informative” enough for identifying a reliable leakage model and,
sometimes, it is even not a good approximate to the leakage.

Further work is being carried out to validate and refine the identified model and
to use the identified model for supervisory pressure control. The research is also being
performed to develop the appropriate method for pre-processing the raw data, for
example, to detect outliers and to deal with missing data etc, so as to facilitate the
practical application of the method.
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