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Abstract: In some real-world multiple attribute decision making (MADM) 

problems, a decision maker can strategically set attribute weights to obtain her/his 

desired ranking of alternatives, which is called the strategic weight manipulation of 

the MADM. In this paper, we define the concept of the ranking range of an 

alternative in the MADM, and propose a series of mixed 0-1 linear programming 

models (MLPMs) to show the process of designing a strategic attribute weight vector. 

Then, we reveal the conditions to manipulate a strategic attribute weight based on the 

ranking range and the proposed MLPMs. Finally, a numerical example with real 

background is used to demonstrate the validity of our models, and simulation 

experiments are presented to show the better performance of the ordered weighted 

averaging operator than the weighted averaging operator in defending against the 

strategic weight manipulation of the MADM problems. 
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1. Introduction

Multiple attribute decision making (MADM) refers to the problem of ranking 

alternatives based on the evaluation information of alternatives associated with 

multiple attributes [9, 10, 16, 25, 31]. The MADM has been widely used in 
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engineering, technology, economy, management, and military, and many other fields 

[12, 15, 18, 22, 40]. 

The attribute weights play an important role in MADM problems. In the existing 

literature, there are several approaches to obtain the attribute weights that can be 

classified into three categories: the subjective approach, the objective approach and 

the integrated approach. 

(1) The subjective approach determines the attribute weights in terms of the 

decision maker’s preference information on attributes [2, 8, 28]. Doyle et al. [8], for 

example, proposed direct rating and point allocation methods. Meanwhile, several 

ordinal ranking methods are investigated in [1, 26, 29], and recently, Danielson et al. 

[5] provided an augmenting ordinal method for obtaining attribute weights.

(2) The objective approach determines the weights of attributes using objective 

decision matrix information. This approach includes the entropy method [40], the 

TOPSIS-based method [20, 41] and some mathematical programming based methods 

(e.g. [3]).

(3) The integrated approach determines the weights of attributes using both 

decision makers' subjective information and objective decision matrix information. 

Within these approaches, Cook and Kress [4] proposed the preference-aggregation 

model based on the use of the Data Envelopment Analysis. Moreover, Fan et al. [11], 

Horsky and Rao [14] and Pekelman and Sen [23] constructed some optimization-

based models to assess the attribute weights based on the use of decision maker’s 

preference information on alternatives.

Generally, in a process of decision making, the decision makers may express 

their opinions dishonestly to obtain their own interests, which is referred to as 

strategic manipulation or non-cooperative behavior. The strategic manipulation has 

been analyzed in-depth with respect to the aggregation function [24, 37, 38], the 

consensus reaching process [6, 13, 30], and also in large-scale group decision making 

[7, 21, 36]. It is natural to assume that the process of setting attribute weights in 

MADM problems is not immune to strategic manipulations, and that a decision 

maker may strategically set attribute weights in order to obtain her/his desired 
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ranking of the alternative(s). In this study we refer to this kind of strategic 

manipulations in MADM as the strategic weight manipulation problem. 

As mentioned above, there exist different (subjective, objective and integrated) 

approaches to attribute weights setting. Within these approaches, the decision maker 

is assumed to be honest, and aims to obtain "best" attribute weights to get a ranking 

of alternatives. We need to highlight that this paper focuses on the strategic weight 

manipulation problem in which the decision maker is assumed not to be honest, and 

she/he aims to strategically set attribute weights to obtain her/his desired ranking of 

the alternatives.

Although there exist numerous methods to set attribute weights, these 

approaches do not always consider the general theoretical framework that governs the 

strategic weight manipulation.

In order to fill this gap, several research challenges are proposed for analysis in 

this paper:

(1) How to determine the range of the ranking of alternatives when a decision 

maker strategically set the attribute weights in MADM problems.

(2) When a decision maker wishes to manipulate the ranking of alternatives with 

a predetermined purpose, how to design a strategic weight vector to achieve 

this purpose.

(3) How to analyze the performances of two different average operators, the 

weighted averaging (WA) and the ordered weighted averaging (OWA), in 

defending against strategic weight manipulation in MADM problems.  

In order to do so, the rest of this paper is organized as follows. Section 2 

provides the basic knowledge regarding MADM problems and introduces the 

proposed strategic weight manipulation problem. Then, in Section 3, mixed 0-1 linear 

programming models are proposed to obtain the ranking range of an alternative under 

the conditions that the attribute weights being strategically changed, and several 

desired properties of the ranking range of alternatives are studies. In section 4, mixed 

0-1 linear programming models are used to analyze how to design a strategic weight 

vector to manipulate the ranking of alternative(s) to achieve a desired purpose. 



4

Section 5 presents a numerical example to illustrate the proposed models, and 

simulation experiments are presented to compare the performances of the WA and 

OWA [32, 39] operators in defending against strategic weight manipulation in 

MADM problems. Concluding remarks and future research agenda are provided in 

Section 6.

2. Background

This section introduces the MADM problem and the concept of ranking range of 

an alternative, which will provide a basis to study the strategic weight manipulation 

problem in MADM. 

2.1 MADM problem

Let  be the set of alternatives,  the set of predefined 𝑋 = {𝑥1,𝑥2,…,𝑥𝑛} 𝐴 = {𝑎1,𝑎2,…,𝑎𝑚}

attributes, and  the associated weight vector of the attributes, such 𝑤 = (𝑤1,𝑤2,…,𝑤𝑚)

that  and . Let  be the decision matrix given by the 𝑤𝑗 ≥ 0 ∑𝑚
𝑗 = 1𝑤𝑗 = 1 𝑉 = [𝑣𝑖𝑗]𝑛 × 𝑚

decision maker, where  denotes the preference value for the alternative  with 𝑣𝑖𝑗 𝑥𝑖 ∈ 𝑋

respect to the attribute , representing how well alternative  verifies attribute .𝑎𝑗 ∈ 𝐴 𝑥𝑖 𝑎𝑗

Generally, the resolution process of MADM problems includes three steps:

(1) Normalization of the decision matrix

In MADM problems, attributes are classified into two categories: benefit 

attributes and cost attributes. The decision maker’s decision matrix  𝑉 = [𝑣𝑖𝑗]𝑛 × 𝑚

needs to be normalized into a corresponding standardized individual’s decision 

matrix , where 𝑉 = [𝑣𝑖𝑗]𝑛 × 𝑚

min( )
(1)

max( ) min( )
ij iji

ij
ij ijii

v v
v

v v






if  is a benefit attribute, and𝑎𝑗 ∈ 𝐴

max( )
(2)

max( ) min( )
ij iji

ij
ij ijii

v v
v

v v






if  is a cost attribute.𝑎𝑗 ∈ 𝐴

(2) Aggregation of the standardized decision matrix
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Let  be the decision evaluation value of the alternative , which is obtained 𝐷(𝑥𝑖) 𝑥𝑖

by aggregating its associated attribute preference values using Eq. (3) and an 

appropriate aggregation operator :𝐹

1 2( ) ( , ,..., ) (3)i i i imD x F v v v

    In MADM problems, the aggregation operators frequently used are the WA 

operator and the OWA operator [32, 39].

When  is a WA operator with an associated weight vector , Eq. 𝐹 𝑤 = (𝑤1,𝑤2,…,𝑤𝑚)

(3) can be rewritten as follows:

1 2
1

( ) ( , ,..., ) (4)
m

i w i i im j ij
j

D x WA v v v w v


  

    While, when  is a OWA operator with an associated weight vector 𝐹 𝑤 =

, Eq. (3) can be rewritten as follows:(𝑤1,𝑤2,…,𝑤𝑚)

(1) (2) ( ) ( )
1

( ) ( , ,..., ) (5)
m

i w i i i m j i j
j

D x OWA v v v w v


  

    where  is the  largest value in .𝑣𝑖(𝑗) 𝑗𝑡ℎ {𝑣𝑖1,𝑣𝑖2,…,𝑣𝑖𝑚}

(3) Ranking of alternatives

Let  be the set of the alternatives whose decision 𝑄𝑘 = {𝑥𝑖|𝐷(𝑥𝑖) > 𝐷(𝑥𝑘),   𝑖 = 1,2,…,𝑛}

evaluation value is greater than that of the alternative , and  be its cardinality. 𝑥𝑘 |𝑄𝑘|

Clearly, for  because , then alternative  such that 𝑄𝑘, 𝑥𝑘 ∉ 𝑄𝑘 𝑥𝑘 𝐷(𝑥𝑘) = max

 might verify as well that , while alternative , such that {𝐷(𝑥1),…,𝐷(𝑥𝑛)} |𝑄𝑘| = 0 𝑥𝑗 ∉ 𝑄𝑗 𝐷

 might as well have , and therefore this alternative (𝑥𝑗) = min{𝐷(𝑥1),…,𝐷(𝑥𝑛)} |𝑄𝑗| = 𝑛 ‒ 1

will be ranked in 1-st and n-th positions, i.e., it is justified the following definition of 

the ranking position of an alternative in terms of : , i.e.,|𝑄𝑘| 𝑟𝑘 = |𝑄𝑘| + 1

 ( ) ( ) ( ), 1, 2,..., 1 (6)k i i kr x x D x D x i n   

    Based on the ranking of alternatives, we can easily obtain the following results.

(1) Let , then we have .𝑥𝑖 ≻ 𝑥𝑗⟺𝑟(𝑥𝑖) < 𝑟(𝑥𝑗) 𝑥𝑖 ≻ 𝑥𝑗⟺𝐷(𝑥𝑖) > 𝐷(𝑥𝑗)

(2) Let , then we have .𝑥𝑖 ≾ 𝑥𝑗⟺𝑟(𝑥𝑖) ≥ 𝑟(𝑥𝑗) 𝑥𝑖 ≾ 𝑥𝑗⟺𝐷(𝑥𝑖) ≤ 𝐷(𝑥𝑗)
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2.2 The proposed research problem: Strategic weight manipulation

Let  be the ranking of alternative  when setting the associated weight 𝑟𝑤(𝑥𝑘) 𝑥𝑘

vector of the attributes . Clearly,  can change when the weight 𝑤 = (𝑤1,𝑤2,…,𝑤𝑚) 𝑟𝑤(𝑥𝑘)

vector  is changed, in other words, the manipulation of the weight 𝑤 = (𝑤1,𝑤2,…,𝑤𝑚)

vector can lead to a change in the ranking order of the alternatives. The following 

example clearly illustrates this issue.

Example 1: Assume three alternatives  and four attributes {𝑥1,  𝑥2, 𝑥3}

 with the following standardized decision matrix  is:{𝑎1,  𝑎2,  𝑎3,  𝑎4} 𝑉 = [𝑣𝑖𝑗]3 × 4

0.59 1 0.8 0.63
0.6 0.8 1 0.46
1 0.5 0.4 1

V
 
   
  

Different  lead to different rankings   𝑤 = (𝑤1,𝑤2,…,𝑤𝑚) 𝑟𝑤(𝑥) = {𝑟𝑤(𝑥1),𝑟𝑤(𝑥2),𝑟𝑤(𝑥3)}

of the alternatives . Indeed,𝑋 = {𝑥1, 𝑥2, 𝑥3}

1) If we set , then we have ;𝑤 = (0.3, 0.2, 0.1, 0.4) 𝑟𝑤(𝑥) = {3, 2, 1}

2) If we set , then it is ;𝑤 = (0.1, 0.45, 0.24, 0.21) 𝑟𝑤(𝑥) = {1, 2, 3}

3) While if we set , then  is obtained. 𝑤 = (0.3, 0.1, 0.5, 0.1) 𝑟𝑤(𝑥) = {2, 1, 3}

Because different attribute weights yield different ranking of alternatives, in this 

paper, we give the definition of ranking range of an alternative as follows:

Definition 1: In MADM problems,  is known as the ranking 𝑅(𝑥𝑘) = [𝑟(𝑥𝑘),𝑟(𝑥𝑘)]

range of the alternative , with  and  being the 𝑥𝑘 𝑟(𝑥𝑘) = min
𝑤 ∈ 𝑊

𝑟𝑤(𝑥𝑘) 𝑟(𝑥𝑘) = max
𝑤 ∈ 𝑊

𝑟𝑤(𝑥𝑘)

best and worst rankings of alternative , respectively, and 𝑥𝑘

.
1 2

1
{ ( , ,..., )| 1, 0 1}

m

m j j
j

W w w w w w w


    

In addition, in this paper, we introduce the concept of attribute ranking and 

attribute ranking range to analyze the properties of the ranking range of an alternative.

Let  (i=1,2,…,n; j=1,2,…,m) be the set of alternatives whose 𝑂𝑗(𝑥𝑘) = {𝑥𝑖|𝑣𝑖𝑗 > 𝑣𝑘𝑗}

decision evaluation value is greater than that of the alternative  associated with the 𝑥𝑘

attribute , and  be its cardinality. Let  (i=1,2,…,n; 𝑎𝑗 |𝑂𝑗(𝑥𝑘)| 𝑂𝑗(𝑥𝑘) = {𝑥𝑖|𝑣𝑖𝑗 ≤ 𝑣𝑘𝑗}

j=1,2,…,m) be the set of alternatives whose decision evaluation value is not greater 

than that of the alternative  associated with the attribute , and  be its 𝑥𝑘 𝑎𝑗 |𝑂𝑗(𝑥𝑘)|
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cardinality. 

Based on the sets  and , the concept of attribute ranking and attribute 𝑂𝑗(𝑥𝑘) 𝑂𝑗(𝑥𝑘)

ranking range can be formally presented as follows:

Definition 2: In MADM problems, | , i.e.,𝑐𝑗(𝑥𝑘) = 𝑂𝑗(𝑥𝑘)| + 1

( ) { } 1, ( 1, 2,..., ) (7)j k i ij kjc x x v v j m   

    is the attribute ranking of the alternative  associated with the attribute . Then, 𝑥𝑘 𝑎𝑗

let  and ,  is the attribute ranking 𝑐(𝑥𝑘) = min
𝑗

𝑐𝑗(𝑥𝑘) 𝑐(𝑥𝑘) = max
𝑗

𝑐𝑗(𝑥𝑘) 𝐶(𝑥𝑘) = [𝑐(𝑥𝑘),𝑐(𝑥𝑘)]

range of the alternative .𝑥𝑘

As mentioned above, in MADM problems, a decision maker could strategically 

set an attribute weight vector to obtain her/his desired ranking of alternative(s), which 

in this paper is referred to as the strategic weight manipulation in MADM. 

In the following, based on the concept of ranking range, we investigate some 

issues on the strategic weight manipulation of the MADM to deal with the challenges 

presented in the introduction section. 

In order to improve readability, the main notation used in this paper is listed as 

follows.

: The set of alternatives;𝑋

: The set of attributes;𝐴

: Decision matrix;𝑉 = [𝑣𝑖𝑗]𝑛 × 𝑚

: Standardized decision matrix;𝑉 = [𝑣𝑖𝑗]𝑛 × 𝑚

: The set of attribute weight vectors;𝑆

: The evaluation value of the alternative ;𝐷(𝑥𝑖) 𝑥𝑖

: The ranking of the alternative  under the attribute weight vector ;𝑟𝑤(𝑥𝑘) 𝑥𝑘 𝑤

: The best ranking of the alternative ;𝑟(𝑥𝑘) 𝑥𝑘

: The worst ranking of the alternative ;𝑟(𝑥𝑘) 𝑥𝑘

: Ranking range of the alternative ;𝑅(𝑥𝑘) = [𝑟(𝑥𝑘),𝑟(𝑥𝑘)] 𝑥𝑘

: Ranking range under the WA operator;𝑅𝑊𝐴(𝑥𝑘) = [𝑟𝑊𝐴(𝑥𝑘),𝑟𝑊𝐴(𝑥𝑘)]

: Ranking range under the OWA operator;𝑅𝑂𝑊𝐴(𝑥𝑘) = [𝑟𝑂𝑊𝐴(𝑥𝑘),𝑟𝑂𝑊𝐴(𝑥𝑘)]

: Attribute ranking range of the alternative .𝐶(𝑥𝑘) = [𝑐(𝑥𝑘),𝑐(𝑥𝑘)] 𝑥𝑘
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3. Ranking range

The ranking range of an alternative is used to provide the best and worst ranking 

of the alternative, which is a basis for strategically setting the attribute weights in 

MADM problems. In this section, we present mixed 0-1 linear programming models 

to obtain the ranking range of an alternative, and show several desired properties of 

the ranking range of an alternative.   

3.1 Obtaining the ranking range via a mixed 0-1 linear programming

Let ,  a large enough number, and  be defined as per Eq. (3). Then, 𝑦𝑖 ∈ {0,1} 𝑀 𝐷(𝑥𝑖)

we can easily obtain the following results.

(1)  if and only if  under the conditions  and  𝑥𝑖 ≻ 𝑥𝑘 𝑦𝑖 = 1 𝐷(𝑥𝑖) > 𝐷(𝑥𝑘) ‒ (1 ‒ 𝑦𝑖)𝑀

. 𝐷(𝑥𝑖) ≤ 𝐷(𝑥𝑘) + 𝑦𝑖𝑀

(2)  if and only if  under the conditions  and  𝑥𝑖 ≾ 𝑥𝑘 𝑦𝑖 = 0 𝐷(𝑥𝑖) ≤ 𝐷(𝑥𝑘) + 𝑦𝑖𝑀 𝐷(𝑥𝑖

.) > 𝐷(𝑥𝑘) ‒ (1 ‒ 𝑦𝑖)𝑀

Based on the above results, Theorems 1 and 2 to obtain the ranking range 𝑅(𝑥𝑘)

 of the alternative  under the WA and OWA operators are presented.= [𝑟(𝑥𝑘),𝑟(𝑥𝑘)] 𝑥𝑘

Theorem 1: Let  be the ranking range of alternative  𝑅𝑊𝐴(𝑥𝑘) = [𝑟𝑊𝐴(𝑥𝑘),𝑟𝑊𝐴(𝑥𝑘)] 𝑥𝑘

when the WA operator  is used to compute the decision evaluation function as per 𝐹

Eq. (4). Then,

(1) The best ranking of alternative ,  can be obtained via the mixed 0-1 𝑥𝑘 𝑟𝑊𝐴(𝑥𝑘)

linear programming models (8)-(13).

1

1 1

1 1

1

( )=min 1 (8)

(1 ) , ( 1, 2,..., ) (9)

, ( 1, 2,..., ) (10)
. .

1 (11)

0 1, ( 1,2,..., ) (12)
1 0, ( 1,2,..., ) (13)

n

WA k i
i

m m

j ij j kj i
j j

m m

j ij j kj i
j j

m

j
j

j

i

r x y

w v w v y M i n

w v w v y M i n
s t

w

w j m
y or i n



 

 



 

 

    
 
    



 



  
  



 

 










    (2) In models (8)-(13), replace the objective function (8) by
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                                            1
( ) max 1 (14)

n

WA k i
i

r x y


 

    Then, the worst ranking of alternative , , can be obtained via the mixed 𝑥𝑘 𝑟𝑊𝐴(𝑥𝑘)

0-1 linear programming models (9)-(14).

The proof of Theorem 1 is provided in Appendix A.

To simplify the notation, models (8)-(13) and models (9)-(14) are both called  𝑃1

in this paper.

Theorem 2: Let  be the ranking range of 𝑅𝑂𝑊𝐴(𝑥𝑘) = [𝑟𝑂𝑊𝐴(𝑥𝑘),𝑟𝑂𝑊𝐴(𝑥𝑘)]

alternative  when the OWA operator  is used to compute the decision evaluation 𝑥𝑘 𝐹

function as per Eq. (5). Then,

(1)The best ranking of alternative ,  can be obtained via the 0-1 linear 𝑥𝑘 𝑟𝑂𝑊𝐴(𝑥𝑘)

programming models (15)-(20).

1

( ) ( )
1 1

( ) ( )
1 1

1

( )= min 1 (15)

(1 ) , ( 1, 2,..., ) (16)

, ( 1, 2,..., ) (17)
. .

1 (18)

0 1, ( 1,2,..., ) (19)
1 0, ( 1,2,..., ) (20)

n

OWA k i
i

m m

j i j j k j i
j j

m m

j i j j k j i
j j

m

j
j

j

i

r x y

w v w v y M i n

w v w v y M i n
s t

w

w j m
y or i n



 

 






   




  


 



  
 



 

 















  

    (2) In models (15)-(20), replace the objective function (15) by

1
( ) max 1 (21)

n

OWA k i
i

r x y


 

    Then, the worst ranking of alternative , , can be obtained via the mixed 𝑥𝑘 𝑟𝑂𝑊𝐴(𝑥𝑘)

0-1 linear programming models (16)-(21).

The proof of Theorem 2 is provided in Appendix A.

To simplify the notation, models (15)-(20) and models (16)-(21) are both called 

 in this paper. In both models  and ,  and  are 𝑃2 𝑃1 𝑃2 𝑤𝑗 (𝑗 = 1,2,…,𝑚) 𝑦𝑖 (𝑖 = 1,2,…, 𝑛)

decision variables. 
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3.2 Desirable properties of ranking range

In this subsection, we present some desired properties of the ranking range of the 

alternatives based on the concept of attribute ranking and attribute ranking range.

Let ,  and  be as defined above. [𝑟𝑊𝐴(𝑥𝑘),𝑟𝑊𝐴(𝑥𝑘)] [𝑟𝑂𝑊𝐴(𝑥𝑘),𝑟𝑂𝑊𝐴(𝑥𝑘)] [𝑐(𝑥𝑘),𝑐(𝑥𝑘)]

The following properties hold:

Property 1:  for any .[𝑐(𝑥𝑘),𝑐(𝑥𝑘)] ⊆ [𝑟𝑊𝐴(𝑥𝑘),𝑟𝑊𝐴(𝑥𝑘)] 𝑥𝑘 ∈ 𝑋

The proof of Property 1 is provided in Appendix A. This property shows that the 

attribute ranking range of an alternative is contained in the ranking range of the 

alternative under the WA operator.

Let  j=1,2,…,m} be the set of the alternatives whose 𝑂𝐼𝑘
(𝑥𝑘) = {𝑥𝑖|𝑣𝑖𝑗 > 𝑣𝑘𝑗,

decision evaluation value is greater than that of the alternative  for all attributes, 𝑥𝑘

and  be its cardinality. Let  j=1,2,…,m} be the set of |𝑂𝐼𝑘
(𝑥𝑘)| 𝑂𝐼𝑘

(𝑥𝑘) = {𝑥𝑖|𝑣𝑖𝑗 ≤ 𝑣𝑘𝑗,

alternatives whose decision evaluation value is not greater than that of the alternative 

 for all attributes, and  be its cardinality. The following property holds:𝑥𝑘 |𝑂𝐼𝑘
(𝑥𝑘)|

Property 2: (i)  and (ii) .𝑟𝑊𝐴(𝑥𝑘) ∈ [|𝑂𝐼𝑘
(𝑥𝑘)| + 1, 𝑐(𝑥𝑘)] 𝑟𝑊𝐴(𝑥𝑘) ∈ [𝑐(𝑥𝑘),  𝑛 - |𝑂𝐼𝑘

(𝑥𝑘)|]

The proof of Property 2 is provided in Appendix A. This property provides an 

estimation for the ranking range of the alternative  under the WA operator. The 𝑥𝑘

following examples show that Properties 1 and 2 do not hold in the case of the OWA 

operator.

Example 2: Assume five alternatives  and four attributes {𝑥1, 𝑥2,  𝑥3, 𝑥4, 𝑥5} {𝑎1,  𝑎2, 

 with the following standardized decision matrix  is: 𝑎3,  𝑎4} 𝑉 = [𝑣𝑖𝑗]5 × 4

0.95 0.9 0.73 0.66
0.8 0.59 1 0.7
0.8 0.9 0.65 0.65
0.6 0.66 0.9 0.71
0.5 0.6 0.7 0.8

V

 
 
 
 
 
 
  

Based on Definition 2,

   , and [𝑐(𝑥1),𝑐(𝑥1)] = [1, 4], [𝑐(𝑥2),𝑐(𝑥2)] = [1, 5], [𝑐(𝑥3),𝑐(𝑥3)] = [1, 5], [𝑐(𝑥4),𝑐(𝑥4)] = [2, 4]

.[𝑐(𝑥5),𝑐(𝑥5)] = [1, 5]
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Meanwhile, solving  using the software package LINGO, we have,𝑃2

   [𝑟𝑂𝑊𝐴(𝑥1),𝑟𝑂𝑊𝐴(𝑥1)] = [1, 2], [𝑟𝑂𝑊𝐴(𝑥2),𝑟𝑂𝑊𝐴(𝑥2)] = [1, 4], [𝑟𝑂𝑊𝐴(𝑥3),𝑟𝑂𝑊𝐴(𝑥3)] = [2, 4],

 and .[𝑟𝑂𝑊𝐴(𝑥4),𝑟𝑂𝑊𝐴(𝑥4)] = [3, 4], [𝑟𝑂𝑊𝐴(𝑥5),𝑟𝑂𝑊𝐴(𝑥5)] = [5, 5]

Then, it is obvious that , which [𝑐(𝑥𝑘),𝑐(𝑥𝑘)]⊈[𝑟𝑂𝑊𝐴(𝑥𝑘),𝑟𝑂𝑊𝐴(𝑥𝑘)]  (𝑘 = 1,2,3,4,5)

means that Property 1 is not true when the OWA operator is used.

Example 3: Assume three alternatives  and four attributes {𝑥1,  𝑥2, 𝑥3} {𝑎1,  𝑎2,  𝑎3, 𝑎4

 with the following standardized decision matrix  is:} 𝑉 = [𝑣𝑖𝑗]3 × 4

0.59 1 0.8 0.63
0.6 0.7 0.9 0.46
0.8 0.5 0.4 0.6

V
 
   
  

Based on Definition 2,

, {𝑐(𝑥1),𝑐(𝑥2),𝑐(𝑥3)} = {1,1,1}

and 

   {𝑐(𝑥1),𝑐(𝑥2),𝑐(𝑥3)} = {3,3,3}.

Meanwhile, we have     |𝑂𝐼1
(𝑥1)| + 1 = 1, |𝑂𝐼2

(𝑥2)| + 1 = 1, |𝑂𝐼3
(𝑥3)| + 1 = 1, 3 ‒ |𝑂𝐼1

, , and .(𝑥1)| = 3 3 ‒ |𝑂𝐼2
(𝑥2)| = 3 3 ‒ |𝑂𝐼3

(𝑥3)| = 3

Solving  with the software package LINGO, we have 𝑃2

,  {𝑟𝑂𝑊𝐴(𝑥1),𝑟𝑂𝑊𝐴(𝑥2),𝑟𝑂𝑊𝐴(𝑥3)} = {1,2,3}

and  

 {𝑟𝑂𝑊𝐴(𝑥1),𝑟𝑂𝑊𝐴(𝑥2),𝑟𝑂𝑊𝐴(𝑥3)} = {1,2,3}.

Clearly, it is   𝑟𝑂𝑊𝐴(𝑥2) ∉ [|𝑂𝐼2
(𝑥2)| + 1,𝑐(𝑥2)], 𝑟𝑂𝑊𝐴(𝑥3) ∉ [|𝑂𝐼3

(𝑥3)| + 1,𝑐(𝑥3)], 𝑟𝑂𝑊𝐴(𝑥1)

 and  and consequently Property 2 ∉ [𝑐(𝑥1),3 ‒ |𝑂𝐼1
(𝑥1)|], 𝑟𝑂𝑊𝐴(𝑥2) ∉ [𝑐(𝑥2),3 ‒ |𝑂𝐼2

(𝑥2)|],

does not hold in the case of the OWA operator being used.

4. Strategic weight manipulation

In MADM problems, the decision maker can strategically set the attribute 

weights to obtain her/his desired ranking of the alternative(s). In this section, we 

continue to use mixed 0-1 linear programming models to set a strategic weight to 

manipulate the ranking of alternative(s) under different aggregation operators. 
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Let  be the objective weight vector of the attributes in a 𝑤0 = (𝑤0
1,𝑤0

2,…,𝑤 0
𝑚)

MADM problem. Without loss of generality, the decision maker wishes to 

manipulate the ranking of the alternatives .{𝑥1,𝑥2,…,𝑥𝑙}

Let  be the decision maker’s strategic weight vector to 𝑤 = (𝑤1,𝑤2,…,𝑤𝑚)

manipulate the alternatives . It is natural that the decision maker wishes to {𝑥1,𝑥2,…,𝑥𝑙}

minimize the difference between the objective and strategic weight vector, i.e.,

0

1
min (22)

m

j j
j

w w




    Without loss of generality, if the decision maker's desired ranking of the 

alternatives  is , then we have{𝑥1,𝑥2,…,𝑥𝑙} {𝑟 ∗ (𝑥1),𝑟 ∗ (𝑥2),…,𝑟 ∗ (𝑥𝑙)}

*( ) ( ) ( 1, 2,..., ) (23)w k kr x r x k l 

    Based on Eqs. (22) and (23), an optimization-based model to find out the 

decision maker's strategic weight is presented as follows.

0

1

*

min
(24)

. . ( ) ( ) ( 1, 2,..., )

m

j j
j

w k k

w w

s t r x r x k l


 

  



    In order to obtain the optimum solution to model (24), in the following it is 

shown that model (24) can be transformed into mixed 0-1 linear programming models. 

Lemma 1: Let  be the WA operator as per Eq. (4). If there exists 𝐹 𝑤 ∗ =

 satisfying the constraint conditions (25)-(30) below (𝑤 ∗
1 ,𝑤 ∗

2 ,…,𝑤 ∗
𝑚)

* *

1 1

* *

1 1

*

1

*

1

*

(1 ) , ( 1, 2,..., ; 1, 2,..., ) (25)

, ( 1, 2,..., ; 1, 2,..., ) (26)

1 ( ), ( 1, 2,..., ; 1, 2,..., ) (27)

1 (28)

0 1, ( 1,2,...,

m m

j ij j kj ik
j j

m m

j ij j kj ik
j j

n

ik k
i
m

j
j

j

w v w v y M i n k l

w v w v y M i n k l

y r x i n k l

w

w j

 

 





    

   

   



  

 

 




) (29)

1 0, ( 1,2,..., ) (30)ik

m
y or k l















  

   then, .𝑟
𝑤 ∗ (𝑥𝑘) = 𝑟 ∗ (𝑥𝑘)   (𝑘 = 1,2,…,𝑙)
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The proof of Lemma 1 is provided in Appendix A.

Lemma 2: Let  be the OWA operator as per Eq. (5). If there exists 𝐹 𝑤 ∗ =

 satisfying the constraint conditions (27)-(32) below(𝑤 ∗
1 ,𝑤 ∗

2 ,…,𝑤 ∗
𝑚)

* *
( ) ( )

1 1

* *
( ) ( )

1 1

(1 ) , ( 1, 2,..., ; 1, 2,..., ) (31)

, ( 1, 2,..., ; 1, 2,..., ) (32)

m m

j i j j k j ik
j j

m m

j i j j k j ik
j j

w v w v y M i n k l

w v w v y M i n k l

 

 

     


    


 

 

Then, .𝑟
𝑤 ∗ (𝑥𝑘) = 𝑟 ∗ (𝑥𝑘)   (𝑘 = 1,2,…,𝑙)

The proof of Lemma 2 is provided in Appendix A.

Based on Lemmas 1 and 2, Theorem 3 is obtained.

Theorem 3: Let  and . 𝑏𝑗 = 𝑤𝑗 ‒ 𝑤0
𝑗 𝑔𝑗 = |𝑤𝑗 ‒ 𝑤0

𝑗|

(1) Let  be the WA operator as per Eq. (4), model (24) can be equivalently 𝐹

transformed into the following mixed 0-1 linear programming models (33)-(42)

1

1 1

1 1
0

min (33)

(1 ) , ( 1, 2,..., ; 1, 2,..., ) (34)

, ( 1, 2,..., ; 1, 2,..., ) (35)

, ( 1, 2,..., ) (36)
, ( 1, 2,..., ) (37)

. . , ( 1, 2,..

m

j
j

m m

j ij j kj ik
j j

m m

j ij j kj ik
j j

j j j

j j

j j

g

w v w v y M i n k l

w v w v y M i n k l

b w w j m
b g j m

s t b g j



 

 

    

   

  
 

  



 

 

*

1

1

., ) (38)

1 ( ), ( 1, 2,..., ) (39)

1 (40)

0 1, ( 1, 2,..., ) (41)
1 0, ( 1, 2,..., ) (42)

n

ik k
i
m

j
j

j

ik

m

y r x k l

w

w j m
y or k l








 
 
 
 
 
 
 
 
 

                   





    (2) In models (33)-(42), replace the constraints (34)-(35) by the constraints (43)-

(44) 

( ) ( )
1 1

( ) ( )
1 1

(1 ) , ( 1, 2,..., ; 1, 2,..., ) (43)

, ( 1, 2,..., ; 1, 2,..., ) (44)

m m

j i j j k j ik
j j
m m

j i j j k j ik
j j

w v w v y M i n k l

w v w v y M i n k l
 

 

     

    


 

 
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    Let  be the OWA operator as per Eq. (5) and model (24) can be equivalently 𝐹

transformed into the mixed 0-1 linear programming models (33), (36)-(44).

The proof of Theorem 3 is provided in Appendix A. 

In this paper, we denote the models (33)-(42) as , and denote the models (33), 𝑃3

(36)-(44) as  In both models  and   and  𝑃4. 𝑃3 𝑃4, 𝑤𝑗  (𝑗 = 1,2,…,𝑚) 𝑦𝑖𝑘 (𝑖 = 1,2,…,𝑛; 𝑘 = 1,2,…,𝑙)

are decision variables. 

A decision maker can manipulate a strategic weight to obtain her/his desired 

ranking of the alternatives  if the optimum solution to  or  exists. {𝑥1,𝑥2,…,𝑥𝑙} 𝑃3 𝑃4

Otherwise, it is not possible to obtain her/his desired ranking of the alternatives by 

manipulating a strategic weight. 

Finally, in this section, the existence of solution to models  and  is discussed 𝑃3 𝑃4

in Properties 3-5.

Property 3: There exist  {𝑟 ∗ (𝑥1),𝑟 ∗ (𝑥2),…,𝑟 ∗ (𝑥𝑙)} (𝑟 ∗ {𝑥𝑘} ∈ [𝑟(𝑥𝑘),𝑟(𝑥𝑘)],  𝑘 = 1,2,…,𝑙)

that satisfy the following conditions: (a)  for any , and (b) 𝑟 ∗ (𝑥𝑘) ≤ 𝑟𝑤0
(𝑥𝑘) 𝑘 ∈ {1,2,…,𝑙}

 such that . Then, models  and  have feasible ∃ 𝑓 ∈ {1,2,…,𝑙} 𝑟 ∗ (𝑥𝑓) < 𝑟𝑤0
(𝑥𝑓) 𝑃3 𝑃4

solutions.

The proof of Property 3 is provided in Appendix A.

Property 3 provides the condition under which a decision maker can manipulate 

a strategic weight to obtain a better ranking for the alternatives . {𝑥1,𝑥2,…,𝑥𝑙}

Property 4: Let  for any . Then, the solution of models 𝑟 ∗ (𝑥𝑘) = 𝑟(𝑥𝑘) 𝑘 ∈ {1,2,…,𝑙}

 and  does not exist under the following two conditions: 𝑃3 𝑃4

(1) there exists  such that  and <l;𝑏 𝑏 = |{𝑥𝑖|𝑟(𝑥𝑖) = 𝑟(𝑥𝑘),  𝑖 = 1,2,…,𝑙}| 𝑏

(2) there exists  such that .ℎ ∈ {1,2,…,𝑙} 𝑟(𝑥𝑘) < 𝑟(𝑥ℎ) < 𝑟(𝑥𝑘) + 𝑏

The proof of Property 4 is provided in Appendix A.

Property 4 provides conditions under which a decision maker can not manipulate 

a strategic weight to obtain her/his desired ranking for the alternatives  for {𝑥1,𝑥2,…,𝑥𝑙}

both WA and OWA operators.

Property 5: When =1, we have that (1) the optimal solution to  exists if and 𝑙 𝑃3

only if ; (2) the optimal solution to  exists if and only if 𝑟𝑊𝐴(𝑥𝑘) ≤ 𝑟 ∗ (𝑥𝑘) ≤ 𝑟𝑊𝐴(𝑥𝑘) 𝑃4
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.𝑟𝑂𝑊𝐴(𝑥𝑘) ≤ 𝑟 ∗ (𝑥𝑘) ≤ 𝑟𝑂𝑊𝐴(𝑥𝑘)

The proof of Property 5 is provided in Appendix A.

Property 5 provides condition that make possible for a decision maker to 

manipulate a strategic weight to obtain any desired ranking within the ranking range 

of an alternative.

5. Numerical analysis and simulation experiments

In this section, an example with real data (provided in Appendix B) taken from 

the Academic Ranking of World Universitie (ARWU; http://www.arwu.org /) is used 

to illustrate how the proposed MADM strategic weight manipulation model works. 

Moreover, simulation experiments comparing the performances of the WA and OWA 

operators in defending against strategic weight manipulation are also included.

5.1 Numerical analysis

Let us consider 50 Universities taken from ARWU as the set of alternatives 

, and the following 6 attributes  to rank them: {𝑥1,𝑥2,…,𝑥50} {𝑎1,𝑎2,…,𝑎6}

: Quality of Education (Alumni: Alumni of an institution winning Nobel Prizes 𝑎1

and Fields Medals); 

: Quality of Faculty 1 (Award: Staff of an institution winning Nobel Prizes and 𝑎2

Fields Medals); 

: Quality of Faculty 2 (HiCi: Highly cited researchers in 21 broad subject 𝑎3

categories); 

: Papers published in Nature and Science (N&S); 𝑎4

: Papers indexed in Science Citation Index-expanded and Social Science 𝑎5

Citation Index (PUB); 

: Per capita academic performance of an institution (PCP).𝑎6

First, the data of the 50 universities over the 6 attributes is normalized into a 

standardized decision matrix . Then, using models  and , the ranking 𝑉 = [𝑣𝑖𝑗]50 × 6 𝑃1 𝑃2

range of the alternatives ,  and , are obtained and listed in Table 1.{𝑥1,𝑥2,…,𝑥50} 𝑅𝑊𝐴 𝑅𝑂𝑊𝐴

Table 1: The ranking range  and  for the 50 universities𝑅𝑊𝐴 𝑅𝑂𝑊𝐴

𝑥𝑖 𝑅𝑊𝐴 𝑅𝑂𝑊𝐴 𝑥𝑖 𝑅𝑊𝐴 𝑅𝑂𝑊𝐴 𝑥𝑖 𝑅𝑊𝐴 𝑅𝑂𝑊𝐴

http://www.arwu.org
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1x [1,2] [1,2] 2x [2,12] [2,9] 3x [2,25] [2,8]

4x [2,12] [2,8] 5x [2,15] [2,5] 6x [2,47] [4,10]

7x [1,47] [1,10] 8x [3,24] [6,17] 9x [3,42] [6,14]

10x [4,12] [5,13] 11x [5,19] [8,23] 12x [6,25] [10,22]

13x [9,27] [10,30] 14x [5,35] [9,29] 15x [4,34] [10,28]

16x [8,31] [16,25] 17x [9,28] [11,23] 18x [6,32] [11,29]

19x [9,50] [13,50] 20x [8,34] [13,38] 21x [8,49] [14,43]

22x [3,50] [9,50] 23x [13,45] [14,43] 24x [16,44] [18,33]

25x [3,45] [9,45] 26x [15,48] [19,40] 27x [20,48] [20,38]

28x [18,44] [18,42] 29x [17,40] [17,40] 30x [15,48] [20,41]

31x [16,50] [18,50] 32x [20,48] [19,49] 33x [9,50] [22,46]

34x [20,47] [18,48] 35x [10,49] [21,42] 36x [14,50] [20,47]

37x [27,50] [28,50] 38x [13,50] [17,49] 39x [24,50] [28,50]

40x [18,50] [22,50] 41x [17,49] [29,50] 42x [11,50] [21,49]

43x [32,50] [28,50] 44x [14,50] [19,50] 45x [24,50] [25,50]

46x [20,50] [27,49] 47x [25,50] [26,50] 48x [16,50] [23,50]

49x [28,50] [39,50] 50x [30,50] [28,50]

Existing approaches to attribute weights setting [1-5, 8, 11, 14, 20, 23, 26, 28, 29, 

40, 41] assume that decision makers honest, and aim to set attribute weights to get an 

optimal ranking of alternatives. However, a decision maker might be dishonest, and 

she/he would aspire to strategically set attribute weights to achieve her/his purpose. 

Next, based on the data in Table 1, we assume that the decision maker aims to 

strategically set attribute weights in the Academic Ranking of World Universities, 

illustrating the use of our model in the MADM strategic weight manipulation.

Let  be the objective weight vector of attributes, and  be the ranking of the 𝑤0 𝑟0

corresponding alternative(s) under the attribute weight vector . In the example, we 𝑤0

set . We set different manipulated alternatives and the 𝑤0 = (1/6, 1/6,1/6,1/6,1/6,1/6)

desired rankings of these manipulated alternatives, . Afterwards, models  and  𝑟 ∗ 𝑃3 𝑃4

are applied to get the manipulated strategic weight vector  corresponding to the 𝑤 ∗

desired ranking of the manipulated alternatives. For example,  

(1) Let  be the manipulated alternative. Clearly, . Meanwhile, the 𝑥3 𝑟0(𝑥3) = 2
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desired ranking of alternative  for the decision maker is set to . In other 𝑥3 𝑟 ∗ (𝑥3) = 8

words, the decision maker plans to dishonestly depress the ranking of the university 

. Then, let  be the OWA operator as per Eq. (5),  is used to obtain the strategic 𝑥3 𝐹 𝑃4

weight vector  to achieve the above purpose; 𝑤 ∗ = (0.548, 0, 0.167, 0, 0.12, 0.273)

(2) Let  be the manipulated alternatives. Clearly, . {𝑥8,𝑥13,𝑥14,𝑥15} 𝑟0 = {8,13,12,14}

Meanwhile, the desired ranking of alternatives  for the decision maker is {𝑥8,𝑥13,𝑥14,𝑥15}

. In other words, the decision maker plans to dishonestly improve the 𝑟 ∗ = {6,12,10,9}

ranking of the universities . Then, let  be the WA operator as per Eq. {𝑥8,𝑥13,𝑥14,𝑥15} 𝐹

(4),  is used to obtain the strategic weight vector  𝑃3 𝑤 ∗ = (0.37, 0.1, 0.232, 0.308, 0.323, 0)

to achieve the targeted ranking;

(3) Let  be the manipulated alternatives. Clearly, . {𝑥9,𝑥10,𝑥11,𝑥12} 𝑟0 = {9,10,11,13}

Meanwhile, the desired ranking of alternatives  for the decision maker is {𝑥9,𝑥10,𝑥11,𝑥12}

. In other words, the decision maker plans to dishonestly improve the 𝑟 ∗ = {3,4,5,6}

ranking of the universities . Then, let  be the WA operator as per Eq. {𝑥9,𝑥10,𝑥11,𝑥12} 𝐹

(4),  does not have a solution, which means that it is not possible to strategically set 𝑃3

a attribute weight vector to achieve the desired ranking.

Table 2 shows the strategic weight vector  under different manipulated 𝑤 ∗

alternatives and the corresponding desired ranking .𝑟 ∗

Table 2: The strategic weight vector  under different manipulated alternatives 𝑤 ∗

and the desired ranking .𝑟 ∗

Manipulated 
alternative 
Alternative

（s）

𝐹 𝑟0 𝑟 ∗ 𝑤 ∗

WA 2 25 (0,0,0,0.05,0,0.995)
3x

OWA 2 8 (0.548,0,0.167,0,0.12,0.273)

WA 7 2 (0.167,0.457,0,0,0,0.376)
6x

OWA 7 4 (0.586,0.167,0,0,0.081,0.167)

WA 18 8 (0,0,0.009,0.167,0.748,0.076)

20x
OWA 18 13 (0,0.029,0.167,0.167,0.471,0.167)

WA {8,13,12,14} {3,9,5,4} No solution
8 13 14 15{ , , , }x x x x

OWA {8,13,12,14} {6,10,9,11} No solution
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WA {8,13,12,14} {6,12,10,9} (0.37,0.1,0.232,0308,0.323,0)

OWA {8,13,12,14} {6,13,9,11} (0,0,1,0,0,0)

WA {9,10,11,13} {3,4,5,6} No solution

OWA {9,10,11,13} {6,5,8,10} No solution

WA {9,10,11,13} {17,12,13,15} (0.06,0,0.783,0.089,0,0.068)
9 10 11 12{ , , , }x x x x

OWA {9,10,11,13}  10,12,17,14 (0.439,0,0.561,0,0,0)

WA {18,23,25,29}  8,13,3,20 No solution

OWA {18,23,25,29} {13,14,9,20} No solution

WA {18,23,25,29} {17, 23,24,28} (0.124,0.165,0.043,0.107,0.561,0)
 20 23 25 27, , ,x x x x

OWA {18,23,25,29} {14,22,23,24} (0.06,0,0.32,0.332,0,0.288)

This illustrative example also highlights the main difference between the 

existing approaches to attribute weights setting and the proposed models in this study, 

which consists in the assumption made in the proposed model in this regarding the 

decision maker as dishonest, and aiming to find which the strategically setting of 

attribute weights to allow her/him to achieve the desired/targeted ranking of interest.

5.2 Simulation experiments

In MADM problems, the WA operator and the OWA operator are both 

frequently used to aggregate the associated attribute preference values to rank the 

alternatives. Therefore, a challenge for analysts is how to compare the performances 

of the WA and OWA operators in defending against the MADM strategic weight 

manipulation. In this subsection, we design simulation experiments to deal with this 

challenge. 

Let  and  be the rankings of  under the attribute weight vector 𝑟𝑊𝐴
𝑤 (𝑥𝑘) 𝑟𝑂𝑊𝐴

𝑤 (𝑥𝑘) 𝑥𝑘

 when setting  to be the WA and OWA operators, respectively. As 𝑤 = (𝑤1,𝑤2,…,𝑤𝑚) 𝐹

stated previously,  and  will vary for different weight vector 𝑟𝑊𝐴
𝑤 (𝑥𝑘) 𝑟𝑂𝑊𝐴

𝑤 (𝑥𝑘) 𝑤 = (𝑤1,𝑤2

. Next, we design simulation experiment I to show the fluctuation of both ,…,𝑤𝑚)

rankings of the alternatives as the attribute weight vector changes.

Simulation experiment I: 

Step 1: We randomly generate a standardized decision matrix , 𝑉 = [𝑣𝑖𝑗]50 × 6
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where .𝑣𝑖𝑗 ∈ [0,1]

Step 2: We randomly generate 1000 attribute weight vectors, 𝑤𝑖 = (𝑤𝑖,1,𝑤𝑖,2,…,𝑤𝑖,𝑚

. Based on Eqs. (4) and (5), and the standardized decision matrix )  (𝑖 = 1,2,…,1000) 𝑉 =

 obtained in Step 1. We obtain the ranking of alternative  under the WA and [𝑣𝑖𝑗]50 × 6 𝑥𝑘

OWA operators,  and , respectively. 𝑟𝑊𝐴
𝑤𝑖

(𝑥𝑘) 𝑟𝑂𝑊𝐴
𝑤𝑖

(𝑥𝑘)  (𝑘 = 1,2,…,50; 𝑖 = 1,2,…,1000)

Figure 1 shows the average values of  and  𝑟𝑊𝐴
𝑤𝑖

(𝑥𝑘) 𝑟𝑂𝑊𝐴
𝑤𝑖

(𝑥𝑘)

 in Simulation experiment I.(𝑘 ∈ {6, 12, 20, 35, 46, 50}; 𝑖 = 1, 2,…, 1000)
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Figure 1: The average values of  for the alternatives under the WA and OWA 𝑟𝑤𝑖
(𝑥𝑘)

operators.

Figure 1 clearly shows that the fluctuation of the rankings of the alternatives in 

the WA case is much larger than the rankings in the OWA case. Notably, we ran 

Simulation experiment I many times, and the obtained observations coincide. 

Generally, with the change of the attribute weight vector , a larger fluctuation of the 𝑤

rankings of the alternatives implies a higher possibility to manipulate a strategic 

attribute weight vector to obtain a desired ranking. In other words, the larger the 

fluctuation of the rankings of the alternatives the worse performance in defending 

against strategic weight manipulation. 
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Further，we use the ranking range of the alternative  to measure the 𝑥𝑘

fluctuation degree of  and . Let  and 𝑟𝑊𝐴
𝑤 (𝑥𝑘) 𝑟𝑂𝑊𝐴

𝑤 (𝑥𝑘) 𝑅𝑊𝐴 = [𝑟𝑊𝐴(𝑥𝑘),𝑟𝑊𝐴(𝑥𝑘)] 𝑅𝑂𝑊𝐴 =

 be as defined before in the paper. [𝑟𝑂𝑊𝐴(𝑥𝑘),𝑟𝑂𝑊𝐴(𝑥𝑘)]

Figure 2 shows the ranking range of the alternatives under the WA and OWA 

operators in the example presented in Section 5.1. 
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Figure 2：The ranking range of the alternatives in Example 5.1

A simulation experiment II is designed to analyse the average ranking range of 

the alternatives under the WA and OWA operators, respectively.

Simulation experiment II:

Step 1: We randomly generate an  standardized decision matrix , 𝑛 × 𝑚 𝑉 = [𝑣𝑖𝑗]𝑛 × 𝑚

with . Using model , the ranking range of the alternative , , 𝑣𝑖𝑗 ∈ [0,1] 𝑃1 𝑥𝑖 [𝑟𝑊𝐴(𝑥𝑖),𝑟𝑊𝐴(𝑥𝑖)]

is computed, and using model , the ranking range of the alternative , 𝑃2 𝑥𝑖

, is computed as well. Let[𝑟𝑂𝑊𝐴(𝑥𝑖),𝑟𝑂𝑊𝐴(𝑥𝑖)]

   ( ) (45)WAWA i WA i iWR x r x r x 

    and 

   ( ) (46)OWAOWA i OWA i iWR x r x r x 

be the width of the ranking range of the alternative  under the WA and OWA 𝑥𝑖
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operators, respectively.

Step 2：When setting different  and , we run 100 times Step 1 to obtain the 𝑚 𝑛

average values of  and .𝑊𝑅𝑊𝐴(𝑥𝑖) 𝑊𝑅𝑂𝑊𝐴(𝑥𝑖)

Figure 3 shows the average values of  and  in Simulation 𝑊𝑅𝑊𝐴(𝑥𝑖) 𝑊𝑅𝑂𝑊𝐴(𝑥𝑖)

experiment II.
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Figure 3: Average values of  in simulation method Ⅱ under the different 𝑊𝑅(𝑥𝑖)

parameters.

From Figures 2 and 3, following observations are drawn:

(1) Figure 2 shows that  in a vast majority of [𝑟𝑂𝑊𝐴(𝑥𝑖),𝑟𝑂𝑊𝐴(𝑥𝑖)] ⊆ [𝑟𝑊𝐴(𝑥𝑖),𝑟𝑊𝐴(𝑥𝑖)]

cases;

 (2) Figure 3 shows the average width of the ranking range of the alternatives in 

the WA case is much larger than the ranking range in the OWA case.

Both observations show a better performance of the OWA operator than the WA 

operator in defending against strategic weight manipulation.       

6. Conclusions

This paper focuses on some issues on the strategic attribute weight used to 

manipulate the ranking of alternatives. The main contributions presented are as 
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follows:

(1) We define the concept of the ranking range of an alternative in the MADM 

framework, and propose MLPMs to obtain the ranking range of alternatives under the 

set of attribute weight .𝑊

(2) We reveal the process of designing a strategic attribute weight vector, and 

analyze the conditions to manipulate a strategic attribute weight to obtain her/his 

desired ranking based on the ranking range and the proposed MLPMs.

(3) Simulation experiments are presented that show performance of the OWA 

operator exceeded that of the WA operator in defending against strategic weight 

manipulation in MADM problems.

In some MADM problems, a group of decision makers might be involved, and 

they could provide incomplete attribute weights information (e.g., [17, 19, 33]). In 

these instances, it will be an interesting future study to analyze the MADM strategic 

weight manipulation under a group context with incomplete attribute weights 

information. Other interesting proposal would be to analyze strategic weight 

manipulation in decision context under trust relationships [34, 35].
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Appendix A: Proofs. 

Proof of Theorem 1:

The process of proving Theorem 1 is divided into two steps.

Step 1: On the one hand, using WA operator as per Eq. (4), based on the 

constraints (9)-(13) and result (1), i.e.,  if and only if  under the conditions 𝑥𝑖 ≻ 𝑥𝑘 𝑦𝑖 = 1

 and , we can obtain,𝐷(𝑥𝑖) > 𝐷(𝑥𝑘) ‒ (1 ‒ 𝑦𝑖)𝑀 𝐷(𝑥𝑖) ≤ 𝐷(𝑥𝑘) + 𝑦𝑖𝑀
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where  is a large enough number.𝑀

On the other hand, using WA operator as per Eq. (4), ,  ∑𝑚
𝑗 = 1𝑤𝑗𝑣𝑖𝑗 ≤ ∑𝑚

𝑗 = 1𝑤𝑗𝑣𝑘𝑗 + 𝑦𝑖𝑀

 when , based on result (2), i.e.,  if and ∑𝑚
𝑗 = 1𝑤𝑗𝑣𝑖𝑗 > ∑𝑚

𝑗 = 1𝑤𝑗𝑣𝑘𝑗 ‒ (1 ‒ 𝑦𝑖)𝑀 𝑦𝑖 = 0 𝑥𝑖 ≾ 𝑥𝑘

only if  under the conditions  and  𝑦𝑖 = 0 𝐷(𝑥𝑖) ≤ 𝐷(𝑥𝑘) + 𝑦𝑖𝑀 𝐷(𝑥𝑖) > 𝐷(𝑥𝑘) ‒ (1 ‒ 𝑦𝑖)𝑀.

Then, according to the definition of ranking of the alternatives and Eq. (6), we have 𝑟

.(𝑥𝑘) = 1 + min ∑𝑛
𝑖 = 1𝑦𝑖

Step 2: On the one hand, based on the constraints (9)-(13) and result (1) in step 1, 

we can obtain,
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where  is a large enough number.𝑀

On the other hand, the proof of is similar to the proof of step 1.

Above all, this completes the proof of Theorem 1.

Proof of Theorem 2:

The proof of Theorem 2 is similar to the proof of Theorem 1. Here, we only 

replace the WA operator  and  by OWA operator 𝐷(𝑥𝑖) = ∑𝑚
𝑗 = 1𝑤𝑗𝑣𝑖𝑗 𝐷(𝑥𝑘) = ∑𝑚

𝑗 = 1𝑤𝑗𝑣𝑘𝑗

 and  in proof of Theorem 1.𝐷(𝑥𝑖) = ∑𝑚
𝑗 = 1𝑤𝑗𝑣𝑖(𝑗) 𝐷(𝑥𝑘) = ∑𝑚

𝑗 = 1𝑤𝑗𝑣𝑘(𝑗)

Then, this completes the proof of Theorem 2. 

Proof of Property 1:

The proof of Property 1 required proving that given alternative , if its attribute 𝑥𝑘

ranking verifies then it is also .𝑐𝑗(𝑥𝑘) ∈ [𝑐(𝑥𝑘),𝑐(𝑥𝑘)], 𝑐𝑗(𝑥𝑘) ∈ [𝑟𝑊𝐴(𝑥𝑘),𝑟𝑊𝐴(𝑥𝑘)]

Let  be the attribute ranking of alternative  associated with attribute  and 𝑐𝑗(𝑥𝑘) 𝑥𝑘 𝑎𝑗

let the attribute weight vector be , based on Eq. (4) and definition of 

ranking of alternative, we have that  i.e., .𝑟𝑊𝐴(𝑥𝑘) = 𝑐𝑗(𝑥𝑘), 𝑟𝑊𝐴(𝑥𝑘) ∈ [𝑟𝑊𝐴(𝑥𝑘),𝑟𝑊𝐴(𝑥𝑘)]

This completes the proof of property 1.

Proof of Property 2:

(i) We firstly prove that the best ranking of alternative , , satisfies 𝑥𝑘 𝑟𝑊𝐴(𝑥𝑘) 𝑟𝑊𝐴

.(𝑥𝑘) ∈ [|𝑂𝐼𝑘
(𝑥𝑘)| + 1, 𝑐(𝑥𝑘)]

On the one hand, let  j=1,2,…,m} be as previously defined, 𝑂𝐼𝑘
(𝑥𝑘) = {𝑥𝑖|𝑣𝑖𝑗 > 𝑣𝑘𝑗,

and  be number of alternatives , satisfying . Using the WA |𝑂𝐼𝑘
(𝑥𝑘)| 𝑥ℎ 𝑥ℎ ∈ 𝑂𝐼𝑘

(𝑥𝑘)

operator as per Eq. (4), we obtain,
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According to the definition of ranking of alternatives, we obtain |𝑂𝐼𝑘
(𝑥𝑘)| + 1 ≤

. 𝑟𝑊𝐴(𝑥𝑘)

On the other hand, based on property 1, it is obvious that the best ranking of the 

alternative , , satisfies .𝑥𝑘 𝑟𝑊𝐴(𝑥𝑘) 𝑟𝑊𝐴(𝑥𝑘) ≤ 𝑐(𝑥𝑘)

(ii) We further prove that the worst ranking of the alternative  , satisfies 𝑥𝑘, 𝑟𝑊𝐴(𝑥𝑘)

.𝑟𝑊𝐴(𝑥𝑘) ∈ [𝑐(𝑥𝑘),  𝑛 ‒ |𝑂𝐼𝑘
(𝑥𝑘)|]

On the one hand, let  j=1,2,…,m} be as previously defined, 𝑂𝐼𝑘
(𝑥𝑘) = {𝑥𝑖|𝑣𝑖𝑗 ≤ 𝑣𝑘𝑗, 

and  be the number of alternatives , satisfying , then there exist at |𝑂𝐼𝑘
(𝑥𝑘)| 𝑥ℎ 𝑥ℎ ∈ 𝑂𝐼𝑘

(𝑥𝑘)

most  alternatives  satisfying , according to the process of 𝑛 ‒ |𝑂𝐼𝑘
(𝑥𝑘)| ‒ 1 𝑥𝑓 𝑥𝑓 ∈ 𝑂𝐼𝑘

(𝑥𝑘)

proof in (i), we obtain .𝑟𝑊𝐴(𝑥𝑘) ≤ 𝑛 ‒ |𝑂𝐼𝑘
(𝑥𝑘)|

On the other hand, based on property 1, it is obvious that the worst ranking of 

the alternative , satisfies . 𝑥𝑘 𝑟𝑊𝐴(𝑥𝑘) ≥ 𝑐(𝑥𝑘)

This completes the proof of property 2.

Proof of Lemma 1:                       

(1) Because  satisfies the constraints (25)-(30), then it is:𝑤 ∗ = (𝑤 ∗
1 ,𝑤 ∗

2 ,…,𝑤 ∗
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We have  and ∑𝑚
𝑗 = 1𝑤 ∗

𝑗 𝑣𝑖𝑗 > ∑𝑚
𝑗 = 1𝑤 ∗

𝑗 𝑣𝑘𝑗 (𝑘 = 1,2,…,𝑙) ∑𝑚
𝑗 = 1𝑤 ∗

𝑗 𝑣𝑖𝑗 ≤ ∑𝑚
𝑗 = 1𝑤 ∗

𝑗 𝑣𝑘𝑗 + 1 ∙ 𝑀,  (

 when , based on result (1) in proof of Lemma 1, we have 𝑘 = 1,2,…,𝑙) 𝑦𝑖𝑘 = 1 𝑥𝑖 ≻ 𝑥𝑘 
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 And, when   and (𝑘 = 1,2,…,𝑙). 𝑦𝑖𝑘 = 0, ∑𝑚
𝑗 = 1𝑤 ∗

𝑗 𝑣𝑖𝑗 ≤ ∑𝑚
𝑗 = 1𝑤 ∗

𝑗 𝑣𝑘𝑗, (𝑘 = 1,2,…,𝑙) ∑𝑚
𝑗 = 1𝑤 *

𝑗 𝑣𝑖𝑗 >

, based on result (2) in proof of Lemma 1, we have ∑𝑚
𝑗 = 1𝑤 *

𝑗 𝑣𝑘𝑗 - 1 ∙ 𝑀, (𝑘 = 1,2,…,𝑙) 𝑥𝑖 ≾ 𝑥𝑘

 Based on the condition  and  (𝑘 = 1,2,…,𝑙). ∑𝑚
𝑖 = 1𝑦𝑖𝑘 + 1 = 𝑟 ∗ (𝑥𝑘) (𝑖 = 1,2,…,𝑛; 𝑘 = 1,2,…,𝑙) 

the definition of ranking of alternative, we obtain   𝑟
𝑤 ∗ (𝑥𝑘) = 𝑟 ∗ (𝑥𝑘) (𝑘 = 1,2,…,𝑙).

This completes the proof of Lemma 1.

Proof of Lemma 2:

The proof of Lemma 2 is similar to the proof of Lemma 1. Here, we only replace 

the WA operator  and  by the OWA operator 𝐷(𝑥𝑖) = ∑𝑚
𝑗 = 1𝑤𝑗𝑣𝑖𝑗 𝐷(𝑥𝑘) = ∑𝑚

𝑗 = 1𝑤𝑗𝑣𝑘𝑗 𝐷(𝑥𝑖) =

 and  in proof of Lemma 1 to obtain ∑𝑚
𝑗 = 1𝑤𝑗𝑣𝑖(𝑗) 𝐷(𝑥𝑘) = ∑𝑚

𝑗 = 1𝑤𝑗𝑣𝑘(𝑗) 𝑟
𝑤 ∗ (𝑥𝑘) = 𝑟 ∗ (𝑥𝑘) (

𝑘 = 1,2,…,𝑙).

This completes the proof of Lemma 2.

Proof of Theorem 3:

Introducing the following two transformed decision variables  and 𝑏𝑗 = 𝑤𝑗 ‒ 𝑤0
𝑗 𝑔𝑗

, it is  and , which guarantee .= |𝑤𝑗 ‒ 𝑤0
𝑗| 𝑏𝑗 ≤ 𝑔𝑗 ‒ 𝑏𝑗 ≤ 𝑔𝑗 𝑔𝑗 ≥ |𝑏𝑗| = |𝑤𝑗 ‒ 𝑤0

𝑗|

Based on Lemmas 1 and 2, put models (25)-(30) and (27)-(32) into Eq. (24), 

then the Eq. (24) can be transformed into mixed 0-1 linear programming models (33)-

(42) and (35)-(44).

This completes the proof of Theorem 3.

Proof of Property 3:

First, we prove the existence of solution to model  as follows.𝑃3

Let  be the objective ranking of the alternatives 𝑟𝑤0
= {𝑟𝑤0

(𝑥1),𝑟𝑤0
(𝑥2),…,𝑟𝑤0

(𝑥𝑙)} {𝑥1,

, let  be the decision maker’s desired rankings of 𝑥2,…,𝑥𝑙} 𝑟 ∗ = {𝑟 ∗ (𝑥1),𝑟 ∗ (𝑥2),…,𝑟 ∗ (𝑥𝑙)}

the alternatives  and we have  . Based {𝑥1,𝑥2,…,𝑥𝑙}, 𝑟 ∗ (𝑥𝑘) ∈ [𝑟𝑊𝐴(𝑥𝑘),𝑟𝑊𝐴(𝑥𝑘)]  (𝑘 = 1,2,…,𝑙)

on the continuous of ranking range, using enumeration, let the ranking of alternatives 

be 𝑟 ∗ = {𝑟𝑤0
(𝑥1) ‒ 1, 𝑟𝑤0

(𝑥2),…, 𝑟𝑤0
(𝑥𝑙)},  {𝑟𝑤0

(𝑥1),𝑟𝑤0
(𝑥2) ‒ 1,…, 𝑟𝑤0

(𝑥𝑙)},  …, {𝑟𝑤0
(𝑥1),𝑟𝑤0

(𝑥2

 respectively. Then, there must exist , the feasible solution of model ),…, 𝑟𝑤0
(𝑥𝑙) ‒ 1}, 𝑟 ∗
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 exists; otherwise, the objective ranking  is the best ranking of alternatives, 𝑃3 𝑟𝑤0

which contradicts the assumption in the beginning. Then, we can prove that model  𝑃3

has feasible solution. 

Similarly, we can prove the model  has feasible solution.𝑃4

This completes the proof of Property 3.

Proof of Property 4:

According to the conditions in Property 4, without loss of generality, let 

 be our desired 

ranking of the alternatives , let  be denoted as monotonically increasing, {𝑥1,𝑥2,…,𝑥𝑙} 𝑟 ∗

then, we have , which contradict the condition 𝑟(𝑥ℎ) = 𝑟(𝑥𝑘) + 𝑏 + 1 𝑟(𝑥𝑘) < 𝑟(𝑥ℎ) < 𝑟(𝑥𝑘

 in Property 4.) + 𝑏

This completes the proof of Property 4.

Proof of Property 5:

We prove the Property 5 with reduction to absurdity as follows.

When , , we assume that model  has no solution for ranking , which 𝑙 = 1 𝑃3 𝑟(𝑥𝑘)

satisfies , then, there is no attribute weights  such that the 𝑟(𝑥𝑘) ∈ [𝑟𝑊𝐴(𝑥𝑘),𝑟𝑊𝐴(𝑥𝑘)] 𝑤

alternative  can obtain the ranking , which contradicts the continuous of 𝑥𝑘 𝑟𝑤(𝑥𝑘)

ranking range, so we obtain that the solution of model  exists.𝑃3

Similarly, we can prove the existence of solution to model .𝑃4

This completes the proof of Property 5.

Appendix B: The original data for 50 universities in Section 5.1
𝑥𝑖 𝑣𝑖1 𝑣𝑖2 𝑣𝑖3 𝑣𝑖4 𝑣𝑖5 𝑣𝑖6

1 100 100.0 100 100 100 76.6

2 40.7 89.6 80.1 70.1 70.6 53.8

3 68.2 80.7 60.6 73.1 61.1 68.0

4 65.1 79.4 66.1 65.6 67.9 56.5

5 77.1 96.6 50.8 55.6 66.4 55.8

6 53.3 93.4 57.1 43.0 42.4 70.3

7 49.5 66.7 49.3 56.4 44.0 100.0

8 63.5 65.9 52.1 51.9 68.8 33.2

9 59.8 86.3 49.0 42.9 49.8 42.0

10 49.7 54.9 52.3 51.9 70.9 43.1

11 47.6 50.4 51.0 58.8 63.0 37.8
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12 29.5 47.1 52.3 47.2 70.7 31.6

13 42.0 49.8 50.4 45.3 59.9 40.2

14 19.2 35.5 56.6 55.1 62.9 36.6

15 21.2 31.6 53.0 51.7 71.9 29.3

16 37.7 33.6 44.0 44.9 70.2 28.8

17 31.6 33.8 49.6 39.6 67.7 37.4

18 28.1 36.2 38.5 40.6 71.7 32.7

19 0.0 39.9 46.8 53.5 59.5 34.9

20 29.5 35.5 38.4 45.9 55.7 46.3

21 30.8 14.1 41.9 48.6 70.8 28.8

22 34.4 0.0 56.2 41.3 75.9 25.6

23 14.5 35.8 44.2 34.5 62.0 38.0

24 30.8 34.8 40.2 35.7 62.5 24.6

25 19.9 17.2 38.8 38.6 79.1 29.3

26 31.6 37.2 33.6 32.6 59.0 23.5

27 28.1 31.9 35.2 40.3 56.2 23.3

28 15.4 22.1 50.3 37.0 58.1 28.8

29 29.9 36.2 34.9 32.4 55.5 28.6

30 29.5 16.3 47.3 32.5 64.0 26.2

31 15.4 14.9 50.2 39.0 61.7 23.9

32 22.9 24.9 40.7 41.8 50.5 26.0

33 17.0 59.8 30.3 40.9 19.0 39.6

34 12.6 34.1 37.1 36.0 45.0 34.2

35 21.8 18.8 28.0 34.0 63.2 39.2

36 33.6 27.4 25.8 29.8 59.2 23.9

37 16.2 16.3 38.6 37.5 56.0 26.6

38 14.5 39.1 38.7 27.5 37.3 38.0

39 8.9 16.3 39.8 33.5 61.2 25.6

40 15.4 18.8 32.8 32.0 63.0 24.2

41 18.5 32.6 27.1 26.1 56.2 25.6

42 30.3 54.3 16.8 17.4 47.3 26.6

43 19.2 20.0 33.0 31.6 52.7 26.5

44 17.0 13.3 28.6 25.3 66.9 30.2

45 18.5 34.5 31.1 35.6 35.8 22.4

46 19.9 25.3 23.7 29.4 51.7 34.2

47 20.5 24.9 25.8 30.5 51.9 25.9

48 22.4 26.6 24.8 23.5 50.8 37.4

49 0.0 31.7 35.6 22.1 53.2 20.3

50 0.0 29.3 34.3 28.9 45.3 27.5


