
 1

Abstract—Activity models play a critical role for activity

recognition and assistance in ambient assisted living. Existing

approaches to activity modeling suffer from a number of

problems, e.g. cold-start, model reusability and incompleteness. In

an effort to address these problems, we introduce an ontology-

based hybrid approach to activity modeling that combines domain

knowledge-based model specification and data-driven model

learning. Central to the approach is an iterative process that

begins with “seed” activity models created by ontological

engineering. The “seed” models are deployed, and subsequently

evolved through incremental activity discovery and model update.

While our previous work has detailed ontological activity

modeling and activity recognition, this paper focuses on the

systematic hybrid approach and associated methods and inference

rules for learning new activities and user activity profiles. The

approach has been implemented in a feature-rich assistive living

system. Analysis of the experiments conducted has been

undertaken in an effort to test and evaluate the activity learning

algorithms and associated mechanisms.

Index Terms—activity model learning, activity recognition,

ontology, semantic reasoning, smart homes.

I. INTRODUCTION

MART Homes (SH) have been widely accepted as being a

promising paradigm for technology-driven assistive living

for the aging population [1]. A SH can be described as a

home environment augmented with a diversity of multi-modal

sensors, actuators and devices along with information and

communication technology (ICT) based services and systems

[2]. By monitoring environmental changes and inhabitants'

activities, an assistive system within a SH can process sensor

data, infer an inhabitant’s needs and take appropriate actions

to support Activities of Daily Living (ADLs). As such, a SH

can help older people prolong their independent living and

enhance quality of life within their own homes.

Activity models play a crucial role in the realization of the

SH concept. They are required to support reasoning based

upon real-time streaming sensor data in order to infer the

current activity for application-level functions. This may

include, for example, to predict the next action within a

specific task or to detect anomalies within the undertaking

Manuscript received xxxxxxxxxxx.

L. Chen, CD. Nugent and G. Okeyo are with the School of Computing and

Mathematics, University of Ulster, UK. Tel and fax: 44-28-90368837; (e-

mail: {l.chen; cd.nugent}@ulster.ac.uk, Okeyo-G@email.ulster.ac.uk).

ADLs. The completeness and accuracy of ADL models is

therefore critical for an assistive system to function correctly.

If an activity is not modeled or the model is not accurate, the

activity will not be recognized by an assistive system. The

system will therefore not be able to provide assistance and/or

prediction with regard to this activity.

Modeling ADLs is a challenging task due to their unique

characteristics. For example, there are a large number of ADLs

in a diversity of categories which can all be modeled at

multiple levels of granularity [4]. In addition, most ADLs

involve performing a number of actions. The sequence of the

actions to be performed is usually dependent on an individual's

own preferences. Furthermore, the manner an ADL is

performed is evolved dynamically, for example the change in

duration or the order of objects being used within a task. This

is particularly the case for older people and those suffering

from decline of cognitive capabilities.

Currently there are two mainstream approaches to modeling

ADLs. One approach is to learn an individual’s activity models

from existing behavioral datasets using data mining and

machine learning techniques. With this approach activity

models are created based on two tasks, namely the creation of

a probabilistic or statistical activity model and the training of

the model to decide its parameters or mappings [5]-[17].

Given that the approach is based on intensive data analysis, it

is usually referred to as a data-driven approach. A data-driven

approach to ADL modeling has two major drawbacks. The

first is the well-known cold-start problem, i.e. requiring a large

representative dataset to support model training for each ADL.

This problem is exacerbated in the context of assistive living

as people are reluctant to disclose their behavioral data due to

privacy and ethical considerations. The second drawback is

related to model applicability and reusability. A data-driven

approach is sensitive to unseen data which makes it difficult to

apply the ADL models which have been learnt from one

person to another person. This means that with the data-driven

approach every activity model for all ADLs for every user

needs to be learnt in order to create complete ADL models.

Given the large number of ADLs and the cold-start problem,

this is a huge challenge, if indeed not impossible, in practice.

To mitigate the aforementioned problems, researchers have

recently started applying transfer learning techniques to

activity modeling and recognition by reusing resources and

knowledge. This involves transferring the source datasets, or

features or models, from one user to another in different

An Ontology-based Hybrid Approach to

Activity Modeling for Smart Homes

Liming Chen, Member, IEEE, Chris Nugent, Member, IEEE, and George Okeyo, Member, IEEE

S

 2

settings [18] [19] [20]. Nevertheless, such research is still at its

infancy with many open challenges [21].

An alternative to the data-driven approach is to manually

define activity models by making use of rich, prior knowledge

and domain heuristics. This approach is motivated by the

observation that most ADLs are daily routines which normally

take place within a specific circumstance of time, location and

space with relatively fixed types of objects. Using formal

knowledge acquisition and modeling technologies activity

models can be created by means of various knowledge

modeling tools [22]-[33]. As this approach is closely related to

knowledge engineering, it is referred to as a knowledge-driven

approach. A knowledge-driven approach overcomes the cold-

start problem and can model activities at multiple levels of

abstraction, thus providing the capability to create both

generalized and specialized ADL models. For example,

ontological activity modeling can model a generic ADL as an

ontological activity class and an individual-specific ADL as an

instance of the corresponding activity class. Nevertheless,

given that ADL models are created manually by domain

experts on a case-by-case basis, the approach is questionable

in relation to its scalability of generating complete ADL

models. In addition, ADL models created by knowledge-

driven approaches are perceived as being generic and static.

Adapting an individual’s ADL models to their changing

behaviors is still an open issue.

Rather than trying to reuse resources and knowledge among

different users similar to the scenario with transfer learning

based research, this paper introduces an ontology-based hybrid

approach by incorporating data-driven learning capabilities

into a knowledge-driven approach to address the

aforementioned problems of activity modeling. The rationale

is to provide generic activity models suitable for all users and

then create individual activity models through incremental

learning. The approach uses semantic technologies as a

conceptual backbone and technology enablers for ADL

modeling, classification and learning. The distinguishable

feature of the approach from existing approaches is that ADL

modeling is not a one-off effort, instead, a multi-phase

iterative process that interleaves knowledge-based model

specifications and data-driven model learning. The process

consists of three key phases. In the first phase the initial seed

ADL models are created through ontological engineering by

leveraging domain knowledge and heuristics, thus solving the

cold-start problem. Ontological activity modeling creates

activity models at two levels of abstractions, namely as

ontological activity concepts and their instances respectively.

Ontological activity concepts represent generic coarse-grained

activity models applicable and reusable for all users, thus

solving the reusability problem. The seed ADL models are

then used in applications for activity recognition at the second

phase. In the third phase, the activity classification results from

the second phase are analyzed to discover new activities and

user profiles. These learnt activity patterns are in turn used to

update the ADL models, thus solving the incompleteness

problem. Once the first phase completes, the remaining two-

phase process can be iterated many times to incrementally

evolve the ADL models, leading to complete, accurate and up-

to-date ADL models.

This paper makes three main contributions. Firstly, we

develop a hybrid approach to activity modeling that combines

the strengths of data- and knowledge-driven approaches to

support an incremental modeling process. The approach is

built upon the work in [31], however, extends it by

incorporating the learning capabilities to provide a viable

solution for addressing existing problems relating to ADL

modeling. Secondly, we develop a learning method to discover

activities that are performed by users but have not yet been

modeled. Thirdly, we define the characteristics of a user

activity profile and develop analysis methods and associated

inference rules to learn a user’s activity profiles, i.e. the

specific way the user performs activities. The learning methods

of activity profiles can detect the changing manner an activity

is performed, thus allowing ADL models to adapt over time.

We have implemented the approach in a feature-rich assistive

living system. ADL discovery algorithms and profile learning

methods have been tested and evaluated in a number of

experiments by participants in a real sensorised environment.

Initial results have demonstrated that the approach works and

the algorithms are effective.

It is worth noting that the research presented in this paper is

based on single-user single-activity scenarios. While complex

activity scenarios, e.g. interleaved and concurrent activities,

pose many research problems, it is beyond the scope of this

paper to address them all. In addition, activity monitoring in

this study is based on dense sensing [3], i.e. one miniaturized

sensor is attached to individual objects that are used for

monitoring individual tasks within ADLs. As such, by

analyzing an inhabitant’s interactions with objects of interest it

is possible to infer the inhabitant’s activity.

The remainder of the paper is organized as follows. Section

2 presents related work. Section 3 introduces the hybrid

approach and its core technical underpinnings. Section 4

describes learning methods to discover new activities and

Section 5 presents analysis mechanisms for learning user

profiles. We discuss implementation, testing and evaluation in

Section 6 and conclude the paper in Section 7.

II. RELATED WORK IN ACTIVITY MODELING

The data-driven approach to activity modeling contains two

categories of methods. One of them involves the use of

parametric probabilistic or statistical models to represent

activities. Individual activity models are obtained by learning

the structure and parameters through model training based on

large-scale datasets. Major models in this category include

naïve Bayes classifiers [5], Hidden Markov Models (HMMs)

[6], Dynamic Bayesian Networks (DBN) [7], hierarchical

clustering [8], partially observable Markov decision processes

(POMDPs) [9] and the variants of HMM and DBN, e.g.

 3

Coupled Hidden Markov Models (CHMMs) [10] and linear

dynamical system (LDS) [11].

The other category of data-driven activity modeling is to use

classification techniques to establish the mapping from inputs

of sensor data to outputs, i.e., activity labels. Methods in this

category compare a sequence of sensor observations to a set of

template sequences in a training dataset. Individual activity

models are obtained by learning the activity labels of the most

closely matching sequences in the training dataset. Examples

of this type of method include nearest neighbor [12], Support

Vector Machine (SVM) [13], Conditional Random Field

(CRF) [14], decision trees [15], hierarchical CRF [16] and

meta-level classifiers that combine the results of multiple base-

level classifiers [17]. The advantage of data-driven activity

modeling is that it can handle noisy, uncertain and incomplete

data in addition to temporal information. Nevertheless, the

approach suffers from several drawbacks as discussed in the

previous Section.

The knowledge-driven approach to activity modeling also

consists of two types of methods. The first is to discover

activity models from existing publicly available sources, e.g.

recipe handbooks or activity specifications on the Web. This

type of method uses information retrieval and analysis

techniques to retrieve activity definitions from specific sources

and then extract phrases and relationships to create activity

models. Relevant studies in this area include [22] - [24].

The second type of method for knowledge-driven activity

modeling is to view an activity model as a knowledge model.

As such, activity modeling is essentially equivalent to

knowledge modeling that can be formally performed using

various knowledge engineering techniques and representation

formalisms. There exists a number of works in this strand in

terms of the underlying knowledge representation theories and

formalisms. Kautz et al. [25] treated activity models as plans

in the context of plan recognition, e.g. using first-order axioms

to build a library of hierarchical plans. Wobke [26] used

situation theory to address the different probabilities of

inferred plans by defining a partial order relation between

plans in terms of levels of plausibility. Bouchard et al. [27]

used action description logic to formalize actions, entities and

variable states in a SH with which an activity is modeled as a

sequence of actions and represented as a lattice structure. Chen

et al. [28] adopted the highly developed logical theory of

actions, i.e., the event calculus for formalizing domain theories

of a SH in which activities are modeled as sequential and/or

parallel events. More recently, ontologies and semantic

technologies have been used for activity modeling and

representation. For example, Chen et al. have developed

sensor ontologies for contextual data management [29] and

activity ontologies for activity modelling and recognition [31].

Ye et al. [32] defined an upper ontology for smart

environments that has been used to create a formal activity

model for activity recognition. Riboni et al. [33] presented the

details of using OWL2
1
, in particular, rule modeling, for both

modeling and reasoning with complex activities. Knowledge-

driven activity modeling solves the cold-start problem. It is

semantically clear and elegant in reasoning as the approach is

based on the solid foundation of formal knowledge

representation theories. The major weaknesses are that the pre-

defined models are static and incomplete due to the limited

knowledge of individual experts.

Though activity modeling is important and existing

approaches suffer from various problems, research on this

topic has in general received little attention. The main reason

is that activity modeling has been predominantly carried out in

the domain of pattern recognition and data mining [34]. In

these research contexts, the emphases are usually placed on

recognition and classification algorithms and their

performance. Activity modeling is often viewed as a

supportive component for pattern recognition and model-based

application-level functions. When knowledge-driven approach

is used for activity modeling in knowledge-based systems the

emphases are normally placed on inference and decision-

support mechanisms. It is usually assumed that activity

modeling using knowledge engineering techniques will create

complete accurate models [31] [33]. Nevertheless, in reality it

is very difficult, if not possible, to manually create models

covering all permutations of different users, activities and

performance styles. This is actually a widely known drawback

of knowledge engineering based approach to knowledge

modeling. This paper places activity modeling as the focus of

the investigation. It conceives and develops an ontology-based

hybrid approach that is able to address all of the

aforementioned main problems, namely cold-start, reusability

and model incompleteness, in one systematic solution. The

approach and associated learning methods presented in this

paper have not been seen to date in related research

communities and are therefore deemed to be novel.

III. THE HYBRID APPROACH TO ACTIVITY MODELING

Fig. 1 depicts the 3-phase process of the hybrid approach to

activity modeling as introduced in this paper. In Phase I -

Knowledge-driven Activity Modeling, ontological knowledge

engineering techniques, are utilized to extract and create the

initial seed activity models based on domain heuristics and

prior knowledge. In Phase II - Model-based Activity

Recognition, the seed activity models are used as classifiers by

activity-based application systems, e.g. an ambient assisted

living system, to classify sensor data for the purposes of

activity recognition. If an activity has been accurately modeled

in the seed activity models the activity should be recognized.

On the other hand, if an activity is not modeled or the model is

not accurate the activity will not be recognized. Nevertheless,

the outputs of Phase II provides valuable inputs for Phase III,

Data-driven Activity Learning within which data mining based

1 OWL2, along with RDF, RDFS and SPARQL mentioned later are all

W3C standards, which can be found at www.w3.org.

 4

learning methods are used to learn new activities and a user’s

activity profile. The learning results from Phase III can then be

used to expand or update the seed activity models created in

Phase I. The 3-phase process can be iterated periodically, thus

incrementally improving the completeness and accuracy of

activity models. Among these three phases Phase I requires

human intervention. This includes initial inputs of domain

knowledge, manual specification of the seed ontological

activity models and human validation and update of learnt

activities at the end of a single iteration. Both Phase II and III

are data-driven and completely automatic.

Fig.1. The 3-phase hybrid approach to activity modeling

In our previous studies we have developed ontological

activity models [29], the mechanisms for dynamic sensor data

segmentation [30][37] and ontology-based activity recognition

[31] for Phase I and II. In this paper we concentrate on

developing methods and algorithms for activity and user

profile learning in Phase III. While details of Phase I and II

can be found in the aforementioned work, to aid in the

understanding of the discussion of the following Sections, we

briefly outline the rationale and mechanisms of ontology-based

activity modeling and recognition.

A. Ontological Activity Modelling

Ontological activity modeling is to explicitly specify activity

models using the Description Logics (DL) formalism [42]. It

defines an activity as an ontological concept and all actions

that are required to perform the activity as the properties of the

concept. In addition to action-based properties, which is

hereafter referred to action properties, an activity model also

contains a number of descriptive properties to characterize the

manner an activity is performed. For example, making tea

involves taking a cup from the cupboard, putting a teabag into

the cup, adding hot water to the cup, then milk and /or sugar.

The ontological model of making tea, i.e. MakeTea concept,

can be defined by action properties hasContainer, hasTeabag,

hasHotwater, hasMilk and hasFlavor in conjunction with

descriptive properties such as an activity identifier actID, start

time actStartTime, duration actDuration and the sequential

order of these objects in performing an activity

actObjSequence. As action properties are mainly used for

defining an activity, they play a crucial role in activity

recognition. Descriptive properties, on the other hand, are not

determinants in activity recognition. For example, making tea

can happen at any time, it can be performed in different

sequences and it may take variable amounts of time.

Descriptive properties are mainly used to define user's activity

profiles, namely to characterize the manner an activity is

performed.

Activities can be modeled at different levels of abstraction.

As such, ontological activity concepts are usually organized in

a hierarchical structure to form super-class and sub-class

relationships. For example, MakeTea, MakeCoffee and

MakeHotChocolate activities can be modeled as the subclasses

of MakeHotDrink activity, which is in turn the subclass of

MakeDrink. Properties establish the relations between

ontological activity concepts and the actions required for

performing the activities. For example, the hasContainer

property links the action of preparing a cup to the activity of

making tea. Subclasses can inherit properties from

superclasses. A leaf node of the hierarchy denotes a primitive

activity that cannot be further classified. Figure 2 presents an

excerpt of activity ontologies and associated SH contextual

concepts.

(a) Contextual classes (b) Properties (c) Activity classes

Fig. 2. An excerpt of the activity ontologies. The left column depicts the
Sensor class for describing sensor activations. The right column depicts the
KitchenADL activity hierarchy of the ADL ontologies. The middle column
illustrates the properties used by the context and ADL ontologies.

Ontological activity concepts define high-level generic

activity models which are applicable to anyone. In addition to

this, ontological activity modeling can also define the specific

way that a person performs an activity, which is usually

referred to as user activity profiles. For example, a user always

makes English tea at 10am using skimmed milk and sand

sugar. User activity profiles can be defined by creating an

instance of a generic ontological activity concept in terms of

the user’s preference and habits. Ontological activity modeling

in Phase I can generate both generic activity models and user

activity profiles, thus providing activity models at different

levels of abstraction. Aside from activity concepts, other major

entities from the domain will also be ontologically modeled.

For example, a sensor concept and related properties are

developed to establish the relationships between physical

sensors, objects and their locations in addition to the sensor

activation time. Further details of these concepts can be found

in [29].

 5

B. Ontology-based Activity Recognition

In dense sensing based activity monitoring [3] [34] an

action of a user interacting with an object is detected through

the sensor attached to the object. As such, the activation of a

sensor implies that an action has been taken and subsequently

an action property relating to the object will be assigned a

value. Suppose that a number of sensors are activated along a

time line and these sensor observations have been linked to

corresponding action properties. At a specific time point the

aggregation of these action properties will create a context

denoting an ontological activity description. For example, the

activation of the contact sensors on a cup and milk bottle can

link the cup and milk to the activity being performed through

hasContainer and hasFlavor properties. Assume that at a

specific time, i.e. hasTime(10am), sensor observations

hasLocation(kitchen), hasContainer(cup), hasTeabag (English

Teabag) and hasFlavor(sand sugar) are generated, in

aggregation this represents a context for an ongoing activity. If

an activity concept in the ADL ontologies, e.g. MakeTea, has

been defined by this set of action properties, then the activity

can be deemed as the type of activity for the perceived context.

The rationale of inferring an activity from sensor

observations described above can be formulated as follows:

Given a set of action properties instantiated by sensor

observations, identify the activity concept in the ADL

ontologies that has the same set of action properties.

Conceptually this problem of activity recognition can be

mapped to the classification of the activity description using

activity ontologies as the classifiers. Technically the problem

can be solved using the subsumption reasoning in description

logic, i.e. to decide if a concept description C created from

sensor observations is subsumed by a concept description D

within the activity models. Details of the theoretical

foundation, reasoning algorithm and continuous recognition

mechanisms for ontology-based activity recognition can be

found in [31]. It is worth pointing out that the sensor data

stream will be first partitioned into segments so that sensor

activations within a segment can be aggregated to create an

ontological activity description for activity recognition. We

have developed a dynamic segmentation model based on the

notion of varied time windows for real-time sensor data

partition. The model can shrink and expand the window size of

segmentation by using temporal information of activity models

and sensor data. Further details of this concept can be found in

[37].

To facilitate discussion we refer to the sequence of sensor

observations within a segment as an action trace, i.e. the

actions being undertaken within the segment. An action trace

is equivalent to a set of action properties in an ontological

activity description. With activity models from Phase I and

streaming sensor data from applications within a smart home,

activity recognition in Phase II can produce two types of

action traces. If an action trace has a corresponding activity

concept in the ADL models, this type of action trace is referred

to as a Labeled Action Trace or LAT in short. Otherwise it is

an Unlabeled Action Trace or UAT. LATs can be recognized

from the set of action properties while UATs cannot be

recognized as there are no corresponding activity models in

the ADL ontologies or the models are not accurate.

The initial seed activity models generated in Phase I are

inevitably incomplete due to the large number of ADLs, the

different manner of users performing the ADLs and the

changing user behaviors. As such, when an application within

a smart home performs activity recognition over a period of

time, it will generate large amount of LATs and UATs that

contain information relating to un-modeled activities and the

changing behaviors of a user. These action traces can be

analyzed in Phase III to learn new activities and user activity

profiles. New activities increase the completeness of activity

models while user activity profiles improve the accuracy of

activity models. Section IV and V describe the details of the

learning mechanisms and methods for Phase III.

IV. LEARNING UNMODELLED ACTIVITIES

Activity learning aims to discover the activities that a user

performs, however, which have not been modelled in the seed

activity ontologies. As there are no models for these activities,

they will not be recognised by the activity recognition process

in Phase II. Subsequently they are classified as unlabelled

action traces, i.e. UATs. The essence of the activity learning is

therefore to extract regular activities from UATs so that they

can be modelled to improve activity models.

We have developed a 3-step learning method for this

purpose. In the first step a semantic similarity metric is defined

to measure the semantic similarity between two UATs Based

on this an algorithm is then developed to compute the semantic

similarity. In the second step the semantic similarity between

any individual UAT among all UATs are calculated. Based on

the similarity metrics all UATs are classified into a number of

subsets where each subset contains semantically similar UATs.

In essence, each subset corresponds to one unmodelled

activity, and the number of UATs within each subset is the

number of occurrences of the unmodelled activity during

activity monitoring. As an unmodelled activity could be a one-

off or random behaviour, it would be necessary to determine

which discovered activities are regular activities and should be

formally modelled. In the third step the frequency of the

occurrence of these discovered unmodelled activities are

calculated and a threshold is specified based on domain

heuristics. If the occurrence frequency of an unmodelled

activity is equal or greater than the threshold, then the activity

will be formally modelled to update the ADL models.

As previously discussed, central to the activity learning

method is the definition and computation of semantic

similarity between UATs. We define simuat(UATi, UATj) as the

semantic similarity measure between two UATs and denote

each UAT as a set of action property-value pairs represented as

follows:

UATi={prop1-value1, prop2-value2 … propk-valuek}

 6

UATj={prop1-value1, prop2-value2 … propn-valuen}

By semantic similarity we refer to the similarity of two

UATs in terms of the types of the property values rather than

the values themselves. This is because in ontological activity

modeling an activity model is defined by the types of object

rather than the objects themselves. For example, the MakeTea

activity is specified by hasContainer(x), hasTeabag(y) ... and

hasFlavor(z). It is the types of the property values, rather than

the specific x, y or z objects that define the activity. The value

of a property, e.g. x, y or z, can be any object, e.g. cup1 or cup2

for x. English tea or India tea for y, white sugar or brown

sugar for z. As such, the types of objects are the key

discriminants to decide if two UATs refer to the same type of

activity.

We have developed a method to compute the semantic

similarity of two UATs in terms of the similarity of the two sets

of property-value pairs in the two UATs. The method works as

follows. We first map the set of action properties in a UAT to a

corresponding set of objects and then derive the corresponding

object type for each individual object. Both mappings from

action properties to objects and from objects to object types

are conducted by recursively unfolding the semantic relations

based on ontological relationships modeled in the ADL

ontologies. As a result of these mappings a UAT can be

transformed into a description of a set of object types, as

denoted in the formula below.

UATi={objectType of prop1-value1, objectType of prop2-

value2 … objectType of propk-valuek}

Following this semantic explication and transformation, the

similarity of two sets of property-value pairs is equal to the

similarity of two sets of object types. As each object type is

modeled as a concept in the ADL ontologies, the semantic

similarity between two object types (concepts) can be

computed based on the signatures of the object concepts.

Specifically the similarity measure can be calculated using the

Jaccard coefficient [35] which is the ratio of the number of

shared elements from the intersection of the two sample sets to

the number of total elements from the union of the two sets.

This is represented as follows:

simuat(UATi, UATj) = (|UATiot UATjot| / |UATiot UATjot|

Here UATiot and UATjot refer to the set of object types in UATi

and UATj, respectively.

Example 1 illustrates the transformation of two UATs and

their semantic similarity. Even though the order and specific

objects used for each activity is different, the semantic

similarity measure equals one, indicating they refer to the same

type of activities.
[Example 1:

UATs are in the form of property-value pairs.

UATi={hasContainer(muga), hasTeabag(English teabag), hasFlavor(brown

sugar), hasHotwater(kettlea), hasMilk(semi-skimmed milk)}

UATj={hasContainer(mugb), hasTeabag(India teabag), hasHotwater

(kettlea), hasMilk(skimmed milk), hasFlavor(white sugar)}

UATs are in the form of sets of objects.

UATi={muga, English teabag, brown sugar, kettlea, semi-skimmed milk}

UATj ={mugb, India teabag, kettlea, skimmed milk, white sugar}

UATs are in the form of sets of object types.

UATi ={Container, Tea, Sugar, Kettle, Milk}

UATj ={Container, Tea, Kettle, Milk, Sugar}

 simuat(UATi, UATj) = 1]

We can compute the semantic similarity of any two UATs

using the described method and then use the resulting

similarity metrics to classify all UATs into a number of subsets

of UATs. For each subset, the semantic similarity simuat

between any two UATs is equal to 1, thus each subset denotes

a specific type of activity.

Once distinct activities are discovered through semantic

classification, it is necessary to decide whether they are regular

activities, random or one-off activities. To this end, we use the

daily frequency of occurrence of a UAT as the significance

measure for the activity it represents. For example, if the daily

frequency of occurrence of UATk is n, this means the activity

UATk occurs on average n times a day during the period of

monitoring, e.g. once a day for n=1, twice a day for n=2 and

once every two days for n=0.5. A threshold value can then be

specified for the daily frequency of occurrence based on

domain knowledge and heuristics. For example, given that

most ADLs are performed on a daily basis, we can reasonably

set 0.5 as the threshold value, namely a UAT happening once

every two days can be regarded as a regular activity. If the

daily frequency of occurrence of a UAT is greater or equal to

the threshold value, the UAT can be formally designated as a

regular activity. Subsequently, this activity will be modelled to

update the activity models. Table 1 summarises the variables,

their descriptions and the pseudo code of the algorithm for the

presented activity learning method.

TABLE 1. The algorithm for learning unmodelled activities

Variables Descriptions

SU the whole set of UATs

SSUi the ith subset of UATs within which all UATs are

semantically similar

fouat the daily frequency of occurrence of an UAT

Tfo the threshold value specified for fouat

D the duration of activity monitoring in days

1. set SU, D, Tfo from Phase II outputs

2. for any UATi, UATiSU, do

3. semantic unfolding and transformation as illustrated in Example 1

4. enddo

5. set a counter actNum = 0, which represents the number of new

activities

6. while (|SU| > 0)

7. set UATbase to an arbitrary member of SU

8. create a new subset SSUactNum with UATbase as the only member

9. for (1 ≤ i ≤ |SU|)

10. calculate simuat(UATbase, UATi), where UATiSU

11. if (simuat(UATbase, UATi) = 1)

12. put UATi into the set SSUactNum

13. remove UATi from SU

14. else

15. leave UATi in SU

16. endif

17. endfor

18. Increase the counter actNum = actNum + 1

19. endwhile // this will create actNum subsets SSUi

20. for (1 ≤ i ≤ actNum)

21. calculate fouat(UAT, UAT SSUi) = |SSUi | / D

22. if (fouat(UAT) Tfo) recommend to an expert

 7

23. SSUi represents a regular activity

24. else

25. SSUi represents a random / one-off activity

26. endif

27. Endfor

V. LEARNING USER ACTIVITY PROFILES

An activity can be performed in many different ways, e.g.

using different items of the same object types, in different

sequence of actions, at different times and within variable

durations. A user activity profile is referred to the specific way

of a user performing activities which is the key to personalised

assistance in assistive living. To formally specify a user

activity profile we use three attributes, namely an object

pattern, duration and an activity pattern, to characterize the

manner that an activity is performed. An object pattern refers

to the unique order of objects that an activity is performed

whilst an activity pattern describes the frequency and

regularity of an activity occurrence, including the starting

time(s).

Ontological activity modelling can model an activity profile

as an instance of the corresponding generic activity concept.

Nevertheless, the initial seed activity models do not contain

user profile models. This is because the model of a user

activity profile is user specific, it can only be defined once a

user is identified. In addition, a user’s behaviour can change

due to physical or mental conditions, thus leading to the

change of activity profiles. As such, learning user behaviours

from their activity observations is an effective way to create

user profiles.

An LAT represents an activity that has been modelled in the

ADL ontologies and recognised in Phase II. Each LAT has a

corresponding activity label and a sequence of sensor

observations denoting the specific undertaking of the activity.

Over time for each activity there will be a set of accumulated

LATs, which provide a valuable source for user profile

discovery. In the following Sections we describe the processes

and methods of learning user profiles from real time

observations of activity performance, i.e. the LATs generated

in Phase II.

A. Learning object patterns

We have developed a 3-step learning method to discover

whether or not a user follows a unique object pattern in

performing an activity. In the first step, we define a similarity

measure simlat(LATi, LATj) in terms of object sequences and

develop an algorithm to calculate the similarity of two LATs.

In the second step we compute the similarity among all LATs

of a specific activity and based on the similarity measures a

classification algorithm is developed to classify the set of LATs

into subsets of LATs of the same object pattern. In the third

step we calculate the distribution of frequency of occurrences

of all object patterns for the specific activity. The dominant

object pattern can then be used to characterize the user activity

profile for the specific activity.

Similar to a UAT, an LAT can be denoted as a set of action

property-value pairs, i.e. LATi={prop1-value1, prop2-value2 …

propk-valuek}. We define simlat(LATi, LATj) as the similarity

measure in terms of object sequences of the two LATs. To

calculate the similarity measure we transform an LAT from a

sequence of action property-value pairs to a sequence of

objects through semantic unfolding of ontological concepts.

The resulting LAT can be represented as a sequence of objects,

i.e. LAT={object1 of prop1-value1, object2 of prop2-value2 …

objectk of propk-valuek} where each element objecti is a

specific object denoted by its signature. After this

transformation, an LAT can be treated as an object signature

vector, and the similarity of two LATs is essentially the

similarity between two vectors in a high dimensional space.

This can be computed using the generic cosine similarity

algorithm [36], as formulated in the equation below.

simlat(LATi, LATj) = (LATi . LATj) / (||LATi|| ||LATj||)

The numerator is the dot product of the two LAT vectors and

the denominator is the product of the magnitudes of the two

vectors. i and j are an LAT respectively, i ≠ j, and n is the total

number of LATs. A value in the range [-1, 1] can be generated,

where -1 signifies the exact opposite object pattern and 1

signifies exactly the same pattern.

In order to make use of the cosine similarity algorithm to

compute similarity of LATs we convert the text notation of the

elements of an LAT to numerical values by allocating each

object an object identifier number. The object identifier

numbers do not have any meaning, they are simply used to

facilitate the similarity computation based on object

sequences. Example 2 below illustrates three LATs, their

object signatures, corresponding exemplar object identifier

numbers and the similarity measures between them.
[Example 2:

LAT1{muga(1), teabag(2), hotwater(3), sand sugar(4), skimmed milk(5)}

LAT2{mugb(9), teabag(2), whole milk(8), hotwater(3), sand sugar(4)}

LAT3{muga(1), teabag(2), hotwater(3), sand sugar(4), skimmed milk(5)}

 simlat(LAT1, LAT2) = 0.7053

 simlat(LAT1, LAT3) = 1]

As shown in the above example, LAT1 and LAT3 will be

classified into the same subset because they follow the same

object sequences. Similarly we can compute the similarity

measures for all LATs and classify the LATs that their

similarity measures are equal to 1 into a subset. Each subset

represents a unique object pattern.

To determine if there is a dominant object pattern for

performing a specific activity, we calculate the probability of

the occurrence of a unique object pattern for all object patterns

within the set of LATs for the activity. We then specify a

threshold value for the probability of occurrence so that when

the occurrence probability of a specific object pattern is

greater than or equal to the threshold value, the corresponding

subset can be viewed as the dominant object pattern. For

 8

example, suppose that there are five object patterns for

performing an activity, and the occurrence probability of the

third object pattern is 0.83. This means that the activity is

performed 83% of the time using the 3rd object pattern, and

only 17% using the other patterns. In this case, the 3rd object

pattern can be reasonably regarded as the user profile for this

specific activity. On the other hand, if all probability values

are roughly evenly distributed and each value is very small, it

can be assumed that the activity is performed in a random

manner and there is not a specific preferred way of performing

the activity. In our study we define 2/3 as the threshold value

of the occurrence frequency in our study. Table 2 summarizes

the variables, their descriptions and the pseudo code of the

algorithm for this object pattern learning method.

TABLE 2. The algorithm for learning object patterns

Variables Descriptions

SL(z) The set of all LATs for the specific activity z

popk The probability of occurrence of the object pattern k

Tpop The threshold of pop = 2/3

// discover unique object patterns

1. set SL(z) and Tpop from Phase II outputs

2. for any LATi, LATi SL(z), do

3. semantic unfolding as illustrated in step 2 in Example 1

4. enddo

5. set a counter uopNum = 0, which represents the number of the

unique object patterns in SL(z)

6. while (|SL(z)| > 0)

7. set LATbase to an arbitrary member of SL(z)

8. create a new subset SSL(z)uopNum with LATbase as the only member

9. for (1 ≤ i ≤ | SL(z)|)

10. calculate simlat(LATbase, LATi), where LATi SL(z)

11. if (simlat(LATbase, LATi) = 1)

12. put LATi into the subset SSL(z)uopNum

13. remove LATi from SL(z)

14. else

15. leave LATi in SL(z)

16. endif

17. endfor

18. Increase the counter uopNum = uopNum + 1

19. endwhile // this will create uopNum subsets SSL(z)

20. for (1 ≤ i ≤ uopNum)

21. calculate popi = | SSL(z)i | / | SL(z) |

22. if (popi) Tpop)

23. SSL(z)i represents a dominant object pattern

24. else

25. No user profile for this activity

26. endif

27. Endfor

B. Learning an activity duration

Duration information of an activity model is useful in

continuous activity recognition. It helps define the sliding time

window for dynamic sensor data segmentation [37]. It is also a

key indicator of a user’s behavioural changes, which provide

personalised assistance, e.g. specifying the waiting time for a

reminder.

We calculate duration information using all LATs of an

activity based on the time points at which the first and last

sensor activations of the LATi are received. Table 3 displays

the algorithm for calculating the minimum, maximum and

average duration of a user performing an activity. The

algorithm is a continuum of the object pattern learning

algorithm in Table 2.

TABLE 3. The algorithm for learning activity duration

Variables Descriptions

 ts, te the first and last sensor activation times

Dumin, Dumax, Duave the minimum, maximum and average duration

// discover the duration information

28. Set Dumin=initial value, Dumax,and Du = 0

29. for (1 ≤ i ≤ | SL(z) |) // for all LATs of an activity

30. if (Dumin > (tei – tsi)) Dumin = (tei – tsi)

31. if (Dumax < (tei – tsi)) Dumax = (tei – tsi)

32. Du = Du +(tei – tsi)

33. endfor

34. Duave = Du / | SL(z) |

C. Learning activity patterns

An activity pattern is crucial for providing proactive

personalized activity assistance. For example, if an assistive

system knows that a user takes medicine twice a day at 10am

and 5pm respectively, then it can prompt the user to take

medicine at these times. Nevertheless, it is difficult to decide

an activity pattern and starting time as most ADLs could be

carried out randomly dependent of personal preferences. Even

with some kind of regularity, ADLs are most likely performed

within a time period rather than at an exact time point.

We have developed a 2-stage approach to discover an

activity pattern and starting time from LATs. In the first stage

we calculate the daily frequency of occurrence of an activity,

namely the average number of activity occurrences in a day

during the period of monitoring. The daily frequency of

occurrence is used as a criterion to decide if the activity is

carried out on a regular basis. It can be determined based on

domain knowledge during the initial LAT modelling. For

example it could be 1/7, implying that it covers all weekly

activities. A regular activity does not necessarily support an

activity pattern. For example, a user makes tea twice a day,

every day, however, the activity is always carried out at

different times. This is a regular activity but does not have a

pattern.

In the second stage we decide if a regular activity follows an

activity pattern. To this end we firstly partition the 24 hours of

a day into a number of fixed-length time slots. For example, if

the duration of a time slot is 30 minutes, then a day can be

partitioned into 48 time slots. Secondly, we map the starting

time of all LATs of an activity into the corresponding time

slots. Thirdly, we calculate the probabilities of the occurrence

of the activity within each time slot against the total

occurrence of the activity. Based on the probability

distribution of occurrence, and the threshold values of the

occurrence probabilities, we can infer whether or not there is

an activity pattern.

Table 4 displays the algorithm of learning activity patterns,

which is a continuum of the algorithms in Tables 2 and 3.

Three inference rules for learning activity patterns have been

 9

defined below, which are explained using the example

depicted in Fig. 3.

TABLE 4. The algorithm for learning activity patterns

Variables Descriptions

folat the daily frequency of occurrence of an activity

Stime the starting time(s) of an activity

prob the probability of an activity occurrence in a time

slot

probthreshold the threshold values for prob

tslot the fixed-length duration of a time slot in minutes

D the duration of activity monitoring in days

// discover activity patterns and starting time(s)

35. calculate folat(LAT, LAT SL(z)) = | SL(z) | / D

36. partition a day into time slots based on tslot

37. map the ts of all LATs in SL(z) into corresponding time slots

38. for (1 ≤ i ≤ 24x60/ tslot) // for all time slots

39. probi = (number of occurrence in the ith time slot) / |SL(z)|

40. endfor

41. // apply the pattern learning rules

42. if (folat ≤ 1 and prob at a time slot p probthreshold)

43. LAT is a regular activity with an activity pattern

44. Stime =() / K, K = number of occurrence in time slot p

45. else (folat ≤ 1 and prob at any time slot p ≤ probthreshold)

46. LAT is a random activity, no need to calculate Stime

47. endif

48. if (folat =n > 1 and each prob at n time slots probthreshold × (1/n))

49. LAT is a regular activity with an activity pattern

50. Stime(at the nth occurrence) =() / K, K = number of

occurrence in time slot pi, i=1, 2…n.

51. else (folat =n > 1 and all prob at n time slots≤ probthreshold × (1/n))

52. LAT is a random activity, no need to calculate Stime

53. Endif

Rule 1: If an activity is a regular activity based on the daily

frequency of the activity folat(LAT); and folat(LAT) is n ≤ 1;

and the occurrence probability of the activity in the p
th

 time

slot is equal or greater than Probthreshold; then the activity has a

pattern - it happens once 1/n day(s) in the p
th

 time slot. The

starting time Stime for the activity pattern can be estimated as

the average time of the first sensor activation of all LATs

within the p
th

 time slot. The bath activity in Fig. 3 illustrates

this case. For example, if folat(bath) = 0.5, Probthreshold = 70%,

as Prob(bath) =80% > 70%, then it can be inferred that the

bath activity happens once every two days in the time slot

starting from 7pm.

Rule 2: If an activity is a regular activity; and folat(LAT) is

n > 1; and the occurrence probability for each time slot is

greater than Probthreshold × (1/n), i.e. the aggregated occurrence

probability in the n time slots is greater than Probthreshold; then

the activity has a pattern - it is performed n times a day within

the n time slots. The starting time Stime of the n
th

 occurrences

can be estimated as the average time of the first sensor

activation of all LATs within the n
th

 time slot. The tea activity

in Fig. 3 illustrated this case, i.e. it happens three times a day

in three time slots with the occurrence probability of each

timeslot being greater than 23.3%.

Rule 3: If an activity is a regular activity and the occurrence

of an activity is dispersed evenly among a number of time slots

k where k is significantly greater than folat(LAT); and the

occurrence probability in each time slot is significantly less

than Probthreshold; then the activity is a random activity during a

day. As such, it makes no sense to infer the starting time of the

activity. The phone call activity in Fig. 3 illustrates the nature

of a random activity.

Fig. 3. Making tea, having a bath and making phone call activities, and

their probability distribution of occurrence over a period of time.

D. Activity model evolution

Once a new activity is discovered as described in Section

IV, it is necessary to decide the location of the activity in the

hierarchy of the activity ontologies and also an appropriate

label that should be assigned to the activity. The label should

be meaningful and compliant with other activities’ labelling

rationale and also the ontological modeling conventions so that

it can be easily referred to and understood later. The location

of a newly discovered activity in the ontological activity

hierarchy can be recommended through the subsumption

reasoning of the UAT description. Nevertheless, human

intervention is required to validate and finalize the position

and label of an activity model in order to maintain the quality

of the model. As such, the classification and naming process

have been carried out manually using the standard practice of

ontological engineering, i.e. a knowledge engineer encodes the

new activities and edits the ontologies using an ontology

editor, e.g. [38].

Similarly, once a user’s behavioral features, i.e. activity

profiles, are learnt as described in the previous subsections, the

activity models should be evolved to reflect the unique manner

a user performs activities, e.g. for the purpose of personalized

assistance. Given that a user’s activity profile is equivalent to

an instance of a generic activity model, i.e. an ontological

activity class, and for any LAT there is a corresponding

ontological activity class, activity profile evolution amounts to

creating a new instance or updating an existing instance. This

can be undertaken automatically by using the standard APIs of

the underlying semantic frameworks.

VI. IMPLEMENTATION AND EVALUATION

In this Section we initially outline the results of ontological

activity modeling, system implementation and deployment. We

then describe in detail the experimental design, data collection

and evaluation for activity and profile learning. Based on the

evaluation results, we discuss generic issues related to the

presented approach.

 10

A. Modeling, Implementation and Deployment

To test and evaluate the presented approach we have created

the seed activity ontologies in Phase I using the Protégé

ontology editor [38] (Fig. 2), through knowledge engineering

practice [29]. We have implemented a feature-rich system for

activity recognition and model learning in Phase II as

presented in Fig. 4. The system was developed using C#,

ASP.NET, Ajax and Silverlight for audio and graphical user

experience and deployed within our smart Lab [2]. The

creation, management and query of semantic data was handled

using the SemWeb semantic technologies for C# [39] and

SPARQL query language. Semantic reasoning was

implemented using the Euler [40] and Pellet [41] inference

engines.

When an actor interacts with objects in sequence in real

time, sensor activations are continuously fed into the system.

Sensor data series are dynamically segmented [37] and

recognition operations are repeatedly performed to carry out

continuous, progressive activity recognition [31]. As depicted

in Fig. 4, the system can dynamically display the activated

sensor sequence, the incrementally recognized activities and

the system status in real time.

Fig. 4. The system interface operating in real time mode. In the left-hand side,

the top panel is used for communication port setup; the middle panel displays

the sequence of activated objects; and the bottom panel presents progressively

recognized activities in a tree-like hierarchy. In the right-hand side, the top

panel contains function buttons for data recording and playback; the bottom

panel presents a temporal trace of events during the system operation. The

system can import activity ontologies, specify reasoning and learning

parameters, select the modality of audio reminder, configure hardware and

define event priorities and user activity profiles.

B. Experiment Design and Data Collection

To systematically test and evaluate activity and profile

learning in Phase III, eight typical ADLs as presented in Table

6, were selected for the purposes of experimentation. For each

activity, the required objects for performing the activity were

identified and for each of them a contact sensor was attached.

Each activity was designed to be performed in three different

ways, leading to three different types of activity specification

as illustrated in Table 5. The Type 1 activity specification,

namely TP1 in short, can be viewed as the “standard” way of

performing a specific activity. The Type 2 activity

specification has the same set of objects; however, they are

interacted with in a different order. The Type 3 activity

specification has a different set of objects as it is intended to

simulate noise on the sensor data, i.e. a faulty sensor by

omitting a user-object interaction or a false sensor reading by

adding an irrelevant object interaction. In addition, in order to

test the activity learning capability we deliberately remove

activity models, MakeChocolate and BrushTeeth, two of the

eight selected activities from the seed activity ontologies.

TABLE 5. Two examples of activity specifications

Activity
Activity Specification

(sequence of user-object interactions)

m
ak

eT
ea

 TP1 GetCup, GetTea, PourWater, GetMilk, GetSugar

TP2 GetCup, PourWater, GetMilk, GetTea, GetSugar

TP3 GetCup*, GetTea, PourWater, GetMilk, GetSugar

B
ru

sh
T

ee
th

 TP1 RunSink, GetToothbrush, GetToothpaste, GetMouthwash

TP2 GetToothbrush, GetToothpaste, RunSink, GetMouthwash

TP3
RunSink, GetToothbrush, getSoap**, GetToothpaste,

GetMouthwash

* faulty sensors that do not fire; ** false or extra sensor reading; TP-Type.

Three actors took part in the experiments. Each of the

participants interacted with the objects of each activity of the

eight activities in accordance with the activity specifications

for two rounds. This produced a total of 3 (types) x 8

(activities) x 2 (rounds) x 3 (actors) = 144 action traces.

Following activity recognition in Phase II the system produced

100 LATs and 44 UATs as presented in Table 6.

C. Analysis and Evaluation

Our evaluation has focused on the performance of learning

distinct activities from UATs and the performance of

discovering the dominant object pattern from LATs in activity

profile learning. This is due to the fact that semantic based

similarity calculation and classification are the central

underpinning mechanisms for the presented methods. In

addition, evaluation of time-related metrics, e.g. duration or

activity patterns will only make sense if the data are generated

by real users performing real ADLs over a relatively long

period of time. This has been proven to be difficult due to

technical, privacy and ethical issues. Furthermore temporal

information in these learning methods is mainly used for

numerical calculation, i.e. the duration, starting time and

frequencies, which has already been clearly illustrated in

previous Sections.

 11

TABLE 6. Recognition results of the 144 activities

Results and analysis on learning new activities

 We apply the activity learning algorithm in Table 1 to the

UAT dataset in Table 6 to learn new activities. Table 7

displays the activity learning results. The “Ground Truth”

column presents what actually happened in the experiment

whereas the “UAT Subset” column lists the classified subsets

of the 44 UATs. Among six of the modeled activities three of

them, i.e. WashHands, WatchTV and HaveBath, have been

fully recognized without generating any UATs, so they are not

listed in Table 7. The other three modeled activities, i.e.

MakeTea, MakePasta and MakeCoffee, have generated four,

two and two UATs respectively. This is because we randomly

introduce sensor noise into the Type 3 activity specification,

the activity traces from TP3 may be recognized or not

depending on the nature of the noise, thus leading to UATs.

For the two unmodeled activities, MakeChocolate and

BrushTeeth, each consists of 18 UATs which are classified into

7 subsets. One subset has 12 UATs and the other six subsets

each have one UAT. This is because both Type 1 and Type 2

activity specifications use the same set of objects, thus leading

to 12 UATs in one subset. The Type 3 activity specification

simulates random sensor noise by introducing an irrelevant

object into the activity, thus leading to 6 different action

traces. The comparison between the UAT classification results

and the ground truth proved that the semantic similarity based

UAT classification is 100% accurate in terms of similarity

criteria simuat(UATi, UATj) = 1. In the case that the duration of

observation is available, it is straightforward to follow the

activity learning algorithm to identify the distinct regular

activities.

TABLE 7. The activity discovery results from UATs

 Ground Truth UAT Subsets SSUi

Activity Label UAT LAT Total 21 subsets, SSU1 - SSU21

MakeChocolate 18 0 12 in SSU1, 1 in each SSU6-11

MakeTea 4 14 1 in each SSU18-21

MakeCoffee 2 16 2 in SSU3

BrushTeeth 18 0 12 in SSU2, 1 in each SSU12-17

MakePasta 2 16 1 in each SSU4-5

 Here SSUi - the ith subset of UATs as defined in Table 1.

Results and analysis on learning object patterns

We apply the algorithm in Table 2 to all LATs in Table 6 to

learn object patterns. Table 8 presents the analysis results for

three of the six modeled activities. From left to right the first

and second columns contain the activities and the total number

of LATs in the corresponding activity. The third column

displays the unique object patterns among all LATs of the

activity while the fourth one shows the number of LATs for

each unique object pattern. The fifth column presents the

probabilities of occurrence of a unique object pattern. As can

be viewed from the results, each activity has two major activity

patterns with a similar percentage of occurrences. In addition,

a number of patterns are also identified for each activity with

each pattern having only one LAT. The learning results are in

line with the ground truth of the experiment. The two major

activity patterns correspond to the Type 1 and Type 2 activity

specifications. The occurrence of a number of one-LAT

patterns in each activity corresponds to the Type 3 activity that

is performed randomly by introducing random noise, thus no

sequence of objects are identical. The matching of the analysis

results with the ground truth of the experiment proves the

method for learning object patterns is effective.

TABLE 8. Part of the activity learning results from LATs

There are a number of object patterns for each activity in

Table 8. This is because the activity specifications are

deliberately designed to contain two major object patterns, i.e.

Activities Actor1 Actor2 Actor3 Sum

L/U
Exp 1 2 1 2 1 2

M
ak

e

T
ea

TP1 L L L L L L 6/0

TP2 L L L L U L 5/1

TP3 L L L U U U 3/3

B
ru

sh

T
ee

th
 TP1 U U U U U U 0/6

TP2 U U U U U U 0/6

TP3 U U U U U U 0/6

M
ak

e

C
o
ff

ee
 TP1 L L L L L L 6/0

TP2 L L U L U L 4/2

TP3 L L L L L L 6/0

H
av

e

B
at

h
 TP1 L L L L L L 6/0

TP2 L L L L L L 6/0

TP3 L L L L L L 6/0

W
at

ch

T
V

TP1 L L L L L L 6/0

TP2 L L L L L L 6/0

TP3 L L L L L L 6/0

M
ak

eC
h

o
c

o
la

te

TP1 U U U U U U 0/6

TP2 U U U U U U 0/6

TP3 U U U U U U 0/6

M
ak

e

P
as

ta
 TP1 L L L L L L 6/0

TP2 L L L L U L 5/1

TP3 L L U L L L 5/1

W
as

h

H
an

d
s

TP1 L L L L L L 6/0

TP2 L L L L L L 6/0

TP3 L L L L L L 6/0

S
u

m

L
/U

All

TPs

18/

6

18/

6

16/

8

17/

7

14

/10

17/

7

100

/44

Here TP - the type of activity, Exp1 and Exp2 - the two rounds of

experiments respectively, L and U - an LAT and UAT respectively,

and Sum - the number of L and U for a particular type of activity

and a particular actor respectively.

Activities
LAT

No.

Unique Object

Patterns (UOP)

LAT No. for

each UOP

popx (%) for

each UOP

MakeTea 14

UOP1 6 42.86

UOP2 5 35.71

UOP3 - UOP5 1 7.14 each

MakePasta 16

UOP1 6 37.5

UOP2 5 31.25

UOP 3 - UOP7 1 6.25 each

WashHands 18

UOP1 6 33.33

UOP2 6 33.33

UOP3 - UOP9 1 5.55 each

 12

Type 1 and Type 2, and a number of random patterns in Type

3, to test and evaluate various aspects of activity and profile

learning methods. In a real situation a user may have one

dominant object pattern or simply perform in a random way.

Nevertheless, the experiments and analysis results demonstrate

the learning method and process. For example, if we set the

threshold of the probability of occurrence of the object pattern

to 36%, then the unique object pattern for both MakeTea and

MakePasta will be identified as the dominant object patterns.

For the WashHands activity there is no object pattern.

General Discussions

Sensor noise such as faulty sensors, communication and

processing errors is inevitable in real use scenarios. In our

experiments we simulate sensor noise in Type 3 activity

specifications, leading to six occurrences of sensor noise for

each activity among its eighteen activity occurrences,

equivalent to 33.33% data accuracy. As can be seen from the

results in Table 6 sensor noise does not have to affect activity

recognition, i.e. generating a UAT. It will be up to the nature of

sensor noise that determines whether or not an action trace

with sensor noise could be recognised. The impact of sensor

noise on recognition accuracy has been discussed in [31].

Sensor noise affects activity and profile learning. The

analysis results in Table 7 show that the two unmodeled

activities, MakeChocolate and BrushTeeth each have 18 UATs

but only 12 of them are classified into one set due to sensor

noise, equivalent to a 66.67% classification rate, which

resulted from our simulation of sensor noise for exactly one

third of activities in the experiments. Nevertheless, the extent

to which the noise affects the classification rate is dependent

on the similarity threshold which is used to decide whether or

not two traces are deemed as similar. For example, our study

only classifies absolutely similar traces, i.e. simuat(UATi,

UATj)=1, into a set. If we reduce the similarity threshold, e.g.

to 0.8, then any traces with simuat(UATi, UATj)≥0.8 will be

classified to the same set. In this case the classification rate

(66.67%) and the noise level (33.33%) will both be changed.

This actually means that two activity traces with one of them

having sensor noise such as a missing sensor observation or a

wrong object can still be classified to a set if the other objects

are the same. Understandably, the lower the level of the

similarity threshold, e.g. 0.65, the higher level of sensor noise

which can be accommodated for. From this perspective, our

approach to activity learning is resilient to a certain level of

sensor noise.

Given that the threshold determines how much sensor noise

can be assimilated by our learning approach, further

investigation is required to decide an appropriate similarity

threshold. Nevertheless, current study has shown that our

approach itself is conceptually and theoretically correct

without specific limitations. The impact of sensor noise on

profile learning as depicted in Table 8 can be discussed and

explained in the same context as above. We shall not elaborate

here due to limited space.

Computational performance: In the 3-phase iterative

process of the hybrid approach to activity model learning, real-

time continuous activity recognition requires high

computational performance to ensure dynamic on-the-fly

situation generation and reasoning against the activity models.

The experiments and evaluation in [31] have shown the

computational performance for real-time activity recognition is

satisfactory. Given that activity and profile learning are

intended to be performed periodically offline and most

computation in these learning algorithms involve linear time

complexity with regard to dataset volume, we believe that the

technical correctness of these learning algorithms is more

important than their computational performance. As such, our

experiments and evaluation have focused on technical

assessment.

Knowledge-driven versus data-driven: The presented

hybrid approach combines knowledge-driven manual model

specification with data-driven automatic model learning. One

question arising from the study is to what extent models should

be manually specified in advance. Should we specify as many

models as possible with few to be learnt or the reverse?

Relying on manual specification too much will have the

disadvantages of the knowledge-driven approach. On the other

hand, relying on automatic model learning too much will have

the drawbacks of data-driven approaches. While the approach

allows flexible specification of the initial seed activity models,

it is an interesting research question to consider how to

achieve the optimal balance between the two approaches to

activity modeling.

Experiences and initial findings from our current studies

suggest that we should specify as many generic coarse-grained

activity models as possible as the models at this level of

abstraction are generic and applicable to all users, thus

insensitive to low-level special behavior of individual users.

On the other hand, we should learn as many fine-grained

activity models as possible as the models at this level of

abstraction reflect the uniqueness and dynamics of an

individual user’s behavior. Data-driven activity learning plays

a more important role in improving activity model accuracy

and addressing the changing nature of activity models.

VII. CONCLUSION

This paper introduced a hybrid approach to creating

complete, accurate activity models through incremental

activity discovery and profile learning. We have described a 3-

phase iterative process and discussed the methodology of each

phase of the lifecycle. While previous work [29] [31] [37]

reported the details of ontological activity modeling and

recognition, this paper has presented the details of activity and

profile learning methods by which activity models can be

expanded, personalized and adapted. The compelling feature

of the approach is that it combines the strengths of traditional

data mining based activity modeling with that of ontology

based explicit activity modeling, making our approach

 13

flexible, applicable and scalable in terms of reusability, rapid

system development and deployment.

We have implemented our approach in a feature-rich

assistive system and conducted systematic controlled

experiments in a number of well-designed activity scenarios.

Initial results have demonstrated that the approach and

algorithms are technically correct, viable and robust. Although

the experimental dataset is not very large, it is representative

and serves the purposes well. Our future work will focus on

testing and evaluating our approach using publicly available

activity datasets [43] [44] and also considering the exact

impact of different noise levels on the performance of our

approach.

REFERENCES

[1] M. Chan, D. Estève, C. Escriba and E. Campo, “A review of smart

homes—Present state and future challenges”, Computer Methods and

Programs in Biomedicine, vol.91, no.1, pp.55-81, 2008.

[2] C.D. Nugent, M. Mulvenna, X. Hong and S. Devlin, “Experiences in the

Development of a Smart Lab”, The International Journal of Biomedical

Engineering and Technology, vol.2, no.4, pp.319-331, 2009.

[3] Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D.,

Kautz, H., Hahnel, D.: Inferring activities from interactions with

objects. IEEE Pervasive Computing 3(4) (2004) 50-57.

[4] World Health Organization, International classification of functioning,

disability and health (ICF), http://www.who.int/classifications/icf/en/

[5] T. van Kasteren and Ben Krose, “Bayesian activity recognition in

residence for elders”, In Proc. of the International Conference on

Intelligent Environments, 2008.

[6] D. Sanchez, M. Tentori, “Activity recognition for the smart hospital”

IEEE Intelligent Systems, vol.23, no.2, pp.50-57, 2008.

[7] K.P. Murphy, “Dynamic Bayesian Networks: Representation, Inference

and Learning” PhD thesis, UC Berkeley, 2002.

[8] T.L.M. van Kasteren, G. Englebienne and B.J.A. Kröse, “Hierarchical

Activity Recognition using Automatically Clustered Actions”, In

Proceedings of the International Joint Conference on Ambient

Intelligence, pp.82-91, 2011.

[9] J. Hoey, T. Ploetz, D. Jackson, P. Olivier, A. Monk and C. Pham, Rapid

Specification and Automated Generation of Prompting Systems to

Assist People with Dementia, Pervasive and Mobile Computing, vol.7,

no.3, pp299-318, 2011.

[10] M. Brand, N. Oliver and A. Pentland, “Coupled hidden Markov models

for complex action recognition”, In International Conference on

Computer Vision and Pattern Recognition, pp.994–999, 1997.

[11] J.A. Quinn, C.K.I. Williams and N. McIntosh, “Factorial Switching

Linear Dynamical Systems Applied to Physiological Condition

Monitoring”, IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol 31, no 9, pp.1537-1551, 2009.

[12] L. Bao and S. Intille, “Activity recognition from userannotated

acceleration data”, In Proc. Pervasive, LNCS3001, pp.1–17, 2004.

[13] O. Brdiczka, J.L. Crowley and P. Reignier, “Learning situation models

in a smart home”. IEEE Transactions on Systems, Man and Cybernetics

- Part B: Cybernetics, 39(1), 2009.

[14] C. Sutton, A. McCallum and K. Rohanimanesh, “Dynamic Conditional

Random Fields”, Journal of Machine Learning Research, vol. 8, pp.693-

723, 2007.

[15] U. Maurer, A. Rowe, A. Smailagic and D. Siewiorek, “Location and

Activity Recognition using eWatch: A wearable sensor platform”, In

Ambient Intelligence in Everyday Life, LNCS Vol. 3864, 2006.

[16] L. Liao, D. Fox and H. Kautz, “Hierarchical Conditional Random Fields

for GPS-based activity recognition”, In Proc. Of the International

Symposium of Robotics Research (ISRR), 2005.

[17] J. Lester, T. Choudhury, N. Kern, G. Borriello and B. Hannaford. A

hybrid discriminative/generative approach for modeling human

activities. In Proc. of International conference of artificial intelligence

(IJCAI), pp.766–772, 2005.

[18] T.L.M. van Kasteren, G. Englebienne and B.J.A. Kröse, “Transferring

Knowledge of Activity Recognition across Sensor Networks”, In

Proceedings of the Eighth International Conference on Pervasive

Computing (Pervasive2010), pp283-300, 2010.

[19] P. Rashidi and D. Cook, “Activity knowledge transfer in smart

environments”, Pervasive and Mobile Computing, special issue on

activity recognition, 7(3):331-343, 2011.

[20] H. Hu, Q. Yang, “Transfer learning for activity recognition via sensor

mapping”, In Proceedings of the Twenty-Second international joint

conference on Artificial Intelligence (IJCAI'11), pp.1962-1967, 2011.

[21] D. Cook, K. Feuz, and N. Krishnan, “Transfer learning for activity

recognition: A survey”, Knowledge and Information Systems, to appear,

2012.

[22] M. Perkowitz, M. Philipose, D. J. Patterson, K., Mining models of

human activities from the web, in Proc. of the 13th International World

Wide Web Conference (WWW 2004), pp.573-582, 2004.

[23] E. Munguia Tapia, T. Choudhury, and M. Philipose, "Building Reliable

Activity Models Using Hierarchical Shrinkage and Mined Ontology," in

Proceedings of PERVASIVE 2006, pp.17-32, 2006.

[24] P. Palmes, H.K. Pung, T. Gu, W. Xue and S. Chen, “Object relevance

weight pattern mining for activity recognition and segmentation”,

Pervasive and Mobile Computing, vol.6, no.1, pp.43-57, 2010.

[25] H. Kautz, “A Formal Theory of Plan Recognition and its

Implementation, Reasoning about Plans”, Allen J., Pelavin R. and

Tenenberg J. eds., Morgan Kaufmann, pp.69-125, 1991.

[26] W. Wobke, “Two Logical Theories of Plan Recognition”, Journal of

Logic Computation”, vol.12, no.3, pp.371-412, 2002.

[27] B. Bouchard, S. Giroux, “A Smart Home Agent for Plan Recognition of

Cognitively-impaired Patients”, Journal of Computers, vol.1, no.5,

pp.53-62, 2006.

[28] L. Chen, C.D. Nugent, “A Logical Framework for Behaviour Reasoning

and Assistance in a Smart Home”, International Journal of Assistive

Robotics and Mechatronics, vol.9, no.4, pp.20-34, 2008.

[29] L. Chen, C.D. Nugent, “Semantic Data Management for Situation-aware

Assistance in Ambient Assisted Living”, In the proceedings of the 11th

International Conference on Information Integration and Web-based

Applications and Services (iiWAS2009), pp.296-303, 2009.

[30] X. Hong, C.D. Nugent, “Segmenting sensor data for activity monitoring

in smart environments”, Personal and Ubiquitous Computing,

17(3):545-559, 2013.

[31] L. Chen, C.D. Nugent, H. Wang, “A Knowledge-Driven Approach to

Activity Recognition in Smart Homes”, IEEE Transactions on

Knowledge and Data Engineering, vol.24, no.6, pp961-974, 2012.

[32] J. Ye, G. Stevenson and S. Dobson, “A top-level ontology for smart

environments. Pervasive and Mobile Computing”, vol.7, no.3, 2011.

[33] D. Riboni and C. Bettini, "OWL 2 Modeling and Reasoning with

Complex Human Activities". Journal of Pervasive and Mobile

Computing, vol.7, no.3, 2011.

[34] L. Chen, J. Hoey, C.D. Nugent, D. Cook, Z. Yu, “Sensor-Based Activity

Recognition”, IEEE SMC part C, doi: 10.1109/TSMCC.2012.2198883,

2012, to appear.

[35] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Englewood

Cliffs, N.J.: Prentice Hall, ISBN:0-13-022278-X, 1988.

[36] I.H. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine

Learning Tools and Techniques, 3rd ed., Elsevier, ISBN 978-0-12-

374856-0, 2011.

[37] G. Okeyo, L. Chen, H. Wang, R. Sterritt, “Dynamic Sensor Data

Segmentation for Real time Activity Recognition”, Pervasive and

Mobile Computing, http://dx.doi.org/10.1016/j.pmcj.2012.11.004, in

press, 2013.

[38] The Protégé framework, http://protege.stanford.edu

[39] Semantic Web RDF Library for C#.NET,

http://razor.occams.info/code/semweb/,

[40] Euler proof mechanism, www.agfa.com/w3c/euler/

[41] Pellet: OWL 2 Reasoner for Java, http://clarkparsia.com/pellet

[42] F. Baader, D. Calvanese, D. L. McGuinness, “The Description Logic

Handbook: Theory, Implementation, Applications”, Cambridge

University Press, ISBN 0-521-78176-0, 2003.

[43] TLM van Kasteren’s dataset,

https://sites.google.com/site/tim0306/datasets

[44] WSU CASAS dataset, http://ailab.wsu.edu/casas/datasets/index.html.

 14

Liming Chen is a senior lecturer at the School of Computing and
Mathematics, University of Ulster, UK. He received his BSc and MSc in
Computing Engineering from Beijing Institute of Technology, China, and
DPhil in Artificial Intelligence from De Montfort University, United
Kingdom. His current research interests include the semantic technologies,
ontology enabled knowledge management, intelligent agents,
information/knowledge fusion and reasoning, semantic sensor networking,
assistive technologies and their applications in smart homes and intelligent
environments.

Chris D. Nugent is a Professor at the School of Computing and Mathematics,
University of Ulster, UK. He received a Bachelor of Engineering in Electronic
Systems and DPhil in Biomedical Engineering both from the University of
Ulster. He currently holds the position of Professor of Biomedical
Engineering within the School of Computing and Mathematics at the
University of Ulster. His research addresses the themes of Technologies to
Support Independent Living, Medical Decision Support Systems and the
development of Internet based healthcare models.

George Okeyo is a PhD research student at the School of Computing and

Mathematics, University of Ulster, UK. His current research interests include

the semantic technologies, ontology enabled knowledge management,

intelligent agents, information/knowledge fusion and reasoning, semantic

sensor networking, assistive technologies and their applications in smart

homes and intelligent environments.

