
 1 

 

Abstract—Activity models play a critical role for activity 

recognition and assistance in ambient assisted living. Existing 

approaches to activity modeling suffer from a number of 

problems, e.g. cold-start, model reusability and incompleteness. In 

an effort to address these problems, we introduce an ontology-

based hybrid approach to activity modeling that combines domain 

knowledge-based model specification and data-driven model 

learning. Central to the approach is an iterative process that 

begins with “seed” activity models created by ontological 

engineering. The “seed” models are deployed, and subsequently 

evolved through incremental activity discovery and model update. 

While our previous work has detailed ontological activity 

modeling and activity recognition, this paper focuses on the 

systematic hybrid approach and associated methods and inference 

rules for learning new activities and user activity profiles. The 

approach has been implemented in a feature-rich assistive living 

system. Analysis of the experiments conducted has been 

undertaken in an effort to test and evaluate the activity learning 

algorithms and associated mechanisms.  

 
Index Terms—activity model learning, activity recognition, 

ontology, semantic reasoning, smart homes.  

I. INTRODUCTION 

MART Homes (SH) have been widely accepted as being a 

promising paradigm for technology-driven assistive living 

for the aging population [1]. A SH can be described as a 

home environment augmented with a diversity of multi-modal 

sensors, actuators and devices along with information and 

communication technology (ICT) based services and systems 

[2]. By monitoring environmental changes and inhabitants' 

activities, an assistive system within a SH can process sensor 

data, infer an inhabitant’s needs and take appropriate actions 

to support Activities of Daily Living (ADLs).  As such, a SH 

can help older people prolong their independent living and 

enhance quality of life within their own homes.  

Activity models play a crucial role in the realization of the 

SH concept. They are required to support reasoning based 

upon real-time streaming sensor data in order to infer the 

current activity for application-level functions. This may 

include, for example, to predict the next action within a 

specific task or to detect anomalies within the undertaking 
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ADLs. The completeness and accuracy of ADL models is 

therefore critical for an assistive system to function correctly. 

If an activity is not modeled or the model is not accurate, the 

activity will not be recognized by an assistive system. The 

system will therefore not be able to provide assistance and/or 

prediction with regard to this activity.  

Modeling ADLs is a challenging task due to their unique 

characteristics. For example, there are a large number of ADLs 

in a diversity of categories which can all be modeled at 

multiple levels of granularity [4]. In addition, most ADLs 

involve performing a number of actions. The sequence of the 

actions to be performed is usually dependent on an individual's 

own preferences. Furthermore, the manner an ADL is 

performed is evolved dynamically, for example the change in 

duration or the order of objects being used within a task. This 

is particularly the case for older people and those suffering 

from decline of cognitive capabilities.  

Currently there are two mainstream approaches to modeling 

ADLs. One approach is to learn an individual’s activity models 

from existing behavioral datasets using data mining and 

machine learning techniques. With this approach activity 

models are created based on two tasks, namely the creation of 

a probabilistic or statistical activity model and the training of 

the model to decide its parameters or mappings [5]-[17]. 

Given that the approach is based on intensive data analysis, it 

is usually referred to as a data-driven approach. A data-driven 

approach to ADL modeling has two major drawbacks. The 

first is the well-known cold-start problem, i.e. requiring a large 

representative dataset to support model training for each ADL. 

This problem is exacerbated in the context of assistive living 

as people are reluctant to disclose their behavioral data due to 

privacy and ethical considerations. The second drawback is 

related to model applicability and reusability. A data-driven 

approach is sensitive to unseen data which makes it difficult to 

apply the ADL models which have been learnt from one 

person to another person. This means that with the data-driven 

approach every activity model for all ADLs for every user 

needs to be learnt in order to create complete ADL models. 

Given the large number of ADLs and the cold-start problem, 

this is a huge challenge, if indeed not impossible, in practice. 

To mitigate the aforementioned problems, researchers have 

recently started applying transfer learning techniques to 

activity modeling and recognition by reusing resources and 

knowledge. This involves  transferring the source datasets, or 

features or models, from one user to another in different 

An Ontology-based Hybrid Approach to 

Activity Modeling for Smart Homes 

Liming Chen, Member, IEEE, Chris Nugent, Member, IEEE, and George Okeyo, Member, IEEE 

S 



 2 

settings [18] [19] [20]. Nevertheless, such research is still at its 

infancy with many open challenges [21].    

An alternative to the data-driven approach is to manually 

define activity models by making use of rich, prior knowledge 

and domain heuristics. This approach is motivated by the 

observation that most ADLs are daily routines which normally 

take place within a specific circumstance of time, location and 

space with relatively fixed types of objects. Using formal 

knowledge acquisition and modeling technologies activity 

models can be created by means of various knowledge 

modeling tools [22]-[33]. As this approach is closely related to 

knowledge engineering, it is referred to as a knowledge-driven 

approach. A knowledge-driven approach overcomes the cold-

start problem and can model activities at multiple levels of 

abstraction, thus providing the capability to create both 

generalized and specialized ADL models. For example, 

ontological activity modeling can model a generic ADL as an 

ontological activity class and an individual-specific ADL as an 

instance of the corresponding activity class. Nevertheless, 

given that ADL models are created manually by domain 

experts on a case-by-case basis, the approach is questionable 

in relation to its scalability of generating complete ADL 

models. In addition, ADL models created by knowledge-

driven approaches are perceived as being generic and static. 

Adapting an individual’s ADL models to their changing 

behaviors is still an open issue.   

Rather than trying to reuse resources and knowledge among 

different users similar to the scenario with transfer learning 

based research, this paper introduces an ontology-based hybrid 

approach by incorporating data-driven learning capabilities 

into a knowledge-driven approach to address the 

aforementioned problems of activity modeling. The rationale 

is to provide generic activity models suitable for all users and 

then create individual activity models through incremental 

learning.  The approach uses semantic technologies as a 

conceptual backbone and technology enablers for ADL 

modeling, classification and learning. The distinguishable 

feature of the approach from existing approaches is that ADL 

modeling is not a one-off effort, instead, a multi-phase 

iterative process that interleaves knowledge-based model 

specifications and data-driven model learning. The process 

consists of three key phases. In the first phase the initial seed 

ADL models are created through ontological engineering by 

leveraging domain knowledge and heuristics, thus solving the 

cold-start problem. Ontological activity modeling creates 

activity models at two levels of abstractions, namely as 

ontological activity concepts and their instances respectively. 

Ontological activity concepts represent generic coarse-grained 

activity models applicable and reusable for all users, thus 

solving the reusability problem. The seed ADL models are 

then used in applications for activity recognition at the second 

phase. In the third phase, the activity classification results from 

the second phase are analyzed to discover new activities and 

user profiles. These learnt activity patterns are in turn used to 

update the ADL models, thus solving the incompleteness 

problem. Once the first phase completes, the remaining two-

phase process can be iterated many times to incrementally 

evolve the ADL models, leading to complete, accurate and up-

to-date ADL models.  

This paper makes three main contributions. Firstly, we 

develop a hybrid approach to activity modeling that combines 

the strengths of data- and knowledge-driven approaches to 

support an incremental modeling process. The approach is 

built upon the work in [31], however, extends it by 

incorporating the learning capabilities to provide a viable 

solution for addressing existing problems relating to ADL 

modeling. Secondly, we develop a learning method to discover 

activities that are performed by users but have not yet been 

modeled. Thirdly, we define the characteristics of a user 

activity profile and develop analysis methods and associated 

inference rules to learn a user’s activity profiles, i.e. the 

specific way the user performs activities. The learning methods 

of activity profiles can detect the changing manner an activity 

is performed, thus allowing ADL models to adapt over time. 

We have implemented the approach in a feature-rich assistive 

living system. ADL discovery algorithms and profile learning 

methods have been tested and evaluated in a number of 

experiments by participants in a real sensorised environment. 

Initial results have demonstrated that the approach works and 

the algorithms are effective. 

It is worth noting that the research presented in this paper is 

based on single-user single-activity scenarios. While complex 

activity scenarios, e.g. interleaved and concurrent activities, 

pose many research problems, it is beyond the scope of this 

paper to address them all. In addition, activity monitoring in 

this study is based on dense sensing [3], i.e. one miniaturized 

sensor is attached to individual objects that are used for 

monitoring individual tasks within ADLs. As such, by 

analyzing an inhabitant’s interactions with objects of interest it 

is possible to infer the inhabitant’s activity.  

The remainder of the paper is organized as follows. Section 

2 presents related work. Section 3 introduces the hybrid 

approach and its core technical underpinnings. Section 4 

describes learning methods to discover new activities and 

Section 5 presents analysis mechanisms for learning user 

profiles. We discuss implementation, testing and evaluation in 

Section 6 and conclude the paper in Section 7. 

 

II. RELATED WORK IN ACTIVITY MODELING 

The data-driven approach to activity modeling contains two 

categories of methods. One of them involves the use of 

parametric probabilistic or statistical models to represent 

activities. Individual activity models are obtained by learning 

the structure and parameters through model training based on 

large-scale datasets. Major models in this category include 

naïve Bayes classifiers [5], Hidden Markov Models (HMMs) 

[6], Dynamic Bayesian Networks (DBN) [7], hierarchical 

clustering [8], partially observable Markov decision processes 

(POMDPs) [9] and the variants of HMM and DBN, e.g. 
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Coupled Hidden Markov Models (CHMMs) [10] and linear 

dynamical system (LDS) [11].  

The other category of data-driven activity modeling is to use 

classification techniques to establish the mapping from inputs 

of sensor data to outputs, i.e., activity labels. Methods in this 

category compare a sequence of sensor observations to a set of 

template sequences in a training dataset. Individual activity 

models are obtained by learning the activity labels of the most 

closely matching sequences in the training dataset. Examples 

of this type of method include nearest neighbor [12], Support 

Vector Machine (SVM) [13], Conditional Random Field 

(CRF) [14], decision trees [15], hierarchical CRF [16] and 

meta-level classifiers that combine the results of multiple base-

level classifiers [17]. The advantage of data-driven activity 

modeling is that it can handle noisy, uncertain and incomplete 

data in addition to temporal information. Nevertheless, the 

approach suffers from several drawbacks as discussed in the 

previous Section. 

The knowledge-driven approach to activity modeling also 

consists of two types of methods. The first is to discover 

activity models from existing publicly available sources, e.g. 

recipe handbooks or activity specifications on the Web. This 

type of method uses information retrieval and analysis 

techniques to retrieve activity definitions from specific sources 

and then extract phrases and relationships to create activity 

models. Relevant studies in this area include [22] - [24].  

The second type of method for knowledge-driven activity 

modeling is to view an activity model as a knowledge model. 

As such, activity modeling is essentially equivalent to 

knowledge modeling that can be formally performed using 

various knowledge engineering techniques and representation 

formalisms. There exists a number of works in this strand in 

terms of the underlying knowledge representation theories and 

formalisms. Kautz et al. [25] treated activity models as plans 

in the context of plan recognition, e.g. using first-order axioms 

to build a library of hierarchical plans. Wobke [26] used 

situation theory to address the different probabilities of 

inferred plans by defining a partial order relation between 

plans in terms of levels of plausibility. Bouchard et al. [27] 

used action description logic to formalize actions, entities and 

variable states in a SH with which an activity is modeled as a 

sequence of actions and represented as a lattice structure. Chen 

et al. [28] adopted the highly developed logical theory of 

actions, i.e., the event calculus for formalizing domain theories 

of a SH in which activities are modeled as sequential and/or 

parallel events. More recently, ontologies and semantic 

technologies have been used for activity modeling and 

representation. For example, Chen et al. have developed 

sensor ontologies for contextual data management [29] and 

activity ontologies for activity modelling and recognition [31]. 

Ye et al. [32] defined an upper ontology for smart 

environments that has been used to create a formal activity 

model for activity recognition. Riboni et al. [33] presented the 

details of using OWL2
1
, in particular, rule modeling, for both 

modeling and reasoning with complex activities. Knowledge-

driven activity modeling solves the cold-start problem. It is 

semantically clear and elegant in reasoning as the approach is 

based on the solid foundation of formal knowledge 

representation theories. The major weaknesses are that the pre-

defined models are static and incomplete due to the limited 

knowledge of individual experts. 

Though activity modeling is important and existing 

approaches suffer from various problems, research on this 

topic has in general received little attention. The main reason 

is that activity modeling has been predominantly carried out in 

the domain of pattern recognition and data mining [34]. In 

these research contexts, the emphases are usually placed on 

recognition and classification algorithms and their 

performance. Activity modeling is often viewed as a 

supportive component for pattern recognition and model-based 

application-level functions. When knowledge-driven approach 

is used for activity modeling in knowledge-based systems the 

emphases are normally placed on inference and decision-

support mechanisms. It is usually assumed that activity 

modeling using knowledge engineering techniques will create 

complete accurate models [31] [33]. Nevertheless, in reality it 

is very difficult, if not possible, to manually create models 

covering all permutations of different users, activities and 

performance styles. This is actually a widely known drawback 

of knowledge engineering based approach to knowledge 

modeling. This paper places activity modeling as the focus of 

the investigation. It conceives and develops an ontology-based 

hybrid approach that is able to address all of the 

aforementioned main problems, namely cold-start, reusability 

and model incompleteness, in one systematic solution. The 

approach and associated learning methods presented in this 

paper have not been seen to date in related research 

communities and are therefore deemed to be novel. 

 

III. THE HYBRID APPROACH TO ACTIVITY MODELING 

Fig. 1 depicts the 3-phase process of the hybrid approach to 

activity modeling as introduced in this paper. In Phase I - 

Knowledge-driven Activity Modeling, ontological knowledge 

engineering techniques, are utilized to extract and create the 

initial seed activity models based on domain heuristics and 

prior knowledge. In Phase II - Model-based Activity 

Recognition, the seed activity models are used as classifiers by 

activity-based application systems, e.g. an ambient assisted 

living system, to classify sensor data for the purposes of 

activity recognition. If an activity has been accurately modeled 

in the seed activity models the activity should be recognized. 

On the other hand, if an activity is not modeled or the model is 

not accurate the activity will not be recognized. Nevertheless, 

the outputs of Phase II provides valuable inputs for Phase III, 

Data-driven Activity Learning within which data mining based 

 
1 OWL2, along with RDF, RDFS and SPARQL mentioned later are all 

W3C standards, which can be found at www.w3.org. 
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learning methods are used to learn new activities and a user’s 

activity profile. The learning results from Phase III can then be 

used to expand or update the seed activity models created in 

Phase I. The 3-phase process can be iterated periodically, thus 

incrementally improving the completeness and accuracy of 

activity models. Among these three phases Phase I requires 

human intervention. This includes initial inputs of domain 

knowledge, manual specification of the seed ontological 

activity models and human validation and update of learnt 

activities at the end of a single iteration. Both Phase II and III 

are data-driven and completely automatic. 

Fig.1. The 3-phase hybrid approach to activity modeling 

In our previous studies we have developed ontological 

activity models [29], the mechanisms for dynamic sensor data 

segmentation [30][37] and ontology-based activity recognition 

[31] for Phase I and II. In this paper we concentrate on 

developing methods and algorithms for activity and user 

profile learning in Phase III. While details of Phase I and II 

can be found in the aforementioned work, to aid in the 

understanding of the discussion of the following Sections, we 

briefly outline the rationale and mechanisms of ontology-based 

activity modeling and recognition. 

A. Ontological Activity Modelling  

Ontological activity modeling is to explicitly specify activity 

models using the Description Logics (DL) formalism [42]. It 

defines an activity as an ontological concept and all actions 

that are required to perform the activity as the properties of the 

concept. In addition to action-based properties, which is 

hereafter referred to action properties, an activity model also 

contains a number of descriptive properties to characterize the 

manner an activity is performed. For example, making tea 

involves taking a cup from the cupboard, putting a teabag into 

the cup, adding hot water to the cup, then milk and /or sugar. 

The ontological model of making tea, i.e. MakeTea concept, 

can be defined by action properties hasContainer, hasTeabag, 

hasHotwater, hasMilk and hasFlavor in conjunction with 

descriptive properties such as an activity identifier actID, start 

time actStartTime, duration actDuration and the sequential 

order of these objects in performing an activity 

actObjSequence. As action properties are mainly used for 

defining an activity, they play a crucial role in activity 

recognition. Descriptive properties, on the other hand, are not 

determinants in activity recognition. For example, making tea 

can happen at any time, it can be performed in different 

sequences and it may take variable amounts of time. 

Descriptive properties are mainly used to define user's activity 

profiles, namely to characterize the manner an activity is 

performed.  

Activities can be modeled at different levels of abstraction. 

As such, ontological activity concepts are usually organized in 

a hierarchical structure to form super-class and sub-class 

relationships. For example, MakeTea, MakeCoffee and 

MakeHotChocolate activities can be modeled as the subclasses 

of MakeHotDrink activity, which is in turn the subclass of 

MakeDrink. Properties establish the relations between 

ontological activity concepts and the actions required for 

performing the activities. For example, the hasContainer 

property links the action of preparing a cup to the activity of 

making tea. Subclasses can inherit properties from 

superclasses. A leaf node of the hierarchy denotes a primitive 

activity that cannot be further classified. Figure 2 presents an 

excerpt of activity ontologies and associated SH contextual 

concepts.  

(a) Contextual classes   (b) Properties           (c) Activity classes 

Fig. 2. An excerpt of the activity ontologies. The left column depicts the 
Sensor class for describing sensor activations. The right column depicts the 
KitchenADL activity hierarchy of the ADL ontologies. The middle column 
illustrates the properties used by the context and ADL ontologies.   

Ontological activity concepts define high-level generic 

activity models which are applicable to anyone. In addition to 

this, ontological activity modeling can also define the specific 

way that a person performs an activity, which is usually 

referred to as user activity profiles. For example, a user always 

makes English tea at 10am using skimmed milk and sand 

sugar. User activity profiles can be defined by creating an 

instance of a generic ontological activity concept in terms of 

the user’s preference and habits. Ontological activity modeling 

in Phase I can generate both generic activity models and user 

activity profiles, thus providing activity models at different 

levels of abstraction. Aside from activity concepts, other major 

entities from the domain will also be ontologically modeled. 

For example, a sensor concept and related properties are 

developed to establish the relationships between physical 

sensors, objects and their locations in addition to the sensor 

activation time. Further details of these concepts can be found 

in [29]. 
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B. Ontology-based Activity Recognition 

In dense sensing based activity monitoring [3] [34] an 

action of a user interacting with an object is detected through 

the sensor attached to the object. As such, the activation of a 

sensor implies that an action has been taken and subsequently 

an action property relating to the object will be assigned a 

value. Suppose that a number of sensors are activated along a 

time line and these sensor observations have been linked to 

corresponding action properties. At a specific time point the 

aggregation of these action properties will create a context 

denoting an ontological activity description. For example, the 

activation of the contact sensors on a cup and milk bottle can 

link the cup and milk to the activity being performed through 

hasContainer and hasFlavor properties. Assume that at a 

specific time, i.e. hasTime(10am), sensor observations 

hasLocation(kitchen), hasContainer(cup), hasTeabag (English 

Teabag) and hasFlavor(sand sugar) are generated, in 

aggregation this represents a context for an ongoing activity. If 

an activity concept in the ADL ontologies, e.g. MakeTea, has 

been defined by this set of action properties, then the activity 

can be deemed as the type of activity for the perceived context.  

The rationale of inferring an activity from sensor 

observations described above can be formulated as follows: 

Given a set of action properties instantiated by sensor 

observations, identify the activity concept in the ADL 

ontologies that has the same set of action properties. 

Conceptually this problem of activity recognition can be 

mapped to the classification of the activity description using 

activity ontologies as the classifiers. Technically the problem 

can be solved using the subsumption reasoning in description 

logic, i.e. to decide if a concept description C created from 

sensor observations is subsumed by a concept description D 

within the activity models. Details of the theoretical 

foundation, reasoning algorithm and continuous recognition 

mechanisms for ontology-based activity recognition can be 

found in [31]. It is worth pointing out that the sensor data 

stream will be first partitioned into segments so that sensor 

activations within a segment can be aggregated to create an 

ontological activity description for activity recognition. We 

have developed a dynamic segmentation model based on the 

notion of varied time windows for real-time sensor data 

partition. The model can shrink and expand the window size of 

segmentation by using temporal information of activity models 

and sensor data. Further details of this concept can be found in 

[37]. 

To facilitate discussion we refer to the sequence of sensor 

observations within a segment as an action trace, i.e. the 

actions being undertaken within the segment. An action trace 

is equivalent to a set of action properties in an ontological 

activity description. With activity models from Phase I and 

streaming sensor data from applications within a smart home, 

activity recognition in Phase II can produce two types of 

action traces. If an action trace has a corresponding activity 

concept in the ADL models, this type of action trace is referred 

to as a Labeled Action Trace or LAT in short. Otherwise it is 

an Unlabeled Action Trace or UAT. LATs can be recognized 

from the set of action properties while UATs cannot be 

recognized as there are no corresponding activity models in 

the ADL ontologies or the models are not accurate.  

The initial seed activity models generated in Phase I are 

inevitably incomplete due to the large number of ADLs, the 

different manner of users performing the ADLs and the 

changing user behaviors. As such, when an application within 

a smart home performs activity recognition over a period of 

time, it will generate large amount of LATs and UATs that 

contain information relating to un-modeled activities and the 

changing behaviors of a user. These action traces can be 

analyzed in Phase III to learn new activities and user activity 

profiles. New activities increase the completeness of activity 

models while user activity profiles improve the accuracy of 

activity models. Section IV and V describe the details of the 

learning mechanisms and methods for Phase III. 

 

IV. LEARNING UNMODELLED ACTIVITIES 

Activity learning aims to discover the activities that a user 

performs, however, which have not been modelled in the seed 

activity ontologies. As there are no models for these activities, 

they will not be recognised by the activity recognition process 

in Phase II. Subsequently they are classified as unlabelled 

action traces, i.e. UATs. The essence of the activity learning is 

therefore to extract regular activities from UATs so that they 

can be modelled to improve activity models.  

We have developed a 3-step learning method for this 

purpose. In the first step a semantic similarity metric is defined 

to measure the semantic similarity between two UATs Based 

on this an algorithm is then developed to compute the semantic 

similarity. In the second step the semantic similarity between 

any individual UAT among all UATs are calculated. Based on 

the similarity metrics all UATs are classified into a number of 

subsets where each subset contains semantically similar UATs. 

In essence, each subset corresponds to one unmodelled 

activity, and the number of UATs within each subset is the 

number of occurrences of the unmodelled activity during 

activity monitoring. As an unmodelled activity could be a one-

off or random behaviour, it would be necessary to determine 

which discovered activities are regular activities and should be 

formally modelled. In the third step the frequency of the 

occurrence of these discovered unmodelled activities are 

calculated and a threshold is specified based on domain 

heuristics. If the occurrence frequency of an unmodelled 

activity is equal or greater than the threshold, then the activity 

will be formally modelled to update the ADL models. 

As previously discussed, central to the activity learning 

method is the definition and computation of semantic 

similarity between UATs. We define simuat(UATi, UATj) as the 

semantic similarity measure between two UATs and denote 

each UAT as a set of action property-value pairs represented as 

follows: 

UATi={prop1-value1, prop2-value2 … propk-valuek}    
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UATj={prop1-value1, prop2-value2 … propn-valuen} 

By semantic similarity we refer to the similarity of two 

UATs in terms of the types of the property values rather than 

the values themselves. This is because in ontological activity 

modeling an activity model is defined by the types of object 

rather than the objects themselves. For example, the MakeTea 

activity is specified by hasContainer(x), hasTeabag(y) ... and 

hasFlavor(z). It is the types of the property values, rather than 

the specific x, y or z objects that define the activity. The value 

of a property, e.g. x, y or z, can be any object, e.g. cup1 or cup2 

for x. English tea or India tea for y, white sugar or brown 

sugar for z. As such, the types of objects are the key 

discriminants to decide if two UATs refer to the same type of 

activity.   

We have developed a method to compute the semantic 

similarity of two UATs in terms of the similarity of the two sets 

of property-value pairs in the two UATs. The method works as 

follows. We first map the set of action properties in a UAT to a 

corresponding set of objects and then derive the corresponding 

object type for each individual object. Both mappings from 

action properties to objects and from objects to object types 

are conducted by recursively unfolding the semantic relations 

based on ontological relationships modeled in the ADL 

ontologies. As a result of these mappings a UAT can be 

transformed into a description of a set of object types, as 

denoted in the formula below. 

UATi={objectType of prop1-value1, objectType of prop2-

value2 … objectType of propk-valuek}    

Following this semantic explication and transformation, the 

similarity of two sets of property-value pairs is equal to the 

similarity of two sets of object types. As each object type is 

modeled as a concept in the ADL ontologies, the semantic 

similarity between two object types (concepts) can be 

computed based on the signatures of the object concepts. 

Specifically the similarity measure can be calculated using the 

Jaccard coefficient [35] which is the ratio of the number of 

shared elements from the intersection of the two sample sets to 

the number of total elements from the union of the two sets. 

This is represented as follows:  

simuat(UATi, UATj) = (|UATiot  UATjot| / |UATiot  UATjot| 

Here UATiot and UATjot refer to the set of object types in UATi 

and UATj, respectively. 

Example 1 illustrates the transformation of two UATs and 

their semantic similarity. Even though the order and specific 

objects used for each activity is different, the semantic 

similarity measure equals one, indicating they refer to the same 

type of activities.  
[ Example 1: 

UATs are in the form of property-value pairs. 

UATi={hasContainer(muga), hasTeabag(English teabag), hasFlavor(brown 

sugar), hasHotwater(kettlea), hasMilk(semi-skimmed milk)} 

UATj={hasContainer(mugb), hasTeabag(India teabag), hasHotwater 

(kettlea), hasMilk(skimmed milk), hasFlavor(white sugar)} 

UATs are in the form of sets of objects. 

UATi={muga, English teabag, brown sugar, kettlea, semi-skimmed milk} 

UATj ={mugb, India teabag, kettlea, skimmed milk, white sugar} 

UATs are in the form of sets of object types. 

UATi ={Container, Tea, Sugar, Kettle, Milk} 

UATj ={Container, Tea, Kettle, Milk, Sugar} 

      simuat(UATi, UATj) = 1 ] 

We can compute the semantic similarity of any two UATs 

using the described method and then use the resulting 

similarity metrics to classify all UATs into a number of subsets 

of UATs. For each subset, the semantic similarity simuat 

between any two UATs is equal to 1, thus each subset denotes 

a specific type of activity.   

Once distinct activities are discovered through semantic 

classification, it is necessary to decide whether they are regular 

activities, random or one-off activities. To this end, we use the 

daily frequency of occurrence of a UAT as the significance 

measure for the activity it represents. For example, if the daily 

frequency of occurrence of UATk is n, this means the activity 

UATk occurs on average n times a day during the period of 

monitoring, e.g. once a day for n=1, twice a day for n=2 and 

once every two days for n=0.5. A threshold value can then be 

specified for the daily frequency of occurrence based on 

domain knowledge and heuristics. For example, given that 

most ADLs are performed on a daily basis, we can reasonably 

set 0.5 as the threshold value, namely a UAT happening once 

every two days can be regarded as a regular activity. If the 

daily frequency of occurrence of a UAT is greater or equal to 

the threshold value, the UAT can be formally designated as a 

regular activity. Subsequently, this activity will be modelled to 

update the activity models. Table 1 summarises the variables, 

their descriptions and the pseudo code of the algorithm for the 

presented activity learning method. 

 
TABLE 1. The algorithm for learning unmodelled activities 

Variables Descriptions 

SU the whole set of UATs 

SSUi the ith subset of UATs within which all UATs are 

semantically similar 

fouat the daily frequency of occurrence of an UAT 

Tfo the threshold value specified for fouat 

D the duration of activity monitoring in days 

1. set SU, D, Tfo from Phase II outputs 

2. for any UATi, UATiSU, do 

3.    semantic unfolding and transformation as illustrated in Example 1 

4. enddo  

5. set a counter actNum = 0, which represents the number of new 

activities 

6. while ( |SU| > 0) 

7. set UATbase to an arbitrary member of SU 

8.       create a new subset SSUactNum with UATbase as the only member 

9.       for ( 1 ≤  i  ≤  |SU| ) 

10.             calculate simuat(UATbase, UATi), where UATiSU 

11.             if ( simuat(UATbase, UATi) = 1 ) 

12.                   put UATi into the set SSUactNum 

13.                   remove UATi from SU 

14.             else  

15.                   leave UATi in SU 

16.             endif 

17.       endfor 

18.       Increase the counter actNum = actNum + 1 

19. endwhile  // this will create actNum subsets SSUi 

20. for ( 1 ≤  i  ≤  actNum ) 

21.       calculate fouat(UAT, UAT  SSUi) = |SSUi | / D 

22.       if ( fouat(UAT)  Tfo ) recommend to an expert 
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23.             SSUi represents a regular activity 

24.       else  

25.             SSUi represents a random / one-off activity 

26.       endif 

27.  Endfor 

 

V.   LEARNING USER ACTIVITY PROFILES   

An activity can be performed in many different ways, e.g. 

using different items of the same object types, in different 

sequence of actions, at different times and within variable 

durations. A user activity profile is referred to the specific way 

of a user performing activities which is the key to personalised 

assistance in assistive living. To formally specify a user 

activity profile we use three attributes, namely an object 

pattern, duration and an activity pattern, to characterize the 

manner that an activity is performed. An object pattern refers 

to the unique order of objects that an activity is performed 

whilst an activity pattern describes the frequency and 

regularity of an activity occurrence, including the starting 

time(s).  

Ontological activity modelling can model an activity profile 

as an instance of the corresponding generic activity concept. 

Nevertheless, the initial seed activity models do not contain 

user profile models. This is because the model of a user 

activity profile is user specific, it can only be defined once a 

user is identified. In addition, a user’s behaviour can change 

due to physical or mental conditions, thus leading to the 

change of activity profiles. As such, learning user behaviours 

from their activity observations is an effective way to create 

user profiles. 

An LAT represents an activity that has been modelled in the 

ADL ontologies and recognised in Phase II. Each LAT has a 

corresponding activity label and a sequence of sensor 

observations denoting the specific undertaking of the activity. 

Over time for each activity there will be a set of accumulated 

LATs, which provide a valuable source for user profile 

discovery. In the following Sections we describe the processes 

and methods of learning user profiles from real time 

observations of activity performance, i.e. the LATs generated 

in Phase II.   

A.  Learning object patterns 

We have developed a 3-step learning method to discover 

whether or not a user follows a unique object pattern in 

performing an activity. In the first step, we define a similarity 

measure simlat(LATi, LATj) in terms of object sequences and 

develop an algorithm to calculate the similarity of two LATs. 

In the second step we compute the similarity among all LATs 

of a specific activity and based on the similarity measures a 

classification algorithm is developed to classify the set of LATs 

into subsets of LATs of the same object pattern. In the third 

step we calculate the distribution of frequency of occurrences 

of all object patterns for the specific activity. The dominant 

object pattern can then be used to characterize the user activity 

profile for the specific activity. 

Similar to a UAT, an LAT can be denoted as a set of action 

property-value pairs, i.e. LATi={prop1-value1, prop2-value2 … 

propk-valuek}. We define simlat(LATi, LATj) as the similarity 

measure in terms of object sequences of the two LATs. To 

calculate the similarity measure we transform an LAT from a 

sequence of action property-value pairs to a sequence of 

objects through semantic unfolding of ontological concepts. 

The resulting LAT can be represented as a sequence of objects, 

i.e. LAT={object1 of prop1-value1, object2 of prop2-value2 … 

objectk of propk-valuek} where each element objecti is a 

specific object denoted by its signature. After this 

transformation, an LAT can be treated as an object signature 

vector, and the similarity of two LATs is essentially the 

similarity between two vectors in a high dimensional space. 

This can be computed using the generic cosine similarity 

algorithm [36], as formulated in the equation below. 

simlat(LATi, LATj) = (LATi . LATj) / (||LATi|| ||LATj||) 

 

The numerator is the dot product of the two LAT vectors and 

the denominator is the product of the magnitudes of the two 

vectors. i and j are an LAT respectively, i ≠ j, and n is the total 

number of LATs. A value in the range [-1, 1] can be generated, 

where -1 signifies the exact opposite object pattern and 1 

signifies exactly the same pattern.  

In order to make use of the cosine similarity algorithm to 

compute similarity of LATs we convert the text notation of the 

elements of an LAT to numerical values by allocating each 

object an object identifier number. The object identifier 

numbers do not have any meaning, they are simply used to 

facilitate the similarity computation based on object 

sequences. Example 2 below illustrates three LATs, their 

object signatures, corresponding exemplar object identifier 

numbers and the similarity measures between them.  
[ Example 2: 

LAT1{muga(1), teabag(2), hotwater(3), sand sugar(4), skimmed milk(5)} 

LAT2{mugb(9), teabag(2), whole milk(8), hotwater(3), sand sugar(4)}  

LAT3{muga(1), teabag(2), hotwater(3), sand sugar(4), skimmed milk(5)}       

 simlat(LAT1, LAT2) = 0.7053  

 simlat(LAT1, LAT3) = 1 ] 

As shown in the above example, LAT1 and LAT3 will be 

classified into the same subset because they follow the same 

object sequences. Similarly we can compute the similarity 

measures for all LATs and classify the LATs that their 

similarity measures are equal to 1 into a subset. Each subset 

represents a unique object pattern.  

To determine if there is a dominant object pattern for 

performing a specific activity, we calculate the probability of 

the occurrence of a unique object pattern for all object patterns 

within the set of LATs for the activity. We then specify a 

threshold value for the probability of occurrence so that when 

the occurrence probability of a specific object pattern is 

greater than or equal to the threshold value, the corresponding 

subset can be viewed as the dominant object pattern. For 
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example, suppose that there are five object patterns for 

performing an activity, and the occurrence probability of the 

third object pattern is 0.83. This means that the activity is 

performed 83% of the time using the 3rd object pattern, and 

only 17% using the other patterns. In this case, the 3rd object 

pattern can be reasonably regarded as the user profile for this 

specific activity. On the other hand, if all probability values 

are roughly evenly distributed and each value is very small, it 

can be assumed that the activity is performed in a random 

manner and there is not a specific preferred way of performing 

the activity. In our study we define 2/3 as the threshold value 

of the occurrence frequency in our study. Table 2 summarizes 

the variables, their descriptions and the pseudo code of the 

algorithm for this object pattern learning method. 

TABLE 2. The algorithm for learning object patterns 

Variables Descriptions 

SL(z) The set of all LATs for the specific activity z 

popk The probability of occurrence of the object pattern k 

Tpop The threshold of pop = 2/3 

// discover unique object patterns 

1. set SL(z) and Tpop from Phase II outputs  

2. for any LATi, LATi SL(z), do 

3.      semantic unfolding as illustrated in step 2 in Example 1 

4. enddo  

5. set a counter uopNum = 0, which represents the number of the 

unique object patterns in SL(z) 

6. while ( |SL(z)| > 0) 

7. set LATbase to an arbitrary member of SL(z)  

8. create a new subset SSL(z)uopNum with LATbase as the only member 

9.       for ( 1 ≤  i  ≤  | SL(z)| ) 

10.             calculate simlat(LATbase, LATi), where LATi SL(z) 

11.             if ( simlat(LATbase, LATi) = 1 ) 

12.                   put LATi into the subset SSL(z)uopNum 

13.                   remove LATi from SL(z) 

14.             else  

15.                   leave LATi in SL(z) 

16.             endif 

17.       endfor 

18.       Increase the counter uopNum = uopNum + 1 

19. endwhile  // this will create uopNum subsets SSL(z) 

20. for ( 1 ≤  i  ≤  uopNum ) 

21.       calculate popi = | SSL(z)i | / | SL(z) |  

22.       if (popi)  Tpop )  

23.             SSL(z)i represents a dominant object pattern 

24.       else  

25.             No user profile for this activity 

26.       endif 

27.  Endfor 

 

B. Learning an activity duration  

Duration information of an activity model is useful in 

continuous activity recognition. It helps define the sliding time 

window for dynamic sensor data segmentation [37]. It is also a 

key indicator of a user’s behavioural changes, which provide 

personalised assistance, e.g. specifying the waiting time for a 

reminder.  

We calculate duration information using all LATs of an 

activity based on the time points at which the first and last 

sensor activations of the LATi are received. Table 3 displays 

the algorithm for calculating the minimum, maximum and 

average duration of a user performing an activity. The 

algorithm is a continuum of the object pattern learning 

algorithm in Table 2. 

TABLE 3. The algorithm for learning activity duration 

Variables Descriptions 

 ts, te the first and last sensor activation times 

Dumin, Dumax, Duave the minimum, maximum and average duration 

// discover the duration information 

28. Set Dumin=initial value,  Dumax,and Du = 0 

29. for ( 1 ≤  i  ≤  | SL(z) | ) // for all LATs of an activity        

30.       if (Dumin > (tei – tsi))  Dumin = (tei – tsi)     

31.       if (Dumax < (tei – tsi))  Dumax = (tei – tsi)        

32.       Du = Du  +(tei – tsi)        

33.       endfor 

34.       Duave = Du / | SL(z) | 

 

C.  Learning activity patterns  

An activity pattern is crucial for providing proactive 

personalized activity assistance. For example, if an assistive 

system knows that a user takes medicine twice a day at 10am 

and 5pm respectively, then it can prompt the user to take 

medicine at these times. Nevertheless, it is difficult to decide 

an activity pattern and starting time as most ADLs could be 

carried out randomly dependent of personal preferences. Even 

with some kind of regularity, ADLs are most likely performed 

within a time period rather than at an exact time point.  

We have developed a 2-stage approach to discover an 

activity pattern and starting time from LATs. In the first stage 

we calculate the daily frequency of occurrence of an activity, 

namely the average number of activity occurrences in a day 

during the period of monitoring. The daily frequency of 

occurrence is used as a criterion to decide if the activity is 

carried out on a regular basis. It can be determined based on 

domain knowledge during the initial LAT modelling. For 

example it could be 1/7, implying that it covers all weekly 

activities. A regular activity does not necessarily support an 

activity pattern. For example, a user makes tea twice a day, 

every day, however, the activity is always carried out at 

different times. This is a regular activity but does not have a 

pattern. 

In the second stage we decide if a regular activity follows an 

activity pattern. To this end we firstly partition the 24 hours of 

a day into a number of fixed-length time slots. For example, if 

the duration of a time slot is 30 minutes, then a day can be 

partitioned into 48 time slots. Secondly, we map the starting 

time of all LATs of an activity into the corresponding time 

slots. Thirdly, we calculate the probabilities of the occurrence 

of the activity within each time slot against the total 

occurrence of the activity. Based on the probability 

distribution of occurrence, and the threshold values of the 

occurrence probabilities, we can infer whether or not there is 

an activity pattern.  

Table 4 displays the algorithm of learning activity patterns, 

which is a continuum of the algorithms in Tables 2 and 3. 

Three inference rules for learning activity patterns have been 
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defined below, which are explained using the example 

depicted in Fig. 3.   

TABLE 4. The algorithm for learning activity patterns 

Variables Descriptions 

folat the daily frequency of occurrence of an activity 

Stime the starting time(s) of an activity 

prob the probability of an activity occurrence in a time 

slot 

probthreshold the threshold values for prob 

tslot the fixed-length duration of a time slot in minutes 

D the duration of activity monitoring in days 

// discover activity patterns and starting time(s) 

35. calculate folat(LAT, LAT SL(z)) = | SL(z) | / D     

36. partition a day into time slots based on tslot 

37. map the ts of all LATs in SL(z) into corresponding time slots 

38. for ( 1 ≤  i  ≤  24x60/ tslot ) // for all time slots     

39.       probi = (number of occurrence in the ith time slot) / |SL(z)|    

40. endfor 

41. // apply the pattern learning rules 

42. if (folat ≤ 1 and  prob at a time slot p  probthreshold )  

43.       LAT is a regular activity with an activity pattern 

44.       Stime =( ) / K, K = number of occurrence in time slot p 

45. else (folat ≤ 1 and  prob at any time slot p ≤ probthreshold ) 

46.       LAT is a random activity, no need to calculate Stime 

47. endif 

48. if (folat =n > 1 and each prob at n time slots probthreshold × (1/n))  

49.       LAT is a regular activity with an activity pattern 

50.       Stime(at the nth occurrence) =( ) / K, K = number of 

occurrence in time slot pi,  i=1, 2…n. 

51. else (folat =n > 1 and all prob at n time slots≤ probthreshold × (1/n)) 

52.       LAT is a random  activity, no need to calculate Stime 

53. Endif 

 

Rule 1: If an activity is a regular activity based on the daily 

frequency of the activity folat(LAT); and folat(LAT) is  n ≤ 1;  

and the occurrence probability of the activity in the p
th

 time 

slot is equal or greater than Probthreshold; then the activity has a 

pattern - it happens once 1/n day(s) in the p
th

 time slot. The 

starting time Stime for the activity pattern can be estimated as 

the average time of the first sensor activation of all LATs 

within the p
th

 time slot. The bath activity in Fig. 3 illustrates 

this case. For example, if folat(bath) = 0.5, Probthreshold = 70%, 

as Prob(bath) =80% > 70%, then it can be inferred that the 

bath activity happens once every two days in the time slot 

starting from 7pm.  

Rule 2: If an activity is a regular activity; and folat(LAT) is  

n >  1; and the occurrence probability for each time slot is 

greater than  Probthreshold × (1/n), i.e. the aggregated occurrence 

probability in the n time slots is greater than Probthreshold; then 

the activity has a pattern - it is performed n times a day within 

the n time slots. The starting time Stime of the n
th

 occurrences 

can be estimated as the average time of the first sensor 

activation of all LATs within the n
th

 time slot. The tea activity 

in Fig. 3 illustrated this case, i.e. it happens three times a day 

in three time slots with the occurrence probability of each 

timeslot being greater than 23.3%.  

Rule 3: If an activity is a regular activity and the occurrence 

of an activity is dispersed evenly among a number of time slots 

k where k is significantly greater than folat(LAT); and the 

occurrence probability in each time slot is significantly less 

than Probthreshold; then the activity is a random activity during a 

day. As such, it makes no sense to infer the starting time of the 

activity. The phone call activity in Fig. 3 illustrates the nature 

of a random activity.      
 

Fig. 3. Making tea, having a bath and making phone call activities, and 

their probability distribution of occurrence over a period of time. 

 

D.  Activity model evolution   

Once a new activity is discovered as described in Section 

IV, it is necessary to decide the location of the activity in the 

hierarchy of the activity ontologies and also an appropriate 

label that should be assigned to the activity. The label should 

be meaningful and compliant with other activities’ labelling 

rationale and also the ontological modeling conventions so that 

it can be easily referred to and understood later. The location 

of a newly discovered activity in the ontological activity 

hierarchy can be recommended through the subsumption 

reasoning of the UAT description. Nevertheless, human 

intervention is required to validate and finalize the position 

and label of an activity model in order to maintain the quality 

of the model. As such, the classification and naming process 

have been carried out manually using the standard practice of 

ontological engineering, i.e. a knowledge engineer encodes the 

new activities and edits the ontologies using an ontology 

editor, e.g. [38].  

Similarly, once a user’s behavioral features, i.e. activity 

profiles, are learnt as described in the previous subsections, the 

activity models should be evolved to reflect the unique manner 

a user performs activities, e.g. for the purpose of personalized 

assistance. Given that a user’s activity profile is equivalent to 

an instance of a generic activity model, i.e. an ontological 

activity class, and for any LAT there is a corresponding 

ontological activity class, activity profile evolution amounts to 

creating a new instance or updating an existing instance. This 

can be undertaken automatically by using the standard APIs of 

the underlying semantic frameworks.  

 

VI. IMPLEMENTATION AND EVALUATION 

In this Section we initially outline the results of ontological 

activity modeling, system implementation and deployment. We 

then describe in detail the experimental design, data collection 

and evaluation for activity and profile learning. Based on the 

evaluation results, we discuss generic issues related to the 

presented approach.   
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A. Modeling, Implementation and Deployment 

To test and evaluate the presented approach we have created 

the seed activity ontologies in Phase I using the Protégé 

ontology editor [38] (Fig. 2), through knowledge engineering 

practice [29]. We have implemented a feature-rich system for 

activity recognition and model learning in Phase II as 

presented in Fig. 4. The system was developed using C#, 

ASP.NET, Ajax and Silverlight for audio and graphical user 

experience and deployed within our smart Lab [2]. The 

creation, management and query of semantic data was handled 

using the SemWeb semantic technologies for C# [39] and 

SPARQL query language. Semantic reasoning was 

implemented using the Euler [40] and Pellet [41] inference 

engines.  

When an actor interacts with objects in sequence in real 

time, sensor activations are continuously fed into the system. 

Sensor data series are dynamically segmented [37] and 

recognition operations are repeatedly performed to carry out 

continuous, progressive activity recognition [31]. As depicted 

in Fig. 4, the system can dynamically display the activated 

sensor sequence, the incrementally recognized activities and 

the system status in real time.   

Fig. 4. The system interface operating in real time mode. In the left-hand side, 

the top panel is used for communication port setup; the middle panel displays 

the sequence of activated objects; and the bottom panel presents progressively 

recognized activities in a tree-like hierarchy. In the right-hand side, the top 

panel contains function buttons for data recording and playback; the bottom 

panel presents a temporal trace of events during the system operation. The 

system can import activity ontologies, specify reasoning and learning 

parameters, select the modality of audio reminder, configure hardware and 

define event priorities and user activity profiles.  

B. Experiment Design and Data Collection 

To systematically test and evaluate activity and profile 

learning in Phase III, eight typical ADLs as presented in Table 

6, were selected for the purposes of experimentation. For each 

activity, the required objects for performing the activity were 

identified and for each of them a contact sensor was attached. 

Each activity was designed to be performed in three different 

ways, leading to three different types of activity specification 

as illustrated in Table 5. The Type 1 activity specification, 

namely TP1 in short, can be viewed as the “standard” way of 

performing a specific activity. The Type 2 activity 

specification has the same set of objects; however, they are 

interacted with in a different order. The Type 3 activity 

specification has a different set of objects as it is intended to 

simulate noise on the sensor data, i.e. a faulty sensor by 

omitting a user-object interaction or a false sensor reading by 

adding an irrelevant object interaction. In addition, in order to 

test the activity learning capability we deliberately remove 

activity models, MakeChocolate and BrushTeeth, two of the 

eight selected activities from the seed activity ontologies.  

TABLE 5. Two examples of activity specifications 

Activity 
Activity Specification  

(sequence of user-object interactions) 

m
ak

eT
ea

 TP1 GetCup, GetTea, PourWater, GetMilk, GetSugar 

TP2 GetCup, PourWater, GetMilk, GetTea, GetSugar 

TP3  GetCup*, GetTea, PourWater, GetMilk, GetSugar 

B
ru

sh
T

ee
th

 TP1 RunSink, GetToothbrush, GetToothpaste, GetMouthwash 

TP2 GetToothbrush, GetToothpaste, RunSink, GetMouthwash 

TP3 
RunSink, GetToothbrush, getSoap**, GetToothpaste, 

GetMouthwash 

* faulty sensors that do not fire; ** false or extra sensor reading; TP-Type.  

 

Three actors took part in the experiments. Each of the 

participants interacted with the objects of each activity of the 

eight activities in accordance with the activity specifications 

for two rounds. This produced a total of 3 (types) x 8 

(activities) x 2 (rounds) x 3 (actors) = 144 action traces. 

Following activity recognition in Phase II the system produced 

100 LATs and 44 UATs as presented in Table 6. 

C. Analysis and Evaluation  

Our evaluation has focused on the performance of learning 

distinct activities from UATs and the performance of 

discovering the dominant object pattern from LATs in activity 

profile learning. This is due to the fact that semantic based 

similarity calculation and classification are the central 

underpinning mechanisms for the presented methods. In 

addition, evaluation of time-related metrics, e.g. duration or 

activity patterns will only make sense if the data are generated 

by real users performing real ADLs over a relatively long 

period of time. This has been proven to be difficult due to 

technical, privacy and ethical issues. Furthermore temporal 

information in these learning methods is mainly used for 

numerical calculation, i.e. the duration, starting time and 

frequencies, which has already been clearly illustrated in 

previous Sections. 
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TABLE 6. Recognition results of the 144 activities 

 
Results and analysis on learning new activities  

 We apply the activity learning algorithm in Table 1 to the 

UAT dataset in Table 6 to learn new activities. Table 7 

displays the activity learning results. The “Ground Truth” 

column presents what actually happened in the experiment 

whereas the “UAT Subset” column lists the classified subsets 

of the 44 UATs. Among six of the modeled activities three of 

them, i.e. WashHands, WatchTV and HaveBath, have been 

fully recognized without generating any UATs, so they are not 

listed in Table 7.  The other three modeled activities, i.e. 

MakeTea, MakePasta and MakeCoffee, have generated four, 

two and two UATs respectively. This is because we randomly 

introduce sensor noise into the Type 3 activity specification, 

the activity traces from TP3 may be recognized or not 

depending on the nature of the noise, thus leading to UATs. 

For the two unmodeled activities, MakeChocolate and 

BrushTeeth, each consists of 18 UATs which are classified into 

7 subsets. One subset has 12 UATs and the other six subsets 

each have one UAT. This is because both Type 1 and Type 2 

activity specifications use the same set of objects, thus leading 

to 12 UATs in one subset. The Type 3 activity specification 

simulates random sensor noise by introducing an irrelevant 

object into the activity, thus leading to 6 different action 

traces. The comparison between the UAT classification results 

and the ground truth proved that the semantic similarity based 

UAT classification is 100% accurate in terms of similarity 

criteria simuat(UATi, UATj) = 1. In the case that the duration of 

observation is available, it is straightforward to follow the 

activity learning algorithm to identify the distinct regular 

activities. 

TABLE 7. The activity discovery results from UATs 

 Ground Truth UAT Subsets SSUi 

Activity Label UAT  LAT  Total 21 subsets, SSU1 - SSU21 

MakeChocolate 18 0 12 in SSU1, 1 in each SSU6-11 

MakeTea 4 14 1 in each SSU18-21 

MakeCoffee 2 16 2 in SSU3 

BrushTeeth 18 0 12 in SSU2, 1 in each SSU12-17 

MakePasta 2 16 1 in each SSU4-5 

    Here SSUi - the ith subset of UATs as defined in Table 1. 

Results and analysis on learning object patterns   

We apply the algorithm in Table 2 to all LATs in Table 6 to 

learn object patterns. Table 8 presents the analysis results for 

three of the six modeled activities. From left to right the first 

and second columns contain the activities and the total number 

of LATs in the corresponding activity. The third column 

displays the unique object patterns among all LATs of the 

activity while the fourth one shows the number of LATs for 

each unique object pattern. The fifth column presents the 

probabilities of occurrence of a unique object pattern. As can 

be viewed from the results, each activity has two major activity 

patterns with a similar percentage of occurrences. In addition, 

a number of patterns are also identified for each activity with 

each pattern having only one LAT. The learning results are in 

line with the ground truth of the experiment. The two major 

activity patterns correspond to the Type 1 and Type 2 activity 

specifications. The occurrence of a number of one-LAT 

patterns in each activity corresponds to the Type 3 activity that 

is performed randomly by introducing random noise, thus no 

sequence of objects are identical. The matching of the analysis 

results with the ground truth of the experiment proves the 

method for learning object patterns is effective.  

TABLE 8. Part of the activity learning results from LATs 

 
 

There are a number of object patterns for each activity in 

Table 8. This is because the activity specifications are 

deliberately designed to contain two major object patterns, i.e. 

Activities Actor1 Actor2 Actor3 Sum 

L/U 
Exp 1 2 1 2 1 2 

M
ak

e 

T
ea

 

TP1 L L L L L L 6/0 

TP2 L L L L U L 5/1 

TP3 L L L U U U 3/3 

B
ru

sh
 

T
ee

th
 TP1 U U U U U U 0/6 

TP2 U U U U U U 0/6 

TP3 U U U U U U 0/6 

M
ak

e 

C
o
ff

ee
 TP1 L L L L L L 6/0 

TP2 L L U L U L 4/2 

TP3 L L L L L L 6/0 

H
av

e 

B
at

h
 TP1 L L L L L L 6/0 

TP2 L L L L L L 6/0 

TP3 L L L L L L 6/0 

W
at

ch
 

T
V

 

TP1 L L L L L L 6/0 

TP2 L L L L L L 6/0 

TP3 L L L L L L 6/0 

M
ak

eC
h

o
c

o
la

te
 

TP1 U U U U U U 0/6 

TP2 U U U U U U 0/6 

TP3 U U U U U U 0/6 

M
ak

e 

P
as

ta
 TP1 L L L L L L 6/0 

TP2 L L L L U L 5/1 

TP3 L L U L L L 5/1 

W
as

h
 

H
an

d
s 

TP1 L L L L L L 6/0 

TP2 L L L L L L 6/0 

TP3 L L L L L L 6/0 

S
u

m
 

L
/U

 

All 

TPs 

18/

6 

18/

6 

16/

8 

17/

7 

14 

/10 

17/

7 

100 

/44 

Here TP - the type of activity, Exp1 and Exp2 - the two rounds of 

experiments respectively, L and U - an LAT and UAT respectively, 

and Sum - the number of L and U for a particular type of activity 

and a particular actor respectively.  

 

Activities 
LAT 

No. 

Unique Object 

Patterns (UOP) 

LAT No. for 

each  UOP 

popx (%) for  

each  UOP 

MakeTea 14 

UOP1 6 42.86 

UOP2 5 35.71 

UOP3 - UOP5 1 7.14 each 

MakePasta 16 

UOP1 6 37.5 

UOP2 5 31.25 

UOP 3 - UOP7 1 6.25 each 

WashHands 18 

UOP1 6 33.33 

UOP2 6 33.33 

UOP3 - UOP9 1 5.55 each 
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Type 1 and Type 2, and a number of random patterns in Type 

3, to test and evaluate various aspects of activity and profile 

learning methods. In a real situation a user may have one 

dominant object pattern or simply perform in a random way. 

Nevertheless, the experiments and analysis results demonstrate 

the learning method and process. For example, if we set the 

threshold of the probability of occurrence of the object pattern 

to 36%, then the unique object pattern for both MakeTea and 

MakePasta will be identified as the dominant object patterns. 

For the WashHands activity there is no object pattern.  

 

General Discussions  

Sensor noise such as faulty sensors, communication and 

processing errors is inevitable in real use scenarios. In our 

experiments we simulate sensor noise in Type 3 activity 

specifications, leading to six occurrences of sensor noise for 

each activity among its eighteen activity occurrences, 

equivalent to 33.33% data accuracy. As can be seen from the 

results in Table 6 sensor noise does not have to affect activity 

recognition, i.e. generating a UAT. It will be up to the nature of 

sensor noise that determines whether or not an action trace 

with sensor noise could be recognised. The impact of sensor 

noise on recognition accuracy has been discussed in [31].   

Sensor noise affects activity and profile learning. The 

analysis results in Table 7 show that the two unmodeled 

activities, MakeChocolate and BrushTeeth each have 18 UATs 

but only 12 of them are classified into one set due to sensor 

noise, equivalent to a 66.67% classification rate, which 

resulted from our simulation of sensor noise for exactly one 

third of activities in the experiments. Nevertheless, the extent 

to which the noise affects the classification rate is dependent 

on the similarity threshold which is used to decide whether or 

not two traces are deemed as similar. For example, our study 

only classifies absolutely similar traces, i.e. simuat(UATi, 

UATj)=1, into a set. If we reduce the similarity threshold, e.g. 

to 0.8, then any traces with simuat(UATi, UATj)≥0.8 will be 

classified to the same set. In this case the classification rate 

(66.67%) and the noise level (33.33%) will both be changed. 

This actually means that two activity traces with one of them 

having sensor noise such as a missing sensor observation or a 

wrong object can still be classified to a set if the other objects 

are the same. Understandably, the lower the level of the 

similarity threshold, e.g. 0.65, the higher level of sensor noise 

which can be accommodated for. From this perspective, our 

approach to activity learning is resilient to a certain level of 

sensor noise. 

Given that the threshold determines how much sensor noise 

can be assimilated by our learning approach, further 

investigation is required to decide an appropriate similarity 

threshold. Nevertheless, current study has shown that our 

approach itself is conceptually and theoretically correct 

without specific limitations. The impact of sensor noise on 

profile learning as depicted in Table 8 can be discussed and 

explained in the same context as above. We shall not elaborate 

here due to limited space.  

Computational performance: In the 3-phase iterative 

process of the hybrid approach to activity model learning, real-

time continuous activity recognition requires high 

computational performance to ensure dynamic on-the-fly 

situation generation and reasoning against the activity models. 

The experiments and evaluation in [31] have shown the 

computational performance for real-time activity recognition is 

satisfactory. Given that activity and profile learning are 

intended to be performed periodically offline and most 

computation in these learning algorithms involve linear time 

complexity with regard to dataset volume, we believe that the 

technical correctness of these learning algorithms is more 

important than their computational performance. As such, our 

experiments and evaluation have focused on technical 

assessment.  

Knowledge-driven versus data-driven: The presented 

hybrid approach combines knowledge-driven manual model 

specification with data-driven automatic model learning. One 

question arising from the study is to what extent models should 

be manually specified in advance. Should we specify as many 

models as possible with few to be learnt or the reverse? 

Relying on manual specification too much will have the 

disadvantages of the knowledge-driven approach. On the other 

hand, relying on automatic model learning too much will have 

the drawbacks of data-driven approaches. While the approach 

allows flexible specification of the initial seed activity models, 

it is an interesting research question to consider how to 

achieve the optimal balance between the two approaches to 

activity modeling. 

Experiences and initial findings from our current studies 

suggest that we should specify as many generic coarse-grained 

activity models as possible as the models at this level of 

abstraction are generic and applicable to all users, thus 

insensitive to low-level special behavior of individual users. 

On the other hand, we should learn as many fine-grained 

activity models as possible as the models at this level of 

abstraction reflect the uniqueness and dynamics of an 

individual user’s behavior. Data-driven activity learning plays 

a more important role in improving activity model accuracy 

and addressing the changing nature of activity models.    

VII. CONCLUSION 

This paper introduced a hybrid approach to creating 

complete, accurate activity models through incremental 

activity discovery and profile learning. We have described a 3-

phase iterative process and discussed the methodology of each 

phase of the lifecycle. While previous work [29] [31] [37] 

reported the details of ontological activity modeling and 

recognition, this paper has presented the details of activity and 

profile learning methods by which activity models can be 

expanded, personalized and adapted. The compelling feature 

of the approach is that it combines the strengths of traditional 

data mining based activity modeling with that of ontology 

based explicit activity modeling, making our approach 
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flexible, applicable and scalable in terms of reusability, rapid 

system development and deployment.  

We have implemented our approach in a feature-rich 

assistive system and conducted systematic controlled 

experiments in a number of well-designed activity scenarios. 

Initial results have demonstrated that the approach and 

algorithms are technically correct, viable and robust. Although 

the experimental dataset is not very large, it is representative 

and serves the purposes well. Our future work will focus on 

testing and evaluating our approach using publicly available 

activity datasets [43] [44] and also considering the exact 

impact of different noise levels on the performance of our 

approach.    

REFERENCES 

[1] M. Chan, D. Estève, C. Escriba and E. Campo, “A review of smart 

homes—Present state and future challenges”, Computer Methods and 

Programs in Biomedicine, vol.91, no.1, pp.55-81, 2008. 

[2] C.D. Nugent, M. Mulvenna, X. Hong and S. Devlin, “Experiences in the 

Development of a Smart Lab”, The International Journal of Biomedical 

Engineering and Technology, vol.2, no.4, pp.319-331, 2009. 

[3] Philipose, M., Fishkin, K.P., Perkowitz, M., Patterson, D.J., Fox, D., 

Kautz, H., Hahnel, D.: Inferring activities from interactions with 

objects. IEEE Pervasive Computing 3(4) (2004) 50-57. 

[4] World Health Organization, International classification of functioning, 

disability and health (ICF), http://www.who.int/classifications/icf/en/  

[5] T. van Kasteren and Ben Krose, “Bayesian activity recognition in 

residence for elders”, In Proc. of the International Conference on 

Intelligent Environments, 2008. 

[6] D. Sanchez, M. Tentori, “Activity recognition for the smart hospital” 

IEEE Intelligent Systems, vol.23, no.2, pp.50-57, 2008. 

[7] K.P. Murphy, “Dynamic Bayesian Networks: Representation, Inference 

and Learning” PhD thesis, UC Berkeley, 2002. 

[8] T.L.M. van Kasteren, G. Englebienne and B.J.A. Kröse, “Hierarchical 

Activity Recognition using Automatically Clustered Actions”, In 

Proceedings of the International Joint Conference on Ambient 

Intelligence, pp.82-91, 2011. 

[9] J. Hoey, T. Ploetz, D. Jackson, P. Olivier, A. Monk and C. Pham, Rapid 

Specification and Automated Generation of Prompting Systems to 

Assist People with Dementia, Pervasive and Mobile Computing, vol.7, 

no.3, pp299-318, 2011. 

[10] M. Brand, N. Oliver and A. Pentland, “Coupled hidden Markov models 

for complex action recognition”, In International Conference on 

Computer Vision and Pattern Recognition, pp.994–999, 1997. 

[11] J.A. Quinn, C.K.I. Williams and N. McIntosh, “Factorial Switching 

Linear Dynamical Systems Applied to Physiological Condition 

Monitoring”, IEEE Transactions on Pattern Analysis and Machine 

Intelligence, vol 31, no 9, pp.1537-1551, 2009. 

[12] L. Bao and S. Intille, “Activity recognition from userannotated 

acceleration data”, In Proc. Pervasive, LNCS3001, pp.1–17, 2004. 

[13] O. Brdiczka, J.L. Crowley and P. Reignier, “Learning situation models 

in a smart home”. IEEE Transactions on Systems, Man and Cybernetics 

- Part B: Cybernetics, 39(1), 2009. 

[14] C. Sutton, A. McCallum and K. Rohanimanesh, “Dynamic Conditional 

Random Fields”, Journal of Machine Learning Research, vol. 8, pp.693-

723, 2007. 

[15] U. Maurer, A. Rowe, A. Smailagic and D. Siewiorek, “Location and 

Activity Recognition using eWatch: A wearable sensor platform”, In 

Ambient Intelligence in Everyday Life, LNCS Vol. 3864, 2006. 

[16] L. Liao, D. Fox and H. Kautz, “Hierarchical Conditional Random Fields 

for GPS-based activity recognition”, In Proc. Of the International 

Symposium of Robotics Research (ISRR), 2005. 

[17] J. Lester, T. Choudhury, N. Kern, G. Borriello and B. Hannaford. A 

hybrid discriminative/generative approach for modeling human 

activities. In Proc. of International conference of artificial intelligence 

(IJCAI), pp.766–772, 2005. 

[18] T.L.M. van Kasteren, G. Englebienne and B.J.A. Kröse, “Transferring 

Knowledge of Activity Recognition across Sensor Networks”, In 

Proceedings of the Eighth International Conference on Pervasive 

Computing (Pervasive2010), pp283-300, 2010.  

[19] P. Rashidi and D. Cook, “Activity knowledge transfer in smart 

environments”, Pervasive and Mobile Computing, special issue on 

activity recognition, 7(3):331-343, 2011. 

[20] H. Hu, Q. Yang, “Transfer learning for activity recognition via sensor 

mapping”, In Proceedings of the Twenty-Second international joint 

conference on Artificial Intelligence (IJCAI'11), pp.1962-1967, 2011. 

[21] D. Cook, K. Feuz, and N. Krishnan, “Transfer learning for activity 

recognition: A survey”, Knowledge and Information Systems, to appear, 

2012. 

[22] M. Perkowitz, M. Philipose, D. J. Patterson, K., Mining models of 

human activities from the web, in Proc. of the 13th International World 

Wide Web Conference (WWW 2004), pp.573-582, 2004. 

[23] E. Munguia Tapia, T. Choudhury, and M. Philipose, "Building Reliable 

Activity Models Using Hierarchical Shrinkage and Mined Ontology," in 

Proceedings of PERVASIVE 2006, pp.17-32, 2006. 

[24] P. Palmes, H.K. Pung, T. Gu, W. Xue and S. Chen, “Object relevance 

weight pattern mining for activity recognition and segmentation”, 

Pervasive and Mobile Computing, vol.6, no.1, pp.43-57, 2010. 

[25] H. Kautz, “A Formal Theory of Plan Recognition and its 

Implementation, Reasoning about Plans”, Allen J., Pelavin R. and 

Tenenberg J. eds., Morgan Kaufmann, pp.69-125, 1991. 

[26] W. Wobke, “Two Logical Theories of Plan Recognition”, Journal of 

Logic Computation”, vol.12, no.3, pp.371-412, 2002. 

[27] B. Bouchard, S. Giroux, “A Smart Home Agent for Plan Recognition of 

Cognitively-impaired Patients”, Journal of Computers, vol.1, no.5, 

pp.53-62, 2006. 

[28] L. Chen, C.D. Nugent, “A Logical Framework for Behaviour Reasoning 

and Assistance in a Smart Home”, International Journal of Assistive 

Robotics and Mechatronics, vol.9, no.4, pp.20-34, 2008. 

[29] L. Chen, C.D. Nugent, “Semantic Data Management for Situation-aware 

Assistance in Ambient Assisted Living”, In the proceedings of the 11th 

International Conference on Information Integration and Web-based 

Applications and Services (iiWAS2009), pp.296-303, 2009.  

[30] X. Hong, C.D. Nugent, “Segmenting sensor data for activity monitoring 

in smart environments”, Personal and Ubiquitous Computing, 

17(3):545-559, 2013. 

[31] L. Chen, C.D. Nugent, H. Wang, “A Knowledge-Driven Approach to 

Activity Recognition in Smart Homes”, IEEE Transactions on 

Knowledge and Data Engineering, vol.24, no.6, pp961-974, 2012. 

[32] J. Ye, G. Stevenson and S. Dobson, “A top-level ontology for smart 

environments. Pervasive and Mobile Computing”, vol.7, no.3, 2011.  

[33] D. Riboni and C. Bettini, "OWL 2 Modeling and Reasoning with 

Complex Human Activities". Journal of Pervasive and Mobile 

Computing, vol.7, no.3, 2011. 

[34] L. Chen, J. Hoey, C.D. Nugent, D. Cook, Z. Yu, “Sensor-Based Activity 

Recognition”, IEEE SMC part C, doi: 10.1109/TSMCC.2012.2198883, 

2012, to appear.  

[35] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Englewood 

Cliffs, N.J.: Prentice Hall, ISBN:0-13-022278-X, 1988. 

[36] I.H. Witten, E. Frank, M.A. Hall, Data Mining: Practical Machine 

Learning Tools and Techniques, 3rd ed., Elsevier, ISBN 978-0-12-

374856-0, 2011.  

[37] G. Okeyo, L. Chen, H. Wang, R. Sterritt, “Dynamic Sensor Data 

Segmentation for Real time Activity Recognition”, Pervasive and 

Mobile Computing, http://dx.doi.org/10.1016/j.pmcj.2012.11.004, in 

press, 2013. 

[38] The Protégé framework, http://protege.stanford.edu 

[39] Semantic Web RDF Library for C#.NET, 

http://razor.occams.info/code/semweb/,  

[40] Euler proof mechanism, www.agfa.com/w3c/euler/ 

[41] Pellet: OWL 2 Reasoner for Java, http://clarkparsia.com/pellet 

[42] F. Baader, D. Calvanese, D. L. McGuinness, “The Description Logic 

Handbook: Theory, Implementation, Applications”, Cambridge 

University Press, ISBN 0-521-78176-0, 2003.  

[43] TLM van Kasteren’s dataset, 

https://sites.google.com/site/tim0306/datasets 

[44] WSU CASAS dataset, http://ailab.wsu.edu/casas/datasets/index.html. 

 

 

 



 14 

Liming Chen is a senior lecturer at the School of Computing and 
Mathematics, University of Ulster, UK. He received his BSc and MSc in 
Computing Engineering from Beijing Institute of Technology, China, and 
DPhil in Artificial Intelligence from De Montfort University, United 
Kingdom. His current research interests include the semantic technologies, 
ontology enabled knowledge management, intelligent agents, 
information/knowledge fusion and reasoning, semantic sensor networking, 
assistive technologies and their applications in smart homes and intelligent 
environments.  
 
Chris D. Nugent is a Professor at the School of Computing and Mathematics, 
University of Ulster, UK. He received a Bachelor of Engineering in Electronic 
Systems and DPhil in Biomedical Engineering both from the University of 
Ulster. He currently holds the position of Professor of Biomedical 
Engineering within the School of Computing and Mathematics at the 
University of Ulster.  His research addresses the themes of Technologies to 
Support Independent Living, Medical Decision Support Systems and the 
development of Internet based healthcare models.   
 

George Okeyo is a PhD research student at the School of Computing and 

Mathematics, University of Ulster, UK. His current research interests include 

the semantic technologies, ontology enabled knowledge management, 

intelligent agents, information/knowledge fusion and reasoning, semantic 

sensor networking, assistive technologies and their applications in smart 

homes and intelligent environments.  

 


