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Abstract 

The interest in the electrodeposition of tungsten-rich binary and ternary alloys has increased 

in recent years due to their unique combination of electrical, tribological, electro-erosion and 

magnetic properties. In this research, a ternary alloy of Cobalt-Tungsten-Phosphorus (Co-W-

P) is electrodeposited using an electrolyte bath with a relatively low pH, and complexing 

agents to stabilize the bath, in order to obtain good quality films that increase the life of the 

substrate. The effect of current density and pH are explored thoroughly to obtain a Co-W-P 

ternary alloy resistant to corrosion. Transverse-sectional views of the electrodeposited 

samples are extracted, and the surface roughness, waviness profile, and Gaussian filter of the 

films are evaluated. The characterisation of the alloy morphology is investigated by a 

fluorescence spectroscopy technique and scanning electron microscopy (SEM). It is shown 

that a current density of 6 mA/cm² and pH of 4.0 are the best running parameters to achieve a 

corrosion resistant film.  
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1. Introduction 

The electrodeposition method is widely used in the surface finishing industry to improve 

surface characteristics. The technique consists of depositing a thin layer of coating onto a 

substrate [1]. This electroplating method presents significant advantages compared to 

welding or plasma deposition chemistry techniques, due to the lower processing temperature, 

better control over the process and thus wider range of composition [2-4]. All coatings 

mainly aim to provide a barrier to the transport of corrosive species to the substrate [5-6]. 

The interest in the electrodeposition of tungsten-rich binary and ternary alloys has increased 

in recent years due to their unique combination of electrical, tribological, electro-erosion and 

magnetic properties [7]. Tungsten-rich alloys show excellent wear resistance in applications 

such as valves, dies, cutting tools, gas turbines and jet engines [8-10]. Tungsten metal cannot 

be electrodeposited in a pure state by aqueous electrolytes themselves, but can be codeposited 

with transition metals from aqueous solutions. The development of a stable bath with a 

relatively low pH and complexing agents for stabilisation are critical to obtaining good 

quality films. Cobalt-Tungsten-Phosphorus (Co-W-P) coating has valuable applications as a 

thin layer on a copper substrate in microelectronic devices, to prevent oxidation [11]. This 

film has useful features such as wear and corrosion resistance and high hardness that provide 

superior and unique properties for use in the sophisticated automobile industry, rockets, space 

technology and micro and nanosystems [12-14]. 

There is much research into the co-production of W-P layers on copper substrates by 

electrodeposition from aqueous solution [15-16]. It is reported that tungsten and phosphorus 

cannot be electro-deposited individually from aqueous electrolyte. Tungsten and phosphorus 

should deposit in aqueous solutions containing iron group metals (Fe, Co, Ni), which is 

referred to as induced co-deposition. Therefore, the effects of dispersion concentration in the 

electrolytic bath on the stability of the various suspensions, as well as the morphology, 

chemical composition, antibacterial activity and structural coatings obtained using an 

electrolytic bath of suspended nanoparticles, are important [17]. 
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The main aim of this research is to improve the corrosion resistance of Co-W-P alloy by 

testing electrodeposition under various operating conditions of current density and pH. 

Experimental factorial design is used to select operational conditions, which has many 

advantages over invariant methods. In this technique, parameters are varied simultaneously 

instead of being set one-to-one as in classical methods, allowing antagonistic interactions and 

the synergy involved in the analysed factors to be seen. In this study the response surface 

methodology (RSM) technique is used to improve and optimise operational parameters. The 

primary objective of RSM is to determine the optimal conditions of operation of a system or 

define an operating region which satisfies the specifications.  

 

2. Methodology 
In this study the electrochemical bath was prepared using reagents with high grade analytical 

purity and deionised water. The electrochemical bath used in alloy electroplating Co-W-P 

consisted of the reagents described in Table 1. The pH of the bath was adjusted by adding 

ammonium hydroxide (NH4OH) and sulphuric acid. The substrate used was a rectangular 

copper plate of surface area 8 cm², which was initially polished with sandpaper of 400, 600 

and 1200 mesh, treated chemically by immersing in 10% NaOH solution to remove any 

residual alkali, and the surface activated in 1% H2SO4. 

Table 1. Electrolytic bath composition  

Reagents Concentration 

Cobalt sulphate (COSO4) 0.1 M 

Saccharin (C7H5NO3S) 2.5 g/L 

Trisodium citrate (Na3C6H5O7) 0.2 M 

Sodium hypophosphite (NaPO2H2) 0.05M 

Sodium tungstate (Na2O4W) 0.01M 

The electrodeposition was conducted in a galvanostat device, which rotated the rectangular 

substrate of copper, which operated as the cathode, and inserted it into a cylindrical platinum 

electrode (the anode). All electrochemical measurements were carried out with a 

Microquimica-MQPG-01 electrochemical system. The electrodeposition was performed 

using the operating parameters described in Figure 1. The bath temperature was maintained at 

23°C ± 2°C. 

 

 
Figure 1. Density and pH variables  



A schematic of the experimental setup for the platinum electrodeposition on titanium is 

shown in Figure 2.  The galvanostat device ran at 20 V and 400 mA in a rectangular flow 

channel with a potentiostat to control the electrode cell. Electrochemical corrosion was 

measured in a conventional three-electrode cell. The linear potentiodynamic polarisation 

technique was used to measure corrosion resistance. High current potentiostat/galvanostat 

PGSTAT 30 was used to feed data to the computer. The working electrode was the copper 

coated substrate alloy Co-W-P, the reference electrode was a saturated calomel, and the 

counter electrode was a platinum spiral wire. All the electrochemical corrosion tests were 

performed in a corrosive medium containing 3.5% NaCl solution at approximately 23°C 

ambient temperature.   

 
Figure 2. Schematic of the experimental setup for platinum electrodeposition on titanium 

The morphology and coating microstructure were analyzed by X-ray fluorescence with a 

Shimadzu EDX-720 spectrometer. A scanning electron microscope, VEGA- 3SBH, was used 

to examine the metal coating structure and the thickness of the surface. With this test, the 

morphology of the deposits and the appearance of cracks and nodules on the surface was 

explored. In an electroplating process, it is expected that the applied current is used entirely 

for the deposition of material. As the reactions occur in parallel with metal deposition, i.e. the 

reduction of hydrogen, in this way, it is difficult to achieve 100% efficiency. The current 

efficiency (CE) is the ratio of the electrochemical equivalent current density for a specific 

reaction to the total applied current density. Current efficiency describes the efficiency with 

which charge (electrons) is transferred within a system, facilitating an electrochemical 

reaction. The efficiency is calculated according to following equation: 

𝐶𝐸 =  
𝑤 × 𝐹

𝐼 × 𝑡
 ∑

𝑐𝑖𝑛𝑖

𝑀𝑖
 ×  100, 

(1) 

where 𝑤 is the measured mass of the deposit (g), which is the difference between the 

substrate before and after electrodeposition; 𝑡 is the deposition time (s); 𝐼 is applied current 

(A); ni is the number of electrons transferred from each metal atom; 𝑀𝑖 is the mass of the 

atomic elements (gmol-1); and 𝐹 is the Faraday constant (96.49 CMol-1).  

In the experiment, response surface methodology (MSR) was used to analyse the influence of 

the independent variables in the variable responses. The plan was to check how the corrosion 

resistance reacted in the interaction of two factors, current and pH density, and also to 

communicate between lower (-1), upper (1) and centre (0) levels. Figure 3 shows the 

ionisation and deposition of the test specimens in potentiostatic mode with a steel substrate. 



Figure 3(a) shows a non-uniform surface with many cracks that occurred due to internal 

tension caused by the high content of cobalt. Figure 3(b) shows a more uniform coating with 

the appearance of small nodules. These appeared because the amount of cobalt decreased 

progressively. The presence of cracks on the surface of the alloys shows a progressive 

corrosion resistance of the substance that changes gradually from Figure 3(a) to 3(b), given 

high resistivity. 

 

  

  
(a) (b) 

Figure 3. Corrosion resistance under the influence of current density chain and pH (a) rough surface finishing, 

(b) good surface finishing 

 

According to the dimensional and geometrical product specifications and verification ISO 

4287, the profile parameters were extracted for the Co-W-P alloy. Analysis of the 

electrochemical measurements took approximately 2.2 hours, long enough to get a stable 

potential to run the measurements for a smooth surface. The Gaussian filter was set to 0.8 

mm; the mean width of the roughness profile elements (RSm) fixed at 1.18 mm; and the root-

mean-square slope of the roughness profile (R∆q) was 77.2°. The peak parameters of the 

roughness profile with the root-mean-square slope of the roughness profile (Rdq) was 86.1° 

at a Gaussian filter of 2.5 mm with peak count on the roughness profile (RPc) of 0.637 L/mm 

at +/-0.5 GL.   

3. Results and discussion 

The results were submitted to non-linear regression analysis to obtain multiple degrees of 

each parameter. Estimates of coefficients with levels higher than 95% (P <0.05) were 

included in the highlighted model [17]. The polarisation resistance (Rp) was represented in 

the form of the independent function factors of a mathematical second order model. The 

analysis of variance data justified the use of a second order model for the statistical study. 

Table 2 shows the statistical evaluation determined by the Fisher test for analysis of variance. 

R² was set at 0.98. 

 

 

 



 

 

 

Table 2. Analysis of variance for corrosion resistance 
Sources Sum Quadrate Degree in Liberty Average Quadrate F P 

(1)j L+Q 1.2×108 2 6.1×107 2.5×104 0.004 

(2) pH L+Q  1.67×107 2 8.67×107 3.67×104 0.003 

Interaction between 1 and 2 1.09×108 4 2.69×107 1.1×104 0.007 

Residual error 2.4×108 1 2.37×107   

Total sum 4.0×108 9    

 

An complexing agent, sodium citrate, was added to the electrodeposited Co-W-P alloy. The 

appropriate concentration of sodium citrate in the bath improved the solubility of metal ions 

and the buffering ability of the bath, consequently giving a deposit with greater adhesion and 

gloss. The effect of current density was explored in the range 2 mA/cm² to 10 mA/cm². This 

current density range was chosen after preliminary tests that observed densities higher than 

10 mA/cm³ and less than 70 mA/cm2, which showed only traces of tungsten in the coating. 

The analysis of the experimental regression data in the group study showed, with a 95% 

confidence level, that density was a significant variable in the process of electrodeposition.  

3.1. Composition and surface morphology  

Table 3 shows the trend in the cobalt sulphate concentration based on the EDX results. With 

a significant cobalt sulphate concentration, there was a decreasing trend in the content of 

phosphorus atoms and a small increase in the tungsten atom. This deposition was induced, 

and phosphorus and tungsten elements were deposited at inverse rates. When more 

phosphorus was deposited less tungsten was, and vice versa. The best cathode efficiency in 

the experiment was shown with lower current corrosion and higher polarisation resistance.  

Table 3 shows the corrosion resistance results, polarisation resistance and current corrosion 

for optimisation of the operating parameters Co-alloy and W-P. Each experimental pattern 

had a total of 8 experiments. 

 
Table 3. Chemical composition and levels of polarisation resistance for current corrosion of Co-W alloy 

obtained by EDX 

j(mA/cm2) pH Co (wght%) W (wght%) P (wght%) E (V) Rp (Ohm) I(A) 

-1(2) -1(4.0) 74.2 2.6 22.5 -0.27 16951.00 2.2×10-7 

-1(2) 0(6.0) 93.9 1.2 5.0 -0.66 5445.10 1.2×10-6 

-1(2) 1(8.0) 92.0 3.2 5.0 -0.67 7751.00 8.90×10-7 

0(6) -1(4.0) 83.0 1.1 15.8 -0.37 18182.00 3.40×10-7 

0(6) 0(6.0) 92.0 3.0 5.2 -0.93 1004.20 4.30×10-6 

1(10) -1(4.0) 91.6 1.2 7.1 -0.90 974.50 9.24×10-6 

1(10) 0(6.0) 91.0 3.4 5.9 -0.80 910.80 6.2×10-6 

1(10) 1(8.0) 90.4 3.9 5.9 -0.77 1718.80 7.60×10-6 

 

Figure 4 shows the behaviours of current density versus pH level. The best corrosion 

resistance was found when the pH level decreased. With a current density between 2 and 6 

mA/cm², higher strength values were obtained. Figure 4(a) shows the extracted profile based 

on ISO 4287 standard with the amplitude parameter roughness profile of the Gaussian filter at 

0.8 mm. Figure 4(b) shows the roughness and waviness profile of a sample cut-off at 2.50 

mm. The maximum peak height of the roughness profile is 0.998 GL, and the maximum 

valley depth of the roughness profile of 1.02 GL, giving the maximum height of the 

roughness profile. Figure 4(c) shows the nanoparticle segmentation of the surface for the  t2
 



method of identifying electrodeposition. Figure 4(d) shows a 3D surface view of the corroded 

part of the electrodeposition at 240 GL. 

 

 

 

 

 

 

(a) (b) 

 
 

(c) (d) 

Figure 4. Co-W-P electrodeposited composite coatings, (a) filtered extracted profile, (b) roughness and waviness 

profile, (c) nanoparticle segmentation of surface, (d) 3D surface view of the corroded part  

 

Figure 5 shows the average power spectrum density (PSD) of the luminance conversion of 

the fine Co-W-P alloy. The zoom factor was x4 for the non-smoothing parameter value with a 

wave length of 20.0 mm, amplitude of 0.447 GL, dominant wave length 2.08 mm and 

maximum amplitude of 52.7 mm, as shown in Figure 5(a). Figure 5(b) shows the 

morphological envelope method of PSD for the fine Co-W-P alloy with a zoom factor of x4 

and a non-smoothing effect spectrum of density to wavelength. The amplitude was 1.21 GL, 

wavelength 10.9 mm, dominant wavelength 20.1 mm and maximum amplitude 4.93 GL, with 

spatial frequency 0.0839 mm-1 and fractal dimension 2.35. Figure 5(c) shows a zoom factor 

x4 for PSD and a tolerance limit of 0.75 GL, which is a good tolerance for a Gaussian filter 

of 0.8 mm profile roughness, amplitude 3787 GL², dominant spatial frequency of 0.942mm-1 

and maximum amplitude of 4742 GL², giving a resultant slope of 0.646 of R² for an equation 

of 1.00.  
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(a) 

 
(b) 

 
(c) 

Figure 5. PSD of luminance conversion of the fine Co-W-P alloy, (a) wavelength area, (b) dominant wavelength 

h, (c) spatial frequency 0.0839 mm-1 

 

 

4. Conclusions 

In this research, a novel coating showed good adhesion and a gloss finish, and a layer with 

more substantial corrosion resistance with a chemical composition of 1.2% tungsten content, 

83.1% cobalt content and 15.7% phosphorus content. Surface methodology and response 

were used as optimisation tools for enhancing Co-W-P alloy electroplating. A new bath 

method without complexing agents was used. An unstable process was achieved and good 

quality Co-W-P alloy films were discovered using an electrochemical bath with a complexing 

agent, with a lower corrosion resistance coating, showing a chemical composition of 3.3% 

tungsten content, 90.9% cobalt content and 5.8%. phosphorus content.  The addition of 

tungsten increasingly improved the corrosion resistance of the content, and affected the 

degree of crystallinity. It was shown that the corrosion resistance increased due to the 

formation of a dense tungsten oxide film on the surface of the material. A density in the lower 

level 2 of 6 mA/cm² and acidity of 4.0 pH was identified as best for electrodeposition of Co-

W-P. Further study of the same method, using the same composition, could be carried out in 

future research to allow for both film and nanostructure electrodeposition. Electrodeposition 

by the potential pulse mode could be used to deposit nanotubes or nanowires using the same 

method. 
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