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Abstract—In the field of Sentiment Analysis, a number of
different classifiers are utilised to attempt to establish the
polarity of a given sentence. As such, there could be a need
for aggregating the outputs of the algorithms involved in
the classification effort. If the output of every classification
algorithm resembles the opinion of an expert in the subject
at hand, we are then in the presence of a group decision-
making problem, which in turn translates into two sub-
problems: (a) defining the desired semantic of the aggrega-
tion of all opinions, and (b) applying the proper aggregation
technique that can achieve the desired semantic chosen in (a).
The objective of this article is twofold. Firstly, we present
two specific aggregation semantics, namely fuzzy-majority
and compensatory, which are based on Induced Ordered
Weighted Averaging and Uninorm operators, respectively.
Secondly, we show the power of these two techniques by
applying them to an existing hybrid method for classification
of sentiments at the sentence level. In this case, the proposed
aggregation solutions act as a complement in order to im-
prove the performance of the aforementioned hybrid method.
In more general terms, the proposed solutions could be
used in the creation of semantic-sensitive ensemble methods,
instead of the more simple ensemble choices available today
in commercial machine learning software offerings.

I. INTRODUCTION

The idea of combining in a sensible manner the output
of a number of machine learning algorithms, instead
of relying on the results provided by the participat-
ing methods in isolation, was brought to the research
community a few years ago. Rokach [10] provide the
following motivation for doing so: “The main idea be-
hind the ensemble methodology is to weigh several
individual classifiers, and combine them in order to
obtain a classifier that outperforms every one of them. In
fact, human being tends to seek several opinions before
making any important decision. We weigh the individual
opinions, and combine them to reach our final decision”
[10]. In an ensemble method for classification purposes
the following building blocks can be identified [10]: (i)
a training set, (ii) a base inducer (forms a classifier

that represents the generalized relationship between the
input attributes and the target attribute), (iii) a diversity
generator (of diverse classifiers), and (iv) a combiner (of
the classifications outputs of the classifiers).

This article focuses on aggregation techniques that
could be used as the combiner component of the outputs
of a number of classification method trained by the same
dataset, or it could simply be the outputs of a mix of
supervised machine learning and lexicon-based methods
in the context of Sentiment Analysis (SA). The two
algorithms proposes are based on the Induced Ordered
Weighted Averaging (IOWA) operator and the Cross-
ratio Uninorm operator.

The rest of this article is organised as follows: Section
II presents some related work; Section III describes the
IOWA operator approach; Section IV addresses the cross-
ratio compensative uninorm approach and its implemen-
tation in the SA problem; Section V presents some exper-
imental results that prove that the proposed aggregation
techniques actually produce expected outputs; Section
VI provides more details on utilising the proposed ap-
proaches in ensemble methods; and finally, Section VII
shares some conclusions and suggests some possible
areas of future research.

II. RELATED WORK

Typically, the importance of the values being fused
is application-dependent and therefore “appropriately
combining the individual argument weights with the
characterizing weights of the operator to obtain opera-
tional weights to be used in the actual aggregation” [19]
is key. In the field os SA, which is relevant to this article,
Perkins [9] propose to use median, voting and arithmetic
mean when aggregating multiple classification results.
In the field of soft-computing, the study of effective
mechanisms for aggregation has also been a central part
of research. In this field, fuzzy sets methods play a key
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role in areas of particular interest for us such as data
fusion and group decision-making. In the latter, the clear
intention is to combine in a meaningful way the opinion
of a number of individuals or methods. In [11] Rudas,
Pap & Fodor show how key information fusion is in
many complex areas like decision making, utility theory,
fuzzy inference systems, robotics and vision.

The work of Peláez et al. [8], on OWA operators in
decision-making aimed to obtaining the opinion of the
majority, is very influential. In [12], Wu and Chiclana
derived the mathematical modelling and representation
of the multiplicative transitivity property to the case
of intuitionistic reciprocal preference relations, using as
a starting point both Zadeh’s extension principle and
the representation theorem of fuzzy sets. Their findings
assist the authors in the building of a novel consistency
based IOWA operator capable of associating a higher
contribution in the aggregated value to the more con-
sistent information. More recently, Yager and Alajlan
[18] addressed the problem of obtaining a consensus
subjective probability distribution from the individual
opinions of a group of agents; while Wu et al. [13]
presented an interesting discussion in the use of uninorm
based aggregation methods for group decision-making
to propagate trust in the specific context of social net-
works.

III. IOWA OPERATORS

Yager’s Ordered Weighted Averaging (OWA) oper-
ator [14] has been proven to be extremely useful in
group/multi-criteria decision making problems because
it allows to implement the concept of fuzzy majority
[17]. Recall that an OWA operator of dimension n is a
function F : Rn −→ R with associated weighting vector
W = (w1, . . . ,wn) to it, verifying wi ∈ [0,1] and ∑

n
i=1 wi = 1,

such that
F(a1, . . . ,an) =

n

∑
i=1

wi ·aσ(i)

where σ : {1, . . . ,n} −→ {1, . . . ,n} is a permutation such
that aσ(i) ≥ aσ(i+1), ∀i = 1, . . . ,n− 1, i.e., aσ(i) is the i-th
highest value in the set {a1, . . . ,an}.

Mitchell and Estrakh in [6] described a modified
OWA operator in which the input arguments are not re-
arranged according to their values but rather using a
function of the arguments. Inspired by this work, Yager
and Filev in [16] defined a more general type of OWA
operator:

Definition 1 (IOWA Operator): An IOWA operator of
dimension n is a mapping I−F : (R×R)n −→ R, which
has an associated set of weights W = (w1, · · · ,wn) to it, so

that wi ∈ [0, 1],
n
∑

i=1
wi = 1,

I−F (〈u1,a1〉, . . . ,〈un,an〉) =
n

∑
i=1

wi ·aσ(i), (1)

and σ : {1, . . . ,n} −→ {1, . . . ,n} is a permutation function
such that uσ(i) ≥ uσ(i+1), ∀i = 1, . . . ,n−1.

In Definition 1, the reordering of the set of values
of the argument variable, {a1, . . . ,an}, is induced by the
reordering of the set of values {u1, . . . ,un} associated
to them, which is based upon their magnitude, and
that is referred to as the order inducing vector [16].
An immediate consequence of definition 1 is that if
the order inducing vector components coincide with the
argument values, then the IOWA operator reduces to
the OWA operator. In fact, the OWA operator as well
as the weighted average (WA) operator are included in
the more general class of IOWA operators, which means
that the IOWA operators allow to take control of the
aggregation stage of any group/multi-criteria decision
making problem in the sense that importance can be
given to the magnitude of the values to be aggregated as
the OWA operators do or to the information sources as
the WA operators do. Thus, the IOWA operator, which
generalised the OWA operator, provides an appropriate
representation of the majority concept in group/multi-
criteria decision making processes as it is shown in the
following subsections.

A. Linguistic Quantifier Guided OWA Operators

In the same way as other fuzzy logic concepts relate
to classical logic, the linguistic quantifier generalises
the idea of quantification of classical logic [21, 22]. In
classical logic there are two types of quantifiers that can
be used in propositions: the universal quantifier (for all)
and the existential quantifier (there exists). According to
Pasi and Yager [7], by using linguistic quantifiers we are
capable of referencing a variable number of elements of
the domain of discourse. This referencing can be done
in a crisp way or in a vague (fuzzy) manner: (a) Crisp:
at least k of the elements, half of the elements, all of the
elements; (b) Vague (fuzzy): most of the elements, some
of the elements, approximately k of the elements.

There are two types of linguistic quantifiers: absolute
and proportional. “Absolute quantifiers such as about
7, almost 6,” are be modelled as fuzzy subsets of R,
while “proportional quantifiers like most, about 70%,”
are modelled as fuzzy subsets of the unit interval,
with membership function Q(x) indicating the degree to
which the amount/proportion x satisfies the concept Q.

In [14], Yager proposed an approach to give some
semantics or meaning to the weights of an OWA op-
erator. This method allowed for applications in the
area of quantifier guided aggregations [17] by deriving
the weights from a functional form of the linguistic
quantifier as follows: let a non-decreasing function Q :
[0,1]→ [0,1] such that Q(0) = 0, Q(1) = 1 be the fuzzy
representation of a proportional monotone quantifier, so
that for a given value x ∈ [0,1], Q(x) is the degree to
which x satisfies the fuzzy concept being represented by



the quantifier, then the elements of the OWA weighting
vector are computed in the following way:

wi = Q
(

i
n

)
−Q

(
i−1

n

)
(2)

Examples of linguistic quantifiers are “at least half”,
“most of” and “as many as possible”, which can be rep-
resented by the following function

Q(r) =


0 if 0≤ r < a
r−a
b−a if a≤ r ≤ b
1 if b < r ≤ 1

(3)

using the values (0,0.5), (0.3,0.8) and (0.5,1) for (a,b),
respectively [4].

B. Fuzzy Majority in Collective Decision Making modelled
with an IOWA Operator

The semantics behind the aggregation being per-
formed is the key to reflecting the concept of a majority.
As such, the two alternatives in terms of OWA semantics
presented by Pasi and Yager [7] are: (a) OWA opera-
tors as an aggregation guided by ‘majority’ linguistic
quantifiers (Subsection III-A), and (b) IOWA operators as
drivers of a majority opinion. The semantics we propose
is (b): using IOWA operators to obtain a majority opinion
using the monotonic non-decreasing linguistic quantifier
most.

The final output of an IOWA operator will reflect in
a closer manner the opinion of the majority if similar
values are closer to each other in the induced vector
[7]. This majority of values that are similar can be
achieved if an IOWA operator has “an inducing ordering
variable which is based on a proximity metric over the
elements to be aggregated.” Thus, what is needed is the
ability to calculate the similarities between the values to
be aggregated to compute “the values of the inducing
variable of the IOWA operator” [7]. Such a function was
defined as a binary support function, Sup, by Yager in
[15] where Supα(a,b) expresses the support from b for a
at an α level of desired tolerance based on the premise of
“the more similar two values are, the more they support
each other” [15]:

Supα(ai,a j) =

{
1 if |ai−a j|< α

0 otherwise
(4)

The higher the tolerance α is, the less it is imposed that
the two values have to be closer to support each other. If
we were to aggregate a set of values and we wanted to
order them in increasing order of support, then for each
value it is computed the sum of its support values with
respect to the rest of values to be aggregated [7]. These
overall supports are utilised as the values of the order
inducing variable which in turn can be used to induce
an ordering based on proximity.

The above is key in utilising IOWA operators to
generate a majority-based aggregation of the values to be

aggregated via a linguistic quantifier Q (most in our case).
Pasi and Yager’s strategy for the construction of the
weighting vector from the induce support values is as
follows:

1) Include in the definition of the overall support for
ai the similarity of the value ai with itself:

ti = si +1 (5)

2) On the basis of the ti values, the weights of the
weighting vector are computed as follow:

wi = Q
( ti

n

)/ n

∑
j=1

Q
( t j

n

)
(6)

“The value Q(ti/n) denotes the degree to which a
given member of the considered set of values rep-
resents the majority” as per the linguistic quantifier
Q.

As such, Eq. (6) is the weights semantic to apply in the
proposed majority aggregation method.

IV. CROSS-RATIO UNINORM

Aggregation operators are usually classified into one
of the following three categories: (i) Conjunctive operators
like the family of t-norm operators, which has the min-
imum operator as its largest element. These operators
behave like a logical “and”; (ii) Disjunctive operators like
the family of t-conorm operators. These operators are the
“dual” of conjunctive operators, and they behave like
a logical “or”. The maximum operator is the smallest
of all t-norms operators; and (iii) Compensative operators
are located between the minimum and the maximum
operators, and consequently are neither conjunctive nor
disjunctive. These type of operators are known as “av-
eraging operator” and they are widely used in multi-
criteria decision making problems. The arithmetic mean,
the weighted mean, the OWA and IOWA operators are
representative examples of this class.

It is worth mention the family of uninorm operators
[20] as it does not belong fully to any of the three
classes described above. Indeed, a uninorm operator, U ,
is defined as a is a mapping U : [0,1]2 −→ [0,1] satisfying
the properties:

1) Commutativity: U(x,y) =U(y,x)
2) Monotonicity: U(x1,y1) ≥ U(x2,y2) if x1 ≥ x2 and

y1 ≥ y2
3) Associativity: U(x,U(y,z)) =U(U(x,y),z)
4) Identity element: ∃ e ∈ [0,1] : ∀ x ∈ [0,1], U(x,e) = x

Uninorm, t-norm and t-conorm operators share the com-
mutativity, associativity and monotonicity properties.
However, the set of uninorm operators has both the set
of t-norm operators and the set of t-conorm operators
as its subsets. Indeed, a uninorm operator with “e = 1”
becomes a t-norm operator; while a uninorm operator
with “e = 0” becomes a t-conorm operator. In general, a
uninorm operator with identity element e∈]0,1[ behaves



like (i) a t-norm operator when all aggregated values are
below e; (ii) a t-conorm operator when all aggregated
values are above e; (iii) a compensative operator other-
wise.

A. Cross-ratio Aggregative Uninorms

Neither t-norm operator nor t-conorm operators al-
low “low” values to be compensated by “high” values
or viceversa. However, as explained above “uninorm
operators may allow values separated by their identity
element to be aggregated in a compensating way” [3].

Yager and Rybalov [20] provided the following repre-
sentation of uninorms in terms of a strictly increasing
continuous function of a single variable φ : [0,1] −→
[−∞,∞] (generator function):

U(x,y) = φ
−1 [φ(x)+φ(y)] ∀x,y ∈ [0,1]2\{(0,1),(1,0)}.

such that φ(0) = −∞, φ(1) = +∞. Chiclana et al. in [2]
proved that the and-like representable uninorm operator
with e= 0.5 and φ(x)= ln x

1−x [5], known as the cross-ratio
uninorm,

U(x,y) =


0, (x,y) ∈ {(0,1),(1,0)}

xy
xy+(1− x)(1− y)

, Otherwise.
(7)

is the solution to the functional equation modelling the
concept of cardinal consistency of reciprocal preference
relations. Fodor [3] extended the cross-ratio uninorm
with the identity element e = 0.5, so the identity element
e can take on any value in ]0,1[:

U(x,y) =


0, (x,y) ∈ {(0,1),(1,0)}

(1− e)xy
(1− e)xy+ e(1− x)(1− y)

, Otherwise.
(8)

Expressions (8) presents the cross-ratio uninorm as an
aggregation operator of two arguments. However, as-
sociativity property allows uninorm operators to fuse
n (> 2) arguments:

U(x1, . . . ,xn) =



0,
if ∃ i, j : (xi,x j) ∈ {(0,1),(1,0)}

(1− e)n−1
∏

n
i=1 xi

(1− e)n−1 ∏
n
i=1 xi + en−1 ∏

n
i=1(1− xi)

,

Otherwise.
(9)

B. Implementation of Cross-ratio Uninorm in the SA problem

Usually, lexicon-based SA methods are supported by a
lexicon containing terms or words capable of conveying
sentiments/opinions, most often terms belonging in the
part-of-speech categories of adjectives, adverbs, verbs
and nouns. Then, when a given document or sentence

is analysed, the polarity values of the words/terms
present in the text are utilised to calculate the associated
semantic orientation, usually positive or negative, and
in some cases, neutral.

There are, however, cases in which a lexicon-based
method in SA cannot produce a classification outcome.
The most common reason for the latter is the absence
of terms in the lexicon that are required to process
a given sentence. In situations like this, one common
approach is to resort to the utilisation of a non lexicon-
based approach; typically, a supervised machine learning
algorithm. Notice that the semantic orientation discrim-
ination between positive, negative or neutral is in accor-
dance with the behaviour of uninorm operators. Thus,
based on the above, we suggest that when a lexicon-
based method, like the so-called HSC/HAC technique
introduced in [1], is unable to derive the polarity of a
sentence then an alternative approach could consist of
implementing a uninorm operator, as described in Sec-
tion IV-A, to aggregate the polarity classification outputs,
{x1,x2, . . . ,xn}, of non-lexicon dependent classification
methods, {m1,m2, . . . ,mn}, respectively. Thus, the result-
ing aggregation would be defined by U(x1,x2, . . . ,xn) =Λ,
where Λ ∈ [0,1] and U is an appropriate cross-ratio
uninorm operator.

Let us assume that the method discussed in [1] is not
capable of producing a classification score for a specific
sentence. In such a situation, we resort to the outputs
of two or more supervised machine learning algorithms,
and combine them together using a cross-ratio uninorm
as an aggregative operator. This way, a lexicon-based
method could utilise this technique as a complement
strategy when its lexicon is not in a position to contribute
to the generation of a classification outcome. Graphically,
the proposed method is depicted in Fig. 1. Notice that
this proposed improvement ensures that our hybrid clas-
sification method (HSC/HAC), as described in [1], will
get enhanced as it will always be in a position to produce
a classification output.

V. EXPERIMENTAL RESULTS

We have performed a number of tests to validate
that the semantics of the proposed operators are indeed
what we intended. We have verified the success of these
proposed operators using as a context the sentiment
analysis (SA) problem at the sentence level, and have
used as well the datasets previously put at work in [1].

A. Cross-ratio Uninorm - Results

In Table I, we show comparative results of the cross-
ratio uninorm aggregation against two methods: (a)
the use of arithmetic mean, and (b) the utilisation
of classification outputs attained by using the word-
frequency dictionary described in [1], which was utilised
as a work-around when the sentiment lexicon did



Fig. 1. Cross-ratio Uninorm Aggregation

not count with the required terms (words) when pro-
cessing sentences. Experiments have been performed
for both the Movie Review Dataset (http://www.cs.
cornell.edu/people/pabo/movie-review-data/) and the
Twitter Dataset Sentiment140 (http://help.sentiment140.
com/for-students).

Method Precision -
Movie DB

Precision -
Twitter DB

Arithmetic Mean 0.5613 0.5723
Word-frequency
Dictionary

0.7042 0.6913

Cross-ratio Uninorm 0.8787 0.8811
TABLE I

RESULTS AMONG METHODS - METHOD VS. PRECISION (MOVIE
DATASET: 500 SENTENCES; TWITTER DATASET: 50 SENTENCES)

The results are very clear, in the sense that the cross-
ratio uninorm consistently delivers much better preci-
sion than the one exhibited by the two other alternatives
used in the comparison process.

B. IOWA Operator driving consensus - Results

We are trying to figure out which method is se-
mantically closer to the opinion of the majority among
the participating methods. The first aggregation method
used for testing was based on the Median Aggregation,
whilst the second one was based on the Arithmetic Mean.
The IOWA operator with the semantic representing the
opinion of the majority (IOWAmost ), is incorporated as
well in a comparative table, Table II.

Notice that the IOWA operator yields the same results
regardless of the tolerance value utilised (α = 0.3, 0.5).
It still produces a result that is representative of what
the majority thinks. What would occur is that the ma-
jority agrees on the polarity of a sentence (positive or
negative), but depending on the tolerance value α, as

Semantic Median Arithmetic
Mean

IOWAmost
α=0.3,0.5

Opinion of
majority

337 388 500

Not opinion
of majority

163 112 0

% of success 67.40 77.60 100.00
TABLE II

MEDIAN, ARITHMETIC MEAN & IOWAmost AGGREGATIONS

presented in the support function, Equation 4, a given
sentence will be given the same polarity label, but a
different intensity value (moderate, very, most, etc.).

VI. USING THE PROPOSED AGGREGATION METHODS IN
ENSEMBLE MODELS

The following is perhaps one of the most accepted
definitions of ensemble methods in the field of machine
learning. Ensemble methods use multiple learning al-
gorithms to achieve a better performance than the one
that could be obtained individually by the constituent
methods algorithms alone [10]. A number of options
have been used as the ‘combining’ mechanism of en-
semble methods. Usually, there are two frameworks
available when it comes to ensemble methods: (a) a
dependent framework, and (b) the independent frame-
work. In the first one, the output of a given classifier
is utilised in the building of the next one, whilst in
the case of independent frameworks, the building of
all classifiers is based on the same dataset -or subsets
of the initial dataset- and the required data is fed to
each classifier, but outputs of all classifiers are com-
bined together by an aggregation mechanism [10]. As
we can see, the combination (aggregation) method is
key in ensemble methods. Among the combining meth-
ods, we find weighting approaches (including majority
voting, performance weighting, distribution summation,
Bayesian combination, order statistics and others) and
meta-combination processes (as the likes of stacking,
arbiter trees, combiner trees, grading, and others). A
complete description of all these combining algorithms
can be consulted in [10]. Majority & weighted voting and
simple & weighted averaging are some popular com-
bining methods that fall into the categories mentioned
above. Given their simplicity in terms of implementation
these aforementioned methods are available amongst
the most utilised commercial software solutions in the
ensemble methods field. Our initial thoughts of finding
semantic-sensitive aggregation methods originated from
the need of creating an alternative solution for a lexicon-
based approach that we introduced in [1]. However, as
we proposed the majority and compensative aggregation
operators described in Section III-B and Section IV-A
respectively, as solutions to be applied to the SA problem
as described in [1], we did realise that these algorithms



could be put at work as well as aggregation (combiner)
components in ensemble methods. So that, the proposed
methods could be utilised specifically in the context
of SA, or they could also be deployed, using rather a
generalisation approach, into solutions that require ag-
gregating the outputs of any-style classification methods.

VII. CONCLUSIONS & FUTURE WORK

In this article we have presented two possible tech-
niques associated to specific aggregation semantics -
compensative and majority- that could be extremely use-
ful if implemented as the combining element in ensemble
classification methods. The obtained results in the SA
field have demonstrated that the aggregation methods
proposed perform better than other solutions that are
commonly used in the commercial software industry.
We certainly believe that when one considers the output
of several classification methods outputs as the opinions
of experts, the semantic introduced for the aggregation
process to be followed is key in both the final results
and their interpretation. As a path forward we will
consider exploring and implementing other operators
with semantics that could be largely applicable to the
industry, among them: (a) the most trusted among the
experts; (b) the least trusted; (c) the values supported by
a by at least half of the experts; (d) the values supported
by less than half of the experts; (e) the opinion of the most
prestigious members of the team of experts.
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