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Abstract 

Communicating building energy performance to building users has been identified as a significant 
opportunity to support behaviour change. This research pursues the concept of continuous, 
automated feedback designed to support motivated building users to learn how their behaviour 
impacts building energy performance. 

Automated energy consumption data collection presents an opportunity to develop approaches for 
continuous feedback systems. However, energy performance is a complex notion and consumption 
data alone are not suitable to convey performance. In order to be of use, performance indicators 
designed specifically for providing feedback to building users must reflect changes in user behaviour 
which may be small relative to total consumption. 

A new building energy performance indicator is proposed based on the concept of continuous 
improvement. The indicator combines the benefits of historic and normative feedback by producing a 
normalised index of improvement or deterioration over time. The indicator is also well suited to 
communicating building energy performance in a user-friendly way. 

The indicator is based on a predictive consumption model fitted to data for a rolling baseline period. 
The scale of the indicator is defined in terms of the variation in baseline model residuals. This allows 
for a direct comparison between buildings on the basis of improvement or deterioration from the 
baseline performance. A direct comparison can be made even between very different buildings. 

A case study of five university buildings is presented. Consumption is predicted at half-hourly 
resolution using a variation of a standard variable degree day model. The indicator is calculated for 
each half hour beyond the initial 365-day baseline period on a rolling basis with a new baseline model 
being calculated each week. 

The indicator reflects even small changes to regular consumption patterns, both persistent and 
transient. Persistent changes are absorbed into the rolling baseline model after a few months. 
Critically the indicator is sensitive enough to detect small changes in consumption patterns and can 
be compared between buildings. As a feedback tool the indicator has the benefit of having a common 
scale and being comparable across buildings. 

Introduction 

In recent years there has been much interest in the use of feedback systems to encourage energy 
behaviour change but very little literature on the design of feedback systems in the non-domestic 
setting. Energy consumption is largely invisible to building users [1] and energy feedback is primarily 
useful because it makes energy “more visible and more amenable to control” [2]. 

The behaviour of building users has an important influence on energy consumption. Very often 
simple, low-cost or zero-cost changes to occupant behaviour can have a significant effect on building 
energy consumption. These so called low-hanging fruit are a great opportunity for motivated building 
users to take meaningful, autonomous action to save energy [3]. However, if a space is comfortable 
and equipment is working, the effects of energy consumption are not obvious to building users. Only 
the services provided by energy are visible, if they are removed (e.g. the space becomes 
uncomfortable or equipment fails) then a user will notice the impact immediately. Information about 
the energy consumption required to deliver these services is usually not available. 

Half-hourly consumption data from automated meter reading (AMR) systems and smart meters are 
becoming ubiquitous in larger public buildings and modern building energy monitoring systems collect 
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data at least every half an hour. These ‘live’ data provides a valuable resource for energy 
management. They can be used to diagnose problems as soon as they occur, to identify opportunities 
to reduce energy wastage and to measure and verify the savings from energy efficiency interventions. 
They can also be used as a means to communicate energy performance to building users and the 
wider population of stakeholders. 

It is desirable to provide feedback systems that enable building users to benefit from these high 
quality datasets and to directly see the impact of their behaviour on energy performance in more or 
less real time. In this work “continuous energy performance feedback systems” are defined as 
continuous information loops in which information about the energy performance of a building in the 
past and present is used to influence present and future energy performance. A feedback system 
allows users to learn the impact of their behaviour and enables them to adjust their behaviour to 
reduce energy consumption. Users can experiment with modifications to their behaviour and see the 
impact of these changes directly and immediately. 

The methodology presented in this paper was developed as part of the EU-funded SMARTSPACES 
project [4]. The SMARTSPACES project is developing ICT-based services at eleven pilot sites across 
Europe, each designed to save energy in public buildings. The methodology presented underpins the 
SMARTSPACES services provided in the Leicester pilot site in the UK [5].  

The Leicester pilot site services are designed as a continuous energy performance feedback system, 
a schematic of this is provided in Figure 1. The main components provided by the system are a 
metering and communications system, a data modelling and analysis system and web-based 
visualisation and user engagement tools. 

The metering and communications system in Leicester has been in place for over a decade providing 
high quality, high resolution (half-hourly) electricity, gas and water consumption data. The final link in 
the feedback loop is user engagement which is delivered primarily via a modern, open source online 
discussion forum. A detailed discussion of these aspects of the system is outside of the scope of this 
paper. 

 

Figure 1: Schematic of data and information flowing in an energy performance feedback loop 

The primary subject of this work is the data treatment components including analysis and 
visualisation. Automated modelling and analysis tools process historical raw data as a way to provide 
context for recent consumption and to extract the most salient information from the available data. 
Another critical and carefully designed component is the web-based user interface which provides 
visualisation tools necessary to deliver useful information directly to the building user in a usable form. 
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Modeling and analysis 

Feedback resolution and timing 

For a continuous energy performance feedback system to be effective, it must provide information at 
a temporal resolution suitable to allow users of the system to distinguish between different 
behaviours. For example, a feedback system that worked on a daily resolution would provide a single 
feedback report representing the entire day. If the user required feedback on overnight energy 
performance then this will be aggregated with daytime performance and difficult to resolve. Similarly, 
feedback provided at weekly resolution would obfuscate the effects of weekly occupancy cycles. In 
this case the system is based on half-hourly data and is designed to provide feedback at this 
resolution. That is, users are provided with information at half-hourly resolution. 

The data collection infrastructure which provides the energy consumption data is configured to 
generate half-hourly data. However, the system only communicates these data at three-hourly 
intervals. As such the information available can be up to three and a half hours out of date. This is a 
critical aspect of any such system. Were data provided less frequently (e.g. once a week or once a 
month) then the users would need to remember what they were doing last week or last month in order 
to map the feedback to their knowledge of activities in the building. More frequent updates provide 
timely feedback and remove this barrier to information flow. In this respect, providing feedback at sub-
daily resolution has a huge advantage. 

Context-free information 

The aim of the smartspaces project is to create a feedback system to provide all building users 
including visitors, staff and energy professionals with usable information. Feedback systems rarely 
provide simple raw consumption figures. Indirect feedback, where the data have been processed in 
some way, is more common [2]. In this paper we describe a somewhat extreme approach to data 
processing. 

For most building users, we must assume that energy is not an important issue. As such it is unlikely 
that users will commit significant time and effort to interpret any feedback provided. Ideally, the 
information delivered should be context-free, requiring as little prior knowledge and interpretation as 
possible. Providing information that requires sophisticated interpretation is a major barrier to 
feedback. Reducing the context improves the flow of information around the feedback loop. For 
example, providing information about energy consumption in units such as kilowatt hours (kWh) is 
meaningless unless the audience is also aware of the context (i.e. what is a kWh). 

There are many examples of attempts to communicate in more familiar units (e.g. “enough energy to 
make x cups of tea”). This is an example of contextualizing the information. In this case the context is 
moved from knowledge of kWh to knowledge of tea. By combining information with its context a 
modified version of the information is produced with a reduced or modified contextual requirement. 
When manipulating data in this way it is important to consider what context an audience will be aware 
of in order to produce a suitable form of information. The audience no longer needs to know what a 
kWh is, but are expected to be familiar with tea. 

In this research a more esoteric context of building energy consumption is explored. Providing 
absolute energy consumption information is reliant on knowledge of how much energy a building 
should be consuming under the current circumstances, which in turn requires knowledge of the 
current circumstances. Without this information, the consumption data alone cannot be easily 
interpreted. Put another way, energy consumption (the dependent variable) depends on 
circumstances such as weather and occupancy (independent variables). To determine whether the 
current consumption is high or low requires knowledge of weather and occupancy and a knowledge of 
how the building typically responds to these variables. 

Contextualizing consumption in this way might involve placing the value within a range of expectation. 
But it is desirable to provide more than simply raw data. We can reduce the complexity of the 
message and provide higher-level information. This can be done by converting consumption to a 
simple message reflecting performance on a scale from good (lower than to be expected under the 
circumstances), through neutral to bad (higher than expected). This context-free information can be 
interpreted without prior knowledge of the building. The remainder of this section describes a method 
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based on a statistical model of historical consumption data for creating a robust indicator of energy 
performance that can be used in a continuous feedback system. 

An instantaneous performance indicator 

Raw consumption data offer little to the casual observer. Time and effort is required to look closely 
and understand the patterns. Figure 2 shows two years of half-hourly electricity and gas consumption 
for four university buildings (outside air temperature is also indicated in red). The data are relatively 
complicated. Several patterns can be observed in the data, consumption varies seasonally with 
temperature affecting heating and availability of natural light affecting demand for artificial lighting. At 
a shorter timescale there are weekly and daily cycles relating to occupancy. 

 

Figure 2: Raw energy consumption data for four buildings (outside air temperature in red) 

It would be very difficult for a user unfamiliar with energy data to extract any useful information from a 
graph of energy data. In any case, as discussed above, energy consumption is not the information we 
want to communicate. Even for an experienced analyst, an assessment of current performance would 
require time and effort to produce. 

To communicate energy performance we need to define it. For the purposes of this paper, “energy 
performance” is defined simply as the absence of energy wastage. The energy consumption of a 
building comprises consumption necessary to deliver useful energy services plus energy wastage. 
Whilst absolute energy performance is difficult to establish from raw consumption data, relative 
performance from one period to another is not so difficult if we make certain assumptions. A historical 
comparison can be a useful proxy for changes in energy wastage. If consumption falls below the 
historical norm then savings can be said to have occurred. Conversely, wastage is indicated by an 
increase in consumption above historical norms. A historical comparison is used as the core measure 
of energy performance or more accurately “energy saving performance”. 
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Energy saving performance 

The International Performance Measurement and Verification Protocol (IPMVP) (EVO 2007) defines a 
methodology for carefully and precisely quantifying change in consumption patterns due to energy 
interventions. In particular the protocol defines a baseline period before the intervention and a test 
period, after the intervention. The baseline is used to establish the pattern of consumption before the 
intervention was implemented. IPMVP can be implemented with simple regression models fitted to 
data collected in a baseline period. The standard model is the variable based degree day model, 
Figure 3 shows this model and several variants. 

 

Figure 3: Common variations of the variable-base degree day model 

A common IPMVP approach is to fit an appropriate model to data collected in a baseline period and to 
use this baseline model to forecast forwards into the test period (the period in which savings are to be 
verified). This is typically done as a one-off calculation where the baseline period is the period 
covering several months before an intervention was implemented and the test period covers several 
months after the implementation. 

 

Figure 4: Example energy saving calculation with baseline model and forecast into test period 

Savings are calculated as the difference between measured consumption in the test period and the 
forecast consumption which provides an estimate of what consumption would have been without the 
intervention. Figure 4 shows an example calculated with weekly data. The chart on the left shows a 
three parameter heating model (the black line) fitted to baseline data (the black crosses). Data from 
the test period are also plotted as dots. The right side of the figure shows the same model and data 
transferred onto the time axis. It can be seen that the data collected in the test period (dots on grey 
background) are above the forecast consumption. This indicates an increase in consumption 
presumably caused by either increased energy wastage or an increased demand for energy services. 
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The same approach can be extended to a continuous monitoring scheme where every half-hourly 
data point is compared to a consumption model fitted to the previous 12-month baseline period. To 
reduce the computational overhead, this can be simplified to a scheme where a model fitted to a 52-
week baseline period is used to forecast one week of half-hourly consumption. Before discussing this 
method in any more detail, it is useful to describe the actual models used in a concrete 
implementation of the scheme. 

A simple, half-hourly consumption model 

In order to model half-hourly consumption patterns it is necessary to extend the consumption models 
described above by taking occupancy into account. At half-hourly resolution the main feature of 
consumption data is the daily and weekly occupancy patterns. Figure 5 shows a single week of data 
for each of the example datasets. Consumption patterns are dominated by the effects of occupancy. 
The occupancy pattern shown is broadly consistent for each building as changes to opening hours 
are rare. This pattern of consumption must be predicted accurately for the scheme to be useful. 

 

Figure 5: A single week of electricity and gas consumption data for the example datasets 

To model this pattern, baseline data are split into 336 subsets, one for each half-hour period in the 
week (i.e. a combination between time of day and day of week, e.g. one subset only contains data 
from Mondays at 09:00). Each subset contains 52 data points. The baseline model is created by fitting 
an independent model to consumption data within each of the subsets. This generates 336 individual 
sub-models. To generate a prediction from a data point in the test period, the appropriate sub-model 
is identified and used to generate the prediction. 
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Figure 6: Three sub-models (Tue 15:00, Wed 03:00 and Sun 03:30) for the example datasets 

Figure 6 shows how the model fits to data from different buildings. Only three periods are shown to 
avoid confusion (the full set of 336 models would be difficult to visualize in this way). The blue line and 
points indicate a weekend overnight period (03:30 on Sundays) when the buildings are expected to be 
unoccupied. In most cases this period is shown to be the lowest consumption period with lower values 
for the model parameters. The green line and points indicate a mid-week overnight period (03:00 on 
Wednesdays) when the buildings are also expected to be unoccupied. In most cases this model is 
very similar to the weekend equivalent but some buildings show systematically higher consumption 
during this time indicating different control strategies and possibly occupant behaviour. The final 
period highlighted in red shows an occupied period (15:00 on Tuesdays) and shows a clear difference 
in model parameters during occupied and unoccupied periods for most buildings. Interestingly, the 
gas consumption shows a far smaller difference. This is likely due to high setback temperatures and 
relatively poor heating control. 

It should be noted at this point that the type of sub-model applied is determined by an intelligent 
algorithm [6] which selects either the constant model or the three-parameter heating model (see 
Figure 3) based on the Bayesian Information Criterion. This allows for a more parsimonious fit to the 
data and helps avoid spurious effects of over-parameterized models. This can be seen in the 
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electricity consumption of building C where a constant model has been chosen for the data from 
Sundays at 03:00. An automated method is necessary when working in a live information system. 

Figure 6 only shows three sub-models for each dataset. To visualize the complete model requires 
some more innovative design work. To create a visualisation, each model was used to generate a 
matrix of predictions covering each of the 336 time periods and a range of temperatures from -5°C to 
+35°C at 0.5°C intervals. This grid of predicted data was then converted into a false colour image. 
The resultant visualisations are shown in Figure 7. 

Figure 7 reveals some interesting features that are not easily visible in the raw data. The model 
represents a simplification of the pattern of consumption in each building. It is clear that there are 
similarities between the buildings in both their electricity consumption pattern and their gas 
consumption pattern. Building C stands out as using electricity both on the weekends and into the 
evenings. This is expected as it is a Library and is occupied almost 24 hours a day, 7 days a week. As 
in Figure 6 we can see a strong correlation between electricity consumption and outside temperature 
in all buildings. This may be due to pumps and fans of the heating systems or may be mostly the 
impact of seasonal availability of natural light.  

During warmer periods electricity consumption maintains a strong correlation with occupancy, this is 
likely to be mainly due to occupants turning on equipment and lighting but also timer controls. Gas 
consumption during warmer periods tends to have a flatter profile though not necessarily at zero 
consumption as some buildings have gas powered hot water (which seems to be independent of 
occupancy). Interestingly, there is electricity consumption later into the evening during colder periods. 
This indicates that the consumption may be due to lighting and that there may be some lighting 
control based on available natural daylight which decreases in a seasonal pattern closely matching 
temperature. If the consumption pattern during warmer periods is a proxy for occupancy (i.e. variation 
above the base-load is the sum of occupants actions) then it may be that lighting in the colder (and 
presumably darker) evenings is serving very few people. 
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Figure 7: Full consumption models visualised for the example datasets 

The model is clearly effective at establishing a realistic pattern of consumption in the baseline period. 
It is also capable of generating a reliable estimate of consumption under given conditions. This is 
simply a matter of identifying the time of week and the outside air temperature for which a prediction is 
required and using the model parameters to produce a predicted value. The following section 
describes how the model was used. 
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Setting up a monitoring regime 

The model described above can be used to estimate savings using a similar approach to that shown 
in Figure 4. It can be fitted to 52-weeks of baseline data and used to forecast one or more points into 
the future using measured outside air temperature and the known time of week for data in the test 
period. A simplistic approach would then be to directly compare the forecast with the actual measured 
consumption. This is a very useful approach for calculating savings but requires some interpretation 
and does not provide a complete picture. The variation in the data around the model (shown for 
example in Figure 6) is in some cases approaching the scale of consumption being predicted. If this is 
not communicated as part of the feedback then there is a real danger of misinterpretation. Absolute 
deviation from the baseline model is not a direct measure of relative energy performance and needs 
to be presented in context. 

For example, in a particular building a deviation of 1kWh during peak occupancy periods may be 
minor and considered well within the normal variability of consumption. The same deviation of 1kWh 
may be drastic and noteworthy during unoccupied periods. Similarly, a 1kWh saving may be 
insignificant in one building but very significant in another. Our aim is to communicate deviation in 
terms of what is normal for a particular building. As discussed above, it is ultimately desirable to 
present energy performance as a context-free normalised scale from 'good' to 'bad'. This would then 
require no special knowledge to interpret the feedback. Such a simple message is likely to be picked 
up by more users, even those with no experience of the building seeing the feedback for the first time. 

 

Figure 8: Example sub-model residuals and zones for example datasets (Wed 03:00) 
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The variability of consumption around the baseline model is seen as scatter in Figure 6. Model 
residuals are defined as the deviation of consumption from the baseline model prediction for each 
data point in the baseline period. Model residuals are recorded for each sub-model, Figure 8 shows 
the residuals for the sub-model fitted to data from 03:00 on Wednesdays. Residuals are presented as 
both a histogram (grey blocks) and a cumulative histogram (black line). The inter-quartile range and 
the ranges from 25

th
 – 10

th
 and 75

th
 – 90

th 
percentiles are also highlighted. 

A context-free indicator 

To calculate our performance indicator, the residual data are used as context for the absolute 
deviation of the test data point. More specifically, the deviation in the test data is converted into a 
percentile value within the population of baseline residuals. That is, the proportion of baseline 
residuals above the test data deviation is determined and this value (which necessarily sits between 0 
and 100%) is used as a normalized measure of performance for each half-hourly data point. 

The performance indicator can be interpreted as follows. A value of zero implies an extreme negative 
deviation from the model greater than any experienced in the baseline period. In other words, 
consumption is further below the model than any of the scatter in Figure 6. A value of 100 implies the 
opposite case where consumption is further above the model than any of the scatter in Figure 6. A 
value of 50 implies a non-remarkable deviation from the model, half of the baseline data deviated in a 
positive direction and half in a negative direction relative to this value. These values are therefore very 
easily converted into an essentially linear scale from ‘good’ (a value of zero) through ‘neutral‘ (a value 
of 50) to ‘bad’ (a value of 100). 

Visualisation 

Direct visualisation of the indicator is described later in this section. First we will consider the 
construction of various composite visualisations which takes the raw energy consumption data and 
place it directly in the context provided by the modelling approach described. By providing data in 
context it is very easy to infer energy performance. 

A further way in which baseline model residuals can be used is to compute useful values to provide 
visual context for the test period data. For example, it is useful to identify the inter-quartile range of 
the residuals as a 'normal' or 'neutral' range of consumption values. Any consumption in the test 
period that falls within this range is ‘normal’ in terms of the baseline data. We can also define a 'bad' 
and a 'good' zone as the 90th - 75th percentile range and 10th - 25th percentile range respectively. To 
calculate these zones is trivial. The zones are shown in Figure 8 extending from the appropriate 
cumulative frequency levels (i.e. percentiles on the left y-axis) and mapping to concrete residual 
values (the x-axis). The mapping is directly related to the cumulative histogram. 

These values can then be added back onto the model to produce a predicted range of consumption. 
The range covers the same percentiles and so will necessarily cover 80% of all consumption data in 
the baseline period with 10% falling above and 10% falling below. By design, 50% of the baseline 
data fall in the neutral yellow zone. The zones calculated for the period at 15:00 on Tuesdays are 
shown in Figure 9 with the original baseline model and data shown for reference. Since the baseline 
period includes 52 weeks we can expect around 5 points to be located above and 5 points below the 
highlighted ranges. 
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Figure 9: Sub-model (Tue 15:00) with percentile bands included for the example datasets 

Taking the first complete week after the baseline (shown in Figure 5) as our test period we can now 
produce a visualisation which includes this contextual information alongside the actual consumption. It 
is a simple matter to compute a prediction and to add the calculated ranges. Figure 10 shows the 
resulting visualisation. 

The coloured zones represent the expected range based on data from the baseline period. The raw 
data can now be easily equated to performance by observing into which of the zones consumption 
falls. In fact, performance relative to the baseline period can be determined very accurately by 
observing how deeply the black line falls into the appropriate zone. High values of the indicator are 
associated with consumption falling deep into the red zone. Low values of the indicator are associated 
with consumption falling deep into the green zone. Values around 50 fall centrally in the yellow zone.  
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Figure 10: One week period with expected zones calculated from baseline model 

This provides a robust visualisation of the model forecast and is an effective way to express the 
meaning of the indicator. The boundaries between zones from green to red correspond exactly to 
indicator values of 10, 25, 75 and 90 respectively. Expressing the derivation of the indicator in this 
way is useful to communicate the nature of the indicator to energy professionals and those building 
users who want more detail. It also serves as a powerful and intuitive diagnostic tool. Small deviations 
become very obvious and the predicted effect of outside air temperature is clearly expressed in the 
modelled zones. 

The indicator itself is highly suitable for visualisation in innovative, interesting ways. The indicator is 
unit-less and ranges linearly from 0 to 100. As such it is possible to map it directly to any set of 
images representing good, neutral and bad performance. This is a major benefit of the context-free 
indicator, no special calibration is necessary. It can also be aggregated, for example by averaging to 
produce values representing daily or weekly periods and it can be compared directly across 
commodities and even merged across datasets to show overall performance.  

Figure 11 includes two example visualisations. The first shows composite visualisation across 
electricity, gas and water consumption for a single building. The indicator is converted to coloured 
smiley faces with low values reflected as happy green faces and high values as sad red faces. 
Intermediate, neutral faces are yellow. The largest face represents an average of the three main 
indicators. Each of these is an average of 48 values covering the latest 24 hours of available data for 
the relevant utility. Underneath the main display is a smaller version of the four faces for each of the 
previous seven days. It is easy to see that performance in all categories has improved over the last 
week and is still being maintained at a good level. The second visualisation shows a comparison 
between buildings where the weekly average indicator is used as a more stable measure of overall 
performance. 
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Figure 11: Screenshots of example visualisations using aggregated performance indicator 

Discussion 

The approach described in this paper produces an indicator of energy performance relative to a 
baseline period. The indicator provides a robust comparison between data in the test period with a 
model fitted to data from a 365-day baseline period. The indicator ranges from 0 to 100 where zero 
indicates lower consumption (and presumably, better performance) than any experienced in the 
baseline period. A value of 100 indicates higher consumption (and presumably poorer performance) 
than any experienced in the baseline period.  

Consumption is compared to the baseline model and the comparison is made with reference to the 
scatter around the model produced by the baseline data. This makes the indicator normalized for 
occupancy patterns and outside air temperature. This normalisation makes the indicator effectively 
context-free and allows it to be easily interpretable with no special knowledge of the building or the 
method. This approach also allows the indicator to detect relatively small increases and decreases in 
consumption against the baseline when the model fits closely to the baseline data. 

When implemented in a continuous energy performance feedback system the indicator tracks 
improvement and deterioration of performance over time. This is ideal for a general purpose, objective 
energy performance feedback system. A simple monitoring scheme would create a baseline model 
with the first 12-months of available data and use this model to compute an indicator for one time-
step. The next time-step would be calculated using a baseline model fitted to the 12-month period 
ending on the previous time-step and this would roll forwards one time-step at a time. 

In practice this is computationally expensive. The computational requirements can be reduced by 
rolling the baseline one week at a time. Far fewer model fitting operations are conducted by using a 
single baseline model instance fitted to 12 months of historical data to forecast values for a full week 
of consumption. This way each week, rather than each half-hour of consumption has its own baseline 
model and the effectiveness of the scheme is not affected. 

The indicator is designed to be sensitive to changes in building base load (the minimum consumption 
during unoccupied periods). By considering each ‘time of week’ independently it is possible to identify 
the variation in the base-load (which is often quite small) and so any reductions or increases in the 
base load are identified easily. The base load is often responsible for a large proportion of total 
consumption. Base load consumption occurs 24 hours a day and so a 1kW reduction in these loads 
represents a greater saving than a similar reduction in occupancy-related loads. A problem identified 
during unoccupied periods may indicate an opportunity to reduce the baseline. 

The indicator provides a very convenient index for visualisation. A normalised value which is 
guaranteed to fall between 0 and 100 can easily be transformed onto any visual scale, in particular 
user-friendly scales which indicate good, neutral or bad performance. Examples of these include 
common metaphors such as traffic lights, thumbs up or down and smiley faces. It can also be 
aggregated over time by taking a simple average of multiple indicators. 

For example the Leicester smartspaces pilot system [5] employs smiley faces to communicate the 
value of the indicator to building users on public screens within the building. Figure 11 shows a 
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screenshot from the system. The electricity, gas and water performance indicators are averaged 
together to produce an overall figure. The screenshot also indicates the average of the latest 24 hours 
of indicators and seven figures for seven complete days. The half-hourly performance indicator allows 
user interface designers great flexibility in what can be presented by simply aggregating indicators 
over time and across datasets. 

The system also has the benefit of being entirely objective. There are no special targets set, the 
indicator can be calculated for any building that responds well to modeling in the way described. In 
principal it would be possible to apply the same methodology and fitting the baseline data to any 
suitable consumption model. The indicator will always respond in the same way, providing a measure 
of improvement or deterioration. 

It is important to recognize trust issues in a feedback system. Simply presenting smiley faces without 
providing a path back to the baseline model and raw data could erode trust in the system. Providing 
more detailed visualisations such as shown in Figure 8, Figure 9 and Figure 10 ensures transparency 
and can help more enthusiastic users understand their building in greater detail. To provide this as 
part of a user interface it is desirable to start with high-level interpretation (e.g. smiley faces 
representing a week) and drill deeper with each click, eventually reaching the most complex 
visualisations. 

A great benefit of the approach is that it can be implemented with minimal input data, commonly 
available via AMR or smart meters. The example datasets include half-hourly energy consumption 
data (gas and electricity, although the approach has also been used with water data) and outside air 
temperature (also half-hourly). With these data and appropriately configured software it is possible to 
implement a complete system. 
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