
The Systematic Construction of

Information Systems

Antonio Cau and Hussein Zedan�

Software Technology Research Laboratory,
SERCentre, De Montfort University,

The Gateway, Leicester LE1 9BH, UK;
E-mail: {hzedan, acau}@strl.dmu.ac.uk

Appeared as Chapter 21 in the book Systems Engineering for Business Process
Change, P. Henderson (ed.), p. 264--278, Springer Verlag

Abstract. Process modelling is a vital issue for communicating with
experts of the application domain. Depending on the roles and respon-
sibilities of the application domain experts involved, process models are
discussed on different levels of abstraction. These may range from de-
tailed regulation for process execution to the interrelation of basic core
processes on a strategic level. To ensure consistency and to allow for a
flexible integration of process information on different levels of abstrac-
tion, we introduce a transformational calculus that allows the incremen-
tal addition to and refinement of the information in a process model,
while maintaining the validity of more abstract high level processes. A
complete formal treatment of model and the calculus is given and is
illustrated on a small banking example.

Keywords: Process Model, Refinement, Information Systems Engineering

1 Introduction

The academic discipline of Information System development is still in a ‘prepara-
digmatic phase’. There is no central corpus of a well understood and accepted
theory of how these artifacts should be understood and designed. What we see
is a set of scattered methods and theories, with influences from a wide variety of
other well established disciplines, such as logic, linguistics, philosophy, cognitive
psychology, organisational theory, ethnography, etc. There is a practical need
for creating a deeper understanding of how different theories and methods are
related to each other and when they are applicable.

Within the communities of both Software Engineering and Information Sys-
tem Engineering (ISE), process modelling is considered as a key issue. In par-
ticular, ISE has made a basic assumption that an IS is supposed to capture
� The author wishes to acknowledge the funding received from the U.K. Engineer-

ing and Physical Sciences Research Council (EPSRC) through the Research Grant
GR/M/02583

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by De Montfort University Open Research Archive

https://core.ac.uk/display/228196445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

some excerpt of world history. Thus focusing on modelling: capturing informa-
tion about the world. For example, in [LZ92] an IS is viewed as a ‘model of some
slice of reality of an organisation’ and that IS development is regarded as a prob-
lem of models construction and description. This has caused the introduction of
a large variety of models and especially conceptual models by which an IS can
be modelled in a high level of conceptual terms.

Further, in software engineering, approaches to requirement engineering also
involve a detailed modelling of different aspects such as system structure, data
or behaviour.

These models are seen as essential means of communication between sys-
tem developers and expert users and are constructed as part of two major de-
velopment activities, namely Requirement and Design Engineering (see Fig. 1)
and corresponds to the abstraction levels defined in the ANSI/X3/SPARC re-
port [ANS77], namely the conceptual and internal level.

User

Requirements

SPECIFICATION

(Conceptual Modelling)

Implemented

System

Requirement

Engineering

Design Engineering

Refinement

A Process

Fig. 1. IS Global Activities

In the Requirement Engineering stage, a designer’s goal is to acquire knowl-
edge about the application domain and is guided by the information needed
from the users. The end result is an abstraction of a conceptual definition of (the
future) IS (technical specification). The processes by which such a conceptual def-
inition is arrived at are largely ad hoc in nature. In the design engineering phase,
the conceptual schema is used as a starting point and leads to the implemented
system.

As the quality of technical (requirement) specifications is a decisive factor for
the quality and correction cost of the implemented system [Dav93], much effort is
usually spent on system modelling in the early stage of software development pro-
cess. However, the models developed quite often only aim at providing the system
developer with a better understanding of the system to be developed, rather than
producing a set of unambiguous, consistent and semantically integrated docu-
ments which support (at least) half-automated derivation of subsequent results

2

in the developed process, such as design or implementation documents. There-
fore the high effort spent on modelling is often not used effectively. Thus, in
order to support system development in an optimal way, description techniques
for models of specific system views must be intuitively understandable and must
be precise enough to ensure unambiguous and consistent description of the sys-
tem. This implies that a precise definition of its semantics should be available
for each description language that is employed for system modelling. In addition
a unified (or, at least, a linking theory [Hoa96,HH98]) semantics common to all
description techniques has to be defined which allows a precise definition of the
interdependencies between the different models and system views.

Furthermore, transformation rules should be provided which allow the trans-
lation of information from one modelling notation to another. For example,
business process models could be transformed into corresponding interaction
diagrams, state machines or code. Of course these transformation rules must be
sound with respect to the underlying semantics domain.

When modelling real world systems, even model diagrams that focus on just
one system aspect (such as data or behaviour) tend to get very large, complex
and thus difficult to handle. A common approach to reduce this complexity
is the decomposition of the model into separate parts. Usually these parts are
interrelated. Therefor, analogous to the transformation rules mentioned above,
which relate different modelling notations, techniques must be established that
relate different models within a single notation.

In this paper, we discuss transformation rules within a notation for process
modelling, focusing on refinement as a special and widely used transformation
within a single formalism (namely, Interval Temporal Logic (ITL)). Refinement
denotes the addition of more detailed information, possibly one more detail level,
while ‘preserving’ the original information. By preserving, we mean that it is pos-
sibly strengthened, but never violated. This explicitly excludes changes made at
lower level where higher level properties are violated. In [ZCM99] we introduced
our formal notation and showed how it could be used in modelling, analysing
and proving properties about an IS in a compositional manner. In addition, we
illustrated how such a model could be executed using an executable subset of the
formalism. In this paper we concentrate on the derivation of a sound refinement
theory together with its algebraic properties and show how such a theory is used
in the systematic construction of an IS. To this extend the work presented here
is within the Design Engineering phase shown in Fig. 1.

As process modelling is achieved through step by step development, refine-
ment rules exhibit their power through the possibility of combining them to
support more complex development within the Requirement Engineering phase.
In [CZC99,ZCC99,CCZ99], we have reported some initial and promising results
towards this goal.

1.1 Paper Organisation

In Section 2, a background on process modelling techniques is given. In Sec-
tion 3 we introduce our computational model and its underlying formal logic,

3

i.e., Interval Temporal Logic (ITL). In Section 4 we presents our refinement the-
ory with its algebraic properties. A small banking example is given in Section 5.
This shows how a formal specification is refined into concrete realisation through
correctness preserving refinement steps.

2 Background

Requirement specification techniques have been mainly concerned with represen-
tation notations for describing an IS. However the emphasis on system modelling
have been shifting to process modelling. The term process is heavily used in dif-
ferent contexts but has most often been used by Software Engineers and ISE’s
to mean a set of partially ordered steps intended to reach a goal. A process step
is an atomic action of a process that has no externally visible substructure.

According to the classification given in [Dow88] there exist three classes of
process modelling. activity-, product- and decision-oriented models.

Activity-oriented modelling originated from an analogy with problem solving
techniques (finding and executing a plan of actions leading to a solution). These
models are sequential in nature and provide a frame for manual management of
projects developed in a linear fashion. Such a linear view of the design process
is inadequate for methodologies which support parallel engineering activities.
The limitation of activity-oriented development approaches comes from their
representation of development process like programs which do not reflect the
interactive nature of IS development.

The product-oriented process modelling represent the development through
the evolution of the product. They promote a view of development processes
which is still centred around the notion of development activity but present the
advantage to link development activities to their output: the product. View-
Points [FKG90] belong to this category.

A recent class of process modelling is that which is based on the decision-
oriented paradigm. In this technique, the successive transformations of the prod-
uct are looked upon as a consequence of decisions. The process model of the DI-
ADA project [MSV92,RJG+92] and that of [Pot89] fall into this category. These
models are semantically more powerful than the previous ones as they explain
not only how the process proceeds but also why the transformations take place.

The last approach seems to be partially adequate specially when considering
a highly non-deterministic reactive IS.

Considering this classification, we can say that a step correspond to an activ-
ity in the activity-based models, to a product transformation in product-based
models and a decision in decision-based models. In addition, Rolland [Rol93]
presented a contextual approach in which a process step is viewed as a context
handling activity and that a process is a sequence of dependent steps. In this
approach the notion of situation is made explicit and related to the broader
question of context handling. In addition, Speach Act Theory [Sea79] has also
been utilised in enterprise modelling [NGj92] as it is believed that it can improve

4

traditional process and activity models since it introduces a richer terminology
in how people use information.

The approaches described above lack a precise definition of their semantics so
that inconsistencies are very hard to detect. In addition some of the techniques
employ a combination of various models with no clear semantics of any and
no provision of transformation calculus that preserve correctness between the
various constituent models. Notable examples are those used in enterprise mod-
elling [NGj92]. In [RT98] a business process modelling technique was presented
in which a precise definition to ‘business processes’ and ‘process net’ (based on
Broy’s stream functions) were explored. Transformation rules were also discussed.
However their approach is not suitable for describing the dynamic behaviour of
an IS.

3 Interval Temporal Logic

This section introduces the syntax and informal semantics of Interval Tempo-
ral Logic (ITL). Our selection of ITL is based on a number of points. It is a
flexible notation for both propositional and first-order reasoning about periods
of time found in descriptions of hardware and software systems. Unlike most
temporal logics, ITL can handle both sequential and parallel composition and
offers powerful and extensible specification and proof techniques for reasoning
about properties involving safety, liveness and projected time [Mos94]. Timing
constraints are expressible and furthermore most imperative programming con-
structs can be viewed as formulas in a slightly modified version of ITL [CZ97].
Tempura provides an executable framework for developing and experimenting
with suitable ITL specifications. In addition, ITL and its mature executable
subset Tempura [Mos86] have been extensively used to specify the properties of
real-time systems where the primitive circuits can directly be represented by a
set of simple temporal formulae.

Expressions e ::= µ | a | A | g(e1, . . . , en) | ıa: f
Formulae f ::= p(e1, . . . , en) | ¬f | f1 ∧ f2 | ∀v � f | skip | f1 ; f2 | f∗

Fig. 2. Syntax of ITL

An interval is considered to be a (in)finite sequence of states, where a state
is a mapping from variables to their values. The length of an interval is equal to
one less than the number of states in the interval (i.e., a one state interval has
length 0).

The syntax of ITL is defined in Fig. 2 where µ is an integer value, a is a static
variable (doesn’t change within an interval), A is a state variable (can change

5

within an interval), v a static or state variable, g is a function symbol and p is
a predicate symbol.

The informal semantics of the most interesting constructs are as follows:

– ıa: f : the value of a such that f holds.
– skip: unit interval (length 1).
– f1 ;f2: holds if the interval can be decomposed (“chopped”) into a prefix and

suffix interval, such that f1 holds over the prefix and f2 over the suffix, or if
the interval is infinite and f1 holds for that interval.

– f∗: holds if the interval is decomposable into a finite number of intervals
such that for each of them f holds, or the interval is infinite and can be
decomposed into an infinite number of finite intervals for which f holds.

3.1 Few examples

In an interval:

– the CustomerAccount at some time equals 100 pounds and at some later
time equals 2 pounds can be expressed as:

�[(CustomerAccount = 100) ∧ �(CustomerAccount = 200)]

– if MyAccount always equals 10 pounds and in the next state HisAccount
equals 20 pounds then it follows that the sum of MyAccount and HisAccount
equals 30 pounds in the next state. This is expressed as:

[(MyAccount = 10) ∧ ©(HisAccount = 20)]
⊃ ©(MyAccount + HisAccount = 30)

3.2 Abbreviations

In Fig 3 some frequently used abbreviations are listed. These constructs enable
us to define programming constructs like assignment, if then else, while loops
etc as in Fig. 4.

6

true value true =̂ 0 = 0
false value false =̂ ¬true
or f1 ∨ f2 =̂ ¬(¬f1 ∧ ¬f2)
implies f1 ⊃ f2 =̂ ¬f1 ∨ f2

equivalent f1 ≡ f2 =̂ (f1 ⊃ f2) ∧ (f2 ⊃ f1)
exists ∃v � f =̂ ¬∀v � ¬f
next ©f =̂ skip ; f
non-empty interval more =̂ ©true
empty interval empty =̂ ¬more
infinite interval inf =̂ true ; false
finite interval finite =̂ ¬inf
sometimes �f =̂ finite ; f
always �f =̂ ¬�¬f
some subinterval �a f =̂ finite ; f ; true
all subintervals �a f =̂ ¬(�a ¬f)
all unit subintervals keep f =̂ �a (skip ⊃ f)
0-chopstar f0 =̂ empty
(n + 1)-chopstar fn+1 =̂ f ; fn

Fig. 3. Frequently used abbreviations

if then else if f0 then f1 else f2 =̂ (f0 ∧ f1) ∨ (¬f0 ∧ f2)
final state fin f =̂ �(empty ⊃ f)
terminate interval when halt f =̂ �(empty ≡ f)
parallel composition f1 ‖ f2 =̂ f1 ∧ f2

while loop while f0 do f1 =̂ (f0 ∧ f1)
∗ ∧ fin ¬f0

repeat loop repeat f0 until f1 =̂ f0 ; (while ¬f1 do f0)
next value ©e =̂ ıa: ©(e = a)
end value fin e =̂ ıa:fin(e = a)
assignment A := e =̂ ©A = e
framed Assignment A(c : i := e) =̂

∧
j∈c,j �=i

stable Aj ∧ Ai := e

equal in interval e1 ≈ e2 =̂ �(e1 = e2)
temporal assignment e1 ← e2 =̂ finite ∧ (fin e1) = e2

gets e1 gets e2 =̂ keep(e1 ← e2)
stability stable e =̂ e gets e

stable array stablec A =̂
∧

j∈c
stable Aj

padded expression padded e =̂ (stable(e) ; skip) ∨ empty
padded temporal assign. e1 <∼ e2 =̂ (e1 ← e2) ∧ padded e1

interval length n intlen(n) =̂ (skip)n

interval length len =̂ ıa: intlen(a)

Fig. 4. Concrete constructs

7

4 Refinement

Program refinement is a programming methodology in which a formal descrip-
tion of what the program should do (ie, specification) is gradually refined into an
executable program that satisfies the specification. There are two uses for refine-
ment. First, it is a methodology for the construction of correct programs. Second,
refinement can form a basis of a framework in which programming knowledge
can be presented (as a collection of refinements). In this section we concentrate
on the former within our logical framework and explore some of its algebraic
properties.

We begin by defining refinement ordering relation � in the normal way as:

f0 � f1 =̂ f1 ⊃ f0

The refinement calculus was first developed by Back [Bac88] to provide a formal
framework for stepwise refinement of sequential programs. It extends Dijkstra’s
weakest precondition semantics for total correctness of programs with a relation
of refinement between program statements. This relation is defined in terms of
the weakest preconditions of statements, and expresses the requirement that a
refinement must preserve total correctness of the statement being refined. The
refinement calculus was extended to provide a framework for total correctness
for parallel systems in [BW90,Bac89]. Morgan’s work [Mor90] provides a good
overview of how to apply the refinement calculus in practical program deriva-
tions.

4.1 Basic rules

The following are some basic refinement rules:1

(� −1) � (f0 � f1) and � (f1 � f2) ⇒ � (f0 � f2)
(� −2) � (f0 � f1) and � (f2 � f3) ⇒ � (f0 ∧ f2) � (f1 ∧ f3)
(� −3) � (f0 � f1) and � (f2 � f3) ⇒ � (f0 ∨ f2) � (f1 ∨ f3)
(� −4) � f1 � f2 ⇒ � f0 ; f1 � f0 ; f2

(� −5) � f1 � f2 ⇒ � f1 ; f0 � f2 ; f0

(� −6) � f0 � f1 ⇒ � f∗
0 � f∗

1

(� −7) � f0 � f1 ⇒ � ∀v � f0 � ∀v � f1

Assignment:

– The assignment is introduced with the following law

(:= −1) A := e ≡ ©A = e

– The framed assignment is introduced with the following law

(:= −2) A(c : i := e) ≡ ∧
j∈c,j �=i stableAj ∧ Ai := e

1 The soundness of these rules are straightforward from the definition of the refinement
relation and hence are omitted

8

If then–conditional:

– The conditional is introduced with the following law

(if −1) if f0 then f1 else f2 ≡ (f0 ∧ f1) ∨ (¬f0 ∧ f2)

– The following two laws describe how conditional makes a choice between its
arguments.

(if −2) if true then f1 else f2 ≡ f1

(if −3) if false then f1 else f2 ≡ f2

Chop–sequential composition:

– The following rules describes the characteristics of ‘;’.
‘;’ has empty as a unit and is associative

(; − 1) empty ; f ≡ f ≡ f ; empty
(; − 2) (f1 ; f2) ; f3 ≡ f1 ; (f2 ; f3)

– The chop operator distributes over nondeterministic choice and conditional

(; − 3) f1 ; (f2 ∨ f3) ; f4 ≡ (f1 ; f2 ; f4) ∨ (f1 ; f3 ; f4)
(; − 4) (if f0 then f1 else f2) ; f3 ≡ if f0 then (f1 ; f3) else (f2 ; f3)

While/Repeat loop:

– The following law introduces the while loop

(while −1) while f0 do f1 ≡ (f0 ∧ f1)∗ ∧ fin ¬f0

(repeat−1) repeat f0 until f1 ≡ f0 ; ((¬f1 ∧ f0)∗ ∧ fin f1)

– The following law is for the introduction of a non-terminating loop

(while −2) while true do f1 ≡ f∗
1

Parallel:

– The following are some laws for the parallel agent.

(‖ −1) f ‖ true ≡ f
(‖ −2) f0 ‖ f1 ≡ f1 ‖ f0

(‖ −3) (f0 ‖ f1) ‖ f2 ≡ f0 ‖ (f1 ‖ f2)

Variable introduction:

– The following is the local variable introduction law.

(var−1) var x in f ≡ ∃x � f

5 Application

This section discusses a bank application. The informal specification is as follows:

A customer at a bank is allowed to request money from his/her account.
There is, however, no overdraft facility.

9

5.1 Specification and refinement

We will implement above informal specification by a cashier. We therefore intro-
duce the following definitions:

– Let c denote the set of customers that have an account at the bank. Note:
since c is static variable the set of customers in this example doesn’t change.
This is only for simplicity reasons.

– Let Cu denote a customer.
– Let M denote the amount of money that a customer requests.
– Let Ai denote the account of customer i.

The initial specification is as follows:

cashier0 =̂ ∃c, M, Cu, {Ai : i ∈ c} � (
init ∧ (1)
(process customer)∗ (2)

)

where

(1) init:

M = −1 ∧ Cu = 0

The initial values of M and Cu. Note: 0
∈ {Ai : i ∈ c} and 0
∈ c. So when
Cu = 0 we are waiting for a customer to arrive.

cashier0 can be refined using rules (var−1) and (while −2) and some ITL calcu-
lus. into

cashier1 =̂ var c, M, Cu, {Ai : i ∈ c} in (
init;
while true do process customer

)

Now we continue with specification and refinement of process customer

(2) process customer:

wait for customer; (2.1)
(not customer of bank ∨ (2.2)
customer of bank (2.3)

)

Each subspecification is detailed below:

(2.1) wait for customer:

stablec A ∧ stableM ∧ stableCu

We are waiting for a customer, so the state of the system doesn’t change.

10

(2.2) not customer of bank:

stablec A ∧ stableM ∧ Cu
∈ c ∧ Cu
= 0

A customer arrives but has no account at the bank.

(2.3) customer of bank:

stablec A ∧ stableM ∧ Cu ∈ c

A customer arrives, who has an account at the bank.

Using rules (repeat−1) and (if −1) and some ITL calculus process customer can
be refined into

repeat(
skip ∧ stablec A ∧ stableM

)
untilCu
= 0;
if Cu
∈ c then empty
else customer of bank

We continue with the specification and refinement of customer of bank.

(2.3) customer of bank:

(finite ∧ customer requests too much money∗); (2.3.1)
customer requests valid amount; (2.3.2)
debit customer account; (2.3.3)
customer gets money and leaves (2.3.4)

Note: (2.3.1) contains finite to specify that after finite number of wrong
requests the customer makes a valid request. This ensures that the cashier
can’t be blocked by a customer who makes only invalid money requests.

Each subspecification is detailed below:

(2.3.1) customer requests too much money:

stablec A ∧ stableCu ∧ M ≥ 0 ∧ M > ACu

The customer requests an amount of money that exceeds his/her account.

(2.3.2) customer requests valid amount:

stablec A ∧ stableCu ∧ M ≥ 0 ∧ M ≤ ACu

The customer requests a valid amount of money.

(2.3.3) debit customer account:

stablec−{Cu} A ∧ ACu <∼ ACu − M ∧ stableM ∧ stableCu

We update the account details of the customer.

11

(2.3.4) customer gets money and leaves:

stablec A ∧ M <∼ −1 ∧ Cu <∼ 0

The customer receives the requested money and leaves, i.e., Cu and M are
reset to their initial values.

Using rules (repeat−1), (:= −1) and (:= −2) and some ITL calculus
customer of bank can be refined into

repeat(

skip ∧ stablec A ∧ stableCu

)
until (M ≥ 0 ∧ M ≤ ACu);
(skip ∧ stableCu ∧ stableM ∧ A(c : Cu := ACu − M));

(skip ∧ stablec A ∧ M := −1 ∧ Cu := 0)

Using the basic refinement rules the final ‘concrete’ specification is now as fol-
lows:

var c, M, Cu, {Ai : i ∈ c} in
init;
while true do (
repeat(
skip ∧ stablec A ∧ stableM

)
untilCu
= 0;
if Cu
∈ c then empty
else (
repeat(
skip ∧ stablec A ∧ stable Cu

)
until (M ≥ 0 ∧ M ≤ ACu);
(skip ∧ stable Cu ∧ stableM ∧ A(c : Cu := ACu − M));
(skip ∧ stablec A ∧ M := −1 ∧ Cu := 0)

)
)

Above ‘concrete’ specification is an implementation of a cashier at a bank. An-
other one (given below) is that of an automatic teller machine. Here the process

12

of finding out that a customer has an account at the bank is bit more complicated
involving a card and a pin number but the principle is the same.

var c, M, Cu, {Cardj : j ∈ ac}, {Pini, Ai : i ∈ c} in
atm init;
while true do (
while atm non empty do (
wait customer;
read card;
if card disabled then take disabled card
else (
get pin;
if max pin then (
disable card;
take disabled card
)

else (
if pin exit then take card pin exit
else (
request money;
if money exit then take card money exit
else (
debit account;
take card money

)
)

)
)

);
refill atm

)

5.2 Properties

Various properties can be formulated and proved correct using the ITL axiomatic
system together with its compositional proof rules. In this section we formulate
some interesting safety (a bad thing never happens) and liveness (a good thing
will happen) properties.

– �(M
= −1 ⊃ Cu ∈ c)
Only a customer of the bank can request money, i.e., a safety property.

– �(
∧

i∈c Ai ≥ 0)
There is no overdraft facility for customers at the bank, i.e., a safety property.

– �(Cu ∈ c ⊃ �(M ≥ 0 ∧ M ≤ ACu))
The customer at the bank makes eventually a valid request, i.e., a liveness
property.

13

6 Conclusion

The construction of Information Systems is hard! This difficulty arises, as in
many engineering and business disciplines, from the need to understand better
the early phases of their process modelling, and to maintain this information
across traditional technical and organisational boundaries. The context in which
the system vision has to be established is complex and continually changing.
Establishing a vision in context remains an empty phrase unless we fully under-
stand what parts of the world are relevant and, most importantly, how they are
related to the development process. An open and basic formulation such as the
‘rich pictures’ of soft systems methodology is not enough. A major difficulty with
such a method is the lack of precise semantic description. Such a precise under-
pinning allows proper formal analysis and verification of systems. The definition
of the description techniques as well as the relationships between the different
description levels of a method is often given informally. This indeed raises ambi-
guity, semantic inter-operability and vague interpretation of the semantics of the
used modelling concepts. Issues of consistency and completeness at even a single
description level can only be tackled informally. As a consequence CASE-Tools
often do not cause the expected gain in productivity: The information which can
be acquired by the use of methods is, because of the deficient semantic founda-
tion of the methods, not very evident. As a result, the functionality of most tools
is restricted to document editing and managing functions.

What is needed is a disciplined, systematic, compositional and rigorous me-
thodology which is essential for attaining a ‘reasonable’ level of dependability and
trust in these systems. This implies that the modelling of an IS must be treated
as an engineering discipline with a proper semantic foundations. Additionally,
we need a simple domain ontology2 with a simple structure that is acceptable
to a broad class of IS developers.

In this paper we gave a sound formal specification notation together with a
transformational calculus that allow the developer to systematically construct
a system from its technical specification. The developed system was expressed
in a ‘procedure’-like language. We extended this calculus to cope with ‘object-
oriented’ implementation languages in [CZC99,ZCC99,CCZ99]. Furthermore, in
[ZZC99] we have provided a sound framework within which any ‘changes’ in the
system model can be studied and its effect may be analysed. The approach is
supported by a tool known as AnaTempura which is an extension to Tempura
(an executable subset of ITL).

Much more work is needed to explore the suitability of the calculus in cross-
ing the technical and organisational boundaries. We are currently investigating
Domain-Specific Machines and languages as a mechanism to bridge these bound-
aries. Clearly such a machine should have a precise semantics in a specification
oriented style given in an extended version of ITL.

2 a basic understanding of what information system requirement engineering is con-
cerned with.

14

Acknowledgement

We wish to acknowledge our colleagues in the STRL for stimulating and benefi-
cial discussions.

References

[ANS77] ANSI/X3/SPARC. Interim report on data base systems. Technical report,
1977.

[Bac88] R.J.R. Back. A calculus of refinements for program derivations. Acta Infor-
matica, 25, 1988.

[Bac89] R.J.R. Back. Refinement calculus, part ii: Parallel and reactive programs.
LNCS, 430, 1989.

[BW90] R.J.R. Back and J. Wright. Refinement concepts formalised in hol. Formal
Aspects of Computing, 3, 1990.

[CCZ99] Z. Chen, A. Cau, and H. Zedan. Integrating structured oo approaches with
formal techniques for the development of real-time systems. Information and
Software Technology Journal, 41, 1999.

[CZ97] A. Cau and H. Zedan. Refining interval temporal logic specifications. In
Proc. of Fourth AMAST Workshop on Real-Time Systems, Concurrent, and
Distributed Software (ARTS’97), 1997.

[CZC99] Z. Chen, H. Zedan, and A. Cau. A wide-spectrum language for object-based
development of real-time systems. International Journal of Information Sci-
ences, 1999.

[Dav93] A.M. Davis. Software Requirements - Objects, Functions and States.
Prentice-Hall, 1993.

[Dow88] M. Dowson. Iteration in the software process. In Proc. 9th Int Conf on
Software Engineering, 1988.

[FKG90] A. Finkelstein, J. Kramer, and M. Goedicke. Viewpoint oriented software
development. In Proc. Conf ”Le Genie Logiciel et ses Applications”, 1990.

[HH98] C.A.R. Hoare and J. He. Unifying theories of programming. Prentice-Hall,
1998.

[Hoa96] C.A.R. Hoare. Unifying theories: a personal statement. ACM Computing
Surveys, 28A(4), 1996.

[LZ92] P. Loucopoulos and R. Zicari. Conceptual Modelling, Database and Case.
Wiley, 1992.

[Mor90] C. Morgan. Programming from Specifications. Prentice Hall International,
1990.

[Mos86] B. Moszkowski. Executing temporal logic programs. Cambridge Univ. Press,
UK, 1986.

[Mos94] B. Moszkowski. Some very compositional temporal properties. In Ernst-
Rüdiger Olderog, editor, Programming Concepts, Methods and Calculi, vol-
ume IFIP Transactions, Vol. A-56, pages 307–326. North-Holland, 1994.

[MSV92] J. M. Mylopoulos, J. W. Schmidt, and Y. Vassiliou. Daida - an environment
for evolving information systems. ACM Transaction on Information Systems,
10, 1992.

[NGj92] C. Nellborn, M. R. Gostafasson, and J. A. Bubenko (jr.). Enterprise
modelling - an approach to capture requirements. Technical Report
E6612/SISU/3-1RIA, SISU, Kista, Sweden, 1992.

15

[Pot89] C. Potts. A generic model for representing design methods. In Proc. 11th
International Conf on SE, 1989.

[RJG+92] T. Rose, M. Jarke, M. Gocek, C. Maltzahn, and H. Nissen. A decision-based
configuration process environment. Software Engineering Journal, 6, 1992.

[Rol93] C. Rolland. Modelling the requirements engineering process. In Proc. Fino-
Japanese seminar on Conceptual Modelling, 1993.

[RT98] B. Rumpe and V. Thurner. Refining business processes. Technical Report
TUM-1986, Technical University of Munich, 1998.

[Sea79] J. R. Searle. Expression and Meaning. Cambridge University Press, 1979.
[ZCC99] H. Zedan, A. Cau, and Z. Chen. Atom: An object-based formal method for

real-time systems. Annals of Software Engineering, 7, 1999.
[ZCM99] H. Zedan, A. Cau, and B. C. Moszkowski. Compositional modelling: The

formal perspective. In Proc. of Workshop on Systems Modelling for Business
Process Improvement, Belfast, 1999.

[ZZC99] K. Zhou, H. Zedan, and A. Cau. A framework for analysing the effect of
change in legacy code. In Proc. of ICSM99, IEEE Press, 1999.

16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

