
 

Title: Consensus measure with multi-stage fluctuation 

utility based on China's urban demolition negotiation  

Author information:  
 
Zaiwu Gong -first author (corresponding author)  
Institute : Collaborative Innovation Center on Forecast and Evaluation of Meteorological 
Disasters, Nanjing University of Information Science and Technology  
Tel.: +86-135-125-167-26  
Fax: +86-25-58695651  
E-mail: zwgong26@163.com  
 
Chao Xu- second author  
Institute : School of Economics and Management, Nanjing University of Information 
Science and Technology  
E-mail: xuchao_christ@163.com  
 
Francisco Chiclana- third author (corresponding author) 
Institute : Center for Computational Intelligence, Faculty of Technology, De Montfort  
University  
E-mail: chiclana@dmu.ac.uk  
 
Xiaoxia Xu- fourth author  
Institute: School of Economics and Management, Nanjing University of Information 
Science and Technology  
E-mail: 18914757228@163.com 

Title Page w/ ALL Author Contact Info.

mailto:xuchao_christ@163.com
mailto:chiclana@dmu.ac.uk


Group Decision and Negotiation manuscript No.
(will be inserted by the editor)

Consensus measure with multi-stage fluctuation utility based on China’s urban
demolition negotiation

Received: date / Accepted: date

Abstract Utility functions are often used to reflect decision makers’ (DMs’) preferences. They have the following
two merits: one refers to the representation of the DM’s utility (satisfaction) level, the other one to the measuring
of the consensus level in a negotiation process. Taking the background of China’s urban house demolition, a
new kind of consensus model is established by using different types of multi-stage fluctuation utility functions,
such as concave, convex, S-shaped, reversed S-shaped, reversed U-shaped as well as their combinations, to reveal
negotiators’ dynamic physiological preferences and consensus level. Moreover, the effects of the decision-making
budget and the individual compensation tolerance on the consensus level are also discussed in this paper. Compared
with previous research, the proposed model takes both the negotiation cost and DM’s preference structure into
consideration, and most importantly, it is computational less complex.

Keywords Consensus decision making · Utility function · Piecewise linear preference · Consensus level · Linear
optimization

1 Introduction

Consensus decision making is a group decision making (GDM) process that aims to achieve an ultimate and mutual
agreement by shifting the opinion of each group member (Liao et al. 2016; Cabrerizo et al. 2015; Chen et al. 2015;
Herrera et al. 2005). Accordingly, it should be noted that: (1) the decision-making problem under debate is clearly
presented, or there is an open discussion to ensure the problem is deterministic; (2) all participants in the GDM are
equal; (3) everyone has an opportunity to express his (her) view about the problem, and can fully clarify his (her)
decision preference; and (4) every member can produce a high-quality resolution through deep thinking. Solving
most consensus problems does not only need to consume costs, but also requires an individual with superb lead-
ership, communication and negotiation skills, who can dominate the GDM process (i.e., a moderator). Generally
speaking, the moderator is a figure with authority in the GDM, and he (she) needs to use all possible means (such
as policy, law and resource consumption, collectively referred to as budget) to convince each individual decision
maker (DM) to achieve a collective opinion, and we call the endeavor the moderator makes as his coordination
capability. Despite this, the chances for reaching a complete agreement are rather low due to different individual
opinion tolerances and preferences. Therefore, the ultimate goal of consensus decision making becomes to seek an
acceptable consensus (i.e.,“soft” consensus) rather than a complete consensus (Herrera et al. 2014; Herrera et al.
2007).

In the “soft” consensus reaching process, participants always show a tolerance range of their own proposed
opinions. As a matter of fact, the tolerance range (i.e., opinion tolerances) is the acceptable extent of the opinion
discrepancy by group member (Zimbardo 1960; Gong et al. 2016). Relevant research can be found in the literature
where the concepts of deviation degree and similarity degree between two linguistic values were defined by Xu
(2005); the distance measurement between the individual opinions and the group opinion through comparing the
positions of the alternatives by Herrera et al. (2002); the proposal of the ε-consensus to reveal the proximity between
expert’s opinion and consensus opinion in the study of Ben et al. (2007); and the provision of a consensus scheme
for a set of arguments through tightening the range of opinions amongst experts in the literature of Xu (2011).
Besides, opinion preference is an unavoidable factor when collecting all members’ opinions. In order to describe
the preference degree in the economic field, Bernoulli (1954) firstly used the concept of utility. Yet utility theory
was truly put forward by Von Neumann and Morgenstern (1947), which laid a solid foundation to later research
(Feenstra 2003; Hensher et al. 2016; Charpentier et al. 2016; Gul et al. 2014; Kolbin et al. 2016), and gradually
evolved in the hot spot of the decision-making area. However, after fuzzy set theory was proposed (Zadeh 1965),
the concept of utility function was gradually transformed into the application of membership function (Pandey et
al. 2015; Yadav et al. 2015; Liu 2014; Chang 2008).
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Therefore, taking DM’s opinion tolerance and preference into account helps to facilitate the decision-making
process. However, the key concerns for the moderator focus on two aspects: (1) what extent the consensus can
really reach up to, namely the consensus level is the actual issue the moderator cares about; and (2) how much
the moderator needs to cost for reaching a consensus, i.e., the negotiation cost. Available research about consensus
measure, including qualitative judgment methods (Skinner et al. 2015; Ameyaw et al. 2015; Wortley et al. 2016;
McMillan et al. 2016; Singh et al. 2015) and quantitative measurement methods (Xu 2012; Chiclana et al. 2013;
Golunska et al. 2014; Zhang et al. 2014; Zhang et al. 2015; Dong et al. 2015; Akiyama et al. 2016), mainly focused
on a single distance-based measurement of the consensus level. Yet a new consensus model by introducing multi-
stage fluctuation utility function and minimum cost consensus is proposed in this paper, which considers both
utility preference and the negotiation cost. Besides, the influencing factors, including the moderator’s budget and
the individual opinion tolerance, have also been analyzed. Most important, the negotiation on China’s urban
demolition is used in this paper to make the methodology more specific and pragmatic.

The rest of the paper is organized as follows: Section 2 presents a preliminary including the background of
China’s urban demolition, the hypotheses for modeling, and the influential factors in the consensus negotiation.
The experts approach to utility, whether it is an avert or love attitude to risk, will be mathematically represented
and captured with piecewise linear functions, and in particular the concave, convex, S-shaped, reversed S-shaped
and reversed U-shaped multi-stage fluctuation linear utility functions are constructed in Section 3. Section 4
presents the mathematical modeling of the consensus model with multi-stage fluctuation linear utility functions.
An empirical analysis of China’s urban demolition including as well the impact of the two influential factors on
the consensus level, the Government’s budget and residents’ tolerances, is provided in Section 5. Finally, Section
6 summarizes conclusions and future research.

2 Preliminary

2.1 Background

House demolition plays an important part in the reform of China’s urbanization, and it mainly involves compensa-
tion negotiations between the Government and moved residents. Generally, the Government adopts active remedies
to encourage and persuade residents to move: only when the amounts of compensation received by residents satisfy
their desired ones, and also meet the Government’s expectation, can the psychological satisfaction of both sides
reach to a high degree, i.e. consensus is achieved.

In urban relocation negotiations, the Government plays the role of moderator while residents are individual
DMs. Naturally, the Government needs to negotiate with residents regarding the compensation price. In such
negotiations, consensus is reached only when both sides agree on the price and the expected utilities of compensation
are largely satisfied. During the process, the Government must consider the following factors: estate’s real value
based on considerations such as location; negotiation difficulty, for extreme examples, may become deadlocked
owing to residents’ low willingness to move; and fixed compensation standards set on Government’s assessment of
market price.

2.2 Hypothesis

Clearly, to reach the demolition consensus, the Government needs to adopt a policy of different prices for different
houses. Also, the Government needs a certain communication budget, which can not only guarantee to convince
all the residents, but also can maintain within its own capacity. Simultaneously, residents have different utility
preferences within their own expected compensation ranges, and hope to receive maximum compensations. From
the Government’s perspective, while maximizing expected utility, the price deviation between each resident and
the Government should be within the acceptable range of its price interval. Regarding the needs of mathematical
modeling, following hypotheses are proposed on the above analysis:

Hypothesis 1 The budget used to reach the consensus on relocation is limited. In other words, the cost to
persuade residents to move is predetermined;

Hypothesis 2 The compensation expected by residents and the price proposed by Government are both denoted
by uncertain intervals; and different compensation intervals respond to different preference utilities;

Hypothesis 3 The compensation deviations between the residents and the Government satisfy certain restric-
tions (i.e., residents’ price tolerances exist);

Hypothesis 4 Both the Government and the residents expect to achieve an optimal group utility (i.e., a high
consensus level).

Actually, these four hypotheses lay the foundation for the following section, which respond to the four factors
that affect the consensus negotiation.
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Fig. 1 Basic utility functions

2.3 Factors affecting the consensus negotiation

For the convenience of description, we assume that there are m residents e1, e2, . . . , em in the negotiation pro-
cess, and their corresponding expected compensation prices are o1, o2, . . ., and om, respectively. Meanwhile, the
Government is represented by G, and its compensation price is denoted as o′. In addition, both the Government
and residents are collectively referred as DMs. Thus, consensus negotiation of China’s urban demolition mainly
involves the following four factors we referred to in Section 2.2:

(1) Compensation interval. To reach the demolition consensus, G needs to compensate each ei (i ∈ {1, 2, · · · ,m})
at current market price. In this process, the compensation expression of both sides are usually not a determined
or precise number, i.e. a crisp number, but a price range, i.e. an interval. Thus, ei’s desired compensation price
is denoted as oi = [oli, oui], where oli represents the lower bound of ei’s compensation price or conservative
price, and oui is the upper bound or optimistic price.

(2) Compensation budget. The amount B =
m∑
i=1

ωi|oi − o′| is used to measure the total budget provided by G

when reaching the demolition consensus, i.e. , the total budget employed to persuade all residents to move. In
the above expression, |oi − o′| stands for the absolute deviation of compensation between ei and G, ωi denotes
the unit compensation assigned to ei for persuading him (her) to change his (her) compensation price, i.e. its
unit effort cost; ωi|oi − o′| naturally indicates the total cost for convincing ei to move or, in other words, the
individual negotiation budget. Clearly, G wishes the total budget to be as small as possible.

(3) Consensus tolerance. In the demolition negotiation process, ei has his (her) own tolerance related to G’s
compensation price. A resident agrees to move only when the compensation price is within a resident’s toler-
ance, in which case consensus is reached. Here, we assume ei’s tolerance is εi, and consequently we have to
consider the following constraints |oi − o′| ≤ εi (∀i).

(4) Decision utility. DMs may present different psychological preferences during the GDM process due to their
educational background, personality and social status, and all these factors may affect the process and quality
of the negotiation. Therefore, it becomes extremely necessary to consider all DMs’ psychological preferences
for reaching a better negotiation consensus.

3 Utility Functions

As it was mentioned in Section 2.3, DM’s psychological preference can affect the negotiation process. To illustrate
this, an utility function is used to represent a DM’s preference structure. Specifically, within the compensation
range of oi, different values might provide different utilities to the DMs, i.e. each value x ∈ [oli, oui] has a specific
utility value U(x) ∈ [0, 1]. Assume that U(x) is a linear (piecewise) function with single variable, which satisfies
0 ≤ U(x) ≤ 1. When U(x) ∈ {0, 1}, we have a binary utility model (see Figures 1.1 and 1.2). U ′(x) indicates the
derivative of the utility function and represents the change amount of DM’s unit compensation utility, so it is
the marginal utility of the compensation. Actually, the marginal utility of compensation is the slope of the linear
utility function U(x). When U ′(x) > 0 the DM’s utility increases with the growth of compensation as Figure 1.3
illustrates; while U ′(x) < 0 reveals that the DM’s utility decreases with the growth of compensation, which is
shown in Figure 1.4. A combination of both traits with U ′(x) > 0 and U ′(x) < 0 is given in Figures 1.5 and 1.6.
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Fig. 2 Piecewise linear utility functions with left-skewed preferences

3.1 Basic types

According to the utility theory (Fishburn 1988), when the marginal utility increases then an individual behaves as a
risk lover; conversely, when the marginal utility decreases the individual behaves as a risk averter. Actually, in real
decision-making situations, individual’s utility usually does not exhibit simple monotone increasing or decreasing
trends as listed in Figure 1, but frequently shows a multi-stage fluctuation trait with both risk attitudes of appetite
and aversion, which can be simulated by a type of multi-stage fluctuation utility functions as proposed next.

3.2 Proposed types

Multi-stage fluctuation utility functions, based on the above basic types of piecewise linear utility functions of
Figure 1, will be used to characterize the DM’s psychological fluctuation trait in different decision intervals. Here,
three types of multi-stage fluctuation utility functions are provided, namely, left-skewed type, right-skewed type,
and middle-skewed type.

3.2.1 Piecewise linear utility functions with left-skewed preference

When a DM’s preference is left-skewed type, he (she) prefers the left point of the compensation interval, and the
utility decreases with the growth of his (her) compensation. Furthermore, the DM’s marginal utility and attitude
towards risk differ among their compensation intervals. Here, four kinds of piecewise linear utility functions with
left-skewed preferences are discussed.

– Piecewise linear concave utility function with left-skewed preference – PLUFL-1 (Figure 2.1):

Case I : U(Oi) =



1, if Oi < b0i1
b0i8−Oi

b0i8−b0i1
, if b0i1 ≤ Oi < b0i3

b0i7−Oi

b0i7−b0i2
, if b0i3 ≤ Oi < b0i5

b0i6−Oi

b0i6−b0i4
, if b0i5 ≤ Oi < b0i6

0, if Oi ≥ b0i6

PLUFL-1 is a linear concave function, where b0ij , i ∈ M, j = 1, · · · , 8 denote the piecewise points of the utility

function in the horizontal axis. In subinterval [b0i1, b
0
i3], the marginal utility of PLUFL-1 is a1 = 1

b0i1−b0i8
, while

the marginal utility in subintervals [b0i3, b
0
i5] and [b0i5, b

0
i6] are a2 = 1

b0i2−b0i7
and a3 = 1

b0i4−b0i6
, respectively.

Notice that the utility of PLUFL-1 decreases as the DM’s compensation increases. When a3 < a2 < a1 < 0 it is
|a1| < |a2| < |a3|, thus the utility of PLUFL-1 quickly decreases with the growth of the compensation, i.e. the
marginal utility decreases). Under the preference of PLUFL-1, both the utility and marginal utility decrease.
As a result, the DM is considered in this case as a risk averter.
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– Piecewise linear reversed S1-shaped utility function with left-skewed preference – PLUFL-2 (Figure 2.2):

Case II : U(Oi) =



1, if Oi < b1i2
b1i8−Oi

b1i8−b1i2
+ M̃ ∗ δ1, if b1i2 ≤ Oi < b1i4

b1i6−Oi

b1i6−b1i3
+ M̃ ∗ δ1, if b1i4 ≤ Oi < b1i5

b1i7−Oi

b1i7−b1i1
+ M̃ ∗ (1− δ1), if b1i5 ≤ Oi < b1i7

0, if Oi ≥ b1i7

where b1ij , i ∈M, j = 1, · · · , 8 denotes the piecewise points of utility function in the horizontal axis, M̃ stands for

a real number that can be infinite (we take M̃ = 106 in empirical analysis part), and δ1 denotes an additional
{0, 1}-binary variable (Yang et al. 1991; Wen et al. 2014). It’s easy to find that the value of U(Oi) is under
the entire segment, including 1© and 2©, if δ1 = 0 holds (namely Oi lies in interval [0, b1i5]), while under the
segments of 3© if δ1 = 1 holds (i.e., Oi is within the interval [b1i5, b

1
i7]) (see Figure 2.2). Actually, the entire

segment (including 1©, 2©) and segment 3© is a kind of relation of union rather than intersection. Meanwhile,
in subintervals [b1i2, b

1
i4], [b1i4, b

1
i5] and [b1i5, b

1
i7], the marginal utilities of PLUFL-2 are b1 = 1

b1i2−b1i8
, b2 = 1

b1i3−b1i6
and b3 = 1

b1i1−b1i7
, respectively. The utility of PLUFL-2 thus decreases as the DM’s compensation increases.

When b2 < b1 < 0, b2 < b3 < 0, |b1| < |b2|, it is |b3| < |b2|. Therefore the utility of PLUFL-2 quickly decreases
from subinterval [b1i2, b

1
i4] to subinterval [b1i4, b

1
i5], i.e. the marginal utility decreases, making the DM to behave

as a risk averter; however, the utility of PLUFL-2 slowly decreases from subinterval [b1i4, b
1
i5] to subinterval

[b1i5, b
1
i7], i.e. the marginal utility increases, and the DM acts as a risk lover. In short, under PLUFL-2, the

utility decreases as the DM’s compensation increases, and the marginal utility tends to be different. In this
situation, the DM is first a risk averter and later a risk lover as the compensation moves from the lower to the
upper bound.

– Piecewise linear reversed S2-shaped utility function with left-skewed preference – PLUFL-3 (Figure 2.3):

Case III : U(Oi) =



1, if Oi < b2i2
b2i5−Oi

b2i5−b2i2
+ M̃ ∗ (1− δ2), if b2i2 ≤ Oi < b2i3

b2i8−Oi

b2i8−b2i1
+ M̃ ∗ δ2, if b2i3 ≤ Oi < b2i6

b2i7−Oi

b2i7−b2i4
+ M̃ ∗ δ2, if b2i6 ≤ Oi < b2i7

0, if Oi ≥ b2i7

where b2ij , i ∈ M, j = 1, · · · , 8 represents the piecewise points of the utility function, M̃ stands for an infinite
real number, δ2 denotes an additional {0, 1}-binary variable. Also, we can find that the value of U(Oi) is under
the segment of 1©(namely Oi is in interval [0, b2i3] at this point) if δ2 = 1 holds, while under the entire segment,
including 2© and 3©, if δ2 = 0 holds (namely Oi lies in [b2i3, b

2
i7]) (see Figure 2.3). The marginal utility of

the subintervals [b2i2, b
2
i3], [b2i3, b

2
i6] and [b2i6, b

2
i7] are c1 = 1

b2i2−b2i5
, c2 = 1

b2i1−b2i8
and c3 = 1

b2i4−b2i7
, respectively.

The utility of PLUFL-3 decreases as DM’s compensation increases, and given that c1 < c2 < 0, c3 < c2 < 0
implies |c1| > |c2|, |c3| > |c2|, it is clear that the utility of PLUFL-3 slowly decreases from subinterval [b2i2, b

2
i3]

to subinterval [b2i3, b
2
i6], i.e. the marginal utility increases, meaning the DM behaves as a risk lover; while the

utility of PLUFL-3 decreases quickly from subinterval [b2i3, b
2
i6] to subinterval [b2i6, b

2
i7], i.e. the marginal utility

decreases, making the DM to act as a risk averter. In short, for PLUFL-3 the DM’s utility decreases with the
growth of his (her) compensation, while the marginal utility differs within different subintervals. So, unlike
Case II, the DM in this case is first a risk lover and then a risk averter as the compensation moves from the
lower to the upper bound.

– Piecewise linear convex utility function with left-skewed preference – PLUFL-4 (Figure 2.4):

Case IV : U(Oi) =



1, if Oi < b3i3
b3i5−Oi

b3i5−b3i3
+ M̃ ∗ δ3 + M̃ ∗ δ4, if b3i3 ≤ Oi < b3i4

b3i7−Oi

b3i7−b3i2
+ M̃ ∗ (1− δ3), if b3i4 ≤ Oi < b3i6

b3i8−Oi

b3i8−b3i1
+ M̃ ∗ δ3, if b3i6 ≤ Oi < b3i8

0, if Oi ≥ b3i8

PLUFL-4 is a linear convex function, where b3ij , i ∈M, j = 1, · · · , 8 denote the piecewise points in the horizontal

axis, M̃ represents a real number that can be infinite, and δ3, δ4 are two additional binary variables for repre-
senting the union relations of three segments. We believe that the value of U(Oi) is under the segment of 3© if
δ3 = 0 and δ4 6= 0 hold, under the segment of 1© as well as 3© if δ3 = 0 and δ4 = 0 hold, while under the segment
of 2© if δ3 = 1 (see Figure 2.4). Marginal utilities of PLUFL-4 are r1 = 1

b3i3−b3i5
, r2 = 1

b3i2−b3i7
, and r3 = 1

b3i1−b3i8
for the three compensation subintervals [b3i3, b

3
i4], [b3i4, b

3
i6], and [b3i6, b

3
i8], respectively. Obviously, the utility

of PLUFL-4 decreases as the DM’s compensation increases, and the marginal utility increases because when
r1 < r2 < r3 < 0 it is |r1| > |r2| > |r3|. In this situation, as the DM’s compensation increases, the utility
decreases while the marginal utility increases, indicating that the DM is a risk lover.
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Fig. 3 Piecewise linear utility functions with right-skewed preference

3.2.2 Piecewise linear utility function with right-skewed preference

When a DM’s preference is right-skewed, he (she) prefers the right point of the compensation interval, and accord-
ingly the utility increases with the growth of his (her) compensation. Moreover, DM’s marginal utility and attitude
towards risk still can differ in different compensation subintervals. Following a similar description and analysis to
the one provided before, four kinds of piecewise linear utility functions with right-skewed preference are possible:

– Piecewise linear concave utility function with right-skewed preference – PLUFR-1 (Figure 3.1):

Case V : U(Oi) =



0, if Oi < b4i3
Oi−b4i3
b4i5−b4i3

, if b4i3 ≤ Oi < b4i4
Oi−b4i2
b4i7−b4i2

, if b4i4 ≤ Oi < b4i6
Oi−b4i1
b4i8−b4i1

, if b4i6 ≤ Oi < b4i8

1, if Oi ≥ b4i8

As the compensation increases in PLUFR-1,the utility increases while the marginal utility decreases, which
represents the DM as a risk averter.

– Piecewise linear S1-shaped utility function with right-skewed preference – PLUFR-2 (Figure 3.2):

Case V I : U(Oi) =



0, if Oi < b5i2
Oi−b5i2
b5i8−b5i2

+ M̃ ∗ (1− δ5), if b5i2 ≤ Oi < b5i4
Oi−b5i3
b5i6−b5i3

+ M̃ ∗ δ5, if b5i4 ≤ Oi < b5i5
Oi−b5i1
b5i7−b5i1

+ M̃ ∗ δ5, if b5i5 ≤ Oi < b5i7

1, if Oi ≥ b5i7

The utility in PLUFR-2 increases with the DM’s compensation, while the marginal utility differs, making the
DM to behave first as a risk lover and then as a risk averter as the compensation price moves from the lower
to the upper bound.

– Piecewise linear S2-shaped utility function with right-skewed preference ( PLUFR-3, Figure 3.3):

Case V II : U(Oi) =



0, if Oi < b6i2
Oi−b6i2
b6i5−b6i2

+ M̃ ∗ δ6, if b6i2 ≤ Oi < b6i3
Oi−b6i1
b6i8−b6i1

+ M̃ ∗ δ6, if b6i3 ≤ Oi < b6i6
Oi−b6i4
b6i7−b6i4

+ M̃ ∗ (1− δ6), if b6i6 ≤ Oi < b6i7

1, if Oi ≥ b6i7
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Fig. 4 Piecewise linear utility functions with middle-skewed preference

For PLUFR-3, the utility increases with the DM’s compensation, and the changes in marginal utility indicates
that this type of DM is first a risk averter and then a risk lover as the compensation moves from the lower to
the upper bound.

– Piecewise linear convex utility function with right-skewed preference ( PLUFR-4, Figure 3.4):

Case V III : U(Oi) =



0 if Oi < b7i1
Oi−b7i1
b7i8−b7i1

+ M̃ ∗ δ7 + M̃ ∗ δ8, if b7i1 ≤ Oi < b7i3
Oi−b7i2
b7i7−b7i2

+ M̃ ∗ (1− δ7), if b7i3 ≤ Oi < b7i5
Oi−b7i4
b7i6−b7i4

+ M̃ ∗ δ7, if b7i5 ≤ Oi < b7i6

1 if Oi ≥ b7i6

For PLUFR-4 both the utility and the marginal utility increase, and therefore the DM is a risk lover.

3.2.3 Piecewise linear utility function with middle-skewed preference

Generally, the ultimate goal of GDM is to acquire collective opinions through multiple negotiations with respect to
target alternatives. In such process, DMs always expect to make the most profitable decisions regarding their own
interests, and usually tend to display a certain “extreme tendency”, preferring either the maximum or minimum
values of the compensation interval. However, in practice, negotiation tends to ultimately compromise. In those
cases, the DM’s compensation turns out to be an interval central located number. Therefore, it is necessary to
closely investigate the middle-skewed preference. Given limitations of space, here we only present the preference
with symmetrical structure.

– Piecewise linear concave utility function with middle-skewed preference – PLUFM-1 (Figure 4.1):

Case IX : U(Oi) =



0, if Oi < b8i3
Oi−b8i3
b8i5−b8i3

, if b8i3 ≤ Oi < b8i4
Oi−b8i2
b8i7−b8i2

, if b8i4 ≤ Oi < b8i6
Oi−b8i1
b8i8−b8i1

, if b8i6 ≤ Oi < b8i8

1, if b8i8 ≤ Oi < b8i9
b8i16−Oi

b8i16−b8i9
, if b8i9 ≤ Oi < b8i11

b8i15−Oi

b8i15−b8i10
, if b8i11 ≤ Oi < b8i13

b8i14−Oi

b8i14−b8i12
, if b8i13 ≤ Oi < b8i14

0, if Oi ≥ b8i14

With PLUFM-1, the DM prefers the intermediate value of compensation interval, that is [b8i8, b
8
i9], where the

compensation utility of the DM reaches the maximum value and its corresponding marginal utility remains
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unchanged (that is 0). Besides, the DM’s utility shows an increasing tendency in the left section [b8i3, b
8
i8], and

a decreasing tendency in the right section [b8i9, b
8
i14]. Meanwhile, the marginal utility presents a decreasing

trend in both sections (for more details refer to PLUFR-1 and PLUFL-1). Obviously, the DM is a risk averter
concerning the preference of PLUFM-1.

– Piecewise linear reversed U1-shaped utility function with middle-skewed preference – PLUFM-2 (Figure 4.2):

Case X : U(Oi) =



0, if Oi < b9i2
Oi−b9i2
b9i8−b9i2

+ M̃ ∗ (1− δ9), if b9i2 ≤ Oi < b9i4
Oi−b9i3
b9i6−b9i3

+ M̃ ∗ δ9, if b9i4 ≤ Oi < b9i5
Oi−b9i1
b9i7−b9i1

+ M̃ ∗ δ9, if b9i5 ≤ Oi < b5i7

1, if b9i7 ≤ Oi < b9i10
b9i16−Oi

b9i16−b9i10
+ M̃ ∗ δ10, if b9i10 ≤ Oi < b9i12

b9i14−Oi

b9i14−b9i11
+ M̃ ∗ δ10, if b9i12 ≤ Oi < b9i13

b9i15−Oi

b9i15−b9i9
+ M̃ ∗ (1− δ10), if b9i13 ≤ Oi < b9i15

0, if Oi ≥ b9i15

A DM with PLUFM-2 prefers the intermediate value of the compensation interval [b9i7, b
9
i10]. Moreover, the

DM’s utility increases in [b9i2, b
9
i7], yet decreases in [b9i10, b

9
i15]. The marginal utilities in both [b9i2, b

9
i7] and

[b9i10, b
9
i15] tend to be complex (for more details see PLUFR-2 and PLUFL-2 ). In short, the DM shows two

different attitudes towards risk under the case of PLUFM-2.
– Piecewise linear reversed U2-shaped utility function with middle-skewed preference – PLUFM-3 (Figure 4.3)

Case XI : U(Oi) =



0, if Oi < b10i2
Oi−b10i2
b10i5−b10i2

+ M̃ ∗ δ11, if b10i2 ≤ Oi < b10i4
Oi−b10i1
b10i8−b10i1

+ M̃ ∗ δ11, if b10i4 ≤ Oi < b10i6
Oi−b10i3
b10i7−b10i3

+ M̃ ∗ (1− δ11), if b10i6 ≤ Oi < b10i7

1, if b10i7 ≤ Oi < b10i10
b10i14−Oi

b10i14−b10i10
+ M̃ ∗ (1− δ12), if b10i10 ≤ Oi < b10i11

b10i16−Oi

b10i16−b10i9
+ M̃ ∗ δ12, if b10i11 ≤ Oi < b10i13

b10i15−Oi

b10i15−b10i12
+ M̃ ∗ δ12, if b10i13 ≤ Oi < b10i15

0, if Oi ≥ b10i15

A DM with PLUFM-3 prefers the compensation value within [b10i7 , b
10
i10]. The DM’s compensation utility increases

in [b10i2 , b
10
i7 ], and decreases in [b10i10, b

10
i15]. Meanwhile, the marginal utilities both in [b10i2 , b

10
i7 ] and [b10i10, b

10
i15]

also turns out to be complex (for more details refer to PLUFR-3 and PLUFL-3). Briefly, the DM in this case
also has different attitudes towards risk.

– Piecewise linear convex utility functions with middle-skewed preference – PLUFM-4 (Figure 4.4):

Case XII : U(Oi) =



0, if Oi < b11i2
Oi−b11i2
b11i16−b11i2

+ M̃ ∗ δ13 + M̃ ∗ δ14, if b11i2 ≤ Oi < b11i4
Oi−b11i3
b11i9−b11i3

+ M̃ ∗ (1− δ13), if b11i4 ≤ Oi < b11i6
Oi−b11i5
b11i7−b11i5

+ M̃ ∗ δ13, if b11i6 ≤ Oi < b11i7

1, if b11i7 ≤ Oi < b11i10
b11i12−Oi

b11i12−b11i10
+ M̃ ∗ δ15 + M̃ ∗ δ16, if b11i10 ≤ Oi < b11i11

b11i14−Oi

b11i14−b11i8
+ M̃ ∗ (1− δ15), if b11i11 ≤ Oi < b11i13

b11i15−Oi

b11i15−b11i1
+ M̃ ∗ δ15, if b11i13 ≤ Oi < b11i15

0, if Oi ≥ b11i15

A DM with a PLUFM-4 linear convex function will act as a risk lover.

4 Consensus modeling with multi-stage fluctuation utility function

To achieve a demolition consensus, we need to construct a consensus model that can reflect the negotiation process.
As we mentioned in Section 2.1, let oi denotes ei’s (i ∈ M = {1, 2, . . . ,m}) expected compensation, o′ represents
G’s compensation, and li = |oi−o′| denotes the distance deviation between the compensation of ei and G. G always
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Table 1 Combinations of different utility preference for G and ei

G
ei Left Middle Right

Left L-L L-M L-R
Middle M-L M-M M-R
Right R-L R-M R-R

hopes for the deviation to be as small as possible. Different eis have different interests and, therefore, G deservedly
needs to provide them with distinct unit costs to persuade them to change their original requests. Thus, we have
the following consensus model:

Model (1) : min
n∑

i=1

ωi|oi − o′|

s.t.

{
|oi − o′| ≤ εi, i = 1, 2, · · · ,m
o′ ∈ O, oi ∈ [ai, bi], ωi ∈ [0, 1] i ∈M

(1)

where ωi is the unit cost assigned to ei, which is a predetermined constant, oi represents ei’s compensation within
his (her) compensation interval [ai, bi], O is the feasible set of consensus compensation o′, εi is the allowable
compensation deviation, and |oi − o′| ≤ εi denotes the compensation deviation constraint (tolerance) between oi
and o′.

Out of self-interest, each ei always expects their requests to get enough attention in the negotiation process.
Simultaneously, both ei and G may show distinct utility distributions on the compensation problem. Owing to
preference discrepancies, it is difficult to fulfil eis’ preference utilities by only considering the minimum cost as
the objective function. Thus, G’s budget must be flexible enough to convince all residents to change their original
compensation requests. In other words, to satisfy each ei’s optimal utility, G must arrange a sufficient budget
to reach the consensus. Hence, to simulate such negotiation process, the utilities are included into the original
consensus Model (1) for both ei and G. Thus, the new consensus decision-making model is constructed as follows:

Model (2) : max λ

s.t.



m∑
i=1

ωi|oi − o′| = B (2− 1)

λ ≤ U(o′) (2− 2)
λ ≤ U(oi), i ∈M (2− 3)
|oi − o′| ≤ εi, i ∈M (2− 4)
o′ ∈ O, oi ∈ [ai, bi], i ∈M (2− 5)

(2)

where λ indicates the group utility; B is the predetermined budget for reaching consensus; U(o′), U(oi) (i ∈ M)
are utility functions for G and ei. Constraint (2-4) indicates that the allowable compensation deviation between ei
and G is [o′−εi, o′+εi], which is regarded as the range ei is prepared to accept. The utility value λ is the ultimate
goal of the negotiation, and to some extent, it can also be considered as a measure of the consensus level.

The solution of Model (1) gives an indication of the minimum budget required to satisfy consensus negotiation
subject to the allowed compensation deviation. Unlike Model (1), all DM’s expected utilities are further taken into
account in Model (2), which can better reflect the real decision-making scenario.

Also, from constraints (2-2) and (2-3) in Model (2), we can see that G’s and ei’s utility preferences can
influence the consensus level. To detail this, we propose different kinds of consensus models with varied utility
preferences. Specifically, G’s and ei’s utility preferences are divided into left-skewed, middle-skewed, and right-
skewed types (see Table 1). The first row of Table 1 represents the left-skewed, middle-skewed, and right-skewed
types of ei’s preference, respectively; similarly, the first column of Table 1 indicates the left-skewed, middle-skewed,
and right-skewed types of G’s preference, respectively. And the rest stand for the preference combinations for G
and ei. Take “M-R” for example, it represents a combination that G’s preference is middle-skewed type and ei’ s
preference is right-skewed type. Its economic significance shows that G hopes to spend a moderate compensation
price reaching the demolition consensus, and it achieves its highest utility level; and for moved residents, the higher
the compensation prices are, the larger their utilities are.

In addition, from Model (2), it is clear that G’s total budget B, and ei’s tolerance εi both affect the overall
decision-making utility, thus may have influence on the consensus level. Therefore, later analysis of the case will
focus on the following two aspects: (1) sensitivity analysis on G’s budget B; and (2) sensitivity analysis on ei’s
tolerance εi.

5 Empirical analysis

To illustrate how both G’s compensation budget and each ei’s compensation tolerance affect the consensus level, this
section is arranged as follows: (i) without considering all the negotiators’ psychological preferences, G’s minimum
budget is first calculated by Model (1). Then, with different preference constraints under the fixed budget, the
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optimal compensation prices for G and ei are obtained by Model (2); and (ii), the impact of G’s budget and ei’s
compensation tolerance are deeply discussed.

Assume the demolition negotiation involves four residents, and their expected compensation intervals are
o1 = [48, 52], o2 = [50, 55], o3 = [60, 65], and o4 = [62, 67], respectively. G’s predetermined budget interval is
o′ = [50, 65] (unit: ten thousands RMB). To reach a consensus, G must negotiate with every ei (i ∈ 1, 2, 3, 4). Let
the unit costs to each resident be ω1 = 0.8, ω2 = 1.5, ω3 = 1.2, and ω4 = 0.9 (unit: thousand RMB). Suppose
the allowable compensation deviations (namely the upper limit of the range between G’s and each ei’s expected
compensations) are ε1 = 10.5, ε2 = 9, ε3 = 9.5 and ε4 = 9.8, respectively.

5.1 General model and its economic interpretation

Without considering the utilities of G and eis, an optimized consensus model with minimum cost is built as follows:

Model (3) : min φ =
m∑
i=1

ωi(ui + vi)

s.t.



o′ − u1 + v1 = o1, o
′ − u2 + v2 = o2 (3− 1)

o′ − u3 + v3 = o3, o
′ − u4 + v4 = o4 (3− 2)

|o1 − o′| ≤ 10.5, |o2 − o′| ≤ 9 (3− 3)
|o3 − o′| ≤ 9.5, |o4 − o′| ≤ 9.8 (3− 4)
o1 ∈ [48, 52], o2 ∈ [50, 55] (3− 5)
o3 ∈ [60, 65], o4 ∈ [62, 67] (3− 6)
o′ ∈ [50, 65] (3− 7)
ui, vi ≥ 0, i = 1, 2, 3, 4 (3− 8)

where, ui + vi = |o′ − oi| denotes the compensation deviation between G’s and each ei’s compensations, and
ui, vi are nonnegative constants assigned to simplify the formula |o′ − oi|, satisfying uivi = 0. Constraints (3-1)
and (3-2) are the linear deviation constraints attached to the equation ui + vi = |o′ − oi|, which is equivalent to
o′ − oi = ui − vi, i = 1, 2, 3, 4. Constraints (3-3) and (3-4) represent the allowable deviations between G’s and each
ei’s compensations. An optimal solution to Model (3) can be obtained as X∗ = (3 0 0 0 0 5 0 7 55 52 55 60 62 )T .
The objective value of Model (3) is min φ = 14.7, which represents the minimum negotiation budget for G to reach
the consensus. The optimal expected compensation prices for ei (i ∈ 1, 2, 3, 4) and G are o1 = 52, o2 = 55, o3 =
60, o4 = 62, and o′ = 55, respectively. Obviously, Model (3) only considers the optimal total compensation from
the perspective of minimum cost, and does not consider the preference utilities of eis and G. That is, Model (3)
is just a concrete example of the general Model (1). In fact, it is unrealistic to set a budget in Model (2) with the
solution of Model (1) when taking all the DM’s expected utilities into account. Thus, the budget B in Model (4)
is fixed as 30 instead of 14.7 obtained by Model (3). Additionally, the compensation preference of each ei’s and
G’s are represented by PLUFR-1, PLUFR-2, PLUFR-3, PLUFR-4, and PLUFM-1, respectively. Therefore, based
on the limited budget, the optimal consensus model with preference restrictions is built as follows:

Model (4) : max λ

s.t.



0.8 ∗ (u1 + v1) + 1.5 ∗ (u2 + v2) + 1.2 ∗ (u3 + v3)
+0.9 ∗ (u4 + v4) = 30 (4− 1)
o′ − u1 + v1 − o1 = 0, o′ − u2 + v2 − o2 = 0 (4− 2)
o′ − u3 + v3 − o3 = 0, o′ − u4 + v4 − o4 = 0 (4− 3)
o1 < o′ + 10.5, o1 > o′ − 10.5, o2 < o′ + 9, o2 > o′ − 9 (4− 4)
o3 < o′ + 9.5, o3 > o′ − 9.5, o4 < o′ + 9.8, o4 > o′ − 9.8 (4− 5)
λ ≤ o1−48

1.066666667 , λ ≤
o1−47.44

3.2 , λ ≤ o1−42
10 (4− 6)

λ ≤ o2−50
10/3

+ M̃ ∗ (1− δ1), λ ≤ o2−50.7
0.375 + M̃ ∗ δ1,

λ ≤ o2−37.5
17.5 + M̃ ∗ δ1 (4− 7)

λ ≤ o3−60
10/3

+ M̃ ∗ δ2, λ ≤ o3−59.2
6 + M̃ ∗ δ2,

λ ≤ o3−60
5 + M̃ ∗ (1− δ2) (4− 8)

λ ≤ o4−62
25/3

+ M̃ ∗ δ3 + M̃ ∗ δ4, λ ≤ o4−190/3
4 + M̃ ∗ δ3,

λ ≤ o4−64.5
2.5 + M̃ ∗ (1− δ3) (4− 9)

λ ≤ 82.5−o′
24.5 , λ ≤ 65.14−o′

2.8 , λ ≤ 65−o′
7/3

(4− 10)

λ ≤ o′−50
15/8

, λ ≤ o′−49.02
5.6 , λ ≤ o′−39.5

17.5 (4− 11)

o1 ∈ [48, 52], o2 ∈ [50, 55], o3 ∈ [60, 65], o4 ∈ [62, 67],
o′ ∈ [50, 65] (4− 12)
ui, vi ≥ 0, i = 1, 2, 3, 4 (4− 13)

In Model (4), constraint (4-1) is the total budget arranged by G to each ei to reach the consensus. Constraints
(4-2) and (4-3) indicate the deviation between ei’s and G’s expected compensation prices. Constraints (4-6)-(4-11)
are the preferences expressed by each ei and G. Obviously, Model (4) is just a concrete example of Model (2). The
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Fig. 5 Compensation preferences of Government and residents

optimal solutions to Model (4) is X∗ = (9.28 0 7.31 0 0 4.67 0 6.67 60.33 51.05 53.02 65 67 )T . The objective value
of Model (4) is max λ = 0.91. The optimal compensation prices for each ei and G are o1 = 51.05, o2 = 53.02, o3 =
65, o4 = 67, and o′ = 60.33, respectively.

Taking resident e4 for example (see Figure 5.4), the expected compensation price is the interval of [62, 67],
namely his (her) acceptable price for arriving the relocation consensus is [62, 67]. In specific, for e4, if G offers
a compensation price of 62, his (her) utility level is 0; and if the compensation price is offered as 67, then the
utility reaches its maximum possible level of 1. e4’s utility increases with the compensation price proposed by
G. Meanwhile, his (her) utility level tends to increase quickly with the growth of the price (that is the marginal
utility increases). Specifically, the marginal utility of the price subinterval [66.5, 67] exceeds that of [64.5, 66.5],
and further exceeds that of [62, 64.5]. In other words, the higher the price G pays, the higher e4’s utility, and the
higher e4’s satisfaction. Therefore, e4 is a risk lover.

Taking G’s preference into consideration (see Figure 5.5), it hopes that the compensation price demanded by
ei lies in the middle section of interval [50, 65], (i.e., [57, 58]), where utility level reaches 1 and its marginal
utility remains 0. If compensation price proposed by ei remains in the low price subinterval [50, 57], then G’s
utility increases, while the marginal utility decreasing because of its low willingness to pay more. In other words,
although the utility level in the low price subinterval increases with the price, G is unwilling to spend more on
compensation, so its utility increases slowly. Yet in the high price subinterval, G believes ei’s demanding price are
too high to be consistent with its own interests. Thus, the utility level decreases, and the value decreases quickly.
Based on the analysis in Section 3.2.3, G is a risk averter.

The optimal compensation prices for each ei are o1 = 51.05, o2 = 53.02, o3 = 65, and o4 = 67, respectively,
which all approach the upper value of their own price intervals; as for G, its optimal compensation approaches the
intermediate area of its price interval. In general, the group utility on the relocation issue is 0.91, which means
that both G and ei are pleased with the relocation alternative, so the consensus level is relatively high.

5.2 Sensitivity analysis on the consensus model

5.2.1 Sensitivity analysis on budget

Under the premise of all decision preferences and ei’s compensation tolerance fixed, different budgets will affect
the consensus level. To describe the influence of G’s budget on consensus level, four different utility structures,
denoted by Pj (j ∈ 1, 2, 3, 4)(see Appendix I), are provided in this section. Results are shown in Figure 6 and table
2 (see Appendix II).

Maintaining preference and tolerances unchanged, if we adjust budget B, the consensus level (i.e., the overall
negotiation utility) substantially shows a first climbing then declining tendency. Specifically, when the budget B is
less than 16 (ten thousand yuan), the consensus levels are close to 0 under the given four fixed utility structures,
then the group consensus reaches at a extremely low level; as B increases, the consensus levels also increase (each
ei’s psychological utility increases with the growth of compensation price, and the total cost is within G’s budget);
when B is within [25, 29], then consensus levels approach 1, namely arriving at a relatively high consensus level;
however, when B continues to increase, the consensus levels decrease all the way until they reache zero, because G’s
psychological utility reduces with the growing budget, and also the sensitivities of residents’ psychological utilities
decline.
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Fig. 6 Effects on the whole utility under different budgets
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Fig. 7 Effects on the whole utility under different tolerances

5.2.2 Sensitivity analysis on tolerance

Similarly, for each ei, he (she) has his (her) own acceptable range for G’s compensation price (i.e., price tolerance),
only when the compensation prices provided by G are within the scope of their psychological endurance, it can
be possible to achieve the psychological utility value of ei. Otherwise, if the compensation price can not meet ei’s
psychological utility value, then it does not help to reach the consensus. Therefore, the effects of different price
tolerances on the consensus level are discussed in this section, when psychological preference utilities and budget
are determined. By only changing one resident’s price tolerance at a time, we still use Model (4) to achieve the
goal. Results are shown in Figure 7 and Table 3 (see Appendix II), where U − εi denotes the consensus level under
ei’s tolerance εi.

Keeping utility preference and Government’s budget unchanged, the overall negotiation utility increases with
the growth of ei’s psychological tolerance εi. Thus, results provide a good explanation about the phenomenon that
as long as ei’s tolerance increases, it will be much easier for him (her) to accept G’s compensation price, in other
words, he (she) will be more likely to satisfy.

6 Summary and Conclusions

6.1 Comparisons and possible extensions

The provided consensus proposed model improves previous consensus models because it allows the implementation
of both psychological preference and negotiation cost, which makes it more adaptable to real decision making. On
the one hand, it has the advantage of reflecting DM’s preference when compared with the research of Ben et al.
(Ben et al 2007; Ben et al 2009), i.e., the consensus models in Ben et al.’s work evaluated consensus status only
from cost point of view, and without considering the DM’s psychological preference; indeed, Ben et al.’s model is
constructed as follows:

min φ =
m∑
i=1

ωi|oi − o′|

or min φ =
m∑
i=1

ωi(oi − o′)2

s.t. |oi − o′| ≤ ε

On the other hand, few previous studied on utility models take the cost into account. In other words, this type
of utility model, previously reported in literature, only indicates the change of DM’s psychological preference, but
the negotiations cost has not been considered. For example, the present linear utility function (represented by
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function uk(ok)) proposed by Yang et al. was built as follows (shown in Figure 1.3):

uk(ok) =


1, if ok ≥ ci
ok−bi
ci−bi , if bi ≤ ok ≤ ci
0, if ok ≤ bi

And its development of linear utility model is shown as follows (see Figure 1.5):

uk(ok) =


0, if Ok ≤ bi
ok−bi
ci−bi , if bi ≤ ok ≤ ci
di−ok
di−ci , if ci ≤ ok ≤ di
0, if ok ≥ di

A more complex model constructed by Chang (Chang 2007) is as follows:

uk(ok) =



0, if ok < x1i2
ok−x1

i2

x1
i8−x1

i2
+ M̃ ∗ (1− δ), if x1i2 ≤ ok < x1i4

ok−x1
i3

x1
i6−x1

i3
+ M̃ ∗ δ, if x1i4 ≤ ok < x1i5

ok−x1
i1

x1
i7−x1

i1
+ M̃ ∗ δ, if x1i5 ≤ ok < x1i7

1, if ok ≥ x1i7

where x1ij , i ∈M, j = 1, · · · , 8 denotes the piecewise points in the horizontal axis, M̃ represents a real number that
can be infinite, and δ are two additional binary variables (see similar Figure 3.2).

Thus, all reported models in the literature are constructed either from the point of view of cost or from the
point of view of preference, while the proposed consensus model with multi-stage fluctuations utility function is
actually a combination of consensus model regarding cost and multi-stage fluctuations utility function (see Model
(2)). Moreover, the proposed model not only considers the negotiation cost for reaching a consensus but also the
DM’s psychological preference. Therefore, the proposed model is closer to real decision-making situations. Besides,
some more extensions of utility model can be found in the research of Chang et al. (Chang and Lin 2009; Chang
2011), and scholars who are interested in these studies can introduce these utility models into a more complex
consensus model.

6.2 Summarizing contributions

Solving the consensus negotiation problem regarding urban demolition not only needs to consider the minimum
cost provided by G, but also all DMs’ preference utilities. To do this, multi-stage fluctuation utility functions (i.e.,
piecewise linear utility functions), including concave, convex, S-shaped, reversed S-shaped, and reversed U-shaped
types, and their combinations, are added into the presented consensus model. The characteristics of the presented
model are the following: (1) the total budget used to reach consensus is limited; (2) the compensation tolerance of
the moved residents are considered; (3) multi-stage fluctuation utility functions, which is added into our cost-based
consensus model, are employed to simulate DMs’ behaviors and reflect the consensus level. Moreover, the influence
of total budget and moved residents’ tolerance on consensus level are investigated via an empirical analysis; and
(4) all the models constructed in this paper adopt a linear form, making the models easier to solve.

Although we have obtained some meaningful results, some further work still can be done: (1) this paper assumes
that the DM’s psychological preference shows a linear utility fluctuation, while in real decision-making situations
most people’s psychological utilities exhibit non-linear fluctuations. Thus, we envisage the use of non-linear utility
function to describe their psychological preferences in future studies; and (2) it was also assumed that there is
no interaction among DMs, but only the existence of interaction between the individual DM and the moderator
was emphasized. However, in a real decision-making process, interactions may exist among DMs, and they usually
behave as various communication modes. Thus, the consensus model based on different communication modes
among DMs and multi-stage fluctuation utility preference deserves to be explored in the future.
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Appendix I

Utility structure of P1 : 

λ ≤ o1−48
1.066666667 , λ ≤

o1−47.44
3.2 , λ ≤ o1−42

10

λ ≤ o2−50
10/3

+ M̃ ∗ (1− δ1), λ ≤ o2−50.7
0.375 + M̃ ∗ δ1

λ ≤ o2−37.5
17.5 + M̃ ∗ δ1, λ ≤ o3−60

10/3
+ M̃ ∗ δ2

λ ≤ o3−59.2
6 + M̃ ∗ δ2, λ ≤ o3−60

5 + M̃ ∗ (1− δ2)

λ ≤ o4−62
25/3

+ M̃ ∗ δ3 + M̃ ∗ δ4, λ ≤ o4−190/3
4 + M̃ ∗ δ3

λ ≤ o4−64.5
2.5 + M̃ ∗ (1− δ3), λ ≤ 82.5−o′

24.5 , λ ≤ 65.14−o′
2.8

λ ≤ 65−o′
7/3

, λ ≤ o′−50
15/8

, λ ≤ o′−49.02
5.6 , λ ≤ o′−39.5

17.5

Utility structure of P2 : 

λ ≤ o1−48
17/8

, λ ≤ o1−47.84
3.2 , λ ≤ o1−44

8

λ ≤ o2−50
10/3

+ M̃ ∗ (1− δ1), λ ≤ o2−50.4
3/4

+ M̃ ∗ δ1
λ ≤ o2−40

15 + M̃ ∗ δ1, λ ≤ o3−60
3 + M̃ ∗ δ2,

λ ≤ o3−59.04
31/5

+ M̃ ∗ δ2, λ ≤ o3−60
5 + M̃ ∗ (1− δ2)

λ ≤ o4−62
20/3

+ M̃ ∗ δ3 + M̃ ∗ δ4, λ ≤ o4−62.5
5 + M̃ ∗ δ3

λ ≤ o4−64.5
2.5 + M̃ ∗ (1− δ3)λ ≤ 82.15−o′

169/7
, λ ≤ 65.07−o′

2.8

λ ≤ 65−o′
18/7

, λ ≤ o′−50
15/4

, λ ≤ o′−49.72
5.6 , λ ≤ o′−43

14

Utility structure of P3 : 

λ ≤ o1−48
17/8

, λ ≤ o1−47.6
4 , λ ≤ o1−46

6

λ ≤ o2−50
10/3

+ M̃ ∗ (1− δ1), λ ≤ o2−50.1
9/8

+ M̃ ∗ δ1
λ ≤ o2−42.5

12.5 + M̃ ∗ δ1, λ ≤ o3−60
17/6

+ M̃ ∗ δ2
λ ≤ o3−58.96

19/3
+ M̃ ∗ δ2, λ ≤ o3−60

5 + M̃ ∗ (1− δ2)

λ ≤ o4−62
7.5 + M̃ ∗ δ3 + M̃ ∗ δ4, λ ≤ o4−62.75

5 + M̃ ∗ δ3
λ ≤ o4−65.75

1.25 + M̃ ∗ (1− δ3), λ ≤ 81.8−o′
23.8 , λ ≤ 65−o′

2.8

λ ≤ 65−o′
2.8 , λ ≤ o′−50

15/4
, λ ≤ o′−49.3

7 , λ ≤ o′−46.5
10.5

Utility structure of P4 : 

λ ≤ o1−48
8/5

, λ ≤ o1−47.88
2.4 , λ ≤ o1−41

11

λ ≤ o2−50
5 + M̃ ∗ (1− δ1), λ ≤ o2−50.3

1.5 + M̃ ∗ δ1
λ ≤ o2−47.5

7.5 + M̃ ∗ δ1, λ ≤ o3−60
11/3

+ M̃ ∗ δ2
λ ≤ o3−59.3

6 + M̃ ∗ δ2, λ ≤ o3−60.5
4.5 + M̃ ∗ (1− δ2)

λ ≤ o4−62
23/3

+ M̃ ∗ δ3 + M̃ ∗ δ4, λ ≤ o4−62.8
5 + M̃ ∗ δ3

λ ≤ o4−66
1 + M̃ ∗ (1− δ3), λ ≤ 81.8−o′

23.8 , λ ≤ 65−o′
2.8

λ ≤ 65−o′
2.8 , λ ≤ o′−50

2.8 , λ ≤ o′−49.79
4.2 , λ ≤ o′−37.75

19.25
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Appendix II

Table 2 Results of the effects on the whole utility under different budgets

Pj

B
16 16.2 16.4 16.8 17 17.2 17.4 17.6 18 18.2 18.4 18.6 18.8 19 19.2 18.8 19 19.2 19.4

P1 0.013 0.039 0.066 0.118 0.145 0.171 0.039 0.066 0.118 0.145 0.171 0.197 0.224 0.250 0.276 0.302 0.320 0.339 0.357
P2 0.105 0.130 0.154 0.204 0.228 0.253 0.278 0.302 0.318 0.335 0.352 0.369 0.385 0.402 0.419 0.436 0.452 0.468 0.484
P3 0.079 0.104 0.130 0.180 0.206 0.231 0.256 0.282 0.304 0.320 0.337 0.353 0.370 0.386 0.403 0.419 0.434 0.449 0.464
P4 0.065 0.088 0.110 0.155 0.178 0.200 0.222 0.245 0.267 0.290 0.309 0.326 0.344 0.361 0.378 0.395 0.411 0.427 0.443

Pj

B
19.6 19.8 20 20.2 20.4 20.6 20.8 21 21.4 21.8 22.2 22.4 22.8 23 23.4 23.8 24 24.4 24.8

P1 0.427 0.444 0.461 0.479 0.496 0.513 0.530 0.548 0.582 0.617 0.651 0.668 0.703 0.720 0.755 0.791 0.813 0.858 0.904
P2 0.468 0.484 0.499 0.515 0.530 0.546 0.561 0.577 0.608 0.638 0.669 0.685 0.716 0.731 0.762 0.793 0.813 0.858 0.904
P3 0.449 0.464 0.480 0.495 0.510 0.525 0.541 0.556 0.586 0.617 0.648 0.663 0.693 0.709 0.739 0.770 0.786 0.832 0.886
P4 0.427 0.443 0.458 0.474 0.490 0.506 0.521 0.537 0.569 0.600 0.631 0.647 0.679 0.694 0.726 0.757 0.773 0.809 0.871

Pj

B
25 25.4 25.8 26 26.2 26.4 26.8 27 27.4 27.8 28 28.4 28.8 29 29.4 29.8 30 30.2 30.6

P1 0.927 0.973 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.972 0.961 0.939 0.916 0.905 0.894 0.877
P2 0.927 0.973 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.994 0.969 0.957 0.932 0.908 0.895 0.883 0.857
P3 0.913 0.967 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.993 0.966 0.952 0.924 0.897 0.883 0.870 0.837
P4 0.902 0.963 1.000 0.992 0.984 0.976 0.960 0.952 0.936 0.919 0.911 0.895 0.879 0.871 0.849 0.826 0.815 0.804 0.774

Pj

B
31.4 31.8 32.2 32.4 32.6 32.8 33 33.4 33.8 34 34.4 34.6 34.8 35 35.6 35.8 36 36.2 36.4

P1 0.854 0.842 0.829 0.823 0.817 0.811 0.805 0.790 0.774 0.734 0.599 0.518 0.437 0.357 0.177 0.142 0.106 0.071 0.035
P2 0.828 0.813 0.798 0.790 0.781 0.772 0.763 0.745 0.709 0.653 0.540 0.483 0.426 0.360 0.163 0.127 0.096 0.064 0.032
P3 0.789 0.770 0.749 0.739 0.729 0.718 0.708 0.687 0.663 0.620 0.534 0.491 0.448 0.405 0.267 0.218 0.152 0.084 0.032
P4 0.711 0.679 0.648 0.632 0.616 0.601 0.585 0.553 0.522 0.506 0.475 0.440 0.385 0.331 0.169 0.109 0.071 0.047 0.024

Table 3 Results of the effects on the whole utility under different tolerance

U − εi

εi 2.99 3 3.2 3.4 3.5 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

U − ε1 0.019 0.024 0.116 0.208 0.391 0.517 0.567 0.617 0.667 0.717 0.767 0.817 0.826 0.834 0.840 0.846
U − ε2 0.450 0.456 0.542 0.614 0.650 0.686 0.758 0.816 0.849 0.871 0.874 0.875 0.876 0.878 0.879 0.880
U − ε3 0.864 0.864 0.871 0.876 0.877 0.879 0.883 0.888 0.893 0.898 0.903 0.905 0.905 0.905 0.905 0.905
U − ε4 0.037 0.042 0.129 0.217 0.260 0.304 0.392 0.479 0.567 0.654 0.742 0.844 0.852 0.859 0.867 0.874

U − εi

εi 5.8 6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8 8.2 8.4 8.6 8.8

U − ε1 0.852 0.858 0.864 0.870 0.873 0.875 0.876 0.877 0.878 0.880 0.881 0.882 0.885 0.889 0.893 0.896
U − ε2 0.882 0.884 0.887 0.890 0.894 0.897 0.900 0.903 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905
U − ε3 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905
U − ε4 0.881 0.889 0.894 0.899 0.903 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905

U − εi

εi 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6 10.8 11.4 11.8 12.2 12.6 12.9 13 13.2

U − ε1 0.904 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905
U − ε2 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905
U − ε3 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905
U − ε4 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905

U − εi

εi 13.4 13.8 14 14.4 14.8 15 15.2 15.6 15.9 16.2 16.8 17.4 17.8 18.2 18.6 19.2

U − ε1 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905
U − ε2 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905
U − ε3 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905
U − ε4 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905 0.905


