

DEFINITION OF CROSS-DOMAIN INDEXES AND ORDERING

FUNCTIONS IN RELATIONAL ALGEBRA AND ITS USAGE IN

RELATIONAL DATABASE MANAGEMENT SYSTEMS

Ph. D. Thesis

Paulo Jorge Gonçalves Pinto

This thesis is submitted in partial fulfilment of the requirements for

the degree of Doctor of Philosophy

Software Technology Research Laboratory

De Montfort University

2010

Except as otherwise permitted under the Copyright, Design and

Patents Act 1988, this thesis may only be produced, stored or

transmitted in any form or by any means with the prior permission in

writing of the author. The author asserts his/her right to be identified

as such in accordance with the terms of the Copyright, Designs and

Patents Act 1988.

Declaration

I declare that the work described in this thesis is original work

undertaken by me between February 2004 and July 2010 for the

degree of Doctor of Philosophy, at the Software Technology

Research Laboratory (STRL), De Montfort University, United

Kingdom. It is submitted for the degree of Doctor of Philosophy.

Apart from this degree, no other academic degree or award was

applied for based on this work.

Publications

Two articles extracted from this thesis were published at University

Lusíada of Lisbon (Lusíada: Economia & Empresa, number 10

Series 2, ISSN: 1645-6750, August 2010).

P. Pinto, H. Yang, “Definition of sort function in relations and its

usage in Relational Database Management Systems”

P. Pinto, H. Yang, “Foreign Keys and Multi-domain indexing”

Acknowledgments

The researcher wishes to thank a group of people that could make this thesis

possible.

Among these people are, in first place for their support, the researcher's whole

family because they had patiently stood some bad humours and some lack of

personal availability whilst doing this research.

Following the family are all the researcher's working colleagues for their

patience and some tips in benefit of the present research.

Next and as important as all the previous is all the DMU personnel involved in

the researcher's travels from Portugal to the United Kingdom and back, namely,

DMU Housing, all the S.T.R.L. personnel.

At last, not for being less important but because the researcher wishes to make

a special acknowledgment, the first supervisor, Professor Hongji Yang mainly

for accepting the researcher's ideas and believing in the outcome of this

research since the first moment.

Definition of cross-domain indexes and ordering

functions in relational algebra and its usage in

Relational Database Management Systems

Abstract

In this thesis, a mathematical model that describes a “Unique Constraint

Domain” is defined. Following, the “Ordered Unique Constraint Domain” is also

mathematically defined. With those definitions, a cross-domain ordering is also

defined.

Then it is shown that relationships between tables in a Relational Database

Management System can be defined in other forms than the usual ways, using

cross-domain indexes, based in cross-domain ordering. It is shown that all

foreign keys in a database can be transformed in indexes with the benefit of

speeding data access. It is also shown that this technique is consistent with

actual modelling techniques.

It is shown how the index structure, with indexes defined as functions, can

provide support for relationship roles. In addition, it is also shown how this can

provide support for more than two tables in one relationship and for supporting

special sorting order. The addition of a mathematical function to a relation that

could sort that relation, demonstrating that the closure property of relations are

still kept, shows that this mathematical model can be used as extension of the

base relational model.

Next, it is shown that with this new technique, commercial database engines

should not degrade performance because all supporting structures are already

present and, in some cases, a better performance might be achieved.

Code for a prototype based in a Commercial Database Engine has been added,

as an annexe, to show how this new technique can be used.

Finally, future work can be done in this area considering that objects other than

text and number need to be sorted (e.g. images, videos, audio data) developing

new ways to find semantics to define order.

The major contribute is the mathematical definition of the “Unique Constraint

Domain” and the “Ordered Unique Constraint Domain” since they are

mathematical models for candidate and primary keys.

Table of Contents

Introduction ... 1

Research Methodology ... 4

The Research Question .. 6

General Review .. 7

Detailed Review .. 24

Ordered Unique Constraint Domain (OUCD) Definition 33

Cross-Domain Ordering Definition .. 39

Foreign Keys as Cross-Domain Structures ... 42

Definition of an Ordering Function .. 50

Definition of an Ordered Relation as a Structure with an Unordered Relation and

a Ordering Function .. 59

Proposed New SQL Keywords .. 61

Case Studies... 64

Object Oriented Databases ... 72

Prototype .. 76

Conclusions .. 83

Future Research Work .. 87

References.. 90

Appendix ... 99

List of Figures

Picture 1: A Relationship enforced with a foreign key 42

Picture 2: A Relationship enforced with the aid of an additional table 43

Picture 3: Full diagram with no foreign keys in the main tables......................... 44

Picture 4: Diagram with no connection tables ... 44

Picture 5: The Patient/Doctor/Room/Appointment problem 46

Picture 6: Doctor/Patient/Room with an Appointment Relation 47

Listings

Examples of SQL to manage relations .. 47

A simple database query .. 56

Solution to the second case .. 57

T-SQL Solution to the second case .. 58

 Introduction

 Page 1

Chapter 1

Introduction

When we look to raw data, no matter where it had come from a computer or it

was written in a piece of paper, we always have a first row and a last row [37]

(unless, of course, the list is empty, but then again, in this case, we have no

data to look to). The order that data is presented to us might or might not be

relevant, but in the case when it is relevant, we only have low-level

implementation of database engines to deal with ordering. There is little

support, theoretically speaking, for ordering data.

One of the most important things in Database Engines is to find data. However,

unless the data is sorted how can we find anything?

One way (which is very time consuming) is doing a full scan until we find what

we want, but, if we are dealing with large databanks, scanning all data might not

be feasible, at least, in useful time.

Improving how order should be treated, and providing mechanisms to achieve

independence between the Database Engines and how to order data should be

done, could be a good step to provide better relational engines with higher

compatibility levels.

In a scenario where all data ordering could be done by a defined set of rules

can, in the same way that SQL is a standard for language, software evolution

could be made easier with a larger set of standards to stand on.

Some authors already have addressed this issue, but from different points of

view. One of the approaches [37] is a pure SQL approach disregarding the

theoretical aspects of ordering. Another one [33] is a pure theory approach

disregarding some particular aspects involving data ordering. Although both

 Introduction

 Page 2

works are very important, they both seem incomplete when the whole scenario

of ordering is taken in account.

With these grounds, it might seem easy to pick up both approaches and “tie”

them together to make a sound and complete theory that could define, once for

all, how order should be made.

Unfortunately, it is not so simple, since there are some loose ends that must be

defined in first place. As a simple example, ordering domains is not the same as

ordering data (although every piece of data belongs to a domain) and on the

other side, ordering data does not always means that the domain is previously

ordered (such as random order).

The main purpose of this research is to make clear that order in relations is not

a trivial matter, since order can make any relation meaningful. Besides that,

since order can be viewed as a property of a given relation, we can indeed

prove that the mathematical structure composed by a relation and a given sort

order is different from the same relation with another sort order.

The sort order, later in this document, shall be defined through a function. This

function acts as a black box, taking as sole argument the relation and producing

an ordered relation as output.

This approach will allow that “ordering functions” could be implemented by

database engine and used to sort any relation that meets the requirements for

that particular function.

Order has been disregarded since the very beginning of the relational model, as

defined by Codd [8] mainly because the abstract relation didn’t need any sorting

and because every field on the databases (by then) were textual or numeric (as

seen by the examples provided in those documents).

 Introduction

 Page 3

But with the success of relational databases, end users wanted to store

everything inside those databases. Therefore, they started to store pictures,

videos, audio and many other objects. At first the objects were found by means

of textual or numeric data associated with them, as for instance, find an

employee given his number and then access to his/her photo, but not looking

for the photo itself.

The only way to perform a search in that kind of data was doing a full scan

retrieving every piece of data and comparing it to a given document. To search

for a matching photo of someone in a photography database, it will be

necessary to get every row and thus every photo. Then use some kind of

software outside the database engine that, according to a set of parameters,

would match both photos looking for a set of common point and decide if it was

a match or not.

The database engine only acts as a support for storing and retrieval but not

processing. Since the database engines cannot process this data, they are

unable to find anything of this kind.

The solution is to provide the engine for a function that applied to that data (and

the function must know the data) and return something that the engine knows

about: the sort order, meaning, and a sequence of numbers for that data. Then

converting any piece of data to a sequence number makes it searchable.

Therefore, this work may also provide grounds to search and find within non-

textual data, because, since the function is a black box, it can provide order to

the new types of data regardless of the relations where it come from. In this

context, since order for any type of data can be defined, search and find

becomes trivial.

Nevertheless, this it is the future work to be done when this part of this research

is completed.

 Research Methodology

 Page 4

Chapter 2

Research Methodology

The research area for this thesis was software engineering. This area is very

sensitive and therefore very rigorous in aspects such as safety, security, time to

solution and cost, among several other minor aspects. The main area of the

research falls into the field of constructive research since it began with the

observation of case studies and then a new theory was constructed.

The approach for the method that allows the theory to be demonstrated was a

typical scientific research technique based on several stages:

The first stage was, based on the observation of cases, the definition of the

research question.

After, during the first three years a general and specialized literature review was

done, in first place to find out if the research was truly innovative or if there were

already works on the subject, and also to provide background on the subject to

the researcher.

After the mathematical model that supports the theory was built and tested,

proving to explain all the cases in the study and beyond (universality of the

theory).

Then a modelling stage followed to achieve a practical usage of the theory,

proving that not only it solves the cases but also was technically feasible.

An algorithm based on the theory was built so that all the cases could be tested

and the responses to those cases could be evaluated.

After the algorithm was defined, it was necessary to implement it through a

prototype. The prototype was then tested against the cases and against other

hypothetical situations and proved reliable. The reason for the reliability was the

 Research Methodology

 Page 5

solidness of the theory. During the coding phase of the prototype, some

limitations were defined in order not to jeopardize the timing of the construction

and they were referred in the proper place.

Finally, conclusions were taken and, based on those conclusions a future work

goals were defined.

 The Research Question

 Page 6

Chapter 3

The Research Question

Observing day-by-day database use it can be easily verified that relations are

made useful when ordered.

Moreover, sometimes the use of order is mandatory. However, when looking to

the relational model as defined by Codd in the early 70’s order was not relevant

because sets are unordered by definition and a relation, being a set, does not

have to be ordered. Therefore, to a relation it is irrelevant how its data is

ordered.

“Why order is not defined in an abstract level and only used in practical

situations?”

Another questions followed that one:

“Is order important to be defined at an abstract level or the sorting that database

engines provide us is sufficient?”

“The knowing of order inside a data collection can or cannot be useful to the

underlying meaning of the data?”

“Is order more than just a sequence of data or can it have some more

meaning?”

“Can order be defined is some abstract way that can be implemented and

used by the database engines?”

And the last one was the origin of this research work.

 General Review

 Page 7

Chapter 4

General Review

Before starting this section is was stated that there is a great lack of literature in

this particular area (database sorting) mainly because ordering is already

provided by database engines and it’s suitable for most uses, and what was

found mainly were cases of uses of ordering within some “special” data. These

are countless and of reduced use or even of no use in this research, so they

were omitted.

On the other hand, some theoretical subjects stood as they were defined. It is

included in this category Codd's original paper and countless papers from that

epoch regarding mainly relational calculus, so some of the literature is quite old1

but, nevertheless, actual.

The following are the documents reviewed that were found with any benefit to

this research and in the following section, the most important reading besides

the latter will be detailed.

1
 In a matter of fact some of the readings are 30 years old or more, but still actual. One example

is a mathematical book
[23]

 whose theory is still applicable.

 General Review

 Page 8

Hall et al. (1975), in his paper called “Relations and Entities”[24], first treated the

fundamental concept of surrogate keys in detail. Surrogate keys are keys in a

common sense but they have some specific properties such as they are always

simple keys (never composite ones). Their values serve solely as surrogate

(hence the name) for entities they stand for, meaning that their values are only

for represent the fact that the entity exists and nothing else. Since they carry no

additional information, and finally when a new entity is inserted in the database

it is given a surrogate key value that has never been used before and will never

be used again even if the entity that it represents is deleted.

By definition, surrogate keys are used as primary keys. Since primary keys are

implemented as an index, data is fully ordered by the surrogate keys. In

addition, if no other order is specified in a simple query involving that data, it will

be presented by the order imposed by the surrogate key.

The use of surrogate keys is a relation occurs when a relation does not have

any clear candidate keys. In the relational model, all the tuples should make a

composite key, but that is not always feasible. The use of surrogate keys can

ease the burden of carrying several attributes to implement a foreign key. In this

case, a surrogate key, generally hidden from the eyes of the end user, could

replace a list of attributes composing a very large key.

A surrogate keys can be the result of an ordering function since the returning

values are unique, hence not needed to be defined elsewhere.

Although Codd has defined what a database should be in his first paper

(referred later in chapter 5), the concept of Data Model was defined in “Data

Models in Database Management” (June 1980)[9]. The main question addressed

in this paper is what purposes data models in general and the relational model

in particular intended to serve. The whole idea of defining what a database

should do before it was implemented is the foundation for a good model and

Codd, in this paper claims that the relational model was, in fact, the first data

model to be defined.

 General Review

 Page 9

In Date’s paper caller “Referential Integrity” (September 1981)[19] introduces the

concepts of referential integrity methods, namely CASCADE and RESTRICT

addressing the problem with the UPDATE and DELETE operations when

changes to a given primary key could bring the database to an inconsistent

state for keeping now invalid foreign keys.

This paper, for itself, alerts us for the problem of problematic foreign keys. Since

foreign keys are values from valid primary keys residing elsewhere, one must

always be aware if a certain foreign key always match its counterpart primary

key. Although there are no problem changing foreign keys, we cannot tell the

same about the primary keys that are referenced. Primary keys should be

handled with care since an update or a delete can cause a fatal error on a

reference on a table holding a foreign key for that primary key.

Nowadays most commercial database engines gives full support for referential

integrity, such as cascade delete or cascade update, but some of them don’t,

meaning that any approach that tends to improve how relationships amongst

tables should be defined could possibly reduce the number of errors by

misplaced foreign key values.

Another approach is, as it will be seen later, to build a structure that could hold

both keys identifying both tuples related. Since we are talking about two sets of

attributes that makes a primary key on their base tables, we are talking a about

a new index structure that could be used to implement relations based on a

relation dictionary.

Codd’s document called “Domain, Keys and Referential Integrity on Relational

Databases” (Spring 1988)[10] discusses the concepts of domain, primary key

and foreign key. In Codd's point of view, and despite he is the author of these

concepts, he thinks that a great deal of unresolved and unexplained issues are

still present. One of the major arguments in favour of the discipline of choosing

one candidate key to be the primary key is the need to define an addressing

 General Review

 Page 10

schema. This discussion is not final because surrogate keys are still matter of

further discussion.

As an example of that, Ambler [i11] shows advantages and disadvantages of

surrogate keys, such as natural keys having business meaning whereas

surrogate keys, by definition do not. On the other hand every attribute with

business meaning, such as natural keys, are subject to change in structure over

time. Such change in a primary key carries similar changes in all its foreign keys

cascading the problem and, in extreme, causing damaging downtime in a

database. Surrogate keys, since they have no business meaning are not

affected by change on business rules.

Still the advantages of surrogate keys are also approached by Walker [i12], in an

on-line article dated 2006, January, where he states that surrogate keys are

more stable than natural keys since they are immutable, hence the indexes

created are compact. These structures allow simpler join architecture (only one

attribute to join) and with faster performance due to the fact that indexes are

very compact.

Larson [i13], in 2011, January, also discusses the use of natural keys versus

surrogate keys pointing out the advantages and the disadvantages of each

approach. There are several comments about this on-line article clearly showing

that this discussion is still an issue not settled.

Negri et al, in their book called “Formal Semantics of SQL Queries” (September

1991)[32] said "(…) the semantics of SQL queries are formally defined by stating

a set of rules that determine a syntax direct-driven translation of an SQL query

to a formal model called Extended Three-Valued Predicate Calculus (E3VPC),

which is largely based on well-known mathematical concepts. Rules for

transforming a general E3VPC expression to a canonical form are also given:

 General Review

 Page 11

[in addition,] problems like equivalence analysis of SQL queries are completely

solved"2

However, SQL used in this document was the dialect defined on the first version

of the SQL (SQL/86).

The presence of null values has several problems, starting with it is not

contained in any domain of values generally defined for an attribute in a

database table, but it might still be used on attributes without the “NOT NULL”

constraint.

The null value should not be interpreted as a default value, as, for instance, “a

null value on the field PayDate means that the payment is not done” but (in this

example) as “the null value in the PayDate means that we don’t know when it

was paid if it was paid”. Thus, it would be preferable to define a “not known”

value for that domain or, even better, a “non paid date” to achieve the meaning

of the first sentence.

When an index is built, the null values constitute a problem since they are not

comparable to any other value in the domain because of the simple fact that

they do not belong to the domain. This generally means that entries with null

values should be discarded from the index, which, in turn, poses another

problem, which is the existence of rows without entries in the index.

This poses an awkward situation where null values, on one hand are used as

transactional values and on the other hand, they are treated as missing values.

Database engines implements the null value according to Codd’s definition [8],

but even Codd, later, proposed that the null value defined in SQL-93 should be

replaced by two null markers [12]. This approach was not generally accepted

because of the complexity added to the treatment of null values.

2
 Quoted from the abstract.

 General Review

 Page 12

It is generally accepted that a record that contains a null value in a field means

that is an object similar to other objects simply with an unknown value in a field.

Therefore, although database engines allow null processing, the sole operation

that should be allowed over nulls should be the test for nullity.

Date’s paper “A Normalization Problem” (1995)[17] shows a simple problem of

normalization and uses it to make considerations about database design and

explicit constraint declaration. Among other things, it calls one’s attention to a

"right" database design can seldom be decided based on the normalization

principles alone.

The normalization is very important to remove from the database redundancy

responsible for a great deal of anomalies in insert, update or delete operations.

However, normalization has a great cost in the implementation of a database

because the higher the normalization goes, the more tables are constructed

each one with a smaller level of redundancy. Nevertheless, to rebuild a

document, a greater number of tables should be joined together thru a greater

number of foreign keys to obtain the necessary data.

Proposing a new model for treating foreign keys, using indexes, then all we

have to do is invoke all the relations needed without having to specify all the

connection keys, as nowadays is needed.

Windom’s “Active Database Systems: Triggers and Rules for Advanced

Database Processing” (1996)[45] is actually a compendium of research and

tutorial papers on what the authors call "active database systems", meaning

database systems that automatically carry out predetermined actions in

response to specific events, triggered procedures as they are called nowadays.

Several descriptions are included for several prototype systems. The book

summarizes the relevant aspects of SQL/92, the then called SQL/3 (now

ISO/IEC 9075 – SQL[t11]) and certain commercial products like Oracle, Informix

and Ingres among others.

 General Review

 Page 13

In the book “Foundation for Object/Relational Databases: The Third Manifesto”

(1998)[13], Date and Darwen detail a rigorous proposal for the future direction of

databases and DBMS's. The book shows what should be (in the vision of the

authors) a DBMS design and the language interface to it. Some concepts are

there defined such as strong types in database fields and, accordingly what

operations could be possible with each data types. It is, then, a formal

document that proposes a more precise model (although relational) to manage

databases (a DBMS).

On this document, the authors defended that SQL should be abolished and

replaced by a language (called “D” in the document) that would gradually

replace the actual SQL. The main purpose is to eliminate from SQL all the “bad”

things it has such as allowing duplicate rows in a table, the use of null and

several other things not mentioned here.

They propose some prescriptions, some proscriptions and some “very strong

recommendations” prefixed “RM” when they derived from the Relational Model

or “OO” (meaning “Other Orthogonal”) when not derived from the Relational

Model.

Besides Chen's E-R model [6], the Unified Modelling Language (UML) is yet

another graphical notation to support the task of application design and

development, as defined by Reed’s book “The Unified Modelling Language

Takes Shape” (July 1998)[39]. It can also be used to develop SQL schemas. It is

more and more significant nowadays mainly because it has been adopted as a

standard by the Object Management Group (OMG) and it is already supported

by several commercial products.

UML supports the modelling of both data and processes but it does not say

much about integrity constraints. It is more concerned in representing data

structures as a snapshot (not in runtime) and a rigorous definition of the

processes that manipulate such data. The whole idea of the UML schema is to

bind behaviour (processes) to entities and describes them not just as a set of

 General Review

 Page 14

attributes but as an object. However, in the matter of integrity constraints it still

presents a gap.

In a communication for SIGMOD (1976) called “An Architecture for High-Level

Language Database Extensions”[21], Date tries to launch an informal approach

to a new high level language that could be used with all the major database

models at the time (relational, hierarchical and network). His idea was to have a

common construct so that any model could transparently use as its own. It was

partially focused on the programmer’s view of a database and its constructs and

functions could be easily be mapped in the concrete syntax of the most

common programming languages at that time.

Although this document it is not applicable nowadays, the concept of fully

ordered data for the datasets is still present, and used in this research.

Martin, on “Principles of Data-base Management” [30], a four-part book speaks

about database management and the interactions between rational information

systems and managers. The first part of the book takes us to a comprehensive

set of chapters justifying why corporate databases. The author explains to the

reader concepts such as data basics and categories of data usage. He

explains, also, some other concepts like flexibility and data independence as a

foundation for success corporate databases. Next, he talks about the new view

of data and its impact on the corporate information systems and finally he

compares operations system against information systems. On the second part,

Martin takes us through some logical/physical aspects of data organization.

These aspects includes schemas (and subschemas), tree and plex structures,

file addressing and searching. He also approaches some information about

relational databases and distributed databases. On the third part, the author

moves to database software (database management systems). He deals with

subjects as types of databases languages such as CODASYS data description

language and IBM’s Data Language/I. At last, he enters the chapter of Query

Languages, where he discusses some of the query languages existing then with

their advantages and disadvantages. On the last part Martin enters several

 General Review

 Page 15

considerations about management, namely about the roles of the Data

Administrator and Database administrators, information quality, security and

privacy. Afterwards the author speaks about management information systems

and how the management can benefit from it. At last, he writes about the impact

of new technologies in old corporate environments. His main concern in this

part of the book is the irrational resistance to rational systems, exposing the

main motifs for resistance from established circuits inside the corporations that

may lead to unsuccessful implementation of new systems. He then ends with a

small guide “to success” for new information system, written as a checklist with

the “dos” and “don’ts” in an implementation of a rational system in a large

corporation.

The concern for sorting relations with duplicate rows (called “multirelations” by

Lehman and Kung)[27], approached by Abdelguerfi and Sood in a paper called

“Computational Complexity of Sorting and Joining Relations with Duplicates” [1],

is important because it can lead to optimizations in database engines. When a

projection is made over a relation, in the result, since relations have the closure

property [8], is still a relation (and not a multirelation) duplicate rows should be

eliminated. Although “the attribute elimination phase of the projection operation

is computational inexpensive” the duplicate removal phase is more intensive

(according to the authors). In a matter of fact, the removal of duplicates implies

that that result must be sorted in order to get all duplicates together and only

one of each value could be copied to the output. This problem arrives mainly

with foreign keys where the table where they come have a small number of

rows and they relate with a great number of records in another table. We can

consider, for instance a table classifying customers with, for example, ten rows,

related to a customer table with, for example, ten thousand rows. Obviously

when we make a projection over the customer table getting the foreign key we

will have, at first, a multirelation with thousands of duplicate rows that needed

sorting and then elimination.

 General Review

 Page 16

On this paper, the authors have defined a model where the finding of duplicates

is optimized, and could be used to improve query optimizers within database

engines.

This problem is also addressed, with another perspective by Paulley and Larson

[35]. These researchers defined the misuse of the “DISTINCT” SQL clause,

implementing a method to find out if the “DISTINCT” keyword in a particular

query affects the results, case when not it will be discarded by the database

engine since it is not necessary. The same applies to nested queries with

unnecessary “DISTINCT” clauses. These researchers define a set of theorems

that allow database engines to analyse an input query and decide if the use of

the “DISTINCT” keyword is valid or not.

They also defined that in most cases sub-queries, as the ones specified by the

“EXIST” SQL clause can be transformed into joins allowing query optimizers to

perform an optimized join operation instead of a different sub-query. The

concepts in this document apply, according to the authors, to non-relational

databases as well.

In the scope of this research, although we must consider the existence of

duplicate values in some projections (needed, for instance, to build a composed

primary key), the research main issue is not the engine optimization.

Early books, such as the Delobel’s “Bases de données et systèmes

relationnels” [22], were written with the intention of clarify what was a relational

database and how conventional programs should interact with them. In the early

days, the relational databases were seen for most programmers as just another

repository of data. In this book is clearly stated how the DBMS was organized,

showing in a very clear way how the three database levels (external, conceptual

and internal) interact with each other and how the application programs should

interact with them. In another way, it was referred that even with low-level

access programs should not override rules enforced by the DBMS.

 General Review

 Page 17

Christment in his book “Prática de Bases de Dados” (Portuguese edition) [7]

compares several database management systems showing how each one

works. The author shows how the inverted model, based only in index lists

works, showing its strong and weak aspects. This model, entirely based on

indexes was poorly performing mainly because for each value was built a list of

indexes that, in turn, pointed to data. The author then showed how the

hierarchical model worked and how well it behaved when a parent-child access

was made and how poorly it behaved when a list of child (with no need for

parents) was needed. The author goes on and next it shows how the network

model tries to solve what the hierarchical model could not and how it works.

Finally, the author approaches the relational model, showing not also the

database model but also the mathematical model associated with it.

The technical book “Directions in Database Management Systems: Selection

and implementation” [t03] is a comprehensive document specifying how a

database management system should behave and lead us to a set of conditions

that one should verify in order to use a DBMS adjusted to one’s needs.

On Alagic’s book “Relational Database Technology” [2], the author does not

restrict his writings to the relational model but explores also, in comparison, the

hierarchical and the network model also. He deeply explains not only the

relational model but also the relational algebra showing in a very detailed way

all the set operations, the usual and the special ones. Further, he explains in a

very mathematical way what are functional dependencies and their types (trivial,

transitive, multivalued). The text is thoroughly filled with examples and graphical

images showing in a very intuitive way all that was demonstrated in

mathematical language on the text. This book is very clear (although it still uses

some terms later abandoned such as “time-varying relation”, nowadays

replaced by the expression “relvar” meaning “relation variable”, as defined by

Date [18]). Another interesting chapter is the one about distributed technology,

since nowadays, with the growth of communication technologies, distributed

transactions are beginning to take part of everyday’s work. In this chapter,

Alagic explains the architecture a distributed system, modeling it as “a set of

 General Review

 Page 18

nodes and a set of connections among them”. All the transaction modules and

database modules communicate in the set of connections through a

communication module that has the control over the individual transactions on

the involving databases. He then explains what Serial Distributed Execution

(where every transaction preserves the integrity constraints) and Nonserial

Executions are. He explains what Distributed Query Processing is explaining

what strategies should be adopted to achieve a distributed query with a minimal

cost (as defined for every single transaction). Distributed updating of the

database is also approached, in this case with special care because of the

possibility of rolling back a transaction that has already finished in one of the

nodes.

In Stanczjk book “Theory and Practice of Relational Databases” [42], the author

approaches some good practices regarding database design, namely

normalization which he explains as a general method to solve the problem of

finding better relations that are free of anomalies, such as insertion, update and

delete anomalies. He explains in detail, first in mathematical terms then with

database samples all the normalization steps, eliminating relation attributes,

and reaching first normal form. Moving forward, detecting functional

dependencies on parts of composite keys, projecting them into new relations,

and so reaching the second normal form. The author skips directly to the

Boyce-Codd Normal form (skipping the third normal form) since the Boyce-

Codd normal form supersedes the 3rd. He explains that a relation where every

determinant is a key is in the Boyce-Codd normal form. Then the author moves

towards the higher normal forms considering the multivalue dependencies and,

if they are not functional dependencies, they should be decomposed in order to

verify that, and reaching the fourth normal form. After, he approaches the fifth

normal form, verifying join dependences and decomposing the relation in a set

of relations that can verify that there are no join dependencies. In this last

normal form, unlike the others, there are no set of axioms that are sound and

complete was found, so finding join dependencies in a relation can be a very

time consuming task.

 General Review

 Page 19

The next book (Database: structured techniques for design, performance and

management) [3], Atre describes a set of techniques to efficiently design a

database. However, he does not rest on the design and he approaches a group

of techniques to improve performance on the database design. He then takes

us through the “mechanical” problems with database physical implementation

such as backup policies, reorganization of the database files, restructuring data

in order to improve performance, monitoring performance and tuning the

database, such as adding indexes to speed up frequent operations. He also

considers approaches to performance regarding transactions with the use and

control of checkpoints, in such a way that if a crash occurs in a database a

transaction can be resumed from the last checkpoint instead of being replayed

from the beginning. He also approaches techniques for accessing data in the

physical store, considering different needs (sequential, direct with pointers). His

main concern is the optimization of data access through several means.

Date, on his book “A Guide to SQL Standard” [20], presented us with a complete

guide to SQL, starting with the Data Definition Language, covering the design of

the schema, the DDL keywords and its syntax and approaching themes like

constructing views, procedures, modules, and so on, going through the Data

Manipulation Language with its keywords and syntax. On the very first chapter

the author explains thoroughly “why is SQL important” (in his own words)

showing the fact that a standard language for data creation and manipulation

can improve communicability among different database systems and reduce

training costs because the programmers can adapt their source code to new

database engines without significant changes on database access.

In “Data Base Management Systems”[44], Tsichritzis and Lochovsky presents

this book as a manual for advanced students and divides it in two parts. The

first part (divided in nine chapters) is a more theoretical approach with the study

of the relationships between the Information Systems and Database

Management Systems. It follows a chapter concerning Data Models (the

network data model and the relational data model) then a chapter about Data

Languages (Network Selection and Relational Algebra). He then defines what a

 General Review

 Page 20

Database Management System should present, as facilities, namely the ability

of defining schemas (and associated sub-schemas). The next three chapters

are a comprehensive study of the most popular (at the time) database systems:

the hierarchical, the network and the relational system. The authors concludes

this part of the book with several considerations about the database

management systems implementation approaching, again, the most popular

implementations, i.e., the hierarchical, the network and the relational database

management system. They conclude this part with the operational requirements

of any Database Management System, namely about security, integrity,

concurrency and performance.

The next set of chapters is intended to have a more practical content than the

previous, since they are mainly composed with database management systems

samples. They use several real database engines to explore and test the

samples that were used to explain the theoretical concepts of the first part. The

authors use the Information Management System (IMS), a hierarchical system

from IBM, the MRI System 2000, also a hierarchical system from MRI Systems

Corporation, the Integrated Database Management System (IDMS), a network

system from Cullinane Corporation, Total, also a network system from Cincom

Systems, Inc. and, at last, Adaptable Data Base System (ADABAS), from

Software AG, which uses sets of “flat-files” that can be coupled to each other

through a common attribute. The way in which files are linked to each other can

define databases according to the hierarchical or network model.

Inmon, in his “Effective Data Base Design” [25], tries to approach the main

problems that rise from building database applications, with “recurring pattern of

very serious problems”. This book is mainly written for IMS users, hence

hierarchical database users, but some types of problems referred in this book,

along with some new ones are applicable to the relational model of data. This

book was written for a broad audience since the author tries to reach the

professional audience, such as managers, data administration personnel, data

analysts, application personnel for example, along with academic audience

because some topics of interest for that community are addressed such as data

 General Review

 Page 21

base design, data elasticity and the achievement of flexibility in data base

design.

Martin, in his course book “Computer Data-Base Organization” [31], in Part I he

takes the reader through the concepts of logical organization of database

elements such as schemas and sub-schemas, entities and attributes, data

models and DBMS (Database Management Systems). He uses these concepts

to integrate them with the purpose of database organization. Afterwards he

goes through a set of chapters regarding data structures definition, namely Data

Description Languages, CODASYL, IBM’s Data Language/I and relational

databases.

Within the field of data structures, the author explains normalization (third

normal form) and canonical data structures. These canonical data structures

are, in concept, the seed for the conceptual level in a database management

system since, according to the author, the data structures should be application

independent. He defines a set of rules to help to determinate which attributes

depends on what, hence helping the normalization task. The author ends Part I

with the varieties of data independence where he points out the advantages and

disadvantages of data independence.

In Part II he deals with the physical organization (and differences to logical

organization) of the database elements, dealing with matters such as

addressing, sequential indexes organization, pointers, chains and ring data

structures and tree structures, among other structures. He approaches, through

a set of chapters, techniques for searching (index searching), multiple-key

retrieval, inverted file systems, data compaction and memory management

(virtual memory, virtual memory hierarchies, virtual storage, volatile files and

associative memory)

Another source of information was the documentation accompanying the

database engines. Several books concerning how commercial (and some non-

commercial) engines behaves were very important.

 General Review

 Page 22

 “Programming Microsoft SQL Server 2005” [t02] from Brust, “Inside Microsoft

SQL Server 2005: Query Tuning and Optimization” [t04] and “Inside Microsoft

SQL Server(TM) 2005: The Storage Engine” [t05] from Delaney, Professional

SQL Server 2005 Integration Services (Programmer to Programmer)” [t13] from

Knight, and the more recent “Inside Microsoft SQL Server 2008: T-SQL

Querying” [t01] from Ben-Gan are technical books that allows us to have a glance

at a commercial database engine (Microsoft’s SQL Server, versions 2005 and

2008) and mainly are reference books for some particular aspects of that

database engine.

In the very some way, “MySQL Cookbook” [t07] and “MySQL (4th Edition)” [t06]

from Dubois, “MySQL Stored Procedure Programming” [t08] from Harrison and

Feuerstein, “Understanding MySQL Internals” [t17] from Pachev and “MySQL

Administrator’s Guide and Language Reference (2nd Edition)” [t16] from MySQL

AB were mainly reference books for the Open Source Database Engine

MySQL, that allowed a very comprehensive look at the low level programming

of that engine.

Other engines internals (namely Informix and DB2 from IBM) were also

considered as a source of information for this research, namely the

“Programming Informix SQL/4GL: A Step-By-Step Approach” [t12] by Kipp,

“Informix SQL Reference Library” [t09] by Informix Software, “DB2 Developer's

Guide” [t15] by Mullins and “DB2: The Complete Reference” [t14] by Melnyk and

Zikopoulos.

Besides the printed resources, on line resources were also considered. Some

web sites contained relevant material for this research namely, Microsoft’s web

site [i01], IEEE web site [i02] (where some of the referenced documents were

found), Oracle’s web site [i03], Postgres web site [i04] and MySQL web site [i05].

Regarding OODB the ODBMS[i07] website was the root of information and

search. Every single link on this site was followed and some documents were

retrieved that helped this research. This particular site is dedicated to Object

 General Review

 Page 23

Oriented Databases Engines and some relevant documentation was found.

Since this research is mainly about relational databases and RDBMS,

researching deeply in object-oriented databases could be part as future work,

since the model defended here can be applied to ODBMS. For the moment, the

documentation found in this site was enough.

In the field of online resources, the search engines proved to be a very

important resource for finding information. It is not possible to mention every

piece of material that was found in the Internet with some interest but not used

directly.

This includes tips for developing code when the researcher was developing his

model, small snippets of code (quoted whenever possible) and so on.

The database engine manufacturers were particular relevant in order to choose

what database engine would be suitable for testing the model. This represented

a significant part of the research although the content is not included or

referenced elsewhere in this document mainly because they addressed

technical issues related with the functioning of the database engine but not

directly with the issue addressed with this research.

 Detailed Review

 Page 24

Chapter 5

Detailed Review

In Codd’s base document – “A Relational Model for Large Shared Data Banks”

(June 1970)[8] – the relational model is defined, the principles of data

independence are enumerated and a high-level language is defined so it can

use that data independence. Furthermore, it is demonstrated that the relational

model is superior in concern to abstraction than other existing models at that

time. In this document is clearly stated that “ordering dependence” should be

avoided, meaning that programs should not depend on stored ordering, but in

the other hand “order of presentation” is not a dependency and in most systems

“(…) fail to make a clear distinction between order of presentation on one hand

and stored ordering on the other”.

The concept of “normal form” is also defined in such a way that nonsimple

domains could be eliminated from the final relations making the whole relational

model more flexible since redundancy could be eliminated whilst preserving all

data needed to represent some reality.

In this document, operations with relations are defined. Some of these

operations – permutation, projection, join, composition, restriction – are the

foundation of SQL itself since SQL implements some of these operations as

defined here.

In “The Relational Model for Database Management Version 2” (1990)[12], Codd

enlarges what was defined in the previous document after about ten years of

development of the relational model. In the first document only structure,

integrity and manipulation was defined as the result of an approach to deal with

a specific problem – definition and manipulation of large databanks. In this book

all aspects of the database management system is approached. The book

contains eighteen parts (instead of three of the first book) and addresses each

 Detailed Review

 Page 25

on of them so that a full relational database management can be clearly

defined.

The eighteen parts are: Authorization, Basic Operations, Catalogue, Principles

of DBMS design, Commands for the DBA, Functions, Integrity, Indicators,

Principles of Language Design, Manipulation, Naming, Protection, Qualifiers,

Structure, Data Types, Views, Distributed Database, Advanced Operators.

Codd’s main concern in both documents was to define the relational model in

such way that could be implemented by the industry with strict rules of

operation. After the first document, along with some true relational database

engines a lot of so called “relational” software was released without been truly

relational even after Codd has published his “12 rules” [11] as a guide to truly

relational database engines.

This document brought a set of rules that must be abided to a database engine

can call itself relational. With this document most of the so called “relational” just

disappeared from the market. The ones who did not disappeared have dropped

the “relational” on its name.

In this document, and in order to be precise, some practical aspects were

omitted such as sorting or indexing data. By 1990 (when this latter document

was written) databases mostly contained “textual” data, meaning text and

numbers but not multimedia or binary objects. With domains that were subset of

ordered domains such as text or numbers, sorting data was never a problem.

Indeed data has been sorted on programs even before the definition of the

Relation Model. However, with the evolution the lack of theory to sustain order

began to appear more clearly, because another type of data is being held in the

databases. In addition, that data needed to be found on its own and not by the

means of “descriptive fields” that are no more than findable texts connected to

“unfindable” data.

 Detailed Review

 Page 26

A relation (according to Codd’s definition) can have any order on the tuples. It is

true. But, back then, it was possible without hassle to sort and find data

independently from the definition. Today we have more data types and a

growing need to order it and to find within it. Therefore, the relational model

must be extended to incorporate order but in such a way that the base model

holds and the extension does not pervert those principles.

In another fundamental paper – Chen’s “The Entity-Relationship Model –

Toward a Unified View of Data” (1976)[6] – a data model, called the entity-

relationship model, is proposed. This model incorporates some of the important

semantic information about the real world. A special diagrammatic technique is

introduced as a tool for database design. An example of database design and

description using the model and the diagrammatic technique is given. Some

implications for data integrity, information retrieval, and data manipulation are

discussed. The entity-relationship model can be used as a basis for unification

of different views of data: the network model, the relational model, and the entity

set model. Semantic ambiguities in these models are analyzed. Possible ways

to derive their views of data from the entity-relationship model are presented.

This document is a proposed path for turning the abstract relations of the

relational model into practical databases. Although is not in the scope of this

research, a possible future work, or even a side paper could propose an

adaptation of these diagrammatic techniques to incorporate ordered entities.

Date’s “An Introduction to Database Systems – 7th Edition” (2000)[18] is divided

in six major parts: Basic Concepts, The Relational Model, Database Design,

Transaction Management, Further Topics, and at last, Object and

Object/Relational Databases.

Each part, in turn, is divided in several chapters. Part I (Basic Concepts) is an

introduction to the database systems concepts in general. Also the relational

model as a particular model is approached along with SQL[t11], the standard

database language. Part II (The Relational Model) gives a very detailed

 Detailed Review

 Page 27

description of what is the relational model showing that this model in not only

the theoretical foundation for the relational model but for database field in

general. Part III (Database Design) discusses the database design, mainly

describing the normalization process and, in the last part, the Chen's entity-

relationship model[6]. Part IV (Transaction Management) is mainly concerned

with the management of transactions, namely recovery and concurrency. Part V

(Further Topics) talks about several other aspects of databases technology not

found in other chapters, namely, security, distributed databases, temporal data,

decision support among others. Part VI (Object and Object/Relational

Databases) shows the impact of object technology on database systems

(namely on relational database systems). In the last chapter, a rapprochement

between object and relational technologies is considered and a object/relational

system is discussed. This topic was later approached in another book[13].

Professor Braumann’s book “Teoria da Medida e da Probabilidade” (1987)[4]

starts with some general considerations and then he moves on to the study of

the six main operations concerning sets contained in a common space and the

study of some associations made by some of these operations.

Next, the book deals with the main operations concerning sets from different

spaces and the deductions of formal properties. The next section of the book

starts with the restriction to a sub-space because it will demonstrate some

properties that otherwise would be very difficult to demonstrate. The study of

the Cartesian product of sets follows and some particular aspects deserves

particular attention. The projection operation (among sets) is studied next,

having in account the geometric representation of such operation.

The book the follows with the definition of set classes contained in a space.

The most important are reviewed namely the algebras and the -algebras.

The additive decompositions of a measurable space (,A) are studied next and

this chapter ends with the study of the Borel line.

 Detailed Review

 Page 28

The book continues with several aspects related with the multi-dimension Borel

spaces. Chapter III starts with the generic study of measurable functions and

continues with the detailed study of such functions and borelian functions.

The book ends with the use of these definitions in the classical study of real and

complex numbers.

The definition of algebraic structures is important because relations are sets

and since they are sets with the operations defined (such as union and

Cartesian product) they prove to be true -algebras. In this manner, the book

can give a more precise math view over the relational model. The properties

found for the algebras, namely the closure property are, in this book, clearly

demonstrated.

In “An Extension of the Relational Database Model to Incorporate Ordered

Domains” (September 2001)[33], Ng extends the relational data model to

incorporate linear orderings into data domains, which he called the ordered

relational model. The conventional Functional Dependencies (FDs) are

examined in the context of ordered relational databases by using the notion of

System Ordering Independence (SOI), which refers to the desirable scenario

that the ordering of tuples in a relation is independent of the implementation of

the underlying DBMS. The author also extends Armstrong's axiom system for

FDs to object relations, which are a subclass of ordered relations that allow him

to view tuples as objects. He formally defines Ordered Functional

Dependencies (OFDs) for the extended model by means of two possible

extensions of domains, pointwise-orderings and lexicographical orderings. He

first presents a sound and complete axiom system for OFDs in the case of

pointwise-orderings and then establishes a sound and complete set of chase

rules for OFDs in the case of lexicographical orderings. His main result shows

that the implication problems for both cases of OFDs are decidable, and that it

is linear time for the case of pointwise-orderings.

 Detailed Review

 Page 29

The author does not solve in a simple manner the problem of changing the

ordered domain for a given set of attributes (e.g. random ordering) neither the

problem of adding new values to a domain along with new data, rebuilding the

entire ordered domain.

This approach is an approach to domains and defined how a domain can be

ordered. But although data belongs to certain domain, data extracted from a

domain can have duplicate values so we need something else to order that

data. On the other hand, although abstract, the domain has some kind of order

and there must be a definition for that order. To have the same data randomly

obtained each time a query is issued it means that we have to change the

domain every time. This is never addressed in this document.

Nevertheless, the axiom system developed by the author is a main piece for this

research development, since the ordered domains are used to sort data when

certain conditions are met.

In another document dated 1998 (“SRQL: Sorted Relation Query Language) [37]

the authors start to address the problem that SQL does not properly answers

questions such as moving averages because the language can not support “rich

class of queries”. Therefore, they approach the concept of “sequence” in order

to implement ordered relations (at database level) and use these relations

seamless with the “unordered” ones. This model great advantage is, according

to the authors, “[…] is that queries involving relations and sequences are easier

to express”. This advantage is, namely, over previous approaches such as the

new ADT or EADT.

Although the authors have defined a new set of operators to extend the

relational model with a new group of relational operators (Sequence , Shift ,

Shiftall and WindowAggregate), this extension only addresses how order

can be handled but not how it can be defined. The proposed SQL keyword

“SEQUENCE” acts as a variant of the “ORDER BY” SQL clause without really

defining in a higher form how order should be created (it has a similar syntax as

 Detailed Review

 Page 30

the “ORDER BY” keyword). Nevertheless, the proposed handling addresses the

manipulation of order, but still keeps open the gap where order should be

defined. Now we know how to handle a random order, but we still do not know

how to create it.

In another communication (“Sequence query processing” in Proceedings of the

ACM SIGMOD Conference on Management of Data) [38] the authors addressed

how database engines could be optimized to deal with ordered data thus

defining a complex model for query analysis and optimizations but leaving aside

how order can be built in the first place.

These authors do not address non-textual data as a source to ordering. Nor the

semantic order is addressed. These documents, although they tried to

implement new SQL words more functionality, do not address higher issues,

such as domain orderings (as opposed to Ng [33]) with its consequent lack of

generality. The underlying model might be considered superseded by Ng’s

work.

ISO/IEC 9075[t10] defines the SQL language. The scope of the SQL language is

the definition of data structure and the operations on data stored in that

structure. Parts 1, 2 and 11 encompass the minimum requirements of the

language. Other parts define extensions. The asterisk means a group of related

documents described next:

ISO/IEC 9075-1:2003 describes the conceptual framework used in other parts

of ISO/IEC 9075 to specify the grammar of SQL and the result of processing

statements in that language by an SQL-implementation.

ISO/IEC 9075-2:2003 defines the data structures and basic operations on SQL-

data. It provides functional capabilities for creating, accessing, maintaining,

controlling, and protecting SQL-data. Both static and dynamic variants of the

language are proved. In addition to direct invocation, bindings are provided for

the programming languages Ada, C, COBOL, FORTRAN, M, Pascal and PL/I.

 Detailed Review

 Page 31

ISO/IEC 9075-3:2003 defines the structures and functions that may be used to

execute statements of the database language SQL from within an application

written in a standard programming language in such a way that the functions

used are independent of the SQL statements to be executed.

ISO/IEC 9075-4:2003 specifies the syntax and semantics of statements to add

a procedural capability to the SQL language in functions and procedures. It

includes statements to direct the flow of control, define variables, make

assignments and handle exception conditions.

ISO/IEC 9075-9:2003 defines extensions to SQL to support management of

external data using foreign-data wrappers and datalink types.

ISO/IEC 9075-10:2003 defines extensions to the SQL language to support

embedding of SQL statements into programs written in the Java programming

language (Java is a registered trademark of Sun Microsystems, Inc.). In

addition, it specifies mechanisms to ensure binary portability of resulting

applications.

ISO/IEC 9075-11:2003 specifies an Information Schema and a Definition

Schema that describes the structure and integrity constraints of SQL-data, the

security and authorization specifications relating to SQL-data and the features

supported by an SQL-implementation together with other sizing information.

ISO/IEC 9075-13:2003 specifies the ability to invoke static methods written in

the Java programming language as SQL-invoked routines and to use classes

defined in the Java programming language as SQL structured user-defined

types. (Java is a registered trademark of Sun Microsystems, Inc.)

All the previous documents were revised in 2005 and eight other documents

were published with several amendments to its predecessors made. Those

documents were named "/Cor 1:2005" after their original name. The final names

for these four documents were: ISO/IEC 9075-1:2003/Cor 1:2005, ISO/IEC

 Detailed Review

 Page 32

9075-2:2003/Cor 1:2005, ISO/IEC 9075-3:2003/Cor 1:2005, ISO/IEC 9075-

4:2003/Cor 1:2005, ISO/IEC 9075-9:2003/Cor 1:2005, ISO/IEC 9075-

10:2003/Cor 1:2005, ISO/IEC 9075-11:2003/Cor 1:2005 and ISO/IEC 9075-

13:2003/Cor 1:2005.

ISO/IEC 9075-14:2006 defines ways in which SQL can be used in conjunction

with XML. It defines ways of importing and storing XML data in an SQL

database, manipulating it within the database and publishing both XML and

conventional SQL-data in XML form. In addition, it provides facilities that permit

applications to integrate into their SQL code the use of XQuery, the XML Query

Language published by the World Wide Web Consortium (W3C), to

concurrently access ordinary SQL-data and XML documents.

All document definitions, except for the correction ones, are the documents

abstracts as published by ISO and found on the site http://www.iso.org

 Ordered Unique Constraint Domain (OUCD)

 Page 33

Chapter 6

Ordered Unique Constraint Domain (OUCD) Definition

Previous works dealt with data domains that were “partially ordered” [33] but to

build a true strict total order we need a fully ordered domain. Although the

domain can be or not fully ordered, the data that belongs to that domain must

also be fully ordered. This means that it should be possible to extract from a

lattice order a subset with total order. We know that in a data domain every

value only appears once because the domain holds the possible values for the

underlying data [8] and for some domains, it is possible to extract a subset fully

ordered. These are the domains chosen for keys.

Therefore, it is possible to have a fully ordered domain but the uniqueness of

the data from that domain presented in a relation does not hold. An example of

that is a foreign key. Although its domain is fully ordered, (after all it is the

primary key somewhere), it may show duplicates on a concrete relation. It is

sufficient that the foreign key implements a “one-to-many” relationship to be

possible to show up more than once.

To guarantee that data can be fully ordered it is important that each element of

the domain only appears once or none. Only with this condition, we can have a

fully ordered dataset, or, in other words, we can have a unique constraint over

that data.

A “Unique Constraint Domain” (UCD, from this point forward) is a domain that,

in a particular case of a given relation, returns only a given value for an attribute

just once. The domain itself can be or not a UCD depending on the relation

where it is used.

An example is a primary key and its foreign key. On the relation where the

attribute is the primary key it is a UCD since each value appears only once (the

values are a subset of the domain) whereas the same domain in another table

 Ordered Unique Constraint Domain (OUCD)

 Page 34

as a foreign key might appear with duplicates. In the latter, the domain is not a

UCD because the values could appear more than once.

Let us consider a Domain D. Let us consider ad as an element of domain D.

Let us consider a relation R. Let us consider an attribute AR belonging to the

relation R. Consider a value Va as an occurrence of the element ad in AR

The following statement is true for all relations:

However, the following statement is true only for a UCD in that relation.

 () ()

That means that all values are unique in that particular relation and can identify

any occurrence. It can be stated that all candidate keys belongs to an UCD.

In addition, we can always define order in that UCD, by defining an ordering

function (even a random one) case when every ad has a position (rank) inside

the domain (verifying all the properties for strict total orders). In this case, we

have an Ordered UCD (OUCD). The properties of such function are addressed

in chapter 9.

The rank of each tuple of the UCD should be provided by a function that we will

call forward the “ordering function” or simply “function” when the context will

allow without any ambiguities. The properties of such function will be addressed

in chapter 9.

To be an OUCD, besides being a UCD each ad must obey to the following rules:

 ad1 < ad2 and ad2 < ad3 then ad1 < ad3 (transitive property)

 ad1 < ad2 or ad2 < ad1 (linear property)

 Ordered Unique Constraint Domain (OUCD)

 Page 35

Opposite to order sequences, the anti-symmetric property never occurs

because ad1 is always different from ad2, so it can never be verified.3

 If ad0 is the smallest element () then adn <

ad(n+1) for every n. If ad0 is the largest element (

) then adn > ad(n+1) for every n

Since D is a domain, it is assumed that there are no equal values because all

elements of the domain are different hence they have different values. All

elements compared to each other are either lesser or greater. One element can

only be equal to itself.

These properties in conjunction with the impossibility of having duplicate values

(by the definition of a domain) make the OUCD a fully ordered domain.

Primary keys on tables on databases are attributes that belong to an OUCD, so

they can be ordered by their values on its domain.

UCD’s and OUCD’s can be classified in reducible and irreducible ones. If the

domain is composed with more that one composing domains, there might be a

smaller set of domains that can still be a UCD (or an OUCD). In this case, we

call the UCD reducible. In the decomposition, at least a set of the resulting

domains will be a UCD. If it is not possible to decompose without loosing the

UCD definition then the UCD is irreducible.

Since the primary key (or any candidate key) of any relation is the “smallest set

of attributes the can identify an occurrence” [18], then it is an irreducible UCD.

When we combine any domain from any other attribute with that UCD, we

create a newer UCD, only this new one is reducible.

Let us demonstrate

3
 The anti-symmetric property states that ad1 < ad2 and ad2 < ad1 then ad1 = ad2

 Ordered Unique Constraint Domain (OUCD)

 Page 36

An UCD, as stated, is defined by: () (

). Let us assume that the domain D is irreducible.

Let us consider another domain D’ with the values ad’. The composition of a new

domain which we call DD’ and it all its values are result of a Cartesian product

from each domain and represented as add’ meaning we have an ad element

from the first domain and an ad’ from the second. Since the domain only holds

unique values, the domain resulting from a Cartesian product are still unique.

Let’s assume that the value add’ is equal the value aed’, meaning that duplicates

in the resulting domain could appear. Since ad’ is equal in both expressions, the

values ad e ae must be equal so the statement that add’ is equal to aed’ holds.

Since in each composing domain there are no duplicate values, the only way of

ad be equal to ae is if they are the same. And if they are the same, there is no

possibility of add’ can be equal do aed’ if ad is different from ae.

Is also easy to prove that the same principle occurs on the D’ domain, so we

consider proved that the result of a Cartesian product over two domains is yet

another domain. And if the elements of DD’ are unique, any subset holds

equally unique values, so any subset of DD’ is a data domain. This is what

occurs when a composite primary key is made of primary keys, such as a key

for an association many to many between relations.

But, do we have always a UCD defined in a relation? The answer is yes. Let us

suppose that we could not define a UCD in a relation. The UCD cannot be

defined only if there is no set of attributes that could provide a unique

combination so the values in the domain would appear only once. If that could

not be guaranteed then we cannot guarantee that every row is unique (since

there are no set of attributes that provides uniqueness) so it was not a relation,

according to the Relational Model definition of a relation [8].

Another important property is that any subset of data from an OUCD is still an

OUCD.

 Ordered Unique Constraint Domain (OUCD)

 Page 37

Let D be an OUCD. For the domain X to be an OUCD is must be over a relation

R and over some of that Relation attributes.

By definition () (), because D

is an UCD and ad1 < ad2 and ad2 < ad3 then ad1 < ad3 and also ad1 < ad2 or ad2 <

ad1 because it is ordered (OUCD).

A subset of an OUCD is also a Domain, because any subset of a set with

unique values has also unique values, hence being a domain. We will call that

subset D0.

It is always possible to create a subset in the relation that the values of the

attribute A which belongs to the OUCD are all part of the domain D0, excluding

all the other tuples where their values of attribute a does not belong to D0. This

represents a new relation because it is the result of a selection operation over

the primitive relation. We will call that relation R0. Let us consider an attribute AR

belonging to the relation R0. Consider a value Va as an occurrence of the

element ad in AR

The expression () () still

holds because every value of the domain is either present once in the values of

the attribute A in the relation R0 or is not present at all.

Since every value of the domain D0 is also a value of the domain D the

properties for each element holds so ad1 < ad2 and ad2 < ad3 then ad1 < ad3 and

ad1 < ad2 or ad2 < ad1 where ad1, ad2 and ad3 belongs to the domain D0.

This proves that the subset D0 of an OUCD is also an OUCD over a subset of

the relation R. Since there were no restrictions how the subset was created, this

is valid for any subset of an OUCD.

 Ordered Unique Constraint Domain (OUCD)

 Page 38

Also the subset of D defined as () meaning that all

values of D0 exists on data and excluding the elements of D that are not present

in data is an UCD. If D is an OCUD then D0 is also an OUCD.

Therefore, since any subset of the relation created by the selection operator is

also a relation, the values the attribute A are also a subset of the values of the

attribute A in the primitive relation, hence holding unique values, we can always

construct a subset of the original domain D where (

) holds, this subset is an UCD. If D on the primitive relation was an OUCD

then this subset is also, by definition, an OUCD.

 Cross-Domain Ordering Definition

 Page 39

Chapter 7

Cross-Domain Ordering Definition

A cross-domain ordering occurs when a composite key from two different

domains are merged into a single irreducible OUCD.

Each candidate key (single or composite) has its attributes belonging to, at

least, an OUCD, since they are unique. The primary key, by definition, only

belongs to a single irreducible OUCD.

If the primary key attributes belonged to more than one OUCD, which would

mean that different combinations of the composite attributes would belong to

different OUCD (a single attribute must only belong to a single OUCD).

In this case, at least one subset of the key would belong to an OUCD hence

being a smaller attribute combination than the primary key that truly is an

identifier. This is incompatible with the definition of primary key, which is the

“smallest set of attributes that can identify an occurrence” [18], or, as it can be

redefined, the “smallest set of attributes that composes an irreducible OUCD”.

When two foreign keys are merged together to compose an irreducible OUCD

as, for instance, the key for the association between Authors and Books (an

“Author” writes many “Books” and a “Book” might be written by several

“Authors”) although in the association relation none of the keys belongs to an

OUCD, they constitute a cross-domain ordering.

Now we can define a cross-domain ordering as an OUCD composed by two or

more domains. This new OUCD can be irreducible if the domains that compose

it are not. If at least one of the domains that compose that OUCD also belongs

to another OUCD that would mean it would be a decomposition of that domain

making it a reducible OUCD.

 Cross-Domain Ordering Definition

 Page 40

This property is useful when we need to extend our order to more than one

domain, but we do not want to loose the identity of the relation. We can leave

the primary key untouched and build a unique index based on a reducible

OUCD that can provide us what order we need.

We can, therefore, use OUCD, building them as indexes, from data and use all

the properties of the OUCD to find, locate and use data inside a relation, no

matter what kind of data we are using. This is true regardless of the type of data

is involved in the definition of the OUCD.

Now we can use Ng definition of OFD’s [33] to combine data at the data level,

making a truly ordered dataset as a result.

All data is presented in some kind of order [37] so when we look at a dataset, this

dataset has an OUCD that orders it.

Formally, () ()

where add’ is the composed value of the DD’ domain and Vab is a composed

value from the composition of attributes A and B belonging the relation R (ABR)

For DD’ to be an OUCD it must hold true the following statements:

 add’1 < add’2 and add’2 < add’3 then add’1 < add’3 (transitive property)

 add’1 < add’2 or add’2 < add’1 (linear property)

 If add’0 is the smallest element (

) then add’n < add’(n+1) for every n. If add’0 is the largest element

() then add’n > add’(n+1) for every n

The way in which we define “add’n < add’(n+1) for every n” or “add’n > add’(n+1) for

every n” may or may not depend on the base domains of each attribute. This is

not relevant since ordering the composed attribute might not be the same as the

ordering of the base attributes, if there was any order on the base attributes. It

 Cross-Domain Ordering Definition

 Page 41

must be defined on its own. We can assess this just by composing two distinct

OUCD simply by switching the base attributes.

For instance, in the Book-Author model building an OUCD with

BookID/AuthorID would result in an OUCD different than the one built with

AuthorID/BookID. Although both hold the same data, although both are OUCD,

the first one represents the list of author for each book and the second

implements the list of books per author.

 Foreign Keys as Cross-Domain Structures

 Page 42

Chapter 8

Foreign Keys as Cross-Domain Structures

The Entity-Relation model, as presented by Chen in the early 70’s [6], stood as

an independent model to represent conceptual entities and the relations

amongst them. It is independent because, regardless of the technology

employed, it would always be applicable.

In that model, when a relationship was defined, a role for that relation

(associated with its counterpart foreign key) could always be specified. The

point is that role was never properly defined outside this modelling technique.

To implement the E-R model for an information system, or more precisely, to

implement relationships between entities we use foreign keys.

The use of foreign keys, in database design, is widely spread as good practice

for implementing relations amongst tables [18][39][30]. However, a foreign key is

what is says: the primary key (or even a candidate one) of a table placed as an

attribute on another table to enforce a relationship between those two.

Picture 1: A Relationship enforced with a foreign key

Nevertheless, we should only place a foreign key in a table if we have a relation

in which each tuple of the target table matches only one of the referred tables.

 Foreign Keys as Cross-Domain Structures

 Page 43

As we know when we have multiple associations between tuples (for instance in

a many to may relationship such as authors and books, in which an author can

write many books and a book can be written by several authors) we have to

adopt another strategy by building a new table with both keys. In this new table,

we have our relation “dictionary” [30], because we have the references to the

tuples in the original tables that should match.

Picture 2: A Relationship enforced with the aid of an additional table

In addition, we can build these “dictionaries” for any kind of relationship. This

includes those that we use to create foreign keys directly (such as the costumer

id on an invoice).

We can think we can lose some performance doing more tables than necessary

since we are now using a table for the relation, but what can we surely gain?

The relation table is built with rules, and we can have in a more clear way what

rules connect to instances of data together. This would show in a more

meaningful way in which data relate amongst them.

We also would eradicate foreign attributes from target tables (no longer an

Editor ID in a Book record), so tables could mirror their conceptual counterpart.

 Foreign Keys as Cross-Domain Structures

 Page 44

Picture 3: Full diagram with no foreign keys in the main tables and with the connections tables
(Book Editor and BookAuthor)

Picture 4: Diagram with no connection tables (BookEditor and BookAuthor). The relations now are
between the Book and Author as well as the Book and Editor directly. The meaning of the relations

is noted beside them. In the Book-Author relation, there is also a relation attribute: Rank. This
attribute does not belong neither to the Author table neither to the Book table but to the relation

itself.

Sometimes relationships have attributes (for instance the attribute “rank” which

is the relative position of an author within the group of authors that wrote the

book: 1st, 2nd, and so forth).

The attribute should be declared when the relationship is built and should have

the very same rules as an attribute in a base table. It will be provided when a

 Foreign Keys as Cross-Domain Structures

 Page 45

particular instance of a relationship is made, through the SQL keyword “SET” in

the context of that relation4.

As noted, the relation must have a name and a definition, and, together with it, a

set of relationship attributes.

Perhaps the reader is thinking that this can reduce overall performance. We will

see that that is not quite true, as it might seem.

These pairs of keys are only pointers to data, so this new structure is no more

that a multi-domain index. It points to two pieces of data and can be effectively

built as an index. We already have indexes for foreign keys in order to “speed

up” the verification of referential integrity, so no extra overhead is required. In

addition, if it is built by rules we could rebuild them by applying the very same

set of rules we had. In this manner, we could effectively implement the idea of a

role in this relationship.

Obviously that some kind of data recording should be done, but this would only

be done at the database engine level, not in the conceptual level.

We would have to state our rules in a more precise way, we could have these

rules building the relations between data and we can free ourselves out of the

foreign keys.

In the present database engines implementations, if we have a one to many

relationship and want to change it to a many to many relationship, we have to

build the new table, copy data to it, and change every view or stored procedure

that accesses that data to accommodate the new table and provide the very

some results as before.

4
 The SQL syntax in the context of a relation will be shown later in this document.

 Foreign Keys as Cross-Domain Structures

 Page 46

If we had a model where all relationships between tables were built with multi-

domain indexes, we would only have to change the rules how data can be

paired and nothing else.

Besides, there is nothing in this model that prevents the accommodation of

three, four or more keys in a relation providing true associations between more

than two tables (as opposite to modern relational database engines that allows

us only to define a single relationship with just two tables).

With this solution, the classical clinic problem to associate patients to

appointments and attending doctors could be eased. This is because we could

associate all three keys (DoctorID, PatientID and AppointmentHour) and

establish as a rule that we could not have duplicates in DoctorID &

AppointmentHour and in PatientID & AppointmentHour. With no further

restrictions, the model can validate all the main issues in this situation: Not to

appoint more than one patient for hour for the same doctor, not to appoint more

than one doctor for hour for the same patient. Notice that although we are

dealing with the same relation, the pair DoctorID and PatientID can have

duplicates.

Picture 5: The Patient/Doctor/Room/Appointment problem

To create such relations we should provide an SQL statement like CREATE

RELATION ON Doctor,Patient,Room WITH (AppDate Datetime NOT NULL)

CONSTRAINT UNIQUE DoctorID,AppDate, UNIQUE PatientID,AppDate

 Foreign Keys as Cross-Domain Structures

 Page 47

This statement should create an internal table with the attributes DoctorID,

PatientID, RoomID and an extra AppDate. It would also create unique indexes

for the pairs DoctorID,AppDate and PatientID,AppDate. This structure would

implement the conceptual relation among these entities.

With a multi domain index, all the rules should be on that relationship and it

would look like this:

Picture 6: Doctor/Patient/Room with an Appointment Relation between the three data tables

To relate/un-relate data, we should use the plain INSERT / UPDATE / DELETE

SQL statement applied to the relation. Examples of SQL to manage relations

follow:

INSERT Appointment (PatientID, DoctorID, RoomID, AppDate) VALUES

(100,23,4,#5-May-2010#)

UPDATE Appointment SET AppDate = #11-May-2009# WHERE DoctorID = 21

AND AppDate = #5-May-2010#

DELETE Appointment WHERE DoctorID = 21 AND AppDate = #10-May-2010#

AND PatientID = 95

As you see, there is no need to further keywords in SQL. They are all applied in

the context of one relationship (Appointment). This is because internally the

 Foreign Keys as Cross-Domain Structures

 Page 48

Appointment relation should be build as a table (as all the indexes are), so we

can manipulate it from outside, as it was a regular table.

As seen the set of foreign keys are now building another structure that

implements a cross-domain index, as defined earlier. This cross-domain index

also proves to be an OUCD, since a multi-domain order is also defined.

The multi domain indexes can also be used to implement some hierarchy

among data, because an index (whether it be a single or multi-domain index)

will eventually order data in some way, adding a little more meaning to the

relation it applies. If we have, for instance, an employee-manager relationship,

besides its semantic we can add a job hierarchy to this just by ordering it

properly. In addition, this can be achieved because this structure is an index

structure and we can have this additional meaning added just as simply defining

how that index should order its data.

It seems clear that the information about these relationships no longer resides

on the tables, but instead, on the index structure of the database. This also

means that in the backup strategy of the table these indexes must also be kept

in order to reconstruct all the data.

On the other hand, building these structures as indexes can lead to have them

permanently in memory (as databases engines already do that for indexes) [30]

and reduce in a significant way accesses to related data because their physical

pointers are already in memory, hence improving global database performance.

Access to raw data can then be performed by one of the traditional techniques

like (hash tables, clustered keys, etc.) as they are right now. For very large

datasets, however, the amount of RAM can be insufficient. Generally, in these

cases, the database engine spans the indexes through disk, with costs in

performance that may prove to be significant.

This approach is consistent with Chen’s definition of primary keys as functions

that would return the corresponding set of data (row) for each key given [6]. This

 Foreign Keys as Cross-Domain Structures

 Page 49

is not only true for primary keys, but for all indexes in general. Even when we

have duplicate indexes, we can add to the index the primary key (or one of the

candidates) and make it unique, even if it is only in an internal database engine

procedure.

 Definition of an Ordering Function

 Page 50

Chapter 9

Definition of an Ordering Function

To achieve independence between the relations and their sort order, ordering

functions should be defined so several relations can use the same sort method,

if applicable.

In order to do that, and from a strict theoretical point of view, the “Ordering

Function” must be mathematical defined as a functional implementation of an

OUCD.

These abstract functions can then be associated (if compatible) with a relation

taking values from a UCD defined for that relation. We define that function is

compatible with a relation if the arguments for the function are a subset of the

attributes of the UCD. Associating such function to a UCD defined over a

relation creates an OUCD, as defined in chapter 6.

In most cases, ordering functions uses domains that are not OUCD sorting two

(or more) “identical” records in an arbitrary way. If such order is requested the

domain should be extended to include one OCUD so a unique ordering could

be achieved. This extension should be done by the database engine if not

explicitly requested by the user.

Consequently an order function φ on a set of attribute (A,B,…,Z)R over the

relation R must have the following properties:

 Its domain is an OUCD.

 It returns the ordinal (rank) within that domain for each value (Vab..z)

belonging to its domain.

 It is invertible since for each point in its domain (OUCD) has only an

image in its counter domain (relation data), by definition of OUCD. The

 Definition of an Ordering Function

 Page 51

inverted function gives, for a given rank, the corresponding values of the

OUCD.

With these definitions an ordered relation is a structure composed by a “regular”

relation, the definition of an UCD (and it was proved that at least one UCD can

be defined over a relation) and associating an ordering function to that UCD to

transform it into an OUCD.

We also define an extended relation as structure that is composed by a set of

data (a relation - R) and one sorting function (φ). Since the function only applies

to one relation because of the OUCD, the OUCD implements the connection

between the relation’s data and its domain. Every relation will have one or more

functions that can sort it. However, the some relation (i.e. the same data set)

composed with two different sorting functions are also two different extended

relations even if they have equal OUCD defined on them. The ordering function

based on that OUCD can be used to sort both relations, but, still, they are

independent.

If that relation is operated with another relation through any relational operator,

the result will be a new relation (closure property of the relations) that will

present its data with any kind of order even if there is no previous specification

of that order.

However, since the result set will have some kind of order, so it can be claimed

that such sorting function exists (although it might be unknown) because the

results are presented in some kind of order. Since the result is a relation and we

can always have at least one UCD defined over that relation, an unknown

function is defined over that UCD that provides order to the result.

Then this extended model also has a closure property as long as relations

(regardless of their sorting functions) are operated with a relational operator and

a sorting function is assigned to the resultant relation. From a mathematical

point of view, it is formally an algebra, as defined in Braumann’s book [4].

 Definition of an Ordering Function

 Page 52

Let us demonstrate:

An algebra must have the followings properties:

 The set must be closed, in respect to intersection and, in addition, chain

condition must respected (semiring).

 The set must also be closed regarding to subtraction and binary

intersection or union operation (ring).

 Next, the set must be closed to complementation (algebra).

Let us consider as the universe of all possible ordered relations composed

with a relation R and an ordering function (R,).

The intersection of sets is also defined for relations since they are sets. For

ordered sets the intersection operation is also applicable as shown before.

The chain condition states that for a non-empty class K, two sets A K and B

K and A ≤ B there is a finite number of sets that observes Am K

(m=0,1,2,3...,M) such as A0 = A and Am = B and Am ≤ Am+1 for m < M and Am+1-

Am K, also for m < M.

For an extended relation it is also possible to define a relation B with a sorting

function , as element (B,) and a class K where all sets are derived from B

with the same sorting function . Any subset of B with the same sorting function

 will be the A set and, therefore, element (A,). Let us consider that A has M

less rows than B (therefore a selection of B) so we consider A0 as A, and A1 as

A0 plus a row belonging to B but not to A, and so forth until the M rows added to

A will give the B relation. It is trivial that the extended relation is closed for

intersection operations since the intersection of a subset of B with another

subset of B is still a subset of B. Since the ordering function is the same for

every element of the class, the closure property is verified. The chain condition

is also verified, so the class K of every subset of B is a semiring.

To verify if the class K defined as all the subsets of any ordered relation is a ring

it is necessary to verify if this class is not only closed regarding the set

subtraction but also closed regarding to the binary union and binary

intersection.

 Definition of an Ordering Function

 Page 53

The subtraction of any two subsets of B, as defined for sets, is still a subset of B

by definition. Also the union of any subsets of B is still a subset of B. Since the

intersection of any two subsets of B is also a subset of B and all subsets share

the same ordering function , the class of any subset of B with an ordering

function is a ring.

Finally to be an algebra, as stated, it is necessary that the class is closed to

complementation.

For any subset of B, (A) exists another subset of B called A- that verifies the

following equations:

 AA- = {} and AA- = B

Since the meaning of A- is all the tuples belonging to B not existing in A, A- if

beyond doubt a subset of B, thus belonging to the class.

So any ordered relation is, as stated, an algebra.

The ordering function must have a set of attributes to be considered as one.

A function to be considered an ordering function must:

 Accept a subset of the UCD where it is defined

 Return the rank of each tuple inside that UCD

 It must be invertible and returns the element of OUCD given the rank

For instance, consider the pair E1=(R1, φ1) and E2=(R2, φ2) with (R1, φ1)

being an extended relation in which R1 is a relation associated with an sorting

function φ1 and (R2, φ2) is another extended relation in which R2 is a relation

associated to an sorting function φ2. The relational operation θ between E1 and

E2, (E1 θ E2) can be defined giving the result as an extended relation E3 = (R3,

φ3) in which R3 = R1 θ R2 and φ3 its sorting function.

Then (E1 θ E2) = (R1, φ1) θ (R2, φ2) = ((R1 θ R2), φ3) = (R3, φ3) = E3

Please note that the sorting function φ3 does not have to be defined using the

other two ordering functions (φ1 and φ2). As an example, taking a relation, for

instance, customer order by “Name” (R1, φ1), joining it with another relation

 Definition of an Ordering Function

 Page 54

such as invoice, order by “Invoice#” (R2, φ2), the join result might be order by

InvoiceDate (R3, φ3). The latter is not related on its composition from the

previous ordering functions. But nothing prevents the function from being

derived from the previous as, for instance, if the same join result was ordered

by “Name” concatenated with “Invoice#” (R3, φ’3) this sorting function is indeed

defined from the previous ones.

We can also rewrite all of the principles of Relational Calculus (either Domain or

Tuple) considering the extended relations.

In domain Relational Calculus we have 〈 〉| (〈 〉) as the

form for a general query where Xi is either a Domain Variable or a constant and

 (〈 〉) denotes a formula.

Since the ordering function is only applied to the output, the general formula of

the Relational Calculus can be rewritten considering a general ordering function

φ like this: (〈 〉)| (〈 〉). The output is the rank for an

ordered relation in the form of (R, φ) where R is 〈 〉. To obtain the

relation the inverse must be used. So an OUCD is returned with

 ((〈 〉))| (〈 〉)

There is no distinction being made between Domain Relation Calculus and

Tuple Relation Calculus because the principles are the same. The ordering

function only changes the left part of the query and only in presentation order.

On the other hand, and by definition of relation, at most all domains makes a

UCD. With the ordering function, the outcome is an OUCD by definition.

We can derive that any formulae that are safe in Relational Calculus are still

safe with the extended relation. This is because the ordering function does not

change how the expression is constructed but only affects how the outcome is

presented.

Then how could this help to solve the problems that were referred as cases?

Let us see. In the first case, it would be sufficient to associate to the resulting

relation a sorting function with a random output (no arguments is a subset of

 Definition of an Ordering Function

 Page 55

any set of attributes), so that each time the function was associated with that

particular set of data would produce a different extended relation.

In the second case, since the sorting function is invertible it is not only possible

to know what particular order has a tuple, but also it should be possible to know

the value of any field from any row. It would be possible then have access to the

running sum stored in the previous row and, without remaking all the

calculations, to add only the value in a line to the previous running sum to

obtain the new running sum.

It’s now perceivable what the advantages of this model are since the industry,

regardless of the theoretical model, has implemented its own data sorting

(needed since ever) through SQL, being SQL itself a standard (ORDER BY

clause).

What then this new model brings that SQL’s ORDER BY does not have?

First of all, the ORDER BY clause can only be applied to the columns (fields) of

the result set. The sorting function, although it receives as an argument the all

tuple, doesn’t need to use any of the raw data to assign a order number (e.g.

The “natural” order, meaning, whatever tuple is presented the sorted results

would always be 1,2,3,…,N).

On the other hand, the ORDER BY clause uses only the binary content of the

field to sort the results out (ascending or descending), whilst the sorting function

doesn’t have that limitation. It can assign an order number to a row depending

only the way it was defined.

Finally, the sorting function can be used to define non-linear business rules,

complex mathematic expressions, random expressions or any other kind of

expressions like results from software for optical image recognition, since the

model has no restriction in its internal logic neither how the ranks are evaluated.

Therefore, in the first case it is only executed a simple database query with the

following possible syntax:

 Definition of an Ordering Function

 Page 56

SELECT HotelName, RoomFee
FROM Hotel
WHERE RoomType IN (@TypeList) AND RoomFee BETWEEN @LowPrice
AND @HighPrice
ORDER BY SqlRandom() 5

Since that statement its not possible to issue, with the present database

engines, a procedure was built that assigns to a temporary table to store the

results a new field filled with a random number between 1 and ROWCOUNT()

(i.e. the number of rows the query is returning). Finally, the procedure queries

that temporary table sorting out the results by that random field.

This is a so complex solution that it required a row level processing which must

be avoided at all cost, as stated in the introduction.

Since row level processing must be avoided, row identification is nevertheless

useful and can be used to avoid some of that “nasty” row level processing.

With row identification the concept of “first”, “last”, “previous”, “next”, “n-th” when

referring to any tuple is clearly defined.

Although it seems like a going back, in concern with the relational model – in a

matter of fact, after have been defined the operations between relations with the

due independence regarding its tuples – getting row references (pointers) it

seems like a going back. Moreover, it would be if row level processing of the

relation were used. However, what is wanted is to define is some new

aggregate functions that can use the relative positioning of the rows (their order)

in a way that they could be integrated in the SQL so data can be manipulated.

One practical example would be the function ORDERPREV (domain) that would

return the value in the domain “domain” in the previous row6. If ORDERPREV

(domain) is to be defined, according with other SQL aggregate functions, would

5
 Bold formatting will be used whenever proposed syntax is included in SQL statements

6
 Note that it is not the previous value for that domain, but the value for that domain from the

previous tuple.

 Definition of an Ordering Function

 Page 57

return a NULL value for the first row, the following query (in MS-SQL) could be

issued to solve the second case:

SELECT DtBudg, MonthValue, ISNULL(ORDERPREV(Accumul),0) +
MonthValue as Accumul
FROM Budget
WHERE DtBudg BETWEEN ‘1-Jan-2009’ AND ‘31-Dec-2009’
ORDER BY DtBudg()

DtBudg() is a sorting function based on a table field (it would be equivalent to

the actual ORDER BY DtBudg).

This query would then give for a given time slice, the monthly values of the

budget, sorted by budget date with the running sums of the monthly values

along with these.

Given the following table

DtBudg MonthValue

31-10-2008 1.000,00 €

1-1-2009 500,00 €

1-6-2009 2000,00 €

1-1-2010 750,00 €

 Definition of an Ordering Function

 Page 58

The result of such a query would be:

DtBudg MonthValue Accumul

1-1-2009 500,00 € 500,00 €

1-6-2009 2000,00 € 2.500,00 €

The SQL to execute the very same function, using Microsoft’s T-SQL, which

also solves the proposed case, is the following:

SELECT B.DtBudg, B.MonthValue, Accumul = (SELECT SUM(MonthValue)
 FROM Budget BB
 WHERE BB.DtBudg BETWEEN '1-Jan-2009' AND B.DtBudg)
FROM Budget B
WHERE B.DtBudg BETWEEN '1-Jan-2009' AND '31-Dec-2009'
ORDER BY B.DtBudg

Although, technically it can be executed, in a matter of fact, beyond the

statement is much more difficult to understand, the sum is calculated for each

row instead of using the last value computed from the last row, as is proposed

in this model, and affecting the overall performance.

Using such an extension could provide some theoretical support in a way to

suppress the gap between the relational model most rigorous mathematical

definitions and the standard SQL in what sorting is concerned.

Definition of an Ordered Relation as a Structure with an Unordered Relation and
a Ordering Function

 Page 59

Chapter 10

Definition of an Ordered Relation as a Structure with an

Unordered Relation and a Ordering Function

Since any relation regardless of the order of columns or rows contain the same

data, we can refer to such relation as R

When we look into attributes and their domains, we can have attributes

belonging to nominal domains, ordinal domains or scalar domains. In order to

find anything without a full scan the scale must be at least ordinal. All search

algorithms are based in order and data must have, at least, binary order.

We can, in the other hand, always define an UCD because there are no

duplicate rows in a relation [8][15][10]. If we define how the elements of this UCD

are ordered then we will have an irreducible OUCD. Extending this OUCD to

several attributes, we can build as many irreducible OUCD as needed.

For each OUCD built this way we can associate a specific function that allows

us to know the rank of each value but also the value for a certain rank. Since

the OUCD is connected to the relation data, the functions defined earlier can

always be used with that relation. We can even say that the functions were

defined for that relation.

Now, the same relation with different functions shows the very same data in

different ways, meaning, how they are sorted. It is imperative that we can show

that although we have the same data we are sorting it out differently. The

“natural” approach is a mathematical structure that represents, as a whole, the

relation and its function for a particular sort order.

So instead of referring to the relation R with a particular ordering function φ we

shall refer them as (R, φ) meaning that R is the “unordered” relation and φ is the

ordering function with an OUCD defined over R as its domain.

Definition of an Ordered Relation as a Structure with an Unordered Relation and
a Ordering Function

 Page 60

This base structure approaches somewhat has been done in the commercial

database engines, since indexes are defined over data structures such as

tables or views.

In a matter of fact, it was common sense that an index should be built over a

relation, so dropping a table would drop all the indexes defined for that table.

On the other hand there were no ways of defining cross-domain indexes other

than indexes over foreign keys or composition of foreign keys whether they

reside as foreign keys in a table or in an association structure to implement a

many-to-many relationship.

The extended relation as defined here can be the support not only for sorting

inside a relation, but as shown in chapter 7, as a basis for cross-domain

implementation.

As demonstrated before this structure is still a relational structure, because it

holds all the relational properties as its “unordered” compound.

 Proposed New SQL Keywords

 Page 61

Chapter 11

Proposed New SQL Keywords

In this chapter, new keywords and their syntax in SQL notation are proposed.7

The DDL new keywords are:

CREATE/ALTER/DROP ORDER FUNCTION <name> (<parameter list>) ON

(table/view) AS []

This keyword creates an ordering function over a relation (specified here as a

table or view). The parameter list is a subset of the relation attributes that forms

an UCD. The function will create an OUCD from the UCD assigning a rank to

each row in the table/view.

CREATE/ALTER/DROP RELATION <name> ON <tablelist> WITH (<field>

[NOT NULL], …) CONSTRAINT [UNIQUE] <fieldlist>, …

This keyword will be responsible to create a relation between the tables in table

list (thus allowing a relation with a degree higher that two).

The syntax is as follows: the <name> parameter must be replaced by a unique

name inside a database, the <tablelist> is a list of valid tables/views of the

database that are about to be related. The WITH clause lists the fields from

each table that will be related. This list is the set of fields that compose the

foreign key that implements the connection to another relation.

The CONSTRAINT keyword is the set of constraints applicable to the relation

such as uniqueness (UNIQUE keyword) on a specific field list (<fieldlist>)

7
 Definition follow the definitions in ISO/IEC 9075 (SQL).

 Proposed New SQL Keywords

 Page 62

The adapted SQL keywords are:

INSERT/UPDATE/DELETE statements should also include RELATIONS as

objects where it is applicable, thus allowing that, for relational databases,

relationships between tables can be established by rules instead of simple data

relate with foreign keys. These rules can be used by object oriented

programming language as part of the object’s methods

The DML new keywords are:

ORDERFIRST(<field>)

This keyword will return the first value for a relation (does not have the same

meaning as the FIRST() SQL aggregate function which returns the group’s first

value)

ORDERLAST(<field>)

Similar to the previous keyword, but returning the last value for a relation (also

does not have the same meaning of the LAST() SQL aggregate function which

returns the group’s last value)

ORDERPREV(<field>)

This keyword returns the value for field <field> from the previous row, if any. For

the first row will return a NULL value with the meaning of “unknown”. Of course,

this field must be scanned for NULL values as they might occur within data.

ORDERNEXT(<field>)

This keyword is similar to the previous one but returns the value for field <field>

from the next row, if any, instead. For the last row will return a NULL value with

the meaning of “unknown”. Of course, this field must be scanned for NULL

values as they might occur within data.

 Proposed New SQL Keywords

 Page 63

ACCUMUL(<field>)

This keyword is a convenient shorthand for the expression “<field> +

ORDERPREV(<field>)” that return the running sum for that field. This keyword

might be used without specifying the field in the SELECT clause.

The altered DML keywords are:

ORDER BY clause in SELECT statements (using an UDOF8 as ordering

function)

The syntax of the ORDER BY clause is to be extended accepting an Order

Function, as defined earlier, as a construct element. This function will order the

output according solely to its logic.

NOTE:

Actual FOREIGN KEY con be maintained for backward compatibility since there

is no further use for it (it has been replaced by the RELATION keyword).

8
 UDOF – User defined ORDER FUNCTION, as defined earlier.

 Case Studies

 Page 64

Chapter 12

Case Studies

There are some cases where ordering is crucial for a special activity. When

such cases arrive, the usual approach is to prepare the database to support the

data and see if any built in functions for some particular database engine can fit

the purpose needed.

If it does not, then some kind of workaround is built in order to solve the

question.

We will present three cases that needed a different approach from what was

given to them

The first one is an application designed with database technologies that has as

a fundamental request that the out coming data of a certain query should never

be presented in the same sort order although the base query could be the

same.

This is a real case and concerns a list of hotels with rooms to let. The request is

that even if two different users choose the same criteria to search for a room,

the result must be sorted differently. The goal is that equality of opportunity was

given to each hotel in the list. How can we fulfil that request if sort order is not a

result of a relational operation?

The second case, another real case either, concerns the scholarship for needed

students with strict rules about ordering the candidates combined with a budget

for all the grants given. The question is even after the candidates were sorted

by some complex criteria involving income declarations, school approval, other

private scholarships that they could have and even if they were benefited on the

previous year (which allow them to continue), there was a budget to respect.

Therefore, the running sum in the candidate order should not exceed the

 Case Studies

 Page 65

amount of the budget. They must be ordered by a specific set of rules and then

granted a year scholarship. However, the budget will end at some point, so the

running sum should be equal or less than the global budget. That means that

two students following each other, the first can be granted the money (and

reach the limit of the budget) and the next one gets nothing (the budget is

exhausted).The question here is how to control the budget by a simple SQL

statement, if order is not a result of a relational operation. In this case, it is

needed to compare the running sum with a specified amount in order to know

when to stop giving the benefit.

The base table can only be updated (it cannot be by SQL means) taking as a

condition that the running sum in a particular order should be less than or equal

to a certain budget value.

The last case it is necessary to obtain the values of a budget with the running

values along with it (in every row, not summarized at the end). How can we sum

in each row the preceding values without breaking the database performance,

meaning, without having to calculate totals for the running value for every row in

the table? How can we do this if we have no order and we cannot know which

row is before and after in the result set?

In the first case, the solution was found by means of an temporary table, with

the results on it and with a spare column (OrderID) that was filled after the

query had populated the temporary table.

After that, a routine that handled each row of that result set would set the

OrderID by generating random numbers and assign to the rows by turn (and

verifying that no duplicates were assigned).

At last, the results were presented sorting on that last field.

This solution, although fully functional, was far from simple, since it involved

some coding in a high-level language. Besides that, involved row by row

 Case Studies

 Page 66

processing outside the database engine instead of a declarative statement,

which was desirable in the first place.

In the second case, there was no solution but dealing with a row-by-row basis,

calculating the amount to be given to a candidate and the subtract it from the

budget until it reaches zero (a procedural solution). Then the calculated amount

was recorded in the candidate record (or zero if the candidate was beyond the

budget) by means of a cursor

In this case, a particular sort order should be taken and functions that use that

order (such as the “ACCUMUL” function defined in chapter 11).

The last case, a complex SQL statement did the job, but with a very large break

in performance because the running sums were all calculated in every row,

hence affecting database performance as a whole.

Even building a view with only the data to be treated in order to limit the number

of rows treated would not solve the performance issue if we have a very large

number of rows to treat.

The implementation of this extension gives the result set in its requested order

with the running sum along with that and it can actually filter the base data by

the running sum field. This allows that processing can be made by a declarative

statement as desired without the use of a cursor.

The SQL statements that can “solve” and their accompanying results are listed

in the annexes.

As these three samples, databases are filled with every type of requests such

as “ordering the Employes table by his Job Ranking”. “Job Ranking” is not a

field but a complex function where the admission date, present rank and some

other elements are combined to produce a result, or requests like “When do our

 Case Studies

 Page 67

income reaches £1,5M?” hence calculating a running sum until that value is

reached.

As seen, our database engines cannot properly answer those questions in a

simple way. Although not everything is simple, we think that these issues could

have a much simpler way to be solved.

The first case is solved with the definition of a RANDOM() function and issuing

an SQL statement with the “ORDER BY RANDOM()” clause, as listed in the

annexes.

In order to implement a random order, some issues were raised. It is not

possible to use one of the classical algorithms to sort random data. When we

randomize there is no guarantees that the generated data prevail across

comparisons. So “a” can be greater than “b” in the first pass, “b” can be greater

that “c” on the second pass and finally “c” can be greater that “a” on the next

pass. One possible solution to this (and this was the solution used in the hotels

case) was to pre-number all the rows by means of an extra field. In this way, the

rows could be numbered randomly and sorted after by this “extra” field. But

some considerations must be made on this process. If we had a very large

database with terabytes of information what would be the cost (in time and other

resources) of adding an extra field, populate it with random values between 1

and n (where n could be a very large number), then order it to produce the

output.

But “random” is a very special case of ordering since it doesn’t rely on the

values of the rows. Therefore, there is no need for any comparison (as opposite

to sort methods) but only the need for output in random order. Furthermore, the

values may not be persistent, but randomized each time we need that particular

sort order.

We only need to generate a random number between 0 and n-1 (where n is the

number of rows) and pick that row to output. Next the row is deleted and the

 Case Studies

 Page 68

process is repeated for the remaining n-1 rows. Since this process is done in

the “ORDER BY” clause, this all applies to the output queue thus not affecting

“live” data. The deletion of a row is a very expensive operation in time (but not

in space) since all the rows above that one have to move one place down, if we

consider the output queue as an array of data. The time and space complexity

analysis for this method is presented in the Annexes.

Can we support a so large number? The answer is yes because every database

engine has support for row count. So if the table can accommodate that quantity

of rows, they can be counted by means of as integer (may be a bigint, which is

an integer of 64 bytes). This means there is always support for the row count. If

there is not then the recordset cannot be generated.

Can it be sorted in memory? Most database engines have support for large

recordsets. It is obvious that a very large dataset may not fit in memory. In such

case, database engines spans all the data between RAM and virtual memory in

disk. Although the access to a disk sector is not a genuine random access, (it is

truly a sequential access), the access times are very low and it behaves

“almost” like a random access. In a large recordset with n records where only k

records are in RAM (so we have n-k records in disk) we have a mean access

time for a record (tk x k + tj x (n-k))/n where tk is the mean time to access to a

RAM record and tj is the mean time to access a disk record. Therefore, the size

of the recordset to be sorted depends on the database engine and its strategy

for dealing with large amounts of data. From a theoretical point of view, RAM is

infinite and any recordset can be accommodated inside it. From a practical point

of view, the database management systems provide limitations either in row

size and either in number of rows per table. They also define the minimum RAM

amount to operate. These are indicators that one must have in mind when

performing heavy operations in databases. The time and space complexity

analysis helps to determine how much RAM is needed for a random sort.

Can we generate a random number between 0 and n-1? Depending on the

programming language used, it might be possible. Modern languages such as

 Case Studies

 Page 69

VB.net, C#, Java have random number generators with 64 bits. Even with the

IEEE representation, we can generate about 262 random numbers between 0

and 1. In the unlikely event of having a database larger than that (meaning that

it would have more than 4 billion of billions of rows), probably the database

engine would have support for that large numbers so the problem would be

naturally solved.

An algorithm (technology independent) was developed and used for this

particular case. This algorithm is shown in the Annexes. The implementation of

the algorithm took some elements in account. First, can it be implemented?

Yes, it can. C# has all the primitives to implement it. When a recordset is

populated, the high-level language does not know whether a particular record is

already on memory or must be fetched form the disk. The database engine

deals with the low-level details of every query. Can it be fast? Every sort

algorithm must have multiple passes on the recordset (if the recordset is

already sorted then it will have a single pass, but this is an extreme condition)

whereas the random algorithm only access once to each record (it does not

need to compare anything). The only overhead is the deletion of the record,

which causes a delay. In the implementation, when the database engine has to

perform a non-optimized sort, it creates a temporary table with the data being

sorted (generally on the fields or expressions on the ORDER BY clause).

Deletions on that temporary table can be made as “marked for deletion” but not

actually deleted so there is a little overhead time in marking the record as

deleted instead of an actual deletion. The actual deletion would result in moving

all the remaining records up one position with a large overhead of time. In the

annexes, a table shows the result times in two different machines (a laptop and

a workstation) for the random algorithm over a table with about 1,700,000

records against a sort over a non-indexed field. The results show that either the

presentation of the first record or the completion of the query was faster on the

random procedure than on the sort one.

Since deleting a record and moving all the following records one position down,

is a very time consuming operation, three variants of the algorithm were

 Case Studies

 Page 70

studied. The first one (scenario 1) actually deletes the random picked record

and moves all the others down. In this scenario the space occupied by the data

never changes because while one recordset is being emptied the other one is

being filled at the same rate. On the other hand, it performs badly in time when

the record number grows. The second variant (scenario 2) does not delete the

record but, instead, marks it for deletion. The output queue is never packed but

the whole input recordset is discarded when the procedure ends. In this

scenario, although it performs faster with noticeable improvement for large

recordsets, the space occupied in memory is the double of the initial recordset

because near the end the procedure holds the entire input recordset and the

result recordset as well. The third variant is a mix of the previous where an

arbitrary number of records are marked for deletion before they are actually

deleted. In this scenario, the space occupied is directly proportional to the

number of records marked for deletion and the time used is faster than deleting

the rows in the output queue one by one.

In the second case, the running sum of is used in the where clause to limit the

candidates that would benefit from the scholarship. This sample only tries to

show that a filter can be built with an extension function so the update

statement (which was not implemented) could use a WHERE clause like the

SELECT does.

The third is solved with an SQL statement where in the field list was defined the

running sum as the sum of <value> with the previous running sum for that

value, as in “SELECT Date, BudgetValue + ORDERPREV(rsum) as rsum

FROM …” where BudgetValue is the database field that holds the value. In this

case, and because of the prototype limitations, the “ACCUMUL” function was

used as a useful shorthand for the expression “AcmField =

<field>+ORDERPREV (<AcmField>)”, as listed in the annexes.

As this, there are many situations where order is involved and, as for textual

data, database engines internally have defined their own “ordering functions”

based mainly on the binary value of data. Nevertheless, although this approach

 Case Studies

 Page 71

was reasonably good, some “loose ends” began to emerge. One of them is the

variations on the same character (for instance “a”, “ã” or “n” and “ñ”) in the

beginning of a name that would place it out of order. Then codepages were

defined more as a workaround than a solution.

The last case is not an everyday situation, but it tries to show that a user

defined sort order with an outside procedure can be useful. The goal was to sort

images only by content disregarding any metadata it may have. Viana, a

Portuguese researcher, in his PhD thesis[46] has built an application that would

analyse images of skin marks and by analysis of the shape of the edge of those

marks it would determinate how probable they can be a cancer one. Those

images were stored in a database and the analysis algorithm was implemented

as a sort function so that the images may be sorted by the result of the analysis.

This procedure was not optimized since it will be object of further study by both

of us in the sequence of this work.

This approach solved almost every case of “common ordering”. However, there

are still issues on ordering data because the low-level binary representation is

definitively not enough.

Associating data with an OUCD and defining a function that can play the role of

translating data into order and back will cover the past functionality of the binary

sort order and can add a completely new range of functionality allowing defining

precisely what order should data have.

 Object Oriented Databases

 Page 72

Chapter 13

Object Oriented Databases

Object oriented databases began to emerge on the middle of the decade of

1980 (1986, to be more precise) [49] as need to solve issues that relational

databases could not solve. One of the big issues was dealing with complex

objects that must be decomposed into a relational schema before being made

persistent [47][48]. After that, they could be stored and retrieved.

To solve this problem, object-oriented languages should create and maintain, in

code, all the mapping necessary to convert objects in relations and back [49][52].

That was not desirable.

The first generation of object oriented databases are dated from the late

eighties (1986 ~ 1988) such as G-Base, GemStone. A second generation of

object-oriented databases appeared in 1989 along with “The Object-Oriented

Database System Manifesto”, which stands as a milestone in ODBMS. In this

year (1989) ODBMS like Ontos, ObjectStore, Objectivity and Versant (ODBMS)

appeared. [50]

After the Manifesto, a third generation of ODBMS showed up in order to

implement the new conclusions pointed out by the Manifesto. Orion, O2, and

Zeitgeist, all of them classified as third generation ODBMS [50] made their

appearance in 1990.

The ODBMS lacked the formal structure as the RDBMS had and an object

query language [47]. So, along with the “pure” object oriented databases, a new

approach was made on relational models creating the object-relational model,

which was no more than a relational database engine with an object-oriented

interface [48][51]. These models (adopted by some major manufacturers like

Oracle, for instance) have what is called as impedance mismatch. Impedance

mismatch is no more than all the mapping that is needed to be done to convert

 Object Oriented Databases

 Page 73

objects into relations, when storing, and back to objects when retrieving [52]. The

Object-Relational model tried to put impedance mismatch on the database side,

instead of being done by programmers on code. [49]

However, even on the ORDBMS side, the impedance mismatch was creating

some overhead on storing and retrieving data, so these databases could never

perform as a “pure” relational one. [52]

On the other hand, a general lack of appropriate language was felt because the

language in ORDBMS was SQL (because these DBMS were, in fact, relational

ones) and a language to deal with objects that could allow specifying

inheritance without complex joins did not exist.

In 1991, the Object Database Management Group was founded with the goal to

standardise the ODBMS system on the market by means of defining standard

that should be implemented by the major ODBMS vendors. To achieve this and

to increase portability among different ODBMS systems, it was needed to define

what would be the Object Model, the Object Definition Language (ODL), the

Object Manipulation Language (OML) and how the programming languages like

C++ and Java should bind to the ODBMS. [50]

The ODMG 1.0 standard was published in 1993. Working in further

developments in Object Databases, two more standards were published: The

ODMG 2.0 standard in 1997, and the ODMG 3.0 Standard in 1999. The ODM

group disbanded after the former publication. Since the interest for Object

Databases continued a new group – the Object Database Technology Working

Group (ODBMS WG) was formed in 2005 and is actually working on the fourth

version of the object database standard. [50]

Object Database appeared mainly because mapping objects to a flat tabular

data, besides being an extra effort (~30%) whilst programming [50], it was also a

layer where modification either in objects or in the tables below were a source

of potential errors and costs. With Object Databases Management Systems no

 Object Oriented Databases

 Page 74

mapping between the application defined objects and their persistent

counterpart was needed. [48]

On the other hand, there was risk that one programmer would map an object in

a different way than another programmer, thus provoking different behaviour on

the very same object. [49]

There was also the risk that, with access to the relational data, objects integrity

rules were bypassed by tools [49]. This risk is the very same that relational

database had with flat files. The access, by tools, to the flat files could

jeopardize the integrity of a relational database.

Therefore, to deal with large, complex objects the Object databases are

preferred, including working with these objects for a large period [48]. Still, if a

database need to have a very large number of ad-hoc queries the Object

Relational Database Management Systems are better, because of the use of

SQL in queries [48].

With further developments on Object Databases is expected that these ones

can replace the Relational Database Management Systems because Object

Databases tend to be simpler to use and to represent reality, which is, in the

very end, the main goal of a Database Management System.

One general lack in actual Object Databases is the ability of treating a table as

an object itself. A table is a collection of objects, all with the same set of

properties and sharing common methods. However, the table itself does not

provide the ability of defining methods for the collection it holds. Implementing

the ability of defining methods over tables would allow custom order to be

defined over the data they hold. Of course, that should be a method over the

collection of objects, and this configures an extended relation, where the

“relation” part can be replaced without loss of meaning with a collection of

objects allowing the implementation of the present theory.

 Object Oriented Databases

 Page 75

In short words, this theory can be applied on relational / object-relational

databases and also in object databases without loss of generality.

 Prototype

 Page 76

Chapter 14

Prototype

After developing the theory, this was applied to the three concrete cases

referred in a previous chapter to see if this model could solve them effectively.

The most obvious choice was to modify the source code of an Open Source

database engine such as MySQL. However, modifying the SQL parser, the

interpreter and the optimizer poses a great risk of jeopardizing of the whole

database engine, requiring a fresh start that another approach was done.

Although commercial, Microsoft’s SQL 2008 allows us to develop procedures

and functions in any .Net language such as C#. Building a string interpreter and

defining functions using that framework seems not only feasible for the purpose

of demonstrating, but also presented no risk in jeopardizing the database

engine, so this unusual approach seemed the best one to suit the purposes of

this research.

A prototype for the extension was built in C# to integrate Microsoft’s database

engine SQL Server. It seems that an extended stored procedure that would deal

with the SQL statement and defer the execution of the standard part to the real

engine (which is running without any modifications) would be safer in terms of

stability of the prototype. Of course, that the final implementation should be

made on the core of the engine and not by means of external code.

Since a prototype is being made to show that this extension can actually work

on real situations, it has been chosen to implement only the necessary functions

that allow the samples to show that the real cases could be also solved.

Therefore, a certain number of limitations were constraints on the prototype

because of all the choices stated earlier.

 Prototype

 Page 77

To build the prototype through an extended stored procedure it was clear that

that procedure should take an SQL string (with or without the extended

keywords) as its sole argument and produce the corresponding data table as a

result.

In order to achieve this, the procedure should take the string, break the SQL

into separate clauses (e.g. “SELECT” clause, “FROM cause”, and so on) and

treat each one of them. Next, a valid SQL statement is executed by the

database engine. If a sorting function, such as “SqlRandom” was defined

through means of another extended stored procedure. The stored procedure is

executed instead of the direct statement. These functions have the limitation

that an extended stored procedure that implements it should be placed without

any arguments in the ORDER BY clause and the implementation should take

an SQL string (which is assumed well formed) and return the data

corresponding to that SQL statement ordered by its means. After obtaining a

data table from the valid SQL statement, the results are first treated for the new

keywords (such as “ORDERPREV” or “ORDERLAST” and finally filtered by

means of any extended keyword on the WHERE clause. The result is then

presented to the user.

The first limitation of the prototype is that only the SELECT statement was

implemented. There is no implementation for the INSERT, UPDATE and

DELETE statements. The main reason for this choice is that the SELECT

statement can be used to “see” what the other statements are going to

insert/update/delete.

There is no support for expressions involving the extended keywords (although

aliasing is provided) in the SELECT clause. This means that an SQL statement

like “SELECT Name, Number, ACCUMUL(Value) AS RSumValue” is supported

but the SQL statement “SELECT Name, Number, value + ORDERPREV (value)

as RSumValue” is not. Note that this last example is a valid SQL statement as

defined by the extension. Nevertheless, it was not implemented in the

prototype.

 Prototype

 Page 78

The SQL statement is then split into clauses. The ORDER BY clause is

searched for the extended order functions. The second limitation of the

prototype is that only ORDERPREV, ORDERNEXT and ACCUMUL were

implemented since they are the only ones needed for the cases stated earlier.

The parser replaces the keywords with valid SQL expressions that allow a result

to be returned by the database engine to be processed in the next stage.

There is no syntax checking for the standard SQL. If the query is badly formed

then the engine will raise an error. In addition, there is no proactive error

handling. Using any of the unsupported features will make the prototype to

behave erratically.

The FROM clause, as well as the GROUP BY and HAVING clause will have no

processing for the present. Although in the future, the extended keywords can

be used over groups, this implementation does not consider them necessary to

show the functionality of the cases stated in previous chapters, so no parsing at

all was done to these clauses. It is not considered as a limitation because the

prototype was never meant to deal with order inside groups, but a future

implementation within a database engine is considered.

The treatment of the WHERE clause presents the next limitation of the

prototype. To fully parse the WHERE clause, removing the extended keywords

in very complex logical expressions may prove to be very time consuming to do

within the scope of the prototype. Although a full parser could be created by

software (using YACC, Bison, or in this case, C# Flex), the number of keywords

to be parsed is reduced, therefore a small program to treat the extended syntax

was written. Since the prototype is for demonstration purposes only, the

extended keywords may appear only as an expression in the form of

“<keyword> <relational operator> <constant/field>” with logical operators to

connect to other expressions. With this approach, they can be safely removed

before the database engine processes the statement and can be used

afterwards to filter the data returned by the engine.

 Prototype

 Page 79

If an extended ORDER BY clause is present, the data is ordered by that clause.

Since the extended order function must be implemented as an extended stored

procedure, the SQL (without the extended keywords) is sent to that procedure

and the data is returned to further processing. If not, the data is already been

order by the engine. It also implements the extended syntax for “regular” fields

as a function, in the form of “ORDER BY <field>()”

All the ordering functions were coded in separate classes just to demonstrate

that they are independent from the parser and can be defined independently.

Now, a two pass procedure is done, one forward and another backwards to, in

the first pass, populate the “ORDERPREV” and “ACCUMUL” fields and, in the

second pass, populate the “ORDERNEXT” field.

At last, with the data table fully ordered, the WHERE clause is examined to find

any extended keywords and, if any, the data table is filtered (this represents the

implementation the “AND” operator in the WHERE clause). The final step is to

give the NULL value in the first row for any “ORDERPREV” fields and on the

last row for any “ORDERNEXT” fields.

Now the data table is ready so it is outputted to the end user who receives as

the result of the extended SQL statement entered, as if the engine could make

the whole interpretation of that statement.

If there is a syntax error trapped by the engine, this will be shown. Other errors,

such as misuse of the extended keywords, are not fully trapped, so a general

message is given.

The Random function (SqlRandom) was coded as a separate extended stored

procedure that takes an SQL string and returns a dataset randomly ordered.

Other ordering functions can be defined as an extended stored procedure and

be used by the prototype. The only thing required is that it takes as an argument

 Prototype

 Page 80

an SQL string and produces the ordered dataset. This procedure (and all

variants) was implemented following the algorithm defined in the Annexes.

It has, though, a major improvement since it is not needed to wait to fill the

whole result recordset to output it. In a matter of fact, the output recordset is

never constructed since the rows are being outputted after being randomly

picked. They are deleted afterwards from the output queue according to the

variant chosen. The database engine actually buffers the output rows before

they are displayed on the user interface.

Times were measured in two machines for two events: time to first display and

time to complete the query. The procedure was compared to a regular “ORDER

BY” query on a non-indexed field. Since a permanent index cannot be built

because each time that “SqlRandom” is called there must be a different order of

presentation, the only possible compare for performance was with a query with

an “ORDER BY” clause on a non-indexed field.

We took a log table from a production database with around 1,700,000 records

with a record length of 1,299 bytes. Afterwards tests with a query “ORDER BY”

on the LogDate non-indexed field against the SqlRandom function were taken.

The times to execute those queries are recorded on the Annexes. Each query

was run two times on each machine and the results recorded, as displayed on a

table in the Annexes. No further analysis was done because all the results

pointed out clearly that the SqlRandom function always performed better on the

completion time than a regular ORDER BY query on a non-indexed field, having

no loss of performance thus. On the second run, the regular query was already

optimized by the engine on that connection, so the time to display the first

results dramatically reduces. The SqlRandom function cannot be optimized

because it presents the data in different order each time that is run, so no

strategy can be made for subsequent calls.

 Prototype

 Page 81

Just for an example, an ordering function that takes the first field on the

resulting dataset and finds the words “first”, “second”, “third” and so on until

“ninth”, and orders the data by that sequence is also presented.

For the latter there is no case associated with it. It only shows that any order

can be achieved with this model.

The ability to order must be used against data that is not usually sorted directly.

None of the problems stated needed a new theory to be solved. They needed a

theory to be solved more efficiently. However, if we speak about sorting images

something new must be done.

Generally, images are stored in a database along with some textual metadata

about them. The metadata can also be provided by a header in some image file

types. The database always store and retrieve the image but it does not have

methods to work with it. If a method can be implemented over images stored in

a database that configures an Ordering Function then we can order those

images based on its content disregarding (or not) its metadata.

A sample of stored images of skin marks in a database was ordered based on a

complex analysis for malignity. This analysis as developed by one of our

colleagues as a windows application that was adapted to work within a

database. This procedure can show that anything can truly be ordered if at least

one ordering function can be defined over a particular set of data. In this

particular case, the routine is not optimized at all. It just intends to show that it is

possible to do so. However, this matter is to be followed because there is a

great deal of interest in providing an automatic procedure that would analyse

and compare several skin marks in order to determine the degree of malignity of

each one. Besides the main routine optimization, the database implementation

needs to be optimized.

 Prototype

 Page 82

These optimizations are one of the major future words (as referred in the proper

chapter) because there is great interest in provide a fast method to analyse and

compare several skin marks against malignity.

 Conclusions

 Page 83

Chapter 15

Conclusions

The existence of a Unique Constraint Domain applied to a relation was shown.

When this Domain is fully ordered then it is called an Ordered Unique

Constraint Domain.

Also was shown that all candidate keys belong to irreducible Unique Constraint

Domains. Moreover, all enlargements of Unique Constraint Domains will still be

a Unique Constraint Domains.

These domains constitute the base for any index in a database. The

uniqueness of the index can be achieved combining any attributes with any

determinant. Those determinants can be either candidate keys or any surrogate

order such as storage record order.

Since an index is meant to sort data, a function was added that could take an

Ordered Unique Constraint Domain, that can associate a unique order to a

unique key (and that does seem achievable), we can add some more meaning

to the relation between two (or more) data tables. This function, defined to a

specific relation composes a structure that we have called an “extended

relation” and it is distinct to the same relation composed with another function.

It was have also shown that a Unique Constraint Domain can be composed with

attributes from different domains (even from different relations) composing a

cross-domain index.

Moreover, it was also shown that foreign keys are logical pointers to data, so

they behave like indexes. All foreign keys can then be placed into “relationship

tables” managed internally by database engines built as indexes. Since these

relationships are created with cross-domain structures, the cross-domain

indexes are the proper structure to implement them.

 Conclusions

 Page 84

But since in every Ordered Unique Constraint Domain is possible to define an

ordering function, these structures are now based in rules and not in data,

although the rule can be as simple the lexicographical order of base data.

The meaning resides on the utility of such sort order. We can then define not

only what the participants in a relation are, but also how they related among

themselves and what its role in that relation is. The index can be built as a

linked list so that a particular sort order could be followed if necessary.

All indexes on a database can be built with this logic, because all the “regular”

indexes fall into this document definition of indexes.

The use of indexes in a general way of speaking is a good practice for ordering

and finding data amongst large databanks. If data cannot be sorted, it might

become very difficult or time consuming to find it. This is particularly relevant

dealing with foreign keys because one must see if any integrity rule is being

violated or not, and to do that data in the referred table must be found

efficiently. This would be very hard to achieve if there were no indexes on a

database.

There is still a step to take. How can this be implemented in a database engine?

When a dataset is indexed, there is a declaration of a certain number of fields to

index and if they are ordered ascending or descending. This is called the

“natural” or “system” ordering (according to Ng [33]), since it only takes the binary

value of data being sorted. And because it is needed more ways to sort data

than this simple method, database engine builders created what they call

“database sort-order” or “database code-page” which are no more than rules to

sort out national characters in a way that matches the culture in which they are

used.

For instance, the words “Abelardo”, “Álvaro” and “Berardo” should be sorted in

this very order although the symbol “Á” has a higher binary code than the “B”

 Conclusions

 Page 85

symbol. This is achieved by database engines by defining rules how to sort this

kind of symbols.

The answer for our model resides on building functions (such as database sort

order) that we can use for building indexes and sorting data.

The database engine should accommodate an area where sort orders could be

defined and maintained so indexes could be created accordingly to the rules

defined on such functions.

This, of course, would have to bring changes how the database language (SQL,

primarily) [t11] accesses data, so an adjustment to the language should be made.

It should be possible to define any sort order, and access data in that order. It

should be also possible to define a new function that allows the access data in a

particular order (not just the first or last row but also next and previous rows).

Now with an index formally defined as a function that returns data in a particular

order, more functions could be added to datasets.

With this definition, ordering can be provided by means of user-defined

functions that can literally provide any desired order. An example of this is the

definition of a function that can randomize a set of data, followed by its

implementation.

The concept of first, last, previous and next can now be added and data can be

accessed from the first row, last row, next row and previous row, without have

to define a procedural access to that.

Some database engines implements a function called “row_number” based in

an SQL ORDER BY clause, which is no more than an implementation of a

singular function that ranks results based on a specified ORDER BY clause.

 Conclusions

 Page 86

From the beginning of databases, indexes were considered an implementation

option but not a conceptual issue. Over the times, the use has proved that

indexes are one of the data access foundations. Some researchers began the

study of Ordered Relations [33] but what was defined was the semantics of those

domains. On the other hand relationships has been defined as a foundation to

the relational model [8], but the relationships have been implemented by foreign

keys which are no more than pointer to data, meaning that they are no more

than indexes.

Putting together these two realities together, an index structure that can provide

support for relationships amongst tables, provide the notion of role within a

relationship and behaves like a function to return the raw data involved, given a

key (whether is one table, a pair related or a multi-related junction) have been

presented. Additionally, since these indexes can be made out of rules, we can

also have a semantic meaning for each relation is a database.

 Future Research Work

 Page 87

Chapter 16

Future Research Work

The first step is build a real implementation from the prototype (which doesn’t

implement most of the functionalities, but only aims to show that the cases

stated earlier could have a better solution if database engines could treat order

not just from a simple view of data.

From now on, it might be possible to combine ordering with optical recognition

of images, sound analysis, or any kind of objects, generally speaking, so that

we can indeed search within a databank of images, or sounds or, generally, any

kind of objects because order to find any kind of data has been defined.

Moreover, in Object Oriented Database Engines it could be possible, treating

tables and views not only as a collection of objects, but also as objects

themselves, to define methods that allow sorting of those collections. Since an

Object Query Language is still needed, syntax to achieve this goal can yet be

defined. Part of the future work consists also in contributing to Object Query

Language wherever possible.

The industry and international organizations may now define new alphabets to

search in databases, not only with human readable characters. Search and find

something in its various forms, like, for instance, looking for the number of ads

of a particular brand in the TV channels, recognizing the images and providing

immediate feed back to the searcher without having to classify every piece of

information (in a human readable way, that is) in a database.

Making data more searchable can also be useful for models that use relational

database constructs as a foundation for higher constructs, as for example,

some implementations of object-oriented databases, which in turn are relational

databases with an object-oriented interface, can profit from an improvement on

their basis. As far as we can see, ordering data sustained by a class will no

 Future Research Work

 Page 88

further implementations besides its definitions, or if a method defines a specific

way of presenting data, that method should be programmed and included in the

database engine as a base method for that kind of data as an ordering function.

The new SQL keywords will certainly improve database performance when

used against very large databanks, since they can provide aggregate data that

only could be obtained in a more resource expensive way.

In addition, at last, it can be used for further research, as we intend to do from

this point forward. The main research steps forward this point is to define how to

obtain and sort non-textual data and (if possible) to approach a semantic way to

describe this type of data in such manner that can be used by future database

engines, as referred earlier.

The researcher is aiming to develop, in conjunction with other colleagues, a

model to efficiently store non-textual data (such as audio, video or other type of

binary objects) and provide means of querying that data such as using a photo

or a sound to perform a search in the database. In a matter of fact, the

researcher is already working with a colleague to store images of skin marks

and implementing a sorting algorithm to order according to malignity, which, in

turn, is calculated through an algorithm that examines the image and produces

a set of results that can be interpreted.

As a practical sample, since some metadata is stored together with multimedia

data (as for instance the jpeg file format), this model allow the ordering for that

metadata. This can be achieved without the metadata being actually copied into

some field or fields in the database, gaining a non-redundant schema for

accessing that type of data.

One goal to achieve with future work on Ordered Relations is the ability of

analysing skin mark for early detection of skin cancer. Joining efforts with Viana,

using an optimized code from his model of analysis of skin marks [46] it can be

possible to implement a method that allows databases to analyse stored images

 Future Research Work

 Page 89

by content. This in contrast to analysis by metadata can produce a quick, but

exact analysis of the skin marks giving an accurate classification of those skin

marks, without the time needed to produce and store the metadata.

Is it known that multimedia databases generally use huge storage space so a

scan through data can be an extreme time consuming operation. Improving how

data can be order and searched can surely bring improvements to multimedia

databases.

On the other hand, even in ordinary databases (meaning not designed to be a

multimedia database) the use of multimedia data is increasing, so these

techniques can also improve searches in those databases in the future.

 References

 Page 90

Chapter 17

References

In first place, the researcher wants to clear that all readings and all study are

relevant to create a thinking that allowed him to formulate his theory. This is so

because someone else’s knowledge, after being studied becomes part of him

and acts as a new base to new knowledge. It is truly impossible to enumerate

all the references that were actually used to build our research. However, it is

certainly possible to enumerate the more important ones, those that, in a matter

of fact, constitute the true base on this particular subject.

Below is the list of what the researcher thinks it was more relevant to this

research:

[1] – Adbelguerfi, M. and Sood, A. K.: “Computational Complexity of Sorting

and Joining Relations with Duplicates” in IEEE Transactions on

knowledge and data engineering, vol. 3, no. 4, pages 496–503,

(December 1991)

[2] – Alagic, S.: “Relational Database Technology”, Springer-Verlay, New

York, 1986

[3] – Atre, S.: “Data base: structured techniques for design, performance and

management”, Wiley, England, 1980

[4] – Braumann, P. B.: “Teoria da Medida e da Probabilidade – Parte I:

Álgebra de Conjuntos”, Fundação Calouste Gulbenkian, 1987 9

9
 Professor Pedro Braumann was Portuguese and this book was never translated into English

language. The title means “Theory of measure and probability – Part I: Algebra of Sets”

 References

 Page 91

[5] – Chaudhuri, S. and Shim, K.: “Optimizations of Queries with User-defined

Predicates”, Proceedings 22nd International Conference on Very Large

Data Bases, Mumbai (Bombay), India (September 1996)

[6] – Chen, P. P-S.: “The Entity-Relationship Model - Toward a Unified View of

Data”, ACM, Transactions on Database Systems, 1976

[7] – Christment, C.: “Prática de Bases de Dados”, Ed. Presença, Lisboa,

1990 (Portuguese edition)

[8] – Codd, E. F.: “A Relational Model of Data for Large Shared Data Banks”,

Comm. of the ACM 13, No. 6 (June 1970)

[9] – Codd, E. F.: “Data Models in Database Management”, Proc. Workshop

on Data Abstraction, Databases and Conceptual Modeling, Pingree Park,

Colo (June 1980)

[10] – Codd, E. F.: “Domains, Keys, and Referential Integrity on Relational

Databases”, InfoDB3, Nº 1 (Spring 1988)

[11] – Codd, E. F.: “Is your DBMS Really Relational?" and "Does Your DBMS

Run by Rules?”, Computerworld (October 14th and 21st, 1985)

[12] – Codd, E. F.: “The Relational Model for Database Management Version

2”, Addison-Wesley, 1990

[13] – Date, C. J. and Darwen, H. “Foundation for Object/Relational Databases:

The Third Manifesto”, Reading, Mass.: Addison-Wesley, 1998

[14] – Date, C. J. and Darwen, H.: “A Critical Review of the Relational Model

Version 2 (RM/V2)”, Relational Database Writings 1989-1991, Addison-

Wesley, 1992

 References

 Page 92

[15] – Date, C. J. and Darwen, H.: “The Duplicity of Duplicate Rows”, Relational

Database Writings 1989-1991, Addison-Wesley, 1992

[16] – Date, C. J. and Darwen, H.: “What a Database really is: Predicates and

Propositions”, Relational Database Writings 1994-1997, Addison-Wesley,

1998

[17] – Date, C. J.: “A Normalization Problem”, in Relational Database Writings

1991-1994. Reading, Mass. Addison-Wesley, 1995

[18] – Date, C. J.: “An Introduction to Database Systems - 8th Edition”,

Addison-Wesley, 2003

[19] – Date, C. J.: “Referential Integrity”, Proc.7th Int. Conference on Very

Large Data Banks, Cannes, France (September 1981)

[20] – Date, C. J.: “A Guide to the SQL standard”, Addison-Wesley Publishing

Co., Massachusetts, 1987

[21] – Date, C. J.: “An Architecture for High-Level Language Database

Extensions”, SIGMOD76, (December 1975)

[22] – Delobel, C., Adiba, M.: “Bases de données et systémes relationnels”,

Dunod, Paris, 1982

[23] – Hahn, H. and Rosenthal, A.: “Set Functions”, University of New Mexico

Press, Albuquerque, 1948

[24] – Hall, P. O. J. and Todd, S. J. P.: “Relations and Entities” in G. M. Nijssen

(ed.) Modeling in Data Base Management Systems, Amsterdam, The

Netherlands: North-Holland/New York, N. Y.: Elsevier Science, 1975

[25] – Inmon, W. H.: “Effective Data Base Design”, Prentice-Hall, New Jersey,

1981

 References

 Page 93

[26] – Klug, A.: “Equivalence of Relational Algebra and Relational Calculus

Query Languages Having Aggregate Functions”, JACM 29, No 3 (July

1982)

[27] – Kung, H. T., Lehman, P. L.: “Systolic (VLSI) arrays for relational database

operations”, Proceedings of the 1980 ACM SIGMOD international

conference on Management of data, May 14-16, 1980, Santa Monica,

California

[28] – Loomis, M. E. S.: “The Database Book”, Macmillan, New York, 1987

[29] – Maier, D.: “The Theory of Relational Databases”, Computer Science

Press, 1983

[30] – Martin, J.: “Principles of Database Management”, Prentice-Hall (1976,

1989).

[31] – Martin, J: “Computer Data-base Organization” 2nd Edition, Prentice-Hall,

New Jersey, 1977

[32] – Negri, M., Pelagatti, G., and Sbattella, L.: “Formal Semantics of SQL

Queries”, ACM Transactions on Database Systems 16, nº 3 (September

1991)

[33] – Ng, W. K.: “An Extension of the Relational Database Model to

Incorporate Ordered Domains”, ACM, Transactions on Database

Systems, Vol. 26, No. 3, September 2001.

[34] – Oxborrow, E.: “Databases and Databases Systems: Concepts and

Issues”, Chartwell-Bratt 2nd Edition, 1989

 References

 Page 94

[35] – Paully, G. N. and Larson, P.: “Exploiting Uniqueness in Query

Optimization” in Proceedings of the International Conference on Data

Engineering, pages 68-79, 1994

[36] – Pereira, J. L.: “Tecnologia de Bases de Dados”, FCA Editores 199810

[37] – Ramakrishnan, R. et al.: “SRQL: Sorted Relation Query Language”,

Tenth International Conference on Scientific and Statistical Database

Management, proceedings, pages 84-95, 1998.

[38] – Ramakrishnan, R. et al: “Sequence query processing” in Proceedings of

the ACM SIGMOD Conference on Management of Data, pages 430–441

(May 1994)

[39] – Reed, P.: “The Unified Modeling Language Takes Shape”, DBMS 11, Nº

8 (July 1998)

[40] – Rumbaugh, J., Blaha, M., Premerlani, W., Eddy F. and Lorensen, W.:

“Object-oriented Modeling and Design”, Prentice-Hall, 1991

[41] – Silberschatz, A., Stonebraker, M. and Ullman, J.: “Database Systems:

Achievements and Opportunities”, Communications of the ACM, 34, 10,

110-120, 1991

[42] – Stanczjk, S.: “Theory and Practice of relational databases”, Pitman,

London, 1990

[43] – Titchmarsh, E. C.: “The Theory of Functions”, Oxford University Press,

1944

10

 José Luís Pereira is a Portuguese database researcher. He is a BSc in System Engineering

and Computer Science

 References

 Page 95

[44] – Tsichritzis, D. C., Lochovsky, F. H.: “Data Base Management Systems”,

Academic Press, Inc (London) Ltd., London, 1977

[45] – Widom, J., and Ceri, S.: “Active Database Systems: Triggers and Rules

for advanced Database Processing”, San Francisco, California, Morgan

Kaufmann, 1996

[46] – Cunha Viana, J.; “Classification of Skin Tumours through the Analysis of

Unconstrained Images”; De Montfort University, PhD Thesis, 2009

[47] – Hand, S., Chandler,J.; “Introduction to Object Oriented Databases”,

September 1998 (PDF downloaded from www.odbms.org)

[48] – Chountas, P.: “RDBMS versus ORDBMS versus OODBMS”, University of

Westminster, August 2005 (PDF downloaded from www.odbms.org)

[49] – Wade, A.: “Hitting the relational Wall”, Objectivity Inc., 2005 (PDF

downloaded from www.odbms.org)

[50] – Signer, B.: “Introduction to Databases Object and Object-Relational

Databases”, Vrije Universiteit Brussel, June 2010 (PDF downloaded from

www.odbms.org)

[51] – Baumann, P.: “Object-Oriented or Object-Relational? An Experience

Report from a High-Complexity, Long-Term Case Study”, Jacobs

University, July 2010 (PDF downloaded from www.odbms.org)

[52] –Grossniklaus, M., Norrie, M.: “Object Oriented Databases - lecture series

(Version 2009)”, ETH Zürich, 2009, (series of PDF downloaded from

www.odbms.org)

Technical references:

 References

 Page 96

[t01] – Ben-Gan, I. et al: “Inside Microsoft SQL Server 2008: T-SQL Querying”,

Microsoft Press, (Mar 25, 2009)

[t02] – Brust, A. J. and Forte, S.: “Programming Microsoft SQL Server 2005”,

Microsoft Press, (Jul 19, 2006)

[t03] – Computer Technology Research Corp: “Directions in Database

Management Systems: Selection and Implementation”, 1991

[t04] – Delaney, K. et al: “Inside Microsoft SQL Server 2005: Query Tuning and

Optimization”, Microsoft Press, (Sep 26, 2007)

[t05] – Delaney, K.: “Inside Microsoft SQL Server(TM) 2005: The Storage

Engine”, Microsoft Press, (Nov 8, 2006)

[t06] – Dubois, P.: “MySQL (4th Edition)”, (Sep 8, 2008)

[t07] – Dubois, P.: “MySQL Cookbook”, (Jan 27, 2007)

[t08] – Harrison, G. and Feuerstein, S.: “MySQL Stored Procedure

Programming”, (Mar 28, 2006)

[t09] – INFORMIX SOFTWARE: “Informix SQL Reference Library”, (Dec 27,

1999)

[t10] – ISO/IEC 8824-1: 1998, Information technology — Abstract Syntax

Notation One (ASN.1): Specification of basic notation, 1998

[t11] – ISO/IEC 9075-*: 2003, Information technology — Database Languages

— SQL (2003~2006).

[t12] – Kipp, C.: “Programming Informix SQL/4GL: A Step-By-Step Approach”,

2nd Edition, (Nov 21, 1997)

 References

 Page 97

[t13] – Knight, B. et al: “Professional SQL Server 2005 Integration Services

(Programmer to Programmer)”, Microsoft Press (Jan 31, 2006)

[t14] – Melnyk, R. B. and Zikopoulos, P. C.: “DB2: The Complete Reference”,

(Oct 2001)

[t15] – Mullins, C. S.: “DB2 Developer's Guide”, 5th Edition, (May 21, 2004)

[t16] – MYSQL AB: “MySQL Administrator's Guide and Language Reference

(2nd Edition)”, (May 7, 2006)

[t17] – Pachev, S.: “Understanding MySQL Internals”, (April 10, 2007)

Online resources:

[i01] – http://www.microsoft.com

[i02] – http://www.ieee.org

[i03] – http://www.oracle.com

[i04] – http://www.postgresql.org

[i05] – http://www.mysql.com

[i06] – http://www.codeproject.com

[i07] – http://www.odbms.org

[i08] – http://www.gemstone.com

[i09] – http://www.service-arquitecture.com

[i10] – http://www.versant.com

http://www.postgresql.org/

 References

 Page 98

[i11] - http://www.agiledata.org/essays/keys.html

[i12] – http://searchsqlserver.techtarget.com/feature/Why-use-surrogate-keys

[i13] –

http://www.databasejournal.com/features/mssql/article.php/3922066/SQL

-Server-Natural-Key-Verses-Surrogate-Key.htm

 Appendix

 Page 99

Appendix

The annexes presents the code needed for the hotel problem (written in Visual

Basic 6.0), the code for the stored procedure that calculates the amount to give

to each candidate (written in Transact SQL) and the complex SQL statement

that displays a running sum. It also has a non-optimized sample of image

sorting by direct image analysis.

The implementation in C# of the extended stored procedure for the prototype,

written for Microsoft SQL Server 2008 follows the previous code. Along with the

prototype the “SqlRandom()” function was implemented to be used in extended

SQL statements. A program that shows a form that accepts as input an

extended syntax SQL statement and displays the resulting data is also listed.

Although the main code is for the extended stored procedures, this program

implements a simple interface for the extended syntax. At last, the SQL

expressions that implements the solution for the case studies, both in how

should be directly parsed and as argument for the extended stored procedure

“RMExtension”.

 Appendix

 Page 100

The procedure written to present rooms from hotels in random order in Visual

Basic 6.

The part of the procedure that is actually responsible for randomizing the output

is in bold typeface and highlighted.

Private Sub LblConsultar_Click()

On Error GoTo LblConsultar_ClickErr

 Dim RsCon As ADODB.Recordset, RsConHot As ADODB.Recordset

 Dim RsConBase As ADODB.Recordset, DtHoje As Date

 Dim aNumAl() As Byte, NumAl As Byte, i As Byte, j As Byte

 Dim bFound As Boolean

 Dim StrLocal As String

 If Not ValidaCampos() Then

 Exit Sub

 End If

 DtHoje = Date

 StrLocal = IIf(CboLocal = "Todos", "*", CboLocal)

 If DtaATL.rsConsulta.State <> adStateOpen Then

 DtaATL.Consulta

 End If

 If DtaATL.rsConsultaHotel.State <> adStateOpen Then

 DtaATL.ConsultaHotel

 End If

 If DtaATL.rsQryConsultaBase.State <> adStateClosed Then

 DtaATL.rsQryConsultaBase.Close

 End If

 DtaATL.QryConsultaBase CByte(TbxEstrelasMin), CByte(TbxEstrelasMax),

CCur(TbxPrecoMin), CCur(TbxPrecoMax)

 If StrLocal <> "*" Then

 DtaATL.rsQryConsultaBase.Filter = "Localizacao = '" & StrLocal &

"'"

 End If

 With DtaATL

 Set RsConBase = .rsQryConsultaBase

 Set RsCon = .rsConsulta

 Set RsConHot = .rsConsultaHotel

 End With

 If RsConBase.EOF Then 'Empty consulta

 MsgBox "Não existem hoteis nessas condições", vbInformation, "Sem

hoteis"

 Exit Sub

 Else

 RsCon.Filter = "NumPosto = " & NumPosto & " AND NumPos = " &

NumPos & " AND Data = #" & DtHoje & "#"

 If RsCon.EOF Then

 Appendix

 Page 101

 NOrdem = 1

 Else

 RsCon.MoveLast

 NOrdem = RsCon("Nordem") + 1

 End If

 RsCon.Filter = ""

 'RsConBase.MoveLast

 'RsConBase.MoveFirst

 With RsCon

 .AddNew

 .Fields("NumPosto") = NumPosto

 .Fields("NumPos") = NumPos

 .Fields("Data") = DtHoje

 .Fields("Nordem") = NOrdem

 .Fields("Localizacao") = CboLocal.Text

 .Fields("NEstrelasMax") = TbxEstrelasMax

 .Fields("NEstrelasMin") = TbxEstrelasMin

 .Fields("PrecoMin") = TbxPrecoMin

 .Fields("PrecoMax") = TbxPrecoMax

 .Fields("CodNacionalidade") =

CboNacPais.ItemData(CboNacPais.ListIndex)

 .Fields("CodProviniencia") =

CboProvPais.ItemData(CboProvPais.ListIndex)

 .Fields("CodDestino") = CboDestino.BoundText

 .Fields("CodMeioTransporte") = CboMeioTransporte.BoundText

 .Fields("NPessoas") = TbxNumPessoas

 .Update

 End With

 Randomize

 ReDim aNumAl(0 To RsConBase.RecordCount)

 i = 0

 Do While Not RsConBase.EOF

 Do

 bFound = False

 NumAl = Rnd * RsConBase.RecordCount

 For j = 0 To i

 bFound = bFound Or (aNumAl(j) = NumAl)

 Next

 Loop While bFound

 aNumAl(i) = NumAl

 i = i + 1

 With RsConHot

 .AddNew

 .Fields("NumPosto") = NumPosto

 .Fields("NumPos") = NumPos

 .Fields("Data") = DtHoje

 .Fields("Nordem") = NOrdem

 .Fields("CodHotel") = RsConBase("CodHotel")

 .Fields("CodQuarto") = RsConBase("CodQuarto")

 .Fields("NumAleatorio") = NumAl

 .Update

 End With

 RsConBase.MoveNext

 Loop

 End If

 Set RsConHot = Nothing

 Set RsCon = Nothing

 Set RsConBase = Nothing

 Appendix

 Page 102

 If DtaATL.rsQryListaHoteis.State <> adStateClosed Then

 DtaATL.rsQryListaHoteis.Close

 End If

 DtaATL.QryListaHoteis NumPosto, NumPos, DtHoje, NOrdem

 FrmListaHoteis.Show

 FrmConsulta.Hide

LblConsultar_ClickExit:

 Exit Sub

LblConsultar_ClickErr:

 MsgBox "Erro nº" & Err & vbCrLf & Err.Description, vbCritical,

"LblConsultar Click"

 Resume LblConsultar_ClickExit

End Sub

 Appendix

 Page 103

The SQL Stored Procedure that calculates the scholarships

Comments are in Portuguese. The budget control is in bold typeface and

highlighted

PROCEDURE [dbo].[CalcNormal](@AnoProcesso int)

 SET NOCOUNT ON

 DECLARE @Bolsa Money, @LimOrc Money, @TotManual Money

 DECLARE @NumeroProcesso int, @Manual bit, @Capitacao money,

@PropinaAnual Money, @Deslocado bit, @NMeses smallint

 DECLARE @BolsasAuferidas Money, @PedidoComplemento Money,

@PedidoTransporte Money

 DECLARE @RCand CURSOR

 BEGIN TRAN

/* Se alterar o cursor, tenho de alterar estas procedures em

conformidade */

 EXECUTE QUpdClearBolsas @AnoProcesso

 EXECUTE QUpdClearRejeicao @AnoProcesso

 EXECUTE QUpdSetRejeicao @AnoProcesso

 SELECT @TotManual = SUM(Total) FROM QGrpTotalBolsasManuais

WHERE AnoProcesso = @AnoProcesso

 SET @LimOrc = dbo.LimiteOrcamental(@AnoProcesso) - CASE WHEN

@TotManual IS NULL THEN 0 ELSE @TotManual END

/* Os não processados */

 SET @RCand = CURSOR FAST_FORWARD FOR SELECT NumeroProcesso,

Manual, Capitacao, PropinaAnual, Deslocado, NMeses, BolsasAuferidas,

PedidoComplemento,PedidoTransporte FROM QryCapitacaoParaProcessamento

WHERE EstadoProcesso < 2 AND AnoProcesso = @AnoProcesso

/* Todos */

/* SET @RCand = CURSOR FAST_FORWARD FOR SELECT NumeroProcesso,

Manual, Capitacao, PropinaAnual, Deslocado, NMeses, BolsasAuferidas,

PedidoComplemento, PedidoTransporte FROM QryCapitacaoParaProcessamento

WHERE AnoProcesso = @AnoProcesso */

 OPEN @RCand

 FETCH NEXT FROM @RCand INTO @NumeroProcesso, @Manual,

@Capitacao, @PropinaAnual, @Deslocado, @NMeses, @BolsasAuferidas,

@PedidoComplemento, @PedidoTransporte

 WHILE (@@FETCH_STATUS = 0) AND @LimOrc > 0

 BEGIN

 IF @Manual = 0

 BEGIN

 SET @PedidoComplemento = CASE WHEN @Deslocado <> 0

THEN

dbo.Menor(@PedidoComplemento,dbo.MaxComplementoBolsa(@AnoProcesso))

ELSE 0 END

 SET @PedidoTransporte = CASE WHEN @Deslocado <> 0

THEN dbo.Menor(@PedidoTransporte,dbo.MaxSubTrans(@AnoProcesso)) ELSE 0

END

 SET @Bolsa = dbo.CalcBolsa(@Capitacao, @PropinaAnual,

@NMeses,@AnoProcesso)

 SET @Bolsa = @Bolsa - dbo.Maior(@Bolsa +

@BolsasAuferidas / @NMeses - dbo.MaximaBolsa(@AnoProcesso),0)

 IF @Bolsa > 0

 BEGIN

 SET @Bolsa = ROUND((@Bolsa +

@PedidoComplemento) * 10 + 0.5,0)/10

 SET @LimOrc = @LimOrc - (@Bolsa * @NMeses) -

@PedidoTransporte

 Appendix

 Page 104

 UPDATE ProcessoAnual SET BolsaCalculada =

@Bolsa WHERE NumeroProcesso = @NumeroProcesso AND AnoProcesso =

@AnoProcesso

 END

 END

 FETCH NEXT FROM @RCand INTO @NumeroProcesso, @Manual,

@Capitacao, @PropinaAnual, @Deslocado, @NMeses, @BolsasAuferidas,

@PedidoComplemento, @PedidoTransporte

 END

 CLOSE @RCand

 DEALLOCATE @RCand

 /* Passar novos e tratados, sem excepção, a processados */

 UPDATE ProcessoAnual SET EstadoProcesso = 2 WHERE EstadoProcesso

< 2 AND AnoProcesso = @AnoProcesso

 /* Passar todos os que são falta de documentos, minutas, etc a

"Novos" para serem tratados nas instituições */

 --UPDATE ProcessoAnual SET EstadoProcesso = 0 WHERE AnoProcesso

= @AnoProcesso AND CodigoIndeferimento IN (2,19,22,23)

 COMMIT TRAN

 RETURN

 Appendix

 Page 105

The SQL for the running sum

SELECT B.DtBudget, B.MonthValue, Accumul = (SELECT SUM(MonthValue)

 FROM Budget BB

 WHERE BB.DtBudget BETWEEN '1-Jan-2010' AND B.DtBudget)

FROM Budget B

WHERE B.DtBudget BETWEEN '1-Jan-2010' AND '31-Dec-2010'

ORDER BY B.DtBudget

 Appendix

 Page 106

Listing of RMextensions.cs
using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

public partial class StoredProcedures

{

 [Microsoft.SqlServer.Server.SqlProcedure]

 public static void RMExtension(string strSQL)

 {

 // Test if we are under an SQL server connection

 if (!SqlContext.IsAvailable)

 return;

 // First split the string in statments to "remount" and

execute std SQL

 SqlConnection conn = new SqlConnection("context

connection=true");

 // save the original SQL in pieces

 string[] SQL = RMEUtils.SplitSQL(strSQL);

 string SQLText = "";

 string[] alias = { };

 string[] fnames = { };

 string whereclause = "";

 for (int i = 0; i < SQL.Length; i++)

 {

 string clause = SQL[i];

 // keep the where expression for further processing later

 if (clause.ToUpper().StartsWith("WHERE"))

 whereclause =

SQL[i].Substring(SQL[i].ToUpper().IndexOf("WHERE") +

"WHERE".Length).Trim();

 // get the field/aliases names for each field

 if (clause.ToUpper().StartsWith("SELECT"))

 {

 // keep the alias and the original field names

 string selstr =

SQL[i].Substring(SQL[i].ToUpper().IndexOf("SELECT") +

"SELECT".Length).Trim();

 alias = RMEUtils.GetFieldNames(selstr);

 fnames = selstr.Split(',');

 }

 // Search for ordering funcions inside the ORDER BY clause

 if (clause.ToUpper().StartsWith("ORDER BY"))

 {

 // we have a ordering function over here

 // Remove the Order By

 clause =

clause.Substring(clause.ToUpper().IndexOf("ORDER BY") + "ORDER

BY".Length).Trim();

 // explode the fields

 Appendix

 Page 107

 string[] fields = clause.Split(',');

 string[] fOrder = { };

 clause = "";

 // find any extended stored procedures with the same

name and fill the array with their names

 for (int j = 0; j < fields.Length; j++)

 {

 string fld = fields[j].Trim() + ", ";

 if (fields[j].ToUpper().Contains("(")) //found!

 {

 fld = fields[j].Trim().Substring(0,

fields[j].IndexOf("("));

 if (SQLUtils.IsExtSP(fld, conn))

 {

 Array.Resize(ref fOrder, fOrder.Length +

1);

 fOrder[fOrder.Length - 1] = fld;

 fld = "";

 }

 else

 fld += ", ";

 }

 clause += fld;

 }

 // remount the clause without the Order Function(s)

 if (clause != "")

 clause = "ORDER BY " + clause.Substring(0,

clause.Length - 2);

 SQL[i] = clause;

 //prepare the EXEC statment for the order stored

procedures

 // Before the EXEC statments get the metadata for the

new prepared SQL

 for (int j = 0; j < fOrder.Length; j++)

 {

 SQL[0] = SQL[0].Replace("'", "''");

 SQL[SQL.Length - 1] = SQL[SQL.Length -

1].Replace("'", "''");

 SQL[0] = "EXEC " + fOrder[j] + " '" + SQL[0];

 SQL[SQL.Length - 1] += "'";

 }

 }

 }

 // Build the standard SQL to be runned by the engine

 SQLText = RMEUtils.remountSQL(SQL);

 // for the metadata to work fine, we need to remove the 'EXEC'

out of the select statement

 string SQLstd = SQLText;

 while (SQLstd.ToUpper().Contains("EXEC"))

 {

 SQLstd = SQLstd.Substring(SQLstd.IndexOf("'") + 1,

SQLstd.LastIndexOf("'") - SQLstd.IndexOf("'") - 1).Trim();

 SQLstd = SQLstd.Replace("''", "'");

 }

 // get the data out of the engine

 Appendix

 Page 108

 DataTable dt = null;

 try

 {

 dt = SQLUtils.lData(SQLText, conn);

 }

 catch (Exception e)

 {

 dt = null;

 SqlContext.Pipe.Send(e.Message);

 }

 if (dt != null)

 {

 // prepare the extension fields

 double[] runsum = new double[] { };

 for (int i = 0; i < fnames.Length; i++)

 {

 string field = fnames[i];

 if (field.ToUpper().Contains("ACCUMUL"))

 Array.Resize(ref runsum, runsum.Length + 1);

 }

 for (int i = 0; i < runsum.Length; i++)

 runsum[i] = 0;

 // let us process the data

 // Evaluate the new keywords modifying the resulting

datatable

 for (int rc = 0; rc < dt.Rows.Count; rc++)

 {

 int i = 0;

 DataRow dr = dt.Rows[rc];

 foreach (DataColumn dc in dt.Columns)

 {

 // find out what alias is it

 int fpos = RMEUtils.GetFieldPos(alias, dc);

 if (fpos != -1)

 {

 if

(fnames[fpos].ToUpper().Contains("ACCUMUL"))

 {

 dr.BeginEdit();

 dr[dc.ColumnName] =

double.Parse(dr[dc.ColumnName].ToString()) + runsum[i];

 dr.AcceptChanges();

 dr.EndEdit();

 runsum[i] =

double.Parse(dr[dc.ColumnName].ToString());

 i++;

 }

 if

(fnames[fpos].ToUpper().Contains("ORDERNEXT"))

 {

 dr.BeginEdit();

 if (rc != dt.Rows.Count - 1)

 dr[dc.ColumnName] = dt.Rows[rc +

1][dc.ColumnName];

 dr.AcceptChanges();

 dr.EndEdit();

 Appendix

 Page 109

 }

 }

 }

 }

 //PREV must be treated upside down

 for (int rc = dt.Rows.Count - 1; rc >= 0; rc--)

 {

 DataRow dr = dt.Rows[rc];

 foreach (DataColumn dc in dt.Columns)

 {

 int fpos = RMEUtils.GetFieldPos(alias, dc);

 if (fpos != -1)

 if

(fnames[fpos].ToUpper().Contains("ORDERPREV"))

 {

 dr.BeginEdit();

 if (rc != 0)

 dr[dc.ColumnName] = dt.Rows[rc -

1][dc.ColumnName];

 dr.AcceptChanges();

 dr.EndEdit();

 }

 }

 }

 DataView dv = dt.DefaultView;

 // see if there are any WHERE Clause on the extension

fields

 dv.RowFilter = "";

 if (!String.IsNullOrEmpty(whereclause))

 dv.RowFilter = RMEUtils.BuidWhere(fnames, alias,

whereclause);

 DataTable dto = dv.ToTable();

 // treat last item of ORDERNEXT and first item of

ORDERPREV

 if (dto.Rows.Count > 0)

 {

 foreach (DataColumn dc in dto.Columns)

 {

 int fpos = RMEUtils.GetFieldPos(alias, dc);

 if (fpos != -1)

 {

 if

(fnames[fpos].ToUpper().Contains("ORDERNEXT"))

 {

 DataRow dr = dto.Rows[dto.Rows.Count - 1];

 dr.BeginEdit();

 dr[dc.ColumnName] = DBNull.Value;

 dr.AcceptChanges();

 dr.EndEdit();

 }

 if

(fnames[fpos].ToUpper().Contains("ORDERPREV"))

 {

 Appendix

 Page 110

 DataRow dr = dto.Rows[0];

 dr.BeginEdit();

 dr[dc.ColumnName] = DBNull.Value;

 dr.AcceptChanges();

 dr.EndEdit();

 }

 }

 }

 }

 // get the fields sqltypes

 SqlMetaData[] flds = SQLUtils.GetMetaData(SQLstd, conn);

 // output the data to the user.

 SqlDataRecord rec = new SqlDataRecord(flds);

 SqlContext.Pipe.SendResultsStart(rec);

 foreach (DataRow dr in dto.Rows)

 {

 for (int i = 0; i < dto.Columns.Count; i++)

 {

 rec.SetValue(i, dr[i]);

 }

 SqlContext.Pipe.SendResultsRow(rec);

 }

 SqlContext.Pipe.SendResultsEnd();

 }

 }

};

 Appendix

 Page 111

Listing of the RMEUtils.cs
It implements both RMEUtils Class and SQLUtils Class
using System;

using System.Data;

using System.Collections;

using System.Collections.Generic;

using System.Text;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

class RMEUtils

{

 // keywords to be used inside this class

 private static readonly string[] keyword = { "SELECT", "FROM",

"WHERE", "GROUP BY", "HAVING", "ORDER BY" };

 private static readonly string[] keyext = { "ORDERPREV",

"ORDERNEXT", "ACCUMUL" }; //these are the only extensions implemented

 // Split the SQL string into a string array of clauses

 public static string[] SplitSQL(string strSQL)

 {

 string[] res = new string[] { };

 int i = 0;

 foreach (string k in keyword)

 {

 if (strSQL.ToUpper().Contains(k))

 {

 Array.Resize(ref res, res.Length + 1);

 res[i++] =

strSQL.Substring(strSQL.ToUpper().IndexOf(k)).Trim(); // fill the

string with the keyword forward

 strSQL = strSQL.Remove(0,

strSQL.ToUpper().IndexOf(k)).Trim(); // clean the begining of the

original string

 for (int j = 0; j < i - 1; j++) // clean the previous

substrings

 {

 if (res[j].ToUpper().IndexOf(k) > -1)

 res[j] =

res[j].Remove(res[j].ToUpper().IndexOf(k)).Trim();

 }

 }

 }

 return res;

 }

 // remount the SQL string, dealing with the extension fields

 // the result is a SQL string without any extended keywords so it

can be interpreted by the engine

 public static string remountSQL(string[] aSQL)

 {

 string res = "";

 foreach (string s in aSQL)

 {

 if (!String.IsNullOrEmpty(s.Trim()))

 res += ParseSQLComponent(s) + " ";

 Appendix

 Page 112

 }

 return res.Trim();

 }

 // parse every clause

 private static string ParseSQLComponent(string strSQLComp)

 {

 string res = strSQLComp;

 foreach (string k in keyword)

 {

 if (strSQLComp.ToUpper().Contains(k))

 {

 switch (k)

 {

 case "SELECT":

 // beware of EXEC statments

 string start = strSQLComp.Substring(0,

strSQLComp.ToUpper().IndexOf(k));

 // clean the SELECT clause

 res =

CleanSelect(strSQLComp.Substring(strSQLComp.ToUpper().IndexOf(k) +

k.Length));

 if (!String.IsNullOrEmpty(res))

 res = start + k + " " + res;

 break;

 case "FROM":

 case "WHERE":

 case "GROUP BY":

 case "HAVING":

 case "ORDER BY":

 // clean the field list from extended keywords

 res =

CleanFieldList(strSQLComp.Substring(k.Length));

 if (!String.IsNullOrEmpty(res))

 res = k + " " + res;

 break;

 default:

 break;

 }

 break;

 }

 }

 return res;

 }

 private static string CleanSelect(string strSQLComp)

 {

 // it is assumed that what was sent here was the SELECT clause

w/o the keyword

 // fields in the extension must be replaced by the original

field name

 string result = "";

 string s = strSQLComp.Trim();

 string[] s1 = s.Split(',');

 //get a array of field names

 string[] falias = GetFieldNames(strSQLComp);

 for (int i = 0; i < s1.Length; i++)

 Appendix

 Page 113

 {

 string sf = s1[i];

 string lsf = sf.Trim();

 string strFld = lsf;

 foreach (string k in keyext)

 {

 if (lsf.ToUpper().Contains(k))

 {

 int p1Pos = lsf.IndexOf("(");

 int p2Pos = lsf.IndexOf(")");

 strFld = lsf.Substring(p1Pos + 1, p2Pos - p1Pos -

1).Trim();

 // leave the field with its alias if he has one

 // or create a suitable alias

 if (p2Pos < lsf.Length - 1)

 strFld += lsf.Substring(p2Pos + 1);

 else

 strFld += " AS " + falias[i];

 break;

 }

 }

 result += strFld + ", ";

 }

 if (result.Contains(","))

 result = result.Substring(0,

result.LastIndexOf(",")).Trim();

 return result;

 }

 // clean the clause from any extended keywords

 private static string CleanFieldList(string strSQLComp)

 {

 // The string arrives without the clause keyword

 string result = "";

 string[] s1 = strSQLComp.Trim().Split(',');

 foreach (string sf in s1)

 {

 string lsf = sf.Trim();

 string strFld = lsf;

 foreach (string k in keyext)

 {

 if (lsf.ToUpper().Contains(k))

 {

 //remove it

 strFld = "";

 break;

 }

 }

 if (!String.IsNullOrEmpty(strFld))

 result += strFld + ", ";

 }

 if (result.Contains(","))

 result = result.Substring(0,

result.LastIndexOf(",")).Trim();

 return result;

 Appendix

 Page 114

 }

 //get an array of suitable field names from a SELECT clause

 public static string[] GetFieldNames(string strSQL)

 {

 //only the select clause will enter here

 //gets the output field names from a select clause

 string s = strSQL.Trim();

 // let's determinate the fields names

 string[] s1 = s.Split(',');

 string[] res = new string[s1.Length];

 int i = 0;

 foreach (string sf in s1)

 {

 int spPos = 0;

 if (sf.Contains(" "))

 {

 spPos = sf.LastIndexOf(" ");

 if (sf.Contains("]"))

 if (spPos > sf.IndexOf("]"))

 res[i] = sf.Substring(sf.LastIndexOf(" "));

 else

 res[i] = sf.Substring(sf.IndexOf("[") + 1,

sf.IndexOf("]") - sf.IndexOf("[") - 1);

 else

 res[i] = sf.Substring(spPos + 1);

 }

 else

 if (sf.Contains("["))

 res[i] = sf.Substring(sf.IndexOf("[") + 1,

sf.IndexOf("]") - sf.IndexOf("[") - 1);

 else

 res[i] = sf;

 //deal with the xxx(<fld>) fields * in <fld> ==> record

e.g. COUNT(*) =>CountOfRecord

 if (res[i].Contains("("))

 {

 res[i] = res[i].Trim();

 string fname = res[i].Substring(res[i].IndexOf("(") +

1, res[i].IndexOf(")") - res[i].IndexOf("(") - 1).Replace("*",

"Record");

 res[i] = res[i].Substring(0, 1).ToUpper() +

res[i].Substring(1, res[i].IndexOf("(") - 1).Trim().ToLower() + "Of" +

fname.Substring(0, 1).ToUpper() + fname.Substring(1).ToLower();

 }

 i++;

 }

 return res;

 }

 //gets the index of a certain datacolumn inside an index of fields

 public static int GetFieldPos(string[] fields, DataColumn dc)

 {

 int res = -1; //defaults to "not found"

 for (int i = 0; i < fields.Length; i++)

 Appendix

 Page 115

 {

 if (dc.ColumnName.ToUpper() == fields[i].ToUpper())

 {

 res = i;

 break;

 }

 }

 return res;

 }

 // build a WHERE string replacint the extensions with the actual

field name/alias

 public static string BuidWhere(string[] fields, string[] alias,

string wclause)

 {

 string res = wclause;

 for (int i = 0; i < keyext.Length; i++)

 {

 while (res.ToUpper().Contains(keyext[i].ToUpper()))

 {

 //find the string in the fields and replace it by their

alias

 int p1=res.ToUpper().IndexOf(keyext[i]);

 int p2 = res.IndexOf('(', p1);

 int p3 = res.IndexOf(')',p1);

 string toreplace = res.Substring(p1, p3 - p1 + 1);

 string field = res.Substring(p2 + 1, p3 - p2 -

1).Trim();

 for (int j = 0; j < fields.Length; j++)

 {

 if (fields[j].ToUpper().Contains(field.ToUpper())

&& fields[j].ToUpper().Contains(keyext[i].ToUpper()))

 {

 res = res.Replace(toreplace, alias[j]);

 break;

 }

 }

 }

 }

 return res;

 }

}

 Appendix

 Page 116

class SQLUtils

{

 //gets the data from an SQL String. It is assumed that the SQL

string is well formed

 public static DataTable lData(string strSQL, SqlConnection conn)

 {

 // Execute the base sql string and get the data from it

 // assumes that the SQL String is well formed

 DataTable Res = new DataTable();

 try

 {

 conn.Open();

 SqlCommand cmd = new SqlCommand(strSQL, conn);

 SqlDataReader drd = cmd.ExecuteReader();

 Res.Load(drd);

 }

 finally

 {

 conn.Close();

 }

 return Res;

 }

 //finds out if a certain name correponds to an extended store

procedure

 //it is used to determinate if an Ordering Function is implemented

as a procedure

 public static bool IsExtSP(string spName, SqlConnection conn)

 {

 bool res = false;

 DataTable dt = new DataTable();

 conn.Open();

 SqlCommand cmd = new SqlCommand("SELECT * FROM sys.objects

WHERE object_id = OBJECT_ID('" + spName + "') AND type in ('P','PC')",

conn);

 try

 {

 SqlDataReader drd = cmd.ExecuteReader();

 dt.Load(drd);

 res = (dt.Rows.Count > 0);

 }

 catch

 {

 res = false;

 }

 conn.Close();

 return res;

 }

 //This function was created from a sample located at

//http://www.java2s.com/Tutorial/CSharp/0560__ADO.Net/howtoreadatables

chema.htm

 //It's not the original. It has been fully adapted to work with

this prototype

 // gets an array of metadata from an SQl string

 Appendix

 Page 117

 public static SqlMetaData[] GetMetaData(string strSQL,

SqlConnection conn)

 {

 SqlMetaData[] res = new SqlMetaData[] { };

 conn.Open();

 SqlCommand cmd = new SqlCommand(strSQL, conn);

 SqlDataReader sdr =

cmd.ExecuteReader(CommandBehavior.SchemaOnly);

 DataTable dtStruc = sdr.GetSchemaTable();

 foreach (DataRow dr in dtStruc.Rows)

 {

 Array.Resize(ref res, res.Length + 1);

 SqlDbType dbt = (System.Data.SqlDbType)dr["ProviderType"];

 switch (dbt)

 {

 case SqlDbType.Binary:

 case SqlDbType.Char:

 case SqlDbType.NChar:

 case SqlDbType.NVarChar:

 case SqlDbType.VarBinary:

 case SqlDbType.VarChar:

 res[res.Length -1] = new

SqlMetaData(dr["ColumnName"].ToString(), dbt,

long.Parse(dr["ColumnSize"].ToString()));

 break;

 case SqlDbType.DateTime2:

 case SqlDbType.DateTimeOffset:

 case SqlDbType.Time:

 res[res.Length - 1] = new

SqlMetaData(dr["ColumnName"].ToString(), dbt, 255,

byte.Parse(dr["NumericScale"].ToString()));

 break;

 case SqlDbType.Decimal:

 res[res.Length - 1] = new

SqlMetaData(dr["ColumnName"].ToString(), dbt,

byte.Parse(dr["NumericPrecision"].ToString()),

byte.Parse(dr["NumericScale"].ToString()));

 break;

 default:

 res[res.Length - 1] = new

SqlMetaData(dr["ColumnName"].ToString(), dbt);

 break;

 }

 }

 sdr.Close();

 conn.Close();

 return res;

 }

}

 Appendix

 Page 118

Algorithm for the random sort (technology independent)

We assume that an array structure has these primitives:

 A.Add(e) – Adds element e to the array

 A.Delete(j) – Deletes the element in the j position from the array

 A.Length – returns the number of elements from the array. Returns 0 on an empty
array.

 A[j] – Accesses the element of the array in the j position

 New Array() – creates an empty array
We assume also that the array is zero-based, i.e., it has n elements numbered from 0 to n-1.

We also assume that random number generator function exists

 Rnd() – Generates a random number in the interval [0..1[

Proc Random(Array A) returns Array

R = new Array()
 While A.Length > 0 {

Pos = Rnd() * A.Length
R.Add(A[Pos])
A.Delete(Pos)

}
Return R

End Proc

This algorithm is convergent since the condition in the while loop will be true at some point in
time or if the input array is already empty. There is not any situation where Array.Length can be
less than zero, by definition.

 Appendix

 Page 119

Space and time complexity analysis for the random sort

algorithm

First, the algorithm will be analyzed considering the operation of deletion of the

row (scenario 1). After, the array element will not be deleted but, instead,

marked for deletion, improving the time albeit degrading the space (scenario 2).

Finally, the scenario where an optimal number of elements are marked for

deletion before the actual deletion it will be considered along with its impact in

time and space (scenario 3).

This set of analysis is supposed to be done in ideal conditions. Therefore, it is

assumed that there is infinite allocation space, all is done in memory and the

random access is immediate. The input/output operations are considered to

have constant times.

 Appendix

 Page 120

Space Complexity Analysis (scenario 1).

Since this is the machine independent algorithm, pointer allocation space was

not taken in account since it was been considered irrelevant. Also it is only

being studied the space occupied by the procedure itself, not considering

nothing of the calling process. The results of this space analysis, therefore,

must be added to the caller process whatever this process is.

The process receives an array with n elements of size s, so it takes ns space at

start.

Next, a new variable (empty array) is initialized with no size at all.

Since two arrays are used and the length of each one is needed, it is assumed

that two variables are needed for that effect. The size for this variable type will

be “l”.

Then a cycle with n iterations is made. In this cycle we have a comparison, a

calculation, a random access to one array and two other array operations.

The comparison doesn’t take any extra space because the result is used but

never stored.

The calculation takes the result of the Rnd() function, multiplies by the length of

the Array and stores the result in a variable. So we need for the intermediate

calculation the size of the Rnd() function and also the final result of the

calculation. Pos is assumed to in the range [0..n-1], so with a Rnd() function that

generates real numbers in the range [0..1[will be suitable to multiply by the

number of elements of the array. When n is multiplied by a number in the range

[0..1[it will result in a real number between [0..n[. Converting to an integer will

result in an integer on the range [0..n-1] which is the range for the position

variable.

 Appendix

 Page 121

Next we need to access the input array at a certain position (although this

operation takes time, this analysis only is concerned with the space used). This

operation doesn’t take any extra space.

Since all the variables must be defined beforehand (as most programming

languages requires), the procedure must reserve space for the input array and

for four variables to hold numbers (e.g. integers), resulting in the following

space: ns + 4l.

The new empty (with no space used) is created and then the cycle begins.

At this point, in the kth iteration we have n-k+1 elements in the input array, k -1

elements in the result array and one array element in a temporary variable with

the length of s each.

(n-k+1)+(k-1) = n

The element is then appended to the result array resulting in n-k+1 in the input

array, k in the result array and one array element in a temporary variable.

(n-k+1)+k = n+1

Then a deletion of the element of the input array frees the space of one

element, before the end of the kth iteration the input array will hold n-k elements.

(n-k+k = n)

A new iteration begins.

When k reaches n, the last element is going to be copied thus having on the

beginning of the iteration n-n+1 = 1 element on the input array and n-1 elements

on the result array. The element is copied to the result and deleted from the

input array and the cycle ends.

 Appendix

 Page 122

At the end the resulting array is returned. At this point the input array holds no

elements and the resulting array holds n elements with (ns + 4l) of space

occupied (the same as in the beginning)

Space occupied step by step:

Step Space occupied
Proc Random(Array A) returns

Array
ns + 4l (space is already reserved)

 R = new Array() ns + 0s + 4l
 While A.Length > 0 { (no changes)

Pos = Rnd() *

A.Length
(n – k + 1)s + (k – 1)s + 4l (at the kth
iteration)

R.Add(A[Pos]) (n – k + 1)s + ks + 4l
A.Delete(Pos) (n – k)s + ks + 4l

} (no changes)
Return R (no changes)

End Proc (no changes)

With n as the number of the input array elements, k the iteration number, s the

size of one array element and l the size of a variable to hold the length (two),

the position being treated and for the generated random number.

So, the maximum value for the space occupied is given by the expression in

step 5 [(n – k + 1)s + ks + 4l] than can be simplified as [(n + 1)s + 4l].

The occupation of space is, therefore, linear depending only on the number of

the elements of the input array. The space occupied is given by the expression

(n+1)s+4l.

For large arrays the term 4l can be neglected, so the expression for the space

occupied by the procedure can be displayed as a function of the number of

elements of the array and the size of each one.

The expression of the space occupied by this scenario is, therefore:

 Appendix

 Page 123

 ()

Where n is the number of elements of the array and s is the size of each

element.

Time Complexity Analysis (scenario 1)

In the time complexity analysis the most important and time consuming

operations are the reading and writing the elements of the array, since on its

implementation are in fact I/O operations. For this reason we can consider a

residual time for other operations than those of I/O. Since some operations

besides the I/O operation take place inside the loop the time used is a multiple

of that residual operation time. Residual time is noted as “r”. For the purpose of

simplification it is considered one residual operation for the calling/return of the

procedure as well as another residual operation inside the cycle resuming all

operations of test/jump/storing values other than array operations.

In the addition operation it is considered Tw as the time needed append an

element to the array or to write an element in some other position within the

array.

For this purpose we will consider the time to access and read an element is

different from the time to write, although both are I/O operations, because it is

considered to exists ideal random access. This time will be denoted as Tr.

In the deletion operation, it is considered that the array is “moved down” from

the element that is being deleted up to the top of the array. Since the element is

picked randomly we can assume that every element has the same probability of

being chosen, so we will consider the uniform distribution as the distribution

followed by the random function.

As assumed, the uniform distribution of n elements in the form of U(0,n) has the

expected value of ½ * (n – 0) = n/2. Each element has 1/(n – 0) = 1/n probability

of being chosen.

 Appendix

 Page 124

At iteration k where we have (n-k+1) elements in the input and one is deleted,

the expected value of the position chosen is therefore (n-k+1)/2 and

consequently (n-k+1)/2 elements will be moved downwards in the array using

Tw time each.

Step Time taken
Proc Random(Array A) returns

Array
0

 R = new Array() r
 While A.Length > 0 { 0

Pos = Rnd() * A.Length r
R.Add(A[Pos]) Tw + Tr
A.Delete(Pos) Tw(n – k + 1)/2

} 0
Return R 0

End Proc 0

The expression that gives us the time consumed by the algorithm (Tt) is

therefore:

 ∑(
()

)

Simplifying the expression:

 ∑(

)

The constant terms relative to k are multiples of n

 ∑ (

)

∑

 Appendix

 Page 125

The expression ∑
 represent the sum of the first n integers and its result is

given by the formula “n(n +1)/2” so the whole expression takes the form of:

 ()

Putting all the Tw in evidence and developing the expression

 (

()

)

 ()

 ()
 ()

The term “r(2n + 1)” that represents all the residual time will be placed in the

equation as R representing the full residual time took by the operations other

than I/O. The final expression is, arranged to present the residual at the end is

 ()

With Tt as total time, Tw as the time to write an element of the array, Tr the time

to write an element of the array, R the whole residual time and n the number of

array elements.

For a large numbers, the expression dependent on Tw grows with the square of

n whilst the residual grows linearly we can ignore that term. The time to read

can be expressed as the time to write (Tw) less some differential noted as . So

 Appendix

 Page 126

Replacing Tr with Tw-d the total time is represented as

 ()

 ()

 ()

The term n will also be considered as residual for large arrays since the term

Twn2 is much larger than the one being ignored. Therefore it is going to be

included in the R term.

Putting, again, Tw in evidence, the expression results in:

()

Therefore, for large arrays the full execution time can be given as a function of

the time to perform a write operation and the number as elements as:

()

Space Complexity Analysis (scenario 2)

In this scenario, the array element is not deleted but marked for deletion. Since

all the elements are to be deleted from the source array, there is no need to

proceed to an individual deletion but delete the whole array at the end.

All the assumptions from the previous scenario are applicable. The difference is

in the space not released by the deletion.

 Appendix

 Page 127

After the beginning of the cycle, in the kth iteration we have n elements in the

input array and k-1 elements in the result array. (n+k-1)

Then the element is appended to the result array so now it holds k elements.

The space occupied is now n+k elements

Then the source element is marked for deletion. This operation takes no space.

A new iteration begins.

At the end the resulting array is returned. At this point both the input array and

the resulting array hold n elements.

Space occupied step by step:

Step Space occupied
Proc Random(Array A) returns

Array
ns + 4l

 R = new Array() ns + 0s + 4l
 While A.Length > 0 { (no changes)

Pos = Rnd() * A.Length ns + (k-1)s + 4l (at the kth iteration)
R.Add(A[Pos]) ns + ks + 4l
A.Delete(Pos) (no changes)

} (no changes)
Return R (no changes)

End Proc (no changes)

So, the maximum value for the space occupied is given by the expression in

step 5 [ns +ks + 4l] than can be simplified as [(n + k)s + 4l].

Since n,s and l are constants the expression maximizes with k. Since is linearly

dependent of k the expression for k=n (which is the maximum) is: 2ns + 4l

The occupation of space is, therefore, linear depending only on the double of

the elements of the input array.

 Appendix

 Page 128

For large arrays the term 4l can be neglected, so the expression for the space

occupied by the procedure can be displayed as a function of the number of

elements of the array and the size of each one.

The expression of the space occupied by this scenario is, therefore:

Where n is the number of elements of the array and s is the size of each

element.

In this scenario the procedure will take about twice as space as in scenario 1.

The relation (S) between S1 (Space used on scenario 1) and S2 (space used in

scenario 2) is as follows:

()

Therefore, when n tends to a large number the term 1/2n tends to 0 and the

whole expression tends to ½, meaning that scenario 2 takes about the double of

the space than scenario 1.

Time Complexity Analysis (scenario 2)

On this analysis the same assumption of the previous scenario are applicable.

The difference is that the array does not need to be reorganized since the

deletion does not actually take place.

We still consider the I/O time as Tw to append an element to an array, and “r”

as the residual time for any other operation than I/O ones. We define a new

time – Tu – as the time to update an array element (instead of the deletion) and

assume that, although Tu is an I/O operation its value is considered to be less

than or, at most, equal to Tw.

 Appendix

 Page 129

And again it is considered that the algorithm has ideal conditions and the time to

randomly access on element may be ignored.

In this scenario, in the cycle the only three I/O happens. One I/O is for reading

the array element, other for appending one element to the result array. The last

I/O is to mark the element of the input array as “deleted” without actually

deleting it.

Marking the record as deleted creates a small overhead to find the kth not

deleted element of the array whereas in scenario 1 there were no elements

marked for deletion. The whole time needed to find the kth non-deleted element

is directly dependent on the k-1 array elements already marked for deletion,

meaning that in the first iteration when no records are marked for deletion the

access is residual and in the last iteration the whole array (is the worst scenario)

must be read to find the non-deleted element.

In the worst scenario, as stated, in iteration k, k-1 marked for deletion array

elements must be read. In the best scenario no elements marked for deletion

must be read. For each cycle a random number between 0 and k-1 of array

elements marked for deletion must be read. Since the uniform distribution was

chosen for access the array elements and the elements marked for deletion

were also accessed with that probability it expected that those elements have

also a uniform distribution along the array.

With this assumption, in each iteration is expected to access (k-1)/2 elements

with the individual Tr time.

So the time for each step can be represented as followed:

Step Time taken
Proc Random(Array A) returns

Array
0

 R = new Array() r
 While A.Length > 0 { 0

Pos = Rnd() * A.Length r

 Appendix

 Page 130

R.Add(A[Pos]) Tw + (k-1)/2Tr
A.Delete(Pos) Tu

} 0
Return R 0

End Proc 0

The expression that gives us the time consumed by the algorithm (Tt) is

therefore:

 ∑(
()

)

Simplifying the expression:

 ∑(

)

The constant terms relative to k are multiples of n

∑

Again the expression ∑
 represent the sum of the first n integers and its

result is given by the formula “n(n +1)/2” so the whole expression takes the

form of:

 ()

Developing the expression:

 ()

 () ()

 Appendix

 Page 131

Putting all Tr terms in evidence

 () () (

)

We can see that the time needed to complete the procedure now depends

linearly on the writing times and has a polynomial dependency on the reading

time.

Considering that both Tu and Tr are smaller than Tw we can rewrite those

parameters as:

Tu = Tw –

Tr = Tw –

And the total time formula as:

 () () ()(

)

 ()

Considering that can be very small but can represent a significant difference,

the expression r(n+1) – n is to be considered as residual and globally

represented by R.

 ()

 Appendix

 Page 132

 (

)

 ()

For large arrays, the term R and the term n/4 can be ignored giving the final

expression as:

 (

)

Now it will be compared with the total time expression in scenario 1 by

determining what is the proportion (P) between the two times (Tt1 for scenario 1

and Tt2 for scenario 2).

 (

)

()

 ()

 ()

 ()

 ()

When n tends to infinity the expression evaluates as follows:

(

)

Since d expressed as d=Tw-Tr then the expression is:

This proportion based solely on the reading and writing times shows that if the

reading time for a record is the same as the writing time (Tr=Tw) the algorithm

performs in this scenario as fast as in scenario 1. If the reading time is

instantaneous (Tr=0) then the algorithm in this scenario performs twice as fast

as in scenario 1.

 Appendix

 Page 133

It is then expectable that with a reading time lesser than a writing time and with

the residuals that were ignored along the analysis, the total time is reduced in

about half compared with the time analysis in scenario 1.

Space Complexity Analysis (scenario 3)

In scenario 1 the algorithm performs fairly according to space, but poorly

according to time. In scenario two the algorithm performs poorly in space but

increases its performance in time. To achieve an intermediate situation the

algorithm must use more space to gain more time.

In this scenario the analysis will take in account that in a certain number of

iterations array elements are marked for deletion and at the end of this cycle

they will be actually deleted.

In this scenario an arbitrary number of array elements (j-1) are marked for

deletion instead of being deleted and in the jth cycle they will be actually deleted.

In this scenario the operation of deletion will occur m times being m=n/j. With

this definition k can be rewritten as k=mj+i where “i” represents an integer

between 0 and j-1. Every time that j reaches I it will be reset to 0 and m is

incremented so that after the iteration k=(mj+i) where “i” takes the value of j-1,

hence k=mj+(j-1), the next iteration will have the expression of k=mj+(j-1)+1,

which, after simplification results in k=(m+1)j+0, meaning that the former “m”

value has been incremented after j cycles.

But the input array is only packed every j cycles having a constant number of

elements during each m cycles given by mj elements.

The expression in step five on scenario 1 can be rewritten as follows:

() () ()

This expression simplifies to

 Appendix

 Page 134

 ()

Since n and l are constants the maximum value is when i reaches j, just before

the deletion of the j array elements.

Therefore the maximum space occupied in this scenario and given an arbitrary

number j of array elements to cycle is given by the expression:

 ()

Again, for large arrays the term 4l becomes residual, so the final expression is

given by

 ()

When i is equal to 0, meaning that every element is deleted, the formula falls

into the first case. When j is equal to n, meaning no element is ever deleted, the

formula falls into the second scenario.

Since j belongs to the interval [0..n-1] it is easy to verify that the space occupied

in this scenario is between the space in scenario 1 and the space in scenario 2.

When can now define that the space occupied by the random algorithm is given

by:

 ()

Where n is the number of elements in the array, s the size of each element and

j an arbitrary number of elements to mark for deletion before they are actually

deleted. Since j can take values in the range [0..n[, this expression covers all

scenarios.

 Appendix

 Page 135

Time Complexity Analysis (scenario 3)

In this scenario, during j-1 iterations elements will be marked for deletion whist

only once the deletion of j records will occur. So there will be n/j cycles with j

iterations each. The number of iterations at a certain point will be denominated

as m and varies from 1 to n/j. For the purpose of this study it is not important if

the value is not integer, since the cycle will perform an integer number of times.

What may happen is the last cycle is shorter than the others, consequently a

litter shorter in time than the others. It will be considered the worst situation

where the value of n/j is as integer, meaning that the last cycle is a full cycle,

thus m will always be integer, for the purpose of the analysis.

The difference between the jth iteration and the previous j-1 is the way the

operations in steps 5 and 6 (R.Add(A[Pos]) and A.Delete(Pos)) are performed.

The number of elements in the input array only changes after every j iterations.

The number of elements at a certain moment is given by n-(m-1)j where m is

the cycle number between 1 and n/j. This means the at the beginning of cycle 1

the number of elements are n-(1-1)j = n and in the beginning of the last cycle

(n/j) it will hold n-(n/j-1)j = n-n+j = j elements.

In the ith iteration, where the “i” stands for a number between 1 and j-1, for the

same reasons in scenario 2, it will be expected to skip i-1 elements marked for

deletion but not actually deleted.

On the jth iteration, the input array holds (as seen) n-(m-1)j elements, and j

elements are to be deleted and the all the elements above the lower one to be

deleted will be moved down. Although they may move several positions down

there is only one write operation for each element.

Since the uniform distribution is being used for this model, is expected that the j

elements marked for deletion will be uniformly distributed along the array,

dividing it in j+1 partitions equal in size. Every element above the first partition

has to move. Each partition has (n-(m-1)j)/(j+1) elements being n-(m-1)j the

 Appendix

 Page 136

number of elements in the input array and j+1 the number of partitions. All

partition except the first one will be affected, so the expected number of

elements to be written somewhere else is given by j(n-(m-1)/(j+1).

Some operations such as writing the element to the result array or using the

variables doesn’t depend on the deletion operation and will occur j times during

a single m cycle.

So, time for each step can be represented this way:

Step Time taken (1 to
j-1)

Time taken (j)

Proc Random(Array A) returns Array 0
 R = new Array() r
 While A.Length > 0 { 0

Pos = Rnd() * A.Length r
R.Add(A[Pos]) Tw + (i-1)/2Tr Tw + Tr
A.Delete(Pos) Tu jTw(n-(m-

1)j)/(j+1)
} 0
Return R 0

End Proc 0

The expression that gives us the time consumed by the algorithm (Tt) is

therefore:

 ∑(∑((

))

 (
 ()

))

The inner sum can be solved as follows:

∑((

))

 ()

()

∑

 ()

()

()

()

(())

This expression now will be replaced on the time formula

 Appendix

 Page 137

 ∑(
()

(()) (

 ()

))

Since all the terms but the last does not depend on m they can be multiplied by

n/m and removed from the sum as

 ()

(())

∑(())

The sum can be solved as

∑(())

 ∑

(

) (

)

(

)

(

(

))

(

)

(

)

 ()

The Total time expression without the sums is

 ()

 ()

 ()

(())

Considering that both Tu and Tr are smaller than Tw we can rewrite those

parameters as:

Tu = Tw –

Tr = Tw –

And the total time formula as:

 Appendix

 Page 138

 ()

 ()

 ()

(()() ())

Simplifying the expression

 ()

 ()

()()

 ()()

()

()

The terms r(n+1) and the term in e are considered as residual and consolidate

in a single term R. The formula can now be represented by

 ()

()()

 ()()

()

Putting all nTw terms in evidence it results in

 (

 ()

()()

()

)

 ()()

 (

 ()

()() ()

)

 ()()

 (

 ()

()()

)

 ()()

 (

 ()

()()

)

 ()()

For large arrays, the term R giving the final expression as:

 (

 ()

()()

)

 ()()

 Appendix

 Page 139

Comparing this formula in this scenario with the others from the other scenarios

when j=1, meaning that every record is deleted the formula evaluates to

 (

) (

) (

 ()

)

This expression is similar to the expression in scenario 1, as expected.

On the other hand, if j=n meaning that no records are deleted but marked for

deletion instead, the expression takes the following form

 (

 ()

()()

)

 ()()

 (

()

()()

)

 ()()

 (
 () ()()()

 ()
)

 ()()

 (
 () () ()()()

 ()
)

 ()()

 (
 ()()

)

 ()()

 (

)

 ()()

 (

)

 ()()

 Appendix

 Page 140

 (

)

 ()()

This expression tends to a similar expression than scenario 2 for arrays with

large number of elements.

So the expression on this scenario takes a time between scenario 1 and

scenario 2 depending on the value chosen for j.

Conclusions of the analysis

The expressions were found in ideal scenarios where particular conditions

found in different machines were not considered. One particular machine may

have large amount of memory and can accommodate a recordset entirely whilst

some other may have to span the recordset to disk. One particular machine

may have solid state disks with very small access time whilst other may have a

very slow disk. One database engine optimizes the reading and writing of pages

whilst another reads and writes each data record at a time.

How can the impact of this algorithm be measured? The formulae found here

are all based on the average time of a single write operation. Once this value is

found for a machine it can be used to estimate the time that this algorithm may

take to run.

Also space, based on the available memory, the size of a record and the

expected number of records can be estimated. Moreover, if the recordset is

smaller than the amount of free memory a j number of records to be deleted can

be estimated along the impact on the time consumed to perform it.

 Appendix

 Page 141

Listing of the SqlRandom Extended Stored Procedure that implements the
ordering function “SqlRandom()” for all scenarios.
SqlRandomD implements the sort algorithm considering scenario 1,
SqlRandomM implements it for scenario 2 and, finally, SqlRandom implements
it for scenario 3 with and arbitrary number of 1000 rows marked before the
actual deletion.
using System;

using System.Data;

using System.Collections;

using System.Data.SqlClient;

using Microsoft.SqlServer.Server;

public partial class StoredProcedures

{

 [Microsoft.SqlServer.Server.SqlProcedure]

 public static void SqlRandom(string strSQL)

 {

 const int MAXCYCLEROWS = 1000;

 const int NUMCYCLES = 10;

 // Test if we are under an SQL server connection

 if (!SqlContext.IsAvailable)

 return;

 SqlConnection conn = new SqlConnection("context

connection=true");

 // assume that the SQL is properly formed and

 // get the data out of the engine

 DataTable dt = null;

 try

 {

 dt = SQLUtils.lData(strSQL, conn);

 }

 catch (Exception e)

 {

 dt = null;

 SqlContext.Pipe.Send(e.Message);

 }

 if (dt != null)

 {

 Random rnd = new

Random(System.DateTime.UtcNow.TimeOfDay.Milliseconds);

 SqlMetaData[] flds = SQLUtils.GetMetaData(strSQL, conn);

 SqlDataRecord rec = new SqlDataRecord(flds);

 SqlContext.Pipe.SendResultsStart(rec);

 // send the results back to the server

 int i = dt.Rows.Count;

 int cycle = (i / NUMCYCLES > MAXCYCLEROWS) ? MAXCYCLEROWS

: i / NUMCYCLES;

 while (i > 0)

 {

 int nID = Convert.ToInt32(Math.Floor(rnd.NextDouble()

* i));

 //pick up a random row to output

 DataRow dr = dt.Rows[nID];

 rec.SetValues(dr.ItemArray);

 Appendix

 Page 142

 SqlContext.Pipe.SendResultsRow(rec);

 //delete that row

 dt.Rows.Remove(dr);

 //every «cycle» rows compact the memory file

 if ((i % cycle) == 0)

 dt.AcceptChanges();

 //loop until we have sent all the rows away

 i = dt.Rows.Count;

 }

 SqlContext.Pipe.SendResultsEnd();

 dt = null;

 GC.Collect();

 }

 }

 [Microsoft.SqlServer.Server.SqlProcedure]

 public static void SQLRandomM(string strSQL)

 {

 // Test if we are under an SQL server connection

 if (!SqlContext.IsAvailable)

 return;

 SqlConnection conn = new SqlConnection("context

connection=true");

 // assume that the SQL is properly formed and

 // get the data out of the engine

 DataTable dt = null;

 try

 {

 dt = SQLUtils.lData(strSQL, conn);

 }

 catch (Exception e)

 {

 dt = null;

 SqlContext.Pipe.Send(e.Message);

 }

 if (dt != null)

 {

 Random rnd = new

Random(System.DateTime.UtcNow.TimeOfDay.Milliseconds);

 SqlMetaData[] flds = SQLUtils.GetMetaData(strSQL, conn);

 SqlDataRecord rec = new SqlDataRecord(flds);

 SqlContext.Pipe.SendResultsStart(rec);

 // send the results back to the server

 int i = dt.Rows.Count;

 while (i > 0)

 {

 int nID = Convert.ToInt32(Math.Floor(rnd.NextDouble()

* i));

 //pick up a random row to output

 DataRow dr = dt.Rows[nID];

 rec.SetValues(dr.ItemArray);

 SqlContext.Pipe.SendResultsRow(rec);

 //delete that row

 dt.Rows.Remove(dr);

 //loop until we have sent all the rows away

 i = dt.Rows.Count;

 }

 Appendix

 Page 143

 SqlContext.Pipe.SendResultsEnd();

 dt = null;

 GC.Collect();

 }

 }

 [Microsoft.SqlServer.Server.SqlProcedure]

 public static void SQLRandomD(string strSQL)

 {

 // Test if we are under an SQL server connection

 if (!SqlContext.IsAvailable)

 return;

 SqlConnection conn = new SqlConnection("context

connection=true");

 // assume that the SQL is properly formed and

 // get the data out of the engine

 DataTable dt = null;

 try

 {

 dt = SQLUtils.lData(strSQL, conn);

 }

 catch (Exception e)

 {

 dt = null;

 SqlContext.Pipe.Send(e.Message);

 }

 if (dt != null)

 {

 Random rnd = new

Random(System.DateTime.UtcNow.TimeOfDay.Milliseconds);

 SqlMetaData[] flds = SQLUtils.GetMetaData(strSQL, conn);

 SqlDataRecord rec = new SqlDataRecord(flds);

 SqlContext.Pipe.SendResultsStart(rec);

 // send the results back to the server

 int i = dt.Rows.Count;

 while (i > 0)

 {

 int nID = Convert.ToInt32(Math.Floor(rnd.NextDouble()

* i));

 //pick up a random row to output

 DataRow dr = dt.Rows[nID];

 rec.SetValues(dr.ItemArray);

 SqlContext.Pipe.SendResultsRow(rec);

 //delete that row

 dt.Rows.Remove(dr);

 //Pack the recordset

 dt.AcceptChanges();

 //loop until we have sent all the rows away

 i = dt.Rows.Count;

 }

 SqlContext.Pipe.SendResultsEnd();

 dt = null;

 GC.Collect();

 }

 }

};

 Appendix

 Page 144

Data recollected from tests done by executing the SqlRandom procedure,

above, against a table with a row data size of 1299 bytes with 1,734,600

rows (scenario 1).

The first machine is a HP Z400 equipped with a Xeon W3520 processor @ 2.67

GHz with 4,00 GB of installed memory (RAM). The operating system is a 64-bit

Windows 7 Professional, with a Windows Experience Index of 4.4. On this

machine, the queries were run on a SQL Server 2008 R2, 64-bit Developer

Edition, with Service Pack 1, with the version number 10.50.2500.

The second machine is an Acer Aspire M3910 equipped with Intel Core i5

processor @ 3.2 GHz with 4,00 GB of installed memory (RAM). The operating

system is a 64-bit Windows 7 Ultimate, with a Windows Experience Index of

5.1. On this machine, the queries were run on a SQL Server 2008 R2, 64-bit

Developer Edition, with Service Pack 1, with the version number 10.50.2500.

The regular query was “SELECT * FROM SiteLog ORDER BY DateTime”. The

SqlRandom was also over the full dataset as “EXEC dbo.SqlRandom ‘SELECT

* FROM SiteLog’”

On the HP machine the execution time for both runs of each query were as

follows:

HP Z400

Query Run First results Query completion

Order By 1st 47” 2’55”

 2nd 14” 2’50”

SqlRandom 1st 51” 2’01”

 2nd 49” 2’24”

On the Acer machine the execution time for both runs of each query were as

follows:

Acer Aspire M3910

Query Run First results Query completion

Order By 1st 1’19” 6’10”

 2nd 21” 4’14”

SqlRandom 1st 44” 1’52”

 2nd 42” 1’56”

 Appendix

 Page 145

Code for installing the System.Drawing.dll in order to use image functions in the

SqlImage.cs extended stored procedures

ALTER DATABASE [RMExtension] SET TRUSTWORTHY ON

GO

CREATE ASSEMBLY [System.Drawing.dll]

FROM

'C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727\System.Drawing.dll'

WITH PERMISSION_SET = UNSAFE

 Appendix

 Page 146

Code for the SqlImage.cs that acts as an interface between the SQL Server ™

and the set of procedures that actually deals with image treatment.

using System;

using System.Data;

using System.Collections;

using System.Drawing;

using System.IO;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

using System.ComponentModel;

public partial class StoredProcedures

{

 [Microsoft.SqlServer.Server.SqlProcedure]

 public static void SqlImage(string strSQL)

 {

 // Test if we are under an SQL server connection

 if (!SqlContext.IsAvailable)

 return;

 //create an array to store the numbers already used

 ArrayList ids = new ArrayList();

 SqlConnection conn = new SqlConnection("context

connection=true");

 // assume that the SQL is properly formed and

 // get the data out of the engine

 DataTable dt = null;

 try

 {

 dt = SQLUtils.lData(strSQL, conn);

 }

 catch (Exception e)

 {

 dt = null;

 SqlContext.Pipe.Send(e.Message);

 }

 if (dt != null)

 {

 DataTable dtout = new DataTable();

 //find a suitable name for the "extra" field

 string IDname = "ID";

 int i = 0;

 bool goodname = false;

 while (!goodname)

 {

 goodname = true;

 foreach (DataColumn dc in dt.Columns)

 {

 if (dc.ColumnName == IDname)

 {

 IDname = "ID" + i.ToString("00");

 ++i;

 Appendix

 Page 147

 goodname = false;

 break;

 }

 }

 }

 //now populate the columns collection of the output table

 foreach (DataColumn dc in dt.Columns)

 {

 dtout.Columns.Add(dc.ColumnName, dc.DataType);

 }

 // and add the ID column for classification rank

 dtout.Columns.Add(IDname, Type.GetType("System.Double"));

 //prepare the output

 SqlMetaData[] flds = SQLUtils.GetMetaData(strSQL, conn);

 SqlDataRecord rec = new SqlDataRecord(flds);

 SqlContext.Pipe.SendResultsStart(rec);

 //find out the first image column. This is a prototype

limitation.

 string fldImage = "";

 foreach (SqlMetaData fld in flds)

 if (fld.SqlDbType == SqlDbType.Image)

 {

 fldImage = fld.Name;

 break;

 }

 if (String.IsNullOrEmpty(fldImage))

 {

 //just output the original table

 foreach (DataRow dr in dt.Rows)

 {

 rec.SetValues(dr.ItemArray);

 SqlContext.Pipe.SendResultsRow(rec);

 }

 }

 else

 {

 foreach (DataRow dr in dt.Rows)

 {

 DataRow drout = dtout.NewRow();

 foreach (DataColumn dc in dt.Columns)

 {

 drout[dc.ColumnName] = dr[dc.ColumnName];

 }

 // classify the image

 Double nID = ClassifyImage((byte[])dr[fldImage]);

 drout[IDname] = nID;

 dtout.Rows.Add(drout);

 }

 DataView dv = dtout.DefaultView;

 dv.Sort = IDname;

 // send the results back to the server

 i = 0;

 DataTable dto = dv.ToTable();

 Appendix

 Page 148

 foreach (DataRow dr in dto.Rows)

 {

 for (i = 0; i < dtout.Columns.Count - 1; i++)

 {

 rec.SetValue(i, dr[i]);

 }

 SqlContext.Pipe.SendResultsRow(rec);

 }

 dto = null;

 }

 SqlContext.Pipe.SendResultsEnd();

 //clean the memory

 dt = null;

 dtout = null;

 GC.Collect();

 }

 }

 public static double ClassifyImage(byte[] pImage)

 {

 TypeConverter tc =

TypeDescriptor.GetConverter(typeof(Bitmap));

 Bitmap imgbmp = (Bitmap)tc.ConvertFrom(pImage);

 ImageUtils iu = new ImageUtils();

 return iu.process(imgbmp);

 }

};

 Appendix

 Page 149

Code for the ImageUtils.cs where the actual image treatment is done
using System;

using System.Data;

using System.Collections;

using System.Drawing;

using System.IO;

class ImageUtils

{

 /// <summary>

 /// Class to actually do the image analysis.

 /// These procedures were adapted from PhD thesis "Classification

of Skin Tumours through the Analysis of Unconstrained Images"

 /// Author:J. Cunha Viana

 /// </summary>

 ///

 private Bitmap imgbmp;

 private Bitmap imgbmp1;

 private Bitmap imgbmp2;

 private Bitmap imgbmp3;

 private Bitmap imgbmp4;

 private Bitmap imgbmp5;

 //private int detectType, enhanceType;

 //private string fn;

 //private string detectTypeDesc;

 //private string enhanceTypeDesc;

 //private Image img;

 private int centre_x, centre_y;

 private Color pixelColor;

 //private int row, col;

 //private int ROWS;

 //private int COLUMNS;

 //private int windowSize;

 //private string temp;

 private const int MAX_MASK_SIZE = 50;

 //private double sigma, sigma1, sigma2, sigmaSpread, sigmaC,

ratio;

 //private double lgau;

 //private int img_scale, fnslash, fndot, loadedImg = 0, numPoints;

 private int numPoints;

 //private double[,] data;

 //private double[,] data1;

 //private double[,] orig;

 //private int[,] edges;

 //private double[,] A;

 //private double[,] B;

 //private int colorTot, colorDifTot, finalLine, lesionPix;

 private int colorTot, lesionPix;

 private int distDifTot_X, distDifTot_Y, numEdgePoints;

 //private double meanColor, sigmaTot, meanDif, sigmaDif,

colorTot1;

 private double colorTot1;

 private double meanDifPoints_X, meanDifPoints_Y, sigmaDistDif_X,

sigmaDistDif_Y;

 Appendix

 Page 150

 //private int k, l, cN, cOld, rOld, nAllow, countDraw,

lesionPixels, altern;

 private int k, l, cN, countDraw, lesionPixels;

 private double sigmaCombi;

 private double var_R, var_G, var_B;

 private double X, Y, Z;

 private double var_X, var_Y, var_Z;

 private double CIE_L, CIE_a, CIE_b;

 //private int ind = 0, ind1 = 0, indMin = 0;

 private double ref_X = 95.047, ref_Y = 100.000, ref_Z = 108.883;

 private int[] cOpenPoint = new int[100];

 private int[] rOpenPoint = new int[100];

 private int[,] ptsLine;

 //private int[,] ptsFringe;

 //private double[] distFringe;

 private int[,] ptsL;

 private double[] WiGeeC;

 private double[] WiGeeR;

 private double[] WjGeeC;

 private double[] WjGeeR;

 private double[] GeeC;

 private double[] GeeR;

 private double[] c_RaG;

 private double[] r_RaG;

 private int[,] ptsDraw;

 private bool StepOK = false;

 public double process(Bitmap imgtrt)

 {

 imgbmp = imgtrt;

 double res = 0;

 combi();

 if (StepOK)

 {

 hough();

 colours();

 asymmetry();

 res = Math.Sqrt(Math.Pow(sigmaDistDif_X, 2) +

Math.Pow(sigmaDistDif_Y, 2));

 }

 return res;

 }

 public void hough()

 {

 lesionPix = 0;

 //sigma = 0;

 colorTot = 0;

 //sigmaTot = 0.0;

 //meanDif = 0.0;

 //sigmaDif = 0.0;

 //meanColor = 0.0;

 //colorDifTot = 0;

 //distDifTot_X = 0;

 Appendix

 Page 151

 //meanDifPoints_X = 0.0;

 //sigmaDistDif_X = 0.0;

 //distDifTot_Y = 0;

 //meanDifPoints_Y = 0.0;

 //sigmaDistDif_Y = 0.0;

 //numEdgePoints = 0;

 numPoints = imgbmp.Width * imgbmp.Height;

 //img_scale = 1;

 int Rin, Gin, Bin;

 int tmp;

 int x_max = 0, x_min = imgbmp.Width;

 int y_max = 0, y_min = imgbmp.Height;

 int x_high, y_high;

 int h_w = 500;

 //Angle for 1 step

 double theta_step = Math.PI / h_w;

 tmp = Math.Max(imgbmp.Width, imgbmp.Height);

 int h_h = (int)(Math.Sqrt(2) * tmp);

 int[,] tmp_2d = new int[h_w, 2 * h_h];

 //Find centre point coordinates

 for (int i = 0; i < imgbmp.Width; i++)

 {

 for (int j = 0; j < imgbmp.Height; j++)

 {

 pixelColor = imgbmp.GetPixel(i, j);

 Rin = pixelColor.R;

 Gin = pixelColor.G;

 Bin = pixelColor.B;

 if (Rin != 255 || Gin != 255 || Bin != 255) continue;

 //Background found

 else

 {

 numEdgePoints++;

 if (j < y_min) y_min = j;

 if (j > y_max) y_max = j;

 if (i < x_min) x_min = i;

 if (i > x_max) x_max = i;

 }

 }

 }

 centre_x = (x_min + x_max) / 2;

 centre_y = (y_min + y_max) / 2;

 for (int i = 0; i < h_w; i++)

 {

 for (int j = 0; j < 2 * h_h; j++)

 {

 tmp_2d[i, j] = 0;

 }

 }

 Appendix

 Page 152

 for (int i = 0; i < imgbmp.Width; i++)

 {

 for (int j = 0; j < imgbmp.Height; j++)

 {

 pixelColor = imgbmp.GetPixel(i, j);

 Rin = pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 for (int k = 0; k < h_w; k++)

 {

 //Work out the r values for each theta step

 tmp = (int)(((i - centre_x) * Math.Cos(k *

theta_step)) + ((j - centre_y) * Math.Sin(k * theta_step)));

 //Move all values into positive range for

display purposes

 tmp = tmp + h_h;

 if (tmp < 0 || tmp >= h_h) continue;

 //Increment hough array

 tmp_2d[k, tmp]++;

 }

 }

 }

 }

 int high = 0;

 for (int i = 0; i < h_w; i++)

 {

 for (int j = 0; j < h_h; j++)

 {

 //Find the max hough value

 if (tmp_2d[i, j] > high)

 {

 x_high = i;

 y_high = j;

 high = tmp_2d[i, j];

 }

 }

 }

 int[] distEdgeCentre = new int[numEdgePoints];

 int pNumber = -1;

 int meanRay = 0;

 for (int i = 0; i < imgbmp.Width; i++)

 {

 for (int j = 0; j < imgbmp.Height; j++)

 {

 pixelColor = imgbmp.GetPixel(i, j);

 Rin = pixelColor.R;

 Gin = pixelColor.G;

 Bin = pixelColor.B;

 if (Rin != 255 || Gin != 255 || Bin != 255) continue;

 Appendix

 Page 153

 //Background found

 else

 {

 // Edge pixel found

 pNumber++;

 distEdgeCentre[pNumber] =

(int)Math.Round(Math.Sqrt(Convert.ToDouble((i - centre_x) * (i -

centre_x) + (j - centre_y) * (j - centre_y))), 0);

 meanRay += distEdgeCentre[pNumber];

 }

 }

 }

 meanRay /= numEdgePoints;

 double sumMeans = 0;

 for (int i = 0; i < numEdgePoints; i++)

 {

 sumMeans += Math.Pow(distEdgeCentre[i] - meanRay, 2.0);

 }

 double variance = sumMeans / numEdgePoints;

 double sigma_d = Math.Sqrt(variance);

 }

 public void colours()

 {

 int Rin, Gin, Bin, ROld, GOld, BOld, numPixels = 0;

 int colorDifTot = 0;

 colorTot = 0;

 for (int i = 0; i < this.imgbmp.Width; i++)

 {

 for (int j = 0; j < this.imgbmp.Height; j++)

 {

 pixelColor = this.imgbmp.GetPixel(i, j);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 // Find opposite edge

 for (int k = this.imgbmp.Height - 1; k > j; k--)

 {

 pixelColor = this.imgbmp.GetPixel(i, k);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 if ((k - j) <= 2)

 {

 k = j;

 continue;

 }

 else

 {

 ROld = 0; GOld = 0; BOld = 0;

 Appendix

 Page 154

 for (int x = j + 1; x < k; x++)

 {

 pixelColor =

this.imgbmp.GetPixel(i, x);

 Rin = this.pixelColor.R;

 Gin = this.pixelColor.G;

 Bin = this.pixelColor.B;

 if (Rin == 255) continue;

 colorTot += (Rin + Gin + Bin);

 if (ROld != 0 || GOld != 0 || BOld

!= 0) colorDifTot += (Math.Abs(Rin - ROld) + Math.Abs(Gin - GOld) +

Math.Abs(Bin - BOld));

 ROld = Rin;

 GOld = Gin;

 BOld = Bin;

 numPixels++;

 }

 }

 }

 }

 }

 }

 }

 double meanColor = colorTot / numPixels;

 double meanDif = colorDifTot / numPixels;

 int colorDifSquare;

 double colorTotSquare;

 colorTot1 = 0;

 colorDifTot = 0;

 numPixels = 0;

 for (int i = 0; i < this.imgbmp.Width; i++)

 {

 for (int j = 0; j < this.imgbmp.Height; j++)

 {

 pixelColor = this.imgbmp.GetPixel(i, j);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 // Find opposite edge

 for (int k = this.imgbmp.Height - 1; k > j; k--)

 {

 pixelColor = this.imgbmp.GetPixel(i, k);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 if ((k - j) <= 2)

 {

 k = j;

 continue;

 }

 else

 Appendix

 Page 155

 {

 ROld = 0; GOld = 0; BOld = 0;

 for (int x = j + 1; x < k; x++)

 {

 pixelColor =

this.imgbmp.GetPixel(i, x);

 Rin = this.pixelColor.R;

 Gin = this.pixelColor.G;

 Bin = this.pixelColor.B;

 if (Rin == 255) continue;

 colorTotSquare = ((Rin + Gin +

Bin) - meanColor) * ((Rin + Gin + Bin) - meanColor);

 colorTot1 += colorTotSquare;

 //Debug.Write (" colorTot: ");

 //Debug.WriteLine (colorTot1);

 if (ROld != 0 || GOld != 0 || BOld

!= 0)

 {

 colorDifSquare = (Math.Abs(Rin

- ROld) + Math.Abs(Gin - GOld) + Math.Abs(Bin - BOld));

 colorDifSquare =

Convert.ToInt32(Math.Pow(colorDifSquare - meanDif, 2));

 colorDifTot += colorDifSquare;

 numPixels++;

 }

 ROld = Rin;

 GOld = Gin;

 BOld = Bin;

 }

 }

 }

 }

 }

 }

 }

 double variance = Convert.ToDouble(colorDifTot / numPixels);

 double sigmaDif = Math.Sqrt(variance);

 variance = Convert.ToDouble(colorTot1 / (numPixels + 1));

 double sigmaTot = Math.Sqrt(variance);

 }

 public void asymmetry()

 {

 int Rin, numPoints_X = 0, numPoints_Y = 0, dist_X, dist_Y;

 int dist1, dist2;

 double distDifTotSquare_X = 0, distDifTotSquare_Y = 0;

 distDifTot_X = 0;

 distDifTot_Y = 0;

//==

===

 // Asymmetry along the X axis

 Appendix

 Page 156

//==

===

 for (int x = 0; x < this.centre_x; x++)

 {

 for (int y = 0; y < this.imgbmp.Height; y++)

 {

 pixelColor = this.imgbmp.GetPixel(x, y);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 dist1 = Math.Abs(centre_x - x);

 // Find opposite edge

 for (int k = this.imgbmp.Width - 1; k > x; k--)

 {

 pixelColor = this.imgbmp.GetPixel(k, y);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 if ((k - x) <= 2)

 {

 k = x;

 continue;

 }

 else

 {

 dist2 = Math.Abs(k - centre_x);

 distDifTot_X += Math.Abs(dist1 -

dist2);

 numPoints_X++;

 }

 }

 }

 }

 }

 }

 meanDifPoints_X = distDifTot_X / numPoints_X;

 numPoints_X = 0;

 for (int x = 0; x < this.centre_x; x++)

 {

 for (int y = 0; y < this.imgbmp.Height; y++)

 {

 pixelColor = this.imgbmp.GetPixel(x, y);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 Appendix

 Page 157

 // Edge pixel found

 dist1 = Math.Abs(centre_x - x);

 // Find opposite edge

 for (int k = this.imgbmp.Width - 1; k > x; k--)

 {

 pixelColor = this.imgbmp.GetPixel(k, y);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 if ((k - x) <= 2)

 {

 k = x;

 continue;

 }

 else

 {

 dist2 = Math.Abs(k - centre_x);

 dist_X = Math.Abs(dist1 - dist2);

 numPoints_X++;

 distDifTotSquare_X += (dist_X -

meanDifPoints_X) * (dist_X - meanDifPoints_X);

 }

 }

 }

 }

 }

 }

 double variance = Convert.ToDouble(distDifTotSquare_X /

numPoints_X);

 sigmaDistDif_X = Math.Sqrt(variance);

//==

===

 // Asymmetry along the Y axis

//==

===

 for (int y = 0; y < this.centre_y; y++)

 {

 for (int x = 0; x < this.imgbmp.Width; x++)

 {

 pixelColor = this.imgbmp.GetPixel(x, y);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 dist1 = Math.Abs(centre_y - y);

 Appendix

 Page 158

 // Find opposite edge

 for (int k = this.imgbmp.Height - 1; k > y; k--)

 {

 pixelColor = this.imgbmp.GetPixel(x, k);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 if ((k - y) <= 2)

 {

 k = y;

 continue;

 }

 else

 {

 dist2 = Math.Abs(k - centre_y);

 distDifTot_Y += Math.Abs(dist1 -

dist2);

 numPoints_Y++;

 }

 }

 }

 }

 }

 }

 meanDifPoints_Y = distDifTot_Y / numPoints_Y;

 numPoints_Y = 0;

 for (int y = 0; y < this.centre_y; y++)

 {

 for (int x = 0; x < this.imgbmp.Width; x++)

 {

 pixelColor = this.imgbmp.GetPixel(x, y);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 dist1 = Math.Abs(centre_y - y);

 // Find opposite edge

 for (int k = this.imgbmp.Height - 1; k > y; k--)

 {

 pixelColor = this.imgbmp.GetPixel(x, k);

 Rin = this.pixelColor.R;

 if (Rin != 255) continue;

 //Background found

 else

 {

 // Edge pixel found

 if ((k - y) <= 2)

 {

 k = y;

 continue;

 Appendix

 Page 159

 }

 else

 {

 dist2 = Math.Abs(k - centre_y);

 dist_Y = Math.Abs(dist1 - dist2);

 numPoints_Y++;

 distDifTotSquare_Y += (dist_Y -

meanDifPoints_Y) * (dist_Y - meanDifPoints_Y);

 }

 }

 }

 }

 }

 }

 variance = Convert.ToDouble(distDifTotSquare_Y / numPoints_Y);

 sigmaDistDif_Y = Math.Sqrt(variance);

 }

 public void combi()

 {

 int c, r, count = 0, squareSide = 10;

 double CIE_LTot = 0, CIE_aTot = 0, CIE_bTot = 0;

 double CIE_LMed, CIE_aMed, CIE_bMed, geeX, efeX, combiT;

 imgbmp1 = new Bitmap(imgbmp);

 imgbmp2 = new Bitmap(imgbmp);

 imgbmp3 = new Bitmap(imgbmp);

 imgbmp4 = new Bitmap(imgbmp);

 imgbmp5 = new Bitmap(imgbmp);

 //int Rin, Rout, Gin, Bin, delta, multFac, colorTot = 0,

deltaTot = 0, deltaMax = 0;

 int Rin, Rout, Gin, Bin, delta, multFac, deltaMax = 0;

 int[] histIntens = new int[256];

 int[,] outVal = new int[imgbmp.Width, imgbmp.Height];

 int[] leftEdge = new int[imgbmp.Height];

 int[] rightEdge = new int[imgbmp.Height];

 int[] topEdge = new int[imgbmp.Width];

 int[] bottomEdge = new int[imgbmp.Width];

 //finalLine = 0;

 lesionPix = 0;

 // Eliminate white spots

 for (c = 0; c < imgbmp.Width; c++)

 {

 for (r = 0; r < imgbmp.Height; r++)

 {

 pixelColor = imgbmp.GetPixel(c, r);

 Rin = pixelColor.R;

 Gin = pixelColor.G;

 Bin = pixelColor.B;

 if (Rin != 255 && Gin != 255 && Bin != 255) continue;

 if (Rin == 255) Rin = 254;

 if (Gin == 255) Gin = 254;

 Appendix

 Page 160

 if (Bin == 255) Bin = 254;

 imgbmp.SetPixel(c, r, Color.FromArgb(Rin, Gin, Bin));

 }

 }

 for (c = 0; c < 256; c++) histIntens[c] = 0;

 for (c = 0; c < imgbmp.Height; c++)

 {

 leftEdge[c] = 0;

 }

 for (c = 0; c < imgbmp.Height; c++)

 {

 rightEdge[c] = 0;

 }

 for (c = 0; c < imgbmp.Width; c++)

 {

 topEdge[c] = 0;

 }

 for (c = 0; c < imgbmp.Width; c++)

 {

 bottomEdge[c] = 0;

 }

 //detectType = 7;

 //combiT = Convert.ToDouble(combiTIn.Text) / 100.0;

 combiT = 0.1; //defaults to 10%

//==

====================

 //Calculate background color

//==

====================

 //Top Left corner

 for (c = 0; c < squareSide; c++)

 {

 for (r = 0; r < squareSide; r++)

 {

 pixelColor = imgbmp.GetPixel(c, r);

 Rin = pixelColor.R;

 Gin = pixelColor.G;

 Bin = pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 CIE_LTot += CIE_L;

 CIE_aTot += CIE_a;

 CIE_bTot += CIE_b;

 count++;

 }

 }

 //Top Right corner

 for (c = imgbmp.Width - squareSide; c < imgbmp.Width; c++)

 {

 Appendix

 Page 161

 for (r = 0; r < squareSide; r++)

 {

 pixelColor = imgbmp.GetPixel(c, r);

 Rin = pixelColor.R;

 Gin = pixelColor.G;

 Bin = pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 CIE_LTot += CIE_L;

 CIE_aTot += CIE_a;

 CIE_bTot += CIE_b;

 count++;

 }

 }

 //Bottom Leftt corner

 for (c = 0; c < squareSide; c++)

 {

 for (r = imgbmp.Height - squareSide; r < imgbmp.Height;

r++)

 {

 pixelColor = imgbmp.GetPixel(c, r);

 Rin = pixelColor.R;

 Gin = pixelColor.G;

 Bin = pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 CIE_LTot += CIE_L;

 CIE_aTot += CIE_a;

 CIE_bTot += CIE_b;

 count++;

 }

 }

 //Bottom Right corner

 for (c = imgbmp.Width - squareSide; c < imgbmp.Width; c++)

 {

 for (r = imgbmp.Height - squareSide; r < imgbmp.Height;

r++)

 {

 pixelColor = imgbmp.GetPixel(c, r);

 Rin = pixelColor.R;

 Gin = pixelColor.G;

 Bin = pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 CIE_LTot += CIE_L;

 CIE_aTot += CIE_a;

 CIE_bTot += CIE_b;

 count++;

 }

 }

 CIE_LMed = CIE_LTot / count;

 CIE_aMed = CIE_aTot / count;

 CIE_bMed = CIE_bTot / count;

 Appendix

 Page 162

//==

====================

 // Conversion from RGB to XYZ

//==

====================

 for (c = 0; c < imgbmp.Width; c++)

 {

 for (r = 0; r < imgbmp.Height; r++)

 {

 pixelColor = imgbmp.GetPixel(c, r);

 Rin = pixelColor.R;

 Gin = pixelColor.G;

 Bin = pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 delta = Convert.ToInt32(Math.Sqrt((Math.Pow(CIE_LMed -

CIE_L, 2)) + (Math.Pow(CIE_aMed - CIE_a, 2)) + (Math.Pow(CIE_bMed -

CIE_b, 2))));

 if (delta > deltaMax) deltaMax = delta;

 imgbmp1.SetPixel(c, r, Color.FromArgb(delta, delta,

delta));

 }

 }

 //Calculation of the multiplication factor to use

 multFac = Convert.ToInt32(255 / deltaMax);

 if (multFac < 1) multFac = 1;

 for (c = 0; c < imgbmp.Width; c++)

 {

 for (r = 0; r < imgbmp.Height; r++)

 {

 pixelColor = imgbmp1.GetPixel(c, r);

 delta = multFac * pixelColor.R;

 imgbmp1.SetPixel(c, r, Color.FromArgb(delta, delta,

delta));

 }

 }

//==

====================

 // Smoothing grey image

//==

====================

 //int i = 0;

 CIE_LTot = 0;

 CIE_aTot = 0;

 CIE_bTot = 0;

 //double intens = 0;

 Appendix

 Page 163

 int intensMed;

//==

==============================

 //Calculate background color Median intensity

//==

==============================

 //Top Left corner

 for (c = 0; c < squareSide; c++)

 {

 for (r = 0; r < squareSide; r++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, r);

 Rin = this.pixelColor.R;

 Gin = this.pixelColor.G;

 Bin = this.pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 CIE_LTot += CIE_L;

 CIE_aTot += CIE_a;

 CIE_bTot += CIE_b;

 }

 }

 //Top Right corner

 for (c = imgbmp.Width - squareSide; c < imgbmp.Width; c++)

 {

 for (r = 0; r < squareSide; r++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, r);

 Rin = this.pixelColor.R;

 Gin = this.pixelColor.G;

 Bin = this.pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 CIE_LTot += CIE_L;

 CIE_aTot += CIE_a;

 CIE_bTot += CIE_b;

 }

 }

 //Bottom Leftt corner

 for (c = 0; c < squareSide; c++)

 {

 for (r = imgbmp.Height - squareSide; r < imgbmp.Height;

r++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, r);

 Rin = this.pixelColor.R;

 Gin = this.pixelColor.G;

 Bin = this.pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 CIE_LTot += CIE_L;

 Appendix

 Page 164

 CIE_aTot += CIE_a;

 CIE_bTot += CIE_b;

 }

 }

 //Bottom Right corner

 for (c = imgbmp.Width - squareSide; c < imgbmp.Width; c++)

 {

 for (r = imgbmp.Height - squareSide; r < imgbmp.Height;

r++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, r);

 Rin = this.pixelColor.R;

 Gin = this.pixelColor.G;

 Bin = this.pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 CIE_LTot += CIE_L;

 CIE_aTot += CIE_a;

 CIE_bTot += CIE_b;

 }

 }

 CIE_LMed = CIE_LTot / count;

 CIE_aMed = CIE_aTot / count;

 CIE_bMed = CIE_bTot / count;

 intensMed = Convert.ToInt32(Math.Sqrt((CIE_LMed * CIE_LMed) +

(CIE_aMed * CIE_aMed) + (CIE_bMed * CIE_bMed)));

 double delta_LTot = 0;

 double delta_aTot = 0;

 double delta_bTot = 0;

//==

==============================

 //Calculate background color intensity variations

//==

==============================

 //Top Left corner

 for (c = 0; c < squareSide; c++)

 {

 for (r = 0; r < squareSide; r++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, r);

 Rin = this.pixelColor.R;

 Gin = this.pixelColor.G;

 Bin = this.pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 delta_LTot += Math.Pow(CIE_L - CIE_LMed, 2);

 delta_aTot += Math.Pow(CIE_a - CIE_aMed, 2);

 delta_bTot += Math.Pow(CIE_b - CIE_bMed, 2);

 Appendix

 Page 165

 }

 }

 //Top Right corner

 for (c = imgbmp.Width - squareSide; c < imgbmp.Width; c++)

 {

 for (r = 0; r < squareSide; r++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, r);

 Rin = this.pixelColor.R;

 Gin = this.pixelColor.G;

 Bin = this.pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 delta_LTot += Math.Pow(CIE_L - CIE_LMed, 2);

 delta_aTot += Math.Pow(CIE_a - CIE_aMed, 2);

 delta_bTot += Math.Pow(CIE_b - CIE_bMed, 2);

 }

 }

 //Bottom Leftt corner

 for (c = 0; c < squareSide; c++)

 {

 for (r = imgbmp.Height - squareSide; r < imgbmp.Height;

r++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, r);

 Rin = this.pixelColor.R;

 Gin = this.pixelColor.G;

 Bin = this.pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 delta_LTot += Math.Pow(CIE_L - CIE_LMed, 2);

 delta_aTot += Math.Pow(CIE_a - CIE_aMed, 2);

 delta_bTot += Math.Pow(CIE_b - CIE_bMed, 2);

 }

 }

 //Bottom Right corner

 for (c = imgbmp.Width - squareSide; c < imgbmp.Width; c++)

 {

 for (r = imgbmp.Height - squareSide; r < imgbmp.Height;

r++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, r);

 Rin = this.pixelColor.R;

 Gin = this.pixelColor.G;

 Bin = this.pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 delta_LTot += Math.Pow(CIE_L - CIE_LMed, 2);

 delta_aTot += Math.Pow(CIE_a - CIE_aMed, 2);

 delta_bTot += Math.Pow(CIE_b - CIE_bMed, 2);

 }

 }

 Appendix

 Page 166

//==

==============================

 // Calculation of standard deviation (grey picture background)

//==

==============================

 sigmaCombi = Math.Sqrt(delta_LTot + delta_aTot + delta_bTot) /

count;

//==

==============================

 // Conversion from RGB to XYZ

//==

==============================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, r);

 Rin = this.pixelColor.R;

 Gin = this.pixelColor.G;

 Bin = this.pixelColor.B;

 conv_CIE(Rin, Gin, Bin);

 delta = Convert.ToInt32(Math.Sqrt((CIE_LMed - CIE_L) *

(CIE_LMed - CIE_L)) + ((CIE_aMed - CIE_a) * (CIE_aMed - CIE_a)) +

((CIE_bMed - CIE_b) * (CIE_bMed - CIE_b)));

 geeX = 1.0 - (Math.Exp(-(delta * delta) / (2.0 *

sigmaCombi * sigmaCombi)));

 efeX = (1.0 / (Math.Sqrt(2.0 * Math.PI) * sigmaCombi))

* geeX;

 delta = Convert.ToInt32(delta * efeX);

 if (delta > deltaMax) deltaMax = delta;

 outVal[c, r] = delta;

 }

 }

 //Calculation of the multiplication factor to use

 multFac = Convert.ToInt32(255 / deltaMax);

 if (multFac < 1) multFac = 1;

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 delta = multFac * outVal[c, r];

 if (delta > 255) delta = 255;

 this.imgbmp1.SetPixel(c, r, Color.FromArgb(delta,

delta, delta));

 this.imgbmp5.SetPixel(c, r, Color.FromArgb(delta,

delta, delta));

 }

 Appendix

 Page 167

 }

//==

=================

 // Creating intensity histogram

//==

=================

 //int intensMax = 0, totIntens = 0, countIntens = 0;

 int intensMax = 0;

 //int lesionCount = 0;

 //int T, T1 = 0, T2 = 255, ene = 0;

 int T, T1 = 0, T2 = 255;

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, r);

 Rin = this.pixelColor.R;

 if (Rin > intensMax) intensMax = Rin;

 histIntens[Convert.ToInt32(Rin)]++;

 }

 }

//==

=================

 // Calculating bitmap thresholds

//==

=================

 //lesionPix = Convert.ToInt32(combiT * this.numPoints);

 lesionPix = Convert.ToInt32(combiT * intensMax);

 int maxPoints = numPoints;

 //for (c = 255; c >= 0; c--)

 // {

 // if (histIntens[c] == 0) continue;

 // else

 // {

 // T1 = c;

 // break;

 // }

 // }

 for (c = 255; c >= 0; c--)

 {

 if (histIntens[c] != 0)

 {

 T2 = c;

 break;

 }

 }

 T1 = Convert.ToInt32(T2 * combiT);

 Appendix

 Page 168

 //for (c = 255; c >= T1; c--)

 // {

 // if (histIntens[c] == 0) continue;

 // else

 // {

 // T2 = c;

 // break;

 // }

 // }

 T = Convert.ToInt32((T1 + T2) / 2.0);

//==

=================

 // Copying imgbmp1 to imgbmp2 and imgbmp3

//==

=================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 this.imgbmp3.SetPixel(c, r, this.imgbmp1.GetPixel(c,

r));

 this.imgbmp2.SetPixel(c, r, this.imgbmp1.GetPixel(c,

r));

 }

 }

//==

=================

 // Calculating edges and saving them on imgbmp2

//==

=================

 int x, y, n, m, k, kMax = 0;

 int p1, p2, p3, p4, p5, p6, p7, p8;

 for (y = 1; y < imgbmp1.Height - 1; y++)

 for (x = 1; x < imgbmp1.Width - 1; x++)

 {

 pixelColor = imgbmp.GetPixel(x + 1, y - 1);

 p1 = Convert.ToInt32(pixelColor.R);

 pixelColor = imgbmp.GetPixel(x + 1, y);

 p2 = Convert.ToInt32(pixelColor.R);

 pixelColor = imgbmp.GetPixel(x + 1, y + 1);

 p3 = Convert.ToInt32(pixelColor.R);

 pixelColor = imgbmp.GetPixel(x - 1, y - 1);

 p4 = Convert.ToInt32(pixelColor.R);

 pixelColor = imgbmp.GetPixel(x, y - 1);

 p5 = Convert.ToInt32(pixelColor.R);

 Appendix

 Page 169

 pixelColor = imgbmp.GetPixel(x + 1, y - 1);

 p6 = Convert.ToInt32(pixelColor.R);

 pixelColor = imgbmp.GetPixel(x, y - 1);

 p7 = Convert.ToInt32(pixelColor.R);

 pixelColor = imgbmp.GetPixel(x, y + 1);

 p8 = Convert.ToInt32(pixelColor.R);

 n = (p1 + 2 * p2 + p3) - (p4 + 2 * p5 + p6);

 //Debug.WriteLine(n);

 m = (p3 + 2 * p8 + p6) - (p1 + 2 * p7 + p4);

 k = (int)(System.Math.Sqrt((double)(n * n + m * m)) /

4.0);

 //Debug.WriteLine(k);

 if (k > 255) k = 255;

 if (k > kMax) kMax = k;

 imgbmp2.SetPixel(x, y, Color.FromArgb(k, k, k));

 }

 multFac = Convert.ToInt32(255 / kMax);

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 pixelColor = this.imgbmp2.GetPixel(c, r);

 Rin = this.pixelColor.R;

 if (Rin * multFac > (T1 - T1 * combiT))

this.imgbmp2.SetPixel(c, r, Color.Black);

 else this.imgbmp2.SetPixel(c, r, Color.White);

 }

 }

//==

=================

 // Copying imgbmp2 to imgbmp1 (just to show a temporary image

of the Sobel filter result)

//==

=================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 this.imgbmp1.SetPixel(c, r, this.imgbmp2.GetPixel(c,

r));

 }

 }

//==

=================

 // Copying imgbmp3 to imgbmp1 (Resetting imgbmp1)

 Appendix

 Page 170

//==

=================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 this.imgbmp1.SetPixel(c, r, this.imgbmp3.GetPixel(c,

r));

 }

 }

//==

=================

 // Applying bitmap thresholds

//==

=================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, r);

 Rin = this.pixelColor.R;

 if (Rin >= T1 && Rin <= T2) imgbmp1.SetPixel(c, r,

Color.Black);

 else imgbmp1.SetPixel(c, r, Color.White);

 if (Rin >= (T1 + ((T - T1) / 2))) imgbmp4.SetPixel(c,

r, Color.Black);

 else imgbmp4.SetPixel(c, r, Color.White);

 }

 }

//==

=================

 // Filling imgbmp4 (T thresholding result)

//==

=================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 pixelColor = this.imgbmp4.GetPixel(c, r);

 Rin = this.pixelColor.R;

 if (Rin == 0) continue;

 cN = 0;

 //Search West for a black pixel

 for (k = c - 1; k > 0; k--)

 {

 pixelColor = this.imgbmp4.GetPixel(k, r);

 Rout = this.pixelColor.R;

 if (Rout == 0)

 Appendix

 Page 171

 {

 cN++;

 break;

 }

 }

 //Search East for a black pixel

 for (k = c + 1; k < this.imgbmp1.Width; k++)

 {

 pixelColor = this.imgbmp4.GetPixel(k, r);

 Rout = this.pixelColor.R;

 if (Rout == 0)

 {

 cN++;

 break;

 }

 }

 //Search North for a black pixel

 for (k = r - 1; k > 0; k--)

 {

 pixelColor = this.imgbmp4.GetPixel(c, k);

 Rout = this.pixelColor.R;

 if (Rout == 0)

 {

 cN++;

 break;

 }

 }

 //Search South for a black pixel

 for (k = r + 1; k < this.imgbmp1.Height; k++)

 {

 pixelColor = this.imgbmp4.GetPixel(c, k);

 Rout = this.pixelColor.R;

 if (Rout == 0)

 {

 cN++;

 break;

 }

 }

 // If a white pixel is surrounded with 4 black pixels,

change it to black

 if (cN == 4) this.imgbmp4.SetPixel(c, r, Color.Black);

 }

 }

 lesionPixels = 0;

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 pixelColor = this.imgbmp4.GetPixel(c, r);

 Rout = this.pixelColor.R;

 if (Rout == 0) lesionPixels++;

 }

 }

 Appendix

 Page 172

//==

=================

 // Copying imgbmp1 to imgbmp3 (save T1 and T2 thresholding

result)

//==

=================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 this.imgbmp3.SetPixel(c, r, this.imgbmp1.GetPixel(c,

r));

 }

 }

//==

=================

 // Copying imgbmp4 to imgbmp1 (just to show a temporary image

of the threshold T result)

//==

=================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 this.imgbmp1.SetPixel(c, r, this.imgbmp4.GetPixel(c,

r));

 }

 }

//==

=================

 // Merging imgbmp2 and imgbmp3 into imgbmp1 (Reduced edges)

 // Points of the segmentation process which are also points of

the Sobel edges

//==

=================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 pixelColor = this.imgbmp3.GetPixel(c, r);

 Rin = this.pixelColor.R;

 pixelColor = this.imgbmp2.GetPixel(c, r);

 Rout = this.pixelColor.R;

 if (Rin == 0 && Rout == 0) this.imgbmp1.SetPixel(c, r,

Color.Black);

 else this.imgbmp1.SetPixel(c, r, Color.White);

 }

 Appendix

 Page 173

 }

//==

=================

 // Initializing imgbmp3 to White

//==

=================

 //Cleaning imgbmp3 (Set every pixel to white)

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 this.imgbmp3.SetPixel(c, r, Color.White);

 }

 }

//==

=================

 // Adjusting imgbmp1 (Reduced edges) using imgbmp4 (T

segmentation) and giving imgbmp3

 // Searching which point from the segmentation is closer to

the detected edge

//==

=================

 int dMin = 0, dist = 0, dirMin = 0, cNMin = 0;

 for (c = 1; c < this.imgbmp4.Width - 1; c++)

 {

 for (r = 1; r < this.imgbmp4.Height - 1; r++)

 {

 pixelColor = this.imgbmp4.GetPixel(c, r);

 Rin = this.pixelColor.R;

 cN = 0;

 if (Rin == 0)

 {

 for (k = c - 1; k <= c + 1; k++)

 for (l = r - 1; l <= r + 1; l++)

 {

 pixelColor = this.imgbmp4.GetPixel(k, l);

 Rout = this.pixelColor.R;

 if (Rout == 0) cN++;

 }

 if (cN < 9)

 {

 cN = 0;

 dMin = 999;

 //Search West direction

 for (k = c - 1; k > 0; k--)

 {

 pixelColor = this.imgbmp2.GetPixel(k, r);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist = c - k;

 if (dist < dMin)

 {

 Appendix

 Page 174

 cNMin = dist;

 dMin = dist;

 dirMin = 1;

 }

 }

 //Search East direction

 for (k = c + 1; k < this.imgbmp1.Width; k++)

 {

 pixelColor = this.imgbmp2.GetPixel(k, r);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist = k - c;

 if (dist < dMin)

 {

 cNMin = dist;

 dMin = dist;

 dirMin = 2;

 }

 }

 //Search North direction

 for (k = r - 1; k > 0; k--)

 {

 pixelColor = this.imgbmp2.GetPixel(c, k);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist = r - k;

 if (dist < dMin)

 {

 cNMin = dist;

 dMin = dist;

 dirMin = 3;

 }

 }

 //Search South direction

 for (k = r + 1; k < this.imgbmp1.Height; k++)

 {

 pixelColor = this.imgbmp1.GetPixel(c, k);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist = k - r;

 if (dist < dMin)

 {

 cNMin = dist;

 dMin = dist;

 dirMin = 4;

 }

 }

 //Search NW direction

 cN = 0;

 if (r < c)

 {

 for (k = r - 1; k > 0; k--)

 {

 cN++;

 pixelColor = this.imgbmp1.GetPixel(c -

cN, k);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist =

Convert.ToInt32(Math.Sqrt(2 * (cN * cN)));

 if (dist < dMin)

 {

 cNMin = cN;

 Appendix

 Page 175

 dMin = dist;

 dirMin = 5;

 }

 }

 }

 else

 {

 for (k = c - 1; k > 0; k--)

 {

 cN++;

 pixelColor = this.imgbmp1.GetPixel(k,

r - cN);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist =

Convert.ToInt32(Math.Sqrt(2 * (cN * cN)));

 if (dist < dMin)

 {

 cNMin = cN;

 dMin = dist;

 dirMin = 5;

 }

 }

 }

 //Search SW direction

 cN = 0;

 if (this.imgbmp1.Height - r < c)

 {

 for (k = r + 1; k < this.imgbmp1.Height -

1; k++)

 {

 cN++;

 pixelColor = this.imgbmp1.GetPixel(c -

cN, k);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist =

Convert.ToInt32(Math.Sqrt(2 * (cN * cN)));

 if (dist < dMin)

 {

 cNMin = cN;

 dMin = dist;

 dirMin = 6;

 }

 }

 }

 else

 {

 for (k = c - 1; k > 0; k--)

 {

 cN++;

 pixelColor = this.imgbmp1.GetPixel(c,

r + cN);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist =

Convert.ToInt32(Math.Sqrt(2 * (cN * cN)));

 if (dist < dMin)

 {

 cNMin = cN;

 dMin = dist;

 dirMin = 6;

 Appendix

 Page 176

 }

 }

 }

 //Search NE direction

 cN = 0;

 if (r < this.imgbmp1.Width - c)

 {

 for (k = r - 1; k > 0; k--)

 {

 cN++;

 pixelColor = this.imgbmp1.GetPixel(c +

cN, k);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist =

Convert.ToInt32(Math.Sqrt(2 * (cN * cN)));

 if (dist < dMin)

 {

 cNMin = cN;

 dMin = dist;

 dirMin = 7;

 }

 }

 }

 else

 {

 for (k = c + 1; k < this.imgbmp1.Width -

1; k++)

 {

 cN++;

 pixelColor = this.imgbmp1.GetPixel(c,

r - cN);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist =

Convert.ToInt32(Math.Sqrt(2 * (cN * cN)));

 if (dist < dMin)

 {

 cNMin = cN;

 dMin = dist;

 dirMin = 7;

 }

 }

 }

 //Search SE direction

 cN = 0;

 if (this.imgbmp1.Height - r <

this.imgbmp1.Width - c)

 {

 for (k = r + 1; k < this.imgbmp1.Height -

1; k++)

 {

 cN++;

 pixelColor = this.imgbmp1.GetPixel(c +

cN, k);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist =

Convert.ToInt32(Math.Sqrt(2 * (cN * cN)));

 if (dist < dMin)

 {

 cNMin = cN;

 Appendix

 Page 177

 dMin = dist;

 dirMin = 8;

 }

 }

 }

 else

 {

 for (k = c + 1; k < this.imgbmp1.Width -

1; k++)

 {

 cN++;

 pixelColor = this.imgbmp1.GetPixel(c,

r + cN);

 Rout = this.pixelColor.R;

 if (Rout == 0) dist =

Convert.ToInt32(Math.Sqrt(2 * (cN * cN)));

 if (dist < dMin)

 {

 cNMin = cN;

 dMin = dist;

 dirMin = 8;

 }

 }

 }

 if (dirMin == 1 && c - cNMin > 0 && c - cNMin

< this.imgbmp1.Width - 1 && r > 0 && r < this.imgbmp1.Height - 1)

this.imgbmp3.SetPixel(c - cNMin, r, Color.Black);

 else if (dirMin == 2 && c + cNMin > 0 && c +

cNMin < this.imgbmp1.Width - 1 && r > 0 && r < this.imgbmp1.Height -

1) this.imgbmp3.SetPixel(c + cNMin, r, Color.Black);

 else if (dirMin == 3 && c > 0 && c <

this.imgbmp1.Width - 1 && r - cNMin > 0 && r - cNMin <

this.imgbmp1.Height - 1) this.imgbmp3.SetPixel(c, r - cNMin,

Color.Black);

 else if (dirMin == 4 && c > 0 && c <

this.imgbmp1.Width - 1 && r + cNMin > 0 && r + cNMin <

this.imgbmp1.Height - 1) this.imgbmp3.SetPixel(c, r + cNMin,

Color.Black);

 else if (dirMin == 5 && c - cNMin > 0 && c -

cNMin < this.imgbmp1.Width - 1 && r - cNMin > 0 && r - cNMin <

this.imgbmp1.Height - 1) this.imgbmp3.SetPixel(c - cNMin, r - cNMin,

Color.Black);

 else if (dirMin == 6 && c - cNMin > 0 && c -

cNMin < this.imgbmp1.Width - 1 && r + cNMin > 0 && r + cNMin <

this.imgbmp1.Height - 1) this.imgbmp3.SetPixel(c - cNMin, r + cNMin,

Color.Black);

 else if (dirMin == 7 && c + cNMin > 0 && c +

cNMin < this.imgbmp1.Width - 1 && r - cNMin > 0 && r - cNMin <

this.imgbmp1.Height - 1) this.imgbmp3.SetPixel(c + cNMin, r - cNMin,

Color.Black);

 else if (dirMin == 8 && c + cNMin > 0 && c +

cNMin < this.imgbmp1.Width - 1 && r + cNMin > 0 && r + cNMin <

this.imgbmp1.Height - 1) this.imgbmp3.SetPixel(c + cNMin, r + cNMin,

Color.Black);

 }

 }

 }

 }

 Appendix

 Page 178

//==

=================

 // Copying imgbmp3 to imgbmp1 (to show thin edges)

//==

=================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 this.imgbmp1.SetPixel(c, r, this.imgbmp3.GetPixel(c,

r));

 }

 }

//==

=================

 // Cleaning imgbmp1 (White)

//==

=================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 this.imgbmp1.SetPixel(c, r, Color.White);

 }

 }

//==

=================

 //Calculating average value for intensity within already

defined edge

//==

=================

 int RoutMax, cRoutMax, rRoutMax, RoutTot, RoutAvg, contRout;

 contRout = 0;

 RoutTot = 0;

 RoutMax = 0;

 for (c = 1; c < this.imgbmp3.Width - 1; c++)

 {

 for (r = 1; r < this.imgbmp3.Height - 1; r++)

 {

 pixelColor = this.imgbmp3.GetPixel(c, r);

 Rin = this.pixelColor.R;

 if (Rin == 0)

 {

 pixelColor = this.imgbmp5.GetPixel(c, r);

 Rout = this.pixelColor.R;

 RoutTot += Rout;

 contRout++;

 Appendix

 Page 179

 if (Rout > RoutMax)

 {

 RoutMax = Rout;

 cRoutMax = c;

 rRoutMax = r;

 }

 }

 }

 }

 if (RoutTot != 0) RoutAvg = Convert.ToInt32(RoutTot /

contRout);

//==

=================

 // Creating an array with points on the edge

 // Ind, 0 . Column

 // Ind, 1 . Row

 // Ind, 2 . Intensity gradient

 // Ind, 3 . Lit - 0/1 - 2 . Processed

 // Ind, 4 . |R(s)|

 // Ind, 5 . Number of neighbors

//==

=================

 ptsLine = new int[contRout * 2, 6];

 cN = create_ptsLine();

//==

=================

 // Cleaning imgbmp1 and imgbmp3(White)

//==

=================

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 this.imgbmp3.SetPixel(c, r, Color.White);

 this.imgbmp1.SetPixel(c, r, Color.White);

 }

 }

//==

=================

 // Resetting imgbmp3(Copying array points to image)

//==

=================

 int ind, ind1, cRout;

 for (ind = 0; ind < this.ptsLine.Length / 6 - 1; ind++)

 {

 if (ptsLine[ind, 0] == 0 && ptsLine[ind, 1] == 0) break;

 if (ptsLine[ind, 3] == 0) continue;

 Appendix

 Page 180

 this.imgbmp3.SetPixel(ptsLine[ind, 0], ptsLine[ind, 1],

Color.Black);

 }

//==

=================

 // Closing the edge (recreating ptsLine array)

//==

=================

 //int cRmin, rRmin, gaps = 1;

 int cRmin, rRmin;

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 {

 this.imgbmp3.SetPixel(c, r, Color.White);

 this.imgbmp1.SetPixel(c, r, Color.White);

 }

 }

 for (ind = 0; ind < this.ptsLine.Length / 6 - 1; ind++)

 {

 if (ptsLine[ind, 0] == 0 && ptsLine[ind, 1] == 0) break;

 if (ptsLine[ind, 3] == 0 || ptsLine[ind, 3] == 2)

continue;

 this.imgbmp3.SetPixel(ptsLine[ind, 0], ptsLine[ind, 1],

Color.Black);

 }

 for (c = 1; c <= this.imgbmp1.Width - 1; c++)

 {

 for (r = 1; r <= this.imgbmp1.Height - 1; r++)

 {

 allowable(c, r);

 }

 }

 //Next array element where a pixel should be saved

 int ind2 = ind, indMin;

 double distMin;

 for (ind1 = 0; ind1 <= this.ptsLine.Length / 6 - 1; ind1++)

 {

 if (ptsLine[ind1, 0] == 0 && ptsLine[ind1, 1] == 0) break;

 if (ptsLine[ind1, 3] == 0) continue;

 this.imgbmp1.SetPixel(ptsLine[ind1, 0], ptsLine[ind1, 1],

Color.Black);

 }

 for (c = 0; c < this.imgbmp1.Width; c++)

 {

 for (r = 0; r < this.imgbmp1.Height; r++)

 Appendix

 Page 181

 {

 this.imgbmp3.SetPixel(c, r, this.imgbmp1.GetPixel(c,

r));

 this.imgbmp1.SetPixel(c, r, Color.White);

 }

 }

//==

==================

 // Filling ptsL array elements

//==

==================

 ptsL = new int[2 * contRout, 3];

 double[,] distPt = new double[2 * contRout, 2];

 cRout = 0;

 for (c = 1; c < this.imgbmp3.Width - 1; c++)

 {

 for (r = 1; r < this.imgbmp3.Height - 1; r++)

 {

 pixelColor = this.imgbmp3.GetPixel(c, r);

 Rin = this.pixelColor.R;

 if (Rin == 0)

 {

 pixelColor = this.imgbmp5.GetPixel(c, r);

 Rout = this.pixelColor.R;

 ptsL[cRout, 0] = c;

 ptsL[cRout, 1] = r;

 ptsL[cRout, 2] = Rout;

 cRout++;

 }

 }

 }

 clean_NotAllowable();

 WiGeeC = new double[cRout];

 WiGeeR = new double[cRout];

 WjGeeC = new double[cRout];

 WjGeeR = new double[cRout];

 GeeC = new double[cRout];

 GeeR = new double[cRout];

 c_RaG = new double[cRout];

 r_RaG = new double[cRout];

//==

=================

 // Calculating Wi*Gi(u) and Wj*Gj(u) for every point on the

edge

 Appendix

 Page 182

//==

=================

 for (ind = 0; ind < cRout - 1; ind++)

 {

 WiGeeC[ind] = 0;

 WiGeeR[ind] = 0;

 WjGeeC[ind] = 0;

 WjGeeR[ind] = 0;

 GeeC[ind] = 0;

 GeeR[ind] = 0;

 for (ind1 = 0; ind1 < cRout - 1; ind1++)

 {

 if (ind != ind1)

 {

 if (ptsL[ind, 0] == ptsL[ind1, 0]) dist =

Math.Abs(ptsL[ind1, 1] - ptsL[ind, 1]);

 else if (ptsL[ind, 1] == ptsL[ind1, 1]) dist =

Math.Abs(ptsL[ind, 0] - ptsL[ind1, 0]);

 else dist = Convert.ToInt32(Math.Sqrt(((ptsL[ind,

0] - ptsL[ind1, 0]) * (ptsL[ind, 0] - ptsL[ind1, 0])) + ((ptsL[ind, 1]

- ptsL[ind1, 1]) * (ptsL[ind, 1] - ptsL[ind1, 1]))));

 }

 if (dist <= 5)

 {

 GeeC[ind] += Math.Exp(-Math.Pow((ptsL[ind, 0] -

(ptsL[ind1, 0] + dist)), 2) / 2 * sigmaCombi * sigmaCombi);

 GeeR[ind] += Math.Exp(-Math.Pow((ptsL[ind, 1] -

(ptsL[ind1, 1] + dist)), 2) / 2 * sigmaCombi * sigmaCombi);

 }

 }

 WiGeeC[ind] += GeeC[ind] * ptsL[ind, 2];

 WiGeeR[ind] += GeeR[ind] * ptsL[ind, 2];

 WjGeeC[ind] += WiGeeC[ind];

 WjGeeR[ind] += WiGeeR[ind];

 }

 for (ind = 0; ind < cRout - 1; ind++)

 {

 if (WjGeeC[ind] > 0) c_RaG[ind] = ptsL[ind, 0] *

WiGeeC[ind] / WjGeeC[ind];

 if (WjGeeR[ind] > 0) r_RaG[ind] = ptsL[ind, 1] *

WiGeeR[ind] / WjGeeR[ind];

 ptsL[ind, 0] = 0;

 ptsL[ind, 1] = 0;

 ptsL[ind, 2] = 0;

//==

=================

 // Drawing the RaG curve

 // filling the new line array

//==

=================

 this.imgbmp1.SetPixel(Convert.ToInt32(c_RaG[ind]),

Convert.ToInt32(r_RaG[ind]), Color.Black);

 Appendix

 Page 183

 ptsL[ind, 0] = Convert.ToInt32(c_RaG[ind]);

 ptsL[ind, 1] = Convert.ToInt32(r_RaG[ind]);

 }

//==

=================

 // Creating a closed contour

//==

=================

 ptsDraw = new int[cRout, 4];

 for (int pp = 0; pp < countDraw; pp++)

 {

 ptsDraw[pp, 0] = 0;

 ptsDraw[pp, 1] = 0;

 ptsDraw[pp, 2] = 0;

 ptsDraw[pp, 3] = 0;

 }

 indMin = 0;

 ind = 0;

 countDraw = 0;

 distMin = Math.Max(this.imgbmp1.Width, this.imgbmp1.Height);

 for (ind1 = 1; ind1 < cRout - 1; ind1++)

 {

 dist = Convert.ToInt32(Math.Sqrt((ptsL[ind, 0] -

ptsL[ind1, 0]) * (ptsL[ind, 0] - ptsL[ind1, 0]) + (ptsL[ind, 1] -

ptsL[ind1, 1]) * (ptsL[ind, 1] - ptsL[ind1, 1])));

 if (dist < distMin && dist >= 1.0)

 {

 distMin = dist;

 indMin = ind1;

 cRmin = ptsL[ind1, 0];

 rRmin = ptsL[ind1, 1];

 }

 }

 for (int ind3 = 0; ind3 < cRout - 1; ind3++)

 {

 if (ind3 == indMin) continue;

 dist = Convert.ToInt32(Math.Sqrt((ptsL[ind, 0] -

ptsL[ind3, 0]) * (ptsL[ind, 0] - ptsL[ind3, 0]) + (ptsL[ind, 1] -

ptsL[ind3, 1]) * (ptsL[ind, 1] - ptsL[ind3, 1])));

 if (dist == distMin && dist < Math.Max(this.imgbmp1.Width,

this.imgbmp1.Height))

 {

 ptsL[ind3, 0] = 0;

 ptsL[ind3, 1] = 0;

 ptsL[ind3, 2] = 9999;

 }

 }

 int indOld = ind;

 ptsDraw[0, 0] = ptsL[ind, 0];

 Appendix

 Page 184

 ptsDraw[0, 1] = ptsL[ind, 1];

 ptsDraw[0, 2] = ptsL[indMin, 0];

 ptsDraw[0, 3] = ptsL[indMin, 1];

 ind = indMin;

 //int count1 = 1;

 countDraw++;

 do

 {

 if (ind >= ptsL.Length / 3) break;

 if (ptsL[ind, 0] == 0 && ptsL[ind, 1] == 0)

 {

 ind++;

 continue;

 }

 if (ptsL[ind, 2] != 0)

 {

 ind++;

 continue;

 }

 distMin = Math.Max(this.imgbmp1.Width,

this.imgbmp1.Height);

 cRmin = this.imgbmp1.Width;

 rRmin = this.imgbmp1.Height;

 for (ind1 = 0; ind1 < cRout - 1; ind1++)

 {

 if (ind1 == 0 && countDraw < cRout * 2 / 3) continue;

 if (ind == ind1) continue;

 if (ind1 == indOld) continue;

 if (ptsL[ind1, 0] == 0 && ptsL[ind1, 1] == 0)

continue;

 if (ptsL[ind1, 2] != 0) continue;

 dist = Convert.ToInt32(Math.Sqrt((ptsL[ind, 0] -

ptsL[ind1, 0]) * (ptsL[ind, 0] - ptsL[ind1, 0]) + (ptsL[ind, 1] -

ptsL[ind1, 1]) * (ptsL[ind, 1] - ptsL[ind1, 1])));

 if (dist >= 1.0 && dist < distMin)

 {

 distMin = dist;

 indMin = ind1;

 cRmin = ptsL[ind1, 0];

 rRmin = ptsL[ind1, 1];

 }

 }

 if (ind == indMin || distMin > 8.0) break;

 ptsL[ind, 2] = indMin;

 ptsDraw[countDraw, 0] = ptsL[ind, 0];

 ptsDraw[countDraw, 1] = ptsL[ind, 1];

 ptsDraw[countDraw, 2] = ptsL[indMin, 0];

 ptsDraw[countDraw, 3] = ptsL[indMin, 1];

 for (int ind3 = 0; ind3 < cRout - 1; ind3++)

 {

 if (ind3 == indMin) continue;

 dist = Convert.ToInt32(Math.Sqrt((ptsL[ind, 0] -

ptsL[ind3, 0]) * (ptsL[ind, 0] - ptsL[ind3, 0]) + (ptsL[ind, 1] -

ptsL[ind3, 1]) * (ptsL[ind, 1] - ptsL[ind3, 1])));

 if (ind3 != 0 && dist == distMin && dist <

Math.Max(this.imgbmp1.Width, this.imgbmp1.Height))

 {

 ptsL[ind3, 0] = 0;

 Appendix

 Page 185

 ptsL[ind3, 1] = 0;

 ptsL[ind3, 2] = 9999;

 }

 }

 indOld = ind;

 ind = indMin;

 countDraw++;

 }

 while (ind != 0);

 if (ind != 0)

 {

 //MsgBox.Show("Sorry! I could not define enough points to

build an edge.\nPlease try again with another

threshold","Warning",MessageBoxButtons.OK, MessageBoxIcon.Warning);

 // return an error

 return;

 }

//==

=================

 // plot edge to imgbmp

//==

=================

 Graphics g5 = Graphics.FromImage((Image)imgbmp);

 Pen pen1 = new Pen(Color.White);

 for (int pp = 0; pp < ptsDraw.Length / 4; pp++)

 {

 if (ptsDraw[pp, 0] == 0 && ptsDraw[pp, 1] == 0) break;

 g5.DrawLine(pen1, ptsDraw[pp, 0], ptsDraw[pp, 1],

ptsDraw[pp, 2], ptsDraw[pp, 3]);

 }

 StepOK = true;

 return;

 }

 private void conv_CIE(int pixel_R, int pixel_G, int pixel_B)

 {

 var_R = Convert.ToDouble(pixel_R / 255.0);

 //Where R = 0 ÷ 255

 var_G = Convert.ToDouble(pixel_G / 255.0);

 //Where G = 0 ÷ 255

 var_B = Convert.ToDouble(pixel_B / 255.0);

 //Where B = 0 ÷ 255

 if (var_R > 0.03928) var_R = Math.Pow((var_R + 0.055) / 1.055,

2.4);

 else var_R = var_R / 12.92;

 if (var_G > 0.03928) var_G = Math.Pow((var_G + 0.055) / 1.055,

2.4);

 else var_G = var_G / 12.92;

 Appendix

 Page 186

 if (var_B > 0.03928) var_B = Math.Pow((var_B + 0.055) / 1.055,

2.4);

 else var_B = var_B / 12.92;

 var_R = var_R * 100.0;

 var_G = var_G * 100.0;

 var_B = var_B * 100.0;

 //Observer. = 2°, Illuminant = D65

 X = var_R * 0.4124 + var_G * 0.3576 + var_B * 0.1805;

 Y = var_R * 0.2126 + var_G * 0.7152 + var_B * 0.0722;

 Z = var_R * 0.0193 + var_G * 0.1192 + var_B * 0.9505;

 // Conversion from XYZ to CIEL*ab

 var_X = X / ref_X;

 //ref_X = 95.047 Observer= 2°, Illuminant= D65

 var_Y = Y / ref_Y;

 //ref_Y = 100.000

 var_Z = Z / ref_Z;

 //ref_Z = 108.883

 if (var_X > 0.008856) var_X = Math.Pow(var_X, 1.0 / 3.0);

 else var_X = (7.787 * var_X) + (16.0 / 116.0);

 if (var_Y > 0.008856) var_Y = Math.Pow(var_Y, 1.0 / 3.0);

 else var_Y = (7.787 * var_Y) + (16.0 / 116.0);

 if (var_Z > 0.008856) var_Z = Math.Pow(var_Z, 1.0 / 3.0);

 else var_Z = (7.787 * var_Z) + (16.0 / 116.0);

 CIE_L = (116.0 * var_Y) - 16.0;

 CIE_a = 500.0 * (var_X - var_Y);

 CIE_b = 200.0 * (var_Y - var_Z);

 }

 private int create_ptsLine()

 {

 int c, r, Rin, Rout;

 cN = 0;

 for (c = 1; c < this.imgbmp3.Width - 1; c++)

 {

 for (r = 1; r < this.imgbmp3.Height - 1; r++)

 {

 pixelColor = this.imgbmp3.GetPixel(c, r);

 Rin = this.pixelColor.R;

 if (Rin == 0)

 {

 pixelColor = this.imgbmp2.GetPixel(c, r);

 Rout = this.pixelColor.R;

 if (Rout == 255) continue;

 ptsLine[cN, 0] = c;

 ptsLine[cN, 1] = r;

 ptsLine[cN, 2] = Rout;

 ptsLine[cN, 3] = 1;

 ptsLine[cN, 4] = 0;

 ptsLine[cN, 5] = 0;

 for (k = c - 1; k <= c + 1; k++)

 {

 for (l = r - 1; l <= r + 1; l++)

 {

 pixelColor = this.imgbmp3.GetPixel(k, l);

 Appendix

 Page 187

 Rout = this.pixelColor.R;

 if (Rout == 0)

 {

 ptsLine[cN, 5]++;

 if (k == c - 1 && l == r ||

 k == c + 1 && l == r ||

 k == c && l == r - 1 ||

 k == c && l == r + 1) ptsLine[cN,

4]++;

 }

 }

 }

 cN++;

 }

 }

 }

 return cN;

 }

 private void clean_NotAllowable()

 {

//==

=================

 // Unlight lit not allowable sites

//==

=================

 int ind, x, y, Rin, Rout, countB;

 for (ind = 0; ind < this.ptsL.Length / 3; ind++)

 {

 pixelColor = this.imgbmp3.GetPixel(ptsL[ind, 0], ptsL[ind,

1]);

 Rin = this.pixelColor.R;

 if (Rin == 0)

 {

 countB = 0;

 for (x = ptsL[ind, 0] - 1; x <= ptsL[ind, 0] + 1; x++)

 {

 for (y = ptsL[ind, 1] - 1; y <= ptsL[ind, 1] + 1;

y++)

 {

 pixelColor = this.imgbmp3.GetPixel(x, y);

 Rout = this.pixelColor.R;

 if (Rout == 0) countB++;

 }

 }

 if (countB < 2)

 {

 this.imgbmp3.SetPixel(ptsL[ind, 0], ptsL[ind, 1],

Color.White);

 this.ptsL[ind, 0] = 0;

 this.ptsL[ind, 1] = 0;

 this.ptsL[ind, 2] = 9999;

 }

 }

 Appendix

 Page 188

 }

 }

 private void allowable(int c, int r)

 {

//==

=================

 // Unlight lit sites with |R(s)| = 2 and configurations like:

 // * x * * * x

 // A x * B * C * x D *

//==

=================

 int Rin, Rout, ind;

 if (c == 0 && r == 0) return;

 for (ind = 0; ind <= this.ptsLine.Length / 6 - 1; ind++)

 {

 if (ptsLine[ind, 0] != c || ptsLine[ind, 1] != r)

continue;

 if (ptsLine[ind, 3] == 0) return;

 if (ptsLine[ind, 4] == 2)

 {

 //Situation A

 pixelColor = this.imgbmp3.GetPixel(c + 1, r);

 Rin = pixelColor.R;

 pixelColor = this.imgbmp3.GetPixel(c, r - 1);

 Rout = pixelColor.R;

 if (Rin == 0 && Rout == 0)

 {

 this.ptsLine[ind, 3] = 0;

 this.imgbmp3.SetPixel(c, r, Color.White);

 //nAllow = 1;

 return;

 }

 //Situation B

 pixelColor = this.imgbmp3.GetPixel(c + 1, r);

 Rin = pixelColor.R;

 pixelColor = this.imgbmp3.GetPixel(c, r + 1);

 Rout = pixelColor.R;

 if (Rin == 0 && Rout == 0)

 {

 this.ptsLine[ind, 3] = 0;

 this.imgbmp3.SetPixel(c, r, Color.White);

 //nAllow = 1;

 return;

 }

 //Situation C

 pixelColor = this.imgbmp3.GetPixel(c - 1, r);

 Rin = pixelColor.R;

 pixelColor = this.imgbmp3.GetPixel(c, r - 1);

 Rout = pixelColor.R;

 if (Rin == 0 && Rout == 0)

 {

 this.ptsLine[ind, 3] = 0;

 this.imgbmp3.SetPixel(c, r, Color.White);

 //nAllow = 1;

 Appendix

 Page 189

 return;

 }

 //Situation D

 pixelColor = this.imgbmp3.GetPixel(c - 1, r);

 Rin = pixelColor.R;

 pixelColor = this.imgbmp3.GetPixel(c, r + 1);

 Rout = pixelColor.R;

 if (Rin == 0 && Rout == 0)

 {

 this.ptsLine[ind, 3] = 0;

 this.imgbmp3.SetPixel(c, r, Color.White);

 //nAllow = 1;

 return;

 }

 }

 }

 }

}

 Appendix

 Page 190

Code for a program that acts as an interface and the database engine.
He receives as an input an extended syntax SQL and shows the resulting
dataset.
Form layout:
namespace TestForm

{

 partial class frmTestSQLStr

 {

 /// <summary>

 /// Required designer variable.

 /// </summary>

 private System.ComponentModel.IContainer components = null;

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 /// <param name="disposing">true if managed resources should

be disposed; otherwise, false.</param>

 protected override void Dispose(bool disposing)

 {

 if (disposing && (components != null))

 {

 components.Dispose();

 }

 base.Dispose(disposing);

 }

 #region Windows Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 this.txtSQLOri = new System.Windows.Forms.TextBox();

 this.lblSQLOri = new System.Windows.Forms.Label();

 this.OFDSqlOri = new

System.Windows.Forms.OpenFileDialog();

 this.btnSQLOri = new System.Windows.Forms.Button();

 this.lblSQLRes = new System.Windows.Forms.Label();

 this.btnClear = new System.Windows.Forms.Button();

 this.btnProc = new System.Windows.Forms.Button();

 this.btnExit = new System.Windows.Forms.Button();

 this.DgResults = new System.Windows.Forms.DataGridView();

 this.BtnSave = new System.Windows.Forms.Button();

 this.SFDSqlOri = new

System.Windows.Forms.SaveFileDialog();

((System.ComponentModel.ISupportInitialize)(this.DgResults)).BeginInit

();

 this.SuspendLayout();

 //

 // txtSQLOri

 //

 this.txtSQLOri.AcceptsReturn = true;

 this.txtSQLOri.Location = new System.Drawing.Point(12,

28);

 Appendix

 Page 191

 this.txtSQLOri.Multiline = true;

 this.txtSQLOri.Name = "txtSQLOri";

 this.txtSQLOri.Size = new System.Drawing.Size(506, 182);

 this.txtSQLOri.TabIndex = 1;

 //

 // lblSQLOri

 //

 this.lblSQLOri.AutoSize = true;

 this.lblSQLOri.Location = new System.Drawing.Point(12, 9);

 this.lblSQLOri.Name = "lblSQLOri";

 this.lblSQLOri.Size = new System.Drawing.Size(76, 13);

 this.lblSQLOri.TabIndex = 0;

 this.lblSQLOri.Text = "Extended SQL";

 //

 // OFDSqlOri

 //

 this.OFDSqlOri.Title = "Choose a SQL File";

 //

 // btnSQLOri

 //

 this.btnSQLOri.Location = new System.Drawing.Point(406,

216);

 this.btnSQLOri.Name = "btnSQLOri";

 this.btnSQLOri.Size = new System.Drawing.Size(51, 23);

 this.btnSQLOri.TabIndex = 2;

 this.btnSQLOri.Text = "Open";

 this.btnSQLOri.UseVisualStyleBackColor = true;

 this.btnSQLOri.Click += new

System.EventHandler(this.btnSQLOri_Click);

 //

 // lblSQLRes

 //

 this.lblSQLRes.AutoSize = true;

 this.lblSQLRes.Location = new System.Drawing.Point(13,

240);

 this.lblSQLRes.Name = "lblSQLRes";

 this.lblSQLRes.Size = new System.Drawing.Size(75, 13);

 this.lblSQLRes.TabIndex = 4;

 this.lblSQLRes.Text = "Resulting data";

 //

 // btnClear

 //

 this.btnClear.Location = new System.Drawing.Point(306,

485);

 this.btnClear.Name = "btnClear";

 this.btnClear.Size = new System.Drawing.Size(77, 30);

 this.btnClear.TabIndex = 6;

 this.btnClear.Text = "Clear Panes";

 this.btnClear.UseVisualStyleBackColor = true;

 this.btnClear.Click += new

System.EventHandler(this.btnClear_Click);

 //

 // btnProc

 //

 this.btnProc.Location = new System.Drawing.Point(389,

485);

 this.btnProc.Name = "btnProc";

 this.btnProc.Size = new System.Drawing.Size(68, 30);

 this.btnProc.TabIndex = 7;

 Appendix

 Page 192

 this.btnProc.Text = "Process";

 this.btnProc.UseVisualStyleBackColor = true;

 this.btnProc.Click += new

System.EventHandler(this.btnProc_Click);

 //

 // btnExit

 //

 this.btnExit.Location = new System.Drawing.Point(463,

486);

 this.btnExit.Name = "btnExit";

 this.btnExit.Size = new System.Drawing.Size(55, 29);

 this.btnExit.TabIndex = 8;

 this.btnExit.Text = "Exit";

 this.btnExit.UseVisualStyleBackColor = true;

 this.btnExit.Click += new

System.EventHandler(this.btnExit_Click);

 //

 // DgResults

 //

 this.DgResults.ColumnHeadersHeightSizeMode =

System.Windows.Forms.DataGridViewColumnHeadersHeightSizeMode.AutoSize;

 this.DgResults.Location = new System.Drawing.Point(12,

256);

 this.DgResults.Name = "DgResults";

 this.DgResults.Size = new System.Drawing.Size(506, 223);

 this.DgResults.TabIndex = 5;

 //

 // BtnSave

 //

 this.BtnSave.Location = new System.Drawing.Point(463,

217);

 this.BtnSave.Name = "BtnSave";

 this.BtnSave.Size = new System.Drawing.Size(55, 22);

 this.BtnSave.TabIndex = 3;

 this.BtnSave.Text = "Save";

 this.BtnSave.UseVisualStyleBackColor = true;

 this.BtnSave.Click += new

System.EventHandler(this.BtnSave_Click);

 //

 // SFDSqlOri

 //

 this.SFDSqlOri.Title = "Choose a destination";

 //

 // frmTestSQLStr

 //

 this.AutoScaleDimensions = new System.Drawing.SizeF(6F,

13F);

 this.AutoScaleMode =

System.Windows.Forms.AutoScaleMode.Font;

 this.ClientSize = new System.Drawing.Size(531, 528);

 this.Controls.Add(this.BtnSave);

 this.Controls.Add(this.DgResults);

 this.Controls.Add(this.btnExit);

 this.Controls.Add(this.btnProc);

 this.Controls.Add(this.btnClear);

 this.Controls.Add(this.lblSQLRes);

 this.Controls.Add(this.btnSQLOri);

 this.Controls.Add(this.lblSQLOri);

 this.Controls.Add(this.txtSQLOri);

 Appendix

 Page 193

 this.Name = "frmTestSQLStr";

 this.Text = "Extended SQL Test Pane";

((System.ComponentModel.ISupportInitialize)(this.DgResults)).EndInit()

;

 this.ResumeLayout(false);

 this.PerformLayout();

 }

 #endregion

 private System.Windows.Forms.TextBox txtSQLOri;

 private System.Windows.Forms.Label lblSQLOri;

 private System.Windows.Forms.OpenFileDialog OFDSqlOri;

 private System.Windows.Forms.Button btnSQLOri;

 private System.Windows.Forms.Label lblSQLRes;

 private System.Windows.Forms.Button btnClear;

 private System.Windows.Forms.Button btnProc;

 private System.Windows.Forms.Button btnExit;

 private System.Windows.Forms.DataGridView DgResults;

 private System.Windows.Forms.Button BtnSave;

 private System.Windows.Forms.SaveFileDialog SFDSqlOri;

 }

}

 Appendix

 Page 194

Form code:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

namespace TestForm

{

 public partial class frmTestSQLStr : Form

 {

 SqlConnection conn = new

SqlConnection("server=localhost;database=RMExtension;Trusted_Connectio

n=True");

 public frmTestSQLStr()

 {

 InitializeComponent();

 }

 private void btnSQLOri_Click(object sender, EventArgs e)

 {

 OFDSqlOri.AddExtension = true;

 OFDSqlOri.DefaultExt = "sql";

 OFDSqlOri.RestoreDirectory = true;

 OFDSqlOri.ShowDialog(this);

 if (!String.IsNullOrEmpty(OFDSqlOri.FileName))

 txtSQLOri.Text = new

System.IO.StreamReader(OFDSqlOri.FileName).ReadToEnd();

 }

 private void BtnSave_Click(object sender, EventArgs e)

 {

 if (String.IsNullOrEmpty(txtSQLOri.Text))

 {

 MessageBox.Show("You must have something to save",

"Empty Window");

 }

 else

 {

 SFDSqlOri.AddExtension = true;

 SFDSqlOri.DefaultExt = "sql";

 SFDSqlOri.RestoreDirectory = true;

 SFDSqlOri.ShowDialog(this);

 if (!String.IsNullOrEmpty(SFDSqlOri.FileName))

 {

 System.IO.StreamWriter sr = new

System.IO.StreamWriter(SFDSqlOri.FileName);

 sr.Write(txtSQLOri.Text);

 sr.Flush();

 sr.Close();

 }

 }

 Appendix

 Page 195

 }

 private void btnClear_Click(object sender, EventArgs e)

 {

 txtSQLOri.Text = "";

 DgResults.DataSource = "";

 }

 private void btnExit_Click(object sender, EventArgs e)

 {

 Application.Exit();

 }

 private void btnProc_Click(object sender, EventArgs e)

 {

 DataTable dto = new DataTable();

 try

 {

 conn.Open();

 string SQL = "EXEC RMExtension '" + txtSQLOri.Text +

"'";

 SqlDataAdapter da = new SqlDataAdapter(SQL, conn);

 da.Fill(dto);

 conn.Close();

 }

 catch (Exception ex)

 {

 dto = new DataTable();

 DataColumn dc = new DataColumn("Info",

Type.GetType("System.String"));

 dto.Columns.Add(dc);

 DataRow dr = dto.NewRow();

 dr["Info"] = ex.Message;

 dto.Rows.Add(dr);

 }

 DgResults.DataSource = dto;

 }

 }

}

 Appendix

 Page 196

Listing of Alfa.cs

It implements the ordering function “SqlAlfa()” that implements sorting with pre-

defined order words

using System;

using System.Collections;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using Microsoft.SqlServer.Server;

public partial class StoredProcedures

{

 //private static readonly string[] sNumbers = { "ONE", "TWO",

"THREE", "FOUR", "FIVE", "SIX", "SEVEN", "EIGHT", "NINE" };

 private static readonly string[] sNumbers = { "FIRST", "SECOND",

"THIRD", "FOURTH", "FIFTH", "SIXTH", "SEVENTH", "EIGHTH", "NINTH" };

 [Microsoft.SqlServer.Server.SqlProcedure]

 public static void SqlAlfa(string strSQL)

 {

 // Test if we are under an SQL server connection

 if (!SqlContext.IsAvailable)

 return;

 SqlConnection conn = new SqlConnection("context

connection=true");

 // assume that the SQL is properly formed and

 // get the data out of the engine

 DataTable dt = null;

 try

 {

 dt = SQLUtils.lData(strSQL, conn);

 }

 catch (Exception e)

 {

 dt = null;

 SqlContext.Pipe.Send(e.Message);

 }

 if (dt != null)

 {

 //create the output table

 DataTable dtout = new DataTable();

 //find a suitable name for the "extra" field

 string IDname = "ID";

 int i = 0;

 bool goodname = false;

 while (!goodname)

 {

 goodname = true;

 foreach (DataColumn dc in dt.Columns)

 {

 if (dc.ColumnName == IDname)

 Appendix

 Page 197

 {

 IDname = "ID" + i.ToString("00");

 ++i;

 goodname = false;

 break;

 }

 }

 }

 //now populate the columns collection of the output table

 foreach (DataColumn dc in dt.Columns)

 {

 dtout.Columns.Add(dc.ColumnName, dc.DataType);

 }

 // and add the ID column for the random number

 dtout.Columns.Add(IDname, Type.GetType("System.Int32"));

 // do all the sorting between dt and dtout

 foreach (DataRow dr in dt.Rows)

 {

 //populate the output table with data

 DataRow drout = dtout.NewRow();

 foreach (DataColumn dc in dt.Columns)

 {

 drout[dc.ColumnName] = dr[dc.ColumnName];

 }

 int nID = 0;

 string cval =

dr[dt.Columns[0].ColumnName].ToString().ToUpper();

 for (i = 0; i < sNumbers.Length; i++)

 {

 nID = 0;

 string n = sNumbers[i];

 if (cval.ToUpper().Contains(" " + n) ||

cval.ToUpper().Contains(n + " ") || cval == n)

 {

 nID = i + 1;

 break;

 }

 }

 drout[IDname] = nID;

 dtout.Rows.Add(drout);

 }

 DataView dv = dtout.DefaultView;

 dv.Sort = IDname;

 // send the results back to the server

 i = 0;

 SqlMetaData[] flds = SQLUtils.GetMetaData(strSQL, conn);

 SqlDataRecord rec = new SqlDataRecord(flds);

 SqlContext.Pipe.SendResultsStart(rec);

 DataTable dto = dv.ToTable();

 foreach (DataRow dr in dto.Rows)

 {

 Appendix

 Page 198

 for (i = 0; i < dtout.Columns.Count - 1; i++)

 {

 rec.SetValue(i, dr[i]);

 }

 SqlContext.Pipe.SendResultsRow(rec);

 }

 SqlContext.Pipe.SendResultsEnd();

 }

 }

};

 Appendix

 Page 199

Solutions of the Case Studies.

The random list:

SELECT * FROM Hotels ORDER BY SqlRandom()

(EXEC RMExtension “SELECT * FROM Hotels ORDER BY SqlRandom()”, if

done directly on the SQL Server Management Studio)

The Budget selection:

SELECT *,ACCUMUL(MonthValue) FROM Budget

(EXEC RMExtension “SELECT *,ACCUMUL(MonthValue) FROM Budget”, if

done directly on the SQL Server Management Studio)

The Running Sum query:

SELECT CandidateName, CandidateBenefit, ACCUMUL(CandidateBenefit) AS

RSum FROM Candidates WHERE ACCUMUL(CandidateBenefit) < 500

(EXEC RMExtension “SELECT CandidateName, CandidateBenefit,

ACCUMUL(CandidateBenefit) AS RSum FROM Candidates WHERE

ACCUMUL(CandidateBenefit) < 500”, if done directly on the SQL Server

Management Studio)

In all these solutions, the data could be immediately used.

