
Voxel Modelling for

Rapid Manufacturing
Ronaldo Mercado

DE MONTFORT
UNIVERSITY

LEICESTER -MILTON KEYNES
BEDFORD - LINCOLN

A Dissertation Submitted in partial fulfillment

of the requirements for the Degree of

Doctor of Philosophy

De Montfort University

Leicester

February 2001

Abstract

Rapid Manufacturing techniques create objects by adding material under computer con-

trol. The possibility of varying the material being added allows these processes to create

Functionally Graded Materials. There are several research efforts that have succeeded in

the creation of this type of objects but there are no established methods to model them

in a CAD environment, since standard modelling applications presuppose a homogeneous

object. This research explores the voxel modelling technique as a method to support Rapid

Manufacturing where variable material composition will be possible.

Rapid Manufacturing processes are reviewed as well as applications of FGM objects, the

decomposition model through voxels and the general CAGD modelling techniques. Alterna-

tive representation methods currently in research were reviewed and the representation of an

FGM using an FEA application was considered.

Visualisation techniques for the exploration of a voxel model are examined, including

volume rendering. Visualisation software available for these operations is identified.

A system is developed based on the Visual%zation Toolkit (VTK), an open source, freely

available visualisation library. Methods of generation of a voxel model, its visualisation and

transfer to a Rapid Manufacturing machine are created. An example part was built based

on a two-material model. The toolkit is extended to include the octree decomposition of

graded material voxel models and the method is tested as a compression scheme, showing

poor performance due to the overhead of pointers.

Despite its large memory requirements at high resolution, the voxel model seems suitable

at the resolutions available through prospective creation methods.

Acknowledgement s

I would like to thank my parents and my family who have supported me all along. My

special thanks to Prof. Blackledge and Prof. Dickens for recommending this research. I also

owe thanks to all the special friends, colleagues and staff at De Montfort University.

Financial support for this research was received from De Montfort University and it is

thankfully acknowledged.

Contents

1 Introduction 16

1.1 What is Rapid Manufacturing? 16

1.2 Computational geometry and Voxel Modelling 17

1.3 About this Thesis 18

1.4 Structure of the Thesis 20

1.5 Original contributions and publications 22

2 Rapid Prototyping and Manufacturing 24

2.1 Definition of rapid prototyping 24

2.2 Stereolithography System
............................. 25

2.2.1 3D Systems 27

2.2.2 SOUP CMET 27

2.2.3 D-MEC /SONY
.............................. 28

2.2.4 Light Sculpting Inc 28

2.3 Selective Laser Sintering (SLS)
.......................... 28

').. 4 Solid Ground Curing (SGC)
............................ 29

2

2.5 Laminated Manufacturing 30

2.6 3-D Printing 31

2.7 Jetting ..
32

2.8 Fused Deposition Modelling (FDM) 32

2.9 Shape Deposition Manufacturing (SDM) 33

2.10 Rapid Tooling and Direct Metal Manufacturing 33

2.11 Discussion
35

3 Functionally Graded Materials (FGM) 38

3.1 Applications
39

3.1.1 Applications in space vehicles 40

3.1.2 Application in stealth missiles
43

3.1.3 Applications in aeroengines 45

3.1.4 Application in diesel engines
46

3.1.5 Applications in fuel burning systems
48

3.1.6 Applications in integrated thermo-ionic/thermo-electric systems ...
50

3.1.7 Applications in tungsten carbide cutting tools
51

3.1.8 Applications in diamond cutting tools
52

3.1.9 Applications for Graded Index Materials
.................

53

3.1.10 Applications in graded band gap semiconductors
53

3.1.11 Application in biomaterials
........................

54

3.2 Creation methods
56

3.3 Summ ary
57

3

4 Geometric modelling 59

4.1 Curve modelling 60

Bezier curves 60

4.1.2 B-Spline curves 61

4.1.3 Rational Bezier and B-Spline curves 63

4.1.4 NURB Algorithms
............................. 66

4.2 Surface Modelling 78

4.2.1 Tensor Product Bezier Surfaces 78

4.2.2 B-Spline surfaces 79

4.2.3 Rational B-Spline surfaces 80

4.2.4 Rational Bezier patches 82

4.2.5 Surface algorithms 83

4.3 The IGES Standard
................................ 83

4.3.1 IGES file structure 83

4.3.2 Example specification: a NURBS curve and a NURBS surface 85

4.4 Solid Modelling representations 90

4.4.1 Boundary Representation Models 90

4.4.2 Constructive Solid Geometry Models 90

4.4.3 Decomposition models and voxel modelling 91

4.5 The voxel model 92

4.5.1 Memory requirements for the voxel model 92

4.5.2 Compression Methods 93

4

4.5.3 Manufacturing FGMs from a voxel model 96

5 Modelling FGM objects 98

5.1 Work at the University of Michigan 99

5.1.1 Representation of heterogeneous objects 99

5.1.2 Implementation of the r,, -object representation 102

5.1.3 The object model 104

5.2 Work at the MIT 105

5.3 Discussion of the methods 106

6 Visualisation of voxel models 108

6.1 Exploration of a voxel model 108

6.2 Volume Rendering 109

6.3 Visualisation software 114

6.4 The Visualization Toolkit - VTK 117

6.5 Design of the classes in the Visualization Toolkit 118

7 Modelling FGMs 122

7.1 Element discretisation approach 122

7.2 Transforming a voxel model into a FEM grid 122

7.3 Estimation of the properties 123

7.4 Examples of modelling technique 124

7.5 Discussion 126

5

Software development 129

8.1 VTK framework elements 129

8.1.1 The VTK visualisation pipeline 130

8.1.2 Data representation in VTK 132

8.2 An extension to the toolkit 136

8.2.1 The octree dataset 137

8.2.2 Creation of the octree structure 141

8.2.3 Test of memory usage and discussion 143

9 Voxel model 146

9.1 Generating the model 146

9.1.1 VTK Datafile 146

9.1.2 Semi automated model generation 148

9.1.3 Pipeline code 154

9.1.4 Discussion 156

9.2 Visualisation pipeline 156

9.2.1 Input step 159

9.2.2 Classification step 159

9.2.3 Contouring step 160

9.2.4 Mapping 160

9.2.5 Visualisation through slices 162

9.3 Contouring for manufacturing 162

9.4 Finite Element mesh generation 164

6

9.5 Summary
...................................... 168

10 Summary, Conclusions and Future Work 170

A Programs 175

A. 1 Visualising a small voxel model 175

A. 1.1 Tcl script 175

A. 1.2 Example 176

A. 2 Visualization of a model through slices 177

A. 2.1 Tcl script 177

A. 2.2 Example 181

A. 3 Contouring a voxel model 182

A. 3.1 Tcl script 182

A. 3.2 Examples 184

A. 4 Týansformation into a voxel model 184

A. 4.1 Tcl script 184

A. 4.2 Example 185

A. 5 Octree implementation 186

B Object Oriented Concepts 188

B-I Principles of object oriented software 188

B. 2 Object Modeling Technique (OMT)
........................ 190

C Results of the corner bracket example 192

7

D Publication 196

E Glossary 214

List of Figures

1.1 Concept application of FGMs 19

1.2 System based on the voxel modelling technique 20

2.1 Classification of Rapid Manufacturing processes 25

2.2 The Stereolithography process 26

2.3 SDC cutter 31

2.4 The SDM process 34

2.5 Advanced ALCOA injection moulding tool[18] 35

3.1 Evolution towards FGM materials 38

3.2 Types of graded structures 39

3.3 Applications and potential applications of FGMs 40

3.4 Schematic of composite combustion chamber 42

3.5 Cross sectional schematic of a rocket engine 44

3.6 Schematic of a TBC produced by electron beam-physical vapour deposition . 46

3.7 Schematic of an electron beam physical vapour deposition coater 47

3.8 Micrograph of graded A1203-YSZ coating 47

9

3.9 Schematic of a diesel engine showing location of TBCs 48

3.10 Application of functional gradation of alloying Cr in a TiAl turbine blade.
.. 49

3.11 Schematic of a composite emitter electrode used in a thermo-ionic conversion

system .. 51

3.12 Diagram of the interface in a cementless bone-prostheses fixation[45] 55

3.13 Diagram of the interface in a PMMA cement bone-prostheses fixation and an

IBBC fixation[45]
.................................. 56

4.1 A cubic Bezier curve 61

4.2 Projection from homogeneous space to curve space 65

4.3 Degree elevation process 68

4.4 Graphical representation of the de Caste1jau recursion 71

4.5 Tensor product surface 79

4.6 Example of an IGES file 84

4.7 Structure of an IGES file 85

4.8 IGES B-Spline surface
87

4.9 Pixels and voxels
91

4.10 Octree subdivision scheme. A three level representation of an object 95

4.11 Scanning Electron Microscopy image of HIO tool steel powder 97

5.1 Computer representation of an r, -object 101

5.2 Architecture of the Heterogeneous Solid Modeler 102

5.3 Design cycle using the heterogeneous solid modeller 107

10

6.1 Týransformation of medical data to create a physical 3-D model 110

6.2 Surface contour created from a voxel model using VTK 110

6.3 Volume rendering operations ill

6.4 The effect of gradient operators: central difference gradient operator vs. in-

termediate difference gradient operator 113

6.5 Iris Explorer display of a visualisation pipeline 116

6.6 Representation of a visualisation pipeline 118

6.7 Visualisation of a combustor 119

6.8 Visualisation of a height profile 119

6.9 Distribution of the lines of code among the kits 120

6.10 Distribution of the classes among the kits 121

7.1 Geometry of the corner bracket modelled 124

7.2 Boundary conditions for the model 125

7.3 Operations performed in the corner bracket model 127

7.4 Optimisation of material distribution
128

8.1 Explicit vs. implicit network execution 131

8.2 A VTK dataset
132

8.3 Simple VTK cell types
133

8.4 Dataset types
135

8.5 Dataset object diagram
136

8.6 The vtkOctree class in VTK's object hierarchy 137

11

8.7 Object model for the octree 138

8.8 The structured coordinates of a vtkStructuredPoints dataset
........ 139

8.9 Mapping of scalarId to values with vtkOctreeScalars 139

9.1 Example VTK datafile 147

9.2 Voxel model generated manually 147

9.3 Alternative method of creation of a voxel model 149

9.4 A simple geometry used to test the transformations 150

9.5 Unigraphics presentation of the complete geometry of the turbine blade ... 151

9.6 Unigraphics presentation of the simplified geometry of the turbine blade ... 152

9.7 Algor presentation of the tetrahedral mesh generated 153

9.8 Pipeline to transform an unstructured grid to voxels 154

9.9 Topology and numbering conventions for a tetrahedral cell 157

9.10 Topology and numbering conventions for a hexahedral cell 157

9.11 Mimics display of a voxel model 158

9.12 Visualisation of the two contour surfaces obtained from the voxel model ... 161

9.13 Visualisation of the model through slices 162

9.14 Contouring the voxel model to create STL files. Two-material model. 163

9.15 Model manufactured from the voxel model 164

9.16 Nodes for an element of the voxel model 165

9.17 Programs for a system based on the voxel model 168

10.1 Applications of the voxel model 172

12

B. 1 Basic Object Model Notation 191

CA Stress distribution using one material (steel)
................... 193

C. 2 Material assignments 194

C. 3 Stress distribution using five materials 195

13

List of Tables

2.1 Stereolithography based processes 27

2.2 Laser Sintering processes 29

2.3 Laminated Manufacturing processes 30

2.4 Jetting equipment manufacturers 32

2.5 FDM equipment manufacturers 33

2.6 Indication of resolution achievable by the various RP processes 37

4.1 Summary of the notation for Bezier curves 61

4.2 Summary of the notation for B-spline curves 63

4.3 Summary of the notation for rational B-spline curves 66

4.4 Some entities in the IGES specification 86

4.5 Quantities of data contained by various media 93

7.1 Element sizes and corresponding node counts for the corner bracket example 126

8.1 Memory usage of vtkStructured points and vtkOctree 145

1 Files for the octree implementation in VTK 186

14

C-1 Material properties used in the example bracket. Material I has the properties

of steel and material 5 has the properties of aluminium 192

15

Chapter 1

Introduction

1.1 What is Rapid Manufacturing?

Rapid Prototyping and Rapid Manufacturing are a set of manufacturing techniques for the

creation of engineering parts under computer control. These techniques started in the late

80s and have developed greatly over the last decade.

The term Rapid Manufacturing refers to the ability to produce small manufacturing runs

of parts using the technique directly. The techniques are also collectively known as Rapid

Prototyping (RP), in regard with their use in the production of prototypes. The terms Solid

Freeform Fabrication (SFF), Layered Manufacturing and additive manufacturing are other

names given to these techniques.

The development of these techniques occurred due to the combination of developments in

many areas, such as polymers, laser techniques and computer technology. The first machine

to be introduced was the SLA-1 by 3D Systems (California), based on the stereolithography

process. The idea was already floating in industry and in the research community and there

were several companies that pioneered the early developments, e. g. CMET in Japan or EOS

in Germany.

There are several processes of Rapid Prototyping, such as stereolithography, selective

laser sintering, laminated object manufacturing, fused deposition modelling, 3-D printing

and jetting. All share a common characteristic of operation in a layer by layer fashion and

16

creating the objects by adding material instead of removing it. The process planning for

parts built by adding layers is significantly simpler and it can be automated, resulting in

significant time savings in the creation of a physical model from a design, hence the use of

the techniques for the creation of prototypes.

Every process is linked to a characteristic machine and special materials. This is a
limitation of the techniques, because in general it is highly likely that the material with the

ideal properties for an application won't be available for the creation of a part in an RP

machine.

There has been considerable work undertaken in the area of rapid prototyping. This has

led to the subject of rapid tooling, where additive manufacturing techniques are being used to

manufacture tools directly or indirectly. Rapid Tooling is a method of speeding the creation

of parts while trying to overcome the limitation in materials that Rapid Manufacturing tech-

niques have. The process is based in the time reduction possible in the very time consuming

process of tool creation for series manufacturing processes such as injection moulding or die

casting. In Rapid Tooling, RP techniques are used to produce mould parts for instance, and

the final part is moulded in a suitable material. The next stage in this research will be to the

use of additive manufacturing techniques to produce medium volumes of parts directly or

indirectly. These techniques will probably be based on powder fusion or ink jet technology.

The next development has been the creation of objects with different materials in the

volume and a graded composition in them. There are notable examples in the projects led

by Prinz at Stanford and the Shape Deposition Manufacturing (SDM) process and Sachs et

al. at the MIT using 3-D printing.

1.2 Computational geometry and Voxel Modelling

Coinputational geometry refers to the methods and mathematical methods used to represent

geometry in a computer environment. Major modellers are available commercially imple-

menting the ideas of geometry modelling: curve and surface modelling, a method well suited

for the representation of free-form shapes and surfaces, and solid modelling, a method that

emphasises and insists on a complete mathematical description of 'solid' objects and which

17

is suitable for algorithmic querying of a model.

One of the most simple methods to represent an object is through exhaustive enumeration,

which consists in subdividing the space into regular cells and listing the occupancy of the

cells in the model. The voxel modelling technique is a specific case of exhaustive enumeration

based on cuboids. For this method, one limits the region of space that has to be represented

and subdivides it as a three dimensional array. The most simple representation would only

record a binary value to determine whether a region or cuboid is either interior or exterior to

the solid model by attaching a "colour", either black (1, interior to the solid, filled) or whZte

(0, exterior to the solid, empty). For the representation of multiple materials, the memory

usage increases with the number of "colours" that we allow in the model.

This type of geometric representation is similar in nature with that of 2-D images. The

3-D nature of it does have its peculiarities, but major methods used in 2-D imaging are

applicable in 3-D volumetric models made up of voxels. The wealth of 2-D processing algo-

rithms can be considered to be an advantage of the method. Also because of the regularity

of the description method, algorithms for this representation tend to be simple, making it

well-suited for parallel algorithms and hardware support.

Disadvantages are the poor resolution achievable because of the huge memory require-

ments. The large memory usage makes even small efficient algorithms perform poorly because

of the number of cells on which the operations have to be performed. In general the voxel

model is poor in terms of conciseness.

Many concepts from imaging can be translated to the voxel modelling, which could be

regarded as a 3-D image representation or stacks of 2-D images piled up together. Much of

what can be said about the advantages of vector graphics over raster graphics applies in the

comparison of solid models over the voxel model. For example the voxel model suffers from

the 'stair-step' effect and loss of accuracy when enlarged.

1.3 About this Thesis

The objective of this research thesis is to explore the possibilities of the voxel modelling

technique to support rapid manufacturing techniques where variable material composition

18

Hard material (e. g. Ceramic)

Tough Material High Thermal Conductivity
(e. g. Cu)

Piston
bore

Figure 1.1: Concept of a possible functionally graded material object built by Rapid Manu-
facturing

will be possible.

The motivation behind this project is the possibility to match the functional requirements
demanded of a component at a given point by assigning localised material properties. This

idea is not new, but the enhanced control and the complex geometries achievable using

additive manufacturing open exciting possibilities. A concept application (figure 1.1) could

be the construction of an engine block, which could have arbitrarily shaped cooling channels,

with their walls built using a high thermal conductivity material to aid heat transfer, and a

piston bore with hard material surface to prevent surface wear, while keeping a tough interior

to withstand vibration. It is however necessary to identify possible applications because these

are not yet clear. This project reviews applications of FGMs in various fields, showing uses

in aeronautical engineering, astronautics and power conversion systems.

The resolution of additive manufacturing techniques to produce parts with an appropriate

surface finish will require voxels of 5x5x5 pm 3. This resolution involves heavy requirements of

memory and computing power. Ideally the voxel modelling method would solve this problem

by compression methods. One of the suggested compression methods, the octree approach,

is implemented and tested within a visualisation toolkit/library in this project, proving to

have too much overhead and therefore being unsuitable for the general use.

The issues of data transfer for the use of the model in a larger system are studied in order

19

DESIGN
AND CONCEPTION

OF A PART

ANALYSIS
THROUGH

FINITE ELEMENT
METHOD

Compressed
model MANUFACTURE

THROUGH
RP

Finite
Element

Mesh
Voxel Model

VISUALIZATION
(DISPLAY)

Manufacturing
interface
(STL File)

Figure 1.2: System based on the voxel modelling technique

be able for instance to perform an analysis from a model (through Finite Element Analysis),

to be able to visualise the model and also to manufacture parts based on the model. Figure

1.2 shows the model integrated within a system and how it would be used for supporting

rapid manufacturing techniques.

One of the difficult aspects is also the visualisation of parts with variable composition of

graded structures. The techniques required to visualise models voxel models, using simple

sections and 3-D partially transparent models (volume rendering) are studied.

1.4 Structure of the Thesis

Chapter 1 is an introduction to the motivation and research objectives of the thesis.

Chapter 2 presents a classification of the principal methods of Rapid Manufacturing listing

major manufacturers. A last section of this chapter presents Rapid Tooling, and Direct

Metal Manufacturing.

Chapter 3 present, s possible applications of functionally graded materials (FGMs) in science

20

and engineering. The chapter concludes with a short review of creation methods,
including Rapid Manufacturing.

Chapter 4 presents the techniques used in Computer Aided Geometric Design (CAGD) for

the representation of geometry. Major methods used in curve and surface modelling are

presented, closing in on the most general of them, the Non Uniform Rational B-Splines

(NURBS). A short look at the IGES standard and its way of representing NURBS,

which was used for the transfer of geometry information later in the project. The

chapter follows on to solid modelling techniques and finally focuses on voxel modelling.

Chapter 5 presents alternative representation methods for multiple material and materially

graded objects currently in research. The work of Dutta et al. at the University of
Michigan and Jackson et al. at the MIT are complete mathematical representation

schemes that tackle these issues. The two methods are reviewed and discussed.

Chapter 6 looks at the issue of exploring a voxel model through visualisation techniques

such as volume rendering. The visualisation pipeline for volume rendering is examined

and some of the software applications available for volume rendering are surveyed. The

Visualization Toolkit (VTK) is further examined, for its subsequent use.

Chapter 7 looks at a FGM representation approach using finite elements as used in the

Finite Element Method. The method is tried in a simple structural analysis example

with a commercial application package (ANSYS).

Chapter 8 focuses on the extension to the Visualization Toolkit through the implementa-

tion of an octree structure dataset for data compression, as suggested in chapter 4.

The chapter looks at the elements of the VTK framework: the visualisation pipeline

and data representation within the toolkit and indirectly some of the design philosophy

behind it, based on the object oriented methodology. The extension is documented,

tested and results are reported.

Chapter 9 examines further methods to use the voxel modelling technique for Rapid Man-

ufacturing. The issue of generating a voxel model is examined and an application of the

21

visualisation tools (VTK) is presented to generate a model semi- automatically. Two

examples for a simple geometry and a turbine blade are presented. Some other proce-
dures are presented to process the voxel model for creation in a Rapid Manufacturing

system.

Chapter 10 gives a summary, the conclusions and suggests future work.

The programs developed, concepts associated with the software development methodology

used and a paper published are presented in the appendices.

1.5 Original contributions and publications

A paper was published in the Fourth International Scientific Colloquium CAx Techniques,

Bielefeld 1999 and it is included in the appendix. The original contributions in this work are:

Reviews of background material relevant to the thesis, such as Rapid Manufacturing

processes, applications of functionally graded materials (FGMs) and computational

geometry methods used for computer representation of geometric entities (chapters 2,

3 and 4).

9A review of modelling methods currently in development for the solution of the issue

of the representation of functionally graded material objects (chapter 5).

A review of the possible use of visualisation software for voxel modelling and the survey

of VTK as a voxel modelling framework (chapter 6).

e Generation of an FGM object model in a commercial Finite Element Analysis package

(ANSYS) by discretising the space in cells with varying properties (chapter 7).

An implementation of an octree decomposition for graded material voxel models and

testing for the usefulness of the approach as a compression method (chapter 8).

e The development of data transfer methods and a method to integrate available tools

to develop a system to support Rapid Manufacturing processes based on the voxel

modelling method (chapter 9).

22

* The integration of tools available in the VTK toolkit to generate contour surfaces from

a voxel model (chapter 9).

9 The creation of an example part using the stereolithography method from a voxel model

of two materials and the creation of a voxel model from a turbine blade geometry using

the framework developed, based around the Visualizahon Toolkit (chapter 9).

23

Chapter 2

Rapid Manufacturing and Rapid

Prototyping

2.1 Definition of rapid prototyping

Rapid Prototyping (RP) is generally understood as the process which involves the complete

process of CAD modelling, data processing, transfer and building up the prototype layer by

layer.

There has been considerable work and success in the area of rapid prototyping. This

lead to Rapid Tooling, where additive manufacturing techniques are used to produce tools

directly or indirectly. It has also lead to its use in manufacturing medium volumes of parts

directly, hence the name Rapid Manufacturing for these techniques.

Other names given to these technologies are layered manufacturing, solid free-form fab-

rication (SFF), and automated additive fabrZcation[43].

RP systems enable users to produce prototypes quickly, efficiently and with a high degree

of precision. The common characteristics of this family of processes are:

e Parts are automatically produced from CAE data sets. Many commercial RP machines

can perform simulations to detect defects which come from the transformation of models

to the industry standard STL format. This format consists of a list of vertices, triangles

24

and normals that determine the faces of a solid object. Specialised software (e. g.
Magics[41]) allow editing, manipulating and visualising STL files.

The techniques are additive: a solid object is built in a 21D fashion by successively 2

adding raw material.

C DD

IMER POL ISATION POL

EL2P ýLASER
BEAM

Solid Ground Curing Stereo 1i thography
(SGC) (SL)

Eý
Fused

Deposition
Modelling

(FDM)

m
SOLID

POWDER

Selective
Laser

Sintering
(SLS)

Laminated
Object

Manufacturing
(LOM)

Figure 2.1: Classification of Rapid Manufacturing processes

The approaches used to generate each single layer can be classified into three groups (see

figure 2.1):

e Hardening of liquid materials (Stereolithography, Solid Ground Curing).

9 Solid material layer addition (Laminate Object Modelling, Selective laser sintering,

Fused Deposition Modelling, 3-D Printing).

o Generation out of gaseous phase (LASER Chemical Vapour Deposition).

The list of methods presented in this section is not exhaustive and only the major methods

are listed, particularly the ones available within the facilities of the Rapid Manufacturing

Group at De Montfort University.

2.2 Stereolithography System

Stereolithography was the first RP method to be invented. The first commercial stereolithog-

raphy product, 3-D Systems SLA-1 was publicly introduced at the AUTOFACT Show in

Detroit in November 1987[25]. The process is based on the use of photo-reactive polymers,

25

usually ones that react to ultraviolet light or short wave laser (HeCd). These resins solidify
(polymerise) by absorbing sufficient irradiation energy. To allow the fabrication of parts, the

SLA machine selectively polymerises one layer of the resin in a vat of the material. To create

the next and subsequent layers, the object is dipped slightly deeper into the vat of liquid

polymer. This process is repeated until the object is completed. A scheme of the process is

shown in figure 2.2.

HGCd-losG r

LG iisG s

Elavato f

Liquid polyr-

Pbtform

Figure 2.2: The Stereolithography process[15]

There are several manufacturers of machines which work on this principle. Table 2.1 lists

a few companies that produce machines for this market.

26

Table 2.1: Stereolithography based processes

Organisation Country Product Web address
3D Systems USA SLA 250,500,3500, http: //www. 3dsystems. com

50001 7000
CMET (Mitsubishi) Japan SOUP http: //www. nttd-cmet. co. jp

D-MEC(Sony) Japan Solid Creation System http: //www. d-mec. co. jp
(SCS)

Aaroflex USA Solid Imager http: //www. aaroflex. com
Autostrade E-Dart Japan Solid Laser Plotter (SLP) http: //www. autostrade. co. jp
Light Sculpting Inc. USA LS11212

2.2.1 3D Systems

3D Systems is the dominant company in the market. It produces a range of SLA systems of

various envelope dimensions.

3D Systems machines' original deep dip, elevate and sweep process has been changed

in more recent models with the Zephyr system, which utilises a vacuum-fed re-coating

system[61]. In the Zephyr method, as opposed to the older re-coater blade system, the

blade picks up resin from the vat and applies a thin layer as it sweeps across. This allows for

a reduction in the time required to build parts. An additional advantage is the reduction of

problems caused by trapped volumes - spaces that hold resin separate from that in the vat.

The resolution of a late SLA machine by 3D Systems (SLA 7000) is 0.0254 mm in the

vertical direction and the laser spot diameter is 0.23 mm. These figures are however affected

by the shrinkage of the parts, which depends on the materials, the build direction, the

geometry and the curing process. Fitting parts created by SL machines still requires manual

grinding and sanding of the interconnecting parts.

2.2.2 SOUP CMET

The Solid Ultraviolet Laser Plotting (SOUP) was developed by Mitsubishi Corporation in

Japan and is marketed by CMET. The system is similar to that used in 3D Systems SLA

machines', the main difference being that early models of the SOUP machine used an x-ý,

27

plotter arm to guide the laser. More recent models use the galvanomirror present in the SLA

machines. In January 1999 a patent cross-license agreement was signed by 3D Systems with
NTT DATA and NTT DATA CMET. By this agreement the companies have granted one

another non-exclusive licenses to sell and produce stereolithography systems throughout the

Asia-Pacific region. 3D Systems maintains an exclusive position in Europe and the United

States[21].

2.2.3 D-MEC /SONY

Design Model Engineering Center (D-MEC) developed stereolithography machines known

as Solid Creation Systems (SCS). The systems uses either HeCd or argon-ion laser and the

laser beam spot size is also made adjustable. Depending on the machine, D-MEC systems

offer large maximum working envelopes of up to 1000 mm x 800 mm x 500 mm [61]. This is

almost double the envelope of the SLA 7000 made by 3D Systems.

2.2.4 Light Sculpting Inc.

The distinctive feature of Light Sculpting Inc. 's machine is the use of a light source that

solidifies entire layers at once at a shorter distance through a mask. The resolution achieved

by using masks is that of industrial printers - either 600 or 1200 dpi, compared with usual

SLA machines which only reach 67 dpi. Due to the short irradiation distance, less expensive

fluorescent or mercury bulbs can be used instead of laser[61].

2.3 Selective Laser Sintering (SLS)

This process was developed by Carl Deckard and Professor Joe Beaman at the University of

Texas, Austin [61].

In the SLS process, a C02 laser scans over a thin layer of powder to selectively fuse and

join with other particles and form a solid mass. After whole cross section is scanned, the

platform is lowered according to the specific layer thickness and a new layer of powder is

spread on top. The process is then repeated.

28

Table 2.2: Laser Sintering processes

Organisation Country Product Web address
DTM USA Sinterstation 2500 http: //www. dtm-corp. com
EOS Germany EOSINT S, EOSINT M, http: //www. eos-gmbh. de

EOSINT P

The companies that commercialise this process are DTM (USA) and EOS (Germany).

The main difference in their machines lies in the powder delivery mechanism DTM machines

use a roller levelling device, a powder tank located at one side of the powder bed and a

container at the opposite side to collect redundant material. EOS uses a container that faces

down toward the powder bed. EOS's design requires the feeding mechanism to travel only

once over the powder bed.

The materials for this process are varied, e. g. thermoplastic, sand, elastomers, ceramic

and metal powders[611.

2.4 Solid Ground Curing (SGC)

Cubital developed this Rapid Prototyping technique which is a variation on the stereolithog-

raphy process. in the SGC method, a whole layer of photopolymer is solidified by UV light

in a single run and cured completely. Unaffected resin is then vacuumed off. Wax support

is then poured in and a milling tool removes excess material subsequently and levels the top

surface for the next layer to be applied.

The machine has a high throughput and a relatively large envelope of up to 500 mm x

350 mm x 500 mm (SGC 5600)[14]. It is possible to create parts overnight and no extra

curing is required after they emerge. Also the use of wax means that no support structures

are needed for overhangs and complex geometry. The wax is removed by melting or rinsing.

29

Table 2.3: Laminated Manufacturing processes

Organisation Country Product Web address
Helysys Inc. USA LOM http: //www. helysis. com

KIRA Japan KSC 50N and PLT A4
Schoff Development Corp. USA SDC JP 5 System http: //www. sdcpro. com

2.5 Laminated Manufacturing

Laminated manufacturing is a rapid prototyping technique that works on the principle of

adding together several layers of material in sheet form. Table 2.3 lists a few processes in

this category.

The LOM (Laminated Object Manufacturing) process, commercialised by Helysis Inc.,

uses laminated material coated with thermal adhesive that is glued successively layer by

layer. Every layer is processed with a C02 laser that cuts along the solid object's edge and

cross-hatches the areas which don't belong to the solid. After all the layers have been added

in the previous method, the cross hatched areas are easily removed by hand, to uncover the

desired solid.

KIRA's paper lamination machines uses paper lamination technology to make 3-D models.

Unlike Helysis's process, KIRA's doesn't require a pre-coated adhesive on the paper. The

adhesive is applied as toner and glued thermally. The edges of the object are cut with a x-y

plotter knife instead of the C02 laser used by Helysis' process. KIRA's machines can handle

plain paper and toner (KSC-50N) and special paper too (PLT-A4).

Schroff Development Corporation commercialises what is possibly the cheapest RP system

so far. The SDC JP 5 System prints the cross sections of every layer of the model. These

cross sections are cut from laminated material. The sections are assembled by hand using

positioning marks.

30

m44 4LLI

Figure 2.3: SDC cutter [58]

2.6 3-D Printing

3-D Printing is a Rapid Prototyping technique developed at the Massachusetts Institute of

Technology by Prof. Emmanuel Sachs and Michael Cima[53]. 3-D Printing works on the

principle of selectively spraying a binder on a powder bed. After a layer has been processed

in this way, the powder bed is lowered, a new layer of material is added on top and the

process is repeated. The region sprayed with the binder becomes part of the resulting solid

object and the remaining powder is removed in a post processing step. The resulting part

is known as the green part (about 50% dense), which is subsequently fired and infiltrated

to make a dense metal part. Currently metal and ceramic parts are manufactured with this

method, but there is the potential to manufacture multi-material parts[61]. MIT has licensed

this technology to six companies to develop their own applications.

31

Table 2.4: Jetting equipment manufacturers

Organisation Country Product Web address
Sanders USA Modelmaker 11 http: //www. sanders-prototype. com

3D Systems USA Thermojet http: //www. 3dsystems. com
Objet Geometries Israel Objet Quadra http: //www. objet. co. il

2.7 Jetting

Jetting technology works on the principle of ink jet printers, the important difference being

that the material that comes out of the jet printing head(s) or nozzle(s) is melted wax or low

melting point material instead of ink. This process associated with a controlled support bed

enables the machine to build solid 3-D objects.

Table 2.4 lists three manufacturers of jetting machines. This technology is particularly

appropriate for office application, among other things, because of the simple and reliable

operation.

2.8 Fused Deposition Modelling (FDM)

Fused Deposition Modelling machines produce solid objects by dispensing successive layers of

material through a robot-arm operated nozzle. Once a layer has been deposited, the support

platform is lowered slightly a small distance determined by the thickness of the material

deposited.

It is possible in this technique to use several nozzles for several materials to be deposited.

One of the uses of several materials is the creation of support structures for a model. It is

also possible to create multi-material objects with the combination of extruded materials.

The only manufacturer of commercial equipment in this category is Stratasys[7]. Strata-

sys's FDM machines have two nozzles available, one nozzle extrudes the structure material

and the other extrudes the support material. The materials available for the process are

ABS', high impact grade ABS, investment casting wax and an elastomer.

'Acrvlonitrile Butadiene Styrene

32

Table 2-5: FDM equipment manufacturers

Organisation Country L Product Web address
Stratasys USA I FDM series http: //www. stratasys. com

2.9 Shape Deposition Manufacturing (SDM)

Shape Deposition manufacturing is a layered manufacturing process that iteratively combines

material removal and addition, as well as other intermediate processing operations performed
on each layer.

It can be thought of being similar to FDM in that material is added through computer

controlled nozzles that deliver material layer by layer. The distinctive steps in the SDM

process are the material removal and stress relief steps (Figure 2.4).

Finger et al. [19] describe the process and explain its use for the creation of objects with

embedded parts, and mention the technique in the production of wearable computer proto-

types. The Shape Deposition Manufacturing process (SDM) has always had the ability to

create multi-material objects. Further additions to this process, discussed by Fessler et al.
[18], allow metallic powders from different powder feeders to mix under a laser. The result is

an effective multiple graded material. Fessler's application was the creation of an advanced

moulding tool (figure 2.5), that combines aluminium and stainless steel with a copper interior

around the cooling channels. During the design, the computer representations used assumed

a homogeneous material and the gradation was controlled by manipulating the process plan

to deposit different materials[43]. This shows the lack of a suitable modelling method for

functionally graded material objects.

2.10 Rapid Tooling and Direct Metal Manufacturing

The major methods presented in this section are still evolving and being extended by newer

applications. SL, SLS, FDM and jetting are established techniques with proven practical

applications.

33

(planing)

e. g. CNC
machining

tr e% n+e-. ii ri nM

multi-materials

//

Deposi

Figure 2.4: The Shape Deposition Manufacturing (SDM) Process [19]

A limitation of RP techniques is that the materials that can be used, are restricted by

the nature of the machines. This has lead to focusing RP efforts to the creation of tools in

what is known as Rapid Tooling. Rapid Tooling enables pre-series manufacturing, used for

testing and decision making. Some of the rapid tooling techniques are:

e Direct AIM and 3D Keltool (31) Systems) used for injection moulding.

* RapidSteel and RapidTool (DTM) used to create metal tools for moulding of plastics.

e PROMetal (Extrude Hone Corp.) also used for the creation of injection moulding dies,

extrusion dies and metal components.

34

Stress Relief

Figure 2-5: Advanced ALCOA injection moulding tool[18]

Another group of techniques driven by the demand for shortened product cycles is direct

metal manufacturing, which does not require the use of intermediate binders, furnace densifi-

cation or secondary infiltration. For example the Laser Engineering Net Shaping (LEN STM)

process (Optomec Design Co.) is capable of producing metal parts directly. The system

operates by combining a powder feed system and a laser focusing unit together in a nozzle.
This process can directly process stainless steel, tool steel and titanium powders to produce

near net shape metal parts.

Laser Powder Fusion, a method originally developed by Krupp in Essen is also capable

of producing fully dense metal parts. The system works by scanning a high power C02 laser

on HIO tool steel powder. At De Montfort University a similar setup is being installed with

the objective of processing functionally graded materials.

An analYsis of the particle size and distribution for the tool steel powder used for Laser

Powder Fusion experiments can give a representative idea of the maximum resolution achiev-

able. The powder shows a bimodal particle size distribution (obtained by sieving) with peaks

at -150/iiii+125/Lm and -90pm+75pm.

2.11 Discussion

There have been significant advances in the field of Rapid Manufacturing since its beginnings

over one decade ago, when the first SLA machine appeared.

The original processes have evolved into a family of related methods: stereo lit hograp hy

35

(SL), selective laser sintering (SLS), fused deposition modelling (FDM), jetting and others.
Several machines are offered by the various manufacturers to cater for the various uses and

applications both in design bureaus and shop floors.

The limited number of available materials in RP processes is an important issue that led

to the development of Rapid Tooling and Direct Metal Manufacturing processes.

Su[61] points out that considering the newly developed high-speed CNC machining pro-

cesses, RP and RT processes loose out in speed, availability of materials and achievable

tolerance. The distinct and unbeatable advantage of RP processes lies in the realisation of

complex geometries with holes, overhangs and undercuts that are extremely difficult to make

using conventional machining. Additionally being able to create parts with localised compo-

sition control, i. e objects with multiple materials and functionally graded material objects

(FGM), with either discrete or continuous material variation is unique to additive processes.

These additive processes can also be seen as complementary, rather than competitive,

and by combining Rapid Manufacturing techniques are able to build objects with overhangs

and undercuts which are extremely difficult in conventional ways. An application in case

are the conformal cooling channels in moulding tools, practicable using RP techniques, but

whose complex geometry could not be created using standard machining (e. g. Fessler et al.

ALCOA advanced moulding tool[18]).

The resolutions available for RP processes vary according to the material and process.

Jetting technology is the most precise. Yet techniques that can be used for the creation

of multiple material objects, such as selective laser sintering or direct powder fusion don't

achieve high resolutions. Tolerances are often difficult to meet because of shrinkage or warp-

ing of parts subject to temperature gradients. An indication of available resolutions is given

in table 2.6. Shrinkage can be a problem in RP. It almost never occurs uniformly because

of the inhomogeneous distribution of temperature in the part. Although shrinkage can be

compensated by enlargement of the CAD model to meet the tolerance, this procedure needs

experience in material handling and it is prone to mistakes.

36

Process x, y resolution

Stereolithography
Light Sculpting
Selective laser sintering (SLS)
ThermoJet

0.23 mm (beam diameter)
0.0423 mm(600 dpi)

0.0846 mm (300 dpi)

z resolution

0.0254

0.05-Imm

Sanders Model Maker 11 0.07 mm 0.013 mm to 0.076 mm
ObJet 0.0423 mm (600 dpi) 0.021 mm(1200 dpi)

Table 2.6: Indication of resolution achievable by the various RP processes

37

Chapter 3

Functionally Graded Materials

(FGM)

Functionally graded materials (FGM) refer to materials exhibiting spatially inhomogeneous

structure and composition, resulting in corresponding changes in the properties of the ma-

terial. FGMs do not present a sharp interface between constituent materials and typically

present a graded change from one material to the other.

(a) (b) (c)

Figure 3.1: Illustrations of the evolution towards FGM materials[61]: (a) multi-material
coated type object with sharp interface ,

(b) homogeneous composites and (c) FGM

Miyanioto et al. [45] mention that the whole concept of FGMs was first introduced along

with composites in the seventies, but no actual investigation on how to design, fabricate and

38

evaluate graded structures took place until the 1980s. The name functionally graded material

originated in Japan in the late 1980s.

Graded materials are not something new. For example case-hardened steel is a graded

material developed long ago that is still in common use today. What is new is the realiza-
tion that FGMs can be tailored at the micro- structural level to match specific functional

requirements [54].

SFF processes can add on top of this 'micro- structural tailoring' the ability to produce

arbitrary geometry under computer control, directly from a computer model.

(a)

(c)

(b)

(d)

Figure 3.2: Continuous (a) and stepwise (b) graded structures. Local gradients at the joint
(c) and the surface (d). (Miyamoto et al. [45])

3.1 Applications

FGMs are a natural extension to the choice of materials available to a designer, when the

various requirements in an application cannot be fulfilled by the use of conventional materials

or composites. It is not surprising then that FGMs applications are those that require

incompatible functions, e. g. chemical inertness and toughness, hardness with toughness,

refractoriness and toughness.

Thermal barrier coatings (TBCs) are a very successful application of FGMs in the thermal

protection of components. The benefits of a graded material in minimising thermal stresses

39

and varying thermal flux are explained by Markworth and Saunders[39,40] who use the

simple Voigt rule to estimate the material properties of the mixture and assume a quadratic

material distribution. Their model shows that the heat flux varies with the shape of the

distribution of materials and that the highest stresses usually occur at the high temperature

surface for properties representative of ceramic and metal. There is the case. however, when

the stresses achieve their highest values underneath the high temperature surface for certain

quadratic material distributions.

I Chemical plant I

Heat exchanger
Heat pipe, Slurry pump

Reaction vessel

Nuclear energy

Nuclear reactor components
First wall of fusion reactor

Fuel pellet

I Engineering I

Cutting tool, Shaft, Roller
Engine components

Turbine blade

I optics I

optical fiber lens

Energy
Conversion

Thermoelectric generator
Thermoionic convertor
Fuel cell, Solar cell

Electronics

Graded band semiconductor
Substrate, Sensor

Aerospace

Rocket engine components
Space plane body

I Commodities I

Building material
Sport goods, Car body

Window glass

I Biomaterials I

Implant, Artificial skin
Drug delivery system

Figure 3.3: Applications and potential applications of FGMs (Miyamoto et al.)

3.1.1 Applications in space vehicles

Space vehicles experience high temperatures when flying at high speed because of the aero-

dynamic heating caused by the friction with the atmosphere. The leading edge of vehicles

flying at high speed, reaches radiant equilibrium temperatures above 2500' C For example

the space shuttle, flying at 8 km/s at an altitude of 120 km experiences 1500' C for a few

ininutes[45, p. 249].

40

In the case of horizontally launched space vehicles, like the German Sdnger program or
the Japanese Single Stage to Orbit (SSTO), it is not only during reentry that long exposure
to high temperatures happens. This occurs because these vehicles fly in the atmosphere at
hyper-sonic speeds for a longer time than vehicles launched vertically by rockets, and the

maximum heat is experienced during launch.

The thermal protection in the space shuttle is located in the nose, the leading edges and
the rudder and it is composed of non-metallic carbon/carbon composites (C/Q. Ceramic

tiles can be used for temperatures up to 1200' C.

A thermal barrier coating of C/C composite coated with functionally graded Si/C was
developed and tested. A cone model was subjected for one minute to a supersonic (Mach

3) gas flow at 1900'C containing an amount of oxygen approximately equal to a standard

atmosphere. The part composed of a C/C substrate, a functionally gradient interface and

an ungraded 100 pm thick Si/C protective layer, showed "no discernible change in structure

even after ten cycles" [45, p. 249]. The cone models without the intermediate graded interface

before the Si/C coating deteriorated after the first cycle.

Rocket engines are another application of thermal barrier coatings (TBCs). A C/C

combustion chamber with an Si/C FGM protective layer was developed for HOPE, a Japanese

space shuttle under development. A schematic of the engine is shown in figure 3.4. The walls

of carbon/carbon composite were coated by a graded layer of 30 Pm using chemical vapour

infiltration (CVI) and subsequently by a second layer of Si/C 100 Am thick using chemical

vapour deposition (CVD). The tests showed that the FGM layer was very resistant to de-

lamination and cracking. However the Si/C layer showed de-lamination and corrosion after

500 seconds of stationary or pulsed combustion.

Other tests were done on rocket combustors using CVD-Si/C FGMs. The propellant used

in the tests was nitrogen tetroxide (NTO) and monomethyl hydrazine (MMH) with firing

(-Ycles of 55 seconds with subsequent quenching by liquid nitrogen. After two test cycles no

damage to the combustors was observed[45, p. 250].

Rocket engines are a very hostile environment for the materials, due to the extremely

high heat flux. Thermal barrier coatings of FGMs originally developed for turbine engine

41

SiC layer (I 004m)
FGM layer (40

InjectQ-L-

NTO =>
MMH`jl>

CVD/CVI
ýA

C/C combu stion
chambe r

- : Ilb 1 (MM)

Figure 3.4: Schematic of the carbon/carbon (C/C) composite combustion chamber for the
engine of the reaction control system of the Japanese space shuttle, HOPE, with an FGM pro-
tective layer of silicon carbide/carbon (SiC/Q. The propellants are NTO (Nitrogen tetroxide:
N204) and MMH (monomethylhydrazine: N2H3CH3)- (Miyamoto et al. [45])

42

applications are used in rocket engines and protect the engine for much shorter work cycles
but at higher temperatures and more severe thermal transients. A typical coating is a thin

structure of 0.2 mrn thickness. Large combustion chambers present such a high heat flux,

that heat cannot be dissipated fast enough to prevent local hot spots and coating failure,

and for these applications high conductivity copper is used to extract heat away from the

chamber.

Thermal barrier coatings have also been used in liquid propelled rocket engines. Figure
3.5 shows potential locations for thermal barrier coatings (TBCs) in the high pressure hy-
drogen turbopump (left), main combustion chamber (centre), and the high pressure oxidiser
turbopump (right). TBCs have been used as liners in the spark igniters and pre-burners,
turbine housing liners, turbine blade shanks and vane shrouds.

On smaller regeneratively cooled thrust chambers for orbital manouvering systems, graded
FGM thermal barrier coatings have also been used. The base layer of the graded parts were

created by galvanoforming, depositing up to 25% Zr02 on a Ni metal chamber. This part is

subsequently coated to 100% Zr02 by plasma spraying. The test of 550 seconds of combustion

of combustion with this engine showed no de-lamination of the Zr02-

3.1.2 Application in stealth missiles

The stealthiness of missiles and modern weapons depends on specific materials capable of

absorbing emitted electro- magnetic energy to minimise reflected waves to enemy radars. Ce-

ramic matrix composites with tailored microwave properties, reinforced with ceramic woven
fabrics have been successful for these applications. The composite material offers greater

toughness than monolithic ceramics, which are brittle.

The conducting properties of these ceramic composites varies with the material of the

fibres, the matrix, the interfaces and the topology. Nasicon, with a structural formula

Nal+., Zr2SixP3-xOI2 (0 <x< 3) has an electrical conductivity that varies by four or-

ders of magnitude as a function of x. It is used to make ceramic composites with varying

absorption of electro- magnetic waves.

43

Housýng InW-Propellant Plate
Prebunner Spark Igniter
Urver

Spark Igniter Injector BaMe r

R

ýýFU ,
EL OXIDIZER

REBURNER., PRESURN

-Turbine
Housing

r: 611- MAIN COMBUSTION

HIGH PRESSURE CHAMBER

HYDROGEN
TURBOPUMP

lgrftr

Prebumer
Liner

HIGH PRESSURE
OMIZER TURBOPOMP

Figure 3.5: Cross sectional schematic of a rocket engine. [45]

44

3.1.3 Applications in aeroengines

Graded thermal barrier coatings (TBCs) have many applications in aeroengines of both

commercial and military aircraft and turbine engines in general. The principle in practice is

that the higher the operating temperature of the engine, the higher the efficiency obtained.
In order to increase the efficiency, gas inlet temperatures in a turboengine must be increased

and the cooling of the parts must be decreased. Thus TBCs are located mainly on hot gas

pathways, where thermal fatigue, temperatures and corrosion are critical. The thickness

of the coatings on these paths is usually thin (< 0.4 mm) to prevent spalling. but thicker

coatings can be used in other sections of the engine, e. g. seals.

Turbine and engine coatings are also subject to high corrosion and erosion from particles.
The two methods used to create thermal barrier coatings in aeroengines are electron

beam-physical vapour deposition (EB-PVD) and plasma spraying.

EB-PVD is used for coatings on the air-foils of blades and vanes. These are thin coatings

as shown in figure 3.8. The apparatus used to create the coatings is schematically shown in

figure 3.7. The bonding between the ceramic TBC and the metallic super-alloy in a turbine

blade core is done using a single layer bond coat (thin metallic bond coat) of either NiCrAlY,

NiCoCrAlY or Pt-Al. The use of either NiCrAlY or NiCoCrAlY presents two problems:

At the metallic interface, it is desirable to have a minimum diffusion of Cr and Al in

the super-alloy.

At the ceramic interface, it is desirable to have as high as possible concentration of Cr

and Al, to build up a dense, stable, protective alumina (A1203) scale.

To solve the problem at the metallic interface, it is possible to increase diffusion barrier

elements (platinum, palladium) or reduce the Cr, Al at the interface. At the ceramic in-

terface, the solution is to increase the oxide forming Cr and Al. The optimal concentration

distribution could be met with a graded structure with varying content of Al and Cr.

There are several good characteristics of TBC produced by EB-PVD.

* Smooth surfaces without further polishing

45

Metal

Superalloy

NiCrAlY,
NiCoCrAlY

or
PtAl Yttrium stabilized

/ Zirconia

Ceraýic thermal
barrier coating

(TE3C)

metallic ceramic
interface interface

Figure 3.6: Schematic of a thermal barrier coating (TBC) produced by electron beam-physical
vapour deposition. The bond coat is graded.

e Good erosion resistance

* No closure of cooling holes

9 Outstanding resistance to thermal shock, due to the columnar micro-structure

These characteristics lead to a considerably extended lifetime.

Coatings produced by plasma spraying are used in inside liners of combustors where the

fuel ignites with air, and on the platforms of turbine vanes and blades, where the hot gases

expand into the turbine section. Thicker coatings (2.5 mm) created by plasma spraying are

used for abradable blade outer air seals. Military aircraft aeroengines use TBCs in augmentor

(afterburner) components (tail cones, flame holders, heat shields and duct liners) which are

not present in commercial aircraft.

3.1.4 Application in diesel engines

Diesel engines have also benefited from the use of functionally graded thermal barrier coat-

ings. TBCs have been applied on piston crowns, valve faces and cylinder heads. Experimen-

tal TBCs have been tested on cylinder liners, exhaust valve systems and valve seats. The

advantages obtained by using TBCs are:

le increased power density,

46

EI Electron gun

Samples mping electron beam

Alumina

j

Zirconia
vapor cloud vapor cloud

t-

Crucible Crucible

A1203-ingot
t PYSZ-ingot

Figure 3.7: Schematic of an electron beam physical vapour deposition coater [45, p-195]

Figure 3.8: Micrograph of graded alumina-yttria stabilised zirconia (A1203-YSZ) coating.
The columnar rnicro-structure provides outstanding thermal shock resistance[45, p. 196]

47

Valve F;
Piston Q nder

id-

Figure 3.9: Schematic of a diesel engine showing location of TBCs[45, p-256]

e reduced heat loss,

* reduced fuel consumption,

e reduced exhaust emissions

It has been shown that 5% reduction in fuel consumption is obtained by insulating the

combustion chamber with 2 mm thick functionally graded TBCs[45, p. 255].

3.1.5 Applications in fuel burning systems

Miyanioto describes two applications in fuel burning systems: turbine blades of titanium

aluininide and porous silicone carbide ceramic liquid fuel evaporator tubes with tailored

48

Desired creep
strength

high
importance

Desired Gradation
ductility of alloying Cr

low higher
importance concentration

Foil

Root low
importance

high lower
importance concentration

Figure 3.10: Application of functional gradation of alloying Cr in a TiAl turbine blade.

porosity.

Turbine blades are usually made of heavy super-alloys and an interesting prospect is

the use of lighter materials, such as -y-titanium aluminide. This is a suitable material at
intermediate temperatures (600'C to 800'C). Unfortunately the creep strength and the duc-

tility are two opposite properties in this material. While the Oz phase with heat treatment

has good creep strength, its ductility is poor. The oz-, O two-phase field with heat treatment

presents acceptable creep strength and low but acceptable ductility. The desired gradient of

properties can be obtained by changing the concentration of alloying Cr in the TiAl. The

effect of Cr is a change in the equilibrium volume ratio of the a+0 phase during isothermal

annealing. If sufficient Cr is present, a fully lamellar micro-structure develops, with excellent

creep strength. Turbine blades of titanium aluminide with gradients in Cr content have been

produced by hot isostatic pressing[45, p. 257].

Fuel evaporator tubes are used to premix air and fuel before combustion. This pre-mixing

achieves optimised fuel efficiency at low emission levels of soot, hydrocarbon and nitrogen

oxide gases. The evaporation surface is the exterior surface of the tubes, while the interior of

the tube is where the combustion takes place. The porosity of the tube must vary from the

interior, where porosity is to be avoided, to the exterior, where porosity is advantageous for

the evaporation. Porous silicon carbide ceramic tubes can be made with a continuous graded

49

function. The gradation of the material can also reduce the probability of failure, from the

thermal stress generated by a high temperature gradient - 1500'C at the inner and 550'C at
the outer tube wall[45, p. 258].

3.1.6 Applications in integrated t hermo- ionic /t hermo- electric systems

A high efficiency hybrid energy conversion system (HYDECS), developed as part of the second

Japanese FGM program, shows several applications of functionally graded materials. The

system has a solar receiver system, a thermo-ionic energy conversion step, for temperatures

at around 2000K, a thermoelectric energy conversion unit at temperatures around 1100K

and a heat radiator at around 300K.

The solar receiver system is a C/C composite heated to temperatures around 1900K at its

bottom transmitting plane. The system applies functional gradation in both the fibre volume

fraction, which increases toward the central axis of the cavity, and the fibre orientation, which

aligns fibres in the direction of the desired heat flow. The orientation of the fibres is axial in

the central areas of the cavity and more radial toward the outer edges of the collector. The

use of functionally graded materials allows an increase in 100'K to 150'K at the transmitting

planar bottom surface[45, p. 260].

Thermo-ionic conversion operates on the principle of electrons discharged from a hot

emitter and collected at a lower temperature. The material used for the emitter is rhenium

(Re) and the material of the heat receiving plate is titanium carbide (TiC). To join these

two plates together, an advantageous gradation of TiC/Mo, MoW and WRe was developed.

The characteristics that make this gradient plate convenient are:

e Excellent heat conductivity,

* Reduction of the thermal stresses among the plates,

o Diffusive barrier action between the TiC (heat receiving) and the Re (emitting) plates.

The collector is made of sputtered niobium oxide (NbO,,) on a molybdenum (Mo) electrode.

The thermo-ionic conversion system built using these materials was operated at emittei-

50

Ti/C heat receiving plate

Graded coating
TiC/Mo W/Re

Re emitter

Figure 3.11: Schematic of a composite emitter electrode used in a thermo-ionic conversion
system.

collector temperatures of 1600'C-760'C, with cesium reservoir temperatures of 330'C and a

maximum output of 80 KW/M2.15'C[45, p. 261].

The thermoelectric conversion benefits from the use of a gradation of the dopant in

the base compound. The materials selected for the conversion units are silicon germanium

compound Si. 8Ge. 2 for the higher temperature range of 1300 K to 900 K, lead telluride (PbTe)

for the intermediate temperature range of 900 K to 500 K and bismuth telluride Bi2Te3 for

the lower temperature range of 500 K to 300 K. This selection is based in the thermoelectric

figure of merit for the various materials, which is a function of the temperature, the nature

of the carriers and their concentration. It has been estimated that the effective maximum

power (the figure of merit) for a n-type lead telluride conversion unit can be optimised by

grading the concentration of the dopant lead iodide (Pb12)- Similarly, "a conversion unit

made of an n-type SiGe FGM with gradation in the concentration of the phosphorus dopant

shows a marked improvement in output power characteristics" [45, p. 264].

3.1.7 Applications in tungsten carbide cutting tools

A typical cutting tool of tungsten carbide (WC) is made by sintering powders at high tem-

peratures with cobalt (Co) as binder. The hardness of the resulting tool depends on the

percentage of the binder and on the grain size of the WC. The control of the grain size has

been achieved by controlling the atmosphere and the rates of heating and cooling during

the liquid sintering phase of the process. Sumitomo Electric Industries Ltd. has developed

functionally graded cutting tools using these methods. The principles in practice are that

51

the hardness of the cutting tool decreases with increasing binder content. At constant binder

content, the hardness of the tool decreases with increasing grain size. The rupture strength
and fracture toughness of the tools decreases with increasing hardness, almost irrespective

of grain size or binder content.

By controlling the process parameters, heating and cooling rates, a WC/Co throw away
chip was developed that presents a varying concentration of Co from the surface to the
interior. The result is that the surface harder than the interior. The outer surface is al-
most completely ceramic without metal binder, which has high hardness and high surface

compressive stress. The WC/Co cutting tools are subsequently coated by chemical vapour
deposition with a layer of titanium nitride TiN, a layer of alumina (A1203) and a layer of
titanium carbonitride. "The high surface hardness and compressive stress plus the tough-

ness of the interior almost doubles the wear resistance, and increases the tool life as much as
fivefold compared with conventional cermet tools. " [45, p. 273]

These FGM multiply coated WC/Co throw away chips are also very resistant to flank

wear and allow for high machining speeds and high feed rates. Additionally the graded
layers permit better control of the thermal stresses which arise due to the unmatched thermal

expansion rates of the metal and the ceramic.

3.1.8 Applications in diamond cutting tools

Diamond cutting tools are used for high precision machining of soft components. To create

a tool, a diamond crystal is joined to a metallic alloy shank using a silver solder. One disad-

vantage of the silver solder is that its lack of stiffness causes vibration and loss of machining

accuracy. To solve this problem an extremely stiff FGM diamond tool was developed. The

tool is made up of three layers, one of diamond crystal, a graded diamond/SiC layer and

a SiC shank. The graded layers vary from 0 to 80% in volume of diamond powder with

polymer binder. Additionally the graded layer reduces the thermal stresses in the tool, and

it is estimated that the life of the tool can be extended by 30%. Unfortunately this tool is

still too expensive to manufacture to be competitive commercially.

52

3.1.9 Applications for Graded Index Materials

The applications of a continuous variation of the refractive index in a medium has been

explored. The media is collectively known as GRIN for graded index or gradient %ndex. There

are three main types of graded index (GRIN) lenses: axial, radial and spherical depending

on the distribution of the refractive index. Light in a radial GRIN lens with a quadratic

refractive index distribution

n(r) = no(I -I
Ar2)

2

follows a sinusoidal path in which every ray passes through one point at a distance L/2,

forming an inverted image and again at a distance L, forming an upright image, where

L and A is a positive distribution constant. Radial GRIN lenses of this kind have
%/A

been used as connectors and couplers for optical fibres and as imaging lens arrays in photo-

copiers[45, p. 290].

Glass fibres used in data communications currently use a single-mode step-index fibre,

which offers superior data-carrying performance. Other possible types of glass fibres are

multi-mode step-index fibre and multi-mode graded-index fibre. While in the multi-mode

step-index fibre there are time differences among the various modes (wavelengths), in a

graded-index fibre with an optimised profile all modes propagate at the same velocity. This

means that an impulse is not spread over time and a significant increase in the data-carrying

capacity can be achieved[45, p. 292].

Following a similar idea using polymers instead of glass, polymer optical fibre (POF) has

been considered for short-distance communication applications such as local area networks

(LANs). For the applications that will be required in the near future, the bandwidth offered

by step-index (SI) POF will not be enough, therefore graded-index POF (GI POF) have been

considered[45, p. 296].

3.1.10 Applications in graded band gap semiconductors

Semiconductor heterojunctions using graded materials have been considered for some elec-

tronic applications. In the case of bipolar transistors, the application of graded bandgap

53

structures offers unique energy band profiles with improved characteristics [45, p. 286].
A crystallographic function of a graded structure is the gradual introduction of misfit

dislocations in a thick buffer layer. This procedure is used to grow heterostructures using

epitaxial growth on substrates with non-matching lattice constant. This has been used in

orange-coloured light-emitting diodes[45, p. 284].

The use of a quasi-field effect for graded structures has been proposed. Based on this

effect, it should be possible to control the behaviour of carriers.
Another application mentioned is the removal of potential barriers for carriers at het-

erojunctions by gradual change in the composition of the alloy. This reduction at a very

small scale leads to quantum size effects that allow the design of a variety of wave functions

and densities of state[45, p. 286]. Examples of these applications are high electron mobility

transistors (HEMT) and quantum well lasers.

An application in semiconductor lasers (single quantum well lasers) is the improvement

of the separate confinement heterostructures (SCH) which have abrupt changes in the energy

band profiles. A graded index (GRIN) SCH laser has reduced photo- absorption and enhanced

carrier capture[45, p. 288].

3.1.11 Application in biornaterials

The Interface Bioactive Bone Cementation (IBBC) is a technique that combines the advan-

tages of two other techniques: bone cementation using polymethyl methacrylate (PMMA)

and bioactive binding using hydroxyapatite (HAp), a bioactive calcium phosphate ceramic.

This graded interface for bone orthopedic implants is in use in Japan since 1985.

The bone can be fixed to the prostheses in several ways. The cementless fixation shown

in figure 3.12 works by inserting the prostheses tightly into the bone, which is reamed to

the same shape of the insert. A live soft tissue layer grows in between the component and

the bone. Weight bearing and walking may cause pain in this configuration, and worse, the

micro-motion may loosen the binding.

An improvement on the cementless binding method is achieved by coating the metallic

titanium alloys with a bioactive ceramic layer (HAp layer) of 50 to 100 pm that provides

54

11 Bone

i Connective Tissue
Artificial Joint
Component

I Bone

HAp Coating

ementless . Fiý ýtioý] Smooth Surface f-HAp Coating

Figure 3.12: Diagram of the interface in a cementless bone-prostheses fixation[45)

physico chemical bonding. The bonding is improved more by making the surface of the metal

porous. The optimum pore size is 300 to 600 pm. Bone growth in the pore cavities provides
firmer mechanical bonding, but pain may still happen because of micro motion and small

spaces between the bone tissue and the beads.

The conventional technique of using PMMA bone cement to join the implant to the bone

is advantageous in that the prostheses can be completely fixed in the bone immediately after

surgery, since the cement hardens in minutes after its components are mixed and kneaded. A

problem of the method, though is that over the time soft living tissue can become interposed

between the bone and the bone cement (figure 3.13). The IBBC method improves on this by

applying one to three layers of HAp granules between the bone and the bone cement. The

inclusion of HAp granules in the region between the cement and the bone promotes bone

ingrowth and the HAp granules chemically bond to the bone.

55

11

114
1 Bone

Connective Tissue
Bone Cement

Artificial Joint
Component

ýý I
I Bone

1 HAp +Bone
HAp + Bone Cement

Bone Cement

Fixation with Bone Cement
,

Interface Bioactive Bone i
(PMMA)

II
Bone Cement Fixation

,
Cement Fixation

I

Figure 3.13: Diagram of the interface in a PMMA cement bone-prostheses fixation and an
IBBC fixation[45]

3.2 Creation methods

A classification proposed in [45] includes:

e Bulk processing. This includes processes that create FGMs from powder stacking,

powder sintering and hot pressing.

e Layer processing, which includes spray deposition, laser cladding, vapour deposition

and deposition by electro-transport.

e Pre-form processing, which refers to FGMs created through solid state and liquid

phase diffusion or processing a material to change its properties (e. g. porosity) in-

homogeneously by submitting it to thermal or electric fields.

* Melt processing, which refers to settling of grains in molten materials (e. g. W in a

W-Fe-Ni inelt[45, p. 213]) under plain gravity or using centrifugal forces.

e Joining, like low temperature solid-state joining, transient liquid phase joining or liquid

56

phase joining.

SFF processes are also presented in the exposition of methods to create FGMs[45, p.
220-232].

9 Laminated object manufacturing has been used to create FGMs by substituting the

standard paper in sheets with tape-cast, flat sheets consisting of fine ceramic or metal

particles dispersed in a polymer matrix.

Stereolithography was used to create ceramic filled polymer parts and it could poten-

tially be used to create varying composition parts by filling the liquid polymers with

two or more different materials.

Selective Laser Sintering (SLS) and 3-D Printing are also mentioned as possible FGM

creation processes.

Based on the SFF process of fused deposition modelling (FDM), the deposition of

ceramics and metals have been demonstrated successfully.

Another SFF process, Extrusion Freeform Fabrication, similar in nature to FDM is

reported to have been used to fabricate FGMs by depositing layers of thermo-plastics

using a computer controlled extrusion head. The creation of FGMs was possible by

using two extruders to dispense different materials in a small mixing head. Ceramic

and metal powders were used in the fabrication experiments.

V- Fussler et al. have also created FGMs through the Shape Deposition Manufacturing (SDM)

process. Their product was an advanced moulding tool with a graded transition from alu-

minium to stainless steel[18]. Jepson et al. [27] have created small FGM tungsten carbide and

cobalt dies through Multi Material Selective Laser Sintering (M2 SLS).

3.3 Summary

The concept of functionally graded materials has been present in science and engineering

from long ago. The difficulty in controlling the material composition in the volume and the

57

difficult procedures of creation have not stoped newer and more ingenious applications from

being developed.

It is usually in the very advanced applications where "normal" engineering techniques

still haven't proved sufficient that we find applications for FGMs. A large number of appli-

cations have been developed from space exploration programs, where elements are subject

to extreme temperatures and extreme thermal stresses. Thermal barrier coatings (TBCs) of

ceramic/metal are a typical case.

Some Rapid Prototyping and Manufacturing techniques can control the material compo-

sition and can be used for the creation of FGM parts. However these parts have still not been

modelled. In previous work[43] it was shown that realisation of parts is ahead of modelling.

This is still the case, although we'll see in chapter 5 and chapter 9 techniques that intend to

change this situation.

58

Chapter 4

Geometric modelling

The computer representation of surfaces, curves, objects and assemblies requires models to

capture infinite point information in finite storage. The completeness of the models used has

been driven by applications. The aim of the computer representations is ultimately to capture

enough information to facilitate and to automate the processing of design information. This

need has led over the years to the creation of complex product models of which the geometry

model is a subset.

The major approaches for geometric modelling representations are surface modelling and

solid modelling. Surface models are better suited for the representation of complex surfaces;

solid models provide a complete, unambiguous representations of solids. The beginnings of

curve and surface modelling with computational geometry applications can be attributed to

early works of P. Caste1jau at Citro6n and P. Bezier at Renault in the 1960's. Research

in solid modelling emerged in the 1970's from early exploratory efforts that sought shape

representations suitable for machine vision and for the automation of tasks performed by

designers and engineers[55].

Naturally, the use of geometric models is not restricted to CAD/CAM/CAE applications

and there are interdisciplinary cooperations and overlaps with physics, geo-science, computer

graphics and several other fields.

Curve and surface modelling techniques provide on mathematical methods to represent

geometry. They are used in major modelling programs and in many design applications some-

59

times far distanced from Computer Aided Geometric Design (CAGD). Even simple drawing

applications provide facilities for the user to draw simple curves and sometimes B6zier curves
or B-splines. This chapter summarises the main algorithms used in curve and surface mod-
elling with emphasis in Non Uniform Rational B-Splines (NURBS), which are the most
general method to represent curves and surfaces and encompass simpler forms and provide
representation for standard analytical shapes. References [16], [52] provide comprehensive

coverage of algorithms and methods in curve and surface modelling.
When surveying the literature on curve and surface modelling, one notices the notation

differences among authors, and different approaches to counting and designating functions.

In general the notation followed in this chapter corresponds to reference [4].

4.1 Curve modelling

Bezier curves

A Bezier curve is defined as a parametric curve in space with the following formulation:

m
p(t) =E biBi'(t) tE [0,1].

i=O

This formulation is based on the idea of a set of m+I control points bi and m+I Bernstein-

Bezier basis functions Bý'(t). The basis functions are defined as: z

rn i(i
-

Om-i

z

(M)t

The control points bi in equation 4.1 form a control polygon. There are several notable

properties of these curves that made them a suitable choice for design, one of the most

important being that the curves are invariant under affine transformations e. g. rotation or

scaling of the control points. Another very appealing property of the Bezier curves is that

the control points have a direct geometric meaning in relation to the curve being modelled,

namely that the first control point coincides with the beginning of the curve and that the

last control point coincides with the end, while the second and next to last control points

60

bi

bo
m"mmwo, b

*%

?

b3

b2

Figure 4.1: A cubic Bezier curve. The control points have immediate geometric meaning.

Element Symbol
Bezier curve
Basis function
Degree of the curve
Control points
No of control points

p(t) Bý'(t)
m
bi i=0,... ,
m+1

Table 4.1: Summary of the notation for Bezier curves

show the direction of tangent of the curve at the beginning and end of the curve.

These geometric properties made it a choice for many systems to implement Bezier curves

as a standard method of drawing 2-D curves, notably in the Windows graphics device interface

(GDI)[13].

4.1.2 B-Spline curves

The parametric formulation of a B-Spline curve in three dimensions is:

n
(u) di Ni, k (U) UC [Uk

i Un+ll (4.2)

The curve is defined for the parameter u; there are n control points that multiply n basis

functions NI, k, N2, k, ---,
Nn, k of order A: defined over a knot set f ul. The number of knots

61

in the knot set depends on the order of the B-Spline and the number of control points, i. e.
f Ul : --- ýUl) U2 i ... 7Un+kl-

The basis functions are defined through a recursive formula:

Nj, j =I
Ui<U<Ui+l

0 otherwise

Ni, k (U) ýU-
Ui

- Ni k-I(U) +
Ui+k -U Ni+l, k-I(U)i (4.3)

Ui+k-1 - Ui ' Ui+k - Ui+l

B-Splines and Bezier curves can both represent the same curves, and algorithms exist

that can transform one representation to the other. A Bezier curve is a B-Spline defined over

a special knot set of the form:

(0,0'... 'o, 17 11 1111 1)
k times k times

where k is the order of the curve. This knot set is obtained by inserting extra knots where

necessary and splitting and rescaling the curve to the standard Bezier parameter value range

uE [0,1]. The knot insertion algorithm is given in section 4.1.4.

It is worth noting that the shape of a B-spline does depend on the knot set chosen. Piegl

and Tiller[52] restrict their definition of a B-spline by stating that the knot set must be of

the form

a,... a, Uk+li--- Un, b,... bl,

kk

which results in the endpoint interpolation property:

P(a) = d, and P(b) = dn (4.4)

This restriction is not adopted by all authors, allowing forms such as the uniform B-splines

which are defined over an uniformly spaced knot set. Property 4.4 does not apply for a

uniform knot set.

62

Element Symbol
B-Spline curve
Basis function
Order of the curve
Control points
No of control points
Knots
No of knots

P(U) Ni, k (U)
k
di i=l n
n
Ui i- I)... ,n
n+k

Table 4.2: Summary of the notation for B-spline curves

The multiplicity of a knot in the knot set is linked to the number of continuity conditions

at that knot by the relation:

number of continuity conditions at breakpoint ý+ number of knots at ý=k, (4.5)

where k is the order of the B-spline. For a B-spline of order k, it is therefore only useful to

have at most multiplicity k for any particular knot.

4.1.3 Rational Bezier and B-Spline curves

One of the limitations of B-Splines and Bezier curves is that it is not possible to represent

conic sections and in their standard non-rational version, these curves can only approximate

these forms. Rational curves overcome this limitation and offer one complete mathematical
form for the precise representation of the standard analytical shapes. Rational forms have

added flexibility in the form of weights which can be used to modify the curve.

A rational B-Spline curve of order k is defined as

widiNi, k(U)
c(u) i=l (4.6)

n
Wi Ni, k (U)

where the basis functions Ni, k(u) are the usual B-Spline basis functions of order k defined

f U, n+k on a knot set li=l ,

63

Similarly, a rational Bezier curve of degree m is defined as

m
Bim(t)wib

i=O c (t) -m0<t<1 (4.7)
BM(t)wi

The wi in these expressions are known as weights of the rational B-Spline or rational B6zier

curves.

It is convenient to represent rational B-splines as a projection of 4-D entities in the so

called homogeneous coordinates. We represent a point in 3-D (E 3) in terms of points in 4D

(E 4)7 where the point ph = (hx, hy, hz, h) in E 4, when normalised as (x, y, z, 1), represents

the point P (x, y, z) in E3. The normalisation can be interpreted as a perspective map with

its centre at the origin of E4 on the hyper-plane h=I (h being the fourth coordinate

component, called the homogeneous coordinate)

defined exactly by

If we let H denote this map, then it is

(hx, ýy, Lz) h: ý 0 hhh

Hf (hx, hy, hz, h) point at infinity on the line from the origin

through the point(x, y, z) h=0

Figure 4.2 shows an analogy for the representation of 2-D points using 3-D homogeneous

space.

In terms of these 4-D points we define a polynomial (i. e non-rational) B-spline curve of

order k by the formula

c h(U) ph Ni ik
(U)

-

-spline basis functions, and the P4 are the Here the Ni, k(u) are the normal kth order BI

4D control points in homogeneous space
Wk

associated knot vector (ui j=1

As with conventional B-splines there is also an

The curve Ch (U) forms a set of points in 4D homogeneous space. We obtain the 3D rational

form of the curve, c(u), by projecting c h(U) into 3-D. As stated above this is achieved bý

64

w

x

Figure 4.2: Projection from homogeneous space to curve space

dividing the first three coordinates of each 4-D point by its homogeneous coordinate:

ph = (hx, hy, hz, h) -+ (x, y, z, 1).

For our rational B-spline curve c'(u) the homogeneous coordinate is

hi Ni, k

and so the rational B-spline curve c(u) takes on the form

c (U) =

hiPiNi, k(U)
(4.8)

h, Ni, k(U)

Equation 4.8 represents a piecewise rational function at the distinct knots in the sequence

65

Element Symbol
Rational B-Spline curve
Basis function
Order of the curve
Control points
No of control points
Weights
No of weights
Knots
No of knots
Rational B-spline in
homogeneous coordinates
Control points in
homogeneous coordinates

C(U)
Ni, k (U)

k
di i=l,..., n
n
Wi

n
ui 1,... n+k
n+k

C, (U)
P4 or dT

Iz

Table 4.3: Summary of the notation for rational B-spline curves

(ui)'+'. The hi are substituted by weights which are usually represented by wi and using di i=k

for the B-spline control points in place of the Pi, we obtain our original definition, equation

4.6.

By using homogeneous coordinates, it is possible to use non-rational algorithms developed

for non-rational Bezier and B-spline curves in the rational case as explained in the next

section.

4.1.4 NURB Algorithms

The algorithms considered in this section are:

1. Degree elevation, which is used when we want to to represent a curve of a given degree

as one of a higher degree. This procedure increases flexibility of a control polygon by

providing more vertices but leaving the curve shape unchanged.

2. The de Caste1jau algorithm, which is a special case of the B-spline recursion formula

(de Boor algorithm) when applied to Bezier curves.

31 . Subdivision, which allows to split a curve into parts that conserve the shape of the

curve.

66

4. Evaluation algorithm.

5. Knot insertion algorithm.

6. Derivative evaluation.

We can apply the algorithms developed for non-rational B-spline curves and surfaces
to the rational forms simply by applying the non-rational algorithms to 4D version of the

entity in homogeneous space and then dividing through. In the curve case we start with 4D

points (wixi wJ, apply the algorithm to these points and obtain another set of 4D points
(yi vJ. From these we obtain the required 3D points as yi/vi. The rational weights of
these 3D points are the numbers vi. Effectively, we apply the algorithm to the non-rational
4D representation of the curve or surface and then project the result onto the plane w-I in

4D, by dividing through by the fourth coordinate. For positive weights it is numerically more

stable to divide through by the 4th coordinate at each stage of the calculation so insuring

that each intermediate control Point lies in the convex hull of the original polygon.

Degree elevation

It is often useful to be able to represent a curve of a given degree as one of a higher degree. It

increases the flexibility of a control polygon by providing more vertices but leaving the curve

shape unchanged. There are also important uses for degree elevation in surface construction.

For example, we may wish to construct a surface interpolating to a series of cross section

Bezier curves. This often leads to the requirement that all the curves be of the same degree.

In this case degree elevation can be used to elevate all input curves to the one of highest

degree.

For the non-rational case, if we are given a Bezier curve of degree m with control points

(bj)T
0 and we wish to represent it as a Bezier curve of degree m+I with vertices (0))"'

3= 3 j=0

say, then we require the following equation to hold:

rn M+l
(1) (m + 1)

ti (I
- t)n+ 1 1>1 M)tý(1-t)m-j= E bj

j=o

(I

j=o I

67

bo = b(l) 0

1, b3 --7-- b4-1

bi

Figure 4.3: Degree elevation process for a Bezier curve

If we multiply the left hand side by (t + (1 - t)) =I we get

m
bj (ti (I - t)m+'-j + tj+' (I - t)m-i

rn+l
b(l) m+ tio - t)m+, -i

j=o j=o

Now we compare coefficients of V (I - t)'+'-j on both sides to obtain

b (1)
-j -bj-, + (1 -3)bj

,j=0,... ,m+1. i m+I m+1
(4.9)

Hence the new control points bi (1) are obtained from the old ones by plecewise linear

interpolation at the parameter values j/(m + 1) (fig. 4.3). The new control polygon lies

within the convex hull of the old one, i. e it is closer to the curve.

The process of degree elevation may be repeated, so allowing us to elevate the degree of a

B6zier curve to any higher degree. After r degree elevations the control polygon has vertices

68

b (r),... b (r) r, each b being given explicitly by the formula 0 M+

m

bj
(M)

j (m+r)
j=o i

(where (j'ý) =0 ifi-j <Oori-j >r).

Although repeated degree elevation will ensure that the control polygon eventually ap-

proaches the curve very closely (arbitrarily closely in the limit), the convergence is very slow

(in contrast to subdivision convergence). Hence this property of degree elevation has no real

practical applications.

Take the rational Bezier curve of degree m:

c(t) =

m
E wibiBim(t)
i=O

m
E wiBi'(t)
i=O

We apply the degree elevation algorithm to the 4D control points (wibi wi) and then

divide through. This gives us 3D control points

bl - z

with ai = i/(m + 1).

wi-laibi-i + wi(I - ai)bi
wi-lai + wi(I - cei)

For a B-spline curve of the form

li=Ol ... Im+11

C' (U) Ni, k (U) Piw k

ix. a kth order (degree p=k+ 1) rational B-spline on the knot vector U, it is possible to

elevate its degree to p+I to the curve

w Ck+I (U) ýC wk (U) Ni, k+l(U)Qwi,

over the knot vector U with control points Qj'- PiegI and Tiller[52] present an algorithm for

69

the case when the knot set has the form

a, a,... a, Uk+l i ... iUnjb,... bl,
kk

which can be obtained by applying the knot insertion algorithm described below. The steps

are

1. Find the knot set (J given by (U,)n+k+l+r i=l , where r is the number of segments making

up c and the knots corresponding to the segment boundaries have their multiplicity
increased by one.

2. Extract the ith Bezier segment from the curve by knot insertion;

I degree elevate the ith Bezier segment;

4. remove unnecessary knots separating the (i - 1)th and ith segments.

de Caste1jau algorithm

The de Casteljau recursion can be surnmarised with the formula:

b'r(t) i = (I - t)br-1 + tbr-1 i i+1 0<r<m (4.10)

where m is the degree of the Bezier curve and b9 are z the original control points bi. An

important property of the recursion is that

b(t) = b(t),

which makes the recursion a suitable method for the evaluation of Bezier curves. This is

graphically represented for a cubic B6zier in figure 4.4.

A rational Bezier curve may be evaluated by applying the de Caste1jau algorithm to the

4D control polygon (vilbjv7j) and then dividing through, that is we apply the algorithm to

70

b3

Figure 4.4: Graphical representation of the de Caste1jau recursion

the Bezier curve
m

E wi bi Bi' (t)
i=O

and to
m

wiR'(t)
i=O

and simply divide the two results to get the desired point.
Although this is simple and usually effective, as pointed out above, it is not guaranteed

to be numerically stable. If some of the weights wi are large, the intermediate control points

wi'bi' from the numerator calculation are no longer in the convex hull of the original control 171
polygon and this may result in a loss of accuracy.

A more expensive but more stable method is to process the 4D non-rational version of

the curve:
m

1bh :i Bim (t)
i=O

with control polygon bh= (wi bi W,)T
, and project every intermediate de Caste1jau point i

(wi'bi' wi)' onto the plane w-1. This gives us the rational de Caste1jau algorithm: zI

rw
Wi r-1

M
bi (i - t) i b'j-l +t bi+l

Wý WT II

71

1-11ý

with

w ir 'r- IM+ twr-1 M= (I - Owi i+l

Note that for positive weights, the br are all in the convex hull of the original control 2
polygon bi, (i. e (I - t)(wi'-'/wi') + t(wi';, '/wir) - 1) so assuring numerical stability. z +1 1

Subdivision

Although a Bezier curve is usually defined over [0,1], it can also be defined over any interval

[0, c]. The de Caste1jau algorithm supplies both the control points for the part of the curve

over [0, c] and the control points for the part of the curve over [c, 1]. For the cubic case, if

we display the triangular array of points obtained using the de Caste1jau recursion

bo 0
bl 0

bo b2 0

b

bo 2 b2

bl 2

bo 3

'-'O'

the control points for the Bezier curve over [0, c] are the points on the leading diagonal,

WO i= 0) and those for the interval [c, 1] are the points on the trailing diagonal,

brn-2 i=0, m. The two resulting Bezier segments are

p[O, c] b'B'(t), tc 0Z
i=O

m

bi -'Bi Z,
(t)

,
i=O

As in the non-rational case we may use the de Caste1jau algorithm to subdivide a rational

Bezier curve. We use the de Casteljau algorithm to subdivide the 4D version of the curve.

72

The intermediate 4D points (wW Wý)T 122 are then projected onto the plane w=1 by dividing

through by the fourth coordinate. This provides us with the control polygons for the left and

right hand segments of the rational curve. The control points and weights corresponding to

the curve over [0, t] are given by

b left b', w
lef t=

Wi over [0, t] i0i0
b iright = bmi-'(t), wi'-ight = Wim-, over

In the cubic case we generate the following triangular arrays:

bo (t) 0
bl (t) 0

bo (t) b2 (t) 0

bl (t) b3 (t) 10

bo (t) b2 (t) 21

bl (t) 2

bo (t) 3

where
br (t) = (I - t) br-1 +t br-1

Wr Wr i+l
ii

and

woo (t)
Wo, (t)

wli wo
ww3 0

w2 w" (t) 1 2

W2'(t)

W30 (t)

73

where
Wl t)WI-I (t) + tWr-1 ii i+l

Rational B-spline evaluation

This algorithm follows along much the same lines as the de Casteljau one. For the non-

rational B-spline interpolation algorithm with

c (U) di Ni, k

on the knot set (U,)n+k, we find i such that ui :5u< ui+l and then compute i=l

dj' (u) = cejdj- 1 (u) + (i - aj) dj- (u)

where

ar
U- Ui

I Ui+k-r - Ui'

obtaining to the following triangular table

dio-k+l (U)

d jo -k+2(u)
dil z-k+2(U)

di = di,

d jo Z-l(u)
dil (u) d iý

-12 (u)
1- i-i

d9 (u) d' (u)
... d k-2 d k-1

Ziii
(u)

(so that the indices arej =i -k+r+ I,... i; r= 0'... ,k- 1). The required point is

then

c(u) = dk-l(U). i

If the evaluation point is an already existin knot value with multiplicity .,; say, we can 9

74

use a reduced table. The triangular array now takes on the reduced form

dio-, (U)

d jo i-q+l
(U)

d9 (u)
z

d_qi(u)

&
z dq

2

(that is for j-i-q+i; r=0, q) with q=k-1-s. The required result is

then

c(u) = dq(u).
z

Returning to the rational case, we can either apply the above algorithm to the numerator

and denominator of the B-spline curve:

C(U)

widiNi, k(U)

Wi Ni, k (U)

and divide through (although again this can lead to instabilities), or, we apply the algorithm

to the non-rational B-spline curve in homogeneous coordinates

n
ch (U) - J: d h Ni, k (U)

i
i=l

with the 4D control points &= (widi W,)T
, and project the intermediate points (wý& Wr)T

IIzi

onto the plane w-1:

rr wj' -I r-I + cer)
w j1r -" r-I

j ozj
Wý

dj j wr
dj-,)

3i

with

w'(t) = a'w'-'(t) + iii

75

Knot insertion

Knot insertion carries through to the rational case in the same way as the above algorithms.
To insert the knot ft coinciding with the knot uj+1 which has multiplicity s say (s =0 if it
doesn't already appear) , we apply one step of the above B-spline recursion algorithm

djl = ajldj + (I - ozjl)dj-,,

where

Uj)/(Ui+k-I - Ui)

k+s+1

i-k+s+2<j<i,

jýi+1

so that the original B-spline control points (dj)'-' DI j=i-k+2+, are replaced by the points (d' j=i-k+2+s*

For the rational algorithm we apply this method and calculate

dl j !
-dj + (I - cel)wj-ldj-,, Wý w

with

wjl (t) = cej, wj (t) + (I - ajl) wj -1
(t).

3Y
This gives replacement control points (& j=i-k+2+, and replacement weights (wý j=i-k+2+,

Subdivision of rational B-spline curves follows along similar lines. Using the above algo-

rithm we simply insert the knot corresponding to the splitting point until it has multiplicity

k-1. The resulting control points and associated weights then split into two groups, one for

the left hand rational B-spline curve and the other for the right hand part.

76

Derivative evaluation

We can evaluate the derivatives of a rational Bezier curve as follows. Write

m

wibiBim(t)
C(t) = z=O pM

m E wi Bim (t) w(t)
i=O

where
mm

p 1: wi bi Bi' (t) w (t) E wi Bi'
i=O i=O

Then p(t) - w(t)c(t) and

P, (t) = W/ (t) c (t) +w (t) C, (t),

so

cI (t) =I [p fM- WIMCM]. w (t)
For higher derivatives, we differentiate p(t) r times to get

r
pw (j) c (r -j)

j=o

We then solve for c(') (t):

(j (j) C (r -j)
1

[P(r) r
j=l

This is a recursive formula for the rth derivative of a rational Bezier curve. Note that it only

involves taking derivatives of polynomial curves. At the endpoints of the curve we have

Cl(0) =m [wlbl - wobo - (wi - wo)bo].
WO

MWJ

-(bi - bo).
WO

17

Similarly, we obtain
MWM-l (bm - bm-1).

wm

As with non-rational forms the Bezier curve is tangent to the first and last legs of the

control polygon.

Derivatives of a rational B-spline curve can (as in the non-rational case) be conveniently

be computed using the above knot insertion algorithm. If we wish to evaluate the derivative

at a point fi, we simply insert this knot until it has multiplicity k-1. The curve control points

and weights then behave like the rational Bezier form around fi, and hence the derivatives

can be computed by using the recursion formula for the derivative of a rational Bezier curve.

Note that for derivative evaluation one cannot just apply the corresponding non-rational

B-spline algorithm to the numerator and denominator and divide. The quotient rule must

be used. A rational B-spline curve has a rational Bezier representation. As in the non-

rational case we can obtain the Bezier points and weights by inserting all knots until they

have multiplicity k-1.

4.2 Surface Modelling

4.2.1 Tensor Product Bezier Surfaces

The idea of tensor product surfaces is to mix the creation of curves along perpendicular axes,

as done in the creation of curves by sweeping a deforming curve (figure 4-5) along guides

which are themselves curves.

The mathematical representation of this concept is as follows[16]: let the initial curve be

a Bezier curve of degree m:
M

b' (u) 1: bi Bim (u)
i=O

Making each bi move over a Bezier curve of degree n:

n
bl. = bi. (v) E bij Bn

j=o

78

Figure 4.5: Creation of a surface by sweeping a deforming curve. This principle is the basis
for the tensor product surface analogy

By combining these equations we obtain a Bezier surface patch brn, n

mn
bm, n (u, V) bijBi n (V). M(u)Bj

i=o j=o

The characteristic properties of a tensor product surface are:

*a double sum,

a matrix of points (bi, j)i"=' .0
known as the control net for the surface and, , j=

a basis set (B! n(s)Bjn(t))m, n
z i, j=o

The general surface can be represented with a rational B-Spline surface or a rational B6zier

surface. As in the case of curves, the two representations are analogous and algorithms have

been developed to transform a representation from one form to the other.

4.2.2 B-Spline surfaces

Just as Bezier tensor product surfaces are generalisations of the curve formulation so B-spline

, surfaces are tensor product generalisations of B-spline curves. A B-spline surface of oi-der k

79

by 1 takes the form
pq

x (u, v) =E1: dij Ni, k (u) Nj, l (v),
i=l j=l

p+k where associated with x is a knot set in u, (ui)i=, and a knot set in v, (vj)jq The array of

points (dij)P'q 1 form the control net for the B-spline surface analogous to the B'zier case. z7j= e
The surface itself is defined over the interval [Uk

, Up+11 * [V1
, Vq+l] , the other knots in u and v

being the extra ones added to form a basis set for the u and v directions. The basis functions

in the surface case consist of the products of the curve basis functions:

(Ni,
k(U)Nj, l(V)

p, q)

i, j=l

The surface x consists of as many patches in the u direction as there are distinct internal

knots in the knot sequence (ui)'+', and for v the sequence (Vj)q+l
. The product of these i=k j=1

two numbers gives us the number of patches making up x. Because the individual segments

in u and v are defined locally by k and I basis functions respectively, altering a particular

control point of the net will effect the surface only locally (fig. 6.3), changing at most k1

patches making up the B-spline surface. In particular, altering a control point dij of the

surface affects x only in the range [Ui, Ui+k) * [Vj, Vj+l), the range over which the associated

basis function Nj, k(u)Nj, j(v) is defined.

4.2.3 Rational B-Spline surfaces

Rational B-spline and Bezier surfaces are direct generalisations of the rational curves. We

define a B-spline surface of order k by I in 4D homogeneous space as

pq

x4 (u, v) d" Ni, k (U) Nj, l (V)) ij
i=l j=l

where dh is the 4D point ij

d-T. wij &-wij d' wij wij (ly 13
ij

80

Dividing through by the homogeneous coordinate

pq
EEWijNi,

k(U)Nj, I(V),
i=l j=l

we obtain the rational B-spline surface x(u, v):

x (u, V)

pq
E L'dijWijNi, k(U)Nj, I(V)
i=l j=l

pq
LL WijNi, k(U)Nj, l(V)
i=l j=l

As with non-rational B-spline surfaces there is an associated knot vector in u, (Ui)p+k
i=I,

and in vI (Vj)q+l
. The points dij j=1 form the rational control net for the surface and can be

interpreted as the projection of the 4D non-rational control net formed from the d4.. By
I]

writing x(u, v) as
q(

WijNi, k(U)Nj, l(V) d Epq
ij

j=l 1: ý WijNi, k(U)Nj, l(V))
i=l j=l

we see that the rational B-spline basis functions are given by

Ri WijNi, k(U)Nj, l(V)
, k; j, l (Ui V) =: pq

EE WrsNr, k(U)Ns, l(V)
r=l S=l

For simplicity we write this as Rij (u, v). In order for these basis functions to be non-negative

we require the following conditions on the weights wij:

W11 , Wpl) Wlq) Wpq >0, wij >0 otherwise.

Note that R is not a product function, i. e. it is not the product of the rational curve

basis functions, as was the case for non-rational B-spline surfaces. However, they are similar

in shape to the standard non-rational basis functions, Ni, k(u)Nj,, (v), and have analogous

properties:

81

ob R�j (u, v) > 0.

pq
EE Rij (u, v)
i=l j=l

Local support: Rij (u, v) =0 if (u, v) is outside the rectangle [Ui
I Ui+k) * [Vj, Vj+I) -

Furthermore, in any given rectangle [ui, uj+j) * [vj, vj+,) at most kI of the basis functions

are non-zero.

4P The Rij (u, v) functions are generalisations of the Ni, k (u)Nj, l (v) product B-spline sur-

face basis functions. If we set all the weights to I we recover the non-rational form.

Because of the similarity of the basis functions to the non-rational ones, a rational B-

spline surface enjoys all the important properties of the non-rational form, e. g convex-hull,

local modification etc.

4.2.4 Rational Bezier patches

The rational Bezier surface patch of degree m by n takes on the form

(8,

mn
bijwijBim(s)Bjn

2M
i=o j=o

(8 1 t) c [0, l] * [0, l] - mn
wjjBýn(s)Bjn(t) z

i=o j=o

The bij form the rational control net, the projection of the 4-D control net formed from the

b4.. The basis functions are given by
Ij

wij Bim (s) Bjn (t)

mn
WpqBpm(s)Bn(t) q

p=O q=O

A rational B6zier surface is a special case of a rational B-spline surface on the knot set

(0,...
, 0,1,... , 1) in u, where 0 and I occur with multiplicity m+1, and (0,.

--, 0,1, ---- 1)

in v, where the multiplicity is n+1. Setting all the weights to be equal recovers the non-

rational Bezier surface patch. A composite rational Bezier surface can be considered as a

82

rational B-spline surface with the internal knots in u occurring with multiplicity m and those

in v with multiplicity n.

4.2.5 Surface algorithms

The surface algorithms, e. g degree elevation, knot insertion, subdivision, etc. follow the same

pattern as the non-rational ones. We apply the non-rational tensor product algorithms to the

4-D version of the surface, consisting of control points
(wijdij

wij
)- Since the non-rational

tensor product extensions amount to using just the curve algorithms we can utilise the stable

form of the rational curve algorithms, where appropriate, by projecting each intermediate

point of the calculation onto the plane w=1.

4.3 The IGES Standard

The Initial Graphics Exchange Specification, IGES is an ANSI standard for the transfer of

graphics and geometry data. IGES was developed in the early 1980s and it is the most widely

used format for data exchange among CAD/CAM/CAE systems.

IGES includes in the definition of the standard representations for curves, surfaces, three

dimensional solids and finite element content. An example stripped IGES file is in figure 4.6.

4.3.1 IGES file structure

The IGES format was defined originally to contain only ASCII, human readable characters

in a 80 character per record format. The binary form of the standard was defined later, as

the file sizes increased. However, most implementations use the ASCII form.

An IGES file consists of five sections (figure 4.7):

1. Start section. This section is a region of readable text at the beginning of the file which

is used for documentation.

2. Global section, which contains parameters such as file name, author, date of creation,

precision of figures, etc.

83

S
1H,, lH;, 24HC: \TEMP\rmer7OAF0004. prt, 25HC: \ronaldo_iges-block. igs, 24HUnigG

raphics Version 16.0,20HUG/IGES Version 16.0,32,38,16,38,16,24HC: \TEMP\rG

mer70AF0004. prt, 1.0,1,4HINCH, 3,0.0,13HOO0524.175348,3.937E-007,10000.0,, G

, 11,0,13HOO0524.175300; G

108 11100 10100D
108 2020 OD
108 31100 10100D
108 2020 OD

1
1
2
3
4

2
3
4

128 210 1100 OD 189
128 2330 OD 190

108,1.0,0.0,0.0,20.1820866141732,0,20.1820866141732,50.0,50.0, lp 1
0.0,0,0; lp 2

128,1,1,1,1,0,0,1,0,0, -2.54, -2.54,0.0,0.0, -1.27ý-1.27,1.27,1.27,189P 210

1.0,1.0,1.0,1.0,30.0,0.0,100.0,30.0,0.0,0.0,30.0,100.0,100.0,189P 211

30.0,100.0,0.0, -2.54,0.0, -1.27,1.27,0,0; 189P 212

s 1G 4D 19op 212 T1

Figure 4.6: Example of an IGES file

84

I
START

I
GLOBAL (

DIRECTORY ENTRY (D)

PARAMETER DATA (P)

I
TERMINAT

Figure 4.7: Structure of an IGES file

3. Directory Entry (DE) section. This section contains an index to the parameter section,

as a list of entities, along with various descriptive attributes (e. g. colour, line type).

An entry in the DE section consists of two lines that hold 20 fields of eight characters

each.

4. Parameter Data (PD) section. This section gives entity definitions, e. g.. control points,

knot data, endpoints of a line, etc.

5. Termination section. This section is one record in length. It contains a total number

of records in each of the other sections.

The binary format adds a sixth section which contains binary formatted data.

All data is described in terms of entities. There are entities available to describe curves,

surfaces, solids and so on. Table 4.4 shows some of the available entities in the standard.

Some entity types are further subdivided by form numbers, resulting in a larger number of

different entities.

4.3.2 Example specification: a NURBS curve and a NURBS surface

Entities 126 and 128 of the IGES specification describe a NURBS curve and a NURBS surface

respectively.

A NURBS curve is specified in IGES by:

85

Entity Description
Curves

116 Point
110 Line
100 Circular arc
104 Conic arc
112 Parametric spline curve
126 Rational B-Spline curve
102 Composite curve

Surfaces
118 Ruled surface
120 Surface of revolution
122 Tabulated cylinder
108 Plane
114 Parametric spline surface
128 Rational B-Spline surface

Constructive Solid Geometry
150 Block
158 Sphere
160 Torus
168 Ellipsoid
180 Boolean tree
184 Solid assembly

B-Rep Solid
186 Manifold solid B-Rep object
502 Vertex
504 Edge
508 loop
510 Face
514 Shell

Other entities
124 'Itansformation matrix
106 Copious data
134 Node - FEA geometric point
136 Element - FEA element topology
138 Nodal displacement / rotation
148 Load/constraint - FEA non-geometric content

Table 4.4: Some entities in the IGES specification

86

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Param. Struct. Line Font Level Label Sequence
Data Pattern Display Number

128 D#
(11) (12) (13) (14) (15) (16) (17) (18) (19) (20)

Line Color Param. Form Entity Sequence
Weight Number Line Number Label Number

128 Count D#+1

Records in the DE section:

128 309 1 75 00 OD 237
128 26 26 0 OD 238

Records in the P section:

128,3,5,3,3,0,0,1,0,0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0, 237P 309
0.0,0.0,0.375,0.625,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 237P 310
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 237P 311
1.0, -9.59884107409246,251.87999,11.9501753952658, 237P 312

-3.22039928938901,251.87999,3.35432175325268,3.66603838737259, 237P 313
251.87999, -4.84080572029901,10.900289418313,251.87999, 237P 314

-12.7495769867665, -9.91405061952486,244.476799233967, 237P 315
12.0742953564063, -3.3727440728984,244.476799233967, 237P 316
3.57368038714364,3.75315162422275,244.476799233967, 237P 317

-4.444671925977,11.2910799913377,244.476799233967, 237P 318

-12.0882234103884, -10.2721379300126,232.129566754316, 237P 319
12.3372782126316, -3.49551336607463,232.129566754317, 237P 320
3.95586862047848,3.90220343933955,232.129566754316, 237P 321

-3.87554048902915,11.785322674788,232.129566754316, 237P 322

-11.2280852695849, -11.5366474860555,212.39786526405, 237P 323
11.4396390835815, -3.7523788346899,212-39786526405, 237P 324

3.90904870495048,4.67933278440071,212-39786526405, 237P 325

-2.89087526630634,13.5346389204137,212.39786526405, 237P 326

-9.1481196011557, -12.5479896297906,200.088748772983, 237P 327

10.3847615280325, -4.06920901593887,200.088748772983, 237P 328

3.69206345061693,5.063495425367,200.088748772983, 237P 329

-2.10218797901534,14.700625305664,200.088748772983, 237P 330

-7.03181043114952, -13.1117393022491,192.70129,9.78440277594289, 237P 331

-4.21818217002092,192.70129,3.56354424967022,5.33149029986496, 237P 332

192.70129, -1.67358162401593,15.3856272774944,192.70129,
237P 333

-5.84892969895996,0.0,1.0,0.0,1.0,0,0;
237P 334

Figure 4.8: Directory section table and example of B-Spline surface definition in IGES

87

9 its degree p;

e the number of control points n;

9 Euclidean control points, di-,

e weights wi, which have to be positive;

e its knot vector, U, containing m+I=n+p+I knots;

9 start and end parameter values, so and sj;

* other nonessential but useful information, e. g. whether the curve is planar or non-

planar, open or closed, truly rational (wi not all equal), etc.

The IGES specification has no concept of homogeneous control points, P4. The formula

given for a rational B-spline curve in the IGES specification is:

K
E WiPibi(t)

G(t) -
i=O

K

E Wi bi (t)
i=O

A NURBS surface is defined analogously by:

e the degrees p and q in each parameter direction u and v;

* the number of control points n and m;

e Euclidean control points Pij;

o weights wij;

iUx=n+P+I s-m+q+l
e knot vectors for each parameter direction i=1 and fvl,

=, , which fulfill

the condition ui-1 :ý ui and vj-l < vj for i=2,... ,r and J=2,. .. IS.

The parameters so, s1 and to, tj define the intended surface. The surface can be tagged

as special, e. g. a plane, circular cylinder, cone, sphere, torus. The formula for the rational

88

B-spline surface in the specification is:

G(s, t) =

Ki K2

EE wijPijbi(s)bj(t)
i=o j=o

K2

K, E wij bi (s) bj (t)
i=O j=o

Figure 4.8 shows an example of a description of a NURBS surface in an IGES file. Two

lines describe the entity in the directory entry section and 26 lines in the parameter section

of the IGES file give the parameters, which are: The parameters listed are:

1. Entity type number (128),

2. K, (3); K, +I is the number of control points in the direction s (4), integer;

3. K2 (5); K2 +1 is the number of control points in the direction t (6), integer;

4. MI, degree of first set of basis functions (3), integer;

M2, degree of second set of basis functions (3), integer;

6. PROP11 0- Not closed in first parametric variable direction, integer;

7. PROP21 0= Not closed in second parametric variable direction, integer;

8. PROP31 0= Rational/ I= Polynomial (1), integer;

9. PROM, 0= Non-periodic in first parametric variable direction/1 = Periodic (0), integer;

10. PROP51 0- Non-periodic in second parametric variable direction/I = Periodic (0).

integer;

11.2 + K, + Mi (8) values of the first knot sequence,

12.2 + K2 + M2 (10) values of the second knot sequence,

13. (1 + Kj) * (I + K2) (24) values of the weights,

14. the control point coordinates (24*3) in their three components and finally

89

15. the starting and ending values of the parameters in both directions.

Using the IGES specification, it is possible to communicate to a graphics engine or a
CAGD application to display a custom made NURBS surface.

4.4 Solid Modelling representations

Solid modelling is concerned with representations that are "complete" and are thus suitable
for any geometric queries to be solved algorithmically[38].

There are three major approaches to represent solid models:

" Boundary models (Boundary Representation Models or B-Rep).

" Decomposition models.

" Constructive models (Constructive Solid geometry or CSG).

4.4.1 Boundary Representation Models

These method of representation represent a point set in terms of its boundary. The boundary

is usually a collection of faces. Faces may be again represented again by their boundaries,

which are lines or one-dimensional curves. Because of this decomposition, the model may be

viewed as a hierarchy of models[38, p. 56]. Unfortunately, an arbitrary set of non-overlapping

faces does not necessarily correspond to the boundary of a solid. Early versions of many solid

modellers were plagued with invalid B-Reps due to designer faults or incorrect algorithms[55].

4.4.2 Constructive Solid Geometry Models

These models represent a point set as a combination of primitive point sets. Each of the

primitives is represented as an instance of a primitive solid type (e. g. a block, a cylinder,

etc-) Constructive models include operations such as boolean operations, which are more

general construction operations.

CSG is the most popular constructive representation. The primitives may be simple

shapes or complex features for particular applications.

90

The closure of operations in the r-set space is guaranteed by the use of the regularization

operation (closure of interior or clo(%nto)). The regularization always returns valid (although

possibly empty) solids.

4.4.3 Decomposition models and voxel modelling

Solids may be represented by a variety of space decomposition schemes. The entire 3-D

space, or just the set that corresponds to the solid, is partitioned into non-overlapping 3-D

regions called cells. The most usual type of cells used is the voxel, which refers to a volume

cell. Each voxel is a rectangular cuboid with six faces, twelve edges and eight corners. An

alternative definition for a voxel from the previous one is to identify the voxel with the actual

sample of a volumetric variable over a structured rectilinear grid (see figure 4.9).

Pixels

Figure 4.9: Pixels and voxels

Voxels

A solid is represented by a collection of cells from a fixed collection of primitive cell types,

combined with a single "gluing" operation. Regular decompositions may have a significant

error because of the discretised representation, but they are nevertheless popular because the

simplicity of the scheme is well-suited to parallel algorithms and hardware support.

91

4.5 The voxel model

Although the voxel model is Presented in this context as a method to represent geometry,
the representation of geometry is a subset of the representations possible with the technique.
A voxel model is a special case of a general volumetric data set, which typically is a set S of

samples (x, y, z, v), representing the value v of some property at a certain location (x. y, z).
The samples may be taken at random locations in space, but in many cases S is isotropic.

containing samples taken at regularly spaced intervals along three orthogonal axes. For a

geometric representation as described above, it suffices for v to represent either true or false,

to represent that the region is either part of the solid or not. The value v may contain,
however, more information than a binary digit, such as integers, vectors or higher order

entities.

Voxel models are used in medical imaging (e. g. CT, MRI), biology (e. g. con-focal mi-

croscopy), geo-science (e. g. seismic measurements, oil exploration), industry (e. g. non-

destructive inspection) and chemistry (e. g. electron density maps) [36,29].

4.5.1 Memory requirements for the voxel model

Voxel modelling is a poor representation scheme when it comes to conciseness. A voxel model

requires huge amounts of memory. To achieve a good resolution (e. g. 5 pm) in a considerable

volume (e. g. 500 mm x 500 mm x 500 mm) requires 100,0003 voxels, i. e. 1015 elements. To

grasp the enormity of this figure, according to some rough estimates, the information of all

U. S. academic libraries together is twice that amount, roughly 2x 1015 bytes. (see table 4.5).

These memory requirements are beyond current computer system's capabilities. Modelling at

this scale seems unfeasible unless there is a breakthrough in computing technology. Current

high-end systems (1998) can handle a 1024 x 1024 x 1024 element data set using hardware

optimised for 3-D graphics.

The storage requirement of a voxel model is

np

nxnxnx

92

Table 4-5: Estimates of the quantities of data contained by the various media (adapted
from [621)

Memory unit
-

Size in bytes Example of media
Byte 27= 1 A single character

Kilobyte 210 ý- 17 000 A very short story
Megabyte 2 20 1,0007 000 A small novel
Gigabyte 30 , 2 7000,0007000 Ten meters of shelved books
Terabyte 2 40 1012 1/2 of an academic research library
Petabyte 50 1015 2 1/2 of all US academic research libraries
Exabyte 60 W8 2

Zettabyte 70 1021 2
Yottabyte 280 1024

where np is the number of properties and pl is the storage requirement of a value of the

property 1. Typical voxel models in medicine are based on a value of n= 512, and store a

single density property represented by an integer. In this case, the voxel model occupancy

is around 512 MB. In other application areas, such as in earth sciences, the memory storage

could be increased by 10 to 50 times. This is the major drawback of voxel models [5].

4.5.2 Compression Methods

In principle, the compression methods in the 3-D domain are a generalisation of the compres-

sion methods available in 2-D for working with raster images. As with their 2-D counterparts,

there are lossless and lossy compression methods.

A short list of methods includes,

* Compression based on the DCT (Discrete Cosine 'Iýansform) [65].

e Compression based on wavelets [48,49,50].

e Fractal compression [12].

41 Multi-resolution representations [10,11].

e Compression based on hierarchical structures:

Octree and BSP trees [42].

93

Many of these techniques have been studied in relationship with their application for

medical imaging and volume rendering. In fact medical imaging equipment often uses either

the raw voxel model or a octree model for the visualisation [601.

The octree representation uses a recursive subdivision of the space of interest into eight

octants that are arranged into an 8-ary tree (hence the name) - This type of structure is

analogous to the quadtree which is used in 2-D raster image processing. The octant volumes

continue to be subdivided until a termination criterion is satisfied. Two common termination

criterion are the total volume represented by a node and the complexity (homogeneity) of

the volume represented by the node.

The representation of a solid object by exhaustive enumeration, without regard to its

material composition, requires a binary value: either a voxel is internal to the solid or it is

external to the solid. In this case, the octree can compress the volume of data by aggregating

large regions where this binary value is either zero or one.

The classical octree models this using three types of nodes: white, black and grey. The

octree divides the space into cubes which are inside or outside the object. Node types are

defined in the usual way.

* White: The corresponding octant is homogeneous and external to the solid.

* Black: The corresponding octant is homogeneous and internal to the solid.

* Grey: The corresponding octant is heterogeneous, i. e. parts of it are internal to the

solid.

In general, the number of nodes in this type of octree representation of a solid object is

proportional to the surface area of the object. Hence octree models are not quite as large

as exhaustive representations but still take a fair amount of storage [38]. This scheme for

the classical octree can be built from a geometrical model of a solid (boundary, CSG or

voxel-based representation).

To build an octree representation from a volume voxel model the procedure is different,

since the volume voxel model does not necessarily represent a solid. Voxel models are used

94

OBJECT REPRESENTATION

[: j3ý, M r-= L, -l

LEVEL2

Figure 4.10: Octree subdivision scheme. A three level representation of an object

WHITE: HOMOGENEOUS AND EXTERNAL TO THE SOLID
BLACK: HOMOGENEOUS AND INTERNAL TO THE SOLID
GREY: HETEROGENEOUS - PARTS OF THE OCTANT ARE INTERNAL TO THE SOLID

95

to represent fog and clouds, which are amorphous in nature. These models have been used
to render realistic scenes including fog and cloud models.

A isosurface octree, or the classical octree of a voxel mode defines voxels as black if their

associated value is within a specific range of the property and white otherwise. The voxels

whose property values are within this range and differ less than a given E are recursively

grouped into black nodes. This type of octree is only useful when the volume is not very
heterogeneous [5].

In the case of medical imaging, for example, it is not enough to store a given isosurface,

since it is important to conserve the information of the volume. Several researchers have used
the octree data structure, or a variation of it, to reduce the data access time [60]. In this type

of application, each node of the octree contains a value that corresponds to the average value

of the associated property across the octant volume represented by the node. The root node

of the tree represents the entire object space volume, and leaf nodes correspond to volumes

that are homogeneous, or nearly so. Leaf nodes do not represent identically sized volumes;

instead they represent object space volumes that satisfy the termination criteria. For the

homogeneity criterion, leaves or leaf nodes represent volumes having the same value of the

associated property.

The extended octree or vector octree are based on storing a boundary representation in

the nodes of an octree. The vector octree stores boundaries of a polyhedral object within the

cells of an octree. The octant subdivision is continued until each cell contains at most one

vertex, one edge, one face, or is homogeneously "full" or "empty" [38,5]. These structures

have been developed to model solid homogeneous objects.

4.5.3 Manufacturing FGMs from a voxel model

Considering the fabrication of FGMs through powder stacking or spray deposition, the use

of a voxel model seems practical. It is reported that for powder stacking, powders of sizes

from 15 pm to 44 pm are used, and that layer-by-layer stacking of powders allows controlling

the spatial distribution to 0.2 mm, while spray deposition allows control to a minimum size

of 0.01 miii[45, p. 165]. The material to be used in the laser fusion project at De Montfort

96

University is HIO tool steel powder with a distribution of sizes from 63 pm to 125 pm[61].

Figure 4.11: Scanning Electron Microscopy image of HIO tool steel powder[61]

These figures mean that small and medium sized objects of up to about 200 x 200 x 200

1111n 3 could be modelled with voxels using current computer technology, assuming a model

of 1000xIOOOxIOOO elements and the stated resolution of 0.2 mm (200 pm). This resolution

produces a rough surface. Modelling at the resolution required for a smooth surface finish

(around 5 pm) involves heavy requirements of memory and computing power.

97

Chapter 5

Modelling multi material and FGM

objects

Kumar et al. [33] go through a short review of various approaches to modelling heteroge-

neous objects, including their earlier work[35,34]. Several solid model representations are

mentioned for geometric domain representation:

e Manifold solids,

e R-sets,

e S-sets,

* Selective geometric complexes (SGCs),

o Non-manifold solids and

9 Constructive non-regularized geometry (CNRG).

Going beyond the geometric representation domain, the methods listed are:

* Heterogeneous solid models,

e Chain models,

e Herinite hyperpatches and

98

o FR-sets.

The paper proceeds then to present their proposed object models.

Another review of possible modelling methods is presented in [47].

5.1 Work at the University of Michigan

The following subsections discuss the methods proposed for the representation for heteroge-

neous objects[34,35] and a more general object model[33].

5.1.1 Representation of heterogeneous objects

To be able to represent multiple materials, a material dimension M is added to the spatial

dimensions R3 that capture the geometry and topology of an object. For a finite number

of unique materials, the choice for the material dimension M would be the set of integers I.

Then the product space T=R3xI with the product topology can form a new modelling

space for representing multiple-material objects.

A solid described using traditional solid modelling techniques is a member of the class

of r-sets A in R3. The method proposes a new class A,,, =AxK, where A is the class of

r-sets and KCI is a finite set of integers. Each material is characterised by an integer in

K. A typical member Qc Am (Q = JPý kJ) is called an r, -set and is composed of an r-set

PEA and an integer kEK

This definition is extended to represent functionally graded materials. To model objects

with continuous material variation, the material space must be expanded from KCI in the

previous case. A suitable choice for the new mathematical space is T=R3x R", n being

the number of primary materials. R3 is the geometry space, where geometry and topology

are defined, using a traditional solid model (CSG, B-Rep or hybrid). RI is the material

space. The material can be identified at any point by volume fractions of each of the primary

inaterials. Since the volume fractions must sum one unit, the space of volume fractions is a

99

subspace VC Rn, such that

V= tv ER"/llvlll =Z vi=l A vi >Oý
i=l

where vi represents the volume fraction of material i.

Each point in an object S can now be characterised in product space T as (x, v(x))

where xCS is a point in the object and v(x) CV represents the material at that point.

The geometry of an object S can be modelled as an r-set P and the material distribution for

the r-set P can be represented by the set BGV which is defined by a function F, mapping

the geometric points x to the material space V. Hence, the representation for the object is:

S- (P (E A, BC V) where B- Jv(x) =- F(x) (z- V, Vx G PI

The authors also define modelling operations on r, -sets and on r, -objects. The rep-

resentation allows for the usual set operations, such as difference, intersection, and union.

A new operation called join is defined which combines two r,,, -sets into a single r, -set if

the two material functions corresponding to each r, -set are identical and can be combined

into a single C' function. The modelling operations include the E) operation that operates

on the material components of the r, -sets. For example, when two r"'-sets are intersected,

the material properties of the resulting r,,, -set are defined using the ED operation. A trivial

type of E) operator would take, for instance, the material properties of either of the objects.

A more elaborate ED operator would try to combine the volumetric fractions of each of the

components. The type of operator and the representation of the result are not discussed

further.

Figure 5.1 shows the computer representation proposed for an r, -object. The structure

is a combination derived from the data structure of the commercial ACIS modeller with

an additional material related data structure (shown on the right) added to the original

structure (shown on the left). The form of the MFUNC block of the diagram is crucial to the

representation method. Bhashyam et al. [3] have an actual implementation of this method

(discussed below). The MFUNC element may also be modelled using a voxel-based approacli.

which is promising as it may be both versatile and free of the memory requirements which

100

r -object m

BODY
r -set

MBODY

COMP

MCOMP

CELL

WELL MCOORD

SHELL

MFUNC

FACE -------------------

Added data structure
for material information

LOOP

EDGE

VERTEX Standard BRep

data structure (ACIS based)

-

Figure 5.1: Computer representation of an r, -object (Kumar and Dutta[35])

101

niake pure voxel-based modelling unattractive.

This work is extensive and mathematically rigorous. There are however blanks left,

notably the treatment of the E) operator, whose forms need to be explored to fully understand

the algebraic properties of the operations on the objects represented.

An actual object was modelled and built on the Sanders Model-maker using this represen-

tation technique. The probe of smoothly varying volumetric fraction was built by modifying

the tool path generation strategy. Given a certain layer distribution, there is currently no

method for the automated generation of an optimal tool path for its fabrication.

5.1.2 Implementation of the r, -object representation

In [3], an actual implementation of the r,,, -object representation is presented. The 'Het-

erogeneous Solid Modeler' is a prototype CAD system based on the ACIS kernel (Spatial

Technologies Inc) and whose GUI is implemented using Motif and OpenGL libraries. The

architecture of the system is schematically presented in figure 5.2.

Geometry Material composition II
Function library

Generative
................... 11,11,1111111-

approach Primary material
r.............. database

Post processing Heterogeneous I

routines solid model I
'OL

property estimation
E

rules

Object model
IF

manufacturing

Preprocessing
algorithm

Finite element
analysis

Figure 5.2: Architecture of the Heterogeneous Solid Modeler (Bhashyam et al.)

102

For the implementation of the heterogeneous material component, the authors suggest

eight material composition functions, each suited to a particular application and specific

geometries (e. g. box, cylinder, sphere, cone, torus, etc.). These would correspond to the

MFUNC component in the computer representation (see figure 5.1). As previously noted,

this function could also be implemented using a voxel model.

Additionally, the authors implement a set of property estimation methods to evaluate

various t hermo- mechanical properties. A general design cycle with the tool would include

(see figure 5.3):

e Selection of the geometry.

9 Selection of the materials, which are usually two, although the GUT presents options

for up to four materials. The materials can be chosen form the ones available in an

internal database, that includes the material properties.

e Input of the material composition function.

e Represent as a heterogeneous solid model (r,,, -set)

e Repeat until all the primitives are modelled.

* Combine the heterogeneous primitives.

s Convert to a FE input file.

9 Perform the FE Analysis and evaluate results

9 If the results are not satisfactory, modify the composition function variables and repeat

the conversion and analysis steps until the results are satisfactory.

The authors kindly supplied a copy of the prototype implementation on request, which

was tested on a SPARC Ultra-250 using SunOS 5.7.

It is possible to input more than two materials in a primitive and this implementation

seems to support up to four materials. The GUI provides a text box for the input of a

niaterial composition function through a formula. This is a very important step and it, was

103

not possible to verify whether the input was correct. It is not clear from the context what
type of expression is expected as a formula.

5.1.3 The object model

The object model[33] is a more general representation based on the concepts of product

manifolds and trivial fibre bundles. The model is generic enough for many types of varying

attributes of an object in a rigorous and integrated way. The authors recognise several

characteristics of an object that require modelling: geometry, material, material properties

and physical parameters. The base attribute and the most fundamental is the geometry.
Each point in the object is described as one point in the Euclidean space E3.

The mathematical model A4 is the combination of several models, one model MG for the

geometry and one model MAi for each attribute Ai, but all based on the geometrical model.

M ::: -- MG (D MA, OMA2 (D 0M A�

The geometrical model is defined as

A4 G` (P) f Ci 1)

where P is an r-set in E3 and f Ci I is a finite set of disjoint decompositions of P. A decom-

position fCiJ consists of several 3-cells and forms a geometric cell complex. Each 3-cell U"'

in Ci possesses a local coordinate system, related to the global coordinate system through

a coordinate map V), Further constraints are imposed on each of these coordinate maps

regarding the compatibility (non-vanishing Jacobian). A 3-cell U,, and its corresponding

coordinate map 0,, are called a chart and the collection of charts Ci is called an atlas.

The attribute model is defined as

Mý, = (N, F)

The generic model for an attribute A is a manifold N, which could be a vector or a teiisor

104

space. Each point x in the r-set P is mapped to its corresponding attribute through an
attribute function F. F is defined in a particular atlas Cj and it can be subdivided for every

chart U, in the atlas into several mapping functions F, where

Fa : (U,,, E Cj) --ý (Vý C N)

As indicated above, the object model A4 combines the geometry model MG and the

attribute models MAi, If the model has a single attribute, the object is modelled in the

space S=PxN. For an object having n attributes, the product set would be:

n

P(Il Ni)
i=l

where P is the r-set model describing geometry and each Ni is a manifold describing the

attribute Ai

The representation of an r,, -object is a subset or a particular case of the object model

described with only the material composition as an attribute.

5.2 Work at the MIT

Jackson et al. [24] present a method to represent materials with multiple materials and

gradation of the materials based on the cell-tuple structure.

For the proposed representation, a model M of a solid is subdivided in cells. Cells can have

various geometries, although the examples presented show only tetrahedrons. It is mentioned

that the tetrahedrons may also have curved faces, although the examples presented use planar

faces. To represent the composition, the approach is the same as the one suggested by Kumar

and Dutta, i. e. for every point xEM use a vector valued function m(x) with components

Tni for every material i present in the object. mi represents the volumetric fraction of a

material in the object.
Hence, for a homogeneous cell c, m=m,, Vx c c,. For a heterogeneous cell. t1w

object is defined by a set of control points fxr,, i/lil - n_. J and a set of control compositions

105

Imr., i/lil = nnj

These control points are combined with the barycentric Berstein polynomials:

n. 9 (U)X"i
,

n,,, (U) M", IXK (U), M, (u)] Bi 1: Bi
lil=n. 9 lil=n,

I

where ng and n,, are the degrees of variation in shape and composition, lil Ik = zo + il +---+

and k is the dimension of cell r,. BýI(u) represents the ith Bernstein polynomial of degree n
and it is defined as:

n(U)
(n!)

ii Bz ') (UN
...

(uz,)
..

(i ')
0k

I(io!

)(il!)
...

(i,)

] [(u

U- [UO, Uli ... 7 Uk] are the barycentric coordinates of a point in the domain and satisfies the

condition
Ul -: ý::: UO + Ul +***+ Uk 7--- 1

il represents an index composed of the sequence of values io to ik, e. g. 1000 or 1210

where every i value is smaller or equal to n. but the condition jil = ng means that the the

digits sum up to n.

5.3 Discussion of the methods

These two methods are the response to the general lack of other methods to represent ma-

terially graded objects. The work at Michigan is a superset of the second method. The

representation using B-splines is more straightforward and several algorithms available in

computational geometry can be transfered to this application. Unfortunately, the geometric

intuitiveness of B-Splines is lost in this representation which is no longer geometric.

To intimately work with the ACIS modelling kernel, the approach chosen by Dutta et

al. at Michigan is practical. Many algorithms and test can be tested and applied without

reinventing existing and proven CAD libraries for the heterogeneous case.

106

Begin

Select geometry

Select materials

Input matFrial.
composition functions

Represent as an
heterogeneous model

NO All the required
heterogeneous

<

primitives present?

YES

Combine heterogeneous primitives

Convert to a FE input file

Perform FE analysis
Modify composition Evaluate results
function variables I

NO
Results

_--<:

ý

satisfactory?

YES

End

Figure 5.3: Design cycle using the heterogeneous solid modeller (Bhashyam et al.)

107

Chapter 6

Visualisation of voxel models

"A picture is worth a thousand words" goes the saying. For a human an image can convey

a lot of information. For large datasets it is impractical and sometimes pointless to look at

individual values or the raw data of the dataset. Through visual aids it is usually possible to

understand the data in one look: it is the most natural way for humans to understand large

amounts of information.

Visualisation is the technique used to explore scientific data through transformations

and mappings. By mapping on a computer display visualisation uses computer graphics

techniques such as rendering. Based on the broad definition though, some other tasks, such

as contouring, classifying and generating physical 3-D models from scientific data through

Rapid Prototyping can be regarded as visualisation too[46].

6.1 Exploration of a voxel model

A typical voxel model is a large number of values that cannot be grasped except through

visualisation tools. This data can usually be interpreted as a series of images or 'slices' of

data, as in the case of medical imaging voxel models. The voxel model is then the 3-D

analogous of ail image and the imaging methods can be extrapolated to the 3-D domain to

explore the information.

Some tools to explore the data are: obtaining a histogram of values, slicing and cutting,

108

thresholding, resampling, contouring and volume rendering. All these are usual imaging

techniques that are useful in 3-D too. Only volume rendering stands out from the rest as a

uniquely 3-D technique.

Medical imaging voxel models have been typically examined by watching individual im-

ages, each of which is a 'slice' of data in the whole voxel model. There are several applications

available for these tasks, because medical imaging techniques have been around for several

years

Jackson et al. [24] refer to the use of voxel processing software for the creation of manu-
facturing models. By combining Rapid Prototyping in the visualisation tool-box, it has been

possible to fabricate the model of a patient's skull directly from a patient's scan (figure 6.1).

For example Mimics (Materialise n. v., Belgium) is an specialist medical imaging application

capable of generating a surface model from a voxel model. The method used is the creation

of a contour surface from a voxel model (see figure 6.2). This is explained in section 9.2.3.

Mimics can produce 3-D output in the industry standard STL format, VRML 2.0, ICES

and a few other vendor-specific formats (e. g. Stratasys Layer Interface Files SSL). Materialise

also offers the service of creating a physical 3-D model from medical scanner data in one week.

The most powerful method to display a voxel model is volume rendering, which has been

used increasingly. Volume rendering is a computationally expensive method and software for

volume rendering cannot display a model interactively, in real-time, while a user manipulates

the point of view and camera positions.

An interactive exploration of voxel models with these tools is usually feasible with a

powerful computer and enough memory. Some methods are computationally expensive and

the performance degrades when using larger images (voxel models). Volume rendering is the

most coinputationally expensive method and it is not interactive.

6.2 Volume Rendering

Volume Rendering is a method used to capture visually 3-D data sets in a 2-D image directly

from 3-D volumetric data. Volume rendering differs from traditional computer graphics.

which sin-lulate a scene by rendering surfaces of a model. It also differs from image processing

109

Medical scanner data Physical 3-D model
produced through

stereolithography

Figure 6.1: Týransformation of medical data to create a physical 3-D model (Materialise N. V.)

Figure 6.2: Surface contour created from a voxel model using VTK

110

Segmentation

Classification

Resampling

Gradient
Computation

Shading

Compositing

Figure 6.3: Volume rendering operations

in that although the process may require image treatment, it is performed with a 3-D data

set directly.

It is through volume rendering that spectacular see-through representations of human

tissues are created, generating extremely informative medical images. That's a practical

example of a suitable representation of a voxel model for a human to understand a model

through vision.

Volume rendering is achieved by a sequence of operations in a "pipeline". The idea of

a series of operations on a pipeline has been applied in visualisation software and it is a

practical means of creating custom-built representations and generate visual represent at ions

of many different data sets.

The typical pipeline for volume rendering a 3-D model consists of: segmentation, gradient

computation, resampling, classification, shading and compositing (see figure 6-3).

ill

The order of operations can vary among implementations, for example classification can
come before or after resampling.

Segmentation is a preprocessing step and it is typically done before the actual rendering.
It is the process of separating the input data set into structural units, and something that

needs to be done only once to the data set. Segmentation is a very difficult process and it is

hard to capture it into an algorithm a computer can perform. Therefore) segmentation often

requires the intervention of a human.

The gradient is a measure of how quickly voxel intensities in a data set change. The

gradient indicates the direction of the change and how sharp the change is. Gradient compu-
tation is a computer intensive operation because the algorithm must traverse the entire data

set, which is usually large. The gradient is used for the shading operations discussed below.

The gradient can be computed using several operators, which approximate the continuous

case using the discrete data available. The most commonly used gradient operators is the

central difference gradient estimator, which uses six cells around the voxel to compute the

gradient. One may choose to do the rendering using gradient operators which use all 26 cells

surrounding a voxel. This is a computationally more expensive approach, but it may pay off

as a key to visual understanding of the image.

An example of using different operators is shown in figure 6.4. The central difference

gradient operator produces a smoother image, while the intermediate difference gradient

operator registers the small holes on the left side of the skull behind the eye socket which

are not visible using the central difference gradient operator.

To extract an image from the values in the volume data set, it is necessary to assign

additional visual information to the voxels in the model.

Colour: A colour can be assigned to a particular scalar voxel value through the use of a

colour look-up table. The look-up table uses the voxel scalar value as input and assigns

colours in the appropriate colour model. RGB is the most common colour model.

Opacity: A value between zero and one, to indicate how opaque a voxel is. The

opacity and the transparency are complementary, so that when the opacity is 1, the

transparency is 0 and vice versa.

112

Figure 6.4: The effect of gradient operators: central difference gradient operator (left) vs.
intermediate difference gradient operator (right). (Lichtenbelt et al. [36])

These two tasks are usually done in the classification stage, which is done by an algorithm

programmed in the rendering system. These values may also be calculated or assigned

using the gradient computed earlier in the pipeline. It may be possible to associate certain

segmentation information to the opacity or colour values. This could be used to make

transparent a certain range of values which are not of interest. In medical imaging, for

example, this could be used to make certain tissues transparent.

The resampling or interpolation stage is necessary, because the voxels in the data set and

the pixels in the rendered image will seldom be aligned, and a ray cast to determine the

rendered image will have to use values which are not in the original voxel space. During the

resampling, new values are generated at new positions in voxel space.

Shading is used to render the image from the data set by using an illumination model.

The illumination model describes the way a colour is assigned to a point in space, based on

the light that shines on it, the angle between the viewer and the light, the material properties

and the orientation and position in space. This calculation requires a surface normal for the

reflection colour calculations. Since there is no surface in a volume model, the gradient

operator is used to determine the angles for the calculations.

113

The last stage of the volume rendering pipeline, the compositing stage calculates the final

colour of a ray. This operation, also called blending, calculates the colours of the final display

image based on voxel transparency and colour.

6.3 Visualisation software

There are several visualisation applications available that can handled volume rendering of

voxel models, among several other scientific visualisation tasks. There are many for medical

imaging applications while some other (e. g. IRAF from the National Optical Astronomy

Observatory) are application specific. Some of the available applications are[43,51,44]:

0 volvis

9 GVLware(BoB)

* Application Visualization System (AVS)

9 IBM Data Explorer (now OpenDX Open Visualization Data Explorer)

o IRIS Explorer

o Khoros

o PV-WAVE

9 VoxelView

e Vis5D and VisAD

9 Analyze

41 Visualization Toolkit (VTK)

VolVis, developed at the State University of New York at Stony Brook, is a comprehensive

whime visualisation system available in several (UNIX) platforms and as C source code.

There have been several articles presented by the developers of this system [1.2,66].

114

The GVLware also known as BoB (Brick of Bytes) is a public domain application devel-

oped by the Army High Performance Computing Research Center (AHPCRC). This appli-

cation is available for the Silicon Graphics platform.

AVS is a product from AVS Inc. AVS was the first large-scale, commercial visualisation

system, dating back to 1989. [57, p. 130] It is a mature product that went through several

versions. The company was recently bought by Muse Technologies (May 2000).

IBM Data Explorer is a withdrawn product from IBM Inc. In May 1999, the IBM

Open Visualization Data Explorer was announced to replace it. In their own words: "Open

Visualization Data Explorer is a full visualisation environment that gives users the ability

to apply advanced visualisation and analysis techniques to their data. These techniques can

be applied to help users gain new insights into data from applications in a wide variety of

fields including science, engineering, medicine and business. Data Explorer provides a full

set of tools for manipulating, transforming, processing, realizing, rendering and animating

data and allow for visualisation and analysis methods based on points, lines, areas, volumes,

images or geometric primitives in any combination. Data Explorer is discipline- independent

and easily adapts to new applications and data. The integrated object-oriented graphical

user interface is intuitive to learn and easy to use. "[22].

IRIS Explorer is a commercial product initially from Silicon Graphics Inc., bundled with

Silicon Graphics workstations. It is also available from NAG Ltd. on other workstations and

is supported by them. IRIS Explorer is a powerful visual programming environment for 3-D

data visualisation, animation and manipulation. It is available on a broad range of PC and

workstation platforms. OpenGL, Open Inventor and MasterSuite are some of the building

blocks upon which IRIS Explorer is built. Like VTK, which is described below, Explorer

works on the principle of constructing visualisation pipelines.

Khoros is a commercial product from Khoral Research Inc. It includes an integrated soft-

ware development environment that allows users to compose and perform a variety of tasks

related to image and signal processing, medical imaging, remote sensing, data exploration and

scientific visualisation. Khoros includes a visual programming language, a suite of software

development tools that extend the visual language and help you create new applications, an

115

Figure 6.5: Iris Explorer display of a visualisation pipeline

116

interactive user interface editor, an interactive image display package, 2-D/3-D plotting, and
an extensive suite of image processing, data manipulation, scientific visualisation, geometry

and matrix operators[51]. -WAVE is a commercial product from Visual Numerics Inc. It
is a general purpose package, providing rich functionality suited to a wide range of users,

although more particularly those with programming experience.
VoxelView, a product of Vital Images is used for medical imaging applications and is

available solely for the Silicon Graphics platform.

VTK is not an application. It is a toolkit that application developers can use to create

end-user products. VTK was used and extended in this project. VTK is described in the

next section.

6.4 The Visualization Toolkit - VTK

The Visualization ToolKit (VTK)[57,64,30,37] is an open source, freely available software

system (a toolkit) for 3-D computer graphics, image processing, and visualisation. VTK

includes a textbook (reference [57]), a C++ class library, and several interpreted interface

layers including Tcl/Tk, Python, and Java. VTK has been implemented on nearly every

Unix-based platform and PC's (Windows NT and Windows95). The design and implemen-

tation of the library has been strongly influenced by object-oriented principles.

The definitive guide to the toolkit is the textbook that comes with it, or the 'VTK Book'

by Schroeder, Martin and Lorensen (reference [57]). This book focuses on the philosophy

and design choices embedded in the toolkit, presents the algorithms and methods used. The

'VTK User's Guide' is aimed more at using the toolkit.

VTK visualisations work on the principle of constructing visualisation pipelines (figure

6-6). The idea of a visualisation pipeline is assembled using various building blocks to create

specialised functions. VTK comes with dozens of components: various filters. sources, data

readers and data generators. Additionally the developer can create custom-built components

and add them to the library. A typical visualisation requires from 3 to 10 VTK classes[37].

The users of VTK range from students to application software engineers and researchers.

Application developers can write applications in C++ and embed visualisation tasks in the

117

Figure 6.6: Representation of a visualisation pipeline

applications. By using the interpreted interface to the toolkit in either Tcl/Tk or python, it

is possible to produce prototype and try visualisation pipelines interactively. The possibility

to access the toolkit through interpreted languages facilitates the creation and testing of

prototype visualisation pipelines through interrogation and dialogue with the system in a

scripting language (e. g. Tcl/Tk).

There is also a mailing list which is a forum used for user support and discussion of

developments or bugs.

6.5 Design of the classes in the Visualization Toolkit

VTK was designed with its roots in animation and visualisation systems. It took 4 profes-

sionals 10 months to design the system with 25 classes which still sit at the centre of the

software system, even after large extensions to its current size. This system was designed

using Rumbaugh's OMT methodology developed at GE.

The design goals included as usual that the system should be robust, understandable,

extensible, maintainable and reusable.

VTK is a large software project designed from the start with extensibility in mind. It

consists of 514 classes and over 270,000 lines of code as of version 2.3, released mid 1999.

Lorensen reports about 600 classes by mid 2000.

The classes are distributed in 5 groups or kits:

118

Figure 6.7: Visualisation of a combustor

Figure 6.8: Visualisation of a height profile

119

Opatented
4%

13

Ocontrib
7%

Ographics
50%

Figure 6.9: Distribution of the 270,000 lines of code among the kits in VTK (Adapted from
Lorensen[37])

Common contains classes that re used by each of the other kits. These include abstract

filter classes, datasets, cells and utility classes.

2. Graphics contains visualisation classes. These process vtk's dataset classes and render

the resulting polygonal output. The visualisation filters in this kit extract surfaces of

constant value, generate streamlines, warp surfaces and resample one data set with

points from another.

3. Imaging contains classes that process volumetric image data, i. e. data with implied

topology that is stored uniformly. Because of the uniform storage, these classes can be

streamed and threaded.

4. Patented contains classes that implement techniques covered by US Patents. These

classes can be used for educational purposes, but require a licence for commercial use

5. Contrib contains classes contributed by the vtk user community.

120

imaging
22%

conlrib

4%
E:::::

-. Wwjjjjý -Mmlý

common
20% I

graphics
52%

Figure 6.10: Distribution of the 514 classes among the kits in VTK (Adapted from
Lorensen[371)

patented
2%
1

121

Chapter 7

Modelling FGMs

7.1 Element discretisation approach

A tool of choice for analysis of engineering objects is the Finite Element Method (FEM).

This method is based on the subdivision of a whole part to be analysed through finite

elements, and this approach can be used to model FGM objects. The element discretisation

approach used for modelling FGM objects subdivides space into small cells. The material

properties of a cell are assigned according to the material distribution. This approach has

been used by K6nig[31] in the optimisation of material composition using genetic algorithms

and Kumar[32] in the optimisation of the material composition by minimising the compliance

of a structure (maximising the rigidity).

7.2 Transforming a voxel model into a FEM grid

To represent a material as a list of cells with material properties assigned discretely to each

is not the most effective way to represent an object in terms of the memory it requires. The

representation of nodes and cells explicitly takes a large amount of memory, in contrast with

the implicit structure of voxels. A FEM system could be implemented to apply algorithms

on a structured points array (voxels). The translation from a voxel model to a cell model, an

unstructured grid used in the finite element calculations is not unique. A simple translation

122

algorithm to create tetrahedral cells from a voxel model is presented in section 9.4. This

algorithm creates six tetrahedral cells for every voxel.

The step of converting a voxel model into a mesh (unstructured grid) is required in order
to use the FEM method on a standard tool. The use of a standard tool, such as ANSYS

has the advantage of a gentler learning curve, built in graphics and mesh checking as well as

company support and a user community.

However, a purpose-built FEM analysis program would still require the same number of

nodes and it would still require to assemble a system of linear equations of the order of the

number of degrees of freedom assigned in the model.

7.3 Estimation of the properties

The simulation of the behaviour of FGMs depends on the proper estimation of the properties

for the interlayers. Miyamoto et al. recognise that "the most significant difficulty in FGM

modeling is the accurate determination of the material properties of the interlayers" [45, p. 64].

A simple approach for estimating the material properties of FGMs is the use of the rule of

mixtures[45, p. 68]. The most simple estimate is the classical linear rule of mixtures (Voight

estimate) for two constituent materials:

P= VaPa + V, 3Pý

where P is a typical property and V is the volume fraction. The subscripts a and 0 are used

to distinguish the two constituents. Another simple estimate is the harmonic mean (Reuss

estimate):
T3

PC, Pý

P= vapo + vopa

These relationships are often used because of their simplicity. However, also because of

their simplicity, their validity is limited.

For the examples presented here, the properties were evaluated using the Voigt estimate.

123

7.4 Examples of modelling technique

corner bracket was modelled with the geometry and boundary conditions shown in figures
7.1 and 7.2

A

5 Omrr

5 Omm

Figure 7.1: Geometry of the corner bracket modelled

The steps followed in this example were (see figure 7.3):

* Creation of a model of one single material (steel).

e Calculation of the stresses when submitted to the loading conditions.

Based on the stress distribution obtained, re-assign the material of each element in the

model. The range of average stresses was subdivided into five bins and an element's

material was chosen according to which bin the element ended up in. The result was a

model of five material mixtures.

1 Omm

0 Omm

124

4
15 Omrn

Y

Welded to a support pin

Load distributed along t
circumference (10 kN)

(D

x
Figure 7.2: Boundary conditions for the model

9 Re-calculation of the stresses for the same loading conditions but now using the model

of five material mixtures.

The results of this example are included in Appendix C.

A general method in an optimisation cycle may have similar character to the steps in the

example. The key operations in the optimisation are material re-assignment and check of

the end conditions.
The corner bracket example used 123 elements and 440 nodes. The element size was

approximately 10 mm x 10 mm. The degrees of freedom of the model are approximately two

per node, i. e. approximately 880 degrees of freedom.

125

Table 7.1: Element sizes and corresponding node counts for the corner bracket example

Element size
_Number

of nodes Number of degrees of freedom (approx.)
10 mm 440 -880

- 1.173 mm 32,000 - 64,000
1 mm 44,000 - 88,000

0.586 mm 128,000 -256,000
0.1 mm 4.4 million -8.8 million

7.5 Discussion

The corner bracket example tests the possibility of modelling a material gradation using

finite elements. The method is suited for the representation of multiple materials, because it

is trivial to assign different attributes to different elements in the model.

The main difficulty of the technique is the scalability. This example uses a very coarse

element size (10 mm) and a small number of discrete steps in the material mixtures. The

number of nodes required for an element size of about 1 mm would increase by a factor of

100 to 44,000. The current ANSYS licence at our site limits the number of nodes to 32,000

(ANSYS/Multiphysics University High option), and the maximum number of nodes available

with the software is 128,000 (ANSYS/Multiphysics Research Faculty option), which would

permit element sizes of around 0.586 mm.

126

Figure 7.3: Operations performed in the corner bracket model

127

Figure 7.4: Optimisation of material distribution

128

Chapter 8

Software development

For the current project the software use revolved around tools used for visualisation of a voxel

model and this was done using the Visualization Toolkit (VTK). The graphical notation and

the key concepts used in this section correspond to the OMT methodology (Rumbaugh et

al. [28]), whose concepts and notation are briefly presented in appendix B.

In this chapter I briefly explain what the framework of the VTK object model is, how

it is used to represent data used for various visualisation tasks and how it was extended to

store a voxel model as an octree.

8.1 VTK framework elements

A visualisation system deals with the data representation and its transformations. VTK

proposes the concepts of the datasets and the pzpelznes to address each of these. "From

an object-oriented viewpoint, transformations are processes in the functional model, while

representations ate the objects in the object model"[57, p. 84].

Schroeder et al. explain that object oriented purists may object to their design choices,

which specifically separates operations from data objects. The reason for the 'unconventional'

choice are the disadvantages of combining data and operations when the operations are much

more complex than the data that they operate on, duplicating complex algorithms for several

data types and the -user's perception of how the operations are performed on the data. which

129

means that processes are naturally viewed as objects.

However, the system implements a few operations within data objects. The operations

implemented within data objects were identified based on the authors' experience implemeiit-

ing visualisation algorithms.

The VTK visualisation pipeline

A visualisation process is concerned with transformations and mappings of data. To represent

and abstract them, VTK proposes the idea of thinking of them as pipeline elements that can

be assembled together. In this abstraction there are three types of elements: sources, filters

and sinks.

* Source objects are for example data readers and geometry generators.

9 SMk objects are data writers and mappers that ultimately will present their output on

a computer display.

e Among these a pipeline usually has filters that perform the transformations from one

data representation to another or combine several inputs.

The connections between pipes are checked for data type, because certain filters expect

a specific type of input. Some filters require several inputs and may fan out to one or more

branches of the visualisation pipeline. Sources and sinks usually have only one connexion:

an output or an input, respectively.

The pipelines are often arranged along a line, which represent a series of operations to be

performed in sequence. A pipe may also branch out, e. g. to show multiple representations of

the same data, or several branches may merge in a filter or a mapper. The idea of pipelines

doesn't usually lend itself to form loops unless there is control of when the execution of the

operations in the pipeline occur.

The execution of operations can be either explicitly controlled by an 'executive' or can

be implicitly requested every time that a part of the output requires output. Iris Explorer,

AVS and IBM Data Explorer use the explicit approach, which lends itself better for parallel

processing and distributed computing. VTK uses the implicit execution method, which is

130

ExecDutive

If
J*

1. A parameter modified
2. Executive performs dependency analysis
3. Executive executes necessary modules in
order A-B-D-E,

(a) Explicit

1. A parameter modified
2. E Output requested
I Chain E-D-B-A back propagates Updateo
method
4. Chain A-B-D-E executes via Executeo
method

(b) Implicit

Figure 8.1: Explicit vs. implicit network execution

simpler and modular, because a network element doesn't need to know about other objects

except its inputs.

There are three proposed methods to interface with one's own data, depending on the

complexity and sophistication required:

* Programming interface: Data is directly read, processed and written by a user's ap-

plication. Data can be programmed and described through a program and fed into a

network for visualisation. This is the most flexible approach, but requires the highest

expertise.

4P File interface: Data is prepared in a standard recognisable format and processed by

using readers and writers implemented within VTK.

System interface: This refers to the possibility of interfacing to other visualisation sys-

tems that manage whole scenes, with lighting, actors, cameras, geometries and trans-

formations through exporters and importers. For example it is possible to use importers

and exporters with VRML scenes, 3D Studio models and Render. Alan RIB files.

131

sl LvtkScalars vtkDataSet vtkDataSetAttribute I

vtkPointData

vtkCellData

Figure 8.2: A VTK dataset

8.1.2 Data representation in VTK

vtkVectors

vtkTensors

vtkNormals

vtkTCoords

vtkFieldData

There are several desirable characteristics for the data representation in a visualisation sys-
tem. The criteria for the design of VTK's data representation includes:

Compactness, to minimise memory requirements

Efficiency, to be able to access data easily, independently of the size of the data.

Mappability, to be able to represent visually the information without recourse to complex

conversion processes.

Minimal coverage, which refers to achieving a minimal number of data types to represent

efficiently visualisation data.

Simplicity, which is preferable in computational applications in order to understand and

optimise the designs.

The data objects in the visualisation pipeline are called datasets. The object model

diagram of this part of the toolkit is shown on figure 8.2.

The dataset has two parts: its geometry and its topology. The topology is represented

through cells and instantiated to a specific geometry through po%nts. There are 12 types of

cells defined in VTK: Vertex, Polyvertex, Line, Polyline, Triangle, Triangle strip, Quadrilat-

132

0

VTK-VERTEX

el

VTK-TRIANGLE VTK-TETRAHEDRON

Figure 8.3: Simple VTK cell types

eral, Pixel, Polygon, Tetrahedron, Hexahedron and Voxel. Figure 8.3 shows some of the cell
types.

Data attributes can be associated either to the cells or the points, and there is a separate
data attributes object for the data associated to the cells and the data associated to the

points.

The data attributes object can contain, hold or be associated with several data types

simultaneously. This is represented in figure 8.2 as the fan of associations spanning to the

right of the vtkDataSetAttributes class. A vtkDataAttributes object does not store

the attributes directly, but through relations with objects of several types: scalars, vectors,

tensors, normals, texture coordinates and field data (the most general type).

Classes that store the information of several data types are specialisations from the at-

tribute data class: vtkAttributeDataClass. There is one for every data type supported:

vtkVectors, vtkTensors, vtkTCoords, vtkScalars, vtkNormals. The more general

vtkFieldData, is a separate class altogether.

There are several specific types of datasets:

Polygonal data. This is data in the form of vertices, polyvertices, lines, polylines, triangles

and triangle strips. This is unstructured data in one and two dimensions. This is a very

useful representation for visualisation of surfaces in space. There is specialised hardware

VTK-POLY-VERTEX VTK-LINE

133

that operates particularly on polygonal data with optimised speed. Particularly triangle

strips are convenient to represent a surface through triangles with an efficient use of
memory.

Structured Points. These are collections of points and cells arranged on a regular rectan-

gular lattice. The points and cells are regularly arranged parallel to the global x-y-z

coordinates. The information required to represent the geometry and topology is min-
imal: only the coordinates of the origin, dimension of the dataset and the spacing are

required. If only two dimensions are used, the dataset is referred to as a pixmap, a
bitmap or an image.

Rectilinear Grid. This dataset has regular topology, aligned with the coordinate axes, but

with irregularities in the spacing.

Unstructured Points. There is no topology associated with this dataset, and points are

just a cloud in space with no structure associated to them. Vertices and polyvertices

are used to represent unstructured points.

Unstructured Grid. This dataset is the most general one and it can hold any type of cell,

unlike the polygonal data which is limited to 2-D primitives. Both the topology and

the geometry are completely unstructured.

VTK's dataset hierarchy, shown in figure 8.5, shows the types of datasets available within

the framework.

This data model may sometimes differ from the way a user may have his or her data,

since the designers aim at representing most, but not all possible types of data. In rare cases

the user may need to adapt the uses to the characteristics of the system.

Schroeder et al. discuss some other data models used in AVS (the Application Visual-

ization System) and the Data Explorer (Haber, Lucas and Collins' model) - In general they

reckon that VTK's data model is not as abstract as that of either AVS or Haber's. The trade

off in abstraction against simplicity was an intended design choice to make the systein easier

to use for the casual visualisation user.

134

(a) Structured Points (b) Rectilinear Grid

". " SW.
S"S
S

S
SS

(e) Polygonal Data

0

(d) Unstructured Points

SS" "�
SS

(f) Unstructured Grid

Figure 8.4: Dataset types

135

(c) Structured Grid

vtkObject

vtkDataObject

vtkDataSet

vtkStructuredPoints vtkRectilinearGrid vtkPol ntSet

Fv-tkStructuredGrid I vtkUnstructuredGridi vtkPolyData

Figure 8.5: Dataset object diagram

8.2 An extension to the toolkit

The structured points dataset was extended by a specialised class that stores the data in an

spatial manner with the purpose of saving memory.

The vtkOctree class is derived from the vtkStructuredPoints class which comes in the

original toolkit (see figure 8.6). The methods and support classes to achieve the storage of

voxel information spatially are implemented and a small change in the vtkScalars is made to

allow a subclass to override a method needed for this representation.

The data structure or data object created this way is then compared for memory usage

with a few representative voxel models to quantify the memory savings.

The toolkit includes an object similar in nature but with a different purpose. The

vtkPointLocator and the vtkCellLocator also implement an octree storage scheme but

using a flat memory model and not using pointers. The purpose of the locators is to quickly

locate cells and points in space. The difference is that for the same resolution or level, the

octree implemented in the point locator uses more memory than a corresponding structured

points dataset.

136

vtkObject

vtkDataObject

vtkDataSet

vtkStructuredPoints

vtkOctree

Figure 8-6: The vtkOctree class in VTK's object hierarchy

8.2.1 The octree dataset

A voxel mode is represented in VTK using vtkStructuredPoints. vtkOctree was de-

rived from vtkStructuredPoints, because the data stored in an instance of this class is

inherently the same as the data stored in the voxel model, only the method of storage changes
from a regular storage to spatially referenced storage.

The classes involved in the implementation are:

o vtkOctree

o vtkOctreeNode

o vtkOctreeScalars

The object diagram in figure 8.7 shows the relationship among the three classes.

The associations among the three classes aligned at the top of the figure, vtkOctree,

vtkPointData and vtkScalars are the same associations represented in figure 8.2, omitting

for clarity the association with vtkCellData and showing the specialised classes vtkOctree

and vtkPointData instead of vtkDataSet and vtkDataSetAttributes, again for clarity. Iii

this case these associations are inherited from the respective superclasses.

A new association is required in this diagram to link cyclically the vtkOctreeScalars to

a vtkOctree. The messages passed between the objects vtkOctree and vtkOctreeScalars

137

vtkDataSetAttributes

vtkOctree vtkPointData I vtkScalars
Initialize(pts: vtkStructuredPoints)

#AddScalar(S: float) : int
ComputePointId(ijk: int [31): int

#cons truc tOc tree (level: int, i- int, j: int, pts: vtkStruc turedPoints) : vtkOctreeNode

vtkOctreeNode
homogeneous: boolean = true
scalarId: int
GetNode(node: int): vtkOctreeNode
SetNode(node: int, node: vtkOctreeNode)

vtkOctreeScalars
IndexMode: int
SetlndexModeToLinearo
SetIndexModeToOctreeo

Figure 8.7: Object model for the octree

are used to map the structured coordinates and id as used in a standard structured points

dataset and the mapping done in vtkOctreeScalars.
The id in a GetScalarid message passed to an object of class vtkStructuredPoints

refers to the structured coordinates as described in figure 8.8. This id mapped through an

octree that stores spatially the ids of scalars stored in the vtkOctreeScalars (see figure 8.9)

vtkOctree

This class implements the data set concept. It is derived from vtkStructuredPoints.

The member functions are:

AddScalar implements the storage of values in an associated vtkOctreeScalars object. It

returns the scalarId associated with the value stored, after verifying the homogeneity

condition.

Initialize creates the octree spatial structure from an input dataset in the form of struc-

tured points.

ComputePoint Id (ij k [31) returns the point Id at a position i-j-k given in structured coor-

dinates.

138

pp,
dim[O]

dim[2

id -i+i* dim[O] +k* dim[O] * dZm[l]

Figure 8-8: The structured coordinates of a vtkStructuredPoints dataset

vtkOctreaScalars

idl

id2

id3

id4

map through

Octree

(
real-idl value-1

real-id2 value-2

real-id-m

i d-n /

Figure 8.9: Mapping of scalarId to values with vtkOctreeScalars

ArrayValue3D(vtkStructuredPoints *sp, int x, int y, int z), and auxiliary func-

tion that is used in the creation of the octree.

In this implementation, the homogeneity was chosen to be that the values are equal.

This is practicable as the only values in the voxel model treated are values that indicate

the material. for example 0,1,2. In a different situation, the homogeneity condition could

implement checks of the value being added to be 'close' to a stored value, e. g.

new - oldl < tol

139

dim[l]

where new is the new value to be added, old is a value already present in the octree and tol
is a given tolerance to determine the granularity of the representation.

PowerOf 2Dimension is used to store a value of the form 21evel, i. e. a power of 2, so that
2 level > max(dimx, dimy, dim,)

vtkOctreeScalars

This class is used to store the scalars in the model. The difference in this class, compared

with vtkScalars is the indexing. The retrieval mechanism works by mapping the id through

an associated vtkOctree as explained above in reference to figure 8.9.

The mapping of values in the class has to work exactly like the parent class for consistency.
To achieve this, the fewer values stored in the vtkOctreeScalars structure is mapped to the

entire volume through a vtkOctree. When a value is requested from the vtkOctree class, the

call looks like

value = octree->GetPointDat aO ->GetScalars ()->Get Scalar (pt Id);

In the case of an octree, the results of the GetScalarso function call will return a vtkOc-
treeScalars object, that will know how to do the mapping. The id is one and the same,

whether it is calculated for vtkStructuredPoints or vtkOctree structure.

The definition of vtkScalars has to be changed slightly, though to allow for the poly-

morphic form of the class to achieve the desired result. The change needed is to make the

GetScalaro member function in vtkScalars a virtual function. Only after this change will

vtkOctreeScalars operate as expected. The binding of GetScalaro is otherwise done at com-

pile time and the redefined (overridden) GetScalar method would never be invoked at run

time by classes that did not know about vtkOctreeScalars at compile time, which represents

the whole toolkit as it is distributed.

This change was possible because of the open source nature of the toolkit.

Class relationships

The classes in this implementation interact and rely on one another for their tasks. The rela-

tionships were indicated in figure 8.7. The figure describes how an octree object vtkOctree

140

has a vtkOctreeNode object, which is the head or root of the tree. The vtkOctreeNode

has eight nodes of the same type, which are the subspaces, in case that the node is inhomo-

geneous. When the node is homogeneous, these children are not used and the object stores

the scalarId instead.

The scalar values associated with a specific scalarId are stored in an associated vtkOctreeScalars

class, which will hold values for the branches of the tree.

Because of the reduced number of scalars stored in the vtkOctreeScalars class, the use

of the scalarId needs to be differentiated from the use of a pointId, unlike the case in the

vtkStructuredPoints dataset. In the vtkOctree class, the indices indicated as Zdj in figure

8.9 (to the left) correspond to the pointId values, while the ones labelled realldi correspond

to the scalarId values. For a developer using the class, though, the access mechanism

combined with the overridden methods in vtkOctreeScalars make this transparent.

8.2.2 Creation of the octree structure

The algorithm implemented is a 3-D extension of Samet's algorithm to create quadtrees from

binary arrays[56]1.

procedure vtkOctree:: Initialize(pts)

/* create the octree corresponding to a structured points object */

begin

int level;

this -ý Setl) imensions (pts--ýGetDimensionsffl;

/* calculation to have a cube of dimension (2 level)3

large enough to hold the structuredPoints

level +- ceil(1092 PowerOf2Dimension);

this--+head ý- construct Octree (level, 2 level
12

level
12

level
, pts);

end

'The notation used in the algorithms represents assignment with the left arrow symbol (ý--) and C++ style
indirections from a pointer to a structure to a member -, vith the right arrow symbol (-4)

141

vtkOctreeNode procedure construct Octree (level, i, j, k, pts)

/* construct the portion of an octree of size (2 level)3

having i, j, k as the coordinates of the far corner of the subcube. */

begin

nd +- new vtkOctreeNode;

if (level == 0) then

begin

/* process the voxel */

nd-+Homogeneous0no;

/*find the scalar Id of the voxel and assign it in the node

nd-ýSetScalarld(ArrayValue3D(pts, i-1, j-1, k-1));

end

else

begin

level level - 1;

half 21evel

nd-ýHomogeneousOffo

nd-ýnode[O] construct Oct ree (level, i- half, j- half, k-half , pts);

nd--+node[l] construct Octree (level, i, j- half, k-half , pts);

nd-ýnode[2] construct Octree (level, i- half, j, k-half , pts);

nd-4node[3] construct Octree (level, i, j, k-half , pts);

nd-4node[4] construct Octree (level, i- half, j- half, k, pts);

nd-4node[5] construct Octree (level, i, j- half, k, pts);

nd-+node[6] construct Octree (level, i- half, j, k, pts);

nd--+node[7] construct Octree (level, i, j, k, pts);

/* check homogeneity

i ý-- 1;

boolean equal ý- nd-ýGetNode(O)-ýIsHomogeneouso;

int previousl&- nd--+GetNode(0)-ýGetScalarId0;

142

while (equal and i<8) do

begin

equal +- nd-ýGetnode(i)-ýIsHornogeneouso and
(previousld == nd-*GetNode(i)-ýGetScalarIdo);

i ý- i+1;

end
if (equal) then /* all branches are of the same id*/

begin

nd-ýHomogeneousOno;

nd-+ Set S calarld (previousld);

for i :-0 to 7 do

nd--+Setnode(i, NULL); /* erase children*/

end

end

return nd;

end

8.2.3 Test of memory usage and discussion

A test program was created to compare the memory usage of the octree implementation.

The test consisted of reading a data file, creating the octree memory representation and

reconstructing an structured points set from the octree model. Table 8.1 on page 145 shows

the results. The only case in which the octree performs better than a standard structured

points dataset is in the case of a regular pattern.

The performance of this octree implementation is poor. The overhead incurred in the

inanagement of a spatially stored data structure offset any savings in memory usage by

storing only one value for an octree bucket.

The ratio between the memory used and the number of nodes of the octree remains

coiistant at slightly over 64 (e. g. 72,839,000/ 1,138,089 ý- 64). Clearly the number of bYtes,

143

used in a node is 64 and clearly most of the memory usage are pointers.

This storage mechanism is therefore generally not convenient because of the overhead in

pointers.

The octree developed can reduce the amount of memory used to represent a volume data

set. Jackins and Tanimoto[231 and Chen and Huang[9] present various algorithms for the

creation and manipulation of these data structures. In previous work[43] it was stated that

the octree scheme needed to be tested to decide whether it is worth applying the scheme.

The tests here show that the overhead in pointers and the lack of large scale compression

when all children have the same value leads to an inefficient storage structure.

144

; -4
Cn 0*ý

00
t-
Lr.)

, 06 C-, 06 ,c
m t- t-

m cq (M LO
c)o

o 4 Li Lo m

$-4

Lr:) C)
m CIA t-- ý. C)
00

'
ýo cli 1: 14

Cý Cý cli

Q)
ý-4

;ý
cn -ý4 -ý4 -ý4 'o -4- C:) C:) "o

-4- -4-

ýc clý 7t ý-o

C) C14

clý clý

00 00 oo

0
x 8 x C=) CD CD CD

cq 4 00

x

ob

00
X

x

00

X

oo

CD

r--l
X

CD

r-4
X X

r-11
8

C:) C) C:) 0*ý

C:) C:) C)

r--q r--4

cq
4-D

4-D
>

a)

ýý

; -4
-4-.,;

-4-
C14

a) clý

4-D

cp

cc
CL)

-,,
$-4

't
ý-4

clý

$-4

a3

cl (::)
cl

D >

bZ

4
4-

ýi -4 ýn4
>-ý ýý $-4

(1) 4-D 4-D

4-D
4-D
a) (1)

ce -ý4
-cl

; -4 4ý
Uý

Cd

Ct cl

cn
cd

ý4 b JC . C)
U)

7j
(a)
; --4

4-D

-4. -D
UD

C)

(1)

bD
cd
U)

0

06

145

Chapter 9

Voxel model

Based on the framework provided by the Visualization Toolkit (VTK), a system to support
rapid manufacturing techniques is outlined by developing programs that permit the use of
the model as indicated in figure 1.2.

9.1 Generating the model

VTK Datafile

In order to test some of the programs in this project, a voxel model was created directly 'by

hand', because it is an expedite way of generating a voxel model.
The model is held as a structured points dataset within VTK.

The format used was the format of a standard VTK data file. An example file is displayed

in figure 9.1. The values used inthe this example are integers of value 0,1 or 2, which represent

void space, material I and material 2 respectively.

The generation of the model from a data file is convenient for small sized models. The

data file is created in a standard text editor. In the creation of the models, copy and past

operations from a spreadsheet made some tasks easier. This method would not be suitable

for larger models, where some other methods would be necessary, perhaps interactive or

programatical input methods. The model on figure 9.2 was created by hand.

146

vtk DataFile Version 1.0
L shaped block with a through-shaf t of material 2- zero padded
ASCII
DATASET STRUCTURED_POINTS
DIMENSIONS 10 10 10
ORIGIN 0.0 0.0 0.0
ASPECT-RATIO 5.0 5.0 5.0

POINT-DATA 1000
SCALARS scalars float
LOOKUP-TABLE default
0000000000
0101111100
0222222220

one thousand data values 10 * 10 * 10 = 1000

0121111120
0101111100
0000000000

Figure 9.1: Example VTK datafile

II

Figure 9.2: Voxel model generated manually

147

9.1.2 Semi automated model generation

A few tools and applications were linked to create a voxel model. The steps followed to create

a representative voxel model are (see figure 9.3):

e Create a geometry in a solid modeller such as Unigraphics

* Ransfer the geometry to a Finite Element package to do the meshing of the geometry.

Iýansform the data from the mesh (tetrahedrons) to a data file for an unstructured

grid in VTK.

* Assign values to the data points of the unstructured grid model to represent the ap-

propriate material at the position.

e Sample the volume where the model is defined at a convenient sample rate and ob-

tain a voxel model from the original model. The values asigned at the nodes of the

unstructured grid are used in the interpolation.

This method was tested with a simple geometry (figure 9.4) and for the geometric data of

a turbine blade. The geometry was obtained from Alstom (previously ABB Alstom Power)

through the Rapid Manufacturing Consortium at De Montfort University.

The geometry was simplified, to include only the part corresponding to the foil of the

turbine blade (figures 9.5 and 9-6), because of the simplification of geometry which makes it

easier to process (transfer and mesh) the part through the finite element software. it is also

expected that only the foil part of the turbine blade would present a gradation.

The simplified geometry, in the form of an IGES file was subsequently imported in Algor.

A tetrahedral mesh is generated (see figure 9.7). Tetrahedrons are again selected because of

their simple geometry that is more stable in the voxelization step.

The next step is to export the vertex and cell data. The feature to export directly the

raw mesh information doesn't seem to be available in Algor, but the feature to export the

data to ANSYS generates a text file with the information in ANSYS' prep7 format. The

transformation of the prep7 data to vtk's format was done manually. A small change required

148

Begin

CAD
Unigraphics part

MODELLING
SOFTWARE

IGES file with the surfaces

Import IGES file in Algor

FINITE ELEMENT
SOFTWARE

F-Mesh
the imported

Export vertex and cell data

Transform vertex and cell data I
to vtk's format

VISUALIZATION
TOOLKIT

Generate a voxel model
using the unstructured grid

as an implicit function

End

Figure 9.3: Alternative method of creation of a voxel model

149

Figure 9.4: A simple geometry used to test the transformations

150

Figure 9.5: Unigraphics presentation of the complete geometry of the turbine blade

151

HUnigiaphics V16.0 -Gateway MEZE3
file Eck Yiý InImt FrjlmQt lools 8nemblos ýýCS InfurnaWn AraJyýs Eiefeiýý; Apphcal, on Wý_Jow djp

61 e

Restore data was reset by ths operation

Figure 9.6: Unigraphics presentation of the simplified geometry, i. e. foil section of the turbine
blade

152

Ejle Edit 6dd Construcl Mgdity FEAMesh FEAAdd Analyze Seled

rzý 15 ýs

IýI E31 -1--l HIMI ap I c: O I rim-! I r% I F-i II-I,? I (En I? 1ý

Ready
X- [40 5098 y- Foe on

Figure 9.7: Algor presentation of the tetrahedral mesh generated

153

"turbinelOO. vtk" reader I
unstructured grid reader

dataset I Implicit data set

theSample I sample function

scale I image shift scale filter

piunWriter I image writer

"turbine. O"
"turbine. l"

turbine. 99"

Figure 9.8: VTK pipeline to transform an unstructured grid (FEM mesh) to voxels

was the numbering of the nodes, which in prep7 format begins with one, had to be changed
to vtk's convention to begin with zero.

The last step, which transforms the unstructured grid to voxels is done with a vtk pipeline
implemented in a Tcl script. Figure 9.8 is a schematic of the pipeline.

The special component of this pipeline is the implicit data set, which takes the input

from the unstructured grid. Its output is sampled by the next element in the pipeline.
When queried for a value inside a tetrahedron in the unstructured grid, the implicit dataset

hviterpolates the scalar values given at the nodes of the tetrahedral cell and returns the result

to the sample function.

The result is then scaled with a vtkImageShift Scale filter to an integer to be written as

an image by the last component of the pipeline, the vtkPNMWriter.

These image files have the same format as medical imaging data, and the result could

have been visualized using Mimics, had the trial licence not expired.

9.1.3 Pipeline code

The code for the pipeline is outlined below:

154

vtkUnstructuredGridReader reader

reader SetFileName "-- /turbinelOO
- vtk"

reader Update;

vtkImplicitDataSet dataset

dataset SetDataSet [reader GetOutputl

dataset SetOutValue 0

vtkSampleFunction theSample

theSample SetImplicitFunction dataset

theSample SetModelBounds -13.8 15.89 192.2 252.4 -13.43 12.65

theSample SetSampleDimensions 59 120 52

theSample ComputeNormalsOff

theSample Update

#the Update process queries the dataset 59*120*52 times

vtkImageShiftScale scale

#calculate the shift and scale

scale SetShift $shift

scale SetScale $scale

scale SetOutputScalarTypeToUnsignedChar

scale SetInput [theSample GetOutput]

vtkPNMWriter pnmWriter

pnmWriter SetFilePrefix "turbine"

155

pnmWriter SetInput [scale GetOutput]

pnmWriter Write

9.1.4 Discussion

The semi automated method used is much friendlier to the designer, because the geometrY
can be more conveniently represented using an advanced modeller, such as Unigraphics.

The step of conversion of the geometry to a tetrahedral mesh was not suitable for auto-
matic execution. There were many problems in the conversion that had to be looked at durig

the meshing. The acute edges of the foil seemed to have caused problems while meshing.
For the task of meshing, both ANSYS and Algor were used, selecting reasonable defaults

and retrying several times to get a satisfactory solution. The meshing process with ANSYS

could not be completed after several attempts varying many meshing parameters. Algor was

successful after a few attempts, although it proved less flexible at the time of exporting the
data of the resulting mesh.

This process was only tested using tetrahedral cells (figure 9-9).

The same transformation was performed on a simpler geometry (figure 9.4), to test the

process with hexahedral cell elements (figure 9.10). These proved more problematic at the

time of sampling through an implicit function and several 'cheese-holes' as shown on figure

9.11, appeared in the model sampled from hexahedra. The model sampled from tetrahedrons

didn't have the same problem. The problem may be related to the treatment of hexahedral

cells as they degenerate into tetrahedra by merging several nodes at a point.

9.2 Visualisation pipeline

In this section, an example pipeline is built to process a voxel model within the framework

of VTK. The sequence of steps is represented in figure 9.12. This pipeline processes a model

with two inaterials.

156

3

2

I

VTK-TETRA

Figure 9.9: Topology and numbering conventions for a tetrahedral cell in VTK

76

4

2

0

VTK-HEXAHEDRON

Figure 9.10: Topology and numbering conventions for a hexahedral cell in VTK

157

J611al 0-1, ul FT cý, I& lwtý- +1+, l ffOl 31
.II

<dzid Q01<91 ' ILIIA. T 11 ffj

,f"

916

ARM- J6p6
qmprm

ripli
J& L

, wrl',:, -. - 'q- I
d

Ir

jol'. 3" ,- JE- -. El Min Contrast Max Optimize Shades Masks Achv Mask

Al een F- I
FFull F-P Gr _YJ Ready

Figure 9.11: Mimics display of a voxel model of the solid shown in figure 9.4. The black

regions show the problem associated with using hexahedra as opposed to tetrahedra.

158

9.2.1 Input step

The model data is stored in the data file '' dat . vtk II, which is read by the reader object

to feed the pipe.

vtkStructuredPointsReader reader

reader SetFileName "dat. vtk"

reader Update

9.2.2 Classification step

The pipeline has two vtkImageThreshold objects: selectl and selectl The input to

these objects is the output of reader, a ztypevtkStructuredPoints data consisting of zeros,

ones and twos.

vtkImageThreshold selectl

vtkImageThreshold select2

vtkMarchingCubes contourl

vtkMarchingCubes contour2

selectl SetInput [reader GetOutputl

select2 SetInput [reader GetOutputl

The parameters assigned to the select objects filter the input to either material 1 or

material 2 exclusively.

selectl ThresholdBetween 11

selectl SetInValue 1

selectl SetOutValue 0

select2 ThresholdBetween 22

select2 SetInValue 1

select2 SetOutValue 0

The output of the select objects is an structured points data set (vtkStructuredPoints)

with only two values: either zero or one ("in" and "out" values), ie. the classified objects.

159

9.2.3 Contouring step

The next step is the contouring of the resulting volume.

objects. The class of these objects is vtkMarchingCubes.

vtkMarchingCubes contourl

vtkMarchingCubes contour2

contourl SetInput [selectl GetOutputl

contourl SetValue 0 0.5

contour2 SetInput [select2 GetOutputl

contour2 SetValue 0 0.5

This is done with two contour

The values chosen for the contouring are important. In this case the value 0.5 represents
the mid-value between 0 and 1, where the I represents material and 0 represents void. This

values are linked to the choice of "in" and "out" values chosen for the classsification step.

9.2.4 Mapping

To complete the visualisation, the output of the contours is sent to two mappers, one for

each contour. Actors are built in the standard way to display both materials. mapperl

and mapper2 are both vtkDataSetMapper objects, which is a more general mapper used for

visualisation. Since the data to be displayed in this case is of type vtkPolyData, mapperl

and mapper2 could alternatively be of class vtkPolyDataMapper.

vtkDataSetMapper mapperl

vtkDataSetMapper mapper2

vtkActor actorl

vtkActor actor2

vtkRenderer ren

vtkRenderWindow renWin

160

Figure 9.12: Visualisation of the two contour surfaces obtained from the voxel model

mapperl SetInput Econtourl GetOutputl

mapperl ScalarVisibilityOff

mapper2 SetInput Econtour2 GetOutputl

mapper2 ScalarVisibilityOff

actorl SetMapper mapperl

actor2 SetMapper mapper2

ren AddActor actorl

ren AddActor actor2

161

"tur reader
(vtkPNMReader)

viewer
(vtklmageViewer)

Figure 9.13: Visualisation of the model through slices

renWin AddRenderer ren

9.2.5 Visualisation through slices

A simple method to visualise a voxel model is through slices in the three coordinate planes.

The pipeline for this case consists only of a reader of type vtkPNMReader and a viewer of

type vtkImageViewer (figure 9.13). This pipeline presupposes the input in the form of image

files.

9.3 Contouring for manufacturing

For the creation of the STL files that represent materials I and 2, a tcl/tk script implementing

a custom-built pipeline was created. This is again a specific case of the visualization pipeline.

The sequence of steps for processing a model with two materials is represented in figure 9.14.

The steps in this process are the same steps as in section 9.2: input, classification,

contouring and mapping.

The first three steps, input, classification and contouring are exactly the same as the ones

explained in section 9.2. In this case, though, one mapper of the class vtkSTLWriter is used

for the mapping of the obtained contours.

vtkSTLWriter writer

writer SetFileName I'matl. stl"

writer SetInput [contourl GetOutputl

writer Write

162

Figure 9.14: Contouring the voxel model to create STL files. Two-material model.

163

Figure 9.15: Model manufactured from the voxel model

writer SetFileName "mat2. stl"

writer SetInput Econtour2 GetOutputl

writer Write

9.4 Finite Element mesh generation

The finite element mesh for a given model is not unique, i. e. there are several possible meshes

that represent the same model.

The following algorithm implements the generation of a simple mesh based on tetrahedral

elements I.

procedure CreateFiniteElement Mesh (vm, nx, ny, nz)

/* create a mesh of tetrahedral elements based on the voxel model vm

with dimensions nx, ny, nz*/

begin

/* generation of the nodes

'The notation used in the algorithms represents assignment with the left arrow symbol (+-) and C++ style
iiidirections from a pointer to a structure to a member with the right arrow symbol (--+) as noted previously
oil page 141.

164

�F

z

Figure 9.16: Nodes for an element of the voxel model

int count ý- 1;

for i: = 0 to nx

for j: =0 to ny

for k: = 0 to nz

GenerateNode (count, i, j, k, vm);

count ý-- count + 1;

end

end

end

/* generation of the elements */

2. nt Xadd, Yadd, Zadd;

int mat;

mt count

/* node numbering for the first element (closest to origin) */

165

int AO 0

int BO I

int CO ý- nx+l

int DO nx+2

int EO (nx+ 1) (ny+ 1)

int FO (nx+ 1) (ny+ 1) +I

int GO 2+2 nx + ny + nx ny

int HO 3+2 nx + ny + nx ny

for i: = 0 to nx -I
Xadd ý- i+1;

for j: =0 to ny -I
Yadd ý- i (nx+1);

for k: = 0 to nz -1

Zadd i- k (nx+l) (ny+l)

A AO + Xdd + Yadd + Zadd +1;

B BO + Xdd + Yadd + Zadd +1;

C CO + Xdd + Yadd + Zadd +1;

D DO + Xdd + Yadd + Zadd +1;

E EO + Xdd + Yadd + Zadd +1;

F FO + Xdd + Yadd + Zadd +1;

G GO + Xdd + Yadd + Zadd +1;

H HO + Xdd + Yadd + Zadd +1;

ptId vm-*ComputePointId(ij, k);

mat vm-4 GetPointDatao -ý Get Scalars()-* Get Scalar (ptId);

GenerateTetrahedralElements (count, A, B, C, D, E, FG, H, mat);

count 4- count + 1;

end

end

end

166

end

procedure GenerateNode (count, i, j, k, vm)

/* Generate a node with node number count of structured coordinates ij. k in the

voxel model vm*/

begin

x vm-40rigin[O] + i*Spacing[O];

y vm-40rigin[l] + i*Spacing[l];

z vm-ýOrigin[2] + i*Spacing[2];

write "N, count, x, y, z"; /* this is specific to ANSYS

end

procedure GenerateTetrahedralElements (count, A, B, C, D, E, F, G, H, mat)

/* Generate six tetrahedral elements of material mat in the volume

defined by nodes A, B, C, D, E, F, G, H

begin

write "mat ", mat; /*this is specific to ANSYS */

write "type 72 ", /* ANSYS tetrahedral element type is SOLID72

write "E" ,
A, B, C, G

write "E", A, B, E, G

write "E" B, E, FG

write "E" B, C, D, H

write "E" B, C, F, H

write "E" C, F, G, H

end

167

DESIGN
AND CONCEPTION

OF A PART

Compressed
ANALYSIS model
THROUGH

FINITE ELEMENT
METHOD

Ch. 8
9.1.2

Finite P PP
Element Voxel Model

Mesh

9.4
9.2

9.2.5

VISUALIZATION
(DISPLAY)

MANUFACTURE
THROUGH

RP

9.3

Manufacturing
interface
(STL File)

Figure 9.17: Programs for a system based on the voxel model

9.5 Summary

A system based on the voxel modelling technique can be developed based on the programs

presented in this chapter, as described in figure 9.17.

The voxel model can be generated directly (manually), although this should prove tedious

if not completely impractical. A more convenient method is presented in section 9.1.2, where

the voxel model is generated by sampling an unstructured grid. This method can also be

used to generate functional gradation in the volume by assigning values to the nodes of the

unstructured grid model. This approach is similar to the cell-tuple method proposed by

Jackson et al. (chapter 5). The sampling process in VTK assigns values interpolating within

a cell using the scalar values assigned to the nodes of a cell.

The compression proposed using the octree was presented previously in chapter 8.

Section 9.2 shows two methods of visualising the voxel model, either by contouring and

inapping surface models or by visualising individual slices. The visualisation processes should

prove easier to set up since we are building a system based on visualisation software.

Section 9.3 shows a method to produce industry standard STL files from a voxel model

168

through contouring. As an example, the STL files generated from a voxel model were pro-

duced using the SLA-7000 machine at the Rapid Manufacturing Group at De 'Montfort

University (see figure 9.15).

169

Chapter 10

Summary, Conclusions and Future

Work

This thesis studies the voxel modelling technique as means of representing multiple material

objects and functionally graded material objects their possible realisation through Rapid

Manufacturing techniques.

A review of Rapid Manufacturing processes was presented. The significant developments

in the techniques are apparent as well as the industry acceptance of these methods for the

reduction of design and manufacturing time cycles. It was shown that although the range

of materials is limited, the techniques are suitable for the realisation of complex geometries

with overhangs and undercuts that would be extremely difficult using conventional machining.

Additive processes can also be used to create parts with varying composition.

The possible applications of Functionally Graded Materials were reviewed. Applications

in aeronautics and astronautics show the importance of inhomogeneous materials in the

future of engineering applications. Thermal Barrier Coatings (TBCs) consisting of graded

layers of ceramic and metal have been used in many applications where parts are subject to

high thermal stress, e. g. rocket engines, turbine blades. Other applications include cutting,

tools, optical fibres and biornaterials. The processing methods are often very elaborate and

require special set-ups and sophisticated control of process parameters. RP methods capable

of controlling the material distribution should simplify the creation of inhomogeneous objects.

170

Computational Geometry methods used in CAGD were also reviewed, covering first curve
and surface modelling including the most general entities, the Non Uniform Rational B-
Splines (NURBS) for both curve and surface modelling as well as the IGES specification for

the transfer of graphics and geometric data and Solid Modelling techniques. The voxel model
is studied as a general case of volumetric data, considering various areas in science where
this representations are useful. The memory requirements for a voxel model are considered
irl the light of the resolution available in FGM creation methods and Rapid Manufacturing

processes. It is concluded that for some resolutions it is possible to consider the voxel

modelling technique as a suitable method of representation.

The methods proposed by two research groups at the University of Michigan (Dutta et

al.) and the M. I. T. (Jackson et al.) were reviewed. The first group proposes a method of

representation of FGMs (inhomogeneous objects) using product manifolds and trivial fibre

bundles. The researchers have an on-going work on the implementation of the 'heterogeneous

solid modeller' based on the ACIS kernel, a commercial solid modelling kernel. The second

group proposes the cell-tuple structure, based on the subdivision of the solid in cells. The first

method is a more general and it encompasses the second approach (the cell-tuple subdivision) -
The issue of the exploration of a usually large voxel model was considered. The creation

of parts by RP methods from a voxel model, was likened to other visualisation task. The vi-

sualisation of a voxel model through volume rendering was studied and visualisation software

for this type of application was identified. The Visualization Toolkit (VTK) was reviewed in

this context and this toolkit was used in further work as centre of a voxel modelling system.

The issue of modelling an FGM by subdividing the object in finite elements within a

FEA package such as ANSYS was considered and a trivial structural analysis example was

modelled testing the system. The maximum resolution attainable using this commercial

package was estimated at around 0.6 min for this 2-D example.

The VTK software toolkit was revisited to extend it into a modelling system to support

rapid manufacturing based on the voxel model. The design philosophy behind the toolkit

and the concept of a visualisation pipeline were considered. Data representation within the

framework of VTK was examined and the octree decomposition for graded materials was

171

CAD Application
DESIGN (e. g. Unigraphics)

Geometry transfered
using standard format

(e. g. IGES)

FEM Application
(e. g. AL Octree

I

Representation

vI Contouring

Finite
Element Voxel Model ANALYSIS Mesh

tV

SLICE
EXPLORATION CONTOURING

VISUALIZATION
(DISPLAY)

Manufacturing
interface
(STL File)

MANUFACTURE
THROUGH

RP

Figure 10.1: Applications of the voxel model

implemented within the toolkit to consider its applicability as a compression mechanism to

reduce memory requirements. The octree scheme was tested showing poor performance due

to the overhead of pointer structures.

Finally the VTK framework was used to provide a system based on the voxel modelling

method providing various transformations and possible uses. The programs developed give

the outline of a system as indicated in figure 10.1. Two examples of application of the system

were considered: a voxel model was generated from the geometry of a turbine blade and a

part was created from two material model by contouring and built using the stereolithography

process.

The developments in the Rapid Manufacturing processes have allowed the creation of

FGMs by additive manufacturing. This fact added to the unique advantages of the pro-

cesses e. g. the ability to create parts with geometry that would be extremely difficult to

produce using standard subtractive methods present an interesting prospect for engineering

applications.

The use of inhornogeneous objects in advanced engineering applications such as aerospace

172

and astronautics shows its importance for the future of engineering.
The voxel based techniques are particularly well suited for methods where the parts are

created one layer at a time, (parallel/image based systems) such as Solid Ground Curing

or Light Sculpting, where a whole slice is exposed simultaneously or material is deposited

through a mask. These methods are not the norm currently, and there are far more sequen-
tial/vector based systems.

The voxel modelling technique was developed and tested based on the framework of a

visualisation library. The problem of the limited resolution available was considered and tried

to overcome using an octree decomposition of a graded material voxel model. This approach

proved unsuccessful due to the large overhead of the structure. However the resolution may

still be considered, because the rapid manufacturing processes based on powder processing by

laser fusion or FGM creation by powder stacking are low resolution processes at the present

stage.

There are still challenging tasks that remain to be solved. The system needs an extension

to obtain a voxel model directly from a B-Rep representation or a surface model. The

efforts in direct slicing of CAD models (Jamieson and Hacker[26]) are useful in this direction.

They require however direct interaction with the solid modelling kernel, which in this case

is Parasolid (the solid modelling kernel of Unigraphics). Another addition necessary for

efficient creation of voxel models would be a CSG import utility, such as the on reported by

Chandru[8] et al. as part of their Geometric Workbench for Rapid Prototyping (G-WoRP).

These utilities could be added as an extension to the visualisation system framework, and it

would require careful study of the proper abstraction of curve, surface and solid modelling

constructs to achieve a good integration within VTK.

This integration of computational geometry methods in a visualisation framework may

be in tune with the solution of problems cited by Farouki[17] and the desire for -new, open

geometry engines" that would improve on the often unsatisfactory outcome of standards (e. g.

ICES and STEP) when it comes to integrating CAD with other fields (e. g. CFD). Part of

the problems in the transfer of solid models is that the development of CAD systems has

been driven by product-release deadlines and while specific solutions may work sufficientlý,

173

well in industry, the application of CAD systems in challenging contexts inflicts pain and
exasperation in the users. This difficulties are manifest in the lack of inter-operability among
major CAD packages and the general difficulty in conveying all model information among
systems and among applications.

The process planning of a powder deposition system suitable for processes such as ink jet

printing or laser powder fusion needs to be tackled and integrated in a complete system. It

was mentioned that at this stage models are created using the SDM process are "told" to use

various materials. In another example of an inhomogeneous object built using the Sanders

Model Maker machine (Kumar and Dutta[35]), the tool path for the material deposition was

also generated manually. The paper states

This is a complicated problem and currently there does not exist an automated

way of generating optimal tool paths for a given material distribution in a layer.

There is also the prospect of reexamining the use of voxel models at higher resolutions once

the computing power becomes available, as there are other exacting applications which require

massive computing power and have been forcing the limits of current computer architectures

and configurations. A publicised example is the ambitious Grid Physics Network project[6]

(http: //www. griphyn. org), a system which will start to process petabytes of data per year.

174

Appen ix A

Programs used for various tasks

A. 1 Visualising a small voxel model

The following application of the VTK pipeline to display a voxel model was tested for a

model of up to 10 x 10 x 10 elements. The system creates polygonal data of a cube for every

voxel present in the model using a glyph filter (vtkGlyph3D) and colours the voxel according

to the its value.

Tcl script
catch Iload vtktcll
source vtkInt. tcl
program in tcl to display voxels, as cubes and colour
them according to their value

Create the RenderWindow, Renderer and both Actors

vtkRenderer renl
vtkRenderWindow renWin

renWin AddRenderer renl
vtkRenderWindowInteractor iren

iren SetRenderWindow renWin
vtkStructuredPointsReader reader

reader SetFileName "data. vtk"
reader Update

VtkCubeSource cube
cube SetXLength 0.5

cube SetYLength 0.5

cube SetZLength 0.5

175

vtkGlyph3D glyph
glyph SetInput [reader GetOutput]
glyph SetSource [cube GetOutput]
glyph SetColorModeToColorByScale
glyph SetScaleModeToDataScalingOff

vtkLookupTable lut
lut SetNumberOfColors 3
lut Build
Olack and transparent
lut SetTableValue 0 0.0 0.0 0.0 0.0
lut SetTableValue 1 1.0 0.0 0.0 1.0
lut SetTableValue 2 0.0 0.0 1.0 1.0

vtkDataSetMapper mapper
mapper SetInput [glyph Getoutput]
mapper SetScalarRange 02
mapper SetLookupTable lut

vtkActor ptsActor
ptsActor SetMapper mapper

Add the actors to the renderer, set the background and size

renl AddActor ptsActor

render the image

iren SetUserMethod Jwm deiconify vtkInteractj
iren Initialize

A. 1.2 Example

The example is in the CD ROM in the directory 'glyphing'. By executing the tcl script

glyph3. tc1, the system displays a glyph model of the data in the file in dat a. vtk. Once t he

program is executed, the user can change the view with the pointer in the render window.

The user can also type V to access the interactor dialogue.

The directory 'glyphing/ comments' contains further comments and dialogue exaniples

using the interactor.

176

A. 2 Visualization of a model through slices

To visualise a larger voxel model, it becomes convenient to see the model by slices. The

following scripts allow the visualisation. of slices in any of the three orientations along tli(,

coordinate axes.

A. 2.1 Tcl script

The tcl script has three parts: rot-view. tcl, SliceOrder - tcl and WindowLevelInterf ace. tcl.

These scripts are an adaptation of the "viewer" and the "frog" example that come with VTK.

rot-view. tcl

Tcl script that displays the data from the series of PNM files

catch ýload vtktcl. dlll

source It. /Slice0rder. tcl"

vtkPNMReader reader
reader SetDataExtent 0 58 0 119 1 52

reader SetFilePrefix ". /turbine"

reader SetTransform ap
reader ReleaseDataFlagOn

vtkImageViewer viewer
viewer SetInput [reader GetOutputl
viewer SetZSlice 14
viewer SetColorWindow 1100
viewer SetColorLevel 152
#viewer DebugOn
#viewer GetWholeZMin
#viewer GetWholeZMax
viewer Render

viewer SetPosition 50 50
#make interf ace
source WindowLevelInterface. tcl

177

WindowLevellnterface. tcl

#a simple user interface that manipulates window level.
places in the tcl top window. Looks for object named viewer

#only use this interface when not doing regression tests
if J[info commands rtExMathl != "rtExMath"I ý

Take window level parameters f rom viewer
proc InitializeWindowLevelInterf ace

global viewer sliceNumber

Get parameters from viewer
set w Eviewer GetColorWindow]
set 1 Eviewer GetColorLevel]
set sliceNumber Eviewer GetZSlicel
set zMin Eviewer GetWholeZMin]
set zMax Eviewer GetWholeZMax]

frame slice
label slice. label -text "Slice"
scale slice. scale -from $zMin -to $zMax -orient horizontal

-command SetSlice -variable sliceNumber

f rame . wl
frame wl. fl
label wl. fl. windowLabel -text "Window"

scale wl. fl. window -from 1 -to [expr $w

-command SetWindow -variable window
frame wl. f2
label wl. f2. levelLabel -text "Level"

-orient horizontal \

scale wl. f2. level -from Eexpr $1 - $w] -to [expr $1 + $w]

-orient horizontal -command SetLevel
checkbutton wl. video

resolutions less than 1.0
if f$w < 101 f

set res [expr 0.05 * $w]

. wl. fl. window configure -resolution $res -from $res -to

. wl. f2. level configure -resolution $res \

-from [expr 0.0 + $1 - $w] -to Eexpr 0.0 + $1 + $w]
I

. wl. fl. window set $w

. wl. f2. level set $1

frame ex
button ex. exit -text "Exit" -command "exit"

pack slice wl ex -side top

[expr 2.0 * $wl

178

pack slice. label slice. scale -side left
pack wl. fl wl. f2 -side top
pack wl. fl. windowLabel wl. fl. window -side left
pack wl. f2. levelLabel wl. f2. level -side left
pack ex. exit -side left

I

proc SetSlice I slice If

global sliceNumber viewer

viewer SetZSlice $slice

viewer Render
I

proc SetWindow window
global viewer video
if f$videol f

viewer SetColorWindow [expr -$window]
else f

viewer SetColorWindow $window
I

viewer Render
I

proc SetLevel level
global viewer
viewer SetColorLevel $level

viewer Render

InitializeWindowLevelInterface

else f

viewer Render

Slice0rder. tcl

these transformations permute medical image data to maintain proper orientation
regardless of the acqusition order. After applying these transforms with
vtkTransformFilter, a view up of 0, -1,0 will result in the body part
facing the viewer.
NOTE: some transformations have a -1 scale factor for one of the components.
To ensure proper polygon orientation and normal direction, you must
apply the vtkPolyDataNormals filter.

179

Naming:
si superior to inferior (top to bottom)
is inferior to superior (bottom to top)
ap anterior to posterior (front to back)
pa posterior to anterior (back to front)
lr left to right
rl right to left

vtkTransf orm si
[si GetMatrixPointer]
[si GetMatrixPointerl
[si GetMatrixPointer]
[si GetMatrixPointer]
[si GetMatrixPointer]
[si GetMatrixPointerl
[si GetMatrixPointerl
[si GetMatrixPointerl
[si GetMatrixPointerl
[si GetMatrixPointerl
[si GetMatrixPointerl
[si GetMatrixPointerl
[si GetMatrixPointerl
[si GetMatrixPointerl
[si GetMatrixPointerl
[si GetMatrixPointerl

vtkTransf orm is
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl
[is GetMatrixPointerl

SetElement 001
SetElement 010
SetElement 020
SetElement 030
SetElement 100
SetElement 110
SetElement 121
SetElement 130
SetElement 200
SetElement 21 -1
SetElement 220
SetElement 230
SetElement 300
SetElement 310
SetElement 320
SetElement 331

SetElement 001
SetElement 010
SetElement 020
SetElement 030
SetElement 100
SetElement 110
SetElement 12 -1
SetElement 130
SetElement 200
SetElement 21 -1
SetElement 220
SetElement 230
SetElement 300
SetElement 310
SetElement 320
SetElement 331

vtkTransform ap
ap Scale 1 -1 1

vtkTransf orm pa

180

pa Scale 1 -1 -1

vtkTransf orm lr
[ir GetMatrixPointerl
[ir GetMatrixPointerl
[ir GetMatr ixPo inter]
[ir GetMatrixPointer]
[ir GetMatrixPointer]
[ir GetMatrixPointer]
Ur GetMatrixPointerl
Ur GetMatrixPointerl
[lr GetMatrixPointer]
[lr GetMatrixPointer]
Ur GetMatrixPointerl
Ur GetMatrixPointerl
[lr GetMatrixPointer]
Ur GetMatrixPointerl
Ur GetMatrixPointerl
Ur GetMatrixPointerl

vtkTransf orm rl
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPo inter]
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPointerl
[rl GetMatrixPointerl

A. 2.2 Example

SetElement 000
SetElement 010
SetElement 02 -1
SetElement 030
SetElement 100
SetElement 11 -1
SetElement 120
SetElement 130
SetElement 201
SetElement 210
SetElement 220
SetElement 230
SetElement 300
SetElement 310
SetElement 320
SetElement 331

SetElement 000
SetElement 010
SetElement 021
SetElement 030
SetElement 100
SetElement 11 -1
SetElement 120
SetElement 130
SetElement 201
SetElement 210
SetElement 220
SetElement 230
SetElement 300
SetElement 310
SetElement 320
SetElement 331

The script displays slices of the voxel model in any of the three coordinate directions bý,

changing the transformation that the vtkPNMReader uses, which can be one of ap, rl or is.

These names stand for anterior-posterior (ap), right-left (rl) and inferior-superior (is). D is

181

important to tell the reader the size of the voxel model with the SetDataExtent command.
In this example the file prefix is set to turbine and the extent is set to (0,58,0,119.1.52).

The last two values indicate the reader which files have to be read. This means that the

reader expects to find the files turbine. 1 through turbine. 52 with images of 59 by 120

pixels. All image files have to be the same size.

A. 3 Contouring a voxel model

A. 3.1 Tcl script

This script implements the conversion of a voxel model read from a vtk data file to a surface

model (STL file). The pipeline for this program is described

#######################

Program to contour a voxel model (isosurface extraction)
Author: Ronaldo Mercado

#########################
This program reads the data file Idatb. vtkl
and produces an STL file for material 1: Imatl. stl'
and another STL file for material 2: Imat2. stlI

catch fload vtktcll
source vtkInt. tcl

pipeline : reader, select

vtkStructuredPointsReader reader
vtkImageThreshold selectl
vtkImageThreshold select2
vtkMarchingCubes contourl
vtkMarchingCubes contour2
reader SetFileName "datb. vtk"
reader Update
selectl SetInput [reader GetOutputl

select2 SetInput [reader GetOutputl

selectl ThresholdBetween 11

selectl SetInValue 1
selectl SetOutValue 0

select2 ThresholdBetween 22

182

select2 SetInValue 1.5

select2 SetOutValue 0.5

contourl SetInput [selectl GetOutput]
contourl SetValue 0 0.5

contour2 SetInput [select2 GetOutput]
contour2 SetValue 0 1.0

#Display a pipeline
uses mapper, actor, ren, renWin, iren
add a colorbar actor

vtkDataSetMapper mapperl
vtkDataSetMapper mapper2
vtkActor actorl
vtkActor actor2
vtkRenderer ren
vtkRenderWindow renWin
vtkRenderWindowInteractor iren
vtkLookupTable lut
vtkScalarBarActor scalarBar

mapperl SetInput Econtourl GetOutputl
mapper2 SetInput Econtour2 GetOutputl

mapperl ScalarVisibilityOn
mapper2 ScalarVisibilityOn
lut SetHueRange 0 0.6667
lut SetSaturationRange 11
lut Build

mapperl SetLookupTable lut
mapper2 SetLookupTable lut
scalarBar SetLookupTable lut
scalarBar SetTitle "Material"
actorl SetMapper mapperl
actor2 SetMapper mapper2
ren AddActor actorl
ren AddActor actor2
ren AddActor scalarBar
renWin AddRenderer ren
iren SetRenderWindow renWin
iren Initialize
iren SetUserMethod ýwm deiconify

wm withdraw .

. vtkInteractl

183

#write the output of the pipeline to an STL file
uses vtkSTLWriter

vtkSTLWriter writer
writer SetFileName "matl. still

writer SetInput E contourl GetOutput]
writer Write

writer SetFileName "mat2. stl"
writer SetInput [contour2 GetOutputl
writer Write

A. 3.2 Examples

The example is in the CDROM in the directory 'contour'. Executing the tcl script contour. tcl

generates the STL files of the voxel model stored in datb. vtk.

The second example processes the data in the file data. vtk which is the same voxel

model without the padding on every side. This model doesn't generate closed surfaces and

it is therefore not suitable for the creation of a solid.

A. 4 Týransformation from an unstructured grid into a voxel

model

A. 4.1 Tcl script
#######################

Program to transform from an unstructured grid into a voxel model
Author: Ronaldo Mercado

#########################
set up for the data set created for the simple geometry

parameters:

set FILENAME ". /ug-data-vtk"
set MODELBOUNDS "0 60 0 100 0 100"

184

set SAMPLED IMENS IONS "60 60 6011
set MAXOUTPUTSCALAR 200

set OUTFILEPREFIX "outfile"

catch fload vtktcll

vtkUnstructuredGridReader reader
eval reader SetFileName $FILENAME

reader Update;

vtkImplicitDataSet ids
ids SetDataSet [reader GetOutput]
ids SetOutValue 0

vtkSampleFunction theSample
theSample SetImplicitFunction ids
eval theSample SetModelBounds $MODELBOUNDS
eval theSample SetSampleD imens ions $SAMPLEDIMENSIONS
theSample ComputeNormalsOff
theSample Update;

vtkImageShif tScale uu
set range IIIEtheSample GetOutput] GetPointData I GetScalars] GetRangel
set bot [lindex $range 01
set top [lindex $range 11
set scale Eexpr $MAXOUTPUTSCALAR/($top-$bot)]
uu SetShift [expr -$bot]
uu SetScale $scale
uu SetOutputScalarTypeToUnsignedChar
uu SetInput [theSample GetOutput]

vtkPNMWriter pnmWriter
eval pnmWriter SetFilePrefix $OUTFILEPREFIX

pnmWriter SetInput [uu GetOutputl
pnmWriter Write

A-4.2 Example

The script is stored in the CD Rom in the directory 'voxel generation'. By executing the

script task0l. tcl, the system executes the steps:

1. Reads the an unstructured grid from the data file specified in the parameter FILENAME

(e. g. set FILENAME ". /ugdata. vtk").

185

2. Samples the volume specified in the parameter MODELBOUNDS at a sampling deiisity

given by SAMPLED IMENS IONS.

3. Writes the resulting voxel model as a set of image files OUTFILEPREFIX.

It is important that the model bounds correspond to the data in the unstructured grid
data file. The sampling is a computing intensive task that ties the processor for several

minutes on the configuration used while testing'

A. 5 Octree implementation

The files for the octree implementation within VTK are located in the 'prgrams/octree'

directory in the CD Rom. Table A. 1 lists the relevant files.

Filename Description

vtkScalars. h
vtkOctree. h
vtkOctree. cpp
vtkOCtreeNode. h
vtkOctreeNode. cpp
vtkOctreeScalars. h
vtkOctreeScalars. cpp
main. cpp
test. cpp
*. vtk

Modified header file needed for the octree implementation
Header file for the vtkOctree class
Methods for the vtkOctree class
Header file for the vtkOctreeNode class
Methods for the vtkOctreeNode class
Header file for the vtkOctreeScalars class
Methods for the vtkOctreeScalars class
Test procedures that visualise an octree
Test procedures that calculate the memory usage
Data files

Table A. 1: Files for the octree implementation in VTK

The nightly release of VTK is needed for the compilation of the procedures of test - cpp.

because the release version does not have the GetActualMemorySize() methods. The li-

braries need to be compiled using the modified header file vtkScalars. h that spec, fi(,,, the

GetScalar method to be virtual.

'PC, NVindows NT 4,128 MB RAM Pentium III Processor at 400 DvlHz

186

Both the release and nightly versions of VTK are included in the CD in the directories

'vtk' and 'vtknightly' respectively.

187

Appendix B

Object Oriented Programming

Concepts

B. 1 Principles of object oriented software

Object oriented systems have proved to be more modular, easier to maintain and to describe

than traditional procedural systems. These advantages have been noticed by industry that
has adopted object orientation for large projects. Several languages and metaphors have

appeared over the years, from the Ada programming language in defence projects, Smalltalk

developed by the Xerox PARC to the more recent Sun System's Java programming language.

Alongside this evolution of programming languages, software development methodologies
have also been evolving from the Object Modeling Technique (OMT) to the newer Unified

Modeling Language (UML).

At the core of the huge field of software development methodologies lies the concept of

representing a software system through computer abstractions that model physical or abstract

pieces of the system being modelled. The dominating concept for this s the object that

encapsulate both data and procedures i. e. properties and behaviour. The Object Oriciltc(l

(00) terminology and concepts are widely present in programming literature and textbo()ks

that teach 00 languages (e. g. [63]).

The terminology adopted in this document generally conforms to Rumbaugh's wrinliiol-

188

ogy [28] and Stroustrup C++ specific terminology [59].

The characteristics of objects are:

e Identity. Each object has a unique handle within a computer program that makes it

a discrete, distinguishable entity. Two objects are distinct even if all their attributes
have the same value.

Classification. Objects with the same data structure and behaviour are grouped into

a class. This classification mechanism simplifies some tasks by allowing specialisation

through subclassing, which creates a class hierarchy. Specific objects are instanccs of

their class.

Encapsulation. This characteristic refers to he data of an object being accesible only

through well known methods or member functions, to enforce some standard interface

of communication within objects. This characteristic is usually present, in an object

oriented languages.

Polymorphism. Objects can exhibit a different behaviour for the same operation, de-

pending on their class, which may implement the operation differently. For example,

there may be a hierarchy of graphics objects which respond to the 'Draw' operation,

a square and a circle would draw a different image although the operation requeste(I

(message passed) would be the same.

Inheritance. Subclasses derived from other classes inherit attributes and behaviour from

parent classes and implement specialised operations or add more attributes specific

to the subclass. This serves as a method of factoring out common properties and

operations.

The object oriented methodology as it is presented by Rumbaugh et al-[28] can be inde-

pendent of the programming language, i. e. it should be possible to implement object oriciited

concepts on any high level programming language. such as C or Fortran. The selection of

a programming language will however have an impact on the implementation of the desigil

189

and usually the selection of an object oriented language will simplify and automate several
tasks and controls for the developers by transferring responsibilities to the compiler.

B. 2 Object Modeling Technique (OMT)

The OMT methodology proposes the development of a system model using three different

viewpoints.

e The object model represents the static, structural, "data" aspects of the system.

9 The dynamic model represents the temporal, behavioural, "control" aspects of a system.

e The functional model represents the transformational, "function" aspects of a system.

The basic concepts used for this project are classes, associations, aggregation and gener-

alisation.

e Classes. Refers to an object class which describes a group of objects with similar

properties (attributes), common behaviour (operations), common relationships to other

objects and common semantics.

e Associations. Refer to relationships that exist among objects and classes.

Associations have a certain multiplicity that specifies the number of objects in a class

at either end of the association.

Associations are usually represented by pointers that may get confused as attributes.

An association does not exist in a class if not in relation with some other class.

* Aggregation. This is a special tYPe of association from a class that represeiits the

whole, the assembly class, to the classes that represent the parts.

9 Generalization (inheritance). This abstraction mechanism allows to factor out common

characteristics of classes and preserve the differences. The more general class is the

superclass, and the specialised or refined version is called a subcIass.

190

Class:
I Class Na

Association:

I Class Name 1
attribute:
attribute: data-type
attribute: data-type = init-value_
operationo
operation(arg_list:)

loperation(arg_list:): return_type

I Superclass I

Subclass-l II Subclass-2
I Assembly Class I

Part-1 -Class II Part-2-Class

CIass- -1--Poll-e-, - 1

ssociation Name

Class-2

Class Exactly one

7

-OFCýass
Many (zero or more)

r -C, a-s- s- I OPtional (zero or more)

One or more

'-', I Class I Numerically specified

Figure B. I: Basic Object Model Notation

The OMT methodology includes a convenient graphical representation for these concepts
(figure B. 1). This description language is the base of the more recent UML methodology [20],

which is found in CASE tools and drawing programs because of its popularity.

Classes are represented with boxes that may include the attributes and operations. As-

sociations are represented with lines. The multiplicity of an association is represented with

numerals or circles at either end of the relationship. Inheritance is represented w1th a trian-

gle on the side of the more general class. Aggregation presents a diamond ; it the end of t 11(,

assembly class.

191

Appendix C

Results of the corner bracket

example

The results for the corner bracket example described in chapter 7 are included in this ap-

pendix. Figure CA shows the stress distribution for the bracket modelled assuming only one

material (steel). The materials are assigned for the following step according to the average

stresses in the elements. This is shown in figure C-2. Finally, figure C. 3 shows the stress

distribution for the same bracket geometry for the five material model. Table CA shows the

material properties used in the example.

Material Young's modulus [Pa] Poisson's ratio

1 205-00 x 109 0.27
2 171.25 x 109 0.29
3 137.50 x 109 0.31
4 103.75 x 109 0.33
5 70-00 x 109 0.35

Table CA: Material properties used in the example bracket. Material I has the properties
of steel and material 5 has the properties of aluminium

192

00 a) 9) i--q CD (D CD CD CD CD CD
T--l F-I III r-, I

co w co www r4 w
Cý ý4 514 4-) C\3 C, J 1: 3' ': J' Cr) 0ý Lr) CIJ
C\l C\j 0 CO (0 r-- G) ccD 07) ýD u-) c,, j (D CO

C\j ý4 U-) o) C-i 0) 1-- --1 C\j C-)
0- C)
ý4 UJ

(7 J ýa4 >
W Oý

Q4 C' 0 E--' r4 0
4" co CQ CQ clý

4-D

-
ýr

71ý

Zý
Z)
tic

bic

4ý

193

H

CD
C'i C-i

C\J E-1 ý4 11
(D -- ýý- QPý, -

,I co ý4 W

(1) u
ýc

r:: 4 H
F14 Fq 0 44
4

T-A
W 1.34 W

bic

ýl

194

0 U)
F-A > () (D
E-1 +

0 ýD Ln W
CD ý-q ýa4 Cj cc)

C'i Cj 0 (ý C\j CD

ý4 CO ý, V LO
CD 0 E-A 11 u-)

ý4 W U-J 11
Q4 > (1) UW

134 0 F, ý: D 0 ý14

4 ý4 MM E--i fa4 W <I m

or) (m Grý jý (3) m RIO Cý C) <D <D (D CD
r-- t-IT m...
C) C\l C> U-) wwwww
I- m : ýv CC-) ý, v C-- --i Lo a)
M k,. D CD C> CD CD --I -i -i CD CD 1--y -i C\j Cl) ýýZr U-)

44 Ln

> 44

N 1: ý x ýH N

11101

195

C)

C
" -4

cI
" -4

(I)
C)

riD

711ý

Appendix D

Publication

Voxel Modelling for

Rapid Manufacturing

R. Mercado, J. M. Blackledge and P. Dickens

Fourth International Scientific Colloquium CAx Techniques, Bielefeld

Germany. September 1999.

196

Voxel Modelling for Rapid Manufacturing

Mercado Ra, Blackledge j. M. a
, Dickens, P.

a Faculty of Computing Sciences and Engineering, Department of Mathematical Sciences,

b
Institute of Simulation Sciences, De Montfort University, Leicester, LE I 9BH. UK

Faculty of Computing Sciences and Engineering, Rapid Manufacturing Research Group,
De Montfort University, Leicester, LEI 9131-1, UK

Abstract: Voxel modelling refers to dividing up three-dimensional space into cubical cells
at a particular resolution. Objects are modelled by listing the cells that they occupy. This
scheme of representation requires large amounts of core memory for reasonable resolution
and thus has not been generally favouredfor practical systems.
This article is a literature survey on voxel modelling in general and an investigation of
methods used to represent objects with a variable material composition. Potentiallýy these
could be fabricated using Rapid Manufacturing, a family of technologies that generate
three-dimensional, solid objects under computer control. The paper explores relevant areas
to the subject such as rapid manufacturing, solid modelling and computer graphics, volulne
rendering and scientific visualisation.
Examples of materially graded objects created using Rapid Manufacturing technologies
are reviewed. Graphical display techniques availablefor voxel modelling are reviewed and
two public domain utilities for volume rendering are tested. Some of the 3-D processing
techniques that could be used to compress voxel based models are considered.
It is concluded that current modelling of these objects lags behind the realisation of objects
in practice. The article reports current research and explores possible future research
areas.

Keywords: Rapid Manufacturing, Functionally Gradient Material applications, Voxel
Modelling.

1. Introduction

Rapid Manufacturing is a family of technologies that generate three-dimensional,

solid objects under computer control with three important features in common:
Parts are automatically produced from CAE data sets under computer control.

These techniques are "additive": an object is built by successively addina . raw material,
rather than removing existing material, which is the case with production techniques
such as milling.
A set of layers or "slices" are added together to create a solid volume of the desired
shape.

Parts produced by major commercial Rapid Manufacturing systems are made of a
single material, although some of these techniques are potentially capable of handling
multiple materials. Three papers already report on objects with material gradation in the
volume [15,21,30].

Current rapid manufacturing applications traditionally use industry standard solid
modellers. The model is created using standard CSG and B-Rep modellers. The internal
volume is assumed to be filled with a homogeneous, isotropic material. This model is then
tessellated and transferred to the rapid manufacturing apparatus of choice. This scheme has
been in use for close to a decade, and although the size of STL files for complex object may
be enormous in size (e. g. 100 MB), these are still manageable using current computer
technology.

None of the traditional solid modelling strategies can represent materially oraded
objects, they only capture their geometry and topology [14,16,17].

2. Voxel modelling

2.1. Volume data sets representation and application

A number of techniques have been developed to represent volumetric data. Volume
data sets are typically sets S of samples (x, y, z, v), representing the value v of some property
of the data at a 3-D location (x, y, z). In general, the samples may be taken at random
locations in space, but in many cases S is isotropic, containing samples taken at regularly
spaced intervals along three orthogonal axes. Since S is defined on a regular grid, a 3-D

array is typically used to store the values. A function may be defined to describe the value
at any continuous location by approximating v at a location (x, y, z) using some interpolation
function to S. The region of constant value that surrounds each sample in zero-order
interpolation is known as a volume cell (voxel for short), with each voxel being a
rectangular cuboid.

In addition to regular grids, rectilinear, curvilinear, and unstructured grids are

employed. In an unstructured grid, there is no explicit or implicit grid topology.
Unstructured grids are common for scattered data, finite-element/volume analysis, and

computational fluid dynamics.
The primary sources of volume data sets are three: sampled data of real objects or

phenomena, computed data produced by a computer simulation, and modelled data from a

geometric model. Volume visualisation allows the user to extract information from

volumetric data sets through interactive graphics and imaging. The importance of the voxel

model in medical imaging [19] comes from its use in the CT, MRI, SPECT, and PET

medical imaging modalities as well as for rendering 3-D medical images.

2.2. Memory Requirements

A voxel model requires huge amounts of memory. To achieve a good resolution (e. g. 5 ýtm) in a considerable volume (e. g. 500 mm x 500 mm x 500 mm) requires 100,000'
voxels, i. e. 1015 elements. To grasp the enormity of this figure, according to some rough
estimates, the information of all U. S. academic libraries together is twice that amount,
roughly 2x 1015 bytes [211. The largest volume data set that current high-end systems can handle is a 1024 x 1024 x 1024 (roughly 109, a gigabyte) element data set using hardware
optimised for 3-D graphics.

nP

PI The storage requirement of a voxel model is n 31 where tip is the number of

properties and p, is the storage requirement of a value of the property 1. Typical voxel
models in medicine are based on a value of n=512, and store a single density property
represented by an integer. In this case, the voxel model occupancy is around 512 MB. In
other application areas, such as in earth sciences, the memory storage could be increased by
10 to 50 times. This is the major drawback of voxel models [1].

2.3. Compression Methods

In principle, the compression methods in the 3-D domain are a generalisation of the
compression methods available in 2-D for working with raster images. Some compression
methods are compression based on the DCT (Discrete Fourier Transform), compression
based on wavelets, fractal compression, multiresolution representations and compression
based on hierarchical structures (Octree and BSP trees) [17].

Many of these techniques have been studied in relationship with their application
for medical imaging and volume rendering. In fact medical imaging equipment often uses
either the raw voxel model or a octree model for the visualisation [19].

The octree representation uses a recursive subdivision of the space of interest into
eight octants that are arranged into an 8-ary tree (hence the name). This type of structure is
analogous to the quadtree, which is used in 2-D raster image processing. The octant
volumes continue to be subdivided until a termination criterion is satisfied. Two common
termination criteria are the total volume represented by a node and the complexity
(homogeneity) of the volume represented by the node.

In general, the number of nodes in this type of octree representation of a solid
object is proportional to the surface area of the object. Hence octree models are not quite as
large as exhaustive representations but still take a fair amount of storage [16]. An
isosurface octree, or the classical octree of a voxel mode defines voxels as black if their

associated value is within a specific range of the property and white otherwise. The voxels

whose property values are within this range and differ less than a given E are recursively

grouped into black nodes. This type of octree is only useful when the volume is not very
heterogeneous [1].

2.4. G-WoRP, a hybrid voxel modeller

Chandru et al. [21 describe G-WoRP, a Geometric Workbench for Rapid
Prototyping. In this novel computer-aided design tool, the authors extend the traditional
solid modelling hybrid model architecture to include the voxel and the slice, the real
manufacturing primitives for Rapid Prototyping (Rapid Manufacturing) systems. The paper
concludes with the status of this tool by the time of publication (1994), when the
implementation of a prototype was in progress for the Silicon Graphics platform. Although
the work on G-WoRP as well as other related tools has been reported in several Masters
Project reports, it has not yet been published [17].

3. Materially graded objects

Materially graded objects are objects composed of different constituent materials
and could exhibit continuously varying composition and/or microstructure. Such
continuous changes result in gradation in their properties. Materially graded objects are
potentially ideal for several engineering applications.

3.1. Applications

By creating objects with spatially varying material properties, one can tailor the
composition of an artefact such that material properties match the functional requirements
demanded of the component at a given point. For example, for optimal tool life it is
desirable to have a hard outside shell for wear resistance and a ductile core to resist brittle
fracture. Traditionally, such benefits have been achieved through the coating or cladding of
existing artefacts with shells of different physical characteristics. Surface treatment
methods are similar in purpose. These methods change basically only the surface hardness.
Material gradation may, however, change other properties besides the hardness, e. g. the
thermal conductivity or the density. Another possible application could be the construction
of an engine block, which could have arbitrari I y- shaped cooling channels. The walls of the

cooling channels could mostly comprise a high thermal conductivity material to aid heat

transfer [17].
"Project Maxwell" [5] discusses several ideas for the possible applications of

multiple material objects and functionally graded materials. It discusses the concurrent
design of the structure and the material by creating micro-scale voids where a structure is

not required to support loads. The next step is the creation of composites, inserting

materials that can improve strength, toughness, vibrational characteristics, acoustics, impact

resistance and energy absorption.
Non-homogeneous composite materials result in significant improvements in

thermo-mechanical properties without increase in weight. A design criterion suc
ih

as
bending rigidity can be dramatically improved using composites with a stronger material in

the outer surfaces and weak and lighter materials in the inner core. The authors also suggest

applications in automobile panel design, introducing complex micro-structures, whose

plastic deformation can absorb large amounts of energy. This feature may be very

advantageous in side panels for side impact protection.

3.2. Example objects

Fessler et al. [6], Jepson et al. [71 and Kumar[14] have produced objects of varYing composition throughout the volume using Rapid Manufacturinag, technologgy. The Shape Deposition Manufacturing (SDM) process permits the creation of multi- material structures and optional embedded electronic components [20]. Fessler et al. used an improved SDM system that enables the deposition of functionally graded metals through the use of powder mixing. The addition of powder mixing enables the deposition of single layers in which material properties can be smoothly varied without discrete interfaces
between dissimilar materials. It has been shown that certain materials will completely mix during deposition and form alloys that exhibit properties intermediate to those of the
constituent feed powders.

An example of a materially graded object was created with this method. The object is an advanced ALCOA moulding tool. The tool is made of Invar, stainless steel and copper
and has two cooling channels in each half to remove heat quickly from the part. Jepson et. al. used an addition to the Selective Laser Sintering (SLS) process, a
process known as M2 SLS, which enables the fabrication of materials with varying material
composition. The process has been tested with tungsten carbide and cobalt, a ceramic/metal
combination, with potential applications as a cutting tool.

Kumar and Dutta built an object using the Sanders Model-maker. A probe of
smoothly varying volumetric fraction was built by modifying the tool path generation
strategy. Given a certain layer distribution, there is currently no method for the automated
generation of an optimal tool path for its fabrication.

3.3. Modeling Materially Graded Objects

To model a functionally graded material (FGM) object using exhaustive
enumeration is just a matter of representing in every cell of the volume a value v which
represents the material composition. Modelling the volumetric fraction of a composite
object at a fine resolution is the goal of the modelling technique, which would allow
heterogeneous objects to be manufactured using layered techniques.

To determine a proper range and resolution of the volumetric fraction for rapid
manufacturing applications, two test objects reported by Jepson et al. [7] and Fessler et al.
[6] were examined. In the SDM example, a smooth variation of properties can be achieved
with a relatively coarse variation of material composition. Varying the composition in 1%
steps is a satisfactory resolution for practical foreseeable engineering applications.

4. Graphical Display Techniques

To be able to interact with a multi-material model, the designer would have to
obtain a visual representation of the model on a display. The volume rendering approach
seems the best suited for the task. Volume rendering is a method used to capture an entire
3-D data set in a 2-D image directly from the volumetric data. Volume rendering differs
from traditional computer graphics, which simulate a scene by rendering surfaces of a
model of basic building blocks such as cylinders, spheres, planes, points and polygons.

Volume rendering also differs from image processing in that although the process maý need image enhancing, filtering and other typical image processing techniques there sa 3-D data
set to work with. The emphasis of volume rendering is the interior, which cannot be
captured in an image by simple surface rendering.

There are several "off the shelf' volume rendering applications available. There are
many for medical imaging applications while some other are application specific. Two public domain systems were tested [17]: VolVis and GVLware (BoB).
VolVis, developed at the State University of New York at Stony Brook, is a comprehensl% e
volume visualisation system available in several platforms and as source code. The
GV-Lware is a public domain application developed by the Army High Performance
Computing Research Center (AHPCRC).

The volume visualisation systems are greedy on resources. The VolVis svstem
works on several platforms and it was possible to compile it on a HP workstation running
HP-UX 9. The system was tested on two types of displays: an 8-bit colour display and a 24-
bit colour display. The resolution is poor using only 256 colours (8-bits) and so 24-bit
colour is mandatory for colour volume rendering.

5. Alternative Representation Methods

Kumar and Dutta have initially presented a method to represent multi-material
objects [11] and later have extended this method to represent functionally graded materials
[12,14]. They propose a new mathematical model for the representation of multiple
materials. Their discussion uses concepts of point-set topology, which is a convenient
mathematical method to characterise rigorously the properties of three-dimensional objects.
To be able to represent multiple materials, a material dimension M is included, apart from

the spatial dimensions R3 that capture the geometry and topology of an object. For a finite

number of unique materials, the choice for the material dimension M would be the set of
integers I. Then the product space T=R 3XI with the product topology can form a new
modelling space for representing multiple-material objects.

A solid described using traditional solid modelling techniques is a member of the

class of r-sets A in R3. The method proposes a new class A. =AxK, where A is

the class of r-sets and KcI is a finite set of integers. Each material is characterised by an

integer in K-A typical member Q C- A. (Q= ýP, k 1) is called a r. -set and is

composed of an r-set P E=- A and an integer kGK.
This definition is extended to represent functionally graded materials. To model

objects with continuous material variation, the material space must be expanded from

KcI in the previous case. A suitable choice for the new mathematical space is

T=R 3XRn, n being the number of primary materials. R3 is the geometry space, where

geometry and topology are defined, using a traditional solid model. R" is the material

space. The material can be identified at any point by volume fractions of each of the

primary materials. Each point in an object S can now be characterised in product space

as (x, v (x)) where x E=- S is a point in the object and v (x) E=- Rn represents the
material at that point. This work is extensive and mathematically rigorous. The authors
recognise however some blanks, which are still left to research.

Some other ideas were developed for the SDM process mentioned in section 3.2.
The usual subdivision in layers is not enough in this case, since each layer may have more
than one material. The concept of compacts is introduced, as a further subdivision of a 3-D
layer. Compacts can have partitions along surfaces whose normals are not necessarilY along
the build-up direction. The SDM process has always had the ability to create multi-material
objects.

The additions to this process, reported by Fessler et al., allow metallic powders
from different powder feeders to mix under a laser, however the function gradient aspect of
the tool created with these additions, was not modelled at all. Basically, the model thought
it was one material and the deposition files were modified by hand to make the material
transition [17].

6. Conclusions

The survey of methods to represent objects with a variable material composition
has explored a number of relevant areas: rapid manufacturing, solid modelling, computer
graphics, volume rendering and scientific visualisation. Some conclusions can be drawn
from this survey:

There is currently no established method to represent materially graded objects,
although there are efforts in this direction, notably the method proposed by Kumar and
Dutta.

The realisation of these objects through Rapid Manufacturing is ahead of the
representation methods delivered by computational modellers.

Voxel representation techniques have all the potential to deliver Rapid
Manufacturing representation requirements. However the huge memory requirements make
it stumble as a high-resolution representation method.

From a detailed look at the modelling requirements for functionally graded objects,
using the example objects, it is apparent that a material volumetric fraction variation of I%
is able to accommodate foreseeable engineering applications.

There are several volume-rendering applications available both commercially and
in the public domain. These applications are capable of working with data sets up to around
1024x 1024x 1024 elements.

7. References

1. Brunet, P. et al.: Modeling and visualization through data compression. In:

Rosenblum, L. et al., (eds.): Scientific Visualization: Advances and challenges,
Academic Press, London, 1994. pp. 157-169

2. Chandru, V., Manohar, S.: G-WoRP: a geometric workbench for rapid prototyping.
Manufacturing Science and Engineering. vol. 2 (1994), pp. 569-574.

3. Chandru, V. et al.: Voxel-based modeling for layered manufacturing. IEEE Computer
Graphics and Applications, vol. 15 (1995), no. 6, pp. 42-47

4. Chandru, V., Manohar, S.: Volume modeling for emerging manufacturing
technologies. Sadhana, Journal of the Indian Academy of Sciences, Fall 1997.

5. Dutta, D. et al.: Project MAXWELL: Towards rapid realization of superior products. In: Proceedings of the 1992 Solid Freeform Fabrication Symposium Universitý' of Texas at Austin, 1992. pp. 54-61
6. Fessler, J. et al.: Functional gradient metallic prototypes through Shape Deposition

Manufacturing. In: Proceedings of the 1997 Solid Freeform Fabrication SY111posiUM
University of Texas at Austin, 1997. pp. 521-528

7. Jepson, L. et al.: SLS processing of functionally gradient materials. In: Proceedings of
the 1997 Solid Freeform Fabrication Symposium. University of Texas at Austin, 1997.
pp. 67-79

8. Kaufman, A. et al.: Volume Graphics. Computer, vol. 26 (1993) no. 7, pp. 51-64.
9. Kaufman, A.: Volume visualization. ACM Computing Surveys, vol. 28 (1996) no. 1,

pp. 165-167
10. Kumar, V. et al.: Rapid Design and Prototyping of Customized Rehabilitation Aids.

Communications of the ACM, vol. 39 (1996), no. 2.
11. Kumar, V., Dutta, D.: An approach to modeling multi-material objects. In:

Proceedings of the 4th ACM Symposium on Solid Modeling, ACM, Atlanta GA, May
1997.

12. Kumar, V., Dutta, D.: Solid model creation for materially graded objects. In:
Proceedings of the 1997 Solid Freeform Fabrication Symposium University of Texas
at Austin, 1997. pp. 613-620

13. Kumar, V., Dutta, D.: An assessment of data formats for layered manufacturing. In:
Advances in engineering software, vol. 28 (1997), pp-151-164

14. Kumar, V., Dutta, D.: An approach to modeling & representation of heterogeneous
objects. Paper in review, ASME Journal of Mech. Design (May 1998).

15. Lichtenbelt, B. et al.: Introduction to volume rendering Prentice Hall, 1998.
16. Miintylii, M:. An introduction to solid modeling Rockville MD, Computer Science

Press, 1988.
17. Mercado, R.: Voxel Modellingfor Rapid Manufacturing. MSc in CAE Techniques

Project Report, Faculty of Computer Sciences and Engineering, De Montfort
University, Leicester UK, 1998.

18. Sanders Prototype Inc.: Sanders Prototype Inc. Web site [online], 1997. Available at
http: //www. sanders-prototype. com/main. html [Accessed August 19981

19. Stytz, M. et al.: Three-Dimensional Medical Imaging: Algorithms and Computer
Systems ACM Computing Surveys, vol. 23 (1991), no. 4 pp. 421-499.

20. Weiss, L., et al.: Shape Deposition Manufacturing of Heterogeneous Structures.
Journal of Manufacturing Systems, Vol. 16. (1997), no. 4, pp. 201-227.

21. Williams, R.: Data Powers of Ten [online], No date. Available from:

http: //www. ccsf. caltech. edu/-roy/dataquan/ [Accessed 04 Aug 19981.

References

[1] R. Avila et al. Towards a comprehensive volume visualization system. In A. Kaufnian

and G. Nielson, editors, Visualizabon '92, pages 13-20, Boston, NIA, October 1992.

IEEE Computer Society Press.

[2] R. Avila et al. Volvis: A diversified volume visualization system. In IEEE I "isualiza tion

Proceedings, pages 31-38, Washington DC, October 1994. IEEE Computer Society Press.

[3] S. Bhashyam, K. Hoon, and D. Dutta. An integrated CAD system for design of lietero-

geneous objects. Rapid Prototyping Journal, 6(2): 119-135,2000.

[41 J-M. Blackledge. Product data exchange, lecture notes. Department of Mathematical

Sciences, De Montfort University, 1996.

[5] P. Brunet et al. Modeling and visualization through data compression. In L. Rosen-

blum et al., editors, Scientific visualization: Advances and challenges, pages 157 169.

Academic Press, 1994.

[6] S. Cass. Super nets for supercomputers. IEEE Spectrum, 38(l), January 2001.

206

[7] Castle Island Co. Commercial rapid prototyping system manufacturers. [online]

http: //home. att. net/, castleisland/com-lks. htm, August 2000. Accessed Aug 2000.

[8] V. Chandru et al. Voxel-based modeling for layered manufacturing. IEEE Conipatcr

Graphics and Applications, 15(6): 42-47,1995.

[9] H. Chen and T. Huang. A survey of construction and manipulation of octrees. Coiiiputcr

Vision and Image Processing, 43: 409-431,1988.

[10] P. Cignoni et al. Multiresolution modeling and visualization of volume data based on

simplicial complexes. In Proceedings of the ACM symposium on volume visuali--ation,

pages 19-26, Washington, 1994. ACM Press.

[11] P. Cignoni et al. Multiresolution representation and visualization of volume data. IEEE

Transactions on visualization and computer graphics, 3(4): 352-369,1997.

[12] W. Cochran et al. R-actal volume compression. IEEE Transactions on visualization and

computer graphics, 2(4): 313-321,1996.

[131 Microsoft Corp. MSDN library. [CD-ROM], 1998. Visual Studio 6.0 Edition.

[14] Cubital Inc. Cubital. [online] http: //www. cubital. com/index. html, 1997. Accessed

August 2000.

[15] A. Dolenc. An overview of rapid prototyping technologies in manufacturing. [online]

http: //www. cs. hut. fi/, ado/rp/rp. html, July 1994. Accessed Aug 2000.

[16] G. Farin. Curves and surfaces for computer aided geometric de,, o'gn: a practical guide.

Academic Press, 2nd edition, 1990.

207

[17] R. Farouki. Closing the gap between CAD model and downstream application. SLIM

News, 38(5), 1999.

[18] J. Fessler et al. Functional gradient metallic prototypes through shape deposition maii-

ufacturing. In Proceedings of the Solid Freeform Fabrication Symposium. University of

Texas at Austin, August 1997.

[191 S. Finger et al. Rapid design and manufacture of wearable computers. Communications

of the ACM, 39(2), February 1996.

[20] A Fowler. UML distilled: applying the standard object modeling language. Addison-

Wesley, 1997.

[21] Y. Horstein. 3D systems cross-license agreement in japan. [online]

http: //Itk. hut. fi/archives/rp-ml-1999/0066-html, Jan 1999. Accessed Aug 2000.

[22] IBM. Open visualization data explorer. [online] http: //www. research. ibm. com/dx/, No

date. Accessed October 2000.

[23] C. Jackins and S. Tanimoto. Oct-trees and their use in representing three-dimensional

objects. Computer Graphics and Image ProcessZng, 14: 249-270,1980.

[24] T. R. Jackson, H. Liu, N. M. Patrikalakis, E. M. Sachs, and M. J. Cima. Modeling and

designing functionally graded material components for fabricatino with local compositioii

control. Materials and Design, 20: 63-75,1999.

[25] P. F. Jacobs. Rapid Prototyping and Manufacturing. Fundamentals of Stereolithography.

Mc Graw Hill, 1992.

208

[26] R. Jamieson and H. Hacker. Direct slicing of cad models for rapid prototyping. Ral)id

Prototyping Journal, 1(2): 4-12,1995.

[27] L. Jepson et al. SLS procesing of functionally gradient materials. In Proceedings of the

Solid Freeform Fabrication Symposium. University of Texas at Austin. August 1997.

[28] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object- Orz*ented., Ilo(/-

eling and Design. Prentice-Hall, 1991.

[29] A. Kaufman. Volume visualization. ACM Computing Surveys, 28(l): 165-167,1996.

[30] Inc. Kitware. http: //www. kitware-com. Web site. Accessed August 2000.

[31] 0. K6nig and G. Fadel. Application of genetic algorithms in the design of multi-material

structures manufactured in rapid prototyping. In Proceedings of the Solid Freeforrn

Fabrication Symposium, pages 209-217. University of Texas at Austin, August 1999.

[32] A. V. Kumar and A. Wood. Representation and design of heterogeneous components.

In Proceedings of the Solid Freeform Fabrication SympostUM, pages 179-186. University

of Texas at Austin, August 1999.

[33] V. Kumar, D. Burns, D. Dutta, and C. Hoffmann. A framework for object modeling.

Computer-Aided DesZgn, 31(9): 541-556,1999.

[34] V. Kumar and D. Dutta. An approach to modeling multi-material objects. In Proceedings

of the 4th A CM Symposium on Solid Modeling, May 1997.

[35] V. Kumar and D. Dutta. An approach to modeling and representation of heterogeneotis

objects. Journal of Mechanical Design, 120: 659-667, December 1998.

209

[36] B. Lichtenbelt, R. Crane, and S. Naqvi. Introduction to volume render? ng. Prentice-Hall.

1998.

[371 William Lorensen and James Miller. Visualization Toolkit extreme testing: A production

release every day. In Proceedings of the 13th international softwarelin tern et quality week,

May-June 2000.

[38] M. Mdntyld. An introduction to solid modeling. Computer Science Press, 1988.

[39] A. J. Markworth, K. S. Ramesh, and W. P Parks. Modelling studies applied to functionally

graded materials. Journal of Materials Science, 30: 2183-2193,1995.

[40] A. J. Markworth and J. H. Saunders. A model of structure optimization for a functionally

graded material. Materials Letters, 22: 103-107, January 1995.

[41] Materialise NV. Materialise software: Magics. [online] http: //www. materialise. be/-

magics, 2000. Accessed Aug 2000.

[42] D. Meagher. Geometric modeling using octree encoding. Computer Graphics and Image

Processing, 19(2): 129-147,1982.

[43] R. Mercado. Voxel modelling for rapid manufacturing. Master's thesis, Faculty of

Computing Sciences and Engineering, De Montfort University, 1998.

[44] E. Miya. FAQ (Frequently Asked Questions) for the newsgroup comp. graphics,

lizat *
visualization [online]. Posted regularly on the newsgroups comp-graphics. visua ion.

July 1998. Accessed July 1998.

210

[45] Y. Miyarnoto, W. A. Kaysser, B. H. Rabin, A. Kawasaki, and R. G. Ford. Functionally

Graded Materials: Design, Processing and Applications. Kluwer Academic Publishers.

1999.

[46] M. J. Bailey. Tele-manufacturing: Rapid prototyping on the internet with automatic

consistency- checking. IEEE Comput. Graph. Appl., 15(6), November 1995.

[47] S. Morvan and G. Fadel. Heterogeneous solids: possible representation schemes. Iii

Proceedings of the Solid Freeform Fabrication Symposium, pages 187-197. University of

Texas at Austin, August 1999.

[48] S. Muraki. Approximation and rendering of volume data using wavelet transforms.

In A. Kaufman and G. Nielson, editors, Visuahzation '92, pages 21-28, Boston, MA,

October 1992. IEEE Computer Society Press.

[49] S. Muraki. Volume data and wavelet transforms. IEEE Computer Graphics and Appli-

cations, 13(4): 50-56,1993.

[50] S. Muraki. Multiscale volume representation by a dog wavelet. IEEE Transactions on

visualization and computer graphics, 13(4): 50-56, June 1995.

[51] Advisory Group on Computer Graphics. Review of visualization systems. [online] Avail-

able at http: //www. agocg. ac. uk/reports/visual/vissyst/vissyst. pdf, 1995. Access Octo-

ber 2000.

[52] L. Piegl and W. Tiller. The NURBS book. Springer, 1997.

211

[531 F. Prinz et al. Rapid Prototyping in Europe and Japan. [online] http: //itri-loyola. -

edu/rp/, March 1997. Accessed Aug 2000.

[54] B. H. Rabin and 1. Shiota. Functionally gradient materials. MRS Bulletin, XX(l): 14-15,

January 1995.

[551 J. Rossignac and A. Requicha. Solid modeling. In J. Webster, editor, Encyclopedia of

Electrical and Electronics Engineering. John Wiley and Sons., 1999.

[56] H. Samet. Region representation: Quatrees from binary arrays. Computer Graphics and

Image Processing, 13: 88-93,1980.

[571 W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit: An Object-

Ortented approach to 3-D Graphics. Prentice Hall, second edition, 1998.

[58] Schroff Development Corporation. Schroff development corporation. [online] htt, l): //-

www. sdcpro. com, August 2000. Accessed Aug 2000.

[59] B. Stroustrup. The C++ programming language. Addison Wesley, 2nd edition, 1991.

[60] A Stytz et al. Three-dimensional medical imaging: algorithms and computer systems.

A CM Computing Surveys, 23(4): 421-499,1991.

[61] W. Su. Fabrication of FGMs using laser powder fusion. Internal report Rapid Mami-

facturing Group, DMU, August 2000.

[62] R. Williams. Data powers of ten. [online] http: //www. ccsf. caltech. edii/-roy/dati(iii(iii/,

No date. Accessed October 2000.

212

[63] R. Winder and G. Roberts. Developing Java Software. John Wiley, 1997.

[64] W. Schroeder and K-Martin. The vtk User's Guide, June 1999. Kitware, Inc.. 1999.

[65] B. Yeo and B. Liu. Volume rendering of DCT-based compressed 3D scalar data. IEEE

Trans. Visual. Comput. Graph., l(l): 29-43, March 1995.

[66] S. You et al. Volume rendering for virtual colonoscopy. In Proceedings IEEE Visualiza-

hon '97, pages 433-436,1997.

213

Appendix E

Glossary

ABS Acrylonitrile Butadiene Styrene. ABS is thermoplastic and can be easily heat shaped.

B-Rep Boundary Representation.

CAGD Computer Aided Geometric Design.

CFD Computational Fluid Dynamics.

CSG Constructive Solid Geometry

CVD Chemical Vapor Deposition. A method of creation of FGMs by deposition of gases at

high temperature on a substrate. This method has been used to create SiC deposit ions

on aC substrate and zirconium carbide/carbon (Zr/C) depositions on a C/C composite.

The composition is controlled by varying the source gas mixture.

CV1 Chemical Vapor Infiltration.

FEA Finite Element Analysis.

214

FEM Finite Element Method.

FGM Functionally Graded Material.

IGES Initial Graphics Exchange Specification.

LENS Laser Engineering Net Shaping (Optomec Design Co.) A rapid tooling method to

create fully dense metal parts.

LOM Laminated Object Manufacturing. Laminated Manufacturing method commercialised

by Helysis. It is described in section 2.5. works by stacking sheets of material and

cutting the outline of every layer with a laser.

NURBS Non-uniform Rational B-Splines.

OMT Object Modeling Technique.

RP Rapid Prototyping.

RT Rapid Tooling.

r-set A mathematical representation of a solid based on point set theory.

SDC Schroff Development Corporation.

SFF Solid Freeform Fabrication. The preferred term to refer to Rapid Prototyping in the

USA.

STEP Standard for the Exchange of Product Model Data. A comprehensive ISO staiidard

(ISO 10303) that describes how to represent and exchange digital product information.

215

STL Stereolithography file format. This is the format developed by 3-D Systems and the

industry de facto standard format for object information transfer to RP machines.

TBC Thermal Barrier Coating. A successful application of FGMs for the thermal protection

of components.

VTK The Visualization Toolkit, an open source, freely available software systein for 3-D

computer graphics, image processing and visualisation.

216

