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Abstract 

Rapid Manufacturing techniques create objects by adding material under computer con- 

trol. The possibility of varying the material being added allows these processes to create 

Functionally Graded Materials. There are several research efforts that have succeeded in 

the creation of this type of objects but there are no established methods to model them 

in a CAD environment, since standard modelling applications presuppose a homogeneous 

object. This research explores the voxel modelling technique as a method to support Rapid 

Manufacturing where variable material composition will be possible. 

Rapid Manufacturing processes are reviewed as well as applications of FGM objects, the 

decomposition model through voxels and the general CAGD modelling techniques. Alterna- 

tive representation methods currently in research were reviewed and the representation of an 

FGM using an FEA application was considered. 

Visualisation techniques for the exploration of a voxel model are examined, including 

volume rendering. Visualisation software available for these operations is identified. 

A system is developed based on the Visual%zation Toolkit (VTK), an open source, freely 

available visualisation library. Methods of generation of a voxel model, its visualisation and 

transfer to a Rapid Manufacturing machine are created. An example part was built based 

on a two-material model. The toolkit is extended to include the octree decomposition of 

graded material voxel models and the method is tested as a compression scheme, showing 

poor performance due to the overhead of pointers. 

Despite its large memory requirements at high resolution, the voxel model seems suitable 

at the resolutions available through prospective creation methods. 
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Chapter 1 

Introduction 

1.1 What is Rapid Manufacturing? 

Rapid Prototyping and Rapid Manufacturing are a set of manufacturing techniques for the 

creation of engineering parts under computer control. These techniques started in the late 

80s and have developed greatly over the last decade. 

The term Rapid Manufacturing refers to the ability to produce small manufacturing runs 

of parts using the technique directly. The techniques are also collectively known as Rapid 

Prototyping (RP), in regard with their use in the production of prototypes. The terms Solid 

Freeform Fabrication (SFF), Layered Manufacturing and additive manufacturing are other 

names given to these techniques. 

The development of these techniques occurred due to the combination of developments in 

many areas, such as polymers, laser techniques and computer technology. The first machine 

to be introduced was the SLA-1 by 3D Systems (California), based on the stereolithography 

process. The idea was already floating in industry and in the research community and there 

were several companies that pioneered the early developments, e. g. CMET in Japan or EOS 

in Germany. 

There are several processes of Rapid Prototyping, such as stereolithography, selective 

laser sintering, laminated object manufacturing, fused deposition modelling, 3-D printing 

and jetting. All share a common characteristic of operation in a layer by layer fashion and 
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creating the objects by adding material instead of removing it. The process planning for 

parts built by adding layers is significantly simpler and it can be automated, resulting in 

significant time savings in the creation of a physical model from a design, hence the use of 

the techniques for the creation of prototypes. 

Every process is linked to a characteristic machine and special materials. This is a 
limitation of the techniques, because in general it is highly likely that the material with the 

ideal properties for an application won't be available for the creation of a part in an RP 

machine. 

There has been considerable work undertaken in the area of rapid prototyping. This has 

led to the subject of rapid tooling, where additive manufacturing techniques are being used to 

manufacture tools directly or indirectly. Rapid Tooling is a method of speeding the creation 

of parts while trying to overcome the limitation in materials that Rapid Manufacturing tech- 

niques have. The process is based in the time reduction possible in the very time consuming 

process of tool creation for series manufacturing processes such as injection moulding or die 

casting. In Rapid Tooling, RP techniques are used to produce mould parts for instance, and 

the final part is moulded in a suitable material. The next stage in this research will be to the 

use of additive manufacturing techniques to produce medium volumes of parts directly or 

indirectly. These techniques will probably be based on powder fusion or ink jet technology. 

The next development has been the creation of objects with different materials in the 

volume and a graded composition in them. There are notable examples in the projects led 

by Prinz at Stanford and the Shape Deposition Manufacturing (SDM) process and Sachs et 

al. at the MIT using 3-D printing. 

1.2 Computational geometry and Voxel Modelling 

Coinputational geometry refers to the methods and mathematical methods used to represent 

geometry in a computer environment. Major modellers are available commercially imple- 

menting the ideas of geometry modelling: curve and surface modelling, a method well suited 

for the representation of free-form shapes and surfaces, and solid modelling, a method that 

emphasises and insists on a complete mathematical description of 'solid' objects and which 
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is suitable for algorithmic querying of a model. 

One of the most simple methods to represent an object is through exhaustive enumeration, 

which consists in subdividing the space into regular cells and listing the occupancy of the 

cells in the model. The voxel modelling technique is a specific case of exhaustive enumeration 

based on cuboids. For this method, one limits the region of space that has to be represented 

and subdivides it as a three dimensional array. The most simple representation would only 

record a binary value to determine whether a region or cuboid is either interior or exterior to 

the solid model by attaching a "colour", either black (1, interior to the solid, filled) or whZte 

(0, exterior to the solid, empty). For the representation of multiple materials, the memory 

usage increases with the number of "colours" that we allow in the model. 

This type of geometric representation is similar in nature with that of 2-D images. The 

3-D nature of it does have its peculiarities, but major methods used in 2-D imaging are 

applicable in 3-D volumetric models made up of voxels. The wealth of 2-D processing algo- 

rithms can be considered to be an advantage of the method. Also because of the regularity 

of the description method, algorithms for this representation tend to be simple, making it 

well-suited for parallel algorithms and hardware support. 

Disadvantages are the poor resolution achievable because of the huge memory require- 

ments. The large memory usage makes even small efficient algorithms perform poorly because 

of the number of cells on which the operations have to be performed. In general the voxel 

model is poor in terms of conciseness. 

Many concepts from imaging can be translated to the voxel modelling, which could be 

regarded as a 3-D image representation or stacks of 2-D images piled up together. Much of 

what can be said about the advantages of vector graphics over raster graphics applies in the 

comparison of solid models over the voxel model. For example the voxel model suffers from 

the 'stair-step' effect and loss of accuracy when enlarged. 

1.3 About this Thesis 

The objective of this research thesis is to explore the possibilities of the voxel modelling 

technique to support rapid manufacturing techniques where variable material composition 
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Piston 
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Figure 1.1: Concept of a possible functionally graded material object built by Rapid Manu- 
facturing 

will be possible. 

The motivation behind this project is the possibility to match the functional requirements 
demanded of a component at a given point by assigning localised material properties. This 

idea is not new, but the enhanced control and the complex geometries achievable using 

additive manufacturing open exciting possibilities. A concept application (figure 1.1) could 

be the construction of an engine block, which could have arbitrarily shaped cooling channels, 

with their walls built using a high thermal conductivity material to aid heat transfer, and a 

piston bore with hard material surface to prevent surface wear, while keeping a tough interior 

to withstand vibration. It is however necessary to identify possible applications because these 

are not yet clear. This project reviews applications of FGMs in various fields, showing uses 

in aeronautical engineering, astronautics and power conversion systems. 

The resolution of additive manufacturing techniques to produce parts with an appropriate 

surface finish will require voxels of 5x5x5 pm 3. This resolution involves heavy requirements of 

memory and computing power. Ideally the voxel modelling method would solve this problem 

by compression methods. One of the suggested compression methods, the octree approach, 

is implemented and tested within a visualisation toolkit/library in this project, proving to 

have too much overhead and therefore being unsuitable for the general use. 

The issues of data transfer for the use of the model in a larger system are studied in order 
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Figure 1.2: System based on the voxel modelling technique 

be able for instance to perform an analysis from a model (through Finite Element Analysis), 

to be able to visualise the model and also to manufacture parts based on the model. Figure 

1.2 shows the model integrated within a system and how it would be used for supporting 

rapid manufacturing techniques. 

One of the difficult aspects is also the visualisation of parts with variable composition of 

graded structures. The techniques required to visualise models voxel models, using simple 

sections and 3-D partially transparent models (volume rendering) are studied. 

1.4 Structure of the Thesis 

Chapter 1 is an introduction to the motivation and research objectives of the thesis. 

Chapter 2 presents a classification of the principal methods of Rapid Manufacturing listing 

major manufacturers. A last section of this chapter presents Rapid Tooling, and Direct 

Metal Manufacturing. 

Chapter 3 present, s possible applications of functionally graded materials (FGMs) in science 
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and engineering. The chapter concludes with a short review of creation methods, 
including Rapid Manufacturing. 

Chapter 4 presents the techniques used in Computer Aided Geometric Design (CAGD) for 

the representation of geometry. Major methods used in curve and surface modelling are 

presented, closing in on the most general of them, the Non Uniform Rational B-Splines 

(NURBS). A short look at the IGES standard and its way of representing NURBS, 

which was used for the transfer of geometry information later in the project. The 

chapter follows on to solid modelling techniques and finally focuses on voxel modelling. 

Chapter 5 presents alternative representation methods for multiple material and materially 

graded objects currently in research. The work of Dutta et al. at the University of 
Michigan and Jackson et al. at the MIT are complete mathematical representation 

schemes that tackle these issues. The two methods are reviewed and discussed. 

Chapter 6 looks at the issue of exploring a voxel model through visualisation techniques 

such as volume rendering. The visualisation pipeline for volume rendering is examined 

and some of the software applications available for volume rendering are surveyed. The 

Visualization Toolkit (VTK) is further examined, for its subsequent use. 

Chapter 7 looks at a FGM representation approach using finite elements as used in the 

Finite Element Method. The method is tried in a simple structural analysis example 

with a commercial application package (ANSYS). 

Chapter 8 focuses on the extension to the Visualization Toolkit through the implementa- 

tion of an octree structure dataset for data compression, as suggested in chapter 4. 

The chapter looks at the elements of the VTK framework: the visualisation pipeline 

and data representation within the toolkit and indirectly some of the design philosophy 

behind it, based on the object oriented methodology. The extension is documented, 

tested and results are reported. 

Chapter 9 examines further methods to use the voxel modelling technique for Rapid Man- 

ufacturing. The issue of generating a voxel model is examined and an application of the 
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visualisation tools (VTK) is presented to generate a model semi- automatically. Two 

examples for a simple geometry and a turbine blade are presented. Some other proce- 
dures are presented to process the voxel model for creation in a Rapid Manufacturing 

system. 

Chapter 10 gives a summary, the conclusions and suggests future work. 

The programs developed, concepts associated with the software development methodology 

used and a paper published are presented in the appendices. 

1.5 Original contributions and publications 

A paper was published in the Fourth International Scientific Colloquium CAx Techniques, 

Bielefeld 1999 and it is included in the appendix. The original contributions in this work are: 

Reviews of background material relevant to the thesis, such as Rapid Manufacturing 

processes, applications of functionally graded materials (FGMs) and computational 

geometry methods used for computer representation of geometric entities (chapters 2, 

3 and 4). 

9A review of modelling methods currently in development for the solution of the issue 

of the representation of functionally graded material objects (chapter 5). 

A review of the possible use of visualisation software for voxel modelling and the survey 

of VTK as a voxel modelling framework (chapter 6). 

e Generation of an FGM object model in a commercial Finite Element Analysis package 

(ANSYS) by discretising the space in cells with varying properties (chapter 7). 

An implementation of an octree decomposition for graded material voxel models and 

testing for the usefulness of the approach as a compression method (chapter 8). 

e The development of data transfer methods and a method to integrate available tools 

to develop a system to support Rapid Manufacturing processes based on the voxel 

modelling method (chapter 9). 
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* The integration of tools available in the VTK toolkit to generate contour surfaces from 

a voxel model (chapter 9). 

9 The creation of an example part using the stereolithography method from a voxel model 

of two materials and the creation of a voxel model from a turbine blade geometry using 

the framework developed, based around the Visualizahon Toolkit (chapter 9). 
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Chapter 2 

Rapid Manufacturing and Rapid 

Prototyping 

2.1 Definition of rapid prototyping 

Rapid Prototyping (RP) is generally understood as the process which involves the complete 

process of CAD modelling, data processing, transfer and building up the prototype layer by 

layer. 

There has been considerable work and success in the area of rapid prototyping. This 

lead to Rapid Tooling, where additive manufacturing techniques are used to produce tools 

directly or indirectly. It has also lead to its use in manufacturing medium volumes of parts 

directly, hence the name Rapid Manufacturing for these techniques. 

Other names given to these technologies are layered manufacturing, solid free-form fab- 

rication (SFF), and automated additive fabrZcation[43]. 

RP systems enable users to produce prototypes quickly, efficiently and with a high degree 

of precision. The common characteristics of this family of processes are: 

e Parts are automatically produced from CAE data sets. Many commercial RP machines 

can perform simulations to detect defects which come from the transformation of models 

to the industry standard STL format. This format consists of a list of vertices, triangles 
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and normals that determine the faces of a solid object. Specialised software (e. g. 
Magics[41]) allow editing, manipulating and visualising STL files. 

The techniques are additive: a solid object is built in a 21D fashion by successively 2 

adding raw material. 

C DD 

IMER POL ISATION POL 

EL2P ýLASER 
BEAM 

Solid Ground Curing Stereo 1i thography 
(SGC) (SL) 

Eý 
Fused 

Deposition 
Modelling 

(FDM) 

m 
SOLID 

POWDER 

Selective 
Laser 

Sintering 
(SLS) 

Laminated 
Object 

Manufacturing 
(LOM) 

Figure 2.1: Classification of Rapid Manufacturing processes 

The approaches used to generate each single layer can be classified into three groups (see 

figure 2.1): 

e Hardening of liquid materials (Stereolithography, Solid Ground Curing). 

9 Solid material layer addition (Laminate Object Modelling, Selective laser sintering, 

Fused Deposition Modelling, 3-D Printing). 

o Generation out of gaseous phase (LASER Chemical Vapour Deposition). 

The list of methods presented in this section is not exhaustive and only the major methods 

are listed, particularly the ones available within the facilities of the Rapid Manufacturing 

Group at De Montfort University. 

2.2 Stereolithography System 

Stereolithography was the first RP method to be invented. The first commercial stereolithog- 

raphy product, 3-D Systems SLA-1 was publicly introduced at the AUTOFACT Show in 

Detroit in November 1987[25]. The process is based on the use of photo-reactive polymers, 
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usually ones that react to ultraviolet light or short wave laser (HeCd). These resins solidify 
(polymerise) by absorbing sufficient irradiation energy. To allow the fabrication of parts, the 

SLA machine selectively polymerises one layer of the resin in a vat of the material. To create 

the next and subsequent layers, the object is dipped slightly deeper into the vat of liquid 

polymer. This process is repeated until the object is completed. A scheme of the process is 

shown in figure 2.2. 

HGCd-losG r 

LG iisG s 

Elavato f 

Liquid polyr- 

Pbtform 

Figure 2.2: The Stereolithography process[15] 

There are several manufacturers of machines which work on this principle. Table 2.1 lists 

a few companies that produce machines for this market. 
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Table 2.1: Stereolithography based processes 

Organisation Country Product Web address 
3D Systems USA SLA 250,500,3500, http: //www. 3dsystems. com 

50001 7000 
CMET (Mitsubishi) Japan SOUP http: //www. nttd-cmet. co. jp 

D-MEC(Sony) Japan Solid Creation System http: //www. d-mec. co. jp 
(SCS) 

Aaroflex USA Solid Imager http: //www. aaroflex. com 
Autostrade E-Dart Japan Solid Laser Plotter (SLP) http: //www. autostrade. co. jp 
Light Sculpting Inc. USA LS11212 

2.2.1 3D Systems 

3D Systems is the dominant company in the market. It produces a range of SLA systems of 

various envelope dimensions. 

3D Systems machines' original deep dip, elevate and sweep process has been changed 

in more recent models with the Zephyr system, which utilises a vacuum-fed re-coating 

system[61]. In the Zephyr method, as opposed to the older re-coater blade system, the 

blade picks up resin from the vat and applies a thin layer as it sweeps across. This allows for 

a reduction in the time required to build parts. An additional advantage is the reduction of 

problems caused by trapped volumes - spaces that hold resin separate from that in the vat. 

The resolution of a late SLA machine by 3D Systems (SLA 7000) is 0.0254 mm in the 

vertical direction and the laser spot diameter is 0.23 mm. These figures are however affected 

by the shrinkage of the parts, which depends on the materials, the build direction, the 

geometry and the curing process. Fitting parts created by SL machines still requires manual 

grinding and sanding of the interconnecting parts. 

2.2.2 SOUP CMET 

The Solid Ultraviolet Laser Plotting (SOUP) was developed by Mitsubishi Corporation in 

Japan and is marketed by CMET. The system is similar to that used in 3D Systems SLA 

machines', the main difference being that early models of the SOUP machine used an x-ý, 
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plotter arm to guide the laser. More recent models use the galvanomirror present in the SLA 

machines. In January 1999 a patent cross-license agreement was signed by 3D Systems with 
NTT DATA and NTT DATA CMET. By this agreement the companies have granted one 

another non-exclusive licenses to sell and produce stereolithography systems throughout the 

Asia-Pacific region. 3D Systems maintains an exclusive position in Europe and the United 

States[21]. 

2.2.3 D-MEC /SONY 

Design Model Engineering Center (D-MEC) developed stereolithography machines known 

as Solid Creation Systems (SCS). The systems uses either HeCd or argon-ion laser and the 

laser beam spot size is also made adjustable. Depending on the machine, D-MEC systems 

offer large maximum working envelopes of up to 1000 mm x 800 mm x 500 mm [61]. This is 

almost double the envelope of the SLA 7000 made by 3D Systems. 

2.2.4 Light Sculpting Inc. 

The distinctive feature of Light Sculpting Inc. 's machine is the use of a light source that 

solidifies entire layers at once at a shorter distance through a mask. The resolution achieved 

by using masks is that of industrial printers - either 600 or 1200 dpi, compared with usual 

SLA machines which only reach 67 dpi. Due to the short irradiation distance, less expensive 

fluorescent or mercury bulbs can be used instead of laser[61]. 

2.3 Selective Laser Sintering (SLS) 

This process was developed by Carl Deckard and Professor Joe Beaman at the University of 

Texas, Austin [61]. 

In the SLS process, a C02 laser scans over a thin layer of powder to selectively fuse and 

join with other particles and form a solid mass. After whole cross section is scanned, the 

platform is lowered according to the specific layer thickness and a new layer of powder is 

spread on top. The process is then repeated. 
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Table 2.2: Laser Sintering processes 

Organisation Country Product Web address 
DTM USA Sinterstation 2500 http: //www. dtm-corp. com 
EOS Germany EOSINT S, EOSINT M, http: //www. eos-gmbh. de 

EOSINT P 

The companies that commercialise this process are DTM (USA) and EOS (Germany). 

The main difference in their machines lies in the powder delivery mechanism DTM machines 

use a roller levelling device, a powder tank located at one side of the powder bed and a 

container at the opposite side to collect redundant material. EOS uses a container that faces 

down toward the powder bed. EOS's design requires the feeding mechanism to travel only 

once over the powder bed. 

The materials for this process are varied, e. g. thermoplastic, sand, elastomers, ceramic 

and metal powders[611. 

2.4 Solid Ground Curing (SGC) 

Cubital developed this Rapid Prototyping technique which is a variation on the stereolithog- 

raphy process. in the SGC method, a whole layer of photopolymer is solidified by UV light 

in a single run and cured completely. Unaffected resin is then vacuumed off. Wax support 

is then poured in and a milling tool removes excess material subsequently and levels the top 

surface for the next layer to be applied. 

The machine has a high throughput and a relatively large envelope of up to 500 mm x 

350 mm x 500 mm (SGC 5600)[14]. It is possible to create parts overnight and no extra 

curing is required after they emerge. Also the use of wax means that no support structures 

are needed for overhangs and complex geometry. The wax is removed by melting or rinsing. 
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Table 2.3: Laminated Manufacturing processes 

Organisation Country Product Web address 
Helysys Inc. USA LOM http: //www. helysis. com 

KIRA Japan KSC 50N and PLT A4 
Schoff Development Corp. USA SDC JP 5 System http: //www. sdcpro. com 

2.5 Laminated Manufacturing 

Laminated manufacturing is a rapid prototyping technique that works on the principle of 

adding together several layers of material in sheet form. Table 2.3 lists a few processes in 

this category. 

The LOM (Laminated Object Manufacturing) process, commercialised by Helysis Inc., 

uses laminated material coated with thermal adhesive that is glued successively layer by 

layer. Every layer is processed with a C02 laser that cuts along the solid object's edge and 

cross-hatches the areas which don't belong to the solid. After all the layers have been added 

in the previous method, the cross hatched areas are easily removed by hand, to uncover the 

desired solid. 

KIRA's paper lamination machines uses paper lamination technology to make 3-D models. 

Unlike Helysis's process, KIRA's doesn't require a pre-coated adhesive on the paper. The 

adhesive is applied as toner and glued thermally. The edges of the object are cut with a x-y 

plotter knife instead of the C02 laser used by Helysis' process. KIRA's machines can handle 

plain paper and toner (KSC-50N) and special paper too (PLT-A4). 

Schroff Development Corporation commercialises what is possibly the cheapest RP system 

so far. The SDC JP 5 System prints the cross sections of every layer of the model. These 

cross sections are cut from laminated material. The sections are assembled by hand using 

positioning marks. 
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Figure 2.3: SDC cutter [58] 

2.6 3-D Printing 

3-D Printing is a Rapid Prototyping technique developed at the Massachusetts Institute of 

Technology by Prof. Emmanuel Sachs and Michael Cima[53]. 3-D Printing works on the 

principle of selectively spraying a binder on a powder bed. After a layer has been processed 

in this way, the powder bed is lowered, a new layer of material is added on top and the 

process is repeated. The region sprayed with the binder becomes part of the resulting solid 

object and the remaining powder is removed in a post processing step. The resulting part 

is known as the green part (about 50% dense), which is subsequently fired and infiltrated 

to make a dense metal part. Currently metal and ceramic parts are manufactured with this 

method, but there is the potential to manufacture multi-material parts[61]. MIT has licensed 

this technology to six companies to develop their own applications. 
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Table 2.4: Jetting equipment manufacturers 

Organisation Country Product Web address 
Sanders USA Modelmaker 11 http: //www. sanders-prototype. com 

3D Systems USA Thermojet http: //www. 3dsystems. com 
Objet Geometries Israel Objet Quadra http: //www. objet. co. il 

2.7 Jetting 

Jetting technology works on the principle of ink jet printers, the important difference being 

that the material that comes out of the jet printing head(s) or nozzle(s) is melted wax or low 

melting point material instead of ink. This process associated with a controlled support bed 

enables the machine to build solid 3-D objects. 

Table 2.4 lists three manufacturers of jetting machines. This technology is particularly 

appropriate for office application, among other things, because of the simple and reliable 

operation. 

2.8 Fused Deposition Modelling (FDM) 

Fused Deposition Modelling machines produce solid objects by dispensing successive layers of 

material through a robot-arm operated nozzle. Once a layer has been deposited, the support 

platform is lowered slightly a small distance determined by the thickness of the material 

deposited. 

It is possible in this technique to use several nozzles for several materials to be deposited. 

One of the uses of several materials is the creation of support structures for a model. It is 

also possible to create multi-material objects with the combination of extruded materials. 

The only manufacturer of commercial equipment in this category is Stratasys[7]. Strata- 

sys's FDM machines have two nozzles available, one nozzle extrudes the structure material 

and the other extrudes the support material. The materials available for the process are 

ABS', high impact grade ABS, investment casting wax and an elastomer. 

'Acrvlonitrile Butadiene Styrene 
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Table 2-5: FDM equipment manufacturers 

Organisation Country L Product Web address 
Stratasys USA I FDM series http: //www. stratasys. com 

2.9 Shape Deposition Manufacturing (SDM) 

Shape Deposition manufacturing is a layered manufacturing process that iteratively combines 

material removal and addition, as well as other intermediate processing operations performed 
on each layer. 

It can be thought of being similar to FDM in that material is added through computer 

controlled nozzles that deliver material layer by layer. The distinctive steps in the SDM 

process are the material removal and stress relief steps (Figure 2.4). 

Finger et al. [19] describe the process and explain its use for the creation of objects with 

embedded parts, and mention the technique in the production of wearable computer proto- 

types. The Shape Deposition Manufacturing process (SDM) has always had the ability to 

create multi-material objects. Further additions to this process, discussed by Fessler et al. 
[18], allow metallic powders from different powder feeders to mix under a laser. The result is 

an effective multiple graded material. Fessler's application was the creation of an advanced 

moulding tool (figure 2.5), that combines aluminium and stainless steel with a copper interior 

around the cooling channels. During the design, the computer representations used assumed 

a homogeneous material and the gradation was controlled by manipulating the process plan 

to deposit different materials[43]. This shows the lack of a suitable modelling method for 

functionally graded material objects. 

2.10 Rapid Tooling and Direct Metal Manufacturing 

The major methods presented in this section are still evolving and being extended by newer 

applications. SL, SLS, FDM and jetting are established techniques with proven practical 

applications. 
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Figure 2.4: The Shape Deposition Manufacturing (SDM) Process [19] 

A limitation of RP techniques is that the materials that can be used, are restricted by 

the nature of the machines. This has lead to focusing RP efforts to the creation of tools in 

what is known as Rapid Tooling. Rapid Tooling enables pre-series manufacturing, used for 

testing and decision making. Some of the rapid tooling techniques are: 

e Direct AIM and 3D Keltool (31) Systems) used for injection moulding. 

* RapidSteel and RapidTool (DTM) used to create metal tools for moulding of plastics. 

e PROMetal (Extrude Hone Corp. ) also used for the creation of injection moulding dies, 

extrusion dies and metal components. 
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Figure 2-5: Advanced ALCOA injection moulding tool[18] 

Another group of techniques driven by the demand for shortened product cycles is direct 

metal manufacturing, which does not require the use of intermediate binders, furnace densifi- 

cation or secondary infiltration. For example the Laser Engineering Net Shaping (LEN STM) 

process (Optomec Design Co. ) is capable of producing metal parts directly. The system 

operates by combining a powder feed system and a laser focusing unit together in a nozzle. 
This process can directly process stainless steel, tool steel and titanium powders to produce 

near net shape metal parts. 

Laser Powder Fusion, a method originally developed by Krupp in Essen is also capable 

of producing fully dense metal parts. The system works by scanning a high power C02 laser 

on HIO tool steel powder. At De Montfort University a similar setup is being installed with 

the objective of processing functionally graded materials. 

An analYsis of the particle size and distribution for the tool steel powder used for Laser 

Powder Fusion experiments can give a representative idea of the maximum resolution achiev- 

able. The powder shows a bimodal particle size distribution (obtained by sieving) with peaks 

at -150/iiii+125/Lm and -90pm+75pm. 

2.11 Discussion 

There have been significant advances in the field of Rapid Manufacturing since its beginnings 

over one decade ago, when the first SLA machine appeared. 

The original processes have evolved into a family of related methods: stereo lit hograp hy 
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(SL), selective laser sintering (SLS), fused deposition modelling (FDM), jetting and others. 
Several machines are offered by the various manufacturers to cater for the various uses and 

applications both in design bureaus and shop floors. 

The limited number of available materials in RP processes is an important issue that led 

to the development of Rapid Tooling and Direct Metal Manufacturing processes. 

Su[61] points out that considering the newly developed high-speed CNC machining pro- 

cesses, RP and RT processes loose out in speed, availability of materials and achievable 

tolerance. The distinct and unbeatable advantage of RP processes lies in the realisation of 

complex geometries with holes, overhangs and undercuts that are extremely difficult to make 

using conventional machining. Additionally being able to create parts with localised compo- 

sition control, i. e objects with multiple materials and functionally graded material objects 

(FGM), with either discrete or continuous material variation is unique to additive processes. 

These additive processes can also be seen as complementary, rather than competitive, 

and by combining Rapid Manufacturing techniques are able to build objects with overhangs 

and undercuts which are extremely difficult in conventional ways. An application in case 

are the conformal cooling channels in moulding tools, practicable using RP techniques, but 

whose complex geometry could not be created using standard machining (e. g. Fessler et al. 

ALCOA advanced moulding tool[18]). 

The resolutions available for RP processes vary according to the material and process. 

Jetting technology is the most precise. Yet techniques that can be used for the creation 

of multiple material objects, such as selective laser sintering or direct powder fusion don't 

achieve high resolutions. Tolerances are often difficult to meet because of shrinkage or warp- 

ing of parts subject to temperature gradients. An indication of available resolutions is given 

in table 2.6. Shrinkage can be a problem in RP. It almost never occurs uniformly because 

of the inhomogeneous distribution of temperature in the part. Although shrinkage can be 

compensated by enlargement of the CAD model to meet the tolerance, this procedure needs 

experience in material handling and it is prone to mistakes. 
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Process x, y resolution 

Stereolithography 
Light Sculpting 
Selective laser sintering (SLS) 
ThermoJet 

0.23 mm (beam diameter) 
0.0423 mm(600 dpi) 

0.0846 mm (300 dpi) 

z resolution 

0.0254 

0.05-Imm 

Sanders Model Maker 11 0.07 mm 0.013 mm to 0.076 mm 
ObJet 0.0423 mm (600 dpi) 0.021 mm(1200 dpi) 

Table 2.6: Indication of resolution achievable by the various RP processes 
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Chapter 3 

Functionally Graded Materials 

(FGM) 

Functionally graded materials (FGM) refer to materials exhibiting spatially inhomogeneous 

structure and composition, resulting in corresponding changes in the properties of the ma- 

terial. FGMs do not present a sharp interface between constituent materials and typically 

present a graded change from one material to the other. 

(a) (b) (c) 

Figure 3.1: Illustrations of the evolution towards FGM materials[61]: (a) multi-material 
coated type object with sharp interface , 

(b) homogeneous composites and (c) FGM 

Miyanioto et al. [45] mention that the whole concept of FGMs was first introduced along 

with composites in the seventies, but no actual investigation on how to design, fabricate and 
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evaluate graded structures took place until the 1980s. The name functionally graded material 

originated in Japan in the late 1980s. 

Graded materials are not something new. For example case-hardened steel is a graded 

material developed long ago that is still in common use today. What is new is the realiza- 
tion that FGMs can be tailored at the micro- structural level to match specific functional 

requirements [54]. 

SFF processes can add on top of this 'micro- structural tailoring' the ability to produce 

arbitrary geometry under computer control, directly from a computer model. 

(a) 

(c) 

(b) 

(d) 

Figure 3.2: Continuous (a) and stepwise (b) graded structures. Local gradients at the joint 
(c) and the surface (d). (Miyamoto et al. [45]) 

3.1 Applications 

FGMs are a natural extension to the choice of materials available to a designer, when the 

various requirements in an application cannot be fulfilled by the use of conventional materials 

or composites. It is not surprising then that FGMs applications are those that require 

incompatible functions, e. g. chemical inertness and toughness, hardness with toughness, 

refractoriness and toughness. 

Thermal barrier coatings (TBCs) are a very successful application of FGMs in the thermal 

protection of components. The benefits of a graded material in minimising thermal stresses 
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and varying thermal flux are explained by Markworth and Saunders[39,40] who use the 

simple Voigt rule to estimate the material properties of the mixture and assume a quadratic 

material distribution. Their model shows that the heat flux varies with the shape of the 

distribution of materials and that the highest stresses usually occur at the high temperature 

surface for properties representative of ceramic and metal. There is the case. however, when 

the stresses achieve their highest values underneath the high temperature surface for certain 

quadratic material distributions. 
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Figure 3.3: Applications and potential applications of FGMs (Miyamoto et al. ) 

3.1.1 Applications in space vehicles 

Space vehicles experience high temperatures when flying at high speed because of the aero- 

dynamic heating caused by the friction with the atmosphere. The leading edge of vehicles 

flying at high speed, reaches radiant equilibrium temperatures above 2500' C For example 

the space shuttle, flying at 8 km/s at an altitude of 120 km experiences 1500' C for a few 

ininutes[45, p. 249]. 
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In the case of horizontally launched space vehicles, like the German Sdnger program or 
the Japanese Single Stage to Orbit (SSTO), it is not only during reentry that long exposure 
to high temperatures happens. This occurs because these vehicles fly in the atmosphere at 
hyper-sonic speeds for a longer time than vehicles launched vertically by rockets, and the 

maximum heat is experienced during launch. 

The thermal protection in the space shuttle is located in the nose, the leading edges and 
the rudder and it is composed of non-metallic carbon/carbon composites (C/Q. Ceramic 

tiles can be used for temperatures up to 1200' C. 

A thermal barrier coating of C/C composite coated with functionally graded Si/C was 
developed and tested. A cone model was subjected for one minute to a supersonic (Mach 

3) gas flow at 1900'C containing an amount of oxygen approximately equal to a standard 

atmosphere. The part composed of a C/C substrate, a functionally gradient interface and 

an ungraded 100 pm thick Si/C protective layer, showed "no discernible change in structure 

even after ten cycles" [45, p. 249]. The cone models without the intermediate graded interface 

before the Si/C coating deteriorated after the first cycle. 

Rocket engines are another application of thermal barrier coatings (TBCs). A C/C 

combustion chamber with an Si/C FGM protective layer was developed for HOPE, a Japanese 

space shuttle under development. A schematic of the engine is shown in figure 3.4. The walls 

of carbon/carbon composite were coated by a graded layer of 30 Pm using chemical vapour 

infiltration (CVI) and subsequently by a second layer of Si/C 100 Am thick using chemical 

vapour deposition (CVD). The tests showed that the FGM layer was very resistant to de- 

lamination and cracking. However the Si/C layer showed de-lamination and corrosion after 

500 seconds of stationary or pulsed combustion. 

Other tests were done on rocket combustors using CVD-Si/C FGMs. The propellant used 

in the tests was nitrogen tetroxide (NTO) and monomethyl hydrazine (MMH) with firing 

(-Ycles of 55 seconds with subsequent quenching by liquid nitrogen. After two test cycles no 

damage to the combustors was observed[45, p. 250]. 

Rocket engines are a very hostile environment for the materials, due to the extremely 

high heat flux. Thermal barrier coatings of FGMs originally developed for turbine engine 
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Figure 3.4: Schematic of the carbon/carbon (C/C) composite combustion chamber for the 
engine of the reaction control system of the Japanese space shuttle, HOPE, with an FGM pro- 
tective layer of silicon carbide/carbon (SiC/Q. The propellants are NTO (Nitrogen tetroxide: 
N204) and MMH (monomethylhydrazine: N2H3CH3)- (Miyamoto et al. [45]) 
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applications are used in rocket engines and protect the engine for much shorter work cycles 
but at higher temperatures and more severe thermal transients. A typical coating is a thin 

structure of 0.2 mrn thickness. Large combustion chambers present such a high heat flux, 

that heat cannot be dissipated fast enough to prevent local hot spots and coating failure, 

and for these applications high conductivity copper is used to extract heat away from the 

chamber. 

Thermal barrier coatings have also been used in liquid propelled rocket engines. Figure 
3.5 shows potential locations for thermal barrier coatings (TBCs) in the high pressure hy- 
drogen turbopump (left), main combustion chamber (centre), and the high pressure oxidiser 
turbopump (right). TBCs have been used as liners in the spark igniters and pre-burners, 
turbine housing liners, turbine blade shanks and vane shrouds. 

On smaller regeneratively cooled thrust chambers for orbital manouvering systems, graded 
FGM thermal barrier coatings have also been used. The base layer of the graded parts were 

created by galvanoforming, depositing up to 25% Zr02 on a Ni metal chamber. This part is 

subsequently coated to 100% Zr02 by plasma spraying. The test of 550 seconds of combustion 

of combustion with this engine showed no de-lamination of the Zr02- 

3.1.2 Application in stealth missiles 

The stealthiness of missiles and modern weapons depends on specific materials capable of 

absorbing emitted electro- magnetic energy to minimise reflected waves to enemy radars. Ce- 

ramic matrix composites with tailored microwave properties, reinforced with ceramic woven 
fabrics have been successful for these applications. The composite material offers greater 

toughness than monolithic ceramics, which are brittle. 

The conducting properties of these ceramic composites varies with the material of the 

fibres, the matrix, the interfaces and the topology. Nasicon, with a structural formula 

Nal+., Zr2SixP3-xOI2 (0 <x< 3) has an electrical conductivity that varies by four or- 

ders of magnitude as a function of x. It is used to make ceramic composites with varying 

absorption of electro- magnetic waves. 
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Figure 3.5: Cross sectional schematic of a rocket engine. [45] 

44 



3.1.3 Applications in aeroengines 

Graded thermal barrier coatings (TBCs) have many applications in aeroengines of both 

commercial and military aircraft and turbine engines in general. The principle in practice is 

that the higher the operating temperature of the engine, the higher the efficiency obtained. 
In order to increase the efficiency, gas inlet temperatures in a turboengine must be increased 

and the cooling of the parts must be decreased. Thus TBCs are located mainly on hot gas 

pathways, where thermal fatigue, temperatures and corrosion are critical. The thickness 

of the coatings on these paths is usually thin (< 0.4 mm) to prevent spalling. but thicker 

coatings can be used in other sections of the engine, e. g. seals. 

Turbine and engine coatings are also subject to high corrosion and erosion from particles. 
The two methods used to create thermal barrier coatings in aeroengines are electron 

beam-physical vapour deposition (EB-PVD) and plasma spraying. 

EB-PVD is used for coatings on the air-foils of blades and vanes. These are thin coatings 

as shown in figure 3.8. The apparatus used to create the coatings is schematically shown in 

figure 3.7. The bonding between the ceramic TBC and the metallic super-alloy in a turbine 

blade core is done using a single layer bond coat (thin metallic bond coat) of either NiCrAlY, 

NiCoCrAlY or Pt-Al. The use of either NiCrAlY or NiCoCrAlY presents two problems: 

At the metallic interface, it is desirable to have a minimum diffusion of Cr and Al in 

the super-alloy. 

At the ceramic interface, it is desirable to have as high as possible concentration of Cr 

and Al, to build up a dense, stable, protective alumina (A1203) scale. 

To solve the problem at the metallic interface, it is possible to increase diffusion barrier 

elements (platinum, palladium) or reduce the Cr, Al at the interface. At the ceramic in- 

terface, the solution is to increase the oxide forming Cr and Al. The optimal concentration 

distribution could be met with a graded structure with varying content of Al and Cr. 

There are several good characteristics of TBC produced by EB-PVD. 

* Smooth surfaces without further polishing 

45 



Metal 

Superalloy 

NiCrAlY, 
NiCoCrAlY 

or 
PtAl Yttrium stabilized 

/ Zirconia 

Ceraýic thermal 
barrier coating 

(TE3C) 

metallic ceramic 
interface interface 

Figure 3.6: Schematic of a thermal barrier coating (TBC) produced by electron beam-physical 
vapour deposition. The bond coat is graded. 

e Good erosion resistance 

* No closure of cooling holes 

9 Outstanding resistance to thermal shock, due to the columnar micro-structure 

These characteristics lead to a considerably extended lifetime. 

Coatings produced by plasma spraying are used in inside liners of combustors where the 

fuel ignites with air, and on the platforms of turbine vanes and blades, where the hot gases 

expand into the turbine section. Thicker coatings (2.5 mm) created by plasma spraying are 

used for abradable blade outer air seals. Military aircraft aeroengines use TBCs in augmentor 

(afterburner) components (tail cones, flame holders, heat shields and duct liners) which are 

not present in commercial aircraft. 

3.1.4 Application in diesel engines 

Diesel engines have also benefited from the use of functionally graded thermal barrier coat- 

ings. TBCs have been applied on piston crowns, valve faces and cylinder heads. Experimen- 

tal TBCs have been tested on cylinder liners, exhaust valve systems and valve seats. The 

advantages obtained by using TBCs are: 

le increased power density, 
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Figure 3.7: Schematic of an electron beam physical vapour deposition coater [45, p-195] 

Figure 3.8: Micrograph of graded alumina-yttria stabilised zirconia (A1203-YSZ) coating. 
The columnar rnicro-structure provides outstanding thermal shock resistance[45, p. 196] 
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Figure 3.9: Schematic of a diesel engine showing location of TBCs[45, p-256] 

e reduced heat loss, 

* reduced fuel consumption, 

e reduced exhaust emissions 

It has been shown that 5% reduction in fuel consumption is obtained by insulating the 

combustion chamber with 2 mm thick functionally graded TBCs[45, p. 255]. 

3.1.5 Applications in fuel burning systems 

Miyanioto describes two applications in fuel burning systems: turbine blades of titanium 

aluininide and porous silicone carbide ceramic liquid fuel evaporator tubes with tailored 
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Figure 3.10: Application of functional gradation of alloying Cr in a TiAl turbine blade. 

porosity. 

Turbine blades are usually made of heavy super-alloys and an interesting prospect is 

the use of lighter materials, such as -y-titanium aluminide. This is a suitable material at 
intermediate temperatures (600'C to 800'C). Unfortunately the creep strength and the duc- 

tility are two opposite properties in this material. While the Oz phase with heat treatment 

has good creep strength, its ductility is poor. The oz-, O two-phase field with heat treatment 

presents acceptable creep strength and low but acceptable ductility. The desired gradient of 

properties can be obtained by changing the concentration of alloying Cr in the TiAl. The 

effect of Cr is a change in the equilibrium volume ratio of the a+0 phase during isothermal 

annealing. If sufficient Cr is present, a fully lamellar micro-structure develops, with excellent 

creep strength. Turbine blades of titanium aluminide with gradients in Cr content have been 

produced by hot isostatic pressing[45, p. 257]. 

Fuel evaporator tubes are used to premix air and fuel before combustion. This pre-mixing 

achieves optimised fuel efficiency at low emission levels of soot, hydrocarbon and nitrogen 

oxide gases. The evaporation surface is the exterior surface of the tubes, while the interior of 

the tube is where the combustion takes place. The porosity of the tube must vary from the 

interior, where porosity is to be avoided, to the exterior, where porosity is advantageous for 

the evaporation. Porous silicon carbide ceramic tubes can be made with a continuous graded 
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function. The gradation of the material can also reduce the probability of failure, from the 

thermal stress generated by a high temperature gradient - 1500'C at the inner and 550'C at 
the outer tube wall[45, p. 258]. 

3.1.6 Applications in integrated t hermo- ionic /t hermo- electric systems 

A high efficiency hybrid energy conversion system (HYDECS), developed as part of the second 

Japanese FGM program, shows several applications of functionally graded materials. The 

system has a solar receiver system, a thermo-ionic energy conversion step, for temperatures 

at around 2000K, a thermoelectric energy conversion unit at temperatures around 1100K 

and a heat radiator at around 300K. 

The solar receiver system is a C/C composite heated to temperatures around 1900K at its 

bottom transmitting plane. The system applies functional gradation in both the fibre volume 

fraction, which increases toward the central axis of the cavity, and the fibre orientation, which 

aligns fibres in the direction of the desired heat flow. The orientation of the fibres is axial in 

the central areas of the cavity and more radial toward the outer edges of the collector. The 

use of functionally graded materials allows an increase in 100'K to 150'K at the transmitting 

planar bottom surface[45, p. 260]. 

Thermo-ionic conversion operates on the principle of electrons discharged from a hot 

emitter and collected at a lower temperature. The material used for the emitter is rhenium 

(Re) and the material of the heat receiving plate is titanium carbide (TiC). To join these 

two plates together, an advantageous gradation of TiC/Mo, MoW and WRe was developed. 

The characteristics that make this gradient plate convenient are: 

e Excellent heat conductivity, 

* Reduction of the thermal stresses among the plates, 

o Diffusive barrier action between the TiC (heat receiving) and the Re (emitting) plates. 

The collector is made of sputtered niobium oxide (NbO,, ) on a molybdenum (Mo) electrode. 

The thermo-ionic conversion system built using these materials was operated at emittei- 

50 
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Re emitter 

Figure 3.11: Schematic of a composite emitter electrode used in a thermo-ionic conversion 
system. 

collector temperatures of 1600'C-760'C, with cesium reservoir temperatures of 330'C and a 

maximum output of 80 KW/M2.15'C[45, p. 261]. 

The thermoelectric conversion benefits from the use of a gradation of the dopant in 

the base compound. The materials selected for the conversion units are silicon germanium 

compound Si. 8Ge. 2 for the higher temperature range of 1300 K to 900 K, lead telluride (PbTe) 

for the intermediate temperature range of 900 K to 500 K and bismuth telluride Bi2Te3 for 

the lower temperature range of 500 K to 300 K. This selection is based in the thermoelectric 

figure of merit for the various materials, which is a function of the temperature, the nature 

of the carriers and their concentration. It has been estimated that the effective maximum 

power (the figure of merit) for a n-type lead telluride conversion unit can be optimised by 

grading the concentration of the dopant lead iodide (Pb12)- Similarly, "a conversion unit 

made of an n-type SiGe FGM with gradation in the concentration of the phosphorus dopant 

shows a marked improvement in output power characteristics" [45, p. 264]. 

3.1.7 Applications in tungsten carbide cutting tools 

A typical cutting tool of tungsten carbide (WC) is made by sintering powders at high tem- 

peratures with cobalt (Co) as binder. The hardness of the resulting tool depends on the 

percentage of the binder and on the grain size of the WC. The control of the grain size has 

been achieved by controlling the atmosphere and the rates of heating and cooling during 

the liquid sintering phase of the process. Sumitomo Electric Industries Ltd. has developed 

functionally graded cutting tools using these methods. The principles in practice are that 
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the hardness of the cutting tool decreases with increasing binder content. At constant binder 

content, the hardness of the tool decreases with increasing grain size. The rupture strength 
and fracture toughness of the tools decreases with increasing hardness, almost irrespective 

of grain size or binder content. 

By controlling the process parameters, heating and cooling rates, a WC/Co throw away 
chip was developed that presents a varying concentration of Co from the surface to the 
interior. The result is that the surface harder than the interior. The outer surface is al- 
most completely ceramic without metal binder, which has high hardness and high surface 

compressive stress. The WC/Co cutting tools are subsequently coated by chemical vapour 
deposition with a layer of titanium nitride TiN, a layer of alumina (A1203) and a layer of 
titanium carbonitride. "The high surface hardness and compressive stress plus the tough- 

ness of the interior almost doubles the wear resistance, and increases the tool life as much as 
fivefold compared with conventional cermet tools. " [45, p. 273] 

These FGM multiply coated WC/Co throw away chips are also very resistant to flank 

wear and allow for high machining speeds and high feed rates. Additionally the graded 
layers permit better control of the thermal stresses which arise due to the unmatched thermal 

expansion rates of the metal and the ceramic. 

3.1.8 Applications in diamond cutting tools 

Diamond cutting tools are used for high precision machining of soft components. To create 

a tool, a diamond crystal is joined to a metallic alloy shank using a silver solder. One disad- 

vantage of the silver solder is that its lack of stiffness causes vibration and loss of machining 

accuracy. To solve this problem an extremely stiff FGM diamond tool was developed. The 

tool is made up of three layers, one of diamond crystal, a graded diamond/SiC layer and 

a SiC shank. The graded layers vary from 0 to 80% in volume of diamond powder with 

polymer binder. Additionally the graded layer reduces the thermal stresses in the tool, and 

it is estimated that the life of the tool can be extended by 30%. Unfortunately this tool is 

still too expensive to manufacture to be competitive commercially. 
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3.1.9 Applications for Graded Index Materials 

The applications of a continuous variation of the refractive index in a medium has been 

explored. The media is collectively known as GRIN for graded index or gradient %ndex. There 

are three main types of graded index (GRIN) lenses: axial, radial and spherical depending 

on the distribution of the refractive index. Light in a radial GRIN lens with a quadratic 

refractive index distribution 

n(r) = no(I -I 
Ar2) 

2 

follows a sinusoidal path in which every ray passes through one point at a distance L/2, 

forming an inverted image and again at a distance L, forming an upright image, where 

L and A is a positive distribution constant. Radial GRIN lenses of this kind have 
%/A 

been used as connectors and couplers for optical fibres and as imaging lens arrays in photo- 

copiers[45, p. 290]. 

Glass fibres used in data communications currently use a single-mode step-index fibre, 

which offers superior data-carrying performance. Other possible types of glass fibres are 

multi-mode step-index fibre and multi-mode graded-index fibre. While in the multi-mode 

step-index fibre there are time differences among the various modes (wavelengths), in a 

graded-index fibre with an optimised profile all modes propagate at the same velocity. This 

means that an impulse is not spread over time and a significant increase in the data-carrying 

capacity can be achieved[45, p. 292]. 

Following a similar idea using polymers instead of glass, polymer optical fibre (POF) has 

been considered for short-distance communication applications such as local area networks 

(LANs). For the applications that will be required in the near future, the bandwidth offered 

by step-index (SI) POF will not be enough, therefore graded-index POF (GI POF) have been 

considered[45, p. 296]. 

3.1.10 Applications in graded band gap semiconductors 

Semiconductor heterojunctions using graded materials have been considered for some elec- 

tronic applications. In the case of bipolar transistors, the application of graded bandgap 
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structures offers unique energy band profiles with improved characteristics [45, p. 286]. 
A crystallographic function of a graded structure is the gradual introduction of misfit 

dislocations in a thick buffer layer. This procedure is used to grow heterostructures using 

epitaxial growth on substrates with non-matching lattice constant. This has been used in 

orange-coloured light-emitting diodes[45, p. 284]. 

The use of a quasi-field effect for graded structures has been proposed. Based on this 

effect, it should be possible to control the behaviour of carriers. 
Another application mentioned is the removal of potential barriers for carriers at het- 

erojunctions by gradual change in the composition of the alloy. This reduction at a very 

small scale leads to quantum size effects that allow the design of a variety of wave functions 

and densities of state[45, p. 286]. Examples of these applications are high electron mobility 

transistors (HEMT) and quantum well lasers. 

An application in semiconductor lasers (single quantum well lasers) is the improvement 

of the separate confinement heterostructures (SCH) which have abrupt changes in the energy 

band profiles. A graded index (GRIN) SCH laser has reduced photo- absorption and enhanced 

carrier capture[45, p. 288]. 

3.1.11 Application in biornaterials 

The Interface Bioactive Bone Cementation (IBBC) is a technique that combines the advan- 

tages of two other techniques: bone cementation using polymethyl methacrylate (PMMA) 

and bioactive binding using hydroxyapatite (HAp), a bioactive calcium phosphate ceramic. 

This graded interface for bone orthopedic implants is in use in Japan since 1985. 

The bone can be fixed to the prostheses in several ways. The cementless fixation shown 

in figure 3.12 works by inserting the prostheses tightly into the bone, which is reamed to 

the same shape of the insert. A live soft tissue layer grows in between the component and 

the bone. Weight bearing and walking may cause pain in this configuration, and worse, the 

micro-motion may loosen the binding. 

An improvement on the cementless binding method is achieved by coating the metallic 

titanium alloys with a bioactive ceramic layer (HAp layer) of 50 to 100 pm that provides 
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Figure 3.12: Diagram of the interface in a cementless bone-prostheses fixation[45) 

physico chemical bonding. The bonding is improved more by making the surface of the metal 

porous. The optimum pore size is 300 to 600 pm. Bone growth in the pore cavities provides 
firmer mechanical bonding, but pain may still happen because of micro motion and small 

spaces between the bone tissue and the beads. 

The conventional technique of using PMMA bone cement to join the implant to the bone 

is advantageous in that the prostheses can be completely fixed in the bone immediately after 

surgery, since the cement hardens in minutes after its components are mixed and kneaded. A 

problem of the method, though is that over the time soft living tissue can become interposed 

between the bone and the bone cement (figure 3.13). The IBBC method improves on this by 

applying one to three layers of HAp granules between the bone and the bone cement. The 

inclusion of HAp granules in the region between the cement and the bone promotes bone 

ingrowth and the HAp granules chemically bond to the bone. 
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Figure 3.13: Diagram of the interface in a PMMA cement bone-prostheses fixation and an 
IBBC fixation[45] 

3.2 Creation methods 

A classification proposed in [45] includes: 

e Bulk processing. This includes processes that create FGMs from powder stacking, 

powder sintering and hot pressing. 

e Layer processing, which includes spray deposition, laser cladding, vapour deposition 

and deposition by electro-transport. 

e Pre-form processing, which refers to FGMs created through solid state and liquid 

phase diffusion or processing a material to change its properties (e. g. porosity) in- 

homogeneously by submitting it to thermal or electric fields. 

* Melt processing, which refers to settling of grains in molten materials (e. g. W in a 

W-Fe-Ni inelt[45, p. 213]) under plain gravity or using centrifugal forces. 

e Joining, like low temperature solid-state joining, transient liquid phase joining or liquid 
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phase joining. 

SFF processes are also presented in the exposition of methods to create FGMs[45, p. 
220-232]. 

9 Laminated object manufacturing has been used to create FGMs by substituting the 

standard paper in sheets with tape-cast, flat sheets consisting of fine ceramic or metal 

particles dispersed in a polymer matrix. 

Stereolithography was used to create ceramic filled polymer parts and it could poten- 

tially be used to create varying composition parts by filling the liquid polymers with 

two or more different materials. 

Selective Laser Sintering (SLS) and 3-D Printing are also mentioned as possible FGM 

creation processes. 

Based on the SFF process of fused deposition modelling (FDM), the deposition of 

ceramics and metals have been demonstrated successfully. 

Another SFF process, Extrusion Freeform Fabrication, similar in nature to FDM is 

reported to have been used to fabricate FGMs by depositing layers of thermo-plastics 

using a computer controlled extrusion head. The creation of FGMs was possible by 

using two extruders to dispense different materials in a small mixing head. Ceramic 

and metal powders were used in the fabrication experiments. 

V- Fussler et al. have also created FGMs through the Shape Deposition Manufacturing (SDM) 

process. Their product was an advanced moulding tool with a graded transition from alu- 

minium to stainless steel[18]. Jepson et al. [27] have created small FGM tungsten carbide and 

cobalt dies through Multi Material Selective Laser Sintering (M2 SLS). 

3.3 Summary 

The concept of functionally graded materials has been present in science and engineering 

from long ago. The difficulty in controlling the material composition in the volume and the 
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difficult procedures of creation have not stoped newer and more ingenious applications from 

being developed. 

It is usually in the very advanced applications where "normal" engineering techniques 

still haven't proved sufficient that we find applications for FGMs. A large number of appli- 

cations have been developed from space exploration programs, where elements are subject 

to extreme temperatures and extreme thermal stresses. Thermal barrier coatings (TBCs) of 

ceramic/metal are a typical case. 

Some Rapid Prototyping and Manufacturing techniques can control the material compo- 

sition and can be used for the creation of FGM parts. However these parts have still not been 

modelled. In previous work[43] it was shown that realisation of parts is ahead of modelling. 

This is still the case, although we'll see in chapter 5 and chapter 9 techniques that intend to 

change this situation. 
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Chapter 4 

Geometric modelling 

The computer representation of surfaces, curves, objects and assemblies requires models to 

capture infinite point information in finite storage. The completeness of the models used has 

been driven by applications. The aim of the computer representations is ultimately to capture 

enough information to facilitate and to automate the processing of design information. This 

need has led over the years to the creation of complex product models of which the geometry 

model is a subset. 

The major approaches for geometric modelling representations are surface modelling and 

solid modelling. Surface models are better suited for the representation of complex surfaces; 

solid models provide a complete, unambiguous representations of solids. The beginnings of 

curve and surface modelling with computational geometry applications can be attributed to 

early works of P. Caste1jau at Citro6n and P. Bezier at Renault in the 1960's. Research 

in solid modelling emerged in the 1970's from early exploratory efforts that sought shape 

representations suitable for machine vision and for the automation of tasks performed by 

designers and engineers[55]. 

Naturally, the use of geometric models is not restricted to CAD/CAM/CAE applications 

and there are interdisciplinary cooperations and overlaps with physics, geo-science, computer 

graphics and several other fields. 

Curve and surface modelling techniques provide on mathematical methods to represent 

geometry. They are used in major modelling programs and in many design applications some- 
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times far distanced from Computer Aided Geometric Design (CAGD). Even simple drawing 

applications provide facilities for the user to draw simple curves and sometimes B6zier curves 
or B-splines. This chapter summarises the main algorithms used in curve and surface mod- 
elling with emphasis in Non Uniform Rational B-Splines (NURBS), which are the most 
general method to represent curves and surfaces and encompass simpler forms and provide 
representation for standard analytical shapes. References [16], [52] provide comprehensive 

coverage of algorithms and methods in curve and surface modelling. 
When surveying the literature on curve and surface modelling, one notices the notation 

differences among authors, and different approaches to counting and designating functions. 

In general the notation followed in this chapter corresponds to reference [4]. 

4.1 Curve modelling 

Bezier curves 

A Bezier curve is defined as a parametric curve in space with the following formulation: 

m 
p(t) =E biBi'(t) tE [0,1]. 

i=O 

This formulation is based on the idea of a set of m+I control points bi and m+I Bernstein- 

Bezier basis functions Bý'(t). The basis functions are defined as: z 

rn i(i 
- 

Om-i 

z 

(M)t 

The control points bi in equation 4.1 form a control polygon. There are several notable 

properties of these curves that made them a suitable choice for design, one of the most 

important being that the curves are invariant under affine transformations e. g. rotation or 

scaling of the control points. Another very appealing property of the Bezier curves is that 

the control points have a direct geometric meaning in relation to the curve being modelled, 

namely that the first control point coincides with the beginning of the curve and that the 

last control point coincides with the end, while the second and next to last control points 
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Figure 4.1: A cubic Bezier curve. The control points have immediate geometric meaning. 

Element Symbol 
Bezier curve 
Basis function 
Degree of the curve 
Control points 
No of control points 

p(t) Bý'(t) 
m 
bi i=0,... , 
m+1 

Table 4.1: Summary of the notation for Bezier curves 

show the direction of tangent of the curve at the beginning and end of the curve. 

These geometric properties made it a choice for many systems to implement Bezier curves 

as a standard method of drawing 2-D curves, notably in the Windows graphics device interface 

(GDI)[13]. 

4.1.2 B-Spline curves 

The parametric formulation of a B-Spline curve in three dimensions is: 

n 
(u) di Ni, k (U) UC [Uk 

i Un+ll (4.2) 

The curve is defined for the parameter u; there are n control points that multiply n basis 

functions NI, k, N2, k, ---, 
Nn, k of order A: defined over a knot set f ul. The number of knots 

61 



in the knot set depends on the order of the B-Spline and the number of control points, i. e. 
f Ul : --- ýUl) U2 i ... 7Un+kl- 

The basis functions are defined through a recursive formula: 

Nj, j =I 
Ui<U<Ui+l 

0 otherwise 

Ni, k (U) ýU- 
Ui 

- Ni k-I(U) + 
Ui+k -U Ni+l, k-I(U)i (4.3) 

Ui+k-1 - Ui ' Ui+k - Ui+l 

B-Splines and Bezier curves can both represent the same curves, and algorithms exist 

that can transform one representation to the other. A Bezier curve is a B-Spline defined over 

a special knot set of the form: 

(0,0'... 'o, 17 11 1111 1) 
k times k times 

where k is the order of the curve. This knot set is obtained by inserting extra knots where 

necessary and splitting and rescaling the curve to the standard Bezier parameter value range 

uE [0,1]. The knot insertion algorithm is given in section 4.1.4. 

It is worth noting that the shape of a B-spline does depend on the knot set chosen. Piegl 

and Tiller[52] restrict their definition of a B-spline by stating that the knot set must be of 

the form 

a,... a, Uk+li--- Un, b,... bl, 

kk 

which results in the endpoint interpolation property: 

P(a) = d, and P(b) = dn (4.4) 

This restriction is not adopted by all authors, allowing forms such as the uniform B-splines 

which are defined over an uniformly spaced knot set. Property 4.4 does not apply for a 

uniform knot set. 
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Element Symbol 
B-Spline curve 
Basis function 
Order of the curve 
Control points 
No of control points 
Knots 
No of knots 

P(U) Ni, k (U) 
k 
di i=l n 
n 
Ui i- I)... ,n 
n+k 

Table 4.2: Summary of the notation for B-spline curves 

The multiplicity of a knot in the knot set is linked to the number of continuity conditions 

at that knot by the relation: 

number of continuity conditions at breakpoint ý+ number of knots at ý=k, (4.5) 

where k is the order of the B-spline. For a B-spline of order k, it is therefore only useful to 

have at most multiplicity k for any particular knot. 

4.1.3 Rational Bezier and B-Spline curves 

One of the limitations of B-Splines and Bezier curves is that it is not possible to represent 

conic sections and in their standard non-rational version, these curves can only approximate 

these forms. Rational curves overcome this limitation and offer one complete mathematical 
form for the precise representation of the standard analytical shapes. Rational forms have 

added flexibility in the form of weights which can be used to modify the curve. 

A rational B-Spline curve of order k is defined as 

widiNi, k(U) 
c(u) i=l (4.6) 

n 
Wi Ni, k (U) 

where the basis functions Ni, k(u) are the usual B-Spline basis functions of order k defined 

f U, n+k on a knot set li=l , 
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Similarly, a rational Bezier curve of degree m is defined as 

m 
Bim(t)wib 

i=O c (t) -m0<t<1 (4.7) 
BM(t)wi 

The wi in these expressions are known as weights of the rational B-Spline or rational B6zier 

curves. 

It is convenient to represent rational B-splines as a projection of 4-D entities in the so 

called homogeneous coordinates. We represent a point in 3-D (E 3) in terms of points in 4D 

(E 4)7 where the point ph = (hx, hy, hz, h) in E 4, when normalised as (x, y, z, 1), represents 

the point P (x, y, z) in E3. The normalisation can be interpreted as a perspective map with 

its centre at the origin of E4 on the hyper-plane h=I (h being the fourth coordinate 

component, called the homogeneous coordinate) 

defined exactly by 

If we let H denote this map, then it is 

(hx, ýy, Lz) h: ý 0 hhh 

Hf (hx, hy, hz, h) point at infinity on the line from the origin 

through the point(x, y, z) h=0 

Figure 4.2 shows an analogy for the representation of 2-D points using 3-D homogeneous 

space. 

In terms of these 4-D points we define a polynomial (i. e non-rational) B-spline curve of 

order k by the formula 

c h(U) ph Ni ik 
(U) 

- 

-spline basis functions, and the P4 are the Here the Ni, k(u) are the normal kth order BI 

4D control points in homogeneous space 
Wk 

associated knot vector (ui j=1 

As with conventional B-splines there is also an 

The curve Ch (U) forms a set of points in 4D homogeneous space. We obtain the 3D rational 

form of the curve, c(u), by projecting c h(U) into 3-D. As stated above this is achieved bý 
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Figure 4.2: Projection from homogeneous space to curve space 

dividing the first three coordinates of each 4-D point by its homogeneous coordinate: 

ph = (hx, hy, hz, h) -+ (x, y, z, 1). 

For our rational B-spline curve c'(u) the homogeneous coordinate is 

hi Ni, k 

and so the rational B-spline curve c(u) takes on the form 

c (U) = 

hiPiNi, k(U) 
(4.8) 

h, Ni, k(U) 

Equation 4.8 represents a piecewise rational function at the distinct knots in the sequence 
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Element Symbol 
Rational B-Spline curve 
Basis function 
Order of the curve 
Control points 
No of control points 
Weights 
No of weights 
Knots 
No of knots 
Rational B-spline in 
homogeneous coordinates 
Control points in 
homogeneous coordinates 

C(U) 
Ni, k (U) 

k 
di i=l,..., n 
n 
Wi 

n 
ui 1,... n+k 
n+k 

C, (U) 
P4 or dT 

Iz 

Table 4.3: Summary of the notation for rational B-spline curves 

(ui)'+'. The hi are substituted by weights which are usually represented by wi and using di i=k 

for the B-spline control points in place of the Pi, we obtain our original definition, equation 

4.6. 

By using homogeneous coordinates, it is possible to use non-rational algorithms developed 

for non-rational Bezier and B-spline curves in the rational case as explained in the next 

section. 

4.1.4 NURB Algorithms 

The algorithms considered in this section are: 

1. Degree elevation, which is used when we want to to represent a curve of a given degree 

as one of a higher degree. This procedure increases flexibility of a control polygon by 

providing more vertices but leaving the curve shape unchanged. 

2. The de Caste1jau algorithm, which is a special case of the B-spline recursion formula 

(de Boor algorithm) when applied to Bezier curves. 

31 . Subdivision, which allows to split a curve into parts that conserve the shape of the 

curve. 
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4. Evaluation algorithm. 

5. Knot insertion algorithm. 

6. Derivative evaluation. 

We can apply the algorithms developed for non-rational B-spline curves and surfaces 
to the rational forms simply by applying the non-rational algorithms to 4D version of the 

entity in homogeneous space and then dividing through. In the curve case we start with 4D 

points (wixi wJ, apply the algorithm to these points and obtain another set of 4D points 
(yi vJ. From these we obtain the required 3D points as yi/vi. The rational weights of 
these 3D points are the numbers vi. Effectively, we apply the algorithm to the non-rational 
4D representation of the curve or surface and then project the result onto the plane w-I in 

4D, by dividing through by the fourth coordinate. For positive weights it is numerically more 

stable to divide through by the 4th coordinate at each stage of the calculation so insuring 

that each intermediate control Point lies in the convex hull of the original polygon. 

Degree elevation 

It is often useful to be able to represent a curve of a given degree as one of a higher degree. It 

increases the flexibility of a control polygon by providing more vertices but leaving the curve 

shape unchanged. There are also important uses for degree elevation in surface construction. 

For example, we may wish to construct a surface interpolating to a series of cross section 

Bezier curves. This often leads to the requirement that all the curves be of the same degree. 

In this case degree elevation can be used to elevate all input curves to the one of highest 

degree. 

For the non-rational case, if we are given a Bezier curve of degree m with control points 

(bj)T 
0 and we wish to represent it as a Bezier curve of degree m+I with vertices (0 ))"' 

3= 3 j=0 

say, then we require the following equation to hold: 

rn M+l 
(1) (m + 1) 

ti (I 
- t)n+ 1 1>1 M)tý(1-t)m-j= E bj 

j=o 

(I 

j=o I 
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Figure 4.3: Degree elevation process for a Bezier curve 

If we multiply the left hand side by (t + (1 - t)) =I we get 

m 
bj (ti (I - t)m+'-j + tj+' (I - t)m-i 

rn+l 
b(l) m+ tio - t)m+, -i 

j=o j=o 

Now we compare coefficients of V (I - t)'+'-j on both sides to obtain 

b (1) 
-j -bj-, + (1 -3 )bj 

,j=0,... ,m+1. i m+I m+1 
(4.9) 

Hence the new control points bi (1) are obtained from the old ones by plecewise linear 

interpolation at the parameter values j/(m + 1) (fig. 4.3). The new control polygon lies 

within the convex hull of the old one, i. e it is closer to the curve. 

The process of degree elevation may be repeated, so allowing us to elevate the degree of a 

B6zier curve to any higher degree. After r degree elevations the control polygon has vertices 
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b (r),... b (r) r, each b being given explicitly by the formula 0 M+ 

m 

bj 
(M) 

j (m+r) 
j=o i 

(where (j'ý) =0 ifi-j <Oori-j >r). 

Although repeated degree elevation will ensure that the control polygon eventually ap- 

proaches the curve very closely (arbitrarily closely in the limit), the convergence is very slow 

(in contrast to subdivision convergence). Hence this property of degree elevation has no real 

practical applications. 

Take the rational Bezier curve of degree m: 

c(t) = 

m 
E wibiBim(t) 
i=O 

m 
E wiBi'(t) 
i=O 

We apply the degree elevation algorithm to the 4D control points (wibi wi) and then 

divide through. This gives us 3D control points 

bl - z 

with ai = i/(m + 1). 

wi-laibi-i + wi(I - ai)bi 
wi-lai + wi(I - cei) 

For a B-spline curve of the form 

li=Ol ... Im+11 

C' (U) Ni, k (U) Piw k 

ix. a kth order (degree p=k+ 1) rational B-spline on the knot vector U, it is possible to 

elevate its degree to p+I to the curve 

w Ck+I (U) ýC wk (U) Ni, k+l(U)Qwi, 

over the knot vector U with control points Qj'- PiegI and Tiller[52] present an algorithm for 
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the case when the knot set has the form 

a, a,... a, Uk+l i ... iUnjb,... bl, 
kk 

which can be obtained by applying the knot insertion algorithm described below. The steps 

are 

1. Find the knot set (J given by (U, )n+k+l+r i=l , where r is the number of segments making 

up c and the knots corresponding to the segment boundaries have their multiplicity 
increased by one. 

2. Extract the ith Bezier segment from the curve by knot insertion; 

I degree elevate the ith Bezier segment; 

4. remove unnecessary knots separating the (i - 1)th and ith segments. 

de Caste1jau algorithm 

The de Casteljau recursion can be surnmarised with the formula: 

b'r(t) i = (I - t)br-1 + tbr-1 i i+1 0<r<m (4.10) 

where m is the degree of the Bezier curve and b9 are z the original control points bi. An 

important property of the recursion is that 

b(t) = b(t), 

which makes the recursion a suitable method for the evaluation of Bezier curves. This is 

graphically represented for a cubic B6zier in figure 4.4. 

A rational Bezier curve may be evaluated by applying the de Caste1jau algorithm to the 

4D control polygon (vilbjv7j) and then dividing through, that is we apply the algorithm to 
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b3 

Figure 4.4: Graphical representation of the de Caste1jau recursion 

the Bezier curve 
m 

E wi bi Bi' (t) 
i=O 

and to 
m 

wiR'(t) 
i=O 

and simply divide the two results to get the desired point. 
Although this is simple and usually effective, as pointed out above, it is not guaranteed 

to be numerically stable. If some of the weights wi are large, the intermediate control points 

wi'bi' from the numerator calculation are no longer in the convex hull of the original control 171 
polygon and this may result in a loss of accuracy. 

A more expensive but more stable method is to process the 4D non-rational version of 

the curve: 
m 

1bh :i Bim (t) 
i=O 

with control polygon bh= (wi bi W, )T 
, and project every intermediate de Caste1jau point i 

(wi'bi' wi)' onto the plane w-1. This gives us the rational de Caste1jau algorithm: zI 

rw 
Wi r-1 

M 
bi (i - t) i b'j-l +t bi+l 

Wý WT II 
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with 

w ir 'r- IM+ twr-1 M= (I - Owi i+l 

Note that for positive weights, the br are all in the convex hull of the original control 2 
polygon bi, (i. e (I - t)(wi'-'/wi') + t(wi';, '/wir) - 1) so assuring numerical stability. z +1 1 

Subdivision 

Although a Bezier curve is usually defined over [0,1], it can also be defined over any interval 

[0, c]. The de Caste1jau algorithm supplies both the control points for the part of the curve 

over [0, c] and the control points for the part of the curve over [c, 1]. For the cubic case, if 

we display the triangular array of points obtained using the de Caste1jau recursion 

bo 0 
bl 0 

bo b2 0 

b 

bo 2 b2 

bl 2 

bo 3 

'-'O' 

the control points for the Bezier curve over [0, c] are the points on the leading diagonal, 

WO i= 0) and those for the interval [c, 1] are the points on the trailing diagonal, 

brn-2 i=0, m. The two resulting Bezier segments are 

p[O, c] b'B'(t), tc 0Z 
i=O 

m 

bi -'Bi Z, 
(t) 

, 
i=O 

As in the non-rational case we may use the de Caste1jau algorithm to subdivide a rational 

Bezier curve. We use the de Casteljau algorithm to subdivide the 4D version of the curve. 

72 



The intermediate 4D points (wW Wý)T 122 are then projected onto the plane w=1 by dividing 

through by the fourth coordinate. This provides us with the control polygons for the left and 

right hand segments of the rational curve. The control points and weights corresponding to 

the curve over [0, t] are given by 

b left b', w 
lef t= 

Wi over [0, t] i0i0 
b iright = bmi-'(t), wi'-ight = Wim-, over 

In the cubic case we generate the following triangular arrays: 

bo (t) 0 
bl (t) 0 

bo (t) b2 (t) 0 

bl (t) b3 (t) 10 

bo (t) b2 (t) 21 

bl (t) 2 

bo (t) 3 

where 
br (t) = (I - t) br-1 +t br-1 

Wr Wr i+l 
ii 

and 

woo (t) 
Wo, (t) 

wli wo 
ww3 0 

w2 w" (t) 1 2 

W2'(t) 

W30 (t) 
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where 
Wl t)WI-I (t) + tWr-1 ii i+l 

Rational B-spline evaluation 

This algorithm follows along much the same lines as the de Casteljau one. For the non- 

rational B-spline interpolation algorithm with 

c (U) di Ni, k 

on the knot set (U, )n+k, we find i such that ui :5u< ui+l and then compute i=l 

dj' (u) = cejdj- 1 (u) + (i - aj) dj- (u) 

where 

ar 
U- Ui 

I Ui+k-r - Ui' 

obtaining to the following triangular table 

dio-k+l (U) 

d jo -k+2(u) 
dil z-k+2(U) 

di = di, 

d jo Z-l(u) 
dil (u) d iý 

-12 (u) 
1- i-i 

d9 (u) d' (u) 
... d k-2 d k-1 

Ziii 
(u) 

(so that the indices arej =i -k+r+ I,... i; r= 0'... ,k- 1). The required point is 

then 

c(u) = dk-l(U). i 

If the evaluation point is an already existin knot value with multiplicity .,; say, we can 9 
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use a reduced table. The triangular array now takes on the reduced form 

dio-, (U) 

d jo i-q+l 
(U) 

d9 (u) 
z 

d_qi(u) 

& 
z dq 

2 

(that is for j-i-q+i; r=0, q) with q=k-1-s. The required result is 

then 

c(u) = dq(u). 
z 

Returning to the rational case, we can either apply the above algorithm to the numerator 

and denominator of the B-spline curve: 

C(U) 

widiNi, k(U) 

Wi Ni, k (U) 

and divide through (although again this can lead to instabilities), or, we apply the algorithm 

to the non-rational B-spline curve in homogeneous coordinates 

n 
ch (U) - J: d h Ni, k (U) 

i 
i=l 

with the 4D control points &= (widi W, )T 
, and project the intermediate points (wý& Wr)T 

IIzi 

onto the plane w-1: 

rr wj' -I r-I + cer) 
w j1r -" r-I 

j ozj 
Wý 

dj j wr 
dj-, ) 

3i 

with 

w'(t) = a'w'-'(t) + iii 
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Knot insertion 

Knot insertion carries through to the rational case in the same way as the above algorithms. 
To insert the knot ft coinciding with the knot uj+1 which has multiplicity s say (s =0 if it 
doesn't already appear) , we apply one step of the above B-spline recursion algorithm 

djl = ajldj + (I - ozjl)dj-,, 

where 

Uj)/(Ui+k-I - Ui) 

k+s+1 

i-k+s+2<j<i, 

jýi+1 

so that the original B-spline control points (dj)'-' DI j=i-k+2+, are replaced by the points (d' j=i-k+2+s* 

For the rational algorithm we apply this method and calculate 

dl j ! 
-dj + (I - cel)wj-ldj-,, Wý w 

with 

wjl (t) = cej, wj (t) + (I - ajl) wj -1 
(t). 

3Y 
This gives replacement control points (& j=i-k+2+, and replacement weights (wý j=i-k+2+, 

Subdivision of rational B-spline curves follows along similar lines. Using the above algo- 

rithm we simply insert the knot corresponding to the splitting point until it has multiplicity 

k-1. The resulting control points and associated weights then split into two groups, one for 

the left hand rational B-spline curve and the other for the right hand part. 
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Derivative evaluation 

We can evaluate the derivatives of a rational Bezier curve as follows. Write 

m 

wibiBim(t) 
C(t) = z=O pM 

m E wi Bim (t) w(t) 
i=O 

where 
mm 

p 1: wi bi Bi' (t) w (t) E wi Bi' 
i=O i=O 

Then p(t) - w(t)c(t) and 

P, (t) = W/ (t) c (t) +w (t) C, (t), 

so 

cI (t) =I [p fM- WIMCM]. w (t) 
For higher derivatives, we differentiate p(t) r times to get 

r 
pw (j) c (r -j) 

j=o 

We then solve for c(') (t): 

(j (j) C (r -j) 
1 

[P(r) r 
j=l 

This is a recursive formula for the rth derivative of a rational Bezier curve. Note that it only 

involves taking derivatives of polynomial curves. At the endpoints of the curve we have 

Cl(0) =m [wlbl - wobo - (wi - wo)bo]. 
WO 

MWJ 

-(bi - bo). 
WO 

17 



Similarly, we obtain 
MWM-l (bm - bm-1). 

wm 

As with non-rational forms the Bezier curve is tangent to the first and last legs of the 

control polygon. 

Derivatives of a rational B-spline curve can (as in the non-rational case) be conveniently 

be computed using the above knot insertion algorithm. If we wish to evaluate the derivative 

at a point fi, we simply insert this knot until it has multiplicity k-1. The curve control points 

and weights then behave like the rational Bezier form around fi, and hence the derivatives 

can be computed by using the recursion formula for the derivative of a rational Bezier curve. 

Note that for derivative evaluation one cannot just apply the corresponding non-rational 

B-spline algorithm to the numerator and denominator and divide. The quotient rule must 

be used. A rational B-spline curve has a rational Bezier representation. As in the non- 

rational case we can obtain the Bezier points and weights by inserting all knots until they 

have multiplicity k-1. 

4.2 Surface Modelling 

4.2.1 Tensor Product Bezier Surfaces 

The idea of tensor product surfaces is to mix the creation of curves along perpendicular axes, 

as done in the creation of curves by sweeping a deforming curve (figure 4-5) along guides 

which are themselves curves. 

The mathematical representation of this concept is as follows[16]: let the initial curve be 

a Bezier curve of degree m: 
M 

b' (u) 1: bi Bim (u) 
i=O 

Making each bi move over a Bezier curve of degree n: 

n 
bl. = bi. (v) E bij Bn 

j=o 
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Figure 4.5: Creation of a surface by sweeping a deforming curve. This principle is the basis 
for the tensor product surface analogy 

By combining these equations we obtain a Bezier surface patch brn, n 

mn 
bm, n (u, V) bijBi n (V). M(u)Bj 

i=o j=o 

The characteristic properties of a tensor product surface are: 

*a double sum, 

a matrix of points (bi, j)i"=' .0 
known as the control net for the surface and, , j= 

a basis set (B! n(s)Bjn(t))m, n 
z i, j=o 

The general surface can be represented with a rational B-Spline surface or a rational B6zier 

surface. As in the case of curves, the two representations are analogous and algorithms have 

been developed to transform a representation from one form to the other. 

4.2.2 B-Spline surfaces 

Just as Bezier tensor product surfaces are generalisations of the curve formulation so B-spline 

, surfaces are tensor product generalisations of B-spline curves. A B-spline surface of oi-der k 
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by 1 takes the form 
pq 

x (u, v) =E1: dij Ni, k (u) Nj, l (v), 
i=l j=l 

p+k where associated with x is a knot set in u, (ui)i=, and a knot set in v, (vj)jq The array of 

points (dij)P'q 1 form the control net for the B-spline surface analogous to the B'zier case. z7j= e 
The surface itself is defined over the interval [Uk 

, Up+11 * [V1 
, Vq+l] , the other knots in u and v 

being the extra ones added to form a basis set for the u and v directions. The basis functions 

in the surface case consist of the products of the curve basis functions: 

(Ni, 
k(U)Nj, l(V) 

p, q ) 

i, j=l 

The surface x consists of as many patches in the u direction as there are distinct internal 

knots in the knot sequence (ui)'+', and for v the sequence (Vj)q+l 
. The product of these i=k j=1 

two numbers gives us the number of patches making up x. Because the individual segments 

in u and v are defined locally by k and I basis functions respectively, altering a particular 

control point of the net will effect the surface only locally (fig. 6.3), changing at most k1 

patches making up the B-spline surface. In particular, altering a control point dij of the 

surface affects x only in the range [Ui, Ui+k) * [Vj, Vj+l), the range over which the associated 

basis function Nj, k(u)Nj, j(v) is defined. 

4.2.3 Rational B-Spline surfaces 

Rational B-spline and Bezier surfaces are direct generalisations of the rational curves. We 

define a B-spline surface of order k by I in 4D homogeneous space as 

pq 

x4 (u, v) d" Ni, k (U) Nj, l (V)) ij 
i=l j=l 

where dh is the 4D point ij 

d-T. wij &-wij d' wij wij ( ly 13 
ij 
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Dividing through by the homogeneous coordinate 

pq 
EEWijNi, 

k(U)Nj, I(V), 
i=l j=l 

we obtain the rational B-spline surface x(u, v): 

x (u, V) 

pq 
E L'dijWijNi, k(U)Nj, I(V) 
i=l j=l 

pq 
LL WijNi, k(U)Nj, l(V) 
i=l j=l 

As with non-rational B-spline surfaces there is an associated knot vector in u, (Ui)p+k 
i=I, 

and in vI (Vj)q+l 
. The points dij j=1 form the rational control net for the surface and can be 

interpreted as the projection of the 4D non-rational control net formed from the d4.. By 
I] 

writing x(u, v) as 
q( 

WijNi, k(U)Nj, l(V) d Epq 
ij 

j=l 1: ý WijNi, k(U)Nj, l(V)) 
i=l j=l 

we see that the rational B-spline basis functions are given by 

Ri WijNi, k(U)Nj, l(V) 
, k; j, l (Ui V) =: pq 

EE WrsNr, k(U)Ns, l(V) 
r=l S=l 

For simplicity we write this as Rij (u, v). In order for these basis functions to be non-negative 

we require the following conditions on the weights wij: 

W11 , Wpl) Wlq) Wpq >0, wij >0 otherwise. 

Note that R is not a product function, i. e. it is not the product of the rational curve 

basis functions, as was the case for non-rational B-spline surfaces. However, they are similar 

in shape to the standard non-rational basis functions, Ni, k(u)Nj,, (v), and have analogous 

properties: 
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ob R�j (u, v) > 0. 

pq 
EE Rij (u, v) 
i=l j=l 

Local support: Rij (u, v) =0 if (u, v) is outside the rectangle [Ui 
I Ui+k) * [Vj, Vj+I) - 

Furthermore, in any given rectangle [ui, uj+j) * [vj, vj+, ) at most kI of the basis functions 

are non-zero. 

4P The Rij (u, v) functions are generalisations of the Ni, k (u)Nj, l (v) product B-spline sur- 

face basis functions. If we set all the weights to I we recover the non-rational form. 

Because of the similarity of the basis functions to the non-rational ones, a rational B- 

spline surface enjoys all the important properties of the non-rational form, e. g convex-hull, 

local modification etc. 

4.2.4 Rational Bezier patches 

The rational Bezier surface patch of degree m by n takes on the form 

(8, 

mn 
bijwijBim(s)Bjn 

2M 
i=o j=o 

(8 1 t) c [0, l] * [0, l] - mn 
wjjBýn(s)Bjn(t) z 

i=o j=o 

The bij form the rational control net, the projection of the 4-D control net formed from the 

b4.. The basis functions are given by 
Ij 

wij Bim (s) Bjn (t) 

mn 
WpqBpm(s)Bn(t) q 

p=O q=O 

A rational B6zier surface is a special case of a rational B-spline surface on the knot set 

(0,... 
, 0,1,... , 1) in u, where 0 and I occur with multiplicity m+1, and (0,. 

--, 0,1, ---- 1) 

in v, where the multiplicity is n+1. Setting all the weights to be equal recovers the non- 

rational Bezier surface patch. A composite rational Bezier surface can be considered as a 
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rational B-spline surface with the internal knots in u occurring with multiplicity m and those 

in v with multiplicity n. 

4.2.5 Surface algorithms 

The surface algorithms, e. g degree elevation, knot insertion, subdivision, etc. follow the same 

pattern as the non-rational ones. We apply the non-rational tensor product algorithms to the 

4-D version of the surface, consisting of control points 
(wijdij 

wij 
)- Since the non-rational 

tensor product extensions amount to using just the curve algorithms we can utilise the stable 

form of the rational curve algorithms, where appropriate, by projecting each intermediate 

point of the calculation onto the plane w=1. 

4.3 The IGES Standard 

The Initial Graphics Exchange Specification, IGES is an ANSI standard for the transfer of 

graphics and geometry data. IGES was developed in the early 1980s and it is the most widely 

used format for data exchange among CAD/CAM/CAE systems. 

IGES includes in the definition of the standard representations for curves, surfaces, three 

dimensional solids and finite element content. An example stripped IGES file is in figure 4.6. 

4.3.1 IGES file structure 

The IGES format was defined originally to contain only ASCII, human readable characters 

in a 80 character per record format. The binary form of the standard was defined later, as 

the file sizes increased. However, most implementations use the ASCII form. 

An IGES file consists of five sections (figure 4.7): 

1. Start section. This section is a region of readable text at the beginning of the file which 

is used for documentation. 

2. Global section, which contains parameters such as file name, author, date of creation, 

precision of figures, etc. 
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S 
1H,, lH;, 24HC: \TEMP\rmer7OAF0004. prt, 25HC: \ronaldo_iges-block. igs, 24HUnigG 

raphics Version 16.0,20HUG/IGES Version 16.0,32,38,16,38,16,24HC: \TEMP\rG 

mer70AF0004. prt, 1.0,1,4HINCH, 3,0.0,13HOO0524.175348,3.937E-007,10000.0,, G 

, 11,0,13HOO0524.175300; G 

108 11100 10100D 
108 2020 OD 
108 31100 10100D 
108 2020 OD 

1 
1 
2 
3 
4 

2 
3 
4 

128 210 1100 OD 189 
128 2330 OD 190 

108,1.0,0.0,0.0,20.1820866141732,0,20.1820866141732,50.0,50.0, lp 1 
0.0,0,0; lp 2 

128,1,1,1,1,0,0,1,0,0, -2.54, -2.54,0.0,0.0, -1.27ý-1.27,1.27,1.27,189P 210 

1.0,1.0,1.0,1.0,30.0,0.0,100.0,30.0,0.0,0.0,30.0,100.0,100.0,189P 211 

30.0,100.0,0.0, -2.54,0.0, -1.27,1.27,0,0; 189P 212 

s 1G 4D 19op 212 T1 

Figure 4.6: Example of an IGES file 
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I 
START 

I 
GLOBAL ( 

DIRECTORY ENTRY (D) 

PARAMETER DATA (P) 

I 
TERMINAT 

Figure 4.7: Structure of an IGES file 

3. Directory Entry (DE) section. This section contains an index to the parameter section, 

as a list of entities, along with various descriptive attributes (e. g. colour, line type). 

An entry in the DE section consists of two lines that hold 20 fields of eight characters 

each. 

4. Parameter Data (PD) section. This section gives entity definitions, e. g.. control points, 

knot data, endpoints of a line, etc. 

5. Termination section. This section is one record in length. It contains a total number 

of records in each of the other sections. 

The binary format adds a sixth section which contains binary formatted data. 

All data is described in terms of entities. There are entities available to describe curves, 

surfaces, solids and so on. Table 4.4 shows some of the available entities in the standard. 

Some entity types are further subdivided by form numbers, resulting in a larger number of 

different entities. 

4.3.2 Example specification: a NURBS curve and a NURBS surface 

Entities 126 and 128 of the IGES specification describe a NURBS curve and a NURBS surface 

respectively. 

A NURBS curve is specified in IGES by: 
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Entity Description 
Curves 

116 Point 
110 Line 
100 Circular arc 
104 Conic arc 
112 Parametric spline curve 
126 Rational B-Spline curve 
102 Composite curve 

Surfaces 
118 Ruled surface 
120 Surface of revolution 
122 Tabulated cylinder 
108 Plane 
114 Parametric spline surface 
128 Rational B-Spline surface 

Constructive Solid Geometry 
150 Block 
158 Sphere 
160 Torus 
168 Ellipsoid 
180 Boolean tree 
184 Solid assembly 

B-Rep Solid 
186 Manifold solid B-Rep object 
502 Vertex 
504 Edge 
508 loop 
510 Face 
514 Shell 

Other entities 
124 'Itansformation matrix 
106 Copious data 
134 Node - FEA geometric point 
136 Element - FEA element topology 
138 Nodal displacement / rotation 
148 Load/constraint - FEA non-geometric content 

Table 4.4: Some entities in the IGES specification 
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
Param. Struct. Line Font Level Label Sequence 
Data Pattern Display Number 

128 D# 
(11) (12) (13) (14) (15) (16) (17) (18) (19) (20) 

Line Color Param. Form Entity Sequence 
Weight Number Line Number Label Number 

128 Count D#+1 

Records in the DE section: 

128 309 1 75 00 OD 237 
128 26 26 0 OD 238 

Records in the P section: 

128,3,5,3,3,0,0,1,0,0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0, 237P 309 
0.0,0.0,0.375,0.625,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 237P 310 
1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0, 237P 311 
1.0, -9.59884107409246,251.87999,11.9501753952658, 237P 312 

-3.22039928938901,251.87999,3.35432175325268,3.66603838737259, 237P 313 
251.87999, -4.84080572029901,10.900289418313,251.87999, 237P 314 

-12.7495769867665, -9.91405061952486,244.476799233967, 237P 315 
12.0742953564063, -3.3727440728984,244.476799233967, 237P 316 
3.57368038714364,3.75315162422275,244.476799233967, 237P 317 

-4.444671925977,11.2910799913377,244.476799233967, 237P 318 

-12.0882234103884, -10.2721379300126,232.129566754316, 237P 319 
12.3372782126316, -3.49551336607463,232.129566754317, 237P 320 
3.95586862047848,3.90220343933955,232.129566754316, 237P 321 

-3.87554048902915,11.785322674788,232.129566754316, 237P 322 

-11.2280852695849, -11.5366474860555,212.39786526405, 237P 323 
11.4396390835815, -3.7523788346899,212-39786526405, 237P 324 

3.90904870495048,4.67933278440071,212-39786526405, 237P 325 

-2.89087526630634,13.5346389204137,212.39786526405, 237P 326 

-9.1481196011557, -12.5479896297906,200.088748772983, 237P 327 

10.3847615280325, -4.06920901593887,200.088748772983, 237P 328 

3.69206345061693,5.063495425367,200.088748772983, 237P 329 

-2.10218797901534,14.700625305664,200.088748772983, 237P 330 

-7.03181043114952, -13.1117393022491,192.70129,9.78440277594289, 237P 331 

-4.21818217002092,192.70129,3.56354424967022,5.33149029986496, 237P 332 

192.70129, -1.67358162401593,15.3856272774944,192.70129, 
237P 333 

-5.84892969895996,0.0,1.0,0.0,1.0,0,0; 
237P 334 

Figure 4.8: Directory section table and example of B-Spline surface definition in IGES 
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9 its degree p; 

e the number of control points n; 

9 Euclidean control points, di-, 

e weights wi, which have to be positive; 

e its knot vector, U, containing m+I=n+p+I knots; 

9 start and end parameter values, so and sj; 

* other nonessential but useful information, e. g. whether the curve is planar or non- 

planar, open or closed, truly rational (wi not all equal), etc. 

The IGES specification has no concept of homogeneous control points, P4. The formula 

given for a rational B-spline curve in the IGES specification is: 

K 
E WiPibi(t) 

G(t) - 
i=O 

K 

E Wi bi (t) 
i=O 

A NURBS surface is defined analogously by: 

e the degrees p and q in each parameter direction u and v; 

* the number of control points n and m; 

e Euclidean control points Pij; 

o weights wij; 

iUx=n+P+I s-m+q+l 
e knot vectors for each parameter direction i=1 and fvl, 

=, , which fulfill 

the condition ui-1 :ý ui and vj-l < vj for i=2,... ,r and J=2,. .. IS. 

The parameters so, s1 and to, tj define the intended surface. The surface can be tagged 

as special, e. g. a plane, circular cylinder, cone, sphere, torus. The formula for the rational 
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B-spline surface in the specification is: 

G(s, t) = 

Ki K2 

EE wijPijbi(s)bj(t) 
i=o j=o 

K2 

K, E wij bi (s) bj (t) 
i=O j=o 

Figure 4.8 shows an example of a description of a NURBS surface in an IGES file. Two 

lines describe the entity in the directory entry section and 26 lines in the parameter section 

of the IGES file give the parameters, which are: The parameters listed are: 

1. Entity type number (128), 

2. K, (3); K, +I is the number of control points in the direction s (4), integer; 

3. K2 (5); K2 +1 is the number of control points in the direction t (6), integer; 

4. MI, degree of first set of basis functions (3), integer; 

M2, degree of second set of basis functions (3), integer; 

6. PROP11 0- Not closed in first parametric variable direction, integer; 

7. PROP21 0= Not closed in second parametric variable direction, integer; 

8. PROP31 0= Rational/ I= Polynomial (1), integer; 

9. PROM, 0= Non-periodic in first parametric variable direction/1 = Periodic (0), integer; 

10. PROP51 0- Non-periodic in second parametric variable direction/I = Periodic (0). 

integer; 

11.2 + K, + Mi (8) values of the first knot sequence, 

12.2 + K2 + M2 (10) values of the second knot sequence, 

13. (1 + Kj) * (I + K2) (24) values of the weights, 

14. the control point coordinates (24*3) in their three components and finally 
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15. the starting and ending values of the parameters in both directions. 

Using the IGES specification, it is possible to communicate to a graphics engine or a 
CAGD application to display a custom made NURBS surface. 

4.4 Solid Modelling representations 

Solid modelling is concerned with representations that are "complete" and are thus suitable 
for any geometric queries to be solved algorithmically[38]. 

There are three major approaches to represent solid models: 

" Boundary models (Boundary Representation Models or B-Rep). 

" Decomposition models. 

" Constructive models (Constructive Solid geometry or CSG). 

4.4.1 Boundary Representation Models 

These method of representation represent a point set in terms of its boundary. The boundary 

is usually a collection of faces. Faces may be again represented again by their boundaries, 

which are lines or one-dimensional curves. Because of this decomposition, the model may be 

viewed as a hierarchy of models[38, p. 56]. Unfortunately, an arbitrary set of non-overlapping 

faces does not necessarily correspond to the boundary of a solid. Early versions of many solid 

modellers were plagued with invalid B-Reps due to designer faults or incorrect algorithms[55]. 

4.4.2 Constructive Solid Geometry Models 

These models represent a point set as a combination of primitive point sets. Each of the 

primitives is represented as an instance of a primitive solid type (e. g. a block, a cylinder, 

etc-) Constructive models include operations such as boolean operations, which are more 

general construction operations. 

CSG is the most popular constructive representation. The primitives may be simple 

shapes or complex features for particular applications. 
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The closure of operations in the r-set space is guaranteed by the use of the regularization 

operation (closure of interior or clo(%nto)). The regularization always returns valid (although 

possibly empty) solids. 

4.4.3 Decomposition models and voxel modelling 

Solids may be represented by a variety of space decomposition schemes. The entire 3-D 

space, or just the set that corresponds to the solid, is partitioned into non-overlapping 3-D 

regions called cells. The most usual type of cells used is the voxel, which refers to a volume 

cell. Each voxel is a rectangular cuboid with six faces, twelve edges and eight corners. An 

alternative definition for a voxel from the previous one is to identify the voxel with the actual 

sample of a volumetric variable over a structured rectilinear grid (see figure 4.9). 

Pixels 

Figure 4.9: Pixels and voxels 

Voxels 

A solid is represented by a collection of cells from a fixed collection of primitive cell types, 

combined with a single "gluing" operation. Regular decompositions may have a significant 

error because of the discretised representation, but they are nevertheless popular because the 

simplicity of the scheme is well-suited to parallel algorithms and hardware support. 
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4.5 The voxel model 

Although the voxel model is Presented in this context as a method to represent geometry, 
the representation of geometry is a subset of the representations possible with the technique. 
A voxel model is a special case of a general volumetric data set, which typically is a set S of 

samples (x, y, z, v), representing the value v of some property at a certain location (x. y, z). 
The samples may be taken at random locations in space, but in many cases S is isotropic. 

containing samples taken at regularly spaced intervals along three orthogonal axes. For a 

geometric representation as described above, it suffices for v to represent either true or false, 

to represent that the region is either part of the solid or not. The value v may contain, 
however, more information than a binary digit, such as integers, vectors or higher order 

entities. 

Voxel models are used in medical imaging (e. g. CT, MRI), biology (e. g. con-focal mi- 

croscopy), geo-science (e. g. seismic measurements, oil exploration), industry (e. g. non- 

destructive inspection) and chemistry (e. g. electron density maps) [36,29]. 

4.5.1 Memory requirements for the voxel model 

Voxel modelling is a poor representation scheme when it comes to conciseness. A voxel model 

requires huge amounts of memory. To achieve a good resolution (e. g. 5 pm) in a considerable 

volume (e. g. 500 mm x 500 mm x 500 mm) requires 100,0003 voxels, i. e. 1015 elements. To 

grasp the enormity of this figure, according to some rough estimates, the information of all 

U. S. academic libraries together is twice that amount, roughly 2x 1015 bytes. (see table 4.5). 

These memory requirements are beyond current computer system's capabilities. Modelling at 

this scale seems unfeasible unless there is a breakthrough in computing technology. Current 

high-end systems (1998) can handle a 1024 x 1024 x 1024 element data set using hardware 

optimised for 3-D graphics. 

The storage requirement of a voxel model is 

np 

nxnxnx 
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Table 4-5: Estimates of the quantities of data contained by the various media (adapted 
from [621) 

Memory unit 
- 

Size in bytes Example of media 
Byte 27= 1 A single character 

Kilobyte 210 ý- 17 000 A very short story 
Megabyte 2 20 1,0007 000 A small novel 
Gigabyte 30 , 2 7000,0007000 Ten meters of shelved books 
Terabyte 2 40 1012 1/2 of an academic research library 
Petabyte 50 1015 2 1/2 of all US academic research libraries 
Exabyte 60 W8 2 

Zettabyte 70 1021 2 
Yottabyte 280 1024 

where np is the number of properties and pl is the storage requirement of a value of the 

property 1. Typical voxel models in medicine are based on a value of n= 512, and store a 

single density property represented by an integer. In this case, the voxel model occupancy 

is around 512 MB. In other application areas, such as in earth sciences, the memory storage 

could be increased by 10 to 50 times. This is the major drawback of voxel models [5]. 

4.5.2 Compression Methods 

In principle, the compression methods in the 3-D domain are a generalisation of the compres- 

sion methods available in 2-D for working with raster images. As with their 2-D counterparts, 

there are lossless and lossy compression methods. 

A short list of methods includes, 

* Compression based on the DCT (Discrete Cosine 'Iýansform) [65]. 

e Compression based on wavelets [48,49,50]. 

e Fractal compression [12]. 

41 Multi-resolution representations [10,11]. 

e Compression based on hierarchical structures: 

Octree and BSP trees [42]. 
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Many of these techniques have been studied in relationship with their application for 

medical imaging and volume rendering. In fact medical imaging equipment often uses either 

the raw voxel model or a octree model for the visualisation [601. 

The octree representation uses a recursive subdivision of the space of interest into eight 

octants that are arranged into an 8-ary tree (hence the name) - This type of structure is 

analogous to the quadtree which is used in 2-D raster image processing. The octant volumes 

continue to be subdivided until a termination criterion is satisfied. Two common termination 

criterion are the total volume represented by a node and the complexity (homogeneity) of 

the volume represented by the node. 

The representation of a solid object by exhaustive enumeration, without regard to its 

material composition, requires a binary value: either a voxel is internal to the solid or it is 

external to the solid. In this case, the octree can compress the volume of data by aggregating 

large regions where this binary value is either zero or one. 

The classical octree models this using three types of nodes: white, black and grey. The 

octree divides the space into cubes which are inside or outside the object. Node types are 

defined in the usual way. 

* White: The corresponding octant is homogeneous and external to the solid. 

* Black: The corresponding octant is homogeneous and internal to the solid. 

* Grey: The corresponding octant is heterogeneous, i. e. parts of it are internal to the 

solid. 

In general, the number of nodes in this type of octree representation of a solid object is 

proportional to the surface area of the object. Hence octree models are not quite as large 

as exhaustive representations but still take a fair amount of storage [38]. This scheme for 

the classical octree can be built from a geometrical model of a solid (boundary, CSG or 

voxel-based representation). 

To build an octree representation from a volume voxel model the procedure is different, 

since the volume voxel model does not necessarily represent a solid. Voxel models are used 
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OBJECT REPRESENTATION 

[: j3ý, M r-= L, -l 

LEVEL2 

Figure 4.10: Octree subdivision scheme. A three level representation of an object 

WHITE: HOMOGENEOUS AND EXTERNAL TO THE SOLID 
BLACK: HOMOGENEOUS AND INTERNAL TO THE SOLID 
GREY: HETEROGENEOUS - PARTS OF THE OCTANT ARE INTERNAL TO THE SOLID 
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to represent fog and clouds, which are amorphous in nature. These models have been used 
to render realistic scenes including fog and cloud models. 

A isosurface octree, or the classical octree of a voxel mode defines voxels as black if their 

associated value is within a specific range of the property and white otherwise. The voxels 

whose property values are within this range and differ less than a given E are recursively 

grouped into black nodes. This type of octree is only useful when the volume is not very 
heterogeneous [5]. 

In the case of medical imaging, for example, it is not enough to store a given isosurface, 

since it is important to conserve the information of the volume. Several researchers have used 
the octree data structure, or a variation of it, to reduce the data access time [60]. In this type 

of application, each node of the octree contains a value that corresponds to the average value 

of the associated property across the octant volume represented by the node. The root node 

of the tree represents the entire object space volume, and leaf nodes correspond to volumes 

that are homogeneous, or nearly so. Leaf nodes do not represent identically sized volumes; 

instead they represent object space volumes that satisfy the termination criteria. For the 

homogeneity criterion, leaves or leaf nodes represent volumes having the same value of the 

associated property. 

The extended octree or vector octree are based on storing a boundary representation in 

the nodes of an octree. The vector octree stores boundaries of a polyhedral object within the 

cells of an octree. The octant subdivision is continued until each cell contains at most one 

vertex, one edge, one face, or is homogeneously "full" or "empty" [38,5]. These structures 

have been developed to model solid homogeneous objects. 

4.5.3 Manufacturing FGMs from a voxel model 

Considering the fabrication of FGMs through powder stacking or spray deposition, the use 

of a voxel model seems practical. It is reported that for powder stacking, powders of sizes 

from 15 pm to 44 pm are used, and that layer-by-layer stacking of powders allows controlling 

the spatial distribution to 0.2 mm, while spray deposition allows control to a minimum size 

of 0.01 miii[45, p. 165]. The material to be used in the laser fusion project at De Montfort 
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University is HIO tool steel powder with a distribution of sizes from 63 pm to 125 pm[61]. 

Figure 4.11: Scanning Electron Microscopy image of HIO tool steel powder[61] 

These figures mean that small and medium sized objects of up to about 200 x 200 x 200 

1111n 3 could be modelled with voxels using current computer technology, assuming a model 

of 1000xIOOOxIOOO elements and the stated resolution of 0.2 mm (200 pm). This resolution 

produces a rough surface. Modelling at the resolution required for a smooth surface finish 

(around 5 pm) involves heavy requirements of memory and computing power. 
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Chapter 5 

Modelling multi material and FGM 

objects 

Kumar et al. [33] go through a short review of various approaches to modelling heteroge- 

neous objects, including their earlier work[35,34]. Several solid model representations are 

mentioned for geometric domain representation: 

e Manifold solids, 

e R-sets, 

e S-sets, 

* Selective geometric complexes (SGCs), 

o Non-manifold solids and 

9 Constructive non-regularized geometry (CNRG). 

Going beyond the geometric representation domain, the methods listed are: 

* Heterogeneous solid models, 

e Chain models, 

e Herinite hyperpatches and 
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o FR-sets. 

The paper proceeds then to present their proposed object models. 

Another review of possible modelling methods is presented in [47]. 

5.1 Work at the University of Michigan 

The following subsections discuss the methods proposed for the representation for heteroge- 

neous objects[34,35] and a more general object model[33]. 

5.1.1 Representation of heterogeneous objects 

To be able to represent multiple materials, a material dimension M is added to the spatial 

dimensions R3 that capture the geometry and topology of an object. For a finite number 

of unique materials, the choice for the material dimension M would be the set of integers I. 

Then the product space T=R3xI with the product topology can form a new modelling 

space for representing multiple-material objects. 

A solid described using traditional solid modelling techniques is a member of the class 

of r-sets A in R3. The method proposes a new class A,,, =AxK, where A is the class of 

r-sets and KCI is a finite set of integers. Each material is characterised by an integer in 

K. A typical member Qc Am (Q = JPý kJ) is called an r, -set and is composed of an r-set 

PEA and an integer kEK 

This definition is extended to represent functionally graded materials. To model objects 

with continuous material variation, the material space must be expanded from KCI in the 

previous case. A suitable choice for the new mathematical space is T=R3x R", n being 

the number of primary materials. R3 is the geometry space, where geometry and topology 

are defined, using a traditional solid model (CSG, B-Rep or hybrid). RI is the material 

space. The material can be identified at any point by volume fractions of each of the primary 

inaterials. Since the volume fractions must sum one unit, the space of volume fractions is a 
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subspace VC Rn, such that 

V= tv ER"/llvlll =Z vi=l A vi >Oý 
i=l 

where vi represents the volume fraction of material i. 

Each point in an object S can now be characterised in product space T as (x, v(x)) 

where xCS is a point in the object and v(x) CV represents the material at that point. 

The geometry of an object S can be modelled as an r-set P and the material distribution for 

the r-set P can be represented by the set BGV which is defined by a function F, mapping 

the geometric points x to the material space V. Hence, the representation for the object is: 

S- (P (E A, BC V) where B- Jv(x) =- F(x) (z- V, Vx G PI 

The authors also define modelling operations on r, -sets and on r, -objects. The rep- 

resentation allows for the usual set operations, such as difference, intersection, and union. 

A new operation called join is defined which combines two r,,, -sets into a single r, -set if 

the two material functions corresponding to each r, -set are identical and can be combined 

into a single C' function. The modelling operations include the E) operation that operates 

on the material components of the r, -sets. For example, when two r"'-sets are intersected, 

the material properties of the resulting r,,, -set are defined using the ED operation. A trivial 

type of E) operator would take, for instance, the material properties of either of the objects. 

A more elaborate ED operator would try to combine the volumetric fractions of each of the 

components. The type of operator and the representation of the result are not discussed 

further. 

Figure 5.1 shows the computer representation proposed for an r, -object. The structure 

is a combination derived from the data structure of the commercial ACIS modeller with 

an additional material related data structure (shown on the right) added to the original 

structure (shown on the left). The form of the MFUNC block of the diagram is crucial to the 

representation method. Bhashyam et al. [3] have an actual implementation of this method 

(discussed below). The MFUNC element may also be modelled using a voxel-based approacli. 

which is promising as it may be both versatile and free of the memory requirements which 

100 



-------------- 

r -object m 

-------------------- 

BODY 
r -set 

MBODY 

COMP 

MCOMP 

CELL 

WELL MCOORD 

SHELL 

MFUNC 

FACE ------------------- 

Added data structure 
for material information 

LOOP 

EDGE 

VERTEX Standard BRep 

-------------- 

data structure (ACIS based) 

- 

Figure 5.1: Computer representation of an r, -object (Kumar and Dutta[35]) 
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niake pure voxel-based modelling unattractive. 

This work is extensive and mathematically rigorous. There are however blanks left, 

notably the treatment of the E) operator, whose forms need to be explored to fully understand 

the algebraic properties of the operations on the objects represented. 

An actual object was modelled and built on the Sanders Model-maker using this represen- 

tation technique. The probe of smoothly varying volumetric fraction was built by modifying 

the tool path generation strategy. Given a certain layer distribution, there is currently no 

method for the automated generation of an optimal tool path for its fabrication. 

5.1.2 Implementation of the r, -object representation 

In [3], an actual implementation of the r,,, -object representation is presented. The 'Het- 

erogeneous Solid Modeler' is a prototype CAD system based on the ACIS kernel (Spatial 

Technologies Inc) and whose GUI is implemented using Motif and OpenGL libraries. The 

architecture of the system is schematically presented in figure 5.2. 

Geometry Material composition II 
Function library 

Generative 
................... 11,11,1111111- 

approach Primary material 
r.............. database 

Post processing Heterogeneous I 

routines solid model I 
'OL 

property estimation 
E 

rules 

Object model 
IF 

manufacturing 

Preprocessing 
algorithm 

Finite element 
analysis 

Figure 5.2: Architecture of the Heterogeneous Solid Modeler (Bhashyam et al. ) 
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For the implementation of the heterogeneous material component, the authors suggest 

eight material composition functions, each suited to a particular application and specific 

geometries (e. g. box, cylinder, sphere, cone, torus, etc. ). These would correspond to the 

MFUNC component in the computer representation (see figure 5.1). As previously noted, 

this function could also be implemented using a voxel model. 

Additionally, the authors implement a set of property estimation methods to evaluate 

various t hermo- mechanical properties. A general design cycle with the tool would include 

(see figure 5.3): 

e Selection of the geometry. 

9 Selection of the materials, which are usually two, although the GUT presents options 

for up to four materials. The materials can be chosen form the ones available in an 

internal database, that includes the material properties. 

e Input of the material composition function. 

e Represent as a heterogeneous solid model (r,,, -set) 

e Repeat until all the primitives are modelled. 

* Combine the heterogeneous primitives. 

s Convert to a FE input file. 

9 Perform the FE Analysis and evaluate results 

9 If the results are not satisfactory, modify the composition function variables and repeat 

the conversion and analysis steps until the results are satisfactory. 

The authors kindly supplied a copy of the prototype implementation on request, which 

was tested on a SPARC Ultra-250 using SunOS 5.7. 

It is possible to input more than two materials in a primitive and this implementation 

seems to support up to four materials. The GUI provides a text box for the input of a 

niaterial composition function through a formula. This is a very important step and it, was 
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not possible to verify whether the input was correct. It is not clear from the context what 
type of expression is expected as a formula. 

5.1.3 The object model 

The object model[33] is a more general representation based on the concepts of product 

manifolds and trivial fibre bundles. The model is generic enough for many types of varying 

attributes of an object in a rigorous and integrated way. The authors recognise several 

characteristics of an object that require modelling: geometry, material, material properties 

and physical parameters. The base attribute and the most fundamental is the geometry. 
Each point in the object is described as one point in the Euclidean space E3. 

The mathematical model A4 is the combination of several models, one model MG for the 

geometry and one model MAi for each attribute Ai, but all based on the geometrical model. 

M ::: -- MG (D MA, OMA2 (D 0M A� 

The geometrical model is defined as 

A4 G` (P) f Ci 1) 

where P is an r-set in E3 and f Ci I is a finite set of disjoint decompositions of P. A decom- 

position fCiJ consists of several 3-cells and forms a geometric cell complex. Each 3-cell U"' 

in Ci possesses a local coordinate system, related to the global coordinate system through 

a coordinate map V), Further constraints are imposed on each of these coordinate maps 

regarding the compatibility (non-vanishing Jacobian). A 3-cell U,, and its corresponding 

coordinate map 0,, are called a chart and the collection of charts Ci is called an atlas. 

The attribute model is defined as 

Mý, = (N, F) 

The generic model for an attribute A is a manifold N, which could be a vector or a teiisor 

104 



space. Each point x in the r-set P is mapped to its corresponding attribute through an 
attribute function F. F is defined in a particular atlas Cj and it can be subdivided for every 

chart U, in the atlas into several mapping functions F, where 

Fa : (U,,, E Cj) --ý (Vý C N) 

As indicated above, the object model A4 combines the geometry model MG and the 

attribute models MAi, If the model has a single attribute, the object is modelled in the 

space S=PxN. For an object having n attributes, the product set would be: 

n 

P(Il Ni) 
i=l 

where P is the r-set model describing geometry and each Ni is a manifold describing the 

attribute Ai 

The representation of an r,, -object is a subset or a particular case of the object model 

described with only the material composition as an attribute. 

5.2 Work at the MIT 

Jackson et al. [24] present a method to represent materials with multiple materials and 

gradation of the materials based on the cell-tuple structure. 

For the proposed representation, a model M of a solid is subdivided in cells. Cells can have 

various geometries, although the examples presented show only tetrahedrons. It is mentioned 

that the tetrahedrons may also have curved faces, although the examples presented use planar 

faces. To represent the composition, the approach is the same as the one suggested by Kumar 

and Dutta, i. e. for every point xEM use a vector valued function m(x) with components 

Tni for every material i present in the object. mi represents the volumetric fraction of a 

material in the object. 
Hence, for a homogeneous cell c, m=m,, Vx c c,. For a heterogeneous cell. t1w 

object is defined by a set of control points fxr,, i/lil - n_. J and a set of control compositions 
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Imr., i/lil = nnj 

These control points are combined with the barycentric Berstein polynomials: 

n. 9 (U)X"i 
, 

n,,, (U) M", IXK (U), M, (u)] Bi 1: Bi 
lil=n. 9 lil=n, 

I 

where ng and n,, are the degrees of variation in shape and composition, lil Ik = zo + il +---+ 

and k is the dimension of cell r,. BýI(u) represents the ith Bernstein polynomial of degree n 
and it is defined as: 

n(U) 
(n! ) 

ii Bz ') (UN 
... 

(uz, ) 
.. 

(i ') 
0k 

I(io! 

)(il! ) 
... 

(i, ) 

] [(u 

U- [UO, Uli ... 7 Uk] are the barycentric coordinates of a point in the domain and satisfies the 

condition 
Ul -: ý::: UO + Ul +***+ Uk 7--- 1 

il represents an index composed of the sequence of values io to ik, e. g. 1000 or 1210 

where every i value is smaller or equal to n. but the condition jil = ng means that the the 

digits sum up to n. 

5.3 Discussion of the methods 

These two methods are the response to the general lack of other methods to represent ma- 

terially graded objects. The work at Michigan is a superset of the second method. The 

representation using B-splines is more straightforward and several algorithms available in 

computational geometry can be transfered to this application. Unfortunately, the geometric 

intuitiveness of B-Splines is lost in this representation which is no longer geometric. 

To intimately work with the ACIS modelling kernel, the approach chosen by Dutta et 

al. at Michigan is practical. Many algorithms and test can be tested and applied without 

reinventing existing and proven CAD libraries for the heterogeneous case. 
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Figure 5.3: Design cycle using the heterogeneous solid modeller (Bhashyam et al. ) 
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Chapter 6 

Visualisation of voxel models 

"A picture is worth a thousand words" goes the saying. For a human an image can convey 

a lot of information. For large datasets it is impractical and sometimes pointless to look at 

individual values or the raw data of the dataset. Through visual aids it is usually possible to 

understand the data in one look: it is the most natural way for humans to understand large 

amounts of information. 

Visualisation is the technique used to explore scientific data through transformations 

and mappings. By mapping on a computer display visualisation uses computer graphics 

techniques such as rendering. Based on the broad definition though, some other tasks, such 

as contouring, classifying and generating physical 3-D models from scientific data through 

Rapid Prototyping can be regarded as visualisation too[46]. 

6.1 Exploration of a voxel model 

A typical voxel model is a large number of values that cannot be grasped except through 

visualisation tools. This data can usually be interpreted as a series of images or 'slices' of 

data, as in the case of medical imaging voxel models. The voxel model is then the 3-D 

analogous of ail image and the imaging methods can be extrapolated to the 3-D domain to 

explore the information. 

Some tools to explore the data are: obtaining a histogram of values, slicing and cutting, 
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thresholding, resampling, contouring and volume rendering. All these are usual imaging 

techniques that are useful in 3-D too. Only volume rendering stands out from the rest as a 

uniquely 3-D technique. 

Medical imaging voxel models have been typically examined by watching individual im- 

ages, each of which is a 'slice' of data in the whole voxel model. There are several applications 

available for these tasks, because medical imaging techniques have been around for several 

years 

Jackson et al. [24] refer to the use of voxel processing software for the creation of manu- 
facturing models. By combining Rapid Prototyping in the visualisation tool-box, it has been 

possible to fabricate the model of a patient's skull directly from a patient's scan (figure 6.1). 

For example Mimics (Materialise n. v., Belgium) is an specialist medical imaging application 

capable of generating a surface model from a voxel model. The method used is the creation 

of a contour surface from a voxel model (see figure 6.2). This is explained in section 9.2.3. 

Mimics can produce 3-D output in the industry standard STL format, VRML 2.0, ICES 

and a few other vendor-specific formats (e. g. Stratasys Layer Interface Files SSL). Materialise 

also offers the service of creating a physical 3-D model from medical scanner data in one week. 

The most powerful method to display a voxel model is volume rendering, which has been 

used increasingly. Volume rendering is a computationally expensive method and software for 

volume rendering cannot display a model interactively, in real-time, while a user manipulates 

the point of view and camera positions. 

An interactive exploration of voxel models with these tools is usually feasible with a 

powerful computer and enough memory. Some methods are computationally expensive and 

the performance degrades when using larger images (voxel models). Volume rendering is the 

most coinputationally expensive method and it is not interactive. 

6.2 Volume Rendering 

Volume Rendering is a method used to capture visually 3-D data sets in a 2-D image directly 

from 3-D volumetric data. Volume rendering differs from traditional computer graphics. 

which sin-lulate a scene by rendering surfaces of a model. It also differs from image processing 
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Medical scanner data Physical 3-D model 
produced through 

stereolithography 

Figure 6.1: Týransformation of medical data to create a physical 3-D model (Materialise N. V. ) 

Figure 6.2: Surface contour created from a voxel model using VTK 
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Figure 6.3: Volume rendering operations 

in that although the process may require image treatment, it is performed with a 3-D data 

set directly. 

It is through volume rendering that spectacular see-through representations of human 

tissues are created, generating extremely informative medical images. That's a practical 

example of a suitable representation of a voxel model for a human to understand a model 

through vision. 

Volume rendering is achieved by a sequence of operations in a "pipeline". The idea of 

a series of operations on a pipeline has been applied in visualisation software and it is a 

practical means of creating custom-built representations and generate visual represent at ions 

of many different data sets. 

The typical pipeline for volume rendering a 3-D model consists of: segmentation, gradient 

computation, resampling, classification, shading and compositing (see figure 6-3). 
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The order of operations can vary among implementations, for example classification can 
come before or after resampling. 

Segmentation is a preprocessing step and it is typically done before the actual rendering. 
It is the process of separating the input data set into structural units, and something that 

needs to be done only once to the data set. Segmentation is a very difficult process and it is 

hard to capture it into an algorithm a computer can perform. Therefore) segmentation often 

requires the intervention of a human. 

The gradient is a measure of how quickly voxel intensities in a data set change. The 

gradient indicates the direction of the change and how sharp the change is. Gradient compu- 
tation is a computer intensive operation because the algorithm must traverse the entire data 

set, which is usually large. The gradient is used for the shading operations discussed below. 

The gradient can be computed using several operators, which approximate the continuous 

case using the discrete data available. The most commonly used gradient operators is the 

central difference gradient estimator, which uses six cells around the voxel to compute the 

gradient. One may choose to do the rendering using gradient operators which use all 26 cells 

surrounding a voxel. This is a computationally more expensive approach, but it may pay off 

as a key to visual understanding of the image. 

An example of using different operators is shown in figure 6.4. The central difference 

gradient operator produces a smoother image, while the intermediate difference gradient 

operator registers the small holes on the left side of the skull behind the eye socket which 

are not visible using the central difference gradient operator. 

To extract an image from the values in the volume data set, it is necessary to assign 

additional visual information to the voxels in the model. 

Colour: A colour can be assigned to a particular scalar voxel value through the use of a 

colour look-up table. The look-up table uses the voxel scalar value as input and assigns 

colours in the appropriate colour model. RGB is the most common colour model. 

Opacity: A value between zero and one, to indicate how opaque a voxel is. The 

opacity and the transparency are complementary, so that when the opacity is 1, the 

transparency is 0 and vice versa. 
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Figure 6.4: The effect of gradient operators: central difference gradient operator (left) vs. 
intermediate difference gradient operator (right). (Lichtenbelt et al. [36]) 

These two tasks are usually done in the classification stage, which is done by an algorithm 

programmed in the rendering system. These values may also be calculated or assigned 

using the gradient computed earlier in the pipeline. It may be possible to associate certain 

segmentation information to the opacity or colour values. This could be used to make 

transparent a certain range of values which are not of interest. In medical imaging, for 

example, this could be used to make certain tissues transparent. 

The resampling or interpolation stage is necessary, because the voxels in the data set and 

the pixels in the rendered image will seldom be aligned, and a ray cast to determine the 

rendered image will have to use values which are not in the original voxel space. During the 

resampling, new values are generated at new positions in voxel space. 

Shading is used to render the image from the data set by using an illumination model. 

The illumination model describes the way a colour is assigned to a point in space, based on 

the light that shines on it, the angle between the viewer and the light, the material properties 

and the orientation and position in space. This calculation requires a surface normal for the 

reflection colour calculations. Since there is no surface in a volume model, the gradient 

operator is used to determine the angles for the calculations. 
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The last stage of the volume rendering pipeline, the compositing stage calculates the final 

colour of a ray. This operation, also called blending, calculates the colours of the final display 

image based on voxel transparency and colour. 

6.3 Visualisation software 

There are several visualisation applications available that can handled volume rendering of 

voxel models, among several other scientific visualisation tasks. There are many for medical 

imaging applications while some other (e. g. IRAF from the National Optical Astronomy 

Observatory) are application specific. Some of the available applications are[43,51,44]: 

0 volvis 

9 GVLware(BoB) 

* Application Visualization System (AVS) 

9 IBM Data Explorer (now OpenDX Open Visualization Data Explorer) 

o IRIS Explorer 

o Khoros 

o PV-WAVE 

9 VoxelView 

e Vis5D and VisAD 

9 Analyze 

41 Visualization Toolkit (VTK) 

VolVis, developed at the State University of New York at Stony Brook, is a comprehensive 

whime visualisation system available in several (UNIX) platforms and as C source code. 

There have been several articles presented by the developers of this system [1.2,66]. 
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The GVLware also known as BoB (Brick of Bytes) is a public domain application devel- 

oped by the Army High Performance Computing Research Center (AHPCRC). This appli- 

cation is available for the Silicon Graphics platform. 

AVS is a product from AVS Inc. AVS was the first large-scale, commercial visualisation 

system, dating back to 1989. [57, p. 130] It is a mature product that went through several 

versions. The company was recently bought by Muse Technologies (May 2000). 

IBM Data Explorer is a withdrawn product from IBM Inc. In May 1999, the IBM 

Open Visualization Data Explorer was announced to replace it. In their own words: "Open 

Visualization Data Explorer is a full visualisation environment that gives users the ability 

to apply advanced visualisation and analysis techniques to their data. These techniques can 

be applied to help users gain new insights into data from applications in a wide variety of 

fields including science, engineering, medicine and business. Data Explorer provides a full 

set of tools for manipulating, transforming, processing, realizing, rendering and animating 

data and allow for visualisation and analysis methods based on points, lines, areas, volumes, 

images or geometric primitives in any combination. Data Explorer is discipline- independent 

and easily adapts to new applications and data. The integrated object-oriented graphical 

user interface is intuitive to learn and easy to use. "[22]. 

IRIS Explorer is a commercial product initially from Silicon Graphics Inc., bundled with 

Silicon Graphics workstations. It is also available from NAG Ltd. on other workstations and 

is supported by them. IRIS Explorer is a powerful visual programming environment for 3-D 

data visualisation, animation and manipulation. It is available on a broad range of PC and 

workstation platforms. OpenGL, Open Inventor and MasterSuite are some of the building 

blocks upon which IRIS Explorer is built. Like VTK, which is described below, Explorer 

works on the principle of constructing visualisation pipelines. 

Khoros is a commercial product from Khoral Research Inc. It includes an integrated soft- 

ware development environment that allows users to compose and perform a variety of tasks 

related to image and signal processing, medical imaging, remote sensing, data exploration and 

scientific visualisation. Khoros includes a visual programming language, a suite of software 

development tools that extend the visual language and help you create new applications, an 
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Figure 6.5: Iris Explorer display of a visualisation pipeline 
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interactive user interface editor, an interactive image display package, 2-D/3-D plotting, and 
an extensive suite of image processing, data manipulation, scientific visualisation, geometry 

and matrix operators[51]. -WAVE is a commercial product from Visual Numerics Inc. It 
is a general purpose package, providing rich functionality suited to a wide range of users, 

although more particularly those with programming experience. 
VoxelView, a product of Vital Images is used for medical imaging applications and is 

available solely for the Silicon Graphics platform. 

VTK is not an application. It is a toolkit that application developers can use to create 

end-user products. VTK was used and extended in this project. VTK is described in the 

next section. 

6.4 The Visualization Toolkit - VTK 

The Visualization ToolKit (VTK)[57,64,30,37] is an open source, freely available software 

system (a toolkit) for 3-D computer graphics, image processing, and visualisation. VTK 

includes a textbook (reference [57]), a C++ class library, and several interpreted interface 

layers including Tcl/Tk, Python, and Java. VTK has been implemented on nearly every 

Unix-based platform and PC's (Windows NT and Windows95). The design and implemen- 

tation of the library has been strongly influenced by object-oriented principles. 

The definitive guide to the toolkit is the textbook that comes with it, or the 'VTK Book' 

by Schroeder, Martin and Lorensen (reference [57]). This book focuses on the philosophy 

and design choices embedded in the toolkit, presents the algorithms and methods used. The 

'VTK User's Guide' is aimed more at using the toolkit. 

VTK visualisations work on the principle of constructing visualisation pipelines (figure 

6-6). The idea of a visualisation pipeline is assembled using various building blocks to create 

specialised functions. VTK comes with dozens of components: various filters. sources, data 

readers and data generators. Additionally the developer can create custom-built components 

and add them to the library. A typical visualisation requires from 3 to 10 VTK classes[37]. 

The users of VTK range from students to application software engineers and researchers. 

Application developers can write applications in C++ and embed visualisation tasks in the 
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Figure 6.6: Representation of a visualisation pipeline 

applications. By using the interpreted interface to the toolkit in either Tcl/Tk or python, it 

is possible to produce prototype and try visualisation pipelines interactively. The possibility 

to access the toolkit through interpreted languages facilitates the creation and testing of 

prototype visualisation pipelines through interrogation and dialogue with the system in a 

scripting language (e. g. Tcl/Tk). 

There is also a mailing list which is a forum used for user support and discussion of 

developments or bugs. 

6.5 Design of the classes in the Visualization Toolkit 

VTK was designed with its roots in animation and visualisation systems. It took 4 profes- 

sionals 10 months to design the system with 25 classes which still sit at the centre of the 

software system, even after large extensions to its current size. This system was designed 

using Rumbaugh's OMT methodology developed at GE. 

The design goals included as usual that the system should be robust, understandable, 

extensible, maintainable and reusable. 

VTK is a large software project designed from the start with extensibility in mind. It 

consists of 514 classes and over 270,000 lines of code as of version 2.3, released mid 1999. 

Lorensen reports about 600 classes by mid 2000. 

The classes are distributed in 5 groups or kits: 
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Figure 6.7: Visualisation of a combustor 

Figure 6.8: Visualisation of a height profile 
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Opatented 
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Ocontrib 
7% 

Ographics 
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Figure 6.9: Distribution of the 270,000 lines of code among the kits in VTK (Adapted from 
Lorensen[37]) 

Common contains classes that re used by each of the other kits. These include abstract 

filter classes, datasets, cells and utility classes. 

2. Graphics contains visualisation classes. These process vtk's dataset classes and render 

the resulting polygonal output. The visualisation filters in this kit extract surfaces of 

constant value, generate streamlines, warp surfaces and resample one data set with 

points from another. 

3. Imaging contains classes that process volumetric image data, i. e. data with implied 

topology that is stored uniformly. Because of the uniform storage, these classes can be 

streamed and threaded. 

4. Patented contains classes that implement techniques covered by US Patents. These 

classes can be used for educational purposes, but require a licence for commercial use 

5. Contrib contains classes contributed by the vtk user community. 
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Figure 6.10: Distribution of the 514 classes among the kits in VTK (Adapted from 
Lorensen[371) 
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Chapter 7 

Modelling FGMs 

7.1 Element discretisation approach 

A tool of choice for analysis of engineering objects is the Finite Element Method (FEM). 

This method is based on the subdivision of a whole part to be analysed through finite 

elements, and this approach can be used to model FGM objects. The element discretisation 

approach used for modelling FGM objects subdivides space into small cells. The material 

properties of a cell are assigned according to the material distribution. This approach has 

been used by K6nig[31] in the optimisation of material composition using genetic algorithms 

and Kumar[32] in the optimisation of the material composition by minimising the compliance 

of a structure (maximising the rigidity). 

7.2 Transforming a voxel model into a FEM grid 

To represent a material as a list of cells with material properties assigned discretely to each 

is not the most effective way to represent an object in terms of the memory it requires. The 

representation of nodes and cells explicitly takes a large amount of memory, in contrast with 

the implicit structure of voxels. A FEM system could be implemented to apply algorithms 

on a structured points array (voxels). The translation from a voxel model to a cell model, an 

unstructured grid used in the finite element calculations is not unique. A simple translation 
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algorithm to create tetrahedral cells from a voxel model is presented in section 9.4. This 

algorithm creates six tetrahedral cells for every voxel. 

The step of converting a voxel model into a mesh (unstructured grid) is required in order 
to use the FEM method on a standard tool. The use of a standard tool, such as ANSYS 

has the advantage of a gentler learning curve, built in graphics and mesh checking as well as 

company support and a user community. 

However, a purpose-built FEM analysis program would still require the same number of 

nodes and it would still require to assemble a system of linear equations of the order of the 

number of degrees of freedom assigned in the model. 

7.3 Estimation of the properties 

The simulation of the behaviour of FGMs depends on the proper estimation of the properties 

for the interlayers. Miyamoto et al. recognise that "the most significant difficulty in FGM 

modeling is the accurate determination of the material properties of the interlayers" [45, p. 64]. 

A simple approach for estimating the material properties of FGMs is the use of the rule of 

mixtures[45, p. 68]. The most simple estimate is the classical linear rule of mixtures (Voight 

estimate) for two constituent materials: 

P= VaPa + V, 3Pý 

where P is a typical property and V is the volume fraction. The subscripts a and 0 are used 

to distinguish the two constituents. Another simple estimate is the harmonic mean (Reuss 

estimate): 
T3 

PC, Pý 

P= vapo + vopa 

These relationships are often used because of their simplicity. However, also because of 

their simplicity, their validity is limited. 

For the examples presented here, the properties were evaluated using the Voigt estimate. 
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7.4 Examples of modelling technique 

corner bracket was modelled with the geometry and boundary conditions shown in figures 
7.1 and 7.2 

A 

5 Omrr 

5 Omm 

Figure 7.1: Geometry of the corner bracket modelled 

The steps followed in this example were (see figure 7.3): 

* Creation of a model of one single material (steel). 

e Calculation of the stresses when submitted to the loading conditions. 

Based on the stress distribution obtained, re-assign the material of each element in the 

model. The range of average stresses was subdivided into five bins and an element's 

material was chosen according to which bin the element ended up in. The result was a 

model of five material mixtures. 

1 Omm 

0 Omm 
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Welded to a support pin 

Load distributed along t 
circumference (10 kN) 

(D 

x 
Figure 7.2: Boundary conditions for the model 

9 Re-calculation of the stresses for the same loading conditions but now using the model 

of five material mixtures. 

The results of this example are included in Appendix C. 

A general method in an optimisation cycle may have similar character to the steps in the 

example. The key operations in the optimisation are material re-assignment and check of 

the end conditions. 
The corner bracket example used 123 elements and 440 nodes. The element size was 

approximately 10 mm x 10 mm. The degrees of freedom of the model are approximately two 

per node, i. e. approximately 880 degrees of freedom. 
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Table 7.1: Element sizes and corresponding node counts for the corner bracket example 

Element size 
_Number 

of nodes Number of degrees of freedom (approx. ) 
10 mm 440 -880 

- 1.173 mm 32,000 - 64,000 
1 mm 44,000 - 88,000 

0.586 mm 128,000 -256,000 
0.1 mm 4.4 million -8.8 million 

7.5 Discussion 

The corner bracket example tests the possibility of modelling a material gradation using 

finite elements. The method is suited for the representation of multiple materials, because it 

is trivial to assign different attributes to different elements in the model. 

The main difficulty of the technique is the scalability. This example uses a very coarse 

element size (10 mm) and a small number of discrete steps in the material mixtures. The 

number of nodes required for an element size of about 1 mm would increase by a factor of 

100 to 44,000. The current ANSYS licence at our site limits the number of nodes to 32,000 

(ANSYS/Multiphysics University High option), and the maximum number of nodes available 

with the software is 128,000 (ANSYS/Multiphysics Research Faculty option), which would 

permit element sizes of around 0.586 mm. 
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Figure 7.3: Operations performed in the corner bracket model 
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Figure 7.4: Optimisation of material distribution 
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Chapter 8 

Software development 

For the current project the software use revolved around tools used for visualisation of a voxel 

model and this was done using the Visualization Toolkit (VTK). The graphical notation and 

the key concepts used in this section correspond to the OMT methodology (Rumbaugh et 

al. [28]), whose concepts and notation are briefly presented in appendix B. 

In this chapter I briefly explain what the framework of the VTK object model is, how 

it is used to represent data used for various visualisation tasks and how it was extended to 

store a voxel model as an octree. 

8.1 VTK framework elements 

A visualisation system deals with the data representation and its transformations. VTK 

proposes the concepts of the datasets and the pzpelznes to address each of these. "From 

an object-oriented viewpoint, transformations are processes in the functional model, while 

representations ate the objects in the object model"[57, p. 84]. 

Schroeder et al. explain that object oriented purists may object to their design choices, 

which specifically separates operations from data objects. The reason for the 'unconventional' 

choice are the disadvantages of combining data and operations when the operations are much 

more complex than the data that they operate on, duplicating complex algorithms for several 

data types and the -user's perception of how the operations are performed on the data. which 
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means that processes are naturally viewed as objects. 

However, the system implements a few operations within data objects. The operations 

implemented within data objects were identified based on the authors' experience implemeiit- 

ing visualisation algorithms. 

The VTK visualisation pipeline 

A visualisation process is concerned with transformations and mappings of data. To represent 

and abstract them, VTK proposes the idea of thinking of them as pipeline elements that can 

be assembled together. In this abstraction there are three types of elements: sources, filters 

and sinks. 

* Source objects are for example data readers and geometry generators. 

9 SMk objects are data writers and mappers that ultimately will present their output on 

a computer display. 

e Among these a pipeline usually has filters that perform the transformations from one 

data representation to another or combine several inputs. 

The connections between pipes are checked for data type, because certain filters expect 

a specific type of input. Some filters require several inputs and may fan out to one or more 

branches of the visualisation pipeline. Sources and sinks usually have only one connexion: 

an output or an input, respectively. 

The pipelines are often arranged along a line, which represent a series of operations to be 

performed in sequence. A pipe may also branch out, e. g. to show multiple representations of 

the same data, or several branches may merge in a filter or a mapper. The idea of pipelines 

doesn't usually lend itself to form loops unless there is control of when the execution of the 

operations in the pipeline occur. 

The execution of operations can be either explicitly controlled by an 'executive' or can 

be implicitly requested every time that a part of the output requires output. Iris Explorer, 

AVS and IBM Data Explorer use the explicit approach, which lends itself better for parallel 

processing and distributed computing. VTK uses the implicit execution method, which is 
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ExecDutive 

If 
J* 

1. A parameter modified 
2. Executive performs dependency analysis 
3. Executive executes necessary modules in 
order A-B-D-E, 

(a) Explicit 

1. A parameter modified 
2. E Output requested 
I Chain E-D-B-A back propagates Updateo 
method 
4. Chain A-B-D-E executes via Executeo 
method 

(b) Implicit 

Figure 8.1: Explicit vs. implicit network execution 

simpler and modular, because a network element doesn't need to know about other objects 

except its inputs. 

There are three proposed methods to interface with one's own data, depending on the 

complexity and sophistication required: 

* Programming interface: Data is directly read, processed and written by a user's ap- 

plication. Data can be programmed and described through a program and fed into a 

network for visualisation. This is the most flexible approach, but requires the highest 

expertise. 

4P File interface: Data is prepared in a standard recognisable format and processed by 

using readers and writers implemented within VTK. 

System interface: This refers to the possibility of interfacing to other visualisation sys- 

tems that manage whole scenes, with lighting, actors, cameras, geometries and trans- 

formations through exporters and importers. For example it is possible to use importers 

and exporters with VRML scenes, 3D Studio models and Render. Alan RIB files. 
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sl LvtkScalars vtkDataSet vtkDataSetAttribute I 

vtkPointData 

vtkCellData 

Figure 8.2: A VTK dataset 

8.1.2 Data representation in VTK 

vtkVectors 

vtkTensors 

vtkNormals 

vtkTCoords 

vtkFieldData 

There are several desirable characteristics for the data representation in a visualisation sys- 
tem. The criteria for the design of VTK's data representation includes: 

Compactness, to minimise memory requirements 

Efficiency, to be able to access data easily, independently of the size of the data. 

Mappability, to be able to represent visually the information without recourse to complex 

conversion processes. 

Minimal coverage, which refers to achieving a minimal number of data types to represent 

efficiently visualisation data. 

Simplicity, which is preferable in computational applications in order to understand and 

optimise the designs. 

The data objects in the visualisation pipeline are called datasets. The object model 

diagram of this part of the toolkit is shown on figure 8.2. 

The dataset has two parts: its geometry and its topology. The topology is represented 

through cells and instantiated to a specific geometry through po%nts. There are 12 types of 

cells defined in VTK: Vertex, Polyvertex, Line, Polyline, Triangle, Triangle strip, Quadrilat- 
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VTK-VERTEX 
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VTK-TRIANGLE VTK-TETRAHEDRON 

Figure 8.3: Simple VTK cell types 

eral, Pixel, Polygon, Tetrahedron, Hexahedron and Voxel. Figure 8.3 shows some of the cell 
types. 

Data attributes can be associated either to the cells or the points, and there is a separate 
data attributes object for the data associated to the cells and the data associated to the 

points. 

The data attributes object can contain, hold or be associated with several data types 

simultaneously. This is represented in figure 8.2 as the fan of associations spanning to the 

right of the vtkDataSetAttributes class. A vtkDataAttributes object does not store 

the attributes directly, but through relations with objects of several types: scalars, vectors, 

tensors, normals, texture coordinates and field data (the most general type). 

Classes that store the information of several data types are specialisations from the at- 

tribute data class: vtkAttributeDataClass. There is one for every data type supported: 

vtkVectors, vtkTensors, vtkTCoords, vtkScalars, vtkNormals. The more general 

vtkFieldData, is a separate class altogether. 

There are several specific types of datasets: 

Polygonal data. This is data in the form of vertices, polyvertices, lines, polylines, triangles 

and triangle strips. This is unstructured data in one and two dimensions. This is a very 

useful representation for visualisation of surfaces in space. There is specialised hardware 

VTK-POLY-VERTEX VTK-LINE 
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that operates particularly on polygonal data with optimised speed. Particularly triangle 

strips are convenient to represent a surface through triangles with an efficient use of 
memory. 

Structured Points. These are collections of points and cells arranged on a regular rectan- 

gular lattice. The points and cells are regularly arranged parallel to the global x-y-z 

coordinates. The information required to represent the geometry and topology is min- 
imal: only the coordinates of the origin, dimension of the dataset and the spacing are 

required. If only two dimensions are used, the dataset is referred to as a pixmap, a 
bitmap or an image. 

Rectilinear Grid. This dataset has regular topology, aligned with the coordinate axes, but 

with irregularities in the spacing. 

Unstructured Points. There is no topology associated with this dataset, and points are 

just a cloud in space with no structure associated to them. Vertices and polyvertices 

are used to represent unstructured points. 

Unstructured Grid. This dataset is the most general one and it can hold any type of cell, 

unlike the polygonal data which is limited to 2-D primitives. Both the topology and 

the geometry are completely unstructured. 

VTK's dataset hierarchy, shown in figure 8.5, shows the types of datasets available within 

the framework. 

This data model may sometimes differ from the way a user may have his or her data, 

since the designers aim at representing most, but not all possible types of data. In rare cases 

the user may need to adapt the uses to the characteristics of the system. 

Schroeder et al. discuss some other data models used in AVS (the Application Visual- 

ization System) and the Data Explorer (Haber, Lucas and Collins' model) - In general they 

reckon that VTK's data model is not as abstract as that of either AVS or Haber's. The trade 

off in abstraction against simplicity was an intended design choice to make the systein easier 

to use for the casual visualisation user. 
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Figure 8.4: Dataset types 
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vtkObject 

vtkDataObject 

vtkDataSet 

vtkStructuredPoints vtkRectilinearGrid vtkPol ntSet 

Fv-tkStructuredGrid I vtkUnstructuredGridi vtkPolyData 

Figure 8.5: Dataset object diagram 

8.2 An extension to the toolkit 

The structured points dataset was extended by a specialised class that stores the data in an 

spatial manner with the purpose of saving memory. 

The vtkOctree class is derived from the vtkStructuredPoints class which comes in the 

original toolkit (see figure 8.6). The methods and support classes to achieve the storage of 

voxel information spatially are implemented and a small change in the vtkScalars is made to 

allow a subclass to override a method needed for this representation. 

The data structure or data object created this way is then compared for memory usage 

with a few representative voxel models to quantify the memory savings. 

The toolkit includes an object similar in nature but with a different purpose. The 

vtkPointLocator and the vtkCellLocator also implement an octree storage scheme but 

using a flat memory model and not using pointers. The purpose of the locators is to quickly 

locate cells and points in space. The difference is that for the same resolution or level, the 

octree implemented in the point locator uses more memory than a corresponding structured 

points dataset. 
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vtkObject 

vtkDataObject 

vtkDataSet 

vtkStructuredPoints 

vtkOctree 

Figure 8-6: The vtkOctree class in VTK's object hierarchy 

8.2.1 The octree dataset 

A voxel mode is represented in VTK using vtkStructuredPoints. vtkOctree was de- 

rived from vtkStructuredPoints, because the data stored in an instance of this class is 

inherently the same as the data stored in the voxel model, only the method of storage changes 
from a regular storage to spatially referenced storage. 

The classes involved in the implementation are: 

o vtkOctree 

o vtkOctreeNode 

o vtkOctreeScalars 

The object diagram in figure 8.7 shows the relationship among the three classes. 

The associations among the three classes aligned at the top of the figure, vtkOctree, 

vtkPointData and vtkScalars are the same associations represented in figure 8.2, omitting 

for clarity the association with vtkCellData and showing the specialised classes vtkOctree 

and vtkPointData instead of vtkDataSet and vtkDataSetAttributes, again for clarity. Iii 

this case these associations are inherited from the respective superclasses. 

A new association is required in this diagram to link cyclically the vtkOctreeScalars to 

a vtkOctree. The messages passed between the objects vtkOctree and vtkOctreeScalars 
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vtkDataSetAttributes 

vtkOctree vtkPointData I vtkScalars 
Initialize(pts: vtkStructuredPoints) 

#AddScalar(S: float) : int 
ComputePointId(ijk: int [31): int 

#cons truc tOc tree (level: int, i- int, j: int, pts: vtkStruc turedPoints) : vtkOctreeNode 

vtkOctreeNode 
homogeneous: boolean = true 
scalarId: int 
GetNode(node: int): vtkOctreeNode 
SetNode(node: int, node: vtkOctreeNode) 

vtkOctreeScalars 
IndexMode: int 
SetlndexModeToLinearo 
SetIndexModeToOctreeo 

Figure 8.7: Object model for the octree 

are used to map the structured coordinates and id as used in a standard structured points 

dataset and the mapping done in vtkOctreeScalars. 
The id in a GetScalarid message passed to an object of class vtkStructuredPoints 

refers to the structured coordinates as described in figure 8.8. This id mapped through an 

octree that stores spatially the ids of scalars stored in the vtkOctreeScalars (see figure 8.9) 

vtkOctree 

This class implements the data set concept. It is derived from vtkStructuredPoints. 

The member functions are: 

AddScalar implements the storage of values in an associated vtkOctreeScalars object. It 

returns the scalarId associated with the value stored, after verifying the homogeneity 

condition. 

Initialize creates the octree spatial structure from an input dataset in the form of struc- 

tured points. 

ComputePoint Id (ij k [31 ) returns the point Id at a position i-j-k given in structured coor- 

dinates. 
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pp, 
dim[O] 

dim[2 

id -i+i* dim[O] +k* dim[O] * dZm[l] 

Figure 8-8: The structured coordinates of a vtkStructuredPoints dataset 

vtkOctreaScalars 

idl 

id2 

id3 

id4 

map through 

Octree 

( 
real-idl value-1 

real-id2 value-2 

real-id-m 

i d-n / 

Figure 8.9: Mapping of scalarId to values with vtkOctreeScalars 

ArrayValue3D(vtkStructuredPoints *sp, int x, int y, int z), and auxiliary func- 

tion that is used in the creation of the octree. 

In this implementation, the homogeneity was chosen to be that the values are equal. 

This is practicable as the only values in the voxel model treated are values that indicate 

the material. for example 0,1,2. In a different situation, the homogeneity condition could 

implement checks of the value being added to be 'close' to a stored value, e. g. 

new - oldl < tol 
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where new is the new value to be added, old is a value already present in the octree and tol 
is a given tolerance to determine the granularity of the representation. 

PowerOf 2Dimension is used to store a value of the form 21evel, i. e. a power of 2, so that 
2 level > max(dimx, dimy, dim, ) 

vtkOctreeScalars 

This class is used to store the scalars in the model. The difference in this class, compared 

with vtkScalars is the indexing. The retrieval mechanism works by mapping the id through 

an associated vtkOctree as explained above in reference to figure 8.9. 

The mapping of values in the class has to work exactly like the parent class for consistency. 
To achieve this, the fewer values stored in the vtkOctreeScalars structure is mapped to the 

entire volume through a vtkOctree. When a value is requested from the vtkOctree class, the 

call looks like 

value = octree->GetPointDat aO ->GetScalars ()->Get Scalar (pt Id); 

In the case of an octree, the results of the GetScalarso function call will return a vtkOc- 
treeScalars object, that will know how to do the mapping. The id is one and the same, 

whether it is calculated for vtkStructuredPoints or vtkOctree structure. 

The definition of vtkScalars has to be changed slightly, though to allow for the poly- 

morphic form of the class to achieve the desired result. The change needed is to make the 

GetScalaro member function in vtkScalars a virtual function. Only after this change will 

vtkOctreeScalars operate as expected. The binding of GetScalaro is otherwise done at com- 

pile time and the redefined (overridden) GetScalar method would never be invoked at run 

time by classes that did not know about vtkOctreeScalars at compile time, which represents 

the whole toolkit as it is distributed. 

This change was possible because of the open source nature of the toolkit. 

Class relationships 

The classes in this implementation interact and rely on one another for their tasks. The rela- 

tionships were indicated in figure 8.7. The figure describes how an octree object vtkOctree 
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has a vtkOctreeNode object, which is the head or root of the tree. The vtkOctreeNode 

has eight nodes of the same type, which are the subspaces, in case that the node is inhomo- 

geneous. When the node is homogeneous, these children are not used and the object stores 

the scalarId instead. 

The scalar values associated with a specific scalarId are stored in an associated vtkOctreeScalars 

class, which will hold values for the branches of the tree. 

Because of the reduced number of scalars stored in the vtkOctreeScalars class, the use 

of the scalarId needs to be differentiated from the use of a pointId, unlike the case in the 

vtkStructuredPoints dataset. In the vtkOctree class, the indices indicated as Zdj in figure 

8.9 (to the left) correspond to the pointId values, while the ones labelled realldi correspond 

to the scalarId values. For a developer using the class, though, the access mechanism 

combined with the overridden methods in vtkOctreeScalars make this transparent. 

8.2.2 Creation of the octree structure 

The algorithm implemented is a 3-D extension of Samet's algorithm to create quadtrees from 

binary arrays[56]1. 

procedure vtkOctree:: Initialize(pts) 

/* create the octree corresponding to a structured points object */ 

begin 

int level; 

this -ý Setl) imensions ( pts--ýGetDimensionsffl; 

/* calculation to have a cube of dimension (2 level)3 

large enough to hold the structuredPoints 

level +- ceil( 1092 PowerOf2Dimension); 

this--+head ý- construct Octree ( level, 2 level 
12 

level 
12 

level 
, pts); 

end 

'The notation used in the algorithms represents assignment with the left arrow symbol (ý--) and C++ style 
indirections from a pointer to a structure to a member -, vith the right arrow symbol (-4) 
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vtkOctreeNode procedure construct Octree (level, i, j, k, pts) 

/* construct the portion of an octree of size (2 level)3 

having i, j, k as the coordinates of the far corner of the subcube. */ 

begin 

nd +- new vtkOctreeNode; 

if (level == 0) then 

begin 

/* process the voxel */ 

nd-+Homogeneous0no; 

/*find the scalar Id of the voxel and assign it in the node 

nd-ýSetScalarld(ArrayValue3D(pts, i-1, j-1, k-1)); 

end 

else 

begin 

level level - 1; 

half 21evel 

nd-ýHomogeneousOffo 

nd-ýnode[O] construct Oct ree (level, i- half, j- half, k-half , pts); 

nd--+node[l] construct Octree (level, i, j- half, k-half , pts); 

nd-ýnode[2] construct Octree (level, i- half, j, k-half , pts); 

nd-4node[3] construct Octree (level, i, j, k-half , pts); 

nd-4node[4] construct Octree (level, i- half, j- half, k, pts); 

nd-4node[5] construct Octree (level, i, j- half, k, pts); 

nd-+node[6] construct Octree (level, i- half, j, k, pts); 

nd--+node[7] construct Octree (level, i, j, k, pts); 

/* check homogeneity 

i ý-- 1; 

boolean equal ý- nd-ýGetNode(O)-ýIsHomogeneouso; 

int previousl&- nd--+GetNode(0)-ýGetScalarId0; 
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while (equal and i<8) do 

begin 

equal +- nd-ýGetnode(i)-ýIsHornogeneouso and 
(previousld == nd-*GetNode(i)-ýGetScalarIdo); 

i ý- i+1; 

end 
if (equal) then /* all branches are of the same id*/ 

begin 

nd-ýHomogeneousOno; 

nd-+ Set S calarld (previousld); 

for i :-0 to 7 do 

nd--+Setnode(i, NULL); /* erase children*/ 

end 

end 

return nd; 

end 

8.2.3 Test of memory usage and discussion 

A test program was created to compare the memory usage of the octree implementation. 

The test consisted of reading a data file, creating the octree memory representation and 

reconstructing an structured points set from the octree model. Table 8.1 on page 145 shows 

the results. The only case in which the octree performs better than a standard structured 

points dataset is in the case of a regular pattern. 

The performance of this octree implementation is poor. The overhead incurred in the 

inanagement of a spatially stored data structure offset any savings in memory usage by 

storing only one value for an octree bucket. 

The ratio between the memory used and the number of nodes of the octree remains 

coiistant at slightly over 64 (e. g. 72,839,000/ 1,138,089 ý- 64). Clearly the number of bYtes, 
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used in a node is 64 and clearly most of the memory usage are pointers. 

This storage mechanism is therefore generally not convenient because of the overhead in 

pointers. 

The octree developed can reduce the amount of memory used to represent a volume data 

set. Jackins and Tanimoto[231 and Chen and Huang[9] present various algorithms for the 

creation and manipulation of these data structures. In previous work[43] it was stated that 

the octree scheme needed to be tested to decide whether it is worth applying the scheme. 

The tests here show that the overhead in pointers and the lack of large scale compression 

when all children have the same value leads to an inefficient storage structure. 
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Chapter 9 

Voxel model 

Based on the framework provided by the Visualization Toolkit (VTK), a system to support 
rapid manufacturing techniques is outlined by developing programs that permit the use of 
the model as indicated in figure 1.2. 

9.1 Generating the model 

VTK Datafile 

In order to test some of the programs in this project, a voxel model was created directly 'by 

hand', because it is an expedite way of generating a voxel model. 
The model is held as a structured points dataset within VTK. 

The format used was the format of a standard VTK data file. An example file is displayed 

in figure 9.1. The values used inthe this example are integers of value 0,1 or 2, which represent 

void space, material I and material 2 respectively. 

The generation of the model from a data file is convenient for small sized models. The 

data file is created in a standard text editor. In the creation of the models, copy and past 

operations from a spreadsheet made some tasks easier. This method would not be suitable 

for larger models, where some other methods would be necessary, perhaps interactive or 

programatical input methods. The model on figure 9.2 was created by hand. 
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# vtk DataFile Version 1.0 
L shaped block with a through-shaf t of material 2- zero padded 
ASCII 
DATASET STRUCTURED_POINTS 
DIMENSIONS 10 10 10 
ORIGIN 0.0 0.0 0.0 
ASPECT-RATIO 5.0 5.0 5.0 

POINT-DATA 1000 
SCALARS scalars float 
LOOKUP-TABLE default 
0000000000 
0101111100 
0222222220 

one thousand data values 10 * 10 * 10 = 1000 

0121111120 
0101111100 
0000000000 

Figure 9.1: Example VTK datafile 

II 

Figure 9.2: Voxel model generated manually 
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9.1.2 Semi automated model generation 

A few tools and applications were linked to create a voxel model. The steps followed to create 

a representative voxel model are (see figure 9.3): 

e Create a geometry in a solid modeller such as Unigraphics 

* Ransfer the geometry to a Finite Element package to do the meshing of the geometry. 

Iýansform the data from the mesh (tetrahedrons) to a data file for an unstructured 

grid in VTK. 

* Assign values to the data points of the unstructured grid model to represent the ap- 

propriate material at the position. 

e Sample the volume where the model is defined at a convenient sample rate and ob- 

tain a voxel model from the original model. The values asigned at the nodes of the 

unstructured grid are used in the interpolation. 

This method was tested with a simple geometry (figure 9.4) and for the geometric data of 

a turbine blade. The geometry was obtained from Alstom (previously ABB Alstom Power) 

through the Rapid Manufacturing Consortium at De Montfort University. 

The geometry was simplified, to include only the part corresponding to the foil of the 

turbine blade (figures 9.5 and 9-6), because of the simplification of geometry which makes it 

easier to process (transfer and mesh) the part through the finite element software. it is also 

expected that only the foil part of the turbine blade would present a gradation. 

The simplified geometry, in the form of an IGES file was subsequently imported in Algor. 

A tetrahedral mesh is generated (see figure 9.7). Tetrahedrons are again selected because of 

their simple geometry that is more stable in the voxelization step. 

The next step is to export the vertex and cell data. The feature to export directly the 

raw mesh information doesn't seem to be available in Algor, but the feature to export the 

data to ANSYS generates a text file with the information in ANSYS' prep7 format. The 

transformation of the prep7 data to vtk's format was done manually. A small change required 
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Begin 

CAD 
Unigraphics part 

MODELLING 
SOFTWARE 

IGES file with the surfaces 

Import IGES file in Algor 

FINITE ELEMENT 
SOFTWARE 

F-Mesh 
the imported 

Export vertex and cell data 

Transform vertex and cell data I 
to vtk's format 

VISUALIZATION 
TOOLKIT 

Generate a voxel model 
using the unstructured grid 

as an implicit function 

End 

Figure 9.3: Alternative method of creation of a voxel model 
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Figure 9.4: A simple geometry used to test the transformations 
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Figure 9.5: Unigraphics presentation of the complete geometry of the turbine blade 
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Figure 9.6: Unigraphics presentation of the simplified geometry, i. e. foil section of the turbine 
blade 

152 



Ejle Edit 6dd Construcl Mgdity FEAMesh FEAAdd Analyze Seled 

rzý 15 ýs 

IýI E31 -1--l HIMI ap I c: O I rim-! I r% I F-i II-I,? I (En I? 1ý 

Ready 
X- [40 5098 y- Foe on 

Figure 9.7: Algor presentation of the tetrahedral mesh generated 
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"turbinelOO. vtk" reader I 
unstructured grid reader 

dataset I Implicit data set 

theSample I sample function 

scale I image shift scale filter 

piunWriter I image writer 

"turbine. O" 
"turbine. l" 

turbine. 99" 

Figure 9.8: VTK pipeline to transform an unstructured grid (FEM mesh) to voxels 

was the numbering of the nodes, which in prep7 format begins with one, had to be changed 
to vtk's convention to begin with zero. 

The last step, which transforms the unstructured grid to voxels is done with a vtk pipeline 
implemented in a Tcl script. Figure 9.8 is a schematic of the pipeline. 

The special component of this pipeline is the implicit data set, which takes the input 

from the unstructured grid. Its output is sampled by the next element in the pipeline. 
When queried for a value inside a tetrahedron in the unstructured grid, the implicit dataset 

hviterpolates the scalar values given at the nodes of the tetrahedral cell and returns the result 

to the sample function. 

The result is then scaled with a vtkImageShift Scale filter to an integer to be written as 

an image by the last component of the pipeline, the vtkPNMWriter. 

These image files have the same format as medical imaging data, and the result could 

have been visualized using Mimics, had the trial licence not expired. 

9.1.3 Pipeline code 

The code for the pipeline is outlined below: 
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vtkUnstructuredGridReader reader 

reader SetFileName "-- /turbinelOO 
- vtk" 

reader Update; 

vtkImplicitDataSet dataset 

dataset SetDataSet [reader GetOutputl 

dataset SetOutValue 0 

vtkSampleFunction theSample 

theSample SetImplicitFunction dataset 

theSample SetModelBounds -13.8 15.89 192.2 252.4 -13.43 12.65 

theSample SetSampleDimensions 59 120 52 

theSample ComputeNormalsOff 

theSample Update 

#the Update process queries the dataset 59*120*52 times 

vtkImageShiftScale scale 

#calculate the shift and scale 

scale SetShift $shift 

scale SetScale $scale 

scale SetOutputScalarTypeToUnsignedChar 

scale SetInput [theSample GetOutput] 

vtkPNMWriter pnmWriter 

pnmWriter SetFilePrefix "turbine" 
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pnmWriter SetInput [scale GetOutput] 

pnmWriter Write 

9.1.4 Discussion 

The semi automated method used is much friendlier to the designer, because the geometrY 
can be more conveniently represented using an advanced modeller, such as Unigraphics. 

The step of conversion of the geometry to a tetrahedral mesh was not suitable for auto- 
matic execution. There were many problems in the conversion that had to be looked at durig 

the meshing. The acute edges of the foil seemed to have caused problems while meshing. 
For the task of meshing, both ANSYS and Algor were used, selecting reasonable defaults 

and retrying several times to get a satisfactory solution. The meshing process with ANSYS 

could not be completed after several attempts varying many meshing parameters. Algor was 

successful after a few attempts, although it proved less flexible at the time of exporting the 
data of the resulting mesh. 

This process was only tested using tetrahedral cells (figure 9-9). 

The same transformation was performed on a simpler geometry (figure 9.4), to test the 

process with hexahedral cell elements (figure 9.10). These proved more problematic at the 

time of sampling through an implicit function and several 'cheese-holes' as shown on figure 

9.11, appeared in the model sampled from hexahedra. The model sampled from tetrahedrons 

didn't have the same problem. The problem may be related to the treatment of hexahedral 

cells as they degenerate into tetrahedra by merging several nodes at a point. 

9.2 Visualisation pipeline 

In this section, an example pipeline is built to process a voxel model within the framework 

of VTK. The sequence of steps is represented in figure 9.12. This pipeline processes a model 

with two inaterials. 
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3 
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I 

VTK-TETRA 

Figure 9.9: Topology and numbering conventions for a tetrahedral cell in VTK 

76 

4 

2 

0 

VTK-HEXAHEDRON 

Figure 9.10: Topology and numbering conventions for a hexahedral cell in VTK 
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Figure 9.11: Mimics display of a voxel model of the solid shown in figure 9.4. The black 

regions show the problem associated with using hexahedra as opposed to tetrahedra. 
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9.2.1 Input step 

The model data is stored in the data file '' dat . vtk II, which is read by the reader object 

to feed the pipe. 

vtkStructuredPointsReader reader 

reader SetFileName "dat. vtk" 

reader Update 

9.2.2 Classification step 

The pipeline has two vtkImageThreshold objects: selectl and selectl The input to 

these objects is the output of reader, a ztypevtkStructuredPoints data consisting of zeros, 

ones and twos. 

vtkImageThreshold selectl 

vtkImageThreshold select2 

vtkMarchingCubes contourl 

vtkMarchingCubes contour2 

selectl SetInput [reader GetOutputl 

select2 SetInput [reader GetOutputl 

The parameters assigned to the select objects filter the input to either material 1 or 

material 2 exclusively. 

selectl ThresholdBetween 11 

selectl SetInValue 1 

selectl SetOutValue 0 

select2 ThresholdBetween 22 

select2 SetInValue 1 

select2 SetOutValue 0 

The output of the select objects is an structured points data set (vtkStructuredPoints) 

with only two values: either zero or one ("in" and "out" values), ie. the classified objects. 
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9.2.3 Contouring step 

The next step is the contouring of the resulting volume. 

objects. The class of these objects is vtkMarchingCubes. 

vtkMarchingCubes contourl 

vtkMarchingCubes contour2 

contourl SetInput [ selectl GetOutputl 

contourl SetValue 0 0.5 

contour2 SetInput [ select2 GetOutputl 

contour2 SetValue 0 0.5 

This is done with two contour 

The values chosen for the contouring are important. In this case the value 0.5 represents 
the mid-value between 0 and 1, where the I represents material and 0 represents void. This 

values are linked to the choice of "in" and "out" values chosen for the classsification step. 

9.2.4 Mapping 

To complete the visualisation, the output of the contours is sent to two mappers, one for 

each contour. Actors are built in the standard way to display both materials. mapperl 

and mapper2 are both vtkDataSetMapper objects, which is a more general mapper used for 

visualisation. Since the data to be displayed in this case is of type vtkPolyData, mapperl 

and mapper2 could alternatively be of class vtkPolyDataMapper. 

vtkDataSetMapper mapperl 

vtkDataSetMapper mapper2 

vtkActor actorl 

vtkActor actor2 

vtkRenderer ren 

vtkRenderWindow renWin 
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Figure 9.12: Visualisation of the two contour surfaces obtained from the voxel model 

mapperl SetInput Econtourl GetOutputl 

mapperl ScalarVisibilityOff 

mapper2 SetInput Econtour2 GetOutputl 

mapper2 ScalarVisibilityOff 

actorl SetMapper mapperl 

actor2 SetMapper mapper2 

ren AddActor actorl 

ren AddActor actor2 
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"tur reader 
(vtkPNMReader) 

viewer 
(vtklmageViewer) 

Figure 9.13: Visualisation of the model through slices 

renWin AddRenderer ren 

9.2.5 Visualisation through slices 

A simple method to visualise a voxel model is through slices in the three coordinate planes. 

The pipeline for this case consists only of a reader of type vtkPNMReader and a viewer of 

type vtkImageViewer (figure 9.13). This pipeline presupposes the input in the form of image 

files. 

9.3 Contouring for manufacturing 

For the creation of the STL files that represent materials I and 2, a tcl/tk script implementing 

a custom-built pipeline was created. This is again a specific case of the visualization pipeline. 

The sequence of steps for processing a model with two materials is represented in figure 9.14. 

The steps in this process are the same steps as in section 9.2: input, classification, 

contouring and mapping. 

The first three steps, input, classification and contouring are exactly the same as the ones 

explained in section 9.2. In this case, though, one mapper of the class vtkSTLWriter is used 

for the mapping of the obtained contours. 

vtkSTLWriter writer 

writer SetFileName I'matl. stl" 

writer SetInput [ contourl GetOutputl 

writer Write 
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Figure 9.14: Contouring the voxel model to create STL files. Two-material model. 
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Figure 9.15: Model manufactured from the voxel model 

writer SetFileName "mat2. stl" 

writer SetInput Econtour2 GetOutputl 

writer Write 

9.4 Finite Element mesh generation 

The finite element mesh for a given model is not unique, i. e. there are several possible meshes 

that represent the same model. 

The following algorithm implements the generation of a simple mesh based on tetrahedral 

elements I. 

procedure CreateFiniteElement Mesh (vm, nx, ny, nz) 

/* create a mesh of tetrahedral elements based on the voxel model vm 

with dimensions nx, ny, nz*/ 

begin 

/* generation of the nodes 

'The notation used in the algorithms represents assignment with the left arrow symbol (+-) and C++ style 
iiidirections from a pointer to a structure to a member with the right arrow symbol (--+) as noted previously 
oil page 141. 
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Figure 9.16: Nodes for an element of the voxel model 

int count ý- 1; 

for i: = 0 to nx 

for j: =0 to ny 

for k: = 0 to nz 

GenerateNode (count, i, j, k, vm); 

count ý-- count + 1; 

end 

end 

end 

/* generation of the elements */ 

2. nt Xadd, Yadd, Zadd; 

int mat; 

mt count 

/* node numbering for the first element (closest to origin) */ 
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int AO 0 

int BO I 

int CO ý- nx+l 

int DO nx+2 

int EO (nx+ 1) (ny+ 1) 

int FO (nx+ 1) (ny+ 1) +I 

int GO 2+2 nx + ny + nx ny 

int HO 3+2 nx + ny + nx ny 

for i: = 0 to nx -I 
Xadd ý- i+1; 

for j: =0 to ny -I 
Yadd ý- i (nx+1); 

for k: = 0 to nz -1 

Zadd i- k (nx+l) (ny+l) 

A AO + Xdd + Yadd + Zadd +1; 

B BO + Xdd + Yadd + Zadd +1; 

C CO + Xdd + Yadd + Zadd +1; 

D DO + Xdd + Yadd + Zadd +1; 

E EO + Xdd + Yadd + Zadd +1; 

F FO + Xdd + Yadd + Zadd +1; 

G GO + Xdd + Yadd + Zadd +1; 

H HO + Xdd + Yadd + Zadd +1; 

ptId vm-*ComputePointId(ij, k); 

mat vm-4 GetPointDatao -ý Get Scalars()-* Get Scalar (ptId); 

GenerateTetrahedralElements (count, A, B, C, D, E, FG, H, mat); 

count 4- count + 1; 

end 

end 

end 
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end 

procedure GenerateNode (count, i, j, k, vm) 

/* Generate a node with node number count of structured coordinates ij. k in the 

voxel model vm*/ 

begin 

x vm-40rigin[O] + i*Spacing[O]; 

y vm-40rigin[l] + i*Spacing[l]; 

z vm-ýOrigin[2] + i*Spacing[2]; 

write "N, count, x, y, z"; /* this is specific to ANSYS 

end 

procedure GenerateTetrahedralElements (count, A, B, C, D, E, F, G, H, mat) 

/* Generate six tetrahedral elements of material mat in the volume 

defined by nodes A, B, C, D, E, F, G, H 

begin 

write "mat ", mat; /*this is specific to ANSYS */ 

write "type 72 ", /* ANSYS tetrahedral element type is SOLID72 

write "E" , 
A, B, C, G 

write "E", A, B, E, G 

write "E" B, E, FG 

write "E" B, C, D, H 

write "E" B, C, F, H 

write "E" C, F, G, H 

end 

167 



DESIGN 
AND CONCEPTION 

OF A PART 

Compressed 
ANALYSIS model 
THROUGH 

FINITE ELEMENT 
METHOD 

Ch. 8 
9.1.2 

Finite P PP 
Element Voxel Model 

Mesh 

9.4 
9.2 

9.2.5 

VISUALIZATION 
(DISPLAY) 

MANUFACTURE 
THROUGH 

RP 

9.3 

Manufacturing 
interface 
(STL File) 

Figure 9.17: Programs for a system based on the voxel model 

9.5 Summary 

A system based on the voxel modelling technique can be developed based on the programs 

presented in this chapter, as described in figure 9.17. 

The voxel model can be generated directly (manually), although this should prove tedious 

if not completely impractical. A more convenient method is presented in section 9.1.2, where 

the voxel model is generated by sampling an unstructured grid. This method can also be 

used to generate functional gradation in the volume by assigning values to the nodes of the 

unstructured grid model. This approach is similar to the cell-tuple method proposed by 

Jackson et al. (chapter 5). The sampling process in VTK assigns values interpolating within 

a cell using the scalar values assigned to the nodes of a cell. 

The compression proposed using the octree was presented previously in chapter 8. 

Section 9.2 shows two methods of visualising the voxel model, either by contouring and 

inapping surface models or by visualising individual slices. The visualisation processes should 

prove easier to set up since we are building a system based on visualisation software. 

Section 9.3 shows a method to produce industry standard STL files from a voxel model 
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through contouring. As an example, the STL files generated from a voxel model were pro- 

duced using the SLA-7000 machine at the Rapid Manufacturing Group at De 'Montfort 

University (see figure 9.15). 
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Chapter 10 

Summary, Conclusions and Future 

Work 

This thesis studies the voxel modelling technique as means of representing multiple material 

objects and functionally graded material objects their possible realisation through Rapid 

Manufacturing techniques. 

A review of Rapid Manufacturing processes was presented. The significant developments 

in the techniques are apparent as well as the industry acceptance of these methods for the 

reduction of design and manufacturing time cycles. It was shown that although the range 

of materials is limited, the techniques are suitable for the realisation of complex geometries 

with overhangs and undercuts that would be extremely difficult using conventional machining. 

Additive processes can also be used to create parts with varying composition. 

The possible applications of Functionally Graded Materials were reviewed. Applications 

in aeronautics and astronautics show the importance of inhomogeneous materials in the 

future of engineering applications. Thermal Barrier Coatings (TBCs) consisting of graded 

layers of ceramic and metal have been used in many applications where parts are subject to 

high thermal stress, e. g. rocket engines, turbine blades. Other applications include cutting, 

tools, optical fibres and biornaterials. The processing methods are often very elaborate and 

require special set-ups and sophisticated control of process parameters. RP methods capable 

of controlling the material distribution should simplify the creation of inhomogeneous objects. 

170 



Computational Geometry methods used in CAGD were also reviewed, covering first curve 
and surface modelling including the most general entities, the Non Uniform Rational B- 
Splines (NURBS) for both curve and surface modelling as well as the IGES specification for 

the transfer of graphics and geometric data and Solid Modelling techniques. The voxel model 
is studied as a general case of volumetric data, considering various areas in science where 
this representations are useful. The memory requirements for a voxel model are considered 
irl the light of the resolution available in FGM creation methods and Rapid Manufacturing 

processes. It is concluded that for some resolutions it is possible to consider the voxel 

modelling technique as a suitable method of representation. 

The methods proposed by two research groups at the University of Michigan (Dutta et 

al. ) and the M. I. T. (Jackson et al. ) were reviewed. The first group proposes a method of 

representation of FGMs (inhomogeneous objects) using product manifolds and trivial fibre 

bundles. The researchers have an on-going work on the implementation of the 'heterogeneous 

solid modeller' based on the ACIS kernel, a commercial solid modelling kernel. The second 

group proposes the cell-tuple structure, based on the subdivision of the solid in cells. The first 

method is a more general and it encompasses the second approach (the cell-tuple subdivision) - 
The issue of the exploration of a usually large voxel model was considered. The creation 

of parts by RP methods from a voxel model, was likened to other visualisation task. The vi- 

sualisation of a voxel model through volume rendering was studied and visualisation software 

for this type of application was identified. The Visualization Toolkit (VTK) was reviewed in 

this context and this toolkit was used in further work as centre of a voxel modelling system. 

The issue of modelling an FGM by subdividing the object in finite elements within a 

FEA package such as ANSYS was considered and a trivial structural analysis example was 

modelled testing the system. The maximum resolution attainable using this commercial 

package was estimated at around 0.6 min for this 2-D example. 

The VTK software toolkit was revisited to extend it into a modelling system to support 

rapid manufacturing based on the voxel model. The design philosophy behind the toolkit 

and the concept of a visualisation pipeline were considered. Data representation within the 

framework of VTK was examined and the octree decomposition for graded materials was 
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Figure 10.1: Applications of the voxel model 

implemented within the toolkit to consider its applicability as a compression mechanism to 

reduce memory requirements. The octree scheme was tested showing poor performance due 

to the overhead of pointer structures. 

Finally the VTK framework was used to provide a system based on the voxel modelling 

method providing various transformations and possible uses. The programs developed give 

the outline of a system as indicated in figure 10.1. Two examples of application of the system 

were considered: a voxel model was generated from the geometry of a turbine blade and a 

part was created from two material model by contouring and built using the stereolithography 

process. 

The developments in the Rapid Manufacturing processes have allowed the creation of 

FGMs by additive manufacturing. This fact added to the unique advantages of the pro- 

cesses e. g. the ability to create parts with geometry that would be extremely difficult to 

produce using standard subtractive methods present an interesting prospect for engineering 

applications. 

The use of inhornogeneous objects in advanced engineering applications such as aerospace 
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and astronautics shows its importance for the future of engineering. 
The voxel based techniques are particularly well suited for methods where the parts are 

created one layer at a time, (parallel/image based systems) such as Solid Ground Curing 

or Light Sculpting, where a whole slice is exposed simultaneously or material is deposited 

through a mask. These methods are not the norm currently, and there are far more sequen- 
tial/vector based systems. 

The voxel modelling technique was developed and tested based on the framework of a 

visualisation library. The problem of the limited resolution available was considered and tried 

to overcome using an octree decomposition of a graded material voxel model. This approach 

proved unsuccessful due to the large overhead of the structure. However the resolution may 

still be considered, because the rapid manufacturing processes based on powder processing by 

laser fusion or FGM creation by powder stacking are low resolution processes at the present 

stage. 

There are still challenging tasks that remain to be solved. The system needs an extension 

to obtain a voxel model directly from a B-Rep representation or a surface model. The 

efforts in direct slicing of CAD models (Jamieson and Hacker[26]) are useful in this direction. 

They require however direct interaction with the solid modelling kernel, which in this case 

is Parasolid (the solid modelling kernel of Unigraphics). Another addition necessary for 

efficient creation of voxel models would be a CSG import utility, such as the on reported by 

Chandru[8] et al. as part of their Geometric Workbench for Rapid Prototyping (G-WoRP). 

These utilities could be added as an extension to the visualisation system framework, and it 

would require careful study of the proper abstraction of curve, surface and solid modelling 

constructs to achieve a good integration within VTK. 

This integration of computational geometry methods in a visualisation framework may 

be in tune with the solution of problems cited by Farouki[17] and the desire for -new, open 

geometry engines" that would improve on the often unsatisfactory outcome of standards (e. g. 

ICES and STEP) when it comes to integrating CAD with other fields (e. g. CFD). Part of 

the problems in the transfer of solid models is that the development of CAD systems has 

been driven by product-release deadlines and while specific solutions may work sufficientlý, 
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well in industry, the application of CAD systems in challenging contexts inflicts pain and 
exasperation in the users. This difficulties are manifest in the lack of inter-operability among 
major CAD packages and the general difficulty in conveying all model information among 
systems and among applications. 

The process planning of a powder deposition system suitable for processes such as ink jet 

printing or laser powder fusion needs to be tackled and integrated in a complete system. It 

was mentioned that at this stage models are created using the SDM process are "told" to use 

various materials. In another example of an inhomogeneous object built using the Sanders 

Model Maker machine (Kumar and Dutta[35]), the tool path for the material deposition was 

also generated manually. The paper states 

This is a complicated problem and currently there does not exist an automated 

way of generating optimal tool paths for a given material distribution in a layer. 

There is also the prospect of reexamining the use of voxel models at higher resolutions once 

the computing power becomes available, as there are other exacting applications which require 

massive computing power and have been forcing the limits of current computer architectures 

and configurations. A publicised example is the ambitious Grid Physics Network project[6] 

(http: //www. griphyn. org), a system which will start to process petabytes of data per year. 
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Appen ix A 

Programs used for various tasks 

A. 1 Visualising a small voxel model 

The following application of the VTK pipeline to display a voxel model was tested for a 

model of up to 10 x 10 x 10 elements. The system creates polygonal data of a cube for every 

voxel present in the model using a glyph filter (vtkGlyph3D) and colours the voxel according 

to the its value. 

Tcl script 
catch Iload vtktcll 
source vtkInt. tcl 
# program in tcl to display voxels, as cubes and colour 
# them according to their value 

# Create the RenderWindow, Renderer and both Actors 

vtkRenderer renl 
vtkRenderWindow renWin 

renWin AddRenderer renl 
vtkRenderWindowInteractor iren 

iren SetRenderWindow renWin 
vtkStructuredPointsReader reader 

reader SetFileName "data. vtk" 
reader Update 

VtkCubeSource cube 
cube SetXLength 0.5 

cube SetYLength 0.5 

cube SetZLength 0.5 
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vtkGlyph3D glyph 
glyph SetInput [reader GetOutput] 
glyph SetSource [cube GetOutput] 
glyph SetColorModeToColorByScale 
glyph SetScaleModeToDataScalingOff 

vtkLookupTable lut 
lut SetNumberOfColors 3 
lut Build 
Olack and transparent 
lut SetTableValue 0 0.0 0.0 0.0 0.0 
lut SetTableValue 1 1.0 0.0 0.0 1.0 
lut SetTableValue 2 0.0 0.0 1.0 1.0 

vtkDataSetMapper mapper 
mapper SetInput [glyph Getoutput] 
mapper SetScalarRange 02 
mapper SetLookupTable lut 

vtkActor ptsActor 
ptsActor SetMapper mapper 

# Add the actors to the renderer, set the background and size 

renl AddActor ptsActor 

# render the image 

iren SetUserMethod Jwm deiconify vtkInteractj 
iren Initialize 

A. 1.2 Example 

The example is in the CD ROM in the directory 'glyphing'. By executing the tcl script 

glyph3. tc1, the system displays a glyph model of the data in the file in dat a. vtk. Once t he 

program is executed, the user can change the view with the pointer in the render window. 

The user can also type V to access the interactor dialogue. 

The directory 'glyphing/ comments' contains further comments and dialogue exaniples 

using the interactor. 
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A. 2 Visualization of a model through slices 

To visualise a larger voxel model, it becomes convenient to see the model by slices. The 

following scripts allow the visualisation. of slices in any of the three orientations along tli(, 

coordinate axes. 

A. 2.1 Tcl script 

The tcl script has three parts: rot-view. tcl, SliceOrder - tcl and WindowLevelInterf ace. tcl. 

These scripts are an adaptation of the "viewer" and the "frog" example that come with VTK. 

rot-view. tcl 

# Tcl script that displays the data from the series of PNM files 

catch ýload vtktcl. dlll 

source It. /Slice0rder. tcl" 

vtkPNMReader reader 
reader SetDataExtent 0 58 0 119 1 52 

reader SetFilePrefix ". /turbine" 

reader SetTransform ap 
reader ReleaseDataFlagOn 

vtkImageViewer viewer 
viewer SetInput [reader GetOutputl 
viewer SetZSlice 14 
viewer SetColorWindow 1100 
viewer SetColorLevel 152 
#viewer DebugOn 
#viewer GetWholeZMin 
#viewer GetWholeZMax 
viewer Render 

viewer SetPosition 50 50 
#make interf ace 
source WindowLevelInterface. tcl 
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WindowLevellnterface. tcl 

#a simple user interface that manipulates window level. 
# places in the tcl top window. Looks for object named viewer 

#only use this interface when not doing regression tests 
if J[info commands rtExMathl != "rtExMath"I ý 

# Take window level parameters f rom viewer 
proc InitializeWindowLevelInterf ace 

global viewer sliceNumber 

# Get parameters from viewer 
set w Eviewer GetColorWindow] 
set 1 Eviewer GetColorLevel] 
set sliceNumber Eviewer GetZSlicel 
set zMin Eviewer GetWholeZMin] 
set zMax Eviewer GetWholeZMax] 

frame slice 
label slice. label -text "Slice" 
scale slice. scale -from $zMin -to $zMax -orient horizontal 

-command SetSlice -variable sliceNumber 

f rame . wl 
frame wl. fl 
label wl. fl. windowLabel -text "Window" 

scale wl. fl. window -from 1 -to [expr $w 

-command SetWindow -variable window 
frame wl. f2 
label wl. f2. levelLabel -text "Level" 

-orient horizontal \ 

scale wl. f2. level -from Eexpr $1 - $w] -to [expr $1 + $w] 

-orient horizontal -command SetLevel 
checkbutton wl. video 

# resolutions less than 1.0 
if f$w < 101 f 

set res [expr 0.05 * $w] 

. wl. fl. window configure -resolution $res -from $res -to 

. wl. f2. level configure -resolution $res \ 

-from [expr 0.0 + $1 - $w] -to Eexpr 0.0 + $1 + $w] 
I 

. wl. fl. window set $w 

. wl. f2. level set $1 

frame ex 
button ex. exit -text "Exit" -command "exit" 

pack slice wl ex -side top 

[expr 2.0 * $wl 
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pack slice. label slice. scale -side left 
pack wl. fl wl. f2 -side top 
pack wl. fl. windowLabel wl. fl. window -side left 
pack wl. f2. levelLabel wl. f2. level -side left 
pack ex. exit -side left 

I 

proc SetSlice I slice If 

global sliceNumber viewer 

viewer SetZSlice $slice 

viewer Render 
I 

proc SetWindow window 
global viewer video 
if f$videol f 

viewer SetColorWindow [expr -$window] 
else f 

viewer SetColorWindow $window 
I 

viewer Render 
I 

proc SetLevel level 
global viewer 
viewer SetColorLevel $level 

viewer Render 

InitializeWindowLevelInterface 

else f 

viewer Render 

Slice0rder. tcl 

# these transformations permute medical image data to maintain proper orientation 
# regardless of the acqusition order. After applying these transforms with 
# vtkTransformFilter, a view up of 0, -1,0 will result in the body part 
# facing the viewer. 
# NOTE: some transformations have a -1 scale factor for one of the components. 
# To ensure proper polygon orientation and normal direction, you must 
# apply the vtkPolyDataNormals filter. 
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# Naming: 
# si superior to inferior (top to bottom) 
# is inferior to superior (bottom to top) 
# ap anterior to posterior (front to back) 
# pa posterior to anterior (back to front) 
# lr left to right 
# rl right to left 

vtkTransf orm si 
[si GetMatrixPointer] 
[si GetMatrixPointerl 
[si GetMatrixPointer] 
[si GetMatrixPointer] 
[si GetMatrixPointer] 
[si GetMatrixPointerl 
[si GetMatrixPointerl 
[si GetMatrixPointerl 
[si GetMatrixPointerl 
[si GetMatrixPointerl 
[si GetMatrixPointerl 
[si GetMatrixPointerl 
[si GetMatrixPointerl 
[si GetMatrixPointerl 
[si GetMatrixPointerl 
[si GetMatrixPointerl 

vtkTransf orm is 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 
[is GetMatrixPointerl 

SetElement 001 
SetElement 010 
SetElement 020 
SetElement 030 
SetElement 100 
SetElement 110 
SetElement 121 
SetElement 130 
SetElement 200 
SetElement 21 -1 
SetElement 220 
SetElement 230 
SetElement 300 
SetElement 310 
SetElement 320 
SetElement 331 

SetElement 001 
SetElement 010 
SetElement 020 
SetElement 030 
SetElement 100 
SetElement 110 
SetElement 12 -1 
SetElement 130 
SetElement 200 
SetElement 21 -1 
SetElement 220 
SetElement 230 
SetElement 300 
SetElement 310 
SetElement 320 
SetElement 331 

vtkTransform ap 
ap Scale 1 -1 1 

vtkTransf orm pa 

180 



pa Scale 1 -1 -1 

vtkTransf orm lr 
[ir GetMatrixPointerl 
[ir GetMatrixPointerl 
[ir GetMatr ixPo inter] 
[ir GetMatrixPointer] 
[ir GetMatrixPointer] 
[ir GetMatrixPointer] 
Ur GetMatrixPointerl 
Ur GetMatrixPointerl 
[lr GetMatrixPointer] 
[lr GetMatrixPointer] 
Ur GetMatrixPointerl 
Ur GetMatrixPointerl 
[lr GetMatrixPointer] 
Ur GetMatrixPointerl 
Ur GetMatrixPointerl 
Ur GetMatrixPointerl 

vtkTransf orm rl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPo inter] 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 
[rl GetMatrixPointerl 

A. 2.2 Example 

SetElement 000 
SetElement 010 
SetElement 02 -1 
SetElement 030 
SetElement 100 
SetElement 11 -1 
SetElement 120 
SetElement 130 
SetElement 201 
SetElement 210 
SetElement 220 
SetElement 230 
SetElement 300 
SetElement 310 
SetElement 320 
SetElement 331 

SetElement 000 
SetElement 010 
SetElement 021 
SetElement 030 
SetElement 100 
SetElement 11 -1 
SetElement 120 
SetElement 130 
SetElement 201 
SetElement 210 
SetElement 220 
SetElement 230 
SetElement 300 
SetElement 310 
SetElement 320 
SetElement 331 

The script displays slices of the voxel model in any of the three coordinate directions bý, 

changing the transformation that the vtkPNMReader uses, which can be one of ap, rl or is. 

These names stand for anterior-posterior (ap), right-left (rl) and inferior-superior (is). D is 
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important to tell the reader the size of the voxel model with the SetDataExtent command. 
In this example the file prefix is set to turbine and the extent is set to (0,58,0,119.1.52). 

The last two values indicate the reader which files have to be read. This means that the 

reader expects to find the files turbine. 1 through turbine. 52 with images of 59 by 120 

pixels. All image files have to be the same size. 

A. 3 Contouring a voxel model 

A. 3.1 Tcl script 

This script implements the conversion of a voxel model read from a vtk data file to a surface 

model (STL file). The pipeline for this program is described 

####################### 

# Program to contour a voxel model (isosurface extraction) 
# Author: Ronaldo Mercado 

######################### 
# This program reads the data file Idatb. vtkl 
# and produces an STL file for material 1: Imatl. stl' 
# and another STL file for material 2: Imat2. stlI 

catch fload vtktcll 
source vtkInt. tcl 

pipeline : reader, select 

vtkStructuredPointsReader reader 
vtkImageThreshold selectl 
vtkImageThreshold select2 
vtkMarchingCubes contourl 
vtkMarchingCubes contour2 
reader SetFileName "datb. vtk" 
reader Update 
selectl SetInput [reader GetOutputl 

select2 SetInput [reader GetOutputl 

selectl ThresholdBetween 11 

selectl SetInValue 1 
selectl SetOutValue 0 

select2 ThresholdBetween 22 
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select2 SetInValue 1.5 

select2 SetOutValue 0.5 

contourl SetInput [ selectl GetOutput] 
contourl SetValue 0 0.5 

contour2 SetInput [ select2 GetOutput] 
contour2 SetValue 0 1.0 

#Display a pipeline 
# uses mapper, actor, ren, renWin, iren 
# add a colorbar actor 

vtkDataSetMapper mapperl 
vtkDataSetMapper mapper2 
vtkActor actorl 
vtkActor actor2 
vtkRenderer ren 
vtkRenderWindow renWin 
vtkRenderWindowInteractor iren 
vtkLookupTable lut 
vtkScalarBarActor scalarBar 

mapperl SetInput Econtourl GetOutputl 
mapper2 SetInput Econtour2 GetOutputl 

mapperl ScalarVisibilityOn 
mapper2 ScalarVisibilityOn 
lut SetHueRange 0 0.6667 
lut SetSaturationRange 11 
lut Build 

mapperl SetLookupTable lut 
mapper2 SetLookupTable lut 
scalarBar SetLookupTable lut 
scalarBar SetTitle "Material" 
actorl SetMapper mapperl 
actor2 SetMapper mapper2 
ren AddActor actorl 
ren AddActor actor2 
ren AddActor scalarBar 
renWin AddRenderer ren 
iren SetRenderWindow renWin 
iren Initialize 
iren SetUserMethod ýwm deiconify 

wm withdraw . 

. vtkInteractl 
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#write the output of the pipeline to an STL file 
# uses vtkSTLWriter 

vtkSTLWriter writer 
writer SetFileName "matl. still 

writer SetInput E contourl GetOutput] 
writer Write 

writer SetFileName "mat2. stl" 
writer SetInput [contour2 GetOutputl 
writer Write 

A. 3.2 Examples 

The example is in the CDROM in the directory 'contour'. Executing the tcl script contour. tcl 

generates the STL files of the voxel model stored in datb. vtk. 

The second example processes the data in the file data. vtk which is the same voxel 

model without the padding on every side. This model doesn't generate closed surfaces and 

it is therefore not suitable for the creation of a solid. 

A. 4 Týransformation from an unstructured grid into a voxel 

model 

A. 4.1 Tcl script 
####################### 

# Program to transform from an unstructured grid into a voxel model 
# Author: Ronaldo Mercado 

######################### 
# set up for the data set created for the simple geometry 

# parameters: 

set FILENAME ". /ug-data-vtk" 
set MODELBOUNDS "0 60 0 100 0 100" 
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set SAMPLED IMENS IONS "60 60 6011 
set MAXOUTPUTSCALAR 200 

set OUTFILEPREFIX "outfile" 

catch fload vtktcll 

vtkUnstructuredGridReader reader 
eval reader SetFileName $FILENAME 

reader Update; 

vtkImplicitDataSet ids 
ids SetDataSet [reader GetOutput] 
ids SetOutValue 0 

vtkSampleFunction theSample 
theSample SetImplicitFunction ids 
eval theSample SetModelBounds $MODELBOUNDS 
eval theSample SetSampleD imens ions $SAMPLEDIMENSIONS 
theSample ComputeNormalsOff 
theSample Update; 

vtkImageShif tScale uu 
set range IIIEtheSample GetOutput] GetPointData I GetScalars] GetRangel 
set bot [lindex $range 01 
set top [lindex $range 11 
set scale Eexpr $MAXOUTPUTSCALAR/($top-$bot)] 
uu SetShift [expr -$bot] 
uu SetScale $scale 
uu SetOutputScalarTypeToUnsignedChar 
uu SetInput [theSample GetOutput] 

vtkPNMWriter pnmWriter 
eval pnmWriter SetFilePrefix $OUTFILEPREFIX 

pnmWriter SetInput [uu GetOutputl 
pnmWriter Write 

A-4.2 Example 

The script is stored in the CD Rom in the directory 'voxel generation'. By executing the 

script task0l. tcl, the system executes the steps: 

1. Reads the an unstructured grid from the data file specified in the parameter FILENAME 

(e. g. set FILENAME ". /ugdata. vtk"). 
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2. Samples the volume specified in the parameter MODELBOUNDS at a sampling deiisity 

given by SAMPLED IMENS IONS. 

3. Writes the resulting voxel model as a set of image files OUTFILEPREFIX. 

It is important that the model bounds correspond to the data in the unstructured grid 
data file. The sampling is a computing intensive task that ties the processor for several 

minutes on the configuration used while testing' 

A. 5 Octree implementation 

The files for the octree implementation within VTK are located in the 'prgrams/octree' 

directory in the CD Rom. Table A. 1 lists the relevant files. 

Filename Description 

vtkScalars. h 
vtkOctree. h 
vtkOctree. cpp 
vtkOCtreeNode. h 
vtkOctreeNode. cpp 
vtkOctreeScalars. h 
vtkOctreeScalars. cpp 
main. cpp 
test. cpp 
*. vtk 

Modified header file needed for the octree implementation 
Header file for the vtkOctree class 
Methods for the vtkOctree class 
Header file for the vtkOctreeNode class 
Methods for the vtkOctreeNode class 
Header file for the vtkOctreeScalars class 
Methods for the vtkOctreeScalars class 
Test procedures that visualise an octree 
Test procedures that calculate the memory usage 
Data files 

Table A. 1: Files for the octree implementation in VTK 

The nightly release of VTK is needed for the compilation of the procedures of test - cpp. 

because the release version does not have the GetActualMemorySize() methods. The li- 

braries need to be compiled using the modified header file vtkScalars. h that spec, fi(,,, the 

GetScalar method to be virtual. 

'PC, NVindows NT 4,128 MB RAM Pentium III Processor at 400 DvlHz 
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Both the release and nightly versions of VTK are included in the CD in the directories 

'vtk' and 'vtknightly' respectively. 
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Appendix B 

Object Oriented Programming 

Concepts 

B. 1 Principles of object oriented software 

Object oriented systems have proved to be more modular, easier to maintain and to describe 

than traditional procedural systems. These advantages have been noticed by industry that 
has adopted object orientation for large projects. Several languages and metaphors have 

appeared over the years, from the Ada programming language in defence projects, Smalltalk 

developed by the Xerox PARC to the more recent Sun System's Java programming language. 

Alongside this evolution of programming languages, software development methodologies 
have also been evolving from the Object Modeling Technique (OMT) to the newer Unified 

Modeling Language (UML). 

At the core of the huge field of software development methodologies lies the concept of 

representing a software system through computer abstractions that model physical or abstract 

pieces of the system being modelled. The dominating concept for this s the object that 

encapsulate both data and procedures i. e. properties and behaviour. The Object Oriciltc(l 

(00) terminology and concepts are widely present in programming literature and textbo()ks 

that teach 00 languages (e. g. [63]). 

The terminology adopted in this document generally conforms to Rumbaugh's wrinliiol- 
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ogy [28] and Stroustrup C++ specific terminology [59]. 

The characteristics of objects are: 

e Identity. Each object has a unique handle within a computer program that makes it 

a discrete, distinguishable entity. Two objects are distinct even if all their attributes 
have the same value. 

Classification. Objects with the same data structure and behaviour are grouped into 

a class. This classification mechanism simplifies some tasks by allowing specialisation 

through subclassing, which creates a class hierarchy. Specific objects are instanccs of 

their class. 

Encapsulation. This characteristic refers to he data of an object being accesible only 

through well known methods or member functions, to enforce some standard interface 

of communication within objects. This characteristic is usually present, in an object 

oriented languages. 

Polymorphism. Objects can exhibit a different behaviour for the same operation, de- 

pending on their class, which may implement the operation differently. For example, 

there may be a hierarchy of graphics objects which respond to the 'Draw' operation, 

a square and a circle would draw a different image although the operation requeste(I 

(message passed) would be the same. 

Inheritance. Subclasses derived from other classes inherit attributes and behaviour from 

parent classes and implement specialised operations or add more attributes specific 

to the subclass. This serves as a method of factoring out common properties and 

operations. 

The object oriented methodology as it is presented by Rumbaugh et al-[28] can be inde- 

pendent of the programming language, i. e. it should be possible to implement object oriciited 

concepts on any high level programming language. such as C or Fortran. The selection of 

a programming language will however have an impact on the implementation of the desigil 
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and usually the selection of an object oriented language will simplify and automate several 
tasks and controls for the developers by transferring responsibilities to the compiler. 

B. 2 Object Modeling Technique (OMT) 

The OMT methodology proposes the development of a system model using three different 

viewpoints. 

e The object model represents the static, structural, "data" aspects of the system. 

9 The dynamic model represents the temporal, behavioural, "control" aspects of a system. 

e The functional model represents the transformational, "function" aspects of a system. 

The basic concepts used for this project are classes, associations, aggregation and gener- 

alisation. 

e Classes. Refers to an object class which describes a group of objects with similar 

properties (attributes), common behaviour (operations), common relationships to other 

objects and common semantics. 

e Associations. Refer to relationships that exist among objects and classes. 

Associations have a certain multiplicity that specifies the number of objects in a class 

at either end of the association. 

Associations are usually represented by pointers that may get confused as attributes. 

An association does not exist in a class if not in relation with some other class. 

* Aggregation. This is a special tYPe of association from a class that represeiits the 

whole, the assembly class, to the classes that represent the parts. 

9 Generalization (inheritance). This abstraction mechanism allows to factor out common 

characteristics of classes and preserve the differences. The more general class is the 

superclass, and the specialised or refined version is called a subcIass. 
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Class: 
I Class Na 

Association: 

I Class Name 1 
attribute: 
attribute: data-type 
attribute: data-type = init-value_ 
operationo 
operation(arg_list: ) 

loperation(arg_list: ): return_type 

I Superclass I 

Subclass-l II Subclass-2 
I Assembly Class I 

Part-1 -Class II Part-2-Class 

CIass- -1--Poll-e-, - 1 

ssociation Name 

Class-2 

Class Exactly one 

7 

-OFCýass 
Many (zero or more) 

r -C, a-s- s- I OPtional (zero or more) 

One or more 

'-', I Class I Numerically specified 

Figure B. I: Basic Object Model Notation 

The OMT methodology includes a convenient graphical representation for these concepts 
(figure B. 1). This description language is the base of the more recent UML methodology [20], 

which is found in CASE tools and drawing programs because of its popularity. 

Classes are represented with boxes that may include the attributes and operations. As- 

sociations are represented with lines. The multiplicity of an association is represented with 

numerals or circles at either end of the relationship. Inheritance is represented w1th a trian- 

gle on the side of the more general class. Aggregation presents a diamond ; it the end of t 11(, 

assembly class. 

191 



Appendix C 

Results of the corner bracket 

example 

The results for the corner bracket example described in chapter 7 are included in this ap- 

pendix. Figure CA shows the stress distribution for the bracket modelled assuming only one 

material (steel). The materials are assigned for the following step according to the average 

stresses in the elements. This is shown in figure C-2. Finally, figure C. 3 shows the stress 

distribution for the same bracket geometry for the five material model. Table CA shows the 

material properties used in the example. 

Material Young's modulus [Pa] Poisson's ratio 

1 205-00 x 109 0.27 
2 171.25 x 109 0.29 
3 137.50 x 109 0.31 
4 103.75 x 109 0.33 
5 70-00 x 109 0.35 

Table CA: Material properties used in the example bracket. Material I has the properties 
of steel and material 5 has the properties of aluminium 
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Abstract: Voxel modelling refers to dividing up three-dimensional space into cubical cells 
at a particular resolution. Objects are modelled by listing the cells that they occupy. This 
scheme of representation requires large amounts of core memory for reasonable resolution 
and thus has not been generally favouredfor practical systems. 
This article is a literature survey on voxel modelling in general and an investigation of 
methods used to represent objects with a variable material composition. Potentiallýy these 
could be fabricated using Rapid Manufacturing, a family of technologies that generate 
three-dimensional, solid objects under computer control. The paper explores relevant areas 
to the subject such as rapid manufacturing, solid modelling and computer graphics, volulne 
rendering and scientific visualisation. 
Examples of materially graded objects created using Rapid Manufacturing technologies 
are reviewed. Graphical display techniques availablefor voxel modelling are reviewed and 
two public domain utilities for volume rendering are tested. Some of the 3-D processing 
techniques that could be used to compress voxel based models are considered. 
It is concluded that current modelling of these objects lags behind the realisation of objects 
in practice. The article reports current research and explores possible future research 
areas. 

Keywords: Rapid Manufacturing, Functionally Gradient Material applications, Voxel 
Modelling. 

1. Introduction 

Rapid Manufacturing is a family of technologies that generate three-dimensional, 

solid objects under computer control with three important features in common: 
Parts are automatically produced from CAE data sets under computer control. 



These techniques are "additive": an object is built by successively addina . raw material, 
rather than removing existing material, which is the case with production techniques 
such as milling. 
A set of layers or "slices" are added together to create a solid volume of the desired 
shape. 

Parts produced by major commercial Rapid Manufacturing systems are made of a 
single material, although some of these techniques are potentially capable of handling 
multiple materials. Three papers already report on objects with material gradation in the 
volume [ 15,21,30]. 

Current rapid manufacturing applications traditionally use industry standard solid 
modellers. The model is created using standard CSG and B-Rep modellers. The internal 
volume is assumed to be filled with a homogeneous, isotropic material. This model is then 
tessellated and transferred to the rapid manufacturing apparatus of choice. This scheme has 
been in use for close to a decade, and although the size of STL files for complex object may 
be enormous in size (e. g. 100 MB), these are still manageable using current computer 
technology. 

None of the traditional solid modelling strategies can represent materially oraded 
objects, they only capture their geometry and topology [ 14,16,17]. 

2. Voxel modelling 

2.1. Volume data sets representation and application 

A number of techniques have been developed to represent volumetric data. Volume 
data sets are typically sets S of samples (x, y, z, v), representing the value v of some property 
of the data at a 3-D location (x, y, z). In general, the samples may be taken at random 
locations in space, but in many cases S is isotropic, containing samples taken at regularly 
spaced intervals along three orthogonal axes. Since S is defined on a regular grid, a 3-D 

array is typically used to store the values. A function may be defined to describe the value 
at any continuous location by approximating v at a location (x, y, z) using some interpolation 
function to S. The region of constant value that surrounds each sample in zero-order 
interpolation is known as a volume cell (voxel for short), with each voxel being a 
rectangular cuboid. 

In addition to regular grids, rectilinear, curvilinear, and unstructured grids are 

employed. In an unstructured grid, there is no explicit or implicit grid topology. 
Unstructured grids are common for scattered data, finite-element/volume analysis, and 

computational fluid dynamics. 
The primary sources of volume data sets are three: sampled data of real objects or 

phenomena, computed data produced by a computer simulation, and modelled data from a 

geometric model. Volume visualisation allows the user to extract information from 

volumetric data sets through interactive graphics and imaging. The importance of the voxel 

model in medical imaging [ 19] comes from its use in the CT, MRI, SPECT, and PET 

medical imaging modalities as well as for rendering 3-D medical images. 



2.2. Memory Requirements 

A voxel model requires huge amounts of memory. To achieve a good resolution (e. g. 5 ýtm) in a considerable volume (e. g. 500 mm x 500 mm x 500 mm) requires 100,000' 
voxels, i. e. 1015 elements. To grasp the enormity of this figure, according to some rough 
estimates, the information of all U. S. academic libraries together is twice that amount, 
roughly 2x 1015 bytes [211. The largest volume data set that current high-end systems can handle is a 1024 x 1024 x 1024 (roughly 109, a gigabyte) element data set using hardware 
optimised for 3-D graphics. 

nP 

PI The storage requirement of a voxel model is n 31 where tip is the number of 

properties and p, is the storage requirement of a value of the property 1. Typical voxel 
models in medicine are based on a value of n=512, and store a single density property 
represented by an integer. In this case, the voxel model occupancy is around 512 MB. In 
other application areas, such as in earth sciences, the memory storage could be increased by 
10 to 50 times. This is the major drawback of voxel models [1]. 

2.3. Compression Methods 

In principle, the compression methods in the 3-D domain are a generalisation of the 
compression methods available in 2-D for working with raster images. Some compression 
methods are compression based on the DCT (Discrete Fourier Transform), compression 
based on wavelets, fractal compression, multiresolution representations and compression 
based on hierarchical structures (Octree and BSP trees) [17]. 

Many of these techniques have been studied in relationship with their application 
for medical imaging and volume rendering. In fact medical imaging equipment often uses 
either the raw voxel model or a octree model for the visualisation [ 19]. 

The octree representation uses a recursive subdivision of the space of interest into 
eight octants that are arranged into an 8-ary tree (hence the name). This type of structure is 
analogous to the quadtree, which is used in 2-D raster image processing. The octant 
volumes continue to be subdivided until a termination criterion is satisfied. Two common 
termination criteria are the total volume represented by a node and the complexity 
(homogeneity) of the volume represented by the node. 

In general, the number of nodes in this type of octree representation of a solid 
object is proportional to the surface area of the object. Hence octree models are not quite as 
large as exhaustive representations but still take a fair amount of storage [ 16]. An 
isosurface octree, or the classical octree of a voxel mode defines voxels as black if their 

associated value is within a specific range of the property and white otherwise. The voxels 

whose property values are within this range and differ less than a given E are recursively 

grouped into black nodes. This type of octree is only useful when the volume is not very 
heterogeneous [1]. 



2.4. G-WoRP, a hybrid voxel modeller 

Chandru et al. [21 describe G-WoRP, a Geometric Workbench for Rapid 
Prototyping. In this novel computer-aided design tool, the authors extend the traditional 
solid modelling hybrid model architecture to include the voxel and the slice, the real 
manufacturing primitives for Rapid Prototyping (Rapid Manufacturing) systems. The paper 
concludes with the status of this tool by the time of publication (1994), when the 
implementation of a prototype was in progress for the Silicon Graphics platform. Although 
the work on G-WoRP as well as other related tools has been reported in several Masters 
Project reports, it has not yet been published [ 17]. 

3. Materially graded objects 

Materially graded objects are objects composed of different constituent materials 
and could exhibit continuously varying composition and/or microstructure. Such 
continuous changes result in gradation in their properties. Materially graded objects are 
potentially ideal for several engineering applications. 

3.1. Applications 

By creating objects with spatially varying material properties, one can tailor the 
composition of an artefact such that material properties match the functional requirements 
demanded of the component at a given point. For example, for optimal tool life it is 
desirable to have a hard outside shell for wear resistance and a ductile core to resist brittle 
fracture. Traditionally, such benefits have been achieved through the coating or cladding of 
existing artefacts with shells of different physical characteristics. Surface treatment 
methods are similar in purpose. These methods change basically only the surface hardness. 
Material gradation may, however, change other properties besides the hardness, e. g. the 
thermal conductivity or the density. Another possible application could be the construction 
of an engine block, which could have arbitrari I y- shaped cooling channels. The walls of the 

cooling channels could mostly comprise a high thermal conductivity material to aid heat 

transfer [17]. 
"Project Maxwell" [5] discusses several ideas for the possible applications of 

multiple material objects and functionally graded materials. It discusses the concurrent 
design of the structure and the material by creating micro-scale voids where a structure is 

not required to support loads. The next step is the creation of composites, inserting 

materials that can improve strength, toughness, vibrational characteristics, acoustics, impact 

resistance and energy absorption. 
Non-homogeneous composite materials result in significant improvements in 

thermo-mechanical properties without increase in weight. A design criterion suc 
ih 

as 
bending rigidity can be dramatically improved using composites with a stronger material in 

the outer surfaces and weak and lighter materials in the inner core. The authors also suggest 

applications in automobile panel design, introducing complex micro-structures, whose 

plastic deformation can absorb large amounts of energy. This feature may be very 

advantageous in side panels for side impact protection. 



3.2. Example objects 

Fessler et al. [6], Jepson et al. [71 and Kumar[14] have produced objects of varYing composition throughout the volume using Rapid Manufacturinag, technologgy. The Shape Deposition Manufacturing (SDM) process permits the creation of multi- material structures and optional embedded electronic components [20]. Fessler et al. used an improved SDM system that enables the deposition of functionally graded metals through the use of powder mixing. The addition of powder mixing enables the deposition of single layers in which material properties can be smoothly varied without discrete interfaces 
between dissimilar materials. It has been shown that certain materials will completely mix during deposition and form alloys that exhibit properties intermediate to those of the 
constituent feed powders. 

An example of a materially graded object was created with this method. The object is an advanced ALCOA moulding tool. The tool is made of Invar, stainless steel and copper 
and has two cooling channels in each half to remove heat quickly from the part. Jepson et. al. used an addition to the Selective Laser Sintering (SLS) process, a 
process known as M2 SLS, which enables the fabrication of materials with varying material 
composition. The process has been tested with tungsten carbide and cobalt, a ceramic/metal 
combination, with potential applications as a cutting tool. 

Kumar and Dutta built an object using the Sanders Model-maker. A probe of 
smoothly varying volumetric fraction was built by modifying the tool path generation 
strategy. Given a certain layer distribution, there is currently no method for the automated 
generation of an optimal tool path for its fabrication. 

3.3. Modeling Materially Graded Objects 

To model a functionally graded material (FGM) object using exhaustive 
enumeration is just a matter of representing in every cell of the volume a value v which 
represents the material composition. Modelling the volumetric fraction of a composite 
object at a fine resolution is the goal of the modelling technique, which would allow 
heterogeneous objects to be manufactured using layered techniques. 

To determine a proper range and resolution of the volumetric fraction for rapid 
manufacturing applications, two test objects reported by Jepson et al. [7] and Fessler et al. 
[6] were examined. In the SDM example, a smooth variation of properties can be achieved 
with a relatively coarse variation of material composition. Varying the composition in 1% 
steps is a satisfactory resolution for practical foreseeable engineering applications. 

4. Graphical Display Techniques 

To be able to interact with a multi-material model, the designer would have to 
obtain a visual representation of the model on a display. The volume rendering approach 
seems the best suited for the task. Volume rendering is a method used to capture an entire 
3-D data set in a 2-D image directly from the volumetric data. Volume rendering differs 
from traditional computer graphics, which simulate a scene by rendering surfaces of a 
model of basic building blocks such as cylinders, spheres, planes, points and polygons. 



Volume rendering also differs from image processing in that although the process maý need image enhancing, filtering and other typical image processing techniques there sa 3-D data 
set to work with. The emphasis of volume rendering is the interior, which cannot be 
captured in an image by simple surface rendering. 

There are several "off the shelf' volume rendering applications available. There are 
many for medical imaging applications while some other are application specific. Two public domain systems were tested [17]: VolVis and GVLware (BoB). 
VolVis, developed at the State University of New York at Stony Brook, is a comprehensl% e 
volume visualisation system available in several platforms and as source code. The 
GV-Lware is a public domain application developed by the Army High Performance 
Computing Research Center (AHPCRC). 

The volume visualisation systems are greedy on resources. The VolVis svstem 
works on several platforms and it was possible to compile it on a HP workstation running 
HP-UX 9. The system was tested on two types of displays: an 8-bit colour display and a 24- 
bit colour display. The resolution is poor using only 256 colours (8-bits) and so 24-bit 
colour is mandatory for colour volume rendering. 

5. Alternative Representation Methods 

Kumar and Dutta have initially presented a method to represent multi-material 
objects [11] and later have extended this method to represent functionally graded materials 
[12,14]. They propose a new mathematical model for the representation of multiple 
materials. Their discussion uses concepts of point-set topology, which is a convenient 
mathematical method to characterise rigorously the properties of three-dimensional objects. 
To be able to represent multiple materials, a material dimension M is included, apart from 

the spatial dimensions R3 that capture the geometry and topology of an object. For a finite 

number of unique materials, the choice for the material dimension M would be the set of 
integers I. Then the product space T=R 3XI with the product topology can form a new 
modelling space for representing multiple-material objects. 

A solid described using traditional solid modelling techniques is a member of the 

class of r-sets A in R3. The method proposes a new class A. =AxK, where A is 

the class of r-sets and KcI is a finite set of integers. Each material is characterised by an 

integer in K-A typical member Q C- A. (Q= ýP, k 1) is called a r. -set and is 

composed of an r-set P E=- A and an integer kGK. 
This definition is extended to represent functionally graded materials. To model 

objects with continuous material variation, the material space must be expanded from 

KcI in the previous case. A suitable choice for the new mathematical space is 

T=R 3XRn, n being the number of primary materials. R3 is the geometry space, where 

geometry and topology are defined, using a traditional solid model. R" is the material 

space. The material can be identified at any point by volume fractions of each of the 

primary materials. Each point in an object S can now be characterised in product space 



as ( x, v (x) ) where x E=- S is a point in the object and v (x) E=- Rn represents the 
material at that point. This work is extensive and mathematically rigorous. The authors 
recognise however some blanks, which are still left to research. 

Some other ideas were developed for the SDM process mentioned in section 3.2. 
The usual subdivision in layers is not enough in this case, since each layer may have more 
than one material. The concept of compacts is introduced, as a further subdivision of a 3-D 
layer. Compacts can have partitions along surfaces whose normals are not necessarilY along 
the build-up direction. The SDM process has always had the ability to create multi-material 
objects. 

The additions to this process, reported by Fessler et al., allow metallic powders 
from different powder feeders to mix under a laser, however the function gradient aspect of 
the tool created with these additions, was not modelled at all. Basically, the model thought 
it was one material and the deposition files were modified by hand to make the material 
transition [17]. 

6. Conclusions 

The survey of methods to represent objects with a variable material composition 
has explored a number of relevant areas: rapid manufacturing, solid modelling, computer 
graphics, volume rendering and scientific visualisation. Some conclusions can be drawn 
from this survey: 

There is currently no established method to represent materially graded objects, 
although there are efforts in this direction, notably the method proposed by Kumar and 
Dutta. 

The realisation of these objects through Rapid Manufacturing is ahead of the 
representation methods delivered by computational modellers. 

Voxel representation techniques have all the potential to deliver Rapid 
Manufacturing representation requirements. However the huge memory requirements make 
it stumble as a high-resolution representation method. 

From a detailed look at the modelling requirements for functionally graded objects, 
using the example objects, it is apparent that a material volumetric fraction variation of I% 
is able to accommodate foreseeable engineering applications. 

There are several volume-rendering applications available both commercially and 
in the public domain. These applications are capable of working with data sets up to around 
1024x 1024x 1024 elements. 
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Appendix E 

Glossary 

ABS Acrylonitrile Butadiene Styrene. ABS is thermoplastic and can be easily heat shaped. 

B-Rep Boundary Representation. 

CAGD Computer Aided Geometric Design. 

CFD Computational Fluid Dynamics. 

CSG Constructive Solid Geometry 

CVD Chemical Vapor Deposition. A method of creation of FGMs by deposition of gases at 

high temperature on a substrate. This method has been used to create SiC deposit ions 

on aC substrate and zirconium carbide/carbon (Zr/C) depositions on a C/C composite. 

The composition is controlled by varying the source gas mixture. 

CV1 Chemical Vapor Infiltration. 

FEA Finite Element Analysis. 
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FEM Finite Element Method. 

FGM Functionally Graded Material. 

IGES Initial Graphics Exchange Specification. 

LENS Laser Engineering Net Shaping (Optomec Design Co. ) A rapid tooling method to 

create fully dense metal parts. 

LOM Laminated Object Manufacturing. Laminated Manufacturing method commercialised 

by Helysis. It is described in section 2.5. works by stacking sheets of material and 

cutting the outline of every layer with a laser. 

NURBS Non-uniform Rational B-Splines. 

OMT Object Modeling Technique. 

RP Rapid Prototyping. 

RT Rapid Tooling. 

r-set A mathematical representation of a solid based on point set theory. 

SDC Schroff Development Corporation. 

SFF Solid Freeform Fabrication. The preferred term to refer to Rapid Prototyping in the 

USA. 

STEP Standard for the Exchange of Product Model Data. A comprehensive ISO staiidard 

(ISO 10303) that describes how to represent and exchange digital product information. 
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STL Stereolithography file format. This is the format developed by 3-D Systems and the 

industry de facto standard format for object information transfer to RP machines. 

TBC Thermal Barrier Coating. A successful application of FGMs for the thermal protection 

of components. 

VTK The Visualization Toolkit, an open source, freely available software systein for 3-D 

computer graphics, image processing and visualisation. 
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