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Abstract— Mobile malware has been growing in scale and 

complexity as smartphone usage continues to rise. Android has 

surpassed other mobile platforms as the most popular whilst 

also witnessing a dramatic increase in malware targeting the 

platform. A worrying trend that is emerging is the increasing 

sophistication of Android malware to evade detection by 

traditional signature-based scanners. As such, Android app 

marketplaces remain at risk of hosting malicious apps that 

could evade detection before being downloaded by 

unsuspecting users. Hence, in this paper we present an 

effective approach to alleviate this problem based on Bayesian 

classification models obtained from static code analysis. The 

models are built from a collection of code and app 

characteristics that provide indicators of potential malicious 

activities. The models are evaluated with real malware samples 

in the wild and results of experiments are presented to 

demonstrate the effectiveness of the proposed approach.  

Keywords- mobile security; Android; malware detection; 

bayesian classification; static analysis; machine learning; data 

mining; 

I.  INTRODUCTION  

The Android mobile platform is increasing in popularity 
surpassing rivals like iOS, Blackberry, Symbian and 
Windows mobile. It is estimated that there are currently 
around 675,000 applications in the official Google’s Android 
market, with an estimated 25 billion downloads (as at 
October 2012) [1]. At the same time, malware targeting the 
Android platform has risen sharply over the last two years. 
According to a report from Fortinet (issued in November 
2011), there exist approximately 2000 Android malware 
samples belonging to 80 different families [2].   

Since discovery of the first Android malware in August 
2010 [3], new families have evolved in sophistication and are 
becoming increasingly difficult to detect by traditional 
signature-based anti-virus. More recent families have been 
observed to exhibit polymorphic behavior, increased code 
obfuscation, encryption of malicious payloads, as well as 
stealthy command and control communication with remote 
servers. In fact, some Android malware like AnserverBot are 
known to have the capability to fetch and execute payload at 
run time thus rendering its detection quite challenging.  

Security experts believe that difficulties in spotting 
malicious mobile applications results in most Android 
malware remaining unnoticed for up to 3 months before 
discovery [2]. Furthermore, Oberheide et al. [4] observed 

that it took on average 48 days for a signature-based 
antivirus engine to become capable of detecting new threats. 

Clearly, there is a need for more effective detection 
solutions to overcome the aforementioned challenges and 
mitigate the impact of evolving Android malware. Hence, in 
this paper we present a new approach - based on Bayesian 
classification - which utilizes certain characteristic features 
frequently observed with malware samples to classify an app 
as ‘suspicious’ or ‘benign’. Our approach is developed as a 
proactive method aimed at uncovering known families as 
well as unknown malware so as to reduce incidents of 
malware in marketplaces from evading detection. 

The Bayesian classification based approach can 
complement signature-based scanning thus enabling 
harmless apps obtained from Android marketplaces to be 
verified whilst isolating suspicious samples for further 
scrutiny. Thus, it is a viable tool for filtering the vast amount 
of apps added online on a daily basis; estimated to average 
more than 1200 a day [5], while narrowing the window of 
opportunity to reach end user devices and wreak havoc. The 
approach is not only useful for prioritizing apps that may 
require further scrutiny but is also a very effective tool for 
uncovering unknown malware. 

The rest of the paper is organized as follows: related 
work is discussed followed by background on the Android 
system. Next, the Android reverse engineering and static 
analyses that underpins our classification approach is 
presented followed by the Bayesian classification model 
formulation. Experiments, results and analyses follow; we 
then conclude the paper and outline future work. 

II. RELATED WORK 

Different from earlier work on mobile malware detection 
that rely on on-device anomaly [6] or behavioral based 
detection [7], [8], our approach is off-device, and employs 
static analysis of Android application packages. Hence it is 
aimed at detecting and filtering potentially malicious apps 
before they installed or run on a device. Additionally, our 
approach aims to close the window of opportunity for 
undetected malware in marketplaces, whilst also avoiding 
the challenges of device performance bottlenecks.  

Static analysis has the advantage of being undetectable, 
as obviously malware cannot modify its behavior during 
analysis [2]. Thus, it has been applied to vulnerability 
assessment, profiling and malware detection for the Android 
platform. For example, Comdroid [9] is a static analysis tool 



for application communication based vulnerabilities in 
Android. Similarly, DroidChecker [10] is an Android 
application analysis tool which searches for capability 
leakage vulnerability in Android applications.  ProfileDroid 
[11], RiskRanker [5], and the tool presented in [12], all 
leverage static analysis for profiling and analyzing Android 
applications. Other existing works that employ static analysis 
for detection of malicious activities like SCANDAL [13], 
AndroidLeaks [14], and the framework presented in [15], 
focus on privacy information leakage. Our work on the other 
hand, covers detection of a wider scope of malicious 
activities than privacy information loss.   

In [16] Blasing et al. presented an Android Application 
Sandbox (AAS) that uses both static and dynamic analyses 
on Android applications to automatically detect suspicious 
applications. Compared to AAS, our approach covers a much 
wider range of pattern attributes extracted not only from the 
application code logic but also scrutiny of resources, assets, 
and executable libraries where malicious payload could be 
lurking. Additionally, these attributes contribute to a ranked 
feature set which drives our Bayesian classification model. 

In [2] Apvrille and Strazzere employ a heuristics 
approach based on static analysis for Android malware 
detection. Their heuristic engine uses 39 different flags and 
then outputs a risk score to highlight the most likely 
malicious sample. Our approach shares similarity in the 
reverse engineering technique, but differs by utilizing a 
machine learning based method that offers more flexibility. 
In [17], Schmidt et al. employ static analysis on executables 
to extract their function calls using the readelf command. 
They then compare these function call lists with those from 
Linux malware executable in order to classifying the 
executables using learning algorithms. In contrast, our static 
analysis approach is based on automated analyses of Android 
packages. Moreover, Android malware samples across a 
range of existing families are employed in our work rather 
than Linux malware executables.  

Other earlier non-Android based papers have explored 
data mining and machine learning techniques for malware 
identification including for example [18] and [19]. For the 
Android platform, a recent paper by Sahs and Khan [20] 
presented a machine learning approach to Android Malware 
detection based on SVM. A single-class SVM model derived 
from benign samples alone is used. The approach in our 
paper differs in that a more extensive set of code-based and 
external attributes provide features for training the model 
whereas [20] used the Android permissions in the Manifest 
files. Furthermore, unlike in [20], our classification models 
are trained with both benign samples and a range of samples 
from across 49 malware families discovered in the wild. 

In summary, the main contributions of this paper 
different from existing related works in the literature are as 
follows: 

 A novel application of a machine learning technique, 
i.e. Bayesian classification, for signature-free 
Android malware detection using static code 
analysis.  

 Model building and in-depth empirical evaluation 
with a range of representative malware samples from 
across 49 existing malware families in the wild. 

Our work is motivated by the sheer amount of Android 
applications that require scanning and the rate at which new 
ones keep appearing in different app markets. We also note 
that there is significant delay between malware release and 
its detection which even suggests that we are currently 
unaware of several Android malware in the wild [2]. 

III. ANDROID SYSTEM ARCHITECTURE 

Android is designed for mobile devices with resource 
constraints. It provides a sandboxed application execution 
environment where a customized embedded Linux system 
interacts with the phone hardware and off-processor cellular 
radio while the Binder middleware and application API runs 
on top of Linux. As shown in Figure 1, Android is 
effectively a software stack for mobile devices that includes 
an operating system, middleware and key applications and 
uses a modified version of the Linux kernel. The Linux 2.6.x 
kernel lying at the foundation of the Android platform serves 
as a hardware abstraction layer, which offers an existing 
memory management, process management, security and 
networking model upon which the rest of the Android 
platform is built. The native libraries such as SQLite, Webkit 
and SSL, layered on top of the Linux kernel, provide most of 
the functionality of the Android system. The Application 
framework layer provides all the APIs that the applications 
require to access the device hardware: location information, 
running background services, etc. The application’s only 
interface to the phone is through these API’s. Each 
application is executed within a Dalvik Virtual Machine 
(DVM) running under a unique UNIX uid.  

At the higher operating system layers we have the user 
applications such as the phone application, home application, 
etc. which come pre-installed and other applications that are 
downloaded from the Google Play market or alternative 
marketplaces or even installed manually from .apk files. 
These additional apps extend the functionality of the 
smartphone and pose potential threat to user security and 
privacy if they happen to be malicious. 

 

Figure 1.  Android System Architecture [21].                             



A. Android application basics 

Android applications (or apps) are written in the Java 
programming language. The Android SDK tools compile the 
code—along with any data and resource files—into 
an Android package, an archive file with an .apk suffix. All 
the code in a single .apk file is considered to be one 
application and it is this file that Android-powered devices 
use to install the app. 

The Android app is built from four different types of 
components: Activities, Services, Broadcast Receivers, and 
Content Providers [22]. An app must declare its components 
in a manifest file which must be at the root of the application 
project directory. Before the Android system can start an 
application component, the system must know that the 
component exists by reading the application’s manifest file. 
The manifest file also states the user permissions that the 
application requires, such as internet access or read-access to 
the user’s contacts.   

Android apps are distributed as self-contained packages 
called APKs. An APK (Android Package) is a compressed 
(ZIP) bundle of files typically consisting of: 
AndroidManifest.xml (manifest file), classes.dex (A single 
file which holds the complete bytecode to be interpreted by 
Dalvik VM). Other binary or XML-based resources required 
by the app to run may be held in res/ and assets/ folders. 

The detection strategy developed in this paper leverages 
the applications’ reliance on the platform APIs and their 
structured packaging to extract certain properties that could 
serve as indicators of suspicious activity, such as intent to 
exfiltrate sensitive information, launch a malicious payload 
at runtime, or presence of embedded secondary payload in 
the external folders etc. These properties then form the basis 
of our Bayesian classifier, which is used to determine 
whether a given Android app is harmless or suspicious.  

B. Application Reverse Engineering 

In order to obtain the feature sets for building the 
Bayesian model, we implemented a Java-based Android 
package profiling tool for automated reverse engineering of 
the APK files. The steps involved are shown in Figure 2. 

 

Extract from .apk 
files into folders

Convert Manifest.xml 
binary  to readable 
manifest.xml.clean

Disassemble each 
classes.dex file to 
constituent .smali Mine .smali files to 

extract features

Build profile(s)

Mine manifest.xml.clean 
files  to extract features

Android package analyzer:
Functional steps

Summary of functional steps in the custom built Java-based Android 
package analyzer

 

Figure 2.  Automated reverse engineering of the Android apps with the 

Java-based APK analyzer. 

To parse the .dex file, a tool called Baksmali [23] is used, 
which is a disassembler for the dex format used by Dalvik. 
Baksmali disassembles .dex files into multiple files with 
.smali extensions. Each .smali file contains only one class 
information which is equivalent to a Java .class file. 

C. Applying property detectors to reverse engineered 

packages 

After reverse engineering an APK, a set of detectors are 
applied within the Java-based APK analyzer to check for 
properties which are then mapped into feature vectors for the 
Bayesian classifier. The properties matched by the detectors 
include API calls, Linux system commands and permissions 
contained in the manifest files. Other properties such as 
encryption of code, and the presence of secondary .apk or 
.jar files are also matched. 

1) API call detectors 
Considering API calls provide the means for applications 

to interact with the phone, their observation via static code 
inspection can provide insight into the application’s intended 
runtime activities. This allows the feature extractor to build a 
profile of the apps based on the API calls which when used 
in conjunction with other properties facilitates the discovery 
of malicious intent via the Bayesian Classifier’s operation. 

For example API calls to the Android Telephony 
manager which is used to retrieve subscriber ID, phone ID, 
and other similar information are monitored. Similarly, API 
calls within the code, such as those for receiving/sending 
SMS, calling phone numbers, retrieving telephony 
information, listing or installing other packages on the 
phone, etc. are further properties which provide additional 
features for the classifier. 

2) Command detectors 
API call detectors scrutinize the reverse engineered .dex 

files to extract patterns for feature selection. In order to 
improve the accuracy of the Bayesian classifier model, 
command detectors are also used to extract further features 
that are useful identifiers of potentially malicious activities. 
Command detectors also inspect resources, assets and 
libraries as these can be used to hosts malicious scripts or 
hidden payloads that may not be detected by scrutinizing the 
application code logic alone. Note that these, unlike API 
calls, can be located within scripts of raw resources or assets 
or even within external libraries. Attributes searched for by 
the command detectors include system commands like 
‘chmod’, ‘mount’, ‘remount’ ‘chown’. Others include the 
Java Realtime.exec command through which persistent 
background child processes containing malicious payload 
can be launched. The command detector also matches 
Android commands like ‘pm install’, which can enable 
stealthy installation of additional packages. 

3) Permissions detectors 
These are used to glean information about the 

permissions requested by the application declared within the 
manifest file. In addition to providing information that could 
build features for the Bayesian classification, the permission 
detectors also provide information-rich profiling of the 
applications, which can give insight for further analyses if 
needed. 



IV.  BAYESIAN CLASSIFICATION MODEL 

Data mining technologies are becoming increasingly 
important in the anti-malware industry, particularly in 
augmenting well-established heuristics and generics methods 
[24]. Data mining drives automation, which is motivated by 
reducing maintenance costs associated with the traditional 
heuristics and generics methods [24]. Data mining employs 
machine learning methods for inference, prediction, 
classification etc. Hence, it is important to select an 
appropriate method depending on the particular application. 
Bayesian classification is well suited to our problem of 
filtering large amounts of apps as it can perform relatively 
fast classification with low computational overhead once 
trained. Another important property which motivates its 
implementation in our approach for detecting suspicious 
Android applications, is the ability to model both an ‘expert’ 
and  ‘learning’ system with relative ease compared to other 
machine learning techniques. Bayesian method allows the 
incorporation of prior probabilities (expert knowledge) even 
before the training phase. This hybrid property can be 
exploited to optimize the classifier’s performance without 
incurring additional computational overhead.  However, in 
this research, only its applicability as a pure ‘learning’ 
method is explored. Evaluation of the hybrid property is 
outside the scope of this paper. 

A.  The classifier model 

The Bayesian based classifier consists of learning and 
detection stages. The learning stage uses a training set in 
form of known malicious samples in the wild and benign 
Android applications, collectively called the app corpus. The 
Java-based package analyzer uses the detectors to extract the 
desired features from each app in the corpus. The feature set 
is subsequently reduced by a feature reduction function while 
the training function calculates the likely probability of each 
selected feature occurring in the malicious and benign 
applications. The training function also calculates the prior 
probability of each class i.e. suspicious and benign.  

The feature sets along with their likelihood probabilities 
are stored for use in the subsequent classification stage. New 
applications are assessed in the classification stage with 
respect to the features in the selected feature set.  

B. Feature ranking and selection 

Let an application characteristic ri obtained from the 
APK analyzer detectors be defined by a random variable:  

1, cov det
0,{i

if dis ered by the ectors
otherwiseR                                          (1) 

In order to ensure selection of the most relevant 
application features, Mutual Information (MI) [25] 
calculation is utilized to rank the extracted features within 
the feature reduction function.  Let C be a random variable 
representing the application class, suspicious or benign: 

,{ }C suspicious benign  

Every application is assigned a vector defined by 

 1, 2,... nr r r r with ri being the result of the i-th random 

variable Ri.  

As the goal is to select the most relevant features, the 
feature reduction function calculates the Mutual Information 
of each random variable, thus: 
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After calculating the MI for each feature, the feature set is 
then ranked from largest to smallest in order to select those 
that maximize the MI between R and C thus enabling 
optimum classifier performance.  

C. Bayesian classification 

According to Bayes theorem, the probability of an 
application with the feature vector 

 1, 2,... nr r r r belonging in class C is defined by: 
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Where ( | )i iP R r C c   and ( )jP C c are the 

estimated frequencies calculated on the app learning corpus.  
While n is the number of features used in the classification 
engine; c0 and c1 are the benign and suspicious classes 
respectively. 

An app represented by the vector  1, 2,... nr r r r  is 

classified as benign if:        

( | ) ( | )P C benign R r P C suspicious R r            (4) 

Otherwise, it is classified as suspicious. In terms of 
classification error, two cases can occur: (a) A benign app 
misclassified as suspicious. (b) A suspicious app 
misclassified as benign. In the context of our problem, the 
latter case is more critical since allowing a malicious app to 
reach an end device is more critical than excluding a benign 
app from the distribution chain to be subject to further 
scrutiny. 

D. Evaluation measures 

To evaluate the predictive accuracy of classifiers, several 
measures have been proposed in the literature. In the context 
of our problem the relevant measures utilized in our 
experiments are given below. 

Let ben benn  be the number of benign applications 

correctly classified as benign,  ben susn   the number of 

misclassified benign applications, sus susn   the number of 

suspicious applications correctly identified as suspicious 
while sus benn   represents the number of misclassified 

suspicious applications. Accuracy and Error Rate are 
respectively given by: 
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We also define the false positive rate (FPR), false negative 

rate (FNR), true positive rate (TPR), true negative rate 

(TNR) and precision (р) as follows: 
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V. METHODOLOGY AND EXPERIMENTS 

As mentioned earlier, our implementation of an APK 
analyzer includes the steps illustrated in Figure 2.  A total of 
2000 applications were analyzed in order to extract the 
features which are then used by the feature selection function 
to provide a relevance ranking according to the MI equation 
(2) given earlier. The 2000 APKs consisted of 1000 malware 
samples from 49 different families and 1000 benign apps 
downloaded from official and third party Android markets.    

The breakdown of the 49 malware families used and their 
respective number of samples are shown in Table I. The 
malware samples were obtained from the Android Malware 
Genome Project [3].  

The set of 1000 non-malicious apps were made up of 
different categories in order to cover a wide variety of 
application types. The categories include: entertainment, 
tools, sports, health and fitness, news and magazines, 
finance, music and audio, business, education, games and a 
few other miscellaneous categories.  The apps from third 
party market places were screened using virustotal scanning 
service and by manual inspection of extensive profile sets 
created by our analyzer so as to discard any apps of highly 
suspicious nature from the set. 

A total of 58 feature attributes were defined as matching 
criteria for the property detectors. 10 out of these did not 
yield any match in both benign and malware sets and so were 
discarded. The remaining 48 were subsequently applied to 
the feature selection function which ranked them according 
to the calculated MI. The top 25 features and their respective 
frequencies in both sets are shown in Table II. 

 

TABLE I.  MALWARE FAMILIES USED AND THEIR NUMBERS 

Family No of samples Family No of samples 

ADRD 22 GingerMaster 4 

AnserverBot 130 GoldDream 47 

Asroot 8 Gone60 9 

BaseBridge 100 GPSSMSSpy 6 

BeanBot 8 HippoSMS 4 

Bgserve 9 Jifake 1 

Coinpirate 1 jSMSHider 16 

CruseWin 2 KMin 52 

DogWars 1 LoveTrap 1 

DroidCoupon 1 NickyBot 1 

DroidDeluxe 1 NickySpy 2 

DroidDream 16 Pjapps 58 

DroidDreamLight 46 Plankton 11 

DroidKungFu1 30 RougeLemon 2 

DroidKungFu2 34 RougeSPPush 9 

DroidKungFu3 144 SMSReplicator 1 

DroidKungFu4 80 SndApps 10 

DroidKungFuSapp 3 Spitmo 1 

DroidKungFuUpdate 1 Tapsnake 2 

Endofday 1 Walkinwat 1 

FakeNetflix 1 YZHC 22 

FakePlayer 6 zHash 11 

GamblerSMS 1 Zitmo 1 

Geinimi 69 Zsone 12 

GGTracker 1 

  

TABLE II.  TOP SELECTED FEATURES AND THEIR FREQUENCIES IN 

BENIGN AND MALWARE SETS OF 1000 SAMPLES IN EACH CATEGORY 

Features Benign malware 

getSubscriberId (TelephonyManager) 42 742 

getDeviceId       (TelephonyManager) 316 854 

getSimSerialNumber   (TelephonyManager) 35 455 

.apk      (secondary payload) 89 537 

intent.action.BOOT_COMPLETED 69 482 

chmod           (system command) 19 389 

Runtime.exec( )      (Executing process) 62 458 

abortBroadcast    (intercepting broadcast notifications) 4 328 

getLine1Number    (TelephonyManager) 111 491 

/system/app 4 292 

/system/bin 45 368 

createSubprocess    (creating child process) 0 169 

getSimOperator   (TelephonyManager) 37 196 

remount              (system command) 3 122 

DexClassLoader       (stealthily loading a class) 16 152 

pm install         (installing additional packages) 0 98 

getCallState     (TelephonyManager) 10 119 

chown            (system command) 5 107 

.jar           (secondary payload) 87 252 

mount         (system command) 29 152 

KeySpec                (code encryption) 99 254 

/system/bin/sh 4 90 

SMSReceiver 3 66 

getNetworkOperator   (TelephonyManager) 202 353 

SecretKey             (code encryption) 119 248 

Table II shows that some of the properties were only 
found to be present in the malware samples, while references 
to system commands mainly appeared in the malware class. 
Although the Telephony manager API calls are present in 
both classes as expected, higher occurrences were observed 
in malware samples. The references to .apk and .jar files, 
which are meant to detect the presence of secondary apps are 



found in both classes with more in the malware set. Whilst 
secondary apps can be used to hide malicious payload, some 
legitimate apps such as popular ad and mobile payment 
frameworks also utilize them. Notwithstanding the use of 
some properties by both malicious and legitimate apps, 
Bayesian classification provides the ability to 
probabilistically combine several of them including those 
that are almost exclusively found in one class only to enable 
more effective discrimination. 

A. Bayesian Classifier training 

For the training of the classification model, the same set 
of 2000 samples comprising 1000 malware and 1000 benign 
apps were used. In order to provide for testing and evaluation 
according to the earlier defined evaluation criteria in 
equations (5) to (11), 5-fold cross validation is employed. 
Thus, 1600 samples (800 each of benign and malware) were 
used in the training, while the remaining 400 (200 each of 
benign and malware) were used for testing. Hence, the 
experiments undertaken used 5 different training and testing 
sets each containing a different testing portion with samples 
outside of its own training portion. This strategy was chosen 
to provide a wider range of samples for the testing of the 
classifier.  

VI. RESULTS AND DISCUSSIONS 

Figures 3 to 6 depict the results of the experiments 
undertaken to evaluate the Bayesian classifier. Five different 
sets of features were used containing 5, 10, 15 and 20 
features respectively, to obtain the results depicted in Figs. 3 
to 5 and Table III. 10f, 15f and 20f refer to the top 10, top 15 
and top 20 ranked features respectively. 5fT refers to five top 
features while 5fL refers to the five lowest ranked features 
from the set of the selected 20 (i.e. 16th to 20

th
 ranked). 
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Figure 3.   Average error rates and accuracy values for different feature 

sets.  

From Figure 3, we observe increasing accuracy and 
decreasing error rates when a larger number of features are 
used to train the classifier. A very close performance 
between 15f and 20f can be seen, which indicates that only 
marginal improvement would accrue from employing a 
larger number of features for training the model. An 
interesting observation is the difference in 5fT and 5fL 

performance, with 5fT achieving close to 85% average 
accuracy compared to 65% with 5fL. This highlights the 
effectiveness of the ranking by the feature selection function 
of the analyzer, since the same number of features but of 
different rankings were present in 5fL and 5fT.  

Figure 4 depicts the true negative rate and the false 
positive rates observed in the experiments. The results do not 
follow the same trend observed with  accuracy and error rate. 
Instead, 5fL achieves the highest TNR of 0.954. The reason 
for this is that when trained with a relatively small number of 
features, there will be more occurences of feature vectors 

 1, 2,... nr r r r  with no detected features, i.e. zero vectors 

 ,0 0,...0r  .  And since a larger number of these vectors 

will come from benign apps, this has the effect of 
strengthening the TNR. But in accordance with equations (5) 
and (6), overall accuracy falls while error rate increases 
because the false negatives sus benn   also goes up as a result. 

This is because the classifier will have prior knowledge of 

 ,0 0,...0r   with higher probability of falling within 

‘benign’ than ‘malicious’. 
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Figure 4.   Average true negative rates and false positive rates for the 

different feature sets. 
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Figure 5.  Average true positive rates and false negative rates for the 

various feature sets. 



TABLE III.   SUMMARY OF EXPERIMENTAL RESULTS FROM THE 

CLASSIFICATION MODEL FOR DIFFERENT FEATURE SETS . 

 
ERR ACC TNR FPR TPR FNR Prec. AUC 

5fL 0.350 0.650 0.954 0.046 0.335 0.665 0.860 0.61709 

5fT 0.155 0.845 0.890 0.110 0.799 0.201 0.880 0.94437 

10f 0.082 0.918 0.932 0.068 0.906 0.094 0.931 0.97428 

15f 0.079 0.921 0.939 0.061 0.904 0.096 0.937 0.97232 

20f 0.079 0.921 0.937 0.063 0.906 0.094 0.935 0.97223 

 
Again, from Figure 4, there is not much to choose 

between 15f and 20f for TNR and FPR results. Although the 
false positive rates observed were relatively low (around 
6%), FPR is not considered as critical as FNR since the latter 
directly affects the proportion of malware that will be 
‘missed’. On the other hand, a low FPR means that less 
benign apps will need to be subject to further scrutiny; and it 
then becomes more cost-effective or less time consuming to 
do so when the FPR is low, given a massive amount of apps. 

From Figure 5, it can be seen that 10f, 15f and 20f sets 
yielded TPRs of 0.906, 0.904 and 0.906 respectively. 
Correspondingly their FNR values are 0.094, 0.096 and 
0.094. It is worth emphasizing that these TPRs indicate a 
significantly higher malware detection rate than were 
achieved by signature-based anti-virus scanners as reported 
in [3], which were tested on the same malware sample set. 
The study reported a best case of 0.796 detection rate while 
0.202 was the worst case amongst four signature-based 
mobile AVs. The paper stated that most of the undetected 
malware were unknown samples whose signatures were 
unavailable at the time of study. Nevertheless, the Bayesian 
learning approach presented in this paper has demonstrated 
capability of detecting unknown malware since the training 
and testing sets are of unique samples.  

Because FNR is critical in the context of our problem, the 
results warrant further discussion. We observed that some of 
false negatives that occurred resulted from ‘zero feature 
vectors’. While increasing the number of features from 20 
could reduce the zero feature vector occurrences, this will 
not necessarily result in better classification accuracy (as 
Figure 3 illustrates). One way to overcome this could be 
through combining related features as matching criteria, for 
example the .apk and .jar (secondary payload matching 
features). This will allow new features to be introduced into 
the classification model while keeping an optimum total 
required to train the model.  

We also note from Table III that precision and AUC also 
mirror the TPR and accuracy results by generally improving 
with higher number of features, with those of 10f, 15f, and 
20f quite close to one another. Precision (expressed in 
equation 11), reflects the precision of the model when 
classifying samples as suspicious. AUC (Area Under Curve), 
on the other hand, is the total area under the Receiver 
Operation Characteristic (ROC) curve which is a plot of TPR 
vs. FPR for every possible detection cut-off. An AUC of 1 
implies perfect classification. Therefore, an AUC value 
closer to 1 denotes better classifier predictive power.  

In Figure 6 and Table IV, results obtained from 
investigating the effect of varying numbers of training 
samples on the performance metrics are presented. These are 
from the 20 top feature set with 100, 250, 500, 1000 and 
1600 training samples evaluated over the same testing sets 
using 5-fold cross validation. Each training set had 50% 
benign and 50% malware. Note from Figure 6 that while 
increasing the number of training samples had a noticeable 
effect on the TPR, it had much less impact on the TNR. 
Increasing the number of training samples improved the TPR 
and the accuracy also got better as a result. The reason for 
this observation can be explained by the fact that there is 
greater variability in the characteristics of the malware 
samples with respect to the 20 selected features compared to 
the benign samples. Hence, varying the number of training 
samples has more marked effect on the metrics linked to the 
malware class (i.e. TPR and FNR) than those related to the 
benign class (i.e. TNR and FPR). This can be seen more 
clearly from Table IV. We can therefore conclude that a 
larger training sample set, especially with more malware 
samples, will further improve the TPR, lower the FNR and in 
turn improve the overall accuracy of the classifier. 
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Figure 6.  Average true negative rates, accuracy, and true positive rates for 

different training samples with 20 features. 

TABLE IV.  SUMMARY OF RESULTS FOR DIFFERENT TRAINING SAMPLES 

WITH 20 FEATURES. 

Samples ERR ACC TNR FPR TPR FNR Prec. AUC 

100 0.107 0.893 0.943 0.057 0.844 0.156 0.937 0.95794 

250 0.083 0.917 0.946 0.054 0.886 0.114 0.943 0.96877 

500 0.084 0.916 0.943 0.057 0.890 0.110 0.940 0.97119 

1000 0.081 0.919 0.947 0.053 0.892 0.108 0.944 0.97177 

1600 0.079 0.921 0.937 0.063 0.906 0.094 0.935 0.97223 

Precision is affected by both false positives and true 
positives (see equation 11). Hence, the results are variable 
with respect to changing number of training samples, as can 
be seen from Table IV. AUC (i.e. classifier predictive power) 
on the other hand, improves with the increase in number of 
training samples.  



VII. CONCLUSION 

In this paper we proposed and evaluated a machine 
learning-based approach for detecting Android malware. In 
particular, a novel application of Bayesian classification is 
applied to this problem. Through reverse engineering of the 
Android applications using an APK analyzer implemented in 
Java, a set of 58 properties were extracted to provide features 
that are subsequently ranked by a feature selection function. 
The properties are extracted from the applications by means 
of detectors that search for patterns and references to API 
calls, system commands, etc. frequently encountered with 
Android malware.  

1000 samples from 49 Android malware families 
together with another 1000 benign applications across a 
variety of categories have been used for feature extraction 
and training of the Bayesian classifier. From the experiments 
conducted, it is discovered that 15 to 20 features are 
sufficient to provide optimum performance based on the 
detected properties upon which the features are based and the 
ranking by the feature selection function.  

The results presented in the paper showed significantly 
better detection rates than were achieved by popular 
signature-based antivirus software tested previously on the 
same set of malware samples used in our experiments. The 
malware samples used in the experiments were from the 
largest publicly available collection at the time of writing. 
Future work could investigate the classifier performance 
with larger sample sets as more malware samples are 
discovered in the wild.  Further studies could also investigate 
performance improvement via prior incorporation of expert 
knowledge within the Bayesian classification model.  
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