
Software Evolution

Through UML-Models Extraction

PhD Thesis

Jianjun Pu

Software Technology Research Laboratory

De Montfort University

2008

To my wife, Jianmei Gao,

my son, Zhichen Pu and

my parents.

Declaration

Declaration

I declare that the work described in this thesis was originally carried out by me during

the period of registration for the degree of Doctor of Philosophy at De Montfort

University, U. K., from December 2002 to February 2008. It is submitted for the degree

of Doctor of philosophy at De Montfort University. Apart from the degree that this

thesis is currently applying for, no other academic degree or award was applied for by

me based on this work.

ii

Acknowledgement

Acknowledgements

For many years I had been dreaming about receiving a PhD. I would like to thank many

people who helped me in achieving this dream in different ways when I undertook the

work of this thesis.

I wish that there were words to express my sincere appreciation to thank Professor

Hongji Yang for agreeing to be my supervisor, for his invaluable advice and

encouragement and for his skilful supervision and administration throughout this

research project. I would like to thank him for teaching me, caring for me, and for

motivating me all these years. He is the great mentor and role models. I admire him for

his insight in so many issues and for his endless enthusiasm for research.

I also wish to thank Dr. Antonio Cau for agreeing to be my supervisor and for his

valuable suggestions and inspiring me.

I would also like to thank the Research Office at De Montfort University for their

outstanding management.

I would also like to thank Mr. Zhuopeng Zhang, Mr. Jian Kang, Dr. Feng Chen, Dr. Bin

Qiao, Mr. Yang Xu and Mr. Hong Zhou for their useful advice in research techniques,

support in the working environment and encouragement in completing this thesis.

I wish to express thanks to my wife, Jianmei Gao, my son Zhichen Pu, my parents and

parents in law for all their loves, encouragements, patience and supports over the years.
This thesis is dedicated to them.

Finally, I would like to thank all of the colleagues in Software Technology Research

Laboratory at De Montfort University for their valuable suggestions and discussions, for

their encouragement and support, for building great software packages. I am indebted to

all of them.

Ill

Abstract

Abstract

With the high demand for renovation of legacy systems, their evolution is becoming an

urgent need. Although some approaches have been introduced to evolving legacy

systems, they are not sufficient for understanding legacy code.

In this thesis, development/environment-specific models of domain-specific legacy

systems are acquired, based on their characteristics and operations. The

development/environment-specific model of COBOL legacy systems is based on the

characteristics and operations of COBOL, and is a procedure-based model comprising a

graph that describes the calling and being-called relationships of those procedures in

COBOL legacy systems. It has four types: linear, branch, joint, and synthetic

procedure-based models. The link-based model of HTML legacy systems uses a graph

that describes the importing or imported relationships of webs in a legacy system. It has

three types: sequential, cyclical, and compositive link-based models. The

development/environment-specific model of the SQL legacy system comprises

association, generation and composition database-based models based on the basic

operations of SQL and the two main relationships of generation and association between

the databases in an SQL legacy system.

The structural stage of UML extraction in this thesis contains class realisation. The

classification of classes from COBOL legacy system is two, which are procedure class

and variable class. Every procedure in COBOL legacy system is defined as one

procedure class. Variable class is based on the program slicing techniques with two

stages of pseudo class and real class extraction from COBOL legacy system. The

variabl of the sliced criterion is defined as the class name, and the variables contained in

its slicing criterion are defined as the attributes of that variable class. Because the

behavioural analysis of domain-specific legacy systems is behind the analysis of

structural analysis, the operations in variabl class are not described. The classification of

classes of HTML legacy system is based on the web pages and their blocks. The

classification of SQL legacy system is two, which is procedure class and database class.
Selected UML diagrams are used to describe the static aspect of domain-specific legacy

systems.
iv

Abstract

The behavioural stage of UML extraction in this thesis focuses on the operations and

activities of domain-specific legacy systems. When understanding the operations and

activities of domain-specific legacy code, their preconditions and post-conditions must

be presented from the source code. Then those operations and activities are ordered

according to the time and sequence they are executed by. At last, the operation and

activity arraies are presented. Selected UML diagrams describing the dynamic aspect of

domain-specific legacy systems are realised based on those operation and activity

arraies.

The major contribution of this thesis is the presentation of development/

environment-specific models of domain-specific legacy systems and an approach

towards software evolution of domain-specific legacy systems using UML diagrams.

V

Table of Contents

Table of Contents

Declaration ... ii

Acknowledgements '

Abstract .. iv

Table of Contents .. A

List of Figures ... xii

List of Tables .. xx

Chapter 1 Introduction .. 1

1.1 Proposed Research
... 1

1.2 Overview of Problems ... 3

1.3 Scope of Thesis and Original Contributions .. 5
1.4 Criteria for Success .. 6
1.5 Thesis Structure ... 7

Chapter 2 Background ... 9

2.1 Introduction ... 9
2.2 Legacy Systems

... 9

2.2.1 Definition of Legacy Systems
... 9

2.2.2 Two Aspects of Legacy Systems
... 10

2.2.3 Three Types of Legacy Systems to Be Discussed
..

10

2.3 Software Evolution .. 11

2.3.1 Software Engineering
... 11

2.3.2 Software Reengineering
... 12

2.3.3 Reverse Engineering
.. 15

2.3.4 Software Evolution
... 18

2.3.5 Maintainer's Assistant ... 20

2.3.6 Refactoring Browser .. 21
2.3.7 Cognitive Methods

... 22
2.4 UML .. 22

2.4.1 Definition of UML
.. 22

2.4.2 History of UML .. 23
2.4.3 Views of UML ... 24

VI

Table of Contents

2.4.4 Properties of UML ... 24

2.4.5 UML Diagrams .. 25
2.4.6 Importance of Modelling Legacy Systems with UML

...
26

2.5 Program Slicing
... 27

2.5.1 Introduction
.. 27

2.5.2 Static and Dynamic Slicing .. 28

2.5.3 Applications of Program Slicing .. 28
2.6 Confining Analysis of Legacy Systems using UML ... 30

2.7 Model-Driven Architecture
... 31

2.7.1 Model ... 31

2.7.2 Model-Driven Engineering .. 31

2.7.3 Model-Driven Architecture .. 32

2.8 Summary .. 32

Chapter 3 Proposed Approach .. 34

3.1 Introduction ... 34

3.2 Comparison of Proposed Approach and Traditional Studies
... 35

3.2.1 Traditional Studies
... 35

3.2.2 Proposed Approach .. 38

3.3 Parsing Legacy Systems .. 42
3.3.1 Parsing Original Code

... 42

3.3.2 Procedure-Based Models of COBOL Legacy Systems
... 43

3.3.3 Link-Based Models of HTML Legacy Systems ... 43
3.3.4 Database-Based Models of SQL Legacy Systems

.. 44

3.4 Suitability of Program Slicing Techniques .. 45

3.4.1 Slicing COBOL Legacy Systems .. 45

3.4.2 No Need to Slice HTML Legacy Systems ... 46

3.4.3 Slicing SQL Legacy Systems
.. 46

3.5 Unnecessary to Use All UML Diagrams when Modelling Legacy Systems
...............................

46

3.5.1 Completeness of UML,.. -.. 46

3.5.2 Differences between Modelling Tasks .. 47

3.6 Extracting UML Diagrams from COBOL Legacy Systems .. 47

3.6.1 UML Class Diagram
..

47

3.6.2 UML Composite Structure Diagram
.. 48

3.6.3 UML Sequence Diagram
.. 48

3.6.4 UML Interaction Overview Diagram ... 49

3.7 Extracting UML Diagrams from HTML Legacy Systems .. 49

3.7.1 UML Class Diagram .. 49
3.7.2 UML Composite Structure Diagram

.. 50

3.7.3 UML Component Diagram
.. 50

3.7.4 UML Deployment Diagram
.. 50

vi'

Table of Contents
3.8 Extracting UML Diagrams from SQL Legacy Systems

.. 50

3.8.1 UML Class Diagram
.. 50

3.8.2 UML Composite Structure Diagram
.. 51

3.8.3 UML Activity Diagram
... 51

3.9 Summary .. 52

Chapter 4 COBOL Development/Environment-Specific Models .. 53

4.1 Introduction ... 53
4.2 Rationale of Software Evolution of COBOL Legacy Systems

.. 53

4.3 COBOL Legacy Systems ... 54
4.3.1 COBOL .`... 54
4.3.2 A Brief History of COBOL ... 54
4.3.3 Characteristics of COBOL ... 55

4.4 Parsing COBOL Code ... 59
4.4.1 Grouping COBOL Code Operations .. 59
4.4.2 Parsing COBOL Code .. 61

4.5 Procedure-Based Model
... 62

4.5.1 Structure ... 62
4.5.2 Classification ofA Procedure-Based Model .. 66

4.6 Summary 70

Chapter 5 HTML Development/Environment-Specific Models ... 71

5.1 Introduction
... 71

5.2 Rationale of Software Evolution of HTML Legacy Systems
.. 71

5.3 HTML Legacy Systems ... 72
S. 3.1 HTML ... 72
5.3.2 A Brief History of HTML .. 72
5.3.3 Characteristics of HTML ... 73

5.4 Parsing HTML Code ... 74
5.4.1 Grouping HTML Code Operations .. 74
5.4.2 Parsing HTML Code .. 76

5.5 Link-Based Models .. 77
S. S. 1 Structure

... 77
S. 5.2 Classification of Link-Based Models

.. 80
5.6 Summary .. 85

Chapter 6 SQL Development/Environment-Specific Models ... 86

6.1 Introduction ... 86
6.2 Rationale of Software Evolution of SQL Legacy Systems .. 86
6.3 SQL Legacy Systems ... 87

6.3.1 SQL
.. 87

6.3.2 Characteristics of SQL
... 87

viii

Table of Contents
6.4 Parsing SQL Code

... 88

6.4.1 Grouping SQL Code Operations
..

88

6.4.2 Parsing SQL Code
... 91

6.5 Database-Based Model .. 92

6.5.1 Structure ... 92

6.5.2 Classification of Database-Based Models ... 93

6.6 Summary .. 96

Chapter 7 Extracting UML Diagrams from COBOL Legacy Systems ... 97

7.1 Introduction ... 97

7.2 Using Four UML Diagrams to Model COBOL Legacy Systems .. 97

7.2.1 Static Modelling .. 97

7.2.2 Dynamic Modelling .. 99

7.2.3 Modelling with Four UML Diagrams .. 101

7.3 Modelling COBOL Legacy Systems with UML ... 101
7.3.1 Class Diagrams

.. 101

7.3.2 Composite Structure Diagrams
.. 118

7.3.3 Sequence Diagrams
.. 121

7.3.4 Interaction Overview Diagrams
... 133

7.3.5 Application of COBOL Rules
... 142

7.4 Summary .. 144

Chapter 8 Extracting UML Diagrams from HTML Legacy Systems ... 146

8.1 Introduction ... 146

8.2 Using Four UML Diagrams to Model HTML Legacy Systems .. 146

8.2.1 Not Having Dynamic Modelling .. 146

8.2.2 Static Modelling ... 147

8.2.3 Using Four UML Diagrams to Model HTML Legacy Systems .. 148

8.3 Not Needing to Slice HTML Legacy Systems .. 148

8.4 Modelling HTML Legacy Systems ... 148

8.4.1 Class Diagrams .. 148

8.4.2 Composite Structure Diagrams
..

160

8.4.3 Component Diagram
..

162

8.4.4 Deployment Diagram
...

163

8.4.5 Application of HTML Rules
... 164

8.5 Summary .. 166

Chapter 9 Extracting UML Diagrams from SQL Legacy Systems .. 167

9.1 Introduction ... 167

9.2 Using Three UML Diagrams to Model SQL Legacy Systems .. 167

9.2.1 Static Modelling .. 167
9.2.2 Dynamic Modelling

.. 168

ix

Table of Contents

9.2.3 Modelling with Three UML Diagrams ...
170

9.3 Modelling SQL Legacy Systems ...
170

9.3.1 Class Diagrams ..
170

9.3.2 Composite Structure Diagrams ..
176

9.3.3 Activity Diagrams
..

177

9.3.4 Application ofSQL Rules
...

183

9.4 Summary ..
185

Chapter 10 Tool and Experiments ..
186

10.1 Introduction ..
186

10.2 Tool Design ..
186

10.2.1 One Unified System-SEASA T ...
186

10.2.2 Detail Design Description ..
186

10.3 Case Study of COBOL Legacy System ...
188

10.3.1 COBOL Legacy Code-Manager Application ..
188

10.3.2 Parsing COBOL Legacy Code ...
189

10.3.3 Slicing Programs ..
193

10.3.4 UML Class Diagrams ..
194

10.3.5 UML Composite Structure Diagrams ...
203

10.3.6 UML Sequence Diagrams ..
204

10.3.7 UML Interaction Overview Diagrams ...
212

10.4 Case Study of HTML Legacy System ..
212

10.4.1 HTML Legacy System ..
212

10.4.2 Parsing HTML Legacy Code ..
212

10.4.3 UML Class Diagrams ..
214

10.4.4 UML Composite Structure Diagrams ...
223

10.4.5 UML Component Diagram ..
227

10.4.6 UML Deployment Diagram ..
228

10.5 Case Study of SQL Legacy System ...
228

10.5.1 SQL Legacy System ..
228

10.5.2 Parsing SQL Legacy Code ...
229

10.5.3 Slicing SQL Source Code ...
229

10.5.4 UML Class Diagrams ..
229

10.5.5 UML Composite Structure Diagrams ...
230

10.5.6 UML Activity Diagrams ...
231

10.6 Summary 233

Chapter 11 Discussion and Conclusions .. . 235

11.1 Comparison and Evaluation .. . 235

11.2 Summary ..
236

11.3 Significance of Contributions and Evaluation ..
237

X

Table of Contents
11.4 Revisiting Criteria for Success ...

238

11.5 Conclusion ...
248

11.6 Future Work ...
249

11.6.1 Limitations ...
249

11.6.2 Directions for Future Work ..
250

References ...
251

Appendix A: COBOL Legacy System ..
263

Appendix B: HTML Legacy System ..
275

Appendix C: SQL Legacy System ..
286

Appendix D: List of Publications by Author ...
289

xi

List of Figures

List of Figures

Figure 3.1: Comparison of Proposed Approach and Traditional Studies ... 37

Figure 4.1: Process of Parsing COBOL Code ... 61

Figure 4.2 One to One Relationship .. 65

Figure 4.3 One to Many Relationship .. 65

Figure 4.4 Many to One Relationship .. 65

Figure 4.5 Many to Many Relationship
...

66

Figure 4.6: Linear Procedure-Based Model .. 67

Figure 4.7: Branch Procedure-Based Model ... 68

Figure 4.8: Joint Procedure-Based Model
.. 69

Figure 4.9: Synthetic Procedure-Based Model
.. 69

Figure 5.1: Process of Parsing HTML Code :... 76

Figure 5.2: Link-Based Model
...

77

Figure 5.3: A Graphical Example of a Web Layer
..

78

Figure 5.4: First Example of an Ordinal Relationship
..

79

Figure 5.5: Second Example of an Ordinal Relationship
..

79

Figure 5.6: Third Example of an Ordinal Relationship
...

79

Figure 5.7: Fourth Example of an Ordinal Relationship
...

80

Figure 5.8: An Example of a Loop Relationship
..

80

Figure 5.9: An Example of a Sequential Link-Based Model .. 81

Figure S. 10: Second Example of a Sequential Link-Based Model ... 81

Figure 5.11: Third Example of a Sequential Link-Based Model
..

81

X11

List of Figures
Figure 5.12: Fourth Example of a Sequential Link-Based Model

...
82

Figure 5.13: An Example of a Cyclical Link-Based Model ... 83

Figure 5.14: Another Example of a Cyclical Link-Based Model ... 83

Figure 5.15: An Example of a Compositive Link-Based Model ... 83

Figure 5.16: Second Example of a Compositive Link-Based Model .. 84

Figure 5.17: Third Example of a Compositive Link-Based Model .. 84

Figure 6.1: Process of Parsing SQL Code .. 91

Figure 6.2: Generation Relationship of a Database-Based Model. ... 93

Figure 6.3: An Example of an Association Relationship ... 93

Figure 6.4: Another Example of an Association Relationship ... 93

Figure 6.5: Association Database-Based Model ... 93

Figure 6.6: Generation Database-Based Model .. 94

Figure 6.7: An Example of a Composition Database-Based Model .. 95

Figure 6.8: A Second Example of a Composition Database-Based Model .. 95

Figure 6.9: A third Example of a Composition Database-Based Model .. 96

Figure 6.10: A Fourth Example of a Composition Database-Based Model .. 96

Figure 7.1: An Example ofA Slice Criterion (13, (money))
.. 105

Figure 7.2: Control Flow Graph of Example Program
... 105

Figure 7.3: Definition Examples of an Original Program
... 106

Figure 7.4: Computation of R1Ný°(n) of Example Program
... 106

Figure 7.5: Computation of SO and SS' (n) of Example Program ... 106

Figure 7.6: The First Pseudo Class V1 .. 110

Figure 7.7: The i`" Pseudo Class V,, of the j' Layer Procedure
... III

Figure 7.8: Part Code Containing a Systematic Call .. 113

X111

List of Figures

Figure 7.9: Example of Systematic Call Class Presentation ... 113

Figure 7.10: Part Code Containing a Systematic Call .. 113

Figure 7.11: Part of Code Example ... 114

Figure 7.12: Example of Systematic Manager Class ... 114

Figure 7.13: Leaf Class ... 115

Figure 7.14: Node Class .. 115

Figure 7.15: Class Diagram of a Linear Procedure-Based Model .. 116

Figure 7.16: Class Diagram of a Branch Procedure-Based Model .. 117

Figure 7.17: Class Diagram of a Joint Procedure-Based Model .. 117

Figure 7.18: Class Diagram of a Synthetic Procedure-Based Model. ... 117

Figure 7.19: An Example of a Composite Structure Diagram ... 119

Figure 7.20: Composite Structure Diagram of Class V, .. 119

Figure 7.21: A Leaf COBOL Program DateEdit ... 120

Figure 7.22: Composite Structure Diagram of DateEdit ... 121

Figure 7.23: A Sequence Diagram for Printing Header .. 125

Figure 7.24: A Program Example .. 128

Figure 7.25: A Sequence Diagram of Printing Rest Header
... 128

Figure 7.26: An Example of a Sequence Diagram
... 131

Figure 7.27: Sequence Diagram of a Linear Procedure-Based Model
...

132

Figure 7.28: Sequence Diagram of a Branch Procedure-Based Model
..

132

Figure 7.29: Sequence Diagram of a Joint Procedure-Based Model .. 132

Figure 7.30: Sequence Diagram of a Synthetic Procedure-Based Model
...

133

Figure 7.31: An Example of a Interaction Overview Diagram based on Figure 7.1
............................... 134

Figure 7.32: Fork Node IF... ELSE... based on Figure 7.2 .. 135

XIV

List of Figures

Figure 7.33: Fork Node IF .. 136

Figure 7.34: Control Flow Graph of Fork Node IF .. 136

Figure 7.35: Fork Node IF... ELSE .. 136

Figure 7.36: Control Flow Graph of Fork Node IF... ELSE ... 137

Figure 7.37: Control Flow Graph of Fork Node EVALUATE ... 137

Figure 7.38: Fork Node GOTO ... 137

Figure 7.39: Control Flow Graph of Fork Node GOTO ... 138

Figure 7.40: Application of COBOL Rules .. 144

Figure 8.1: One HTML Code Example .. 151

Figure 8.2: Class Diagram of Code in Figure 8.1 ... 151

Figure 8.3: Text Class .. 154

Figure 8.4: Image Class .. 154

Figure 8.5: Table Class ... 155

Figure 8.6: Frame Class .. 156

Figure 8.7: Link Class ... 156

Figure 8.8: Class Diagram of One Web Block .. 156

Figure 8.9: First Class Diagram of Sequential Link-Based Model
...

158

Figure 8.10: Second Class Diagram of Sequential Link-Based Model
..

158

Figure 8.11: Third Class Diagram of Sequential Link-Based Model
..

158

Figure 8.12: Fourth Class Diagram of Sequential Link-Based Model
..

159

Figure 8.13: One Class Diagram of Cyclical Link-Based Model .. 159

Figure 8.14: One Class Diagram of Compositive Link-Based Model
...

160

Figure 8.15: Composite Structure Diagram of Text Class of HTML
...

161

Figure 8.16: Composite Structure Diagram of HTML Image Class
..

161

xv

List of Figures

Figure 8.17: Composite Structure Diagram of Table Class ..
161

Figure 8.18: Composite Structure Diagram of Frame Class of HTML ... 161

Figure 8.19: Composite Structure Diagram of Link Class of HTML ... 162

Figure 8.20: One Component Diagram of Example In Figure 8.1 .. 162

Figure 8.21: Deployment Diagram of One Example In Figure 8.1 ... 163

Figure 8.22: HTML Rules Application .. 165

Figure 9.1: One Example of Class Diagram .. 171

Figure 9.2: Database Class ... 172

Figure 9.3: Leaf Class ... 173

Figure 9.4: Node Class ...:.. 173

Figure 9.5: Generation Database-Based Model .. 174

Figure 9.6: Association Database-Based Model ... 174

Figure 9.7: First Example of Composition Database-Based Model .. 174

Figure 9.8: Second Example of Composition Database-Based Model .. 175

Figure 9.9: Third Example of Composition Database-Based Model ... 175

Figure 9.10: Fourth Example of Composition Database-Based Model, .. 176

Figure 9.11: Composite Structure Diagram of Database Class
..

177

Figure 9.12: Composite Structure Diagram of Procedure Class
..

177

Figure 9.13: Activity Diagram of Getting Integer Part of Number
...

178

Figure 9.14: Association Database-Based Model
...

181

Figure 9.15: Generation Database-Based Model
..

181

Figure 9.16: First Example of Composition Database-Based Model
..

182

Figure 9.17: Second Example of Composition Database-Based Model .. 182

Figure 9.18: Third Example of Composition Database-Based Model ... 182

xvi

List of Figures
Figure 9.19: Fourth Example of Composition Database-Based Model

...
183

Figure 9.20: SQL Rules Application ..
184

Figure 10.1: Tool Architecture ..
187

Figure 10.2: Opening Source Code ...
190

Figure 10.3: Procedure-Based Model of ManagerApplication System ...
192

Figure 10.4: Parsing Part COBOL Legacy System ...
193

Figure 10.5: Synthetic Procedure-Based Model of Part COBOL Code ..
193

Figure 10.6: Slicing Part COBOL Legacy System ...
194

Figure 10.7: Class Diagram of Part COBOL Code ...
195

Figure 10.8: Class Diagram NODE-Task-l-Process ..
198

Figure 10.9: Class Diagram NODE-Task-2-Process ..
198

Figure 10.10: Class Diagram NODE-Task-3-Process .. 199

Figure 10.11: Class Diagram NODE-Task-4-Process ..
199

Figure 10.12: Class Diagram NODE-Task-5-Process ..
199

Figure 10.13: Class Diagram NODE-Task-6-Process ..
200

Figure 10.14: Class Diagram NODE-Task-7-Process ..
200

Figure 10.15: Class Diagram NODE- Setup-Unix-Server-File-Transfer-Session 201

Figure 10.16: Class Diagram NODE- Establish-Data-Port-Connection ..
201

Figure 10.17: Class Diagram NODE- Establish-Unix-Data-Port-Connection
201

Figure 10.18: Class Diagram Initialisation ...
202

Figure 10.19: Composite Structure Diagram Initialise-File-Copy-Tables ..
203

Figure 10.20: Composite Structure Diagram All-Tasks-Complete-Process ..
203

Figure 10.21: Composite Structure Diagram Get-Download-File-Size
..

203

Figure 10.22: Sequence Diagram NODE-Task-l-Process ..
206

xvii

List of Figures

Figure 10.23: Sequence Diagram NODE-Task-2-Process .. 207

Figure 10.24: Sequence Diagram NODE-Task-3-Process .. 207

Figure 10.25: Sequence Diagram NODE-Task-4-Process .. 208

Figure 10.26: Sequence Diagram NODE-Task-5-Process .. 208

Figure 10.27: Sequence Diagram NODE-Task-6-Process .. 209

Figure 10.28: Sequence Diagram NODE-Task-7-Process .. 210

Figure 10.29: Sequence Diagram NODE-Setup-Unix-Server-File-Transfer-Session 210

Figure 10.30: Sequence Diagram NODE-Establish-Data-Port-Connection ... 210

Figure 10.31: Sequence Diagram NODE-Establish-Unix-Data-Port-Connection 211

Figure 10.32: Sequence Diagram Initialisation .. 211

Figure 10.33: Compositive Link-Based Model of Weather-ABCNews System .. 214

Figure 10.34: Class Diagram Local Header of ROOT-ABC-News ... 215

Figure 10.35: Class Diagram Local Main of ROOT-ABC-News ... 216

Figure 10.36: Class Diagram Local Footer ofROOT-ABC-News .. 216

Figure 10.37: Class Diagram Additional Note of ROOT-ABC-News .. 217

Figure 10.38: Class Diagram ROOT-ABC-News .. 217

Figure 10.39: Class Diagram Former Note of NODE-Weather-ABC News
...

218

Figure 10.40: Class Diagram Local Header ofNODE-Weather-ABC News
..

218

Figure 10.41: Class Diagram Local Main of NODE-Weather ABCNews
..

218

Figure 10.42: Class Diagram Local Footer of NODE-Weather-ABC News
...

219

Figure 10.43: Class Diagram Additional Note of NODE-Weather-ABC News
.......................................

219

Figure 10.44: Class Diagram NODE-Weather-ABC News ... 220

Figure 10.45: Class Diagram LEAF- Weather-New South Wales-ABC News
...

221

Figure 10.46: Class Diagram LEAF-Weather-Victoria-ABC News
..

222

xviii

List of Figures

Figure 10.47: Class Diagram LEAF-Weather-Queensland-ABC News ..
223

Figure 10.48: Composite Structure Diagram of LINK TopStories
..

224

Figure 10.49: Composite Structure Diagram of LINK-NSWNews
..

225

Figure 10.50: Composite Structure Diagram of LINK NSW ... 225

Figure 10.51: Composite Structure Diagram of LINK-Section ... 226

Figure 10.52: Composite Structure Diagram of LINK-NewsHome ... 226

Figure 10.53: Composite Structure Diagram of TABLE-Weather ...
227

Figure 10.54: Composite Structure Diagram of Intern ationalCentres ..
227

Figure 10.55: Component Diagram of Weather ABCNews ... 227

Figure 10.56: Deployment Diagram of Weather-ABCNews .. 228

Figure 10.57: Generation Database-Based Model of SimulatingiNSERT ... 229

Figure 10.58: Class Diagram of Simulating INSERT System .. 230

Figure 10.59: Composite Structure diagram of LEAF-sp generate inserts ... 230

Figure 10.60: Activity diagram of LEAF-sp_generate inserts .. 232

Figure 10.61: Activity Diagram of ROOT-Master ...
233

xix

List of Tables

List of Tables

Table 2.1: Static and Dynamic Diagrams of UML ..
25

Table 7.1: One Example of Node Layer NLO ..
139

Table 10.1: Table of Program Elements In Source Code
..

189

Table 10.2: Table of Procedure Calling Relationships and Procedure Layers
.......................................

189

Table 10.3: Procedure Layers With Procedures ..
190

Table 10.4: Table of Leaf Classes ..
194

Table 10.5: Table of Node Classes ..
195

Table 10.6: Table of Leaf Program Element ...
203

Table 10.7: Table of Node Program Elements ...
204

Table 10.8: Table of Program Elements In Source Code ..
212

Table 10.9: Table of Web Link Relationships and Layers ...
212

Table 10.10: Web Layers ...
213

Table 10.11: Table of Node Classes ..
215

Table 10.12: Table of Leaf Classes ..
215

Table 10.13: Table of Program Elements in Source Code ...
229

xx

Chapter 1. Introduction

Chapter 1

Introduction

1.1 Proposed Research

The research in this thesis presents an approach to the software evolution of
domain-specific legacy systems. When software first began to be used, a typical, logical

procedure application in programming took input data, processed them, and produced

output data. The programming challenge was seen as being how to write the code logic

is such a way as to correspond with the rules of business. Although code logic and
business rules are still important, how to reuse the valuable information in legacy

systems has become even more important than the actual logic required to manipulate
them, especially in domain-specific legacy systems.

COBOL legacy systems are very popular in the real world. Up to 75% of all business

data are processed in COBOL. There are between 180 billion and 200 billion lines of

COBOL code in use worldwide. The use of COBOL is growing by over a billion lines

per year, and 15% of all new applications (5 billion lines) during 2005 were in COBOL.

HTML legacy systems are used all over the world because of the Internet. HTML is the

description of the structure, content and links of a web page. It concentrates on the

information exchange by means of web pages. It is now hard to imagine how the world

worked without the WWW.

SQL legacy systems are very important and affect everyone. SQL, which stands for

Structured Query Language, includes additional functionality designed to support
Microsoft SQL servers. It is common for a large-scale database to use SQL to facilitate

the needs of database users and administrators. This language offers a flexible interface

for databases of all shapes and sizes.

In order to facilitate software evolution of COBOL, HTML and SQL legacy systems,

parsing of those legacy systems is performed to ascertain the judgement conditions of

Chapter 1. Introduction

their development/environment-specific models, based on the characteristics and

operations of those legacy systems. The development/environment-specific model of a
COBOL legacy system can be one of four procedure-based models: linear, branch, joint,

or synthetic; HTML legacy systems have three possible link-based models: sequential,

cyclical, and compositive; and SQL legacy systems have three possible database-based

models: association, generation and composition.

There are two major stages of UML extraction from domain-specific legacy systems as
being structural and behavioural described in this thesis based on the
development/environment-specific models of domain-specific legacy systems.

The structural stage of UML extraction in this thesis contains class realisation. The

classification of classes from COBOL legacy system is two, which are procedure class

and variable class. Every procedure in COBOL legacy system is defined as one

procedure class. Variable class is based on the program slicing techniques with two

stages of pseudo class and real class extraction from COBOL legacy system. The

variabl of the sliced criterion is defined as the class name, and the variables contained in

its slicing criterion are defined as the attributes of that variable class. Because the
behavioural analysis of domain-specific legacy systems is behind the analysis of

structural analysis, the operations in variabl class are not described. The classification of

classes of HTML legacy system is based on the web pages and their blocks. The

classification of SQL legacy system is two, which is procedure class and database class.
Selected UML diagrams are used to describe the static aspect of domain-specific legacy

systems.

The behavioural stage of UML extraction in this thesis focuses on the operations and

activities of domain-specific legacy systems. When understanding the operations and

activities of domain-specific legacy code, their preconditions and post-conditions must
be presented from the source code. Then those operations and activities are ordered

according to the time and sequence they are executed by. At last, the operation and

activity arraies are presented. Selected UML diagrams describing the dynamic aspect of
domain-specific legacy systems are realised based on those operation and activity

arraies.

Original COBOL code is sliced according to program slicing techniques, and four UML

2

Chapter 1. Introduction

diagrams are presented, two of which are class diagram and composite structure
diagram to describe the static aspect of COBOL legacy code, and two of which are

sequence diagram and interaction overview diagram to describe the dynamic part of the

COBOL legacy code. HTML code is depicted with four UML static diagrams, which

are class diagram, composite structure diagram, component diagram and deployment

diagram. Legacy SQL code is modelled with class diagram, composite structure

diagram, and activity diagram.

1.2 Overview of Problems

The research in this thesis has to do with the software evolution of domain-specific

legacy systems. With the rapid development of computer science and technology, more

and more software systems have become legacy ones. The gaps between the practical

needs and the capabilities of legacy systems are becoming deeper and wider. With

changes in the business environment, some software systems are old-fashioned, and

particularly difficult to modify, but still valuable. On the one hand, these legacy systems

are critical to business. Legacy systems may contain vital business information that is

central to an organisation. Although the code is probably difficult to read and

understand, it may be the only record of the operation's rationale. On the other hand, it

is costly to maintain these systems. The accuracy of static software systems must be set

against the changing and dynamic businesses environment. Legacy systems may have a

high rate of operational failure. They often cause their own problems and sometimes

even present core risks, especially when the developers of the legacy software system

have gone, or the documentation is not complete. It is difficult to correct its errors or

maintain the system.

Environmental changes generate need for changes in supporting software. Users of
legacy systems find that those systems are hard to use and have a high element of risk.
But those legacy systems are the essence of businesses and organisations. It is clear to

see that with legacy systems a large number of users are working with outdated skills on

old technologies and languages. Even if they know some new technologies that

correspond with the needs of the new skills, because legacy systems are large and

complicated, it is difficult for them to cope with the problems of those legacy systems.
Disasters are inevitable for legacy systems within a changing environment. Although

3

Chapter 1. Introduction

legacy systems were designed using old technologies and maybe often resulting in

increased risk, they are central because thet are valuable to those organisations and may

even be the only record of key information. Evolution of legacy systems is critical to the

organisations using them, because reliance on legacy systems could be vital to them.

Many organisations are faced with maintaining old-fashioned software systems that are

constructed to run on a variety of hardware types and programmed in obsolete
languages, and they suffer from the disorganisation which results from prolonged

maintenance.

As the software ages, the task of maintaining it becomes more complex and more

expensive. Poor design, unstructured programming methods, and crisis-driven

maintenance can contribute to poor code quality, which in turn affects understanding. It

is vital for organisations to solve their legacy software problems. It is important to

understand the nature of legacy systems and then migrate them to new states so that

they become more efficient, more effective, more reusable, and more accurate.

Software evolution techniques include formal methods. Although these formal methods

are founded on theoretical work, they still have drawbacks in their practical applications

to real world legacy systems. The lack of a common platform leads to confusion and
difficulties with the comprehension and reuse of original code.

Traditional studies used Weiser's program slicing approach to compute consecutive sets

of transitively relevant statements based on data flow and control flow dependences.

Although a large number of legacy systems have data flow and control flow

dependences, some do not, such as HTML legacy system.

Traditional studies have presented all the UML diagrams. But in practice, some of the

UML diagrams are similar. For example, the class diagram is the most fundamental of

the UML diagrams for modelling the structure of legacy systems. An object has the

same characteristics as the corresponding class. The class is the abstraction of the

common characters of the object group. Most of the important characteristics of the

object are reflected in the corresponding class. If the class diagram is used in modelling,

the object diagram is superfluous.

There are some other problems with traditional studies of software evolution. These

4

Chapter 1. Introduction

problems are potentially dangerous and they need to be dealt with urgently.

1.3 Scope of Thesis and Original Contributions

This thesis presents the developmentlenvironment-specific models of domain-specific

legacy systems and creates a number of UML diagrams to deal with the problems
inherent in traditional studies.

A model is a representation designed to show the structure or workings of a system. It is

a study of a miniature version of the actual. A model enables IT to be more efficient in

reacting to business users' requests for new systems or changes to existing ones, and

makes it possible to build an application once and use it many times so as to be able to

react more quickly to business changes. It reduces applications to their basic

components, shares various pieces of functionality across applications, and builds a
framework. It even has the ability to help break down the applications supporting

various products into pieces that can be saved or discarded as duplicates in order to
integrate the users' new products with their existing products, resulting in no overlap.
The usage of a model overcomes the disadvantages of traditional studies of software

evolution.

UML 2.0 uses six diagrams to model the static parts of legacy systems and seven
diagrams to model the dynamic parts. In practice, when a class diagram describes the

structure of a legacy system, an object diagram is not used because the class is the

abstraction of the common characteristics of the object group and the object has the

same characteristics as the corresponding class. And there are other similar situations.
Moreover, it is almost impossible to analyse a legacy system at any stage, from every

point of view at every layer of the system, because of its large size and great complexity,

and the complexity of UML. At the same time, it is not necessary to do it. The proposed

approach presents some of the UML diagrams to describe domain-specific legacy

systems.

Program slicing techniques compute consecutive sets of transitively relevant statements
based on data flow and control flow dependences. Although a large number of legacy

systems have data flow and control flow dependences, some others do not, such as
HTML legacy systems. HTML describes web and the data formats. So program slicing

5

Chapter 1. Introduction

techniques are not suitable for analysing all legacy systems.

Development/environment-specific models of domain-specific legacy systems are

presented. COBOL legacy systems have linear, branch, joint, and synthetic

procedure-based models, HTML legacy systems have sequential, cyclical and

compositive link-based models, and SQL legacy systems have association, generation

and composition database-based models.

The major contribution of this thesis is the presentation of
development/environment-specific models of legacy systems and an approach towards

the software evolution of domain-specific legacy systems through using a selected

number of UML diagrams. In concrete terms, the original contributions (OC=Original

Contribution) of this thesis are described as follows:

OC 1: Development/environment-specific models of domain-specific legacy systems are

defined based on the characteristics and operations of domain-specific legacy

systems. The thesis integrates formal methods and cognitive methods of software

evolution and contains structural and operational information regarding working

flow or executable functions.

0C2: A selected number of UML diagrams are used to represent domain-specific legacy

systems.

OC3: A system is developed to demonstrate the effectiveness of the proposed approach
by applying evolution rules together with the integration of evolution rules and a

model application based on parsing and slicing domain-specific legacy systems.

OC4: A set of rules is devoted to modelling domain-specific legacy systems together

with their application conditions.

1.4 Criteria for Success

The following criteria are given for judging the success of the research described in this

thesis:

" For those domain-specific legacy systems, is it possible and necessary for them to
be modelled with UML?

6

Chapter 1. Introduction

" Is it necessary for domain-specific legacy systems to be modelled using all of the

UML diagrams?

" If it is not necessary, how many UML diagrams are suitable for modelling COBOL

legacy systems? What are they? Are they enough for the modelling? Why?

" How many UML diagrams are suitable for modelling HTML legacy systems? What

are they? Why?

" How many UML diagrams are suitable for modelling SQL legacy systems? What

are they? Why?

" Is it necessary for all legacy systems to be sliced? Why?

" Is it helpful to use models in software evolution?

" Is it appropriate to build development/environment-specific models of COBOL,

HTML, and SQL legacy systems?

" Is the realisation of those UML diagrams from COBOL legacy system appropriate?

" Is the realisation of those UML diagrams from HTML legacy system appropriate?

" Is the realisation of those UML diagrams from SQL legacy system appropriate?

The first question is related to Chapter 2. The following five questions are closely

related to Chapter 3. The seventh question is related to Chapter 4,5, and 6. And the

final three questions are related to Chapter 7,8 and 9, respectively.

1.5 Thesis Structure

The thesis is organised as follows:

Chapter 1 gives the scope and original contribution of the thesis.

Chapter 2 introduces the background of the research, including legacy system, reverse

engineering, and software evolution.

Chapter 3 presents a detailed description of the nature of the work in this thesis.

Program slicing techniques are not suitable for analysing all legacy systems. Not all
UML diagrams are used to describe legacy systems. The

development/environment-specific models of legacy systems are presented, and based

7

Chapter 1. Introduction

on those models, legacy systems are modelled with a selected number of UML

diagrams.

Chapter 4 describes the four linear, branch, joint and synthetic procedure-based models

of COBOL legacy systems based on COBOL's long history, characteristics and

operations, and the calling or being-called relationships between two procedures.

Chapter 5 describes the sequential, cyclical, and compositive link-based models of
HTML legacy systems based on HTML's operations and characteristics, and the linking

or being-linked relationships between two web pages.

Chapter 6 describes the association, generation and composition database-based models

of SQL legacy systems based on SQL's operations and characteristics, and generation

and association relationships between databases.

Chapter 7 discusses and presents static parts of COBOL legacy code modelled with the

UML class and composite structure diagrams for extracting classes from legacy code
based on program slicing, and the dynamic parts modelled with the sequence and
interaction overview diagrams.

Chapter 8 shows that only static aspects of HTML legacy systems are modelled with the

UML class, composite structure, component and deployment diagrams. It does not have

dynamic parts.

Chapter 9 explores SQL legacy systems modelling with the UML class, composite

structure and activity diagrams.

Chapter 10 describes experiments that model these three domain-specific legacy

systems with a selected number of UML diagrams.

Chapter 11 discusses the proposed approach and draws the conclusions.

Appendix A presents a COBOL legacy system used in experiments.

Appendix B presents a HTML legacy system used in experiments.

Appendix C presents a SQL legacy system used in experiments.

Appendix D lists all the relevant publications by the author during the PhD study.

8

Chapter 2 Backgroud

Chapter 2

Background

2.1 Introduction

In this chapter, legacy systems, software evolution, program slicing, model-driven

engineering and UML are introduced. Legacy systems are complicated, heavily

modified, difficult to maintain and old-fashioned software that is still important to the

organisation because of the changes to the environment and practical rules. Software

evolution is the process of improving the quality or making use of all or part of software

systems. UML is a good modelling platform for legacy systems. Program slicing is

useful in debugging and program analysis, program differencing and integration,

software maintenance, testing, tuning compilers, and more.

2.2 Legacy Systems

2.2.1 Definition of Legacy Systems

Software systems are becoming larger and more complicated with the rapid
development of applications and requirements. Moreover, it is easy for them to become

old-fashioned and turn into legacy systems. It is necessary to comprehend legacy

systems, refine the users' requirements, and model them in order to maintain, modify

and reuse them [3].

A legacy system is typically large, complicated, old, heavily modified, difficult to

maintain and old-fashioned software that is still important to the organisation. A legacy

system is a computer system or application program that continues to be used because

of the cost of replacing or redesigning it and at the same time despite its poor

competitiveness and compatibility with modem equivalents.

Many descriptions of legacy systems are presented from different points of view.
9

Chapter 2 Backgroud

Legacy systems are large software systems that people do not know how to deal with,
but that are vital to the organisation [14]. A legacy system could be any information

system that significantly resists modification and evolution to meet new and constantly

changing business requirements [26]. It is critical software that cannot be modified

efficiently. It is a system that was developed at some time in the past and which is

critical to the business in which the system operates [109]. Many legacy systems remain

supportive of core business functions and are "indispensable" to the business [90].

A legacy system is therefore one that is large, monolithic and difficult to modify. If

legacy software only runs on antiquated hardware, the cost of maintaining legacy

software may eventually outweigh the cost of replacing both the software and hardware,

unless some form of emulation or backward compatibility allows the software to run on

new hardware. It is important to note that the term "legacy" refers to the state of a

system before the strategic change. Legacy is a function of the change of a system. It is

a result of the change of environment. Without change, there would be no legacy.

It is essential to realise that legacy systems are not useless. On the contrary, legacy

systems are important and valuable.

2.2.2 Two Aspects of Legacy Systems

Legacy systems have static and dynamic aspects. The static aspects include software

elements and their relationships. The dynamic aspects mainly concern the sequential

events that perform tasks.

In static modelling, abstract high-level elements to be found and constructed might

represent subsystems or other logically connected software elements. In dynamic

modelling, abstractions are typically behavioural descriptions that show interactions

amongst high-level static elements.

Both static and dynamic aspects of legacy systems can be modelled in different layers.

2.2.3 Three Types of Legacy Systems to Be Discussed

The research in this thesis focuses on three commonly-used domain-specific legacy

software systems-COBOL, HTML and SQL legacy systems.

10

Chapter 2 Backgroud

COBOL legacy systems perform batch information tasks, and contain many valuable

messages. Software written in COBOL has characteristics common to that written in

other multi-programming languages, such as BASIC, C, COBOL, DELPHI, FORTRAN,

PASCAL, etc., all of which contain data flow and control flow.

HTML legacy systems are used in WWW-like systems written in XML, JAVA, etc.
HTML presents the data format and does not have dynamic characteristics.

SQL legacy systems contain numerous tables and databases. SQL defines the methods

used to create and manipulate relational databases on all major platforms. It is common
for large-scale databases to use SQL to facilitate database users and administrators
interactions. It offers a flexible interface for databases of all shapes and sizes.

2.3 Software Evolution

2.3.1 Software Engineering

Software engineering is important for software development, improvement,

maintenance, modification and reuse [47]. It is one of the most important areas of

computer science. In the IEEE standards [71], the definition of software engineering is

presented as follows:

"Software engineering is the application of a systematic, disciplined,

quantifiable approach to the development, operation and maintenance of

software; that is, the application of engineering to software. "

Although there are many characteristics of software evolution, change and complexity

are the two main themes [85,140]. It is the change that leads to software aging. Systems

evolution is the selective application of scientific and engineering efforts to transform

an operational need into a description of the system configuration which best satisfies

the operational need, according to the measures of effectiveness being used. It integrates

related technical parameters and ensures compatibility of all physical, functional and
technical program interfaces in a manner which optimises the total system definition

and design; and integrates the efforts of all engineering disciplines and specialties into

the total engineering effort [41,54]. It results in saving time and decreasing the costs of

software applications.

11

Chapter 2 Backgroud

2.3.2 Software Reengineering

2.3.2.1 Definition of Software Reengineering

Reengineering is the bridge used by legacy software to migrate to an organisation's new

maintenance environment. Reengineering is the examination and modification of a

system to reconstitute it in a new form and the subsequent implementation of the new
form. Because the legacy software's quality, performance, reliability and

maintainability are deteriorating, it is necessary for legacy systems to be reengineered.
Reengineering legacy systems is fundamentally different from software maintenance,

system redevelopment, and continuous improvement [7]. It involves three main steps:

restructuring, reverse engineering, and forward engineering [13].

2.3.2.2 Reasons for Reengineering

The reasons for reengineering legacy systems are as follows:

" Reengineering can capture design information from source code. It can help to

supplement the legacy documentation in order to comply with documentation

standards, give structure to previously unstructured software and adapt initial data

and code to new programming languages, configurations or platforms [137].

" It allows legacy software to adapt quickly to changing environments. The changing

of the environment is pervasive and happens with speed. It is important for the

business to act consistently in the light of changing situations.

" It complies with new organisational standards. New standards represent new
business rules and methods. To avoid failure in business, the company must apply

new standards. Its software system should be reengineered to be sufficient for its

new business needs.

" It upgrades to newer technologies, platforms or paradigms. New approaches are

presented continuously for producing the company's products. Those new

approaches mean saving time and earning more money. In order to be ahead of its

competitors, the company should upgrade its legacy systems in good time.

" It extends the software's life. After being reengineered, software systems have new

environmental characteristics. They are able to be continuously utilised.

0 It identifies class candidates for reuse. The name, attributions and operations of
12

Chapter 2 Backgroud

every class candidate are recognised through the process of reengineering the

original code.

" It improves software maintainability by increasing the productivity of every

maintenance programmer, thus reducing reliance on programmers who have

specialised in a given software system, and reducing maintenance errors and costs.

Software maintenance is the modification of a software product after delivery to correct

errors, improve performance (or other attributes), or adapt to new requirements [12,35].

Software maintenance is defined in IEEE Standard 1219 as: the modification of a

software product after delivery to correct faults, to improve performance or other

attributes, or to adapt the product to a modified environment [70]. A similar definition is

given by ISO/IEC [73], again stressing the post-delivery aspect: The software product

undergoes modifications of code and associated documentation, due to a problem or the

need for improvement [72].

The objective is to modify the existing software product whilst preserving its integrity.

The increasing problems of maintaining software are as follows [121]:

" Software errors can be very expensive. Because environmental change is pervasive,
it is difficult to predict the errors resulting from legacy systems. Only when the
damage has been done is the need realised to modify the corresponding software.

" Software maintenance is very costly. Continual software system maintenance

means terminating working procedures, delaying delivery dates, disengaging

machines and employees and resulting in expensive knock-on effects for the

services offered by the business.

" Maintenance people are getting scarce as increasingly convenient tools and

programming languages are designed that do not require the same levels of skill

that were needed in the past. Maintaining a software system that depends on a

programming language that is seldom used is hard work. It is difficult to find

people with those skills.

" Software maintenance results in frequent failures, complex designs, unpredictable

effects, unreliable or missing documentation, obsolete hardware platforms, loss of

experienced maintenance programmers or original developers and growing
backlogs.

13

Chapter 2 Backgroud

Redevelopment of the software system is quite different from reverse engineering
because:

" Critical corporate knowledge is contained within legacy software. Although the
legacy system may be poor in many respects, its loss could be fatal to the business

organisation. Legacy software represents an enterprise model of the business.

"A legacy system is a valuable asset. It can be of fundamental value to the business

and contain central business information.

" Reusable and reengineered software costs much less than redeveloped software.

Continuous improvement of a software system is different from its reverse engineering.
Some organisations have decided that adopting software reengineering and a new

maintenance environment are steps that are too radical to take. Instead, these

organisations improve their maintenance environment gradually by using better tools,

processes or people. This is defined as continuous improvement in quality. In fact, it is

almost impossible to continuously improve a large, complicated software system.

Continually modifying software will inevitably result in frequent training of the

employees, many man-made errors, and maybe even complete failure of the business. In

some special cases, the hardware running the software is no longer produced. Software

must be transformed to a new platform in order to protect the useful information it

contains. On the other hand, the benefits of software reengineering far outweighs those

acquired through continuous improvement.

2.3.2.3 Classification of Reengineering

Reengineering is classified into forward engineering and reverse engineering, from the

point of view of basic operations. There are four levels of software abstraction in

reengineering, namely axioms, requirements, design, and implementation.

An axiom is any fundamental, self-consistent, universally accepted tenet about a

software program's context. Axioms may include the software's purpose, the concepts
that imply the requirements, and details of the source and nature of the information to
be processed by the software. Axioms place the software against a background of

non-software subjects. They explain the nature and purpose of the software without

providing details about the actual software, such as requirements, design, and
implementation. A complete software axiom set allows the creation of a complete set of

14

Chapter 2 Backgroud

requirements through appropriate forward engineering operations, without the need for

additional information.

A requirement is a well-formed statement with respect to the axioms of the conditions

necessary for successful software use, conditions prevailing after software use, and

constraints on software use. Requirements state what the system does with the resources

provided, not how the system does it. A complete software requirements set allows the

creation of a complete design through appropriate forward engineering operations

without the need for additional information [61].

A software design is any non-compliable software description that faithfully reflects

requirements and states how outputs are produced from inputs. Generally, many design

levels sequentially provide greater and greater detail about how the software operates.

Each successive design level refines requirements into implementations. The design

defines software architectures, organisation, communication, and other details about

how the software acts without containing enough detail to actually be compilable. A

complete software design allows the creation of a complete implementation through

appropriate forward engineering operations.

A software implementation faithfully reflects the design and is syntactically correct with

respect to a compilable language. A complete implementation could be compiled to

produce an executable code.

2.3.3 Reverse Engineering

Reverse engineering is an important aspect of reengineering [32]. Reverse engineering
is the process of transforming code into a model through mapping from a specific
implementation language [13,21]. Reverse engineering is the process of analysing an

existing system to identify its components and their interrelationships, and creating

representations of the system in another form or at a higher level of abstraction. Reverse

engineering is usually undertaken in order to redesign the system for better

maintainability or to produce a copy of a system without access to the design from

which it was originally produced.

Reverse engineering is a development process based on the notion of taking something

apart to see how it works and then putting it back together again [91]. Reverse

15

Chapter 2 Backgroud

engineering often means decoding or analysing a device or program with the intention

of using its technology to create another product [65].

Reverse engineering has the goal of analysing software systems so that the software is

more understandable for maintenance, evolution, and reengineering purposes [105]. It

analyses a subject system in order to identify its current components and their

dependencies so as to extract and create system abstractions and design information.

The rationale of reverse engineering can be described as follows:

0 Abstraction stresses the palpable aspects of a software system and conceals details.

" Representations of a software system at higher levels of abstraction are more

compact and easier to understand [140].

0 The entities of the abstraction of the system are easier to reason about and are closer

to the application domain than the source code.

" Opportunity increases for coarse-grained reuse and modem design techniques.

" Abstraction mechanisms serve as organisational axes and design methods.

" Abstractions represent architectural documentation and test plans.

The modelling foundation for reverse engineering can be summarised as follows:

" Abstraction mechanisms.

" Artifact. Defined as a component relationship attribute.

" Classification. This abstraction captures common properties shared by a collection

of artifacts.

" Aggregation. Establishes a partial relationship between a composite artifact and its

constituents.

" Generalisation. Relates an element to a more general element.

" Grouping. Groups a set of elements and relationships pertinent to those elements to

form a context.

" Abstraction hierarchies. Abstraction mechanisms can all be applied recursively to
form aggregation, generalisation, and grouping hierarchies.

Reverse engineering activities include

16

Chapter 2 Backgroud

" Gathering artifacts, which include source code, design documents, specification
documents, documentation, corporate knowledge, application knowledge, syntactic

pattern matching, developer knowledge and experience.

" Populating a repository. Selecting relevant information, filtering out immaterial

information, modelling information according to schema, and loading the

repository.

" Building layers of abstractions. These layers are: structure level, function level, and

application level. Also, semantic and behavioural pattern matching.

" Building taxonomies and hierarchies. Includes classification, aggregation,

generalisation and grouping.

Definitions of reverse engineering views are

"A view represents a perspective on a software system and the reverse engineering

process.

"A view is a bundled set of software artifacts.

"A view captures the state of the user interface, memory data structures and

repository.

0A view classification scheme includes goal structure, environment interaction,

functional substructure, entity structure, process structure and system dynamics,

allocation aspects, and realisation consideration.

" Implementation-level views include text and source text, syntax trees, resource
flows that contain control flow and data flow, cross references, data structures and

statistics.

" Structural views include structure charts, call graphs, module and subsystem graphs,

metrics and complexity views, and organisational views.

0 Functional views include design documents, specification documents, and

requirements documents.

" Behavioural views include conceptual views, temporal views, user interaction,

process views, and domain views.

Reverse engineering is the process of analysing an existing system in order to identify

its components and their interrelationships and create representations of the system in

17

Chapter 2 Backgroud

another form or at a higher level of abstraction [136]. Reverse engineering is usually

undertaken in order to redesign the system for better maintainability or to produce a

copy of a system without access to the design from which it was originally produced
[36].

2.3.4 Software Evolution

2.3.4.1 Definition

Software evolution is recognised as one of the most essential activities of software

systems. It has become one of the most important research subjects in the field of

software systems in recent years. Software evolution is regarded as the main driver of

software maintenance activities [141].

The first definition of Software Evolution is presented by Research Institute for

Software Evolution (RISE) formerly the Centre for Software Maintenance (CSM),

which was established in April 1987, at the University of Durham, England. It is the

first such centre world-wide to concentrate its research on software evolution.

Informally, software evolution refers to all those activities that take place after a

software product has been delivered to the customer, but the more formal definition

used by the RISE is [111]:

"Software evolution is the set of activities, both technical and

managerial, that ensures that software continues to meet

organisational and business objectives in a cost effective way. "

Software evolution is a long-term process involving the execution, usage, improvement,

extension and update of software systems [8]. It is the instinctive demand for software

to correspond with changes of context and the new necessities of the real world.

A software system undergoes many complex maintenance activities throughout its

lifecycle, such as correcting faults, improving performance, adapting the product to a

new environment, or adding new functionality. Software evolution forms the main part

of software maintenance.

With improvements in technology and environmental changes, more and more legacy

systems exist. With the high demand for renovation of these software systems, their

18

Chapter 2 Backgroud

evolution is becoming an urgent need.

2.3.4.2 Benefits of Software Evolution

Software evolution of a legacy system aims at improving the quality of the legacy

system in order to modify and reuse it for software reengineering. It is regarded as the

basis of software reengineering. Better understanding of a program aids in common

activities such as performing corrective maintenance, reusing and keeping

documentation up to date [139]. To minimise the likelihood of errors being introduced

during the change process, the legacy software should be understood sufficiently well
for changes made to the source code to have predictable consequences [30]. However,

such understanding is difficult to achieve with a legacy system after many years of

operation under conditions of changes in the business environment, operational

environment and support environment. The goal of software evolution is to acquire

sufficient knowledge about a software system so that it can evolve in a disciplined

manner. The essence of software evolution is mastering the main tasks that the legacy

system performs. The requirements of the software system must be viewed at a high

level in order for it to be improved or reused afterwards. Software evolution of a legacy

system involves identifying artifacts and understanding their relationships, restructuring

the legacy source code that is to be cleaned, eliminating the dead code, refining the

requirements of the system, and describing the main tasks of the legacy system at the

top level [86].

Software evolution of legacy systems results in many benefits [66,130]. It displays

hard-to-read code visually. During the process of software evolution of a legacy

software system, the original code and specification are difficult to read and understand.
Because a legacy system is vital to the company's business and it contains records that

are central to the business, software evolution of the source code will uncover them [25].

Software evolution of a legacy system starts from the existing source code. Displaying

the original code is the most important start point, no matter when it was designed and
how it was programmed. The programming language of the legacy code may be

obsolete at present time. The hardware within which the legacy software system is

executed may no longer be produced. But the legacy system contains information that is

central to the business organisation. It is important to display that hard-to-read source

code so as to analyse it [39].

19

Chapter 2 Backgroud

Software evolution identifies poorly written code early. Poorly written code is known

as spaghetti code. It is unstructured and extremely difficult to understand. The legacy

software system may contain GOTO statements in the programming language COBOL

and be confusing and unstructured. The spaghetti code is examined and modified

through the software evolution process and it becomes structured and object-oriented.

When a local system was designed using older techniques and because of the rapid

change of the users' environment the system has become a legacy one. It will be

difficult to maintain and modify but still valuable to the business. Software evolution of

a legacy system can help to uncover the original code. In the source code, many

spaghetti codes are identified through a software evolution approach. Those codes

hamper further use of the software system and they can easily present the risks. It is

necessary to identify those codes.

Software evolution promotes the following of new project standards. Because of

continuous environmental change, new business standards replace old ones and many

software systems are becoming legacy ones. The legacy system would have been

designed and programmed using old technologies, some of which may be out of date or

even harmful in the implementation of the software at the present time. The operational

environment, including the hardware and operational system, will have been changed as

a result of technological improvements. The legacy software system represents old
business standards. In order to be competitive and advanced, the company must adopt

new standards and improve its software systems by evolving them. This will result in

less time being consumed, thus saving money, and the company's position being

strengthened.

Software evolution improves the quality of the software. Software evolution of legacy

systems extends the functional life of the source code, develops the reusability and

maintainability of the software system, and leads to new approaches to adapting the

business [53].

2.3.5 Maintainer's Assistant

Maintainer's Assistant was developed at the University of Durham in the UK. The tool

is part of the BYLANDS project, which concentrates on reverse engineering of existing

code using formally-proven, semantic-preserving program transformations using the

new language, which is known as the Wide Spectrum Language (WSL) [128].

20

Chapter 2 Backgroud

WSL is used in program transformation work, which includes low-level programming

constructs. By working within a single formal language, the transformation of a legacy

system is able to prove that a program correctly implements a specification, or that a

specification correctly captures the behaviour of a program by means of formal

transformations in the language [10,37,134]. Martin Ward has utilised program

transformations in WSL to derive efficient algorithms from abstract specifications. One

such algorithm removes inefficient recursion from programs. One of the focuses of

Ward's work is to develop transformations that refine a program's specification into an

efficient algorithm [127,129].

WSL was originally designed to simplify proofs of program equivalence, which
formally defines syntax and semantics. It is based on the mathematical basis of set

theory and first order infinite logic, and every transformation has been rigorously

proved [9,78,97]. The transformations are represented by MetaWSL, an extension to

WSL that incorporates pattern matching, template filling functions, and statements for

moving within the AST, etc [6,27,29]. The user can select available transformations or

write his own transformations using MetaWSL. The use of infinite logic eliminates the

need to determine loop invariants or fixed points of functions when transforming loops

[25,31].

Using Maintainer's Assistant, the program code is first translated into WSL. An

automatic translator is provided for IBM 370 Assembler. Once in WSL, the user can

interactively apply transformations to the code or the assertions of WSL.

2.3.6 Refactoring Browser

Refactoring Browser is a useful tool, proposed by Roberts [114] at the University of

Illinois at Urbana-Champaign, that is implemented in VisualWorks and VisualAge for

the Smalltalk language. The success of the tool is based on its complete integration with

the Smalltalk environment. Refactoring Browser can be considered as an extension to

the Smalltalk development browser.

Refactoring Browser operates by first parsing the code to be refactored and creating an
Abstract Syntax Tree (AST). The available transformations are encoded as templates in

the form of ASTs, which may contain template variables. The transformation is

accomplished by a parse tree rewriter that matches the concrete AST with a template

AST and performs tree manipulation [60].

21

Chapter 2 Backgroud

Refactoring Browser implements the preconditions proposed by Opdyke, and it also

uses postconditions. Postconditions help to eliminate some of the analysis involved in

proving preconditions inside composite refactorings. Preconditions are implemented as

instances of class conditions that are created and evaluated before applying a

transformation. A condition, when evaluated, checks certain information from the

Smalltalk environment. Another component of this framework is a change manager,

which is responsible for recording which refactorings are performed [113,114]. This

allows for the implementation of undo and logging.

2.3.7 Cognitive Methods

A cognitive model describes the mental process or faculty of knowing a software

system. A hierarchy of cognitive design elements to support the construction of a

mental model explains how to improve program understanding by supporting the

actions of identifying software artifacts and the relationships between them, by

browsing code in delocalised plans, and by building abstractions [120]. These actions

comprise canonical reverse-engineering activities.

Cognitive methods rely mainly on domain knowledge. In order to jump from one level

up to another abstract level in the process of reverse engineering, one has to throw away

some information. This abstraction is creative work. In order to achieve correct and

practical abstraction, a knowledge base is necessary.

2.4 UML

2.4.1 Definition of UML

UML stands for Unified Modelling Language. The Unified Modelling Language is a

graphical language for visualising, specifying, constructing and documenting the

artifacts of a software-intensive system. It is a standard language for writing software

blueprints and appropriate for modelling ranging from enterprise information systems to

distributed Web-based applications and even to hard real-time embedded systems. It is a

very expressive language, addressing all the views needed to develop and then deploy

such systems.

UML is a non-proprietary, third generation modelling language. A model is a
22

Chapter 2 Backgroud

description of observed behaviour, simplified by ignoring certain details. Models allow

complex systems to be understood and their behaviour predicted within the scope of the

model. A model may be used as the basis for simulation. The Unified Modelling

Language is an open method used to specify, visualise, construct and document the

artifacts of a software-intensive system. It represents a compilation of best engineering

practices that have proven successful in modelling large, complex systems [57]. It

succeeds the concepts of Booch, OMT and OOSE by fusing them into a single, common

and widely usable modelling language [102].

UML is an approach to modelling both data and processes that combines the best

practices of many professionals in the industry. It is a modelling notation that eliminates

the need for different notations for different existing software development

methodologies. In addition, UML as a modelling notation has been officially adopted by

Object Management Group (OMG), the international standard organisation which

consisted of about 800 different organisations as of May, 2002. Many different CASE

tools support UML, and these can create both relational and system schemas for

implementing the modelled relationships. These tools can generate source code in more

than a dozen different languages and thus support the initial creation of the software that

implements the application's functionality. UML is also the basis of Microsoft's

repository and is being extended to support enterprise modelling [75,118].

2.4.2 History of UML

UML came about from the combined efforts of Grady Booch, with his Booch method,
James Rumbaugh with his Object Modelling Technique (OMT), and Ivar Jacobson,

with his Object-Oriented Software Engineering (OOSE) methods. Under the auspices of
Rational Software Inc, UML began to take shape in 1994 [99].

The first object-oriented analysis and design (OOAD) methods were published in the

late 80s and early 90s. In addition, three independent core UML methods, namely
Booch'91, object-oriented modelling and design [116], and object-oriented software

engineering [74], were published. The development of UML began in 1994. The first

draft, entitled Unified Method 0.8, was released in 1995. It merged the second editions

of Booch'91 and OMT-1, namely Booch'93 [20], and OMT-2 [117]. When OOSE was

merged into the Unified Method in 1996, the name was changed to the Unified

23

Chapter 2 Backgroud

Modelling Language (UML). The first official version, UML 1.0, was published in

1997, followed by version 1.1 and 1.3. Another attempt to combine different OOAD

methodologies was Fusion [38], which included concepts of OMT, Booch'91, and CRC

[133]. Now UML 2.0 has been released, containing thirteen modelling diagrams.

It is obvious that the separation of data and function in structured analysis and design

has resulted in a large number of weak points, whilst Object-Oriented Software

Engineering (OOSE) modifies many of those weaknesses by regarding a real world

system as a whole from an overall perspective. UML is a standard language for

modelling systems [75,118]. It is neither a software analysis and design process nor a

software development life cycle. It does not provide a standard process for developing a

software system. It is a mechanism for revealing the essence of the system's business

rules and ultimate design. It is a modelling notation for proper system modelling and
implementation with consistency and clarity. UML describes the static aspects of the

modelled system using object diagrams, class diagrams, collaboration diagrams,

component diagrams, package diagrams, composite structure diagrams and deployment

diagrams; the dynamic aspects of the system are depicted utilising use case diagrams,

sequence diagrams, timing diagrams, interaction overview diagrams, activity diagrams

and statechart diagrams [99].

2.4.3 Views of UML

The definition and functionalities of UML are presented here from two points of view:

static and dynamic. UML is neither a software process model nor a systems

development life cycle. It is merely a notation. UML is a mechanism for uncovering the

essence of a project's business rules and ultimate design. It provides a consistent model

for proper software implementation and consistent feedback so as to ensure that a

project sponsor understands the project [15].

In UML, there are static diagrams and dynamic diagrams that model the static and
dynamic aspects of the software respectively. The number and type of diagrams to be

used depend on the purpose and needs.

2.4.4 Properties of UML

As a collection of modelling methods, UML has a list of properties that satisfy the

24

Chapter 2 Backgroud

needs of legacy systems modelling [142].

" Simple navigation with minimum disorientation: UML is structured and includes

features to aid the user in navigating the modelling.

" More information presented: UML presents as much information as possible

without overwhelming the user.

" Low modelling complexity: UML is an organic group of existing modelling

techniques, containing thirteen diagrams that cover static and dynamic modelling. It

visualises the abstraction of system, reducing the complexity of modelling.

" Well-structured presentation: The thirteen UML diagrams each have their own

characteristics as a theoretical foundation. They are used graphically in modelling.

" Varying levels of detail: Details, abstraction, information content and type of
information vary so as to accommodate users' interests in the presentation of the

thirteen UML diagrams. The class diagram and component diagram, for example,
have different levels of modelling.

" Flexibility to change: Small changes of content do not cause major differences in

the modelling.

" Convenient interface: The user interface of UML is flexible and intuitive, and

avoids unnecessary overheads.

" Suitability for automation: UML has a good level of automation in order to make
the modelling of practical value.

" Desirable integration: UML is able to link the modelling and the original
information it represents.

2.4.5 UML Diagrams

UML 2.0 includes thirteen diagrams to improve its modelling quality (see Table 2.1).

Table 2.1: Static and Dynamic Diagrams of UML

UML Diagrams Modelling Analysis

class diagram Static modelling

25

Chapter 2 Backgroud

object diagram Static modelling

component diagram Static modelling

deployment diagram Static modelling

package diagram Static modelling

composite structure diagram Static modelling

communication diagram Dynamic modelling

timing diagram Dynamic modelling

use case diagram Dynamic modelling

sequence diagram Dynamic modelling

activity diagram Dynamic modelling

state machine diagram Dynamic modelling

interaction overview diagram Dynamic modelling

UML uses six diagrams to model the static parts of software system, which are the class
diagram, object diagram, composite structure diagram, component diagram, deployment

diagram and package diagram; and seven diagrams to model the dynamic parts of

software system, which are the sequence diagram, activity diagram, communication
diagram, timing diagram, interaction overview diagram, state machine diagram and use

case diagram. There are four new diagrams in UML 2.0 compared with UML 1.3:

package diagram, composite structure diagram, timing diagram and interaction

overview diagram.

2.4.6 Importance of Modelling Legacy Systems with UML

The need for maintaining, reusing and reengineering existing software systems has

increased dramatically over the past few years. Changed requirements need software

migration. Reusing and modifying legacy system are complex and expensive tasks

because of the time-consuming process of program comprehension. Software evolution

26

Chapter 2 Backgroud

aims at analysing the software and representing it in an abstract form so that it is easier

to understand for software maintenance, reuse and documenting purposes.

To evolve an existing legacy software system, both static and dynamic information are

useful. Static information describes the structure of the software when it is written in the

source code, while dynamic information describes the runtime behaviour. Both static

and dynamic analyses result in information about the software artifacts and their

relationships. The dynamic analysis also produces sequential event trace information

about concurrent behaviour, code coverage, and control management [5].

Software evolution is supported by producing design models from the legacy software.
The software evolution approach is useful when building legacy software into

high-level information. The extracted static models are utilised to get an overall picture

of the current state of the legacy software. The dynamic models are used to support

tasks such as debugging, finding dead code, and understanding the current behaviour of

the legacy software.

UML has static and dynamic modelling advantages. It satisfies the needs of software

evolution. At the same time, UML presents a visual description of the system and

makes the process of software evolution easily acceptable. Meanwhile, a large number

of tools support the transformation from UML diagrams to code, and UML facilitates

the reusability of software evolution, which is also helpful for forward engineering in

the process of reengineering.

The rise of new programming languages and paradigms has driven changes in current

software evolution approaches and methods. The present legacy systems are written in

COBOL, BASIC, C, FORTRAN, or PASCAL; in future, legacy systems will be written

in C++, Smalltalk, or Java. UML is capable of flexibility with object-oriented

programming software, and this has led to the long life and widespread use of UML.

Therefore, using UML is very important for software evolution.

2.5 Program Slicing

2.5.1 Introduction

Program slicing consists of part of a program that affects the values computed at some

27

Chapter 2 Backgroud

point of interest, which is termed a slicing criterion. Weiser first gave the formal

definitions and algorithms in this area [131,132]. A program is essentially a sequence

of statements and the slicing involves isolating a set of statements to be included in the

slice. The obtained new program is still an executable program and is a program slice.

2.5.2 Static and Dynamic Slicing

Program slicing comprises static and dynamic slicing. Dynamic slicing is defined as the

kind of isolation that may be for a specific input to the program, whilst static slicing is

for all possible inputs.

According to Weiser's introduction, slices are computed by computing consecutive sets

of transitively relevant statements based on data flow and control flow dependencies. In

this case, only statically available information is used for computing slices. So this type

of slice is referred to as a static slice. A typical method for computing static slices was
introduced by Ottenstein [100] in terms of a directed graph termed a Program

Dependence Graph (PDG), with vertices corresponding to statements and control

predicates, and edges corresponding to data and control dependencies. Another typical

method was suggested by Bergeretti and Carre [16] in terms of information-flow

relationships in a syntax-directed fashion.

Dynamic program slicing was proposed by Korel and Laski [82], which focuses on how

information flows obtain a particular value throughout a program. Only the

dependencies that occur in a specific execution of the program are taken into account. A

dynamic slicing criterion specifies the input and distinguishes between different

occurences of a statement in the execution history. Dynamic program slicing is

especially useful in debugging, with the specific wrong value as the input at the break

point of interest. A number of applications have been presented by Choi [34],

Duesterwald [50], Kamkar[79], Venkatesh [126], etc.

The main difference between static and dynamic slicing is that dynamic slicing assumes

a fixed input for a program, whilst static slicing contains a common input and it does

not make assumptions or designate specific values regarding the input.

2.5.3 Applications of Program Slicing

A number of hybrid applications using static and dynamic slicing methods have been

28

Chapter 2 Backgroud

suggested for solutions involving slicing programs containing procedures, unstructured

control flow, composite data types and pointers, and concurrency in terms of accuracy

and efficiency. Program slicing is applied in debugging and program analysis, program
differencing and integration, software maintenance, testing, tuning compilers, and other

situations.

2.5.3.1 Debugging and Program Analysis

Program slicing is fundamentally useful for debugging. Potentially, it allows for the
ignoring of many statements in the process of localising a bug. If a program computes

an erroneous value for a variable, only the statements in the slice that possibly

contributed to the computation of that value are considered. In this case, it is possible

that the error has occurred in one of the statements in the slice. And it is also probable

that more or different statements will show up in the slice than one would expect.
Program slicing shows whether a value is being used afterwards, detects the dead code

that does not affect the output of the program, reveals how the computations of values
depend on the earlier computations, and compares the intended program behaviour with

the actual program behaviour.

2.5.3.2 Program Differencing and Integration

Program differencing is the task of analysing an old and a new version of a program in

order to determine the set of program components of the new version that represent

syntactic and semantic changes. Such information is useful because only the program

components reflecting changed behaviour need to be tested. The key issue in program
differencing consists of partitioning the components of the old and new versions in such

a way that the two components are in the same partition only if they have equivalent
behaviours.

The program integration algorithm compares slices in order to detect equivalent
behaviours. Program slicing is used to restate the algorithm of program integration and

to prove properties such as associativity of consecutive integrations.

2.5.3.3 Software Maintenance

Program slicing is helpful in determining whether a change at some place in a program

will affect the behaviour of other parts of the program in software maintenance. Static

29

Chapter 2 Backgroud

slicing decomposes a program into a set of components, and show how each of those

components captures part of the original program's behaviour, and how changes in a

component can be merged back into the complete program in a semantically consistent

way.

2.5.3.4 Other Applications

Program slicing can also be used in program testing, for tuning compilers, and in other

circumstances.

2.6 Confining Analysis of Legacy Systems using UML

The analysis of legacy systems when using UML must be confined to the real world.

A legacy system implies software that is large, complicated, old, heavily modified,
difficult to maintain and old-fashioned. A legacy system is a computer system or

application program that continues to be used because of the cost of replacing or

redesigning it, despite its poor competitiveness and incompatibility with modem

equivalents. It is almost impossible to analyse a legacy system at any stage from every

point of view at every layer of the system, because of its large size and convoluted

structure, and the complexity of the UML. However, it is not necessary to do this.

When modelling a legacy system with UML, the information in the legacy system is

refined by using the UML diagrams [93]. Modelling has the goal of analysing the

legacy system in order that the software code be more understandable for maintenance,

evolution and reengineering purposes. Analysing a designated system to identify its

current classes and their relationships is an operation that extracts and creates system

abstractions and design information. Additional knowledge about the system is

produced, and legacy software code is analysed for the specific purpose [138].

Therefore, modelling a legacy system with UML is undertaken from a specific point of

view. A legacy system is large and complicated because of the use of old technologies.

It is almost impossible to depict all the information in a legacy software system from

every aspect at every layer to the most detailed extent. However, it is not necessary to

use all the thirteen UML diagrams to model a legacy system.

A legacy system has static and dynamic characteristics that display its functionality,

30

Chapter 2 Backgroud

representing, respectively, its structural and behavioural characteristics. The modelling

of a legacy system concentrates on the reflection and comprehension of the legacy

system at a high level. The main purpose is to understand the structure of the targeted

legacy system and its main tasks. It is necessary to use the appropriate UML diagrams

to model different legacy systems.

2.7 Model-Driven Architecture

2.7.1 Model

A model is a pattern, plan, representation (especially in miniature), or description

designed to show the main objects or workings of an object, system, or concept [58,95].

2.7.2 Model-Driven Engineering

Model-Driven Engineering (MDE) refers to the systematic use of models as primary

engineering artifacts throughout the engineering life cycle [55,56]. MDE can be applied

to software, system, and data engineering [58,59].

Model-driven Engineering (MDE) is the unification of initiatives that aim to improve

software development by employing high-level, domain-specific models in the

implementation, integration, maintenance and testing of software systems [58,59,95].

To overcome the abstraction barrier, MDE introduces models that capture designs at a
higher level of abstraction. Unlike technical documentation that has a fragile connection

to the implementation of a software system, models are an integral part of the software

evolution process. Developers represent designs using models that conform to an

appropriate metamodel, which are then automatically transformed into implementations.

Thus, with an appropriate modelling language, the effort of producing a new software

system decreases and maintenance is reduced to model maintenance.

Prominent among MDE initiatives is OMG's Model-Driven Architecture (MDA) [80,

95], in which software development is envisioned as a series of model transformation

steps, starting with a high level specification using a vocabulary that is familiar to the

practitioners of the domain in question, and ending with a platform-specific model
describing how, for example, the system makes use of certain J2EE features. Related

industrial efforts include Microsoft's DSL framework of software factories [63] for

31

Chapter 2 Backgroud

building stacks of domain-specific languages, and Jetbrain's Meta Programming System

for language-oriented programming.

Model-driven engineering is strongly related to the field of domain-specific languages

(DSLs) and generative programming [45,48,94]. A domain-specific programming

language (domain-specific language, DSL) is a programming language designed for,

and intended to be useful for, a specific kind of task. For instance, GraphViz is designed

to create images of graphs in a variety of formats, but GraphViz lacks the capability to

perform some basic tasks, e. g., accessing a network socket, receiving additional user

inputs, or manipulating strings. Creating a domain-specific language while developing a

system is a method of language-oriented programming. This is in contrast to a

general-purpose programming language, such as C, or a general-purpose modelling

language like UML.

While MDE promises to improve productivity and maintainability, widespread adoption

and scaling to large software systems requires research into the evolution of

model-based systems, the scope and expressivity of modelling languages, and the

interaction and integration of models. Software evolution is concerned with the

complete life cycle of software systems, from initial development to maintenance, and

includes introducing new features, improving old features, and repairing bugs. Whilst

the introduction of model-driven engineering brings advantages, it also calls for a new

style of evolution [43].

2.7.3 Model-Driven Architecture
Model-driven architecture (MDA) is a software design approach launched by OMG in

2001. MDA supports model-driven engineering of software systems, and provides a set

of guidelines for structuring specifications expressed as models [95]. MDA principles

can also apply to other areas such as business process modelling [80].

2.8 Summary

The research in this thesis focuses on the software evolution of domain-specific legacy

systems. It is based on the background that legacy systems are important and valuable,

that they have static and dynamic aspects, and software evolution is the instinctive

demand for software to correspond with changes of context and the new necessities of

32

Chapter 2 Backgroud

the real world. This chapter has also introduced the history and various aspects of UML.
Because of the large size and complexity of legacy systems, it is not necessary to

analyse legacy systems at any stage from every point of view or at every layer of the

system.

33

Chapter 3. Proposed Approach

Chapter 3

Proposed Approach

3.1 Introduction

Software evolution is an integral part of the software life cycle. Furthermore in the

recent years the issue of keeping legacy systems operational in new platforms has

become critical and one of the top priorities in IT departments worldwide. The research

community and the industry have responded to these challenges by investigating and

proposing techniques for analyzing, transforming, integrating, and porting software

systems to new platforms, languages, and operating environments. Through the

extraction of UML diagrams from legacy code, the transformation has realised the new

analysis platform on UML in order to be helpful on the comprehension of legacy

systems based on the general analysis language UML.

During software evolution, several different facets of the system need to be related to

one another at multiple levels of abstraction. Current software evolution tools have

limited capabilities for effectively visualizing and evolving multiple system facets in an
integrated manner. Many tools provide methods for tracking and relating different

levels of abstraction within a single facet. However, it is less well understood how to

represent and understand relationships between and among different abstraction
hierarchies, i. e. for inter-hierarchy relations. Often, these are represented and explored
independently, making them difficult to relate to one another. As a result, engineers are
likely to have difficulty understanding how the various facets of a system relate and
interact. In this thesis, an approach towards software evolution of domain-specific

legacy systems through a selected number of UML diagrams is described to enhance the

inter-hierarchy visualization capabilities of an existing software evolution. UML

visually helps the comprehension of legacy systems with its different layers of diagrams.

This visualization integrates - or "fuses" - facets of architecture, behavior and data of
legacy systems.

34

Chapter 3. Proposed Approach

At the beginning of the software development process, the ideal situation would be for

the software used in the design to be well-structured, the testing to be designed

alongside the code, the documentation to reflect the appropriate models and rationale,

and the changes in requirements and modifications of the software to be reflected in the

documentation. However, in the real world things are rarely ideal. After the software

system has been used in the specific area, business rules will change, the users of the

software system will be replaced, the techniques of developing software systems will
become outdated, and the hardware available for executing the software system will

prove insufficient to satisfy the user's needs. As teams change and documentation

becomes out of date, the code becomes the only guide to system structure and behaviour,

and maintenance and evolution tasks are hindered by the inability of developers to

comprehend system components and their interactions.

In order to facilitate modelling, development/environment-specific models are

introduced based on the characteristics and operations of their domain-specific legacy

systems. COBOL legacy systems have four procedure-based models: linear, branch,

joint and synthetic; HTML legacy systems have three link-based models: sequential,

cyclical, and compositive; and SQL legacy systems have three database-based models:

association, generation and composition.

Original COBOL code is sliced, and it is described according to class, composite

structure, sequence and interaction overview diagrams. An HTML legacy system is a
description of the structure, content, and links of web pages. It does not have dynamic

characteristics, does not need slicing, and is depicted with class, composite structure,

component and deployment diagrams. An SQL legacy system defines the methods for

creating and manipulating relational databases, and is described by a model that uses

class, composite structure and activity diagrams.

3.2 Comparison of Proposed Approach and

Traditional Studies

3.2.1 Traditional Studies

Nowadays there are many techniques for the software evolution of legacy systems and

35

Chapter 3. Proposed Approach

they all have drawbacks to a greater or lesser degree [1,18,19,22,44,46,64,77,98,

110,112].

" Formal methods have drawbacks in their practical applications to real world legacy

systems.

a) When using automatic translators from other programming languages and

presenting the original designing thoughts using formal methods, it is not clear

how algorithms present in conventional languages get translated and

manipulated in translators.

b) Those methods that apply to a program do not make the code more readable

and reusable when translated back into the original code.

c) Reusing code for other environments or programming languages is complicated.

It is not only a problem of the interface with the environment and the user, but

also a problem of coupling between the subsystem and the tools.

" Using models in software evolution should integrate both formal and cognitive

methods of software evolution. Using models is not only founded on theoretical

work, but also based on domain knowledge.

" UML has proved to be a good platform for modelling real systems. However, in

practice, it is not necessary to use all of its thirteen diagrams to model those legacy

systems. Some of the UML diagrams are similar. For example, the class diagram is

the most fundamental of the diagrams for modelling the structure of legacy systems.
An object has the same characteristics as the corresponding class. A class is the

abstraction of the common characteristics of the object group. Most of the

important characteristics of an object are reflected in the corresponding class. If the

class diagram is used in modelling, the object diagram is superfluous. Therefore,

when using UML in the designated area, it should be edited so as to be suitable for

systems modelling.

Although there are many approaches towards software evolution starting from legacy

systems, nowadays they are mainly approached through program slicing techniques to

want or try to acquire UML diagrams from legacy code (Figure 3.1), some of which are

not able to obtain UML diagrams.

36

Chapter 3. Proposed Approach

Legacy Code Slicing ºi UML

(a) Traditional Software Evolution Techniques

Domain
Knowledge

V
Development
Environment- Rules

Specific Models

Restructured Pa rt Legacy Systems Parsing
Code Slicing

UML Di rams
. -C

Class Diagrams

Sequence Diagrams
COBOL Legacy System --- - COBOL Code Model COBOL Program Slicing

Composite Structure Diagrams

Interaction Overview Diagrams

Class Diagrams

_
Composite Structure Diagrans

HTML Legacy System -- HTML Code Model -- - HTML Not Needing Slicing
--- Component Diagrams

Deployment Diagrams

Class Diagrams

SQL Legacy System ---- SQL Code Model SQL Program Slicing - Activity Diagrams

--- Composite Structure Diag-ms

(b) Proposed Approach

Figure 3.1: Comparison of Proposed Approach and Traditional Studies

Restructuring code is intended to make legacy code cleaner and easier to be understood.

In the legacy code, there may be dead code that is useless to the execution of the tasks.

That dead code maybe existed at the stage of the development. Or with the change of

the environment, especially with the improvement of the hardware, some ways of

inputting or outputting data have been modified; or some ways of storing data have

been improved. Therefore the corresponding code become useless; on some occasions it

even results in the failure of the system. Consequently that dead code must be

recognised and removed from the legacy code.

37

Chapter 3. Proposed Approach

3.2.2 Proposed Approach

3.2.2.1 Development/Environment-Specific Models

A model is a representation or description designed to show the structure of a system. It

is a study of a miniature of the actual system. A model enables IT to be more efficient at

reacting to business users' requests for new systems or changes to existing ones. A

model makes it possible to build an application once and use it many times.

A model creates an IT infrastructure that can react quickly to business changes, rather

than it being a constraint to the business. A model gives the users immediate answers to

the questions that arise. A model makes the IT more flexible and quicker to react to

changes in the business.

One of the important abilities of a model is to reduce applications to their basic

components, so that parts of them can be reused or dropped by various divisions of the

company as needed. It shares various pieces of functionality across applications and
builds a framework. It is attractive both to IT professionals and business managers. It is

convenient when engineers are trying to slice and dice the functionality into discrete

elements of business functions.

A model has the ability to help break down the applications supporting various products
into pieces that can be saved, or discarded as duplicates, in order to integrate the users'

new products with their existing products, so that there will be no overlap.

A development/environment-specific model is a representation designed to present an
internal structure or a behavioural description, simplified by ignoring certain details of a
domain-specific legacy system that is based on the development environment. It allows
domain-specific software systems to be understood and their behaviour predicted within

the scope of the development environment. It is language-based, and contains the

structural and operational information of working flow or executable functions. It

integrates formal methods and cognitive methods of software evolution.

The proposed approach is based on development/environment-specific models. Their

differences are based on the characteristics and operations of different domain-specific

legacy systems. The development/environment-specific model of a COBOL legacy

38

Chapter 3. Proposed Approach

system is a procedure-based model; the development/environment-specific model of an
HTML legacy system is link-based; and the development/environment-specific model

of an SQL legacy system is database-based.

3.2.2.2 Slicing

Based on Weiser's program slicing approach, slices are computed by computing

consecutive sets of transitively relevant statements based on their data flow and control
flow dependencies [131,132]. Program slicing concerns the parts of a program that

affect the values computed at some point of interest. It comprises static and dynamic

slicing.

A number of hybrid applications, using both static and dynamic slicing methods, have

been suggested for solutions involving the slicing of programs containing procedures,

unstructured control flow, composite data types and pointers, and concurrency, in terms

of accuracy and efficiency [2,17,76,79,82,123,126]. Program slicing is applied in

debugging and program analysis, program differencing and integration, software

maintenance, testing, tuning compilers, and other situations.

COBOL and SQL legacy systems involve data flow and control flow, and program

slicing techniques are suitable for modelling them. However, HTML legacy systems

comprise the presentation of web and data formats, and they do not focus on data flow

or control flow dependencies. They present data under a designed format, especially

with tables and frames, and offer a common platform for the different data. So program

slicing techniques are not suitable for analysing HTML legacy systems.

3.2.2.3 Using Selected UML Diagrams

UML is regarded as the new modelling standard because most of the currently existing

methods have been integrated within UML. As a theory, UML is sufficient for

modelling real systems. It is the integration of many different methods comprising
different aspects and different layers. It is necessary for UML to be comprehensive
because it is a general modelling theory and it should have the capability of being

suitable for different systems. But some of the UML diagrams are similar or even

redundant in some ways and in some areas, especially in software systems.

In practice, UML has been used to deal with the given problem. It is not easy to

39

Chapter 3. Proposed Approach

comprehend the systems because of their complexity, and the influence of different

aspects of the systems. Different understandings are required from different views. So it

is difficult to model the systems without considering the given task.

Therefore, when using UML in the designated area, it should be edited so as to be

suitable for the modelling systems in question. It is not necessary to use all of its

thirteen diagrams to model those legacy systems.

Consequently, in this thesis, four UML diagrams, which are the class, composite

structure, sequence and interaction overview diagrams, are used to model COBOL

legacy systems; four UML diagrams, which are the class, composite structure,

component and deployment diagrams, are used to model HTML legacy systems; and

three UML diagrams, which are the class, composite structure and activity diagrams, are

used to model SQL legacy systems.

3.2.2.4Two Major Stages of UML Extraction

There are two major stages of UML extraction from domain-specific legacy systems as
being structural and behavioural described in this thesis.

The structural stage of UML extraction in this thesis contains class realisation. The

classification of classes from COBOL legacy system is two, which are procedure class

and variable class. Every procedure in COBOL legacy system is defined as one

procedure class. Variable class is based on the program slicing techniques with two

stages of pseudo class and real class extraction from COBOL legacy system. The

variabl of the sliced criterion is defined as the class name, and the variables contained in

its slicing criterion are defined as the attributes of that variable class. Because the

behavioural analysis of domain-specific legacy systems is behind the analysis of

structural analysis, the operations in variabl class are not described. The classification of

classes of HTML legacy system is based on the web pages and their blocks. The

classification of SQL legacy system is two, which is procedure class and database class.

The behavioural stage of UML extraction in this thesis focuses on the operations and

activities of domain-specific legacy systems. When understanding the operations and

activities of domain-specific legacy code, their preconditions and post-conditions must
be presented from the source code. Then those operations and activities are ordered

40

Chapter 3. Proposed Approach

according to the time and sequence they are executed by. At last, the operation and

activity arraies are presented. Selected UML diagrams describing the dynamic aspect of
domain-specific legacy systems are realised based on those operation and activity

arraies.

3.2.2.5 Advantages of Proposed Approach

The proposed approach overcomes the disadvantages of traditional studies and gains

many benefits.

The proposed approach overcomes the disadvantages of traditional studies by using

development/environment-specific models. Modelling enables IT to be more efficient in

reacting to business users' requests for new systems or changes to existing ones, and it is

able to build applications once and use them many times. It satisfies the users by giving

them immediate answers to questions as they arise. It enables IT to be nimbler and

quicker in reacting to business changes, rather than having IT be a constraint on the

business. Modelling has the ability to help break down the applications supporting

various products into pieces that can be saved or discarded as duplicative.

The proposed approach is based on development/environment-specific models. They are

different for different legacy systems. The proposed development/environment-specific

model of COBOL legacy systems is based on the characteristics and operations of

COBOL, and is the linear, branch, joint, and synthetic procedure-based model; the

proposed development/environment-specific model of HTML legacy systems is the

sequential, cyclical, and compositive link-based model; and the proposed

development/environment-specific model of SQL legacy systems is based on the

characteristics and operations of SQL, and is the association, generation and

composition database-based model.

The proposed approach presents the differences in applying program slicing techniques

between COBOL and SQL legacy systems on the one hand, and HTML legacy systems

on the other. The first two types can be sliced, but not the last one. The traditional

studies sliced legacy code with program slicing techniques based on Weiser's approach.
However, the slices are computed by computing consecutive sets of transitively relevant

statements based on data flow and control flow dependencies. COBOL and SQL legacy

systems involve data flow and control flow, and program slicing techniques are suitable

41

Chapter 3. Proposed Approach

for modelling them, whilst HTML legacy systems are the presentation of web and data

formats, and do not focus on data flow or control flow dependencies, and program

slicing techniques are not suitable for analysing HTML legacy systems.

The proposed approach does not use all of its thirteen diagrams to model
domain-specific legacy systems. Traditional studies presented all the UML diagrams.

Some of the UML diagrams are similar or even redundant in some ways and in some

areas, especially in software systems. When using UML in the designated area, it should
be edited so as to be suitable for the given modelling systems. The proposed approach

uses four UML diagrams, which are the class, composite structure, sequence and

interaction overview diagrams, to model COBOL legacy systems; uses four UML

diagrams, which are the class, composite structure, component and deployment

diagrams, to model HTML legacy systems; and three UML diagrams, which are the

class, composite structure and activity diagrams, to model SQL legacy systems.

3.3 Parsing Legacy Systems

3.3.1 Parsing Original Code

In order to find the judgement conditions of the models, the first step is to parse the

domain-specific legacy systems. Those domain-specific legacy systems have their own

models to show their structures and operational processes.

In computer science and linguistics, parsing is the process of analysing a sequence of

tokens in order to determine its grammatical structure with respect to a given formal

grammar. It is sometimes termed a syntactic analysis. A parser is the component of a

compiler that carries out this task.

The first stage is token generation, or lexical analysis, by which the input character

stream is split into meaningful symbols defined by a grammar of regular expressions.

The next stage is parsing or syntactic analysis, which is checking that the tokens form

an allowable expression. This is usually done with reference to a context-free grammar

which recursively defines components that can make up an expression and the order in

which they must appear.

42

Chapter 3. Proposed Approach

The final phase is semantic parsing or analysis, which is working out the implications of

the expression just validated and taking the appropriate action.

3.3.2 Procedure-Based Models of COBOL Legacy Systems

The development/environment-specific models for COBOL legacy systems correspond
to the procedure relationships in COBOL legacy systems. The procedure relationship
describes the calling or being-called relationship between two procedures in COBOL

legacy systems. It has four types: one to one, one to many, many to one, and many to

many.

In COBOL legacy systems, all the procedure relationships are included in the four types.

All the procedures call or are called in the following statements:

"PROGRAM-ID procedure-name",

"PERFORM procedure-name",

"GOTO procedure-name".

By searching those statements in COBOL legacy systems through the key works
"PROGRAM-ID", "PERFORM" and "GOTO", all the procedures are identified

including their calling or being called relationships of those four types with removing

their redundancy.

The proposed development/environment-specific model for COBOL legacy systems is

based on the characteristics and operations of COBOL, and is a procedure-based model

that is a graph describing the calling and being-called relationships of those procedures
in COBOL legacy systems. It has four types: linear, branch, joint, and synthetic

procedure-based models. The procedure-based model entity for COBOL legacy systems
is a procedure.

3.3.3 Link-Based Models of HTML Legacy Systems

The development/environment-specific models for HTML legacy systems correspond to

the web relationships in HTML legacy systems. The web relationship depicts the
linking or being-linked relationship between two web pages in an HTML legacy system.

43

Chapter 3. Proposed Approach

It has two types: ordinal and loop.

In HTML legacy systems, all the web relationships are included in the two types

mentioned above. The statements in HTML legacy systems that contains the web links

are described as:

"<A> linking-web-name",

"<BASE> linking-web-name",

"<LINK> linking-web-name".

Based on the key words "<A>", "<BASE>" and "<LINK>", all the candidates

containing web links relationships are identified. With removing the redundancy of the

webs, the webs and their linking or being linked relationships are confirmed. It

composes the base of the development/environment-specific model of HTML legacy

systems.

The proposed development/environment-specific model for HTML legacy systems is a

link-based model based on HTML operations that are divided into five groups. It

comprises a graph that describes the importing or imported relationships of those webs

in HTML legacy systems. It has three types: sequential, cyclical, and compositive

link-based models. The link-based model entity for HTML legacy systems is a web

page.

3.3.4 Database-Based Models of SQL Legacy Systems

The relationships between the databases in SQL legacy systems are mainly of two types:

generation and association.

In SQL legacy systems, all the database relationships are included in those two types

mentioned above. The statements in SQL legacy systems probably containing databases

are described as:

"USE database-name",

"CREATE database-name",

44

Chapter 3. Proposed Approach

"ALERT database-name",

"DROP database-name".

By searching the key words "USE", "CREATE", "ALERT" and "DROP", all the

candidates of statements in SQL legacy systems containing the databases and their

relationships are identified. After removing the redundancy of the databases, the pure
databases and their relationships in SQL legacy systems are confirmed. It produces the

base of the development/environment-specific model of SQL legacy system.

The proposed development/environment-specific model for SQL legacy systems is

based on the characteristics and operations of SQL, and is a database-based model

which is a graph that describes the database relationships in SQL legacy systems. The

three database-based models for SQL legacy systems are association, generation and

composition. The database-based model entity for SQL legacy systems is a database.

3.4 Suitability of Program Slicing Techniques

3.4.1 Slicing COBOL Legacy Systems

According to Weiser's introduction, slices are computed by computing consecutive sets

of transitively relevant statements based on data flow and control flow dependencies.

Program slicing consists of the computed part of a program that affect the values

computed at some point of interest. It comprises static and dynamic slicing. Dynamic

slicing is defined as the isolation that may relate to a specific input to the program,

while static slicing relates to all possible inputs.

Program slicing is helpful in determining whether a change at some point in a program

will affect the behaviour of other parts of the program in software maintenance. Static

slicing decomposes a program into a set of components, and shows how each of those

components captures part of the original program's behaviour, and how changes in a

component can be merged back into the complete program in a semantically consistent

way.

Because COBOL legacy systems involve data flow and control flow dependencies, they

45

Chapter 3. Proposed Approach

are suitable for being modelled by the use of program slicing techniques.

3.4.2 No Need to Slice HTML Legacy Systems

The main characteristic of HTML legacy systems is the presentation of web and data

formats, which is the biggest restriction and most disctinctive feature when compared

with other programming languages. HTML does not focus on data flow or control now

dependencies. It is the best tool for presenting data under a designed format, especially

with tables and frames, and is the common platform for different data types that have

few variables.

Consequently, program slicing techniques are not suitable for analysing HTML legacy

systems.

3.4.3 Slicing SQL Legacy Systems

SQL is a common platform for different relational databases, giving a common base for

the usage and development of databases, and providing a common interface for different

databases. The description of databases is an important task of SQL.

SQL has procedures, including many executable procedures. These procedures provide

the control and searching functions of the databases. SQL legacy systems have some

variables and execute the tasks of judging, looping, and computing.

Therefore, program slicing techniques are suitable for analysing SQL legacy systems.

3.5 Unnecessary to Use All UML Diagrams when

Modelling Legacy Systems

3.5.1 Completeness of UML

Since the creation of UML, it has been regarded as the new modelling standard because

most of the currently existing methods have been integrated within UML. UML allows
information to be exchanged between different tools and it replaces these methods. As a
theory, UML is all that is needed for modelling real systems. It is the integration of

46

Chapter 3. Proposed Approach

many different methods in different views from different layers. It is necessary for UML

to be comprehensive because it is a universal modelling theory and it should have the

capability of being suitable for different systems. It therefore contains a certain number

of concepts which are similar or even redundant in some ways and in some areas,

especially in software systems. For'example, it is very hard to determine whether it is

correct for one element of original code written in one programming language to be

described as the OBJECT, or CLASS, or COMPONENT. A large number of definitions

are presented that are not needed in the specific area but only for theoretical reasons.

Therefore, when using UML in the designated area, it should be edited so as to be

suitable for the modelling system in question. It is not necessary to use all of its thirteen

diagrams to model those legacy systems.

3.5.2 Differences between Modelling Tasks

The comprehensive nature of UML as a modelling theory makes the use of UML

widespread, and suitable for different modelling tasks. In practice, for a given modelling

task in a given modelling area, UML is well placed to deal with the given problem. Full

understanding of complex systems is difficult, and it is influenced by different aspects

of a system that could be its structure, behaviour, execution process, error detection, etc.

Each of those requires a different understanding from a different point of view [11]. So

it is difficult to model a system without considering the given task. Therefore, when

modelling legacy systems, the research in this thesis identifies the most appropriate

modelling approach using UML for domain-specific legacy systems. Only some of

those thirteen UML diagrams are selected to be used to model these systems.

3.6 Extracting UML Diagrams from COBOL Legacy

Systems

3.6.1 UML Class Diagram

With respect to the slicing approach of Jiang [76] and Agrawal [2], some definitions are

given below concerning the original COBOL program and its criterion for slicing.

47

Chapter 3. Proposed Approach

The call is defined as a procedure or function call in a programming language, and is

divided into four groups-root program elements, leaf program elements, node program

elements, and isolated program elements. The original code contains "GO TO" lines

written in the COBOL language that make the source code become spaghetti code. In

order to make it necessary to slice the program, the statements including GOTO and

corresponding labels are contained in the slice. The original code is composed of

statements, which are classified into three groups. After acquiring all the classes of leaf

program elements, the node program elements of program are analysed until all the

pseudo classes of the root program element are generated.

The slicing algorithm is presented. From the information in the tables and the

definitions of the programming slices within the iterating conditions of program slicing,

the slice criterion of the original program is acquired. All the variables in the slice S,:

with respect to the slice criterion C= (p, V) are composed of the relevant object set, and
its kernel is the variable V. After checking the validity and redundancy of the pseudo

classes, the real classes are acquired. The relationships between two or more classes are
displayed. Finally, three layers of class diagrams of COBOL legacy code, which are the

leaf class diagram, node class diagram, and root class diagram, are realised.

3.6.2 UML Composite Structure Diagram

Composite structure diagrams are composed of parts (classes with a defined role in the

context of the enclosing composite), and connections (associations with limitations on

potential links in the context of the enclosing composite). This diagram is used to show

the hidden internal details of a class.

3.6.3 UML Sequence Diagram

Based on the program slicing theorem, every parameter of the original code P is sliced

and forms a pseudo object set. An algorithm is introduced to find the real object set.

It is important to identify who is going to be using the legacy code directly. This should
be done from outside the legacy code that is deeply involved in the human interaction

and closely related to the domain knowledge. Candidates for the actors include the

people who interact with the code, the hardware that is external from the code, and the

48

Chapter 3. Proposed Approach

other systems that have interaction with that code.

When understanding the operations of legacy code, the preconditions and

post-conditions of each operation must be presented. Moreover, it is fundamental to

order the operations of the legacy code in sequence diagrams according to the time and

sequence they are executed by. The objects from which and to which the information is

sent are recorded. The sequential array is the basis for the knowledge theory and is

transferred into the messages which will form the new message array. A sequence

diagram is described that has the vertical dimension representing time and the

horizontal dimension representing object interaction,.

3.6.4 UML Interaction Overview Diagram

The UML interaction overview diagram comprises three layers: leaf, node, and root.
During control flow and other operations, a fork node, joint node and action node are
introduced. In order to clearly describe the action, a number that is termed an action
layer is used. After the basic control structure of a leaf program element is formed, its

leaf interaction overview diagram is realised, then the node and root interaction

overview diagrams are produced.

3.7 Extracting UML Diagrams from HTML Legacy

Systems

3.7.1 UML Class Diagram

The statements in HTML code are composed of five groups: text, image, link, frame,

and table. Each group contains different operations. Three different types of web link

layer are distinguished, which are root web elements, leaf web elements and node

program elements. A link-based model is a graph used to describe the importing or
imported relationships of those webs in program P, indicated as PG. It is composed of

nodes and lines. The sequence of the link-based model PG is top-to-bottom. The web

that the first node represents links the webs represented by the next nodes. The sequence

of the next nodes is the sequence being imported in the first web.

49

Chapter 3. Proposed Approach

In response to the three web layers, three class diagrams are introduced, which are leaf,

node, and root class diagrams. The analysis of an HTML legacy system starts from the

root program element. HTML code has five types of presentation: text, image, table,

frame, and link. So the corresponding five class types are defined. Based on an

algorithm, the class diagrams of HTML legacy systems are realised.

3.7.2 UML Composite Structure Diagram

The composite structure diagram is used to show hidden internal details of a class

produced from an HTML legacy system. This diagram is used to describe these five

classes: text, image, table, frame, and link.

3.7.3 UML Component Diagram

An HTML legacy system depicts web pages. It uses web browsers, databases,

application systems, etc. The component diagram of a legacy HTML system is used to

describe the HTML legacy system.

3.7.4 UML Deployment Diagram

An HTML legacy system is the presentation of web usage. It uses web browsers, such

as Internet Explorer and Netscape, which are allocated in the client; databases, such as

FoxPro and Oracle, which are stored in the database server; and application systems,

such as search engines and email, which are deposited in the user client. The UML

deployment diagram is used.

3.8 Extracting UML Diagrams from SQL Legacy

Systems

3.8.1 UML Class Diagram

The Structured Query Language (SQL) comprises one of the fundamental building

blocks of modem database architecture. SQL defines the methods used to create and

manipulate relational databases on all major platforms. It is a full-featured relational

50

Chapter 3. Proposed Approach

database management system that offers a variety of administrative tools to ease the

burdens of database development, maintenance and administration.

The operations in SQL code are divided into four groups-data, procedure, control, and

safety. The data group is the set of operations in SQL code that deals with the databases,

tables, views, lines and columns of tables, and single elements of tables. The procedure

group is the set of operations in SQL code that deals with the procedures and functions

of SQL. The safety group is the set of operations that improves the safety of the

database in SQL code. The control group is the set of operations that controls the data

flow and checks the conditional environment.

Procedures are layered based on the calling relationships. They are classified into three

groups-root, node, and leaf. The class diagrams of SQL legacy systems are divided

into three-root, node, and leaf.

The databases that are used in SQL code are regarded as classes, and the procedures are
defined as the node or leaf class. With the help of the procedure layers and a graph,

three class diagrams are produced.

3.8.2 UML Composite Structure Diagram

The database class of legacy SQL code is composed of name, table, size, etc. The

procedure class is composed of name, used database, created database, deleted database,

changed database, etc. The composite structure diagram presents those SQL classes in

detail.

3.8.3 UML Activity Diagram

An activity diagram shows the flow from activity to activity. It is essentially a flowchart,

showing the flow of control from activity to activity. A single code operation that

belongs to the group that is exchanging information is defined as a single action. The

control operations that produce the judgment form the control graph.

Those actions that execute a single function are regarded as a single activity, and the

SQL legacy code produces the activity array. With the help of the control graph, a leaf

activity diagram is produced with the nodes that represent the activity. The node and

51

Chapter 3. Proposed Approach

root activity diagrams are then realised.

3.9 Summary

In this chapter, the proposed approach towards software evolution of domain-specific

legacy systems has been described.

The proposed approach establishes the development/environment-specific models. In

support of the development/environment-specific models, COBOL legacy systems have

four linear, branch, joint, and synthetic procedure-based models; HTML legacy systems
have sequential, cyclical, and compositive link-based models; and SQL legacy systems
have association, generation and composition database-based models. Program slicing

techniques are suitable for modelling COBOL and SQL legacy systems, but not for

HTML legacy systems. Four UML diagrams are used to model COBOL legacy systems,
four UML diagrams are used to model HTML legacy systems, and three UML diagrams

are used to model SQL legacy systems.,

52

Chapter 4. COBOL Development/Environment-Specific Models

Chapter 4

COBOL

Development/Environment-Specific

Models

4.1 Introduction

Before analysing COBOL legacy systems, it is necessary to present the operations and

characteristics of COBOL, and especially its importance. In this chapter, these issues

are described in detail. Because a COBOL legacy system has parameters and is used to

control the procedures of data files and compute the data values, it has behavioural

characteristics.

In order to depict the structure of a COBOL legacy system, the procedure relationship is

presented, with the calling or being-called relationship between the two procedures. The

model of a COBOL legacy system is a procedure-based model which is a graph that

describes the calling and being-called relationships of those procedures in a COBOL

legacy system. There are four types of procedure-based model: linear, branch, joint, and

synthetic.

4.2 Rationale of Software Evolution of COBOL

Legacy Systems

The proposed approach parses COBOL legacy systems and presents all the candidates

of the statements containing the procedures in COBOL legacy system. Then it computes

the model entities and their relationships from those candidates and displays them. At

last, it removes the redundancy of those model entities and shows the pure model

entities of COBOL legacy system. Based on the model conditions of COBOL legacy

53

Chapter 4. COBOL Development/Environment-Specific Models

systems (4.9) to (4.17) in Chapter 4, the model of COBOL legacy sytem is acquired.

In understanding static part of COBOL legacy system, the classification of classes from

COBOL legacy system is two, which are procedure class and variable class. Every

procedure in COBOL legacy system is defined as one procedure class. Variable class is

based on the program slicing techniques with two stages of pseudo class and real class

extraction from COBOL legacy system. The variabl of the sliced criterion is defined as

the class name, and the variables contained in its slicing criterion are defined as the

attributes of that variable class. Because the behavioural analysis of domain-specific

legacy systems is behind the analysis of structural analysis, the operations in variabl

class are not described. The classification of classes of HTML legacy system is based

on the web pages and their blocks. The classification of SQL legacy system is two,

which is procedure class and database class.

In understanding dynamic part of COBOL legacy system, its operations are described.

When extracting the operations of COBOL legacy system, their preconditions and

post-conditions are presented from the source code. Then those operations are ordered

according to the time and sequence they are executed by. At last, the operation arraies

are presented. Sequence and interaction overview diagrams are realised based on those

operation arraies.

4.3 COBOL Legacy Systems

4.3.1 COBOL

COBOL stands for COmmon Business Oriented Language. As the expanded acronym
indicates, COBOL is designed for developing business, typically file-oriented

applications [68]. Its parameters include table, record, file, etc. It is not designed for

writing systems programs. For instance, it would not be appropriate to develop an

operating system or a compiler using COBOL.

4.3.2 A Brief History of COBOL

COBOL is a high-level programming language that has worldwide popularity. It was
first developed by the CODASYL Committee (Conference on Data Systems Languages)

in 1960. Since then, responsibility for developing new COBOL standards has been

54

Chapter 4. COBOL Development/Environment-Specific Models

assumed by the American National Standards Institute (ANSI). Three ANSI standards
for COBOL have been produced: in 1968,1974 and 1985 [69]. A new COBOL

standard, introducing object-oriented programming to COBOL, is due within the next
few years.

For more than four decades, COBOL has been the dominant programming language in

the business computing domain. In that time it has seen off the challenges of a number

of other languages, such as PLI, Algol68, Pascal, Modula, Ada, C, and C++. All these

languages have found a niche but none has yet displaced COBOL [122].

4.3.3 Characteristics of COBOL

4.3.3.1 Wide Usage

COBOL has its own special location in the programming world. COBOL's dominance

is underlined by the detailed reports from the Gartner Group [42].

"In 1997 they estimated that there were about 300 billion lines of computer

code in use in the world. Of that they estimated that about 80% (240 billion

lines) were in COBOL and 20% (60 billion lines) were written in all the other

computer languages combined. "

"In 1999 they reported that over 50% of all new mission-critical applications

were still being written in COBOL, and their recent estimates indicate that

through 2004-2005 15% of all new applications (5 billion lines) will be

developed in COBOL while 80% of all deployed applications will include

extensions to existing legacy (usually COBOL) programs. "

"Gartner estimates that in 2002 there were about two million COBOL

programmers worldwide compared to about one million Java programmers

and one million C++ programmers. "

Software workers are often surprised when presented with the evidence for COBOL's

dominance in the marketplace. The hype that surrounds some computer languages

might persuade programmers to believe that most of the production business

applications in the world are written in Java, C, C++ or Visual Basic, and that only a

small percentage are written in COBOL. In fact, the reverse is actually the case.

55

Chapter 4. COBOL Development/Environment-Specific Models

4.3.3.2Long History

COBOL was produced in 1960, and it is still used now with three standards-COBOL
1968, COBOL 1974, and COBOL 1985. It has been used for more than four decades. It

is also used all over the world. There was much useful information stored in COBOL

software in the early days.

4.3.3.3Large Investment

COBOL applications cost many millions of dollars to produce, they are tailored to a

specific company, encapsulate the business rules of that company, and only a limited

number of copies of the software may be in use. A good example of this kind of

application is the DoD MRP II system [42]. This system is "used to manage almost
550,000 spare and repair parts and equipment items with an inventory value of $28

billion. The system runs on Amdahl mainframes at multiple locations throughout the

U. S. and contains over 4,000,000 lines of COBOL code. "

In the horizontal software market, applications may still cost millions of dollars to

produce but thousands, and in some cases millions, of copies of the software are in use.

As a result, these applications often have a very high profile, a short life span, and a

relatively low per-copy replacement cost. The Microsoft Office suite (Word, Excel, and

Access) is an example of an application in the horizontal software market. Because of

the highly competitive nature of the marketplace, considerations of speed, size and

efficiency often make languages like C or C++ the language of choice for creating these

applications.

Applications written for the vertical market, on the other hand, often have a low profile
(because they are usually written for use in one particular company), a very high

per-copy replacement cost, and, consequently, a very long lifespan. For example, the

cost of replacing COBOL code has been estimated at approximately twenty-five dollars

($25) per line of code. At this rate, the cost of replacing the DoD MRP II system

mentioned above, with a system written in some other language, would be some one
hundred million dollars ($100,000,000). The importance of ease of maintenance often

makes COBOL the language of choice for these applications.

The high visibility of horizontal applications like Microsoft Word or Excel persuades

programmers that the languages used to write these applications are the market leaders.

56

Chapter 4. COBOL Development/Environment-Specific Models

But however many copies of Excel are sold, it is just a single application produced by a
limited number of programmers. Many more programmers are involved in coding or

maintaining one-off, "bespoke" applications. These programmers generally write their

programs in COBOL.

As exemplified by the DoD MRP II example above, COBOL applications are often very

large. Many COBOL applications consist of more than 1,000,000 lines of code - with

6,000,000+ line applications not considered unusually large in many organisations.

COBOL applications are widely used and long-lived. The huge investment in creating a

software application consisting of some millions of lines of COBOL code means that

the application cannot simply be discarded when some new programming language or

technology appears. As a consequence, business applications that are between 10 and 30

years old are common. This accounts for the predominance of COBOL programs in the

year 2000 problem (12,000,000 COBOL applications vs. 375,000 C and C++

applications in the US alone). Twenty years ago, when programmers were writing these

applications, they just didn't anticipate that they would last into the new millennium

[143].

4.3.3.4Location

COBOL applications often run in critical areas of business. For instance, over 95% of

finance/insurance data is processed with COBOL.

COBOL applications often deal with enormous volumes of data. Single production files

and databases measured in terabytes are not uncommon.

According to research firm Gartner, there are roughly 30 billion COBOL transactions

processed each day. The issue is the expense associated with running these systems.

IBM admits that at least $1.5 trillion has been spent by enterprises to create

COBOL/CICS applications, and the expense associated with maintaining those

applications is increasing rather than decreasing.

4.3.3.5 Connotations

COBOL applications contain important information in the commercial area [107].

Because of its long history and important locations, many COBOL software systems are

57

Chapter 4. COBOL Development/Environment-Specific Models

vital to business companies and organisations. The connotations are critical to the

existence of those users.

4.3.3.6Importance

The following COBOL facts are of importance in understanding the wide usage and
long life of COBOL [125,142].

" "75% of all business data is processed in COBOL. - Gartner Group"

0 "There are between 180 billion and 200 billion lines of COBOL code in use

worldwide. - Gartner Group"

" "The use of COBOL is growing by over a billion lines per year. - Gartner Group"

" "15% of all new applications (5 billion lines) through 2005 will be in COBOL. -
Gartner Group"

" "CICS transaction volume (such as COBOL-based ATM transactions) grew from

20 billion per day in 1998 to 30 billion per day in 2002. - The COBOL Report"

" "Replacement costs for COBOL systems, estimated at $25 per line, are in the
hundreds of billions of dollars. - Tactical Study Group"

" ""Integration with Legacies" is the number one concern of IT managers in 2003. -
Gartner Group. "

" ""Where are we going to get the bodies? " is the primary question from User

Groups. - Microfocus International"

" "There are over 90,000 COBOL programmers in North America in 2002. Over the

next four years there will be a 13% decrease in their number due to retirement and
death. - Gartner Group"

0 "There are at least 10,000 "Free Agent" COBOL programmers in the US today. -
The Senior Staff'

" "The most highly paid programmers in the next ten years are going to be COBOL

programmers who know the Internet. - GIGA Group"

" "Any programmer with above average skills in COBOL can quickly learn the
basics of Web enabling, at home, through self-training. - Bill Lockhart, Legacy

Reservist"

58

Chapter 4. COBOL Development/Environment-Specific Models

4.4 Parsing COBOL Code

4.4.1 Grouping COBOL Code Operations

The procedures in a COBOL program consist of statements, which are executable

operations coded in the Procedure Division. A sentence, which is terminated by a full

stop, is made up from a number of statements. Because each statement begins with a

verb that is included in the reserved words list, the statements of COBOL procedures

are divided into the following parts:

Group One operations change the values of variables, including record, file, table, and

parameter, indicated as SS. The verbs contained in the statements in SS are indicated as
VERB(SS)={ ACCEPT, DISPLAY, MOVE, INITIALISE, SET, ADD, COMPUTE,

DIVISION, MULTIPLY, SUBTRACT, STRING, UNSTRING, INSPECT, INITIATE,

GENERATE, TERMINATE, SUPPRESS, USE BEFORE REPORTING, IN, OF,

FUNCTION, DELETE, OPEN, CLOSE, READ, WRITE, REWRITE, COPY,

RELEASE, SORT, RETURN, START, USE... AFTER..., USE FOR DEBUGGING,

SELECT }.

" Input-output operations, which are used to define the values of parameters and

support transfers between a program and a terminal or visual display unit. They

include ACCEPT and DISPLAY statements.

" Value operations, which are used to contribute values to the variables of the data

items. They include MOVE, INITIALISE, and SET statements.

" Arithmetic operations, which are similar to the the layman's understanding of

performing addition, subtraction, multiplication, division, and compound

calculations. They include ADD, COMPUTE, DIVISION, MULTIPLY, and
SUBTRACT statements.

" String operations, which produce strings in different ways. They include the

STRING, UNSTRING, and INSPECT statements.

" Report manipulation operations, which manipulate the report. They include the

INITIATE, GENERATE, TERMINATE, SUPPRESS, and USE BEFORE

REPORTING statements.

59

Chapter 4. COBOL Development/Environment-Specific Models

" Qualification operations, which are used to confirm the qualification of data items.

They are the IN and OF statements.

" Systematic call operation, which gets functions directly from the resource of the

operational environment. This is the FUNCTION statement.

0 Record deletion operation, which deletes a record from a file. This is the DELETE

statement.

" File handling operations, which are used to install and delete a file, and initialise

and terminate the processing of a file, and result in the records being transmitted

from and to the file. They include the OPEN, CLOSE, READ, WRITE, REWRITE,

COPY, RELEASE, SORT, RETURN, START, USE... AFTER..., USE FOR

DEBUGGING and SELECT statements.

Group Two comprises conditional operations, indicated as SCD. Here,

VERB(SCD)={ IF, IF... ELSE..., EVALUATE, PERFORM... UNTIL (BY)...,

CONTINUE, SEARCH }.

" Condition operations, which provide preconditions and direct the process of the

execution of programs to different directions according to the different results of

the preconditions. They include the IF, IF... ELSE..., EVALUATE,

PERFORM... UNTIL (BY)..., and CONTINUE statements.

" Searching operation, which is used to search the tables for specified items within

the tables. This is the SEARCH statement.

Group Three comprises control flow operations, indicated as SCT, and

VERB(SCT)={ CALL, GOTO, PERFORM, CANCEL, EXIT, EXIT-PROGRAM,

STOP RUN }..

" Procedural control operations, which are utilised to lead the program control to

move to the specified paragraph name, or cause one set of statements within a

paragraph or group of consecutive paragraphs to be executed continuallly before

proceeding to the next instruction, or result in the execution of a program being

stopped. They include the CALL, GOTO and PERFORM statements.

" Terminal operations, which are used to terminate the execution of the program.
They are the EXIT, CANCEL, EXIT-PROGRAM and STOP RUN statements.
Sometimes a GOTO statement shifts the control to the end.

60

Chapter 4. COBOL Development/Environment-Specific Models

4.4.2 Parsing COBOL Code

Parsing is the process of analysing a sequence of tokens to determine its grammatical

structure with respect to a given formal grammar. A parser is an earlier term for the

diagramming of sentences of programming languages. As a compiler, it parses the

source code of a computer programming language to create some form of internal

representation. Programming languages tend to be specified in terms of a context-free

grammar because fast and efficient parsers can be written for them [23]. Parsers are

usually not written by hand but are generated by parser generators [24].

COBOL code parsing is based on domain knowledge [87]. It transforms input text into a

data structure, which is suitable for later processing and which captures the implied

hierarchy of the input. Lexical analysis of COBOL code creates tokens from a sequence

of input characters and it is these tokens that are processed by a parser to build a data

structure such as a parser tree or abstract syntax trees. The transformed context-free

grammars of COBOL source code are limited in the extent to which they can express all

of the requirements of a language.

COBOL Source
String

Lexical
Analysis

COBOL Token

Syntactic
Analysis

Procedures and
Their Relationships

Figure 4.1: Process of Parsing COBOL Code

The normal process of parsing COBOL code is presented in Figure 4.1. COBOL source

code is regarded as the raw material for parsing COBOL legacy systems. The starting

point is the lexical analysis and that acquires COBOL tokens. These COBOL tokens are

then syntactically analysed and the production is outputted. The output from parsing a

COBOL legacy system is the procedures and their calling or being-called relationships

61

Chapter 4. COBOL Development/Environment-Specific Models

[81].

4.5 Procedure-Based Model

A procedure-based model is a graph used to describe the calling or being-called

relationships of those procedures in program P, indicated as PBM(). It is composed of

nodes and lines. The sequence of a procedure-based model PBM() is top-to-bottom.

The procedure that the first node represents calls the procedures that the next nodes

represent.

4.5.1 Structure

4.5.1.1 Dividing Calls into Four Groups

What is meant here by a call is a procedure or function call in a programming language.

The starting point in analysing the structure of the legacy system is to develop a call

graph. Examination of the calling structure of the legacy system can be used to identify

program elements, with minimal dependencies, that could easily be migrated. Four

different types of program element are distinguished: root program elements that call

other program elements but are not called by any; leaf program elements that are called

by other program elements but do not call any; node program elements that both call

and are called by other program elements; and isolated program elements that neither

call nor are called by other program elements.

A program PPS calling another program PPt is indicated as PP, > >PPt. A program

PP, not calling another program PPS is indicated as PPS : 4--* PPt. A program PPs

called by another program PPt is indicated as PPS << PPt. A program PPs not called

by another program PPt is indicated as PPS z4 PPt.

For program P, its procedures and its functions being PP;, i >, 0, let PP(P) be the

procedure and function set of program P, which is indicated as PP(P)={ PP; j PP; «

P, i>, 0). PP, is termed a root program element if and only if

(3 PP;, PPi E PP(P) = (PPa > >PP1))

AND

62

Chapter 4. COBOL Development/Environment-Specific Models

(V PPS, PPS E PP(P) = (PPn PPS)) (4.1)

PP,, is termed a leaf program element if and only if

(d PP;, PPi E PP(P) (PPn ** PPi))

AND

(3 PPS, PPS E PP(P) (PPa << PPS)) (4.2)

PP,, is termed a node program element if and only if

(I PP;, PP1 E PP(P) = (PPn >> PP1))

AND

(El PPA, PPS E PP(P) = (PPa << PPS)) (4.3)

PP,, is termed an isolated program element if and only if

(V PP;, PP1 E PP(P) = (PPa *: PP1))

AND

(b PPj, PPj E PP(P) = (PPa PPj)) (4.4)

Here, ihn, j:? - n.

In order to understand the source code as a whole, it is necessary to describe the calling

or being-called relationships of those procedures in program P.

4.5.1.2 Procedure Layer

The procedure layer of procedure P is a number that represents the depth of one

procedure calling other procedures, indicated as PL(P).

The procedure layer of leaf program elements is 0, the procedure layer of the program

elements that only call leaf program elements is 1, the procedure layer of program

elements that call other program elements, the maximum of whose procedure layers is 1,

is 2, etc.

Let PP3, PP2, and PP3 be three procedures, and assume that PP1 is a leaf program

element,
(PP2> > PP1) AND (PP2: *PP3),

(PP3>>PP1) AND (PP3> >PP2) AND (PP14 PP3),

then

PL(PP1)=0,

63

Chapter 4. COBOL Development/Environment-Specific Models

PL(PP2)=1,

PL(PP3)=2.

The root procedure layer is changeable although the leaf procedure layer is always 0.

4.5.1.3 COBOL Model Entities and Their Relationships

Every procedure in a COBOL legacy system is regarded as a single and essential unit of

a procedure-based model of a COBOL legacy system, and the procedure in a COBOL

legacy system is termed a COBOL model entity.

The procedure relationship is defined as the calling or being-called relationship between

the two procedures in a procedure-based model. There are four types of calling

relationship: one to one, one to many, many to one, and many to many. Any one of the

procedure relationships in COBOL legacy system is contained in one of these four

types.

Let PP;, PPS, PPk be three procedures in a legacy system. If

(PP; >> PPS)

AND

(((bk, k#-j) = (PP; *PPk))

AND ((d k, k:;, -'i) = (PPk PPS))) (4.5)

then the relationship between PP; and PPS is termed one to one (Figure 4.2).

If

(PP; >> PPS)

AND ((I k, kýj) = (PPi > >PPk))

AND ((`d m, mýi) (PPm PPS))

AND ((V m, m: Ai) (PPm * PPk)) (4.6)

then the relationship between PP; and PPS is termed one to many (Figure 4.3).

If

(PP; >> PPS)

AND ((3 k, kýi) (PPk > >PPj))

AND ((Vm, m#j) =ý, (PP; * PPm))

AND ((d m, m: tj) =(PPk PPm)) (4.7)

then the relationship between PP; and PPS is termed many to one (Figure 4.4).

64

Chapter 4. COBOL Development/Environment-Specific Models

If

(PP; >> PPS)

AND

(((11 k, k: ýj) (PPi > >PPS;))

AND ((:] m, mýi) (PPm> >PPj)))

then the relationship between PP; and PPS is termed many to many (Figure 4.5).

Node Program Element i

Node Program Element j

Figure 4.2 One to One Relationship

Node Program Element i

Node Program Element j Node Program Element k

Figure 4.3 One to Many Relationship

Node Program Element i Node Program Element j

Node Program Element k

v

Figure 4.4 Many to One Relationship

(4.8)

65

Chapter 4. COBOL Development/Environment-Specific Models

Node
Program Element s

L-,
Node Program Element sl

Node Program Element t

Node Program Element tl Node Program Element t2

Node Program Element st Node Program Element to

Figure 4.5 Many to Many Relationship

4.5.2 Classification of A Procedure-Based Model

COBOL Model 1: Linear procedure-based model

A linear procedure-based model is a procedure-based model in which the relationships

between a root program element and a node program element, between node program

elements, or between a node program element and a leaf program element, are one to

one (Figure 4.6).

Let PP;, PPS, PPk be three procedures in COBOL legacy system P, and let the set SAP {}

be the set of all procedures in P (SAP=Set of All Procedures) as indicated

SAP{}={ PP; I PP; EP), (4.9)

and let the set SOOP{} be the set of the one to one procedures in P (SOOP=Set of One

to One Procedures) as indicated

SOOP{ }={(PP;, PPS)I(PP; > >PPj)

If

AND ((V k, kýj) (PP; PPk))

AND ((b m, m: Ai) (PPm PPS)) }. (4.10)

SOOP{}= SAP{}, (4.11)

then the procedure-based model of the COBOL legacy system is linear.

66

Chapter 4. COBOL Development/Environment-Specific Models

Root Program Element

Node Program Element I

Node Program Element i

Node Program Element n

Leaf Program Element

Figure 4.6: Linear Procedure-Based Model

COBOL Model 2: Branch procedure-based model

A branch procedure-based model is a procedure-based model in which one or more

relationships between root program and node program elements, between node program

elements, or between node program and leaf program elements, are one to many, and

other relationships are one to one (Figure 4.7).

Let the set SOMP {} be the set of the one to many procedures in P (SOMP=Set of One

to Many Procedures) as indicated

SOMP{ }={(PP;, PP,)I (PP> >> PP;)
AND ((] k, k:? - j) = (PP; >> PPk))

AND ((I/ m, mýi) => (PP,,, PPS))

AND ((V m, mýi) (PPm * 4PPk)) }. (4.12)

If
SOMP{}= SAP{}, (4.13)

then the procedure-based model of COBOL legacy system is branch.

COBOL Model 3: Joint procedure-based model

A joint procedure-based model is a procedure-based model in which one or more

relationships between node program elements, or between node program elements and

one leaf program element, are many to one, and other relationships are one to one

(Figure 4.8).

67

Chapter 4. COBOL Development/Environment-Specific Models

Let the set SMOP{} be the set of the many to one procedures in COBOL legacy system

P except for the root program element PPo (SMOP=Set of Many to One Procedures),

then

sMOP{}={ (PP;, PP;)I (PP; » PP,)

AND ((El k, kýi) = (PPk >> PPa))

AND ((Vm, mýj) =ý (PP; PP m))
AND ((V m, mýj) ý(PPk * *PPm))}. (4.14)

If
SMOP{ }= SAP{}-{PPo}, (4.15)

then the procedure-based model of the COBOL legacy system is joint.

Root Program Element

Node Program Element 1 Node Program Element 2 Node Program Element 3

Node Program Element 11 Node Program Element 12 Node Program Element 21 Node Program Element 31 Node Program Element 32

Leaf Program Element Leaf Program Element Node Program Element 311 Leaf Program Element

Node Program Element ni Leaf Program Element

Leaf Program Element nl Leaf Program Element n2 Leaf Program Element n3

Figure 4.7: Branch Procedure-Based Model

68

Chapter 4. COBOL Development/Environment-Specific Models

Figure 4.8: Joint Procedure-Based Model

Node Program Element I Node Program Element 2 Node Program Element 3 Node Program Element 4 Node Program Element S

Node Program Element 1I Node Program Element 21 Node Program Element 31 Node Program Element 41 Node Program Element 51

LI Leaf Program Element

Root Program Element

Node Program Element 3n

Node Program Element 411 Node Program Element 511

Node Program Element 6

Leaf Program Element

Node Program Element I

Root Program Element

Node Prograrn Element 2 Node Program Element 4 Node Program Element 5

Node Program Element 1I Node Program Element 21 Node Program Element 31 Node Program Element 41

Leaf Program Element
[Node

Program Element 411 Node Program Element 511

Node Program Element 3n Node Program Element 6

Leaf Program Element

Figure 4.9: Synthetic Procedure-Based Model

69

Chapter 4. COBOL Development/Environment-Specific Models

COBOL Model 4: Synthetic procedure-based model

A synthetic procedure-based model is a procedure-based model in which the

relationships between root program and node program elements, between node program

elements, or between node program and leaf program elements, include one to many

and many to one (Figure 4.9). Sometimes the relationships in a synthetic

procedure-based model may contain many to many.

Let the set SSP{} be the set containing the many to many procedures in P (SSP=Set of
Synthetic Procedures),

SSP{}={ PPk I ((2 Ij, k, i: Aj, jýk, ilk) = ((PP, > >PPJ) AND (PP, > >PPk)))

AND((] r, s, t, res, sek, r#k) ((PPr> >PPk) AND (PPS> >PPk)))} (4.16)

If

SSP{}j4 (4.17)

then the procedure-based model of the COBOL legacy system is synthetic.

4.6 Summary

In this chapter, COBOL characteristics have been introduced. COBOL is widely used

and has a long history. COBOL legacy systems have characteristics of wide usage, long

history, large investment, location, connotation and importance.

The procedure relationship describes the calling or being-called relationship between

the two procedures in a procedure-based model PCM(). It has four types: one to one,

one to many, many to one, and many to many.

The model of a COBOL legacy system is based on the characteristics and operations of
COBOL, and the procedure-based model is a graph that describes the calling and
being-called relationships of those procedures in the COBOL legacy system. It has four

types: linear, branch, joint, and synthetic.

70

Chapter 5. HTML Development/Environment-Specific Models

Chapter 5

HTML

Development/Environment-Specific

Models

5.1 Introduction

Because of the numerous users of the Internet, HTML is fundamentally important to

information exchange and data presentation. It is necessary to analyse the useful

contents of HTML legacy systems in order to maintain and reuse them.

In this chapter, the history and operations of HTML are briefly introduced. HTML

characteristics are also presented.

In order to better describe HTML legacy systems, three link-based models are presented.

They describe linking or being-linked relationships between two or more web pages.

5.2 Rationale of Software Evolution of HTML Legacy

Systems

The proposed approach described in this thesis parses HTML legacy systems and

presents all the candidates of the statements containing the web links in HTML legacy

system. It computes the model entities and their relationships from those candidates and

displays them. It removes the redundancy of those model entities and shows the pure

model entities of HTML legacy system. Based on the model conditions of HTML

legacy systems (5.3) to (5.8) in Chapter 5, the model of HTML legacy sytem is

acquired.

In understanding HTML legacy system, the classification of classes from HTML legacy

71

Chapter S. HTML Development/Environment-Specific Models

system is two, which are web class and block class. Every web page in HTML legacy

system is defined as one class in order to facilitate the link understanding between those

web pages by leaf web class and node web class. Every web contains several blocks,

and each block has five types of classes: text, image, table, frame, and link class. HTML

legacy system is described with class diagram, composite structure diagram, component

diagram and deployment diagram.

5.3 HTML Legacy Systems

5.3.1 HTML

HTML, which stands for Hyper Text Markup Language, is a computer language that

has been devised to create websites which can then be viewed by means of a connection

to the Internet. It is constantly undergoing revision and evolution to meet the demands

and requirements of the growing Internet. Hyper Text is the method by which the next

web page is linked to, and through which any place on the Internet can be reached. The

Markup is a certain type of text to be marked. HTML is a programming language and it

has code and syntax like other programming languages. HTML consists of a series of

short codes contained in a text file. Those text words are saved as an "html" file and

operated through special software which is termed a Browser, as in Internet Explorer or
Netscape Navigator. Those browsers read that text file and transfer those text words into

the visible style which is termed a Web Page. Those text words are termed Tags which

are located between o in order to separate them from ordinary text. The desired web

page is realised through correct use of the tags by means of translation of the web
browsers. Tables, forms, images, and sounds can then appear on the web pages in the

designed format [33].

5.3.2 A Brief History of HTML

HTML was originally developed by Tim Berners-Lee while at CERN, and popularised
by the Mosaic browser developed at NCSA. During the course of the 1990s, it has

blossomed with the explosive growth of the Web. During this time, HTML has been

extended in a number of ways. The Web depends on Web page authors and vendors

sharing the same conventions for HTML. This has motivated joint work on

specifications for HTML.

72

Chapter 5. HTML Development/Environment-Specific Models

HTML 2.0 was developed under the aegis of the Internet Engineering Task Force (IETF)

to codify common practice in late 1994. HTML+ (1993) and HTML 3.0 proposed much

richer versions of HTML. Despite never receiving consensus in standards discussions,

these drafts led to the adoption of a range of new features. The efforts of the World

Wide Web Consortium's HTML Working Group to codify common practice resulted, in

1996, in HTML 3.2.

Most people agree that HTML documents should work well across different browsers

and platforms. Achieving interoperability lowers costs to content providers since they

need develop only one version of a document. If the effort is not made, there is much

greater risk that the Web will devolve into a proprietary world of incompatible formats,

ultimately reducing the Web's commercial potential for all participants.

Each version of HTML has attempted to reflect greater consensus among industry

players so that the investment made by content providers will not be wasted and their

documents will not become unreadable within a short period of time.

HTML has been developed with the vision that all manner of devices should be able to

use information on the Web: PCs with graphics displays of varying resolutions and

colour depths, cellular telephones, hand held devices, devices for output and input of

speech, computers with high or low bandwidth, and so on.

5.3.3 Characteristics of HTML

HTML uses cascading stylesheets to control the presentation of web pages, and provide

basic special effects and interaction of information through the Internet.

Although the functions of HTML have been greatly improved with the help of other

languages and methods, HTML is still confined to Internet usage without replacing or

being replaced by other programming languages. It has its own characteristics that are

different from those of other programming languages [40].

5.3.3.1 Presentation of Web Pages

HTML is designed for the presentation of web pages. When it was born, programming
languages such as BASIC, COBOL, FORTRAN, PASCAL, C, etc, were mature and

widely used in the real world.

73

Chapter S. HTML Development/Environment-Specific Models

It was not necessary for the designer of HTML to create a programming language to

substitute the functions of those languages, and in fact HTML does not take on the

responsibilities of calculation, real-time control, judgments and immediate response,
batch disposal, database data management, man-made intelligence, etc. The essential

task of HTML is the service of the Internet, and this is its biggest restriction and
difference from other programming languages.

5.3.3.2 Data Format

HTML is an excellent tool for presenting data within the designed format, especially
data with tables and frames. It is easy to present different data in different areas, even

when it is in very different forms. HTML is a common platform for varied data.

5.3.3.3Basic in Usage

One of the biggest advantages of HTML is that it is basic. The nature of HTML means

that it is the basis for web applications. It does not focus on complicated control or

computation.. It is the foundation for the Internet. This makes HTML source code

essential for the development of the Internet.

5.4 Parsing HTML Code

5.4.1 Grouping HTML Code Operations

The statements in HTML code are composed of five groups: text, image, link, frame

and table. Each group contains different operations that are realised by the executions of

some statements combination.

Group One covers description of text, indicated as GTEXT. The operations of program
PP in GTEXT are GTEXT(PP)={<H>, <META>, <APPLET>, <SCRIPT>,

<NOSCRIPT>, <P>,
, <BLOCKQUOTE>, <! -->, <PRE>, , <DIV>,

<STYLE>, , <BIG>, <SMALL>, , <I>, , <BASEFONT>,

, <SUB>, <SUP>, <TT>, <U>, , <HR>, <INS>, <STRIKE>, <CODE>,

<MARQUEE>, <Q>, <SAMP>, <KBD>}.

" Interpretative operations are used to interpret the structure of the program PP. They

include <H>, <META>, <APPLET>, <SCRIPT>, <NOSCRIPT>, <P>,
,

74

Chapter 5. HTML Development/Environment-Specific Models

<BLOCKQUOTE>, <! -->, <PRE>, , <DIV>, <STYLE> statements.

" Word Style operations are the display descriptions of letters or words. They include

, <BIG>, <SMALL>, , <I>, , <BASEFONT>, ,

<SUB>, <SUP>, <TT>, <U> statements.

0 Line operations insert and delete lines in the text. They include , <HR>,

<INS>, <STRIKE> statements.

" Special operations describe special displays of text. They include <CODE>,

<MARQUEE>, <Q>, <SAMP>, <KBD>, <CENTER> statements.

Group Two covers description of images, indicated as GIMAGE. The operation set of

program PP written in HTML is GIMAGE(PP)={, <MAP>, <EMBED>,

<NOEMBED>, <AREA>, <LAYER>, <SPACER>}.

0 Image presentation is used to present the images in HTML code. Operations

include , <MAP>, <EMBED>, <NOEMBED>, <AREA>.

0 Image location is used to locate images on web pages. Operations include

<LAYER>, <SPACER>.

Group Three covers description of link operations, indicated as GLINK. The operation

set of arbitrary program PP written in HTML is GLINK(PP)={ <A>, <BASE>,

<LINK>).

" Link creation is used to create links and link windows. Operations include <A>,

<BASE>.

" External link is used to set up external links. The operation is <LINK>.

Group Four covers description of frame operations, indicated as GFRAME. The

operation set of any program PP written in HTML is GFRAME(PP)={ <FRAME>,

<FRAMESET>, <IFRAME>}.

" Frame creation creates the frames or the frame set in HTML code. Operations are

<FRAME>, <FRAMESET>.

" Embedded frame creation is used to create embedded frames. The operation is

<IFRAME>.

Group Five covers description of table operations, indicated as GTABLE. The operation

75

Chapter 5. HTML Development/Environment-Specific Models

set is GTABLE(PP)={ <TABLE>, <TR>, <TH>, <TD>, <THEAD>, <TBODY>,

<TFOOT>, <COL>, <COLGROUP>, <CAPTION>, <FORM>, <INPUT>,

<BUTTON>, <FIELDSET>, <LEGEND>, <SELECT>, <OPTION>, <OPTGROUP>,

<LABEL>, <TEXTAREA>, , <DL>, <DT>, <DD>, }.

" Common table operations are used to create and format the common table. They

include <TABLE>. <TR>, <TH>, <TD>, <THEAD>, <TBODY>, <TFOOT>,

<COL>, <COLGROUP>, <CAPTION> operations.

" Form table operations are used to present and format the form table. They include

<FORM>, <INPUT>, <BUTTON>, <FIELDSET>, <LEGEND>, <SELECT>,

<OPTION>, <OPTGROUP>, <LABEL>, <TEXTAREA> operations.

" The sequential table operation is used to represent the sequential table. It is .

" The unsequential table operations is used to describe the unsequential table. It is

.

" Table definition and creation operations are used to create tables. They are <DL>,

<DT>, <DD>, <Ll> operations.

5.4.2 Parsing HTML Code

HTML legacy systems have their own models to show their structures and operation

processes. Normally, parsing HTML legacy systems involves two levels of grammar

analysis: lexical and syntactic (Figure 5.1).

HTML Source code

HTML Lexical
Analysiý

Token

HTML Syntactic
Analysis

WebPages and
Their Relationships

Figure 5.1: Process of Parsing HTML Code

76

Chapter 5. HTML Development/Environment-Specific Models

The first step is to input the HTML source code and acquire HTML tokens through

lexical analysis. From the mathematical point of view, HTML source code is the set of

data having the format of tables, images, etc. It is relocated in a coordinate system

whereby the X-axis is the format of web pages and the Y-axis is the contents of web

pages.

The second step is syntactic analysis in which these HTML tokens are processed to

build a data structure such as parser trees or abstract syntax trees. It outputs web pages

and their linking or being-linked relationships.

5.5 Link-Based Models

A link-based model is a graph that describes the importing or imported relationships of

those webs in program P, indicated as LBM(). It is composed of nodes and lines. Every

node represents a web page, and a line represents a link relationship. The web that the

first node represents imports the web pages that the next nodes represent. One example

of a link-based model is presented in Figure 5.2.

Root Web Element

Node Web Element I

Node Web Element 11

Node Web Element 2

Node Web Element 21

Leaf Web Element

Node Web Element 31

Node Web Element ...

Node Web Element 3n

Figure 5.2: Link-Based Model

5.5.1 Structure

5.5.1.1 Three Kinds of HTML Link Element

An HTML link imports new web pages written in HTML programming language. The

starting point in analysing the structure of a legacy HTML system is developing a

77

Chapter 5. HTML Development/Environment-Specific Models

link-based model. Examining the link structure of the legacy HTML system can be used

to identify web threads with minimal dependencies that could be migrated easily [108].

Three different kinds of web link layer are distinguished: root web elements that lead to

other web element links but are not quoted by any other, or is the home web page or the

first web page although linked to other web pages; leaf web elements that are quoted by

other web elements but do not create any other web pages, or are the last web pages

although they quote other web pages; and node web elements that both lead to and are

quoted by other web elements except for root web and leaf web elements.

In order to understand the source code as a whole, it is necessary to describe the

importing or imported relationships of those webs in program P.

5.5.1.2 Web Layer

The web layer is a number that represents the depth of a web page that is importing

other webs, indicated as WL(). The web layer of a root web element is 0, the web layer

of the node web elements that are only imported by that root web element is 1, the web

layer of web elements that are only imported by those node web elements, the

maximum of whose web layers is 1, is 2, etc.

Let PP1, PP2, and PP3 be three web elements, and assume that PP1 is a root web element,

(PP1 »PP2) AND (PPi PP;), 0,

(PP2 >PP3) AND (PP2 *PP;), i>3,

(PP3PP;), i! =3,

then

WL(PP 1)=O,
WL(PP2)=1,

WL(PP3)=2 (Figure 5.3).

Root Web Page PPi
(W LQ=O)

Node Web Page PP2
(WLO=1)

Leaf Web Page PP3
(WLO=2)

Figure 5.3: A Graphical Example of a Web Layer

78

Chapter 5. HTML Development/Environment-Specific Models

5.5.1.3 Web Relationships

In a link-based model, a web page is regarded as the essential unit of an HTML legacy

system, and is termed an HTML model entity.

There are two kinds of linking relationship between HTML model entities: ordinal and

loop. The web relationship is defined as the linking or being-linked relationship

between two web pages in an HTML legacy system [108]. It has two kinds: ordinal and

loop.

In a link-based model LBM(), PP1 is termed the dominator of PPS if there exists a path

in LBM() from PPS to PPt, indicated as PPt E {DOM(PPS)}. PPt is termed the

immediate dominator of PPS if PPt is the immediate successor of PPS, indicated as

PPt=IM(PP,).

Node Web Element i

Node Web Element j

Figure 5.4: First Example of an Ordinal Relationship

Node Web Element i

Node Web Element j Node Web Element k

Figure 5.5: Second Example of an Ordinal Relationship

Node Web Element i Node Web Element j

Node Web Element k

v

Figure 5.6: Third Example of an Ordinal Relationship

79

Chapter 5. HTML Development/Environment-Specific Models

Node Web Element s

Node Web Element SI Node Web Element tl

Node Web Element st

v T

Figure 5.7: Fourth Example of an Ordinal Relationship

Let PP;, PPS, PPk be three web pages in an HTML legacy system. If

Vk, k# i, PPkE {DOM(PP;)}
PP; !E {DOM(PPk)} (5.1)

then the relationship between PP; and PPS is termed ordinal (Figure 5.4,5.5,5.6 and

5.7).

If

(PPr IM(PPS)) AND (PPS =IM(PP1)) (5.2)

then the relationship between PP; and PPS is termed loop (Figure 5.8).

W(Th cment

E

Element j

Figure 5.8: An Example of a Loop Relationship

5.5.2 Classification of Link-Based Models

HTML Model 1: Sequential link-based model

A sequential link-based model is a link-based model in which the relationships between

root web and node web elements, between node web elements, or between node web

elements and leaf web elements, are ordinal (Figure 5.9,5.10,5.11 and 5.12).

Node Web Element

Node Web Element t2

Node Web Element to
J

80

Chapter 5. HTML Development/Environment-Specific Models

Root Web Element

Node Web Element I

Node Web Element i

L
Node Web Element n

Leaf Web Element

Figure 5.9: An Example of a Sequential Link-Based Model

Root Web Element

Node Web Element 2 Node Web Element 3 Node Web Element I

Node Web Element 1

Leaf Web Element

Node Web Element 12 Node Web Element... Node Web Element 31 Node Web Element 32

Leaf Web Element Node Web Element n Leaf Web Element Leaf Web Element

Leaf WEb Element nI Leaf Web Element n2
LLeaf

Web Element n3

Figure 5.10: Second Example of a Sequential Link-Based Model

L
Root Web Element

Node Web Element l Node Web Element 2 Node Web Element 3 Node Web Element 4 Node Web Element 5

1 Node Web Element I1 Node Web Element 21 Node Web Element
...

Node Web Element 41
F

Node Web Element 51

F
Leaf Web Element Node Web Element 4l l Node Web Element 511

Node Web Element 3n Node Web Element 6

Leaf Web Element

Figure 5.11: Third Example of a Sequential Link-Based Model

81

Chapter 5. HTML Development/Environment-Specific Models

Let PPo be a root web element in HTML legacy system P, let PP;, PPS, PPk be three web

elements, let the set SAW {} be the set of all web elements in P (SAW=Set of All Webs),

so that SAW I }={ PP; I PP; E P}, and let the set SOW{ } be the set of the web elements

whose relationships are ordinal in P (SOW=Set of Ordinal Webs), so that

SOW{}={ PPk I (Vk, k: A: O, PPkE {DOM(PPo)})=ý, (PPo !E {DOM(PPk)})}. (5.3)

If

SOW{}= SAW{}-{PPo}, (5.4)

then the link-based model of the HTML legacy system is sequential.

Rout Web Element

Node Web Elcmrnt 1 Node Web Element 2 F- Node Web Element Node Web Element 5 E
Node Web Element I1 Node Web Element 21 Node Web Element 31 Node Web Element 41

Leaf Web Element Node Web Element ...
Node Web Element 411 Node Web Element 511

Node Web Element 3n ent 6
=Node

4W]

Leaf Web Element

Figure 5.12: Fourth Example of a Sequential Link-Based Model

HTML Model 2: Cyclical link-based model

A cyclical link-based model is a link-based model in which one or more relationships

between root web and node web elements, between node web elements, or between

node web elements and leaf web elements, are looped. There is no ordinal relationship

in this link-based model (Figure 5.13 and 5.14).

Let the set SC W (I be the set of the web elements whose relationships are cyclical in P

(SCW=Set of Cyclical Webs), so that

SCW{}={ PPS I ((Vk, kýj) AND (PPkESCW{}))

=((PPkE {IM(PPi)}) AND (PPS E {IM(PPk)}))}, (5.5)

If
SCW{}= SAW{}, (5.6)

82

Chapter 5. HTML Development/Environment-Specific Models

then the link-based model of the HTML legacy system is cyclical.

-- -- Root Web Element s]

Node Web Element s2 - Leaf Web Element s3

Figure 5.13: An Example of a Cyclical Link-Based Model

Node Web E1emen[sl - Node Web Elemrnt s2
Iý

Node Web Element s3 4-*4 Node Web Elcment s4

Figure 5.14: Another Example of a Cyclical Link-Based Model

HTML Model 3: Compositive link-based model

A compositive link-based model is a link-based model in which there exist two

relationships, loop and ordinal, in the same link-based model, between root and node

web elements, between node web elements, or between node web elements and leaf

program elements (Figure 5.15,5.16 and 5.17).

Node Web Element I

III

L Node Web Element
...

j

III

Node Web Element

Figure 5.15: An Example of a Compositive Link-Based Model

Let the set SPW {} be the set of web elements whose relationships contain ordinal and

cyclical kinds in the same link-based model in P (SPW=Set of comPositive Webs), so

that

SPW{}={ PPk l ((PPkE {DOM(PPo)})=> (PPo !E {DOM(PPk)}))

83

Chapter 5. HTML Development/Environment-Specific Models

AND((] m, m: tk) =: ý((PP,, E {IM(PPk)}) AND(PPkE {IM(PPm)})))}, (5.7)

If

sPw{ }ý, (5.8)

then the link-based model of the HTML legacy system is compositive.

Root Web Element

Node Web Element I Node Web Element 2

Node Web Element II Node Web Element 12 Node Web Element
...

Leaf Web Element Leaf Web Element Node Web Element n

Node Web Element 3

Node Web Element 31 Node Web Element 32

Leaf Web Element Leaf Web Element

Leaf W Eb Element nI Leaf Web Element n2 Leaf Web Element n3

Figure 5.16: Second Example of a Compositive Link-Based Model

Root Web Element

Node Web Element I Node Web Element 2 Node Web Element 3 Node Web Element 4 Node Web Element 5

Node Web Element II Node Web Element 21 Node Web Element ...
LNode

Web Element 41 Node Web Element 51

iI

Leaf Web Element Node Web Element 3n Node Web Element 411 Node Web Element 511

Leaf Web Element

Figure 5.17: Third Example of a Compositive Link-Based Model

Node Web Element 6

84

Chapter 5. HTML Development/Environment-Specific Models

5.6 Summary

HTML legacy systems have distinctive characteristics of presentation of web and data

formats, are incapable of scaling web pages, and are basic in usage. In a link-based

model, a web page is regarded as an HTML model entity. There are two kinds of linking

relationship between HTML model entities: ordinal and loop. HTML operations were
divided into five groups, then the link-based model was introduced. The link-based

model is a graph describing the importing or imported relationships of those webs.

There are three kinds of link-based model: sequential, cyclical, and compositive.

85

Chapter 6. SQL Development/Environment-Specific Models

Chapter 6

SQL Development/Environment-Specific

Models

6.1 Introduction

Because of SQL's flexible interface for databases of all shapes and sizes, it presents a
full-featured relational database management system that offers a variety of

administrative tools to provide benefits in the areas of database development,

maintenance and administration.

In this chapter, SQL's history, operations and characteristics are presented. Based on the

relationships of generation and association between databases in SQL legacy systems,

three database-based models are built up.

6.2 Rationale of Software Evolution of SQL Legacy

Systems

The proposed approach parses SQL legacy systems and presents all the candidates of

the statements containing the databases in SQL legacy system. Then it computes the

model entities and their relationships from those candidates and displays them. It

removes the redundancy of those model entities and shows the pure model entities of
SQL legacy system. Based on the model conditions of SQL legacy systems (6.1) to (6.7)

in Chapter 6, the model of SQL legacy sytem is acquired.

In understanding static part of SQL legacy system, the classification of classes from

SQL legacy system is two, which are procedure class and database class. Every

procedure in SQL legacy system is defined as one procedure class. Every database is

defined as one class as well. The static part of SQL legacy system is described with

86

Chapter 6. SQL Development/Environment-Specific Models

class diagram and composite structure diagram.

In understanding dynamic part of SQL legacy system, its activities are described.

Selected UML diagrams describing the dynamic aspect of domain-specific legacy

systems are realised based on those activity arraies.

6.3 SQL Legacy Systems

6.3.1 SQL

The Structured Query Language (SQL) comprises one of the fundamental building

blocks of modem database architecture. SQL defines the methods used to create and

manipulate relational databases on all major platforms, and it is a full-featured relational
database management system that offers a variety of administrative tools to ease the

burdens of database development, maintenance and administration. It includes

additional functionality designed to support Microsoft SQL Server.

It is common for large-scale databases to use SQL to facilitate database users and

administrators.

The language offers a flexible interface for databases of all shapes and sizes. Most

popular databases, including ORACLE, are searched or changed by SQL.

6.3.2 Characteristics of SQL

6.3.2.1 Common Platform

SQL is a common platform for different relational databases. Oracle databases utilise
their proprietary PL/SQL. Microsoft SQL Server makes use of Transact-SQL. All of
these variations are based upon the industry standard ANSI SQL. It provides a common
base for the use and development of databases.

6.3.2.2 Executable Procedures

Microsoft SQL Server 2000 provides many executable procedures. They can be used

easily in programming because of their well-formed pre-compilation. SQL compiles

each executable procedure once and then reutilises the execution plan. This mechanism

simplifies the database development process by grouping those SQL statements that
87

Chapter 6. SQL Development/Environment-Specific Models

represent executable procedures into manageable blocks.

6.3.2.3 Reduction of Transformation

In the information transformation of SQL legacy systems, network bandwidth is

important. Stored procedures can reduce long SQL queries to a single line that is

transmitted online. This results in reduced transformation.

6.3.2.4 Reuse of Parts of a System

SQL sets up a platform to exchange information in an efficient way. The data are

grouped together, based on tables or databases. Having the same characteristics they are
dealt with in the same way. This method can be used by multiple users and client

programs.

6.3.2.5 Enhanced Security Strategy

The database is regarded as an element and the basic unit of data storage, creation,
deletion, and exchange. This enhances the security strategy of data usage.

6.3.2.6Index Benefit

SQL supports two types of index. One type is the clustered index that defines the

physical sorting of a database table's rows in the storage media, and the other is the

non-clustered index that is created outside of the database table and contains a sorted
list of references to the table itself. Indexes provide flexible searching on database tables,

speed the query performance on commonly used columns, and improve the overall

processing quality of the database. Convenient and rapid searching is one of the most
important characteristics of databases.

6.4 Parsing SQL Code

6.4.1 Grouping SQL Code Operations

The statements in SQL code represent the operations of data flow. The operations in

SQL code are divided into four groups-data, procedure, control, and safety.

The data group is the set of operations in SQL code that deal with databases, tables,

88

Chapter 6. SQL Development/Environment-Specific Models

views, lines and columns of tables, and single elements of tables. The data group of
SQL code TP is indicated as GroupD(TP), GroupD(TP)={ CREATE DATABASE,

ALERT DATABASE, DROP DATABASE, CREATE TABLE, ALERT TABLE,

DROP TABLE, INSERT, UPDATE... SET..., DELETE, CREATION VIEW, ALERT

VIEW, DROP VIEW. CREATE... INDEX..., EXEC SP HELPINDEX, DROP INDEX,

SELECT, CREATE DEFAULT, EXEC SP BINDEFAULT, EXEC

SP UNBINDEFAULT, DROP DEFAULT, CREATE RULE, EXEC SP BINDRULE,

EXEC SP UNBINDRULE, DROP RULE, DECLARE CURSOR, OPEN, FETCH,

CLOSE, DEALLOCATE}.

0 Database operations. Database operations, which are responsible for the creation,

change and deletion of the database, include CREATE DATABASE, ALERT

DATABASE, and DROP DATABASE.

" Table operations. Table operations, which cope with the creation, change and
deletion of the tables of the database, include CREATE TABLE, ALERT TABLE,

and DROP TABLE.

" Table data operations. Table data operations execute the insertion, update and
deletion of the data in the tables of the database. They include INSERT,

UPDATE... SET..., and DELETE.

" View operations. View operations are used to deal with the creation, change and
deletion of the views. They include CREATION VIEW, ALERT VIEW, and
DROP VIEW.

" Index operations. Index operations are used to execute the creation, check and
deletion of the index of tables in a database. They include CREATE... INDEX...,

EXEC SP HELPINDEX, and DROP INDEX.

Selection operations. Selection operations are the most powerful in the usage of
SQL server 2000 code, and are used to filter the designated data from the tables or
the database. They include SELECT.

" Default operations. Default operations are used to deal with the creation, binding,

change and deletion of the defaults. They include CREATE DEFAULT, EXEC

SP BINDEFAULT, EXEC SP_UNBINDEFAULT, and DROP DEFAULT.

" Rule operations. Rule operations are used to create, bind, and delete the rules in

89

Chapter 6. SQL Development/Environment-Specific Models

SQL code. They include CREATE RULE, EXEC SP_BINDRULE, EXEC

SP UNBINDRULE, and DROP RULE.

" Cursor operations. Cursor operations are used to create, open and delete the cursors
in SQL code. They include DECLARE CURSOR, OPEN, FETCH, CLOSE, and
DEALLOCATE.

The procedure group is the set of operations in SQL code that deals with the procedures

and functions of SQL, which is indicated as GroupPQ. The procedure group is

composed of the operations GroupPQ={CREATE PROCEDURE, EXEC

procedure-name, ALERT PROCEDURE, DROP PROCEDURE, CREATE TRIGGER,

EXEC SP_HELPTRIGGER, ALERT TRIGGER, DROP TRIGGER, S-FUNCTIONS}.

0 Stored procedure operations. Stored procedure operations are used to create,

execute and delete the stored procedures in SQL code. They include CREATE

PROCEDURE, EXEC procedure-name, ALERT PROCEDURE, and DROP

PROCEDURE.

" Trigger operations. Trigger operations are used to cope with the creation, execution

and deletion of the triggers in the code. They include CREATE TRIGGER, EXEC

SP HELPTRIGGER, ALERT TRIGGER, and DROP TRIGGER.

" Systematic functions. Systematic functions are provided by Microsoft SQL Server

2000 and present the common operations in normal definitions, especially in the

mathematical area. They are indicated as S-FUNCTIONS.

The safety group is the set of operations aimed at improving the safety of the database

in SQL code. It is indicated as GroupS(), GroupSQ={EXEC SP ADDLOGIN, EXEC

SP HELPLOGONS, EXEC SP DROPLOGON, EXEC SP_GRANTDBACCESS,

EXEC SP_HELPUSER, EXEC SP REVOKEDBACCESS, EXEC

SP ADDSRVROLEMEMBER, EXEC SP DROPSRVROLEMEMBER, EXEC

SP ADDROLEMEMBER, EXEC SP DROPROLEMEMBER, EXEC SP ADDROLE,

GRANT, DENY, REVOKE, EXEC SP ADDUMPDEVICE, BACKUP DATABASE,

RESTORE DATABASE}.

" Logon operations. Logon operations are used to create, check and delete the logon

information, and include EXEC SP ADDLOGIN, EXEC SP HELPLOGONS, and
EXEC SP DROPLOGON.

90

Chapter 6. SQL Development/Environment-Specific Models

" User account operations. User account operations are used to create. check and

delete the user accounts of the database. They include EXEC

SP GRANTDBACCESS, EXEC SP HELPUSER, and EXEC

SP REVOKEDBACCESS.

" Actor change operations. Actor change operations are used to add and delete actors

from user account actor to server actor or database actor. They include EXEC

SP ADDSRVROLEMEMBER, EXEC SP DROPSRVROLEMEMBER, EXEC

SP ADDROLEMEMBER, EXEC SP DROPROLEMEMBER, and EXEC

SP_ADDROLE.

" Authority operations. Authority operations are used to restrict the rights of users of

the database. They include GRANT, DENY, and REVOKE.

" Backup operations. Backup operations are used to backup the whole or part of a

database and perform recovery. They include EXEC SP_ADDUMPDEVICE,

BACKUP DATABASE, and RESTORE DATABASE.

The control group is the set of operations that control the data flow and check the

conditional environment. It is indicated as GroupC()={IF... ELSE..., GOTO, WHILE,

BREAK, CONTINUE, BEGIN... END..., CASE... WHEN..., WAITFOR}.

6.4.2 Parsing SQL Code

The parsing of SQL legacy systems has two steps. The first step is to input SQL source

code and acquire SQL tokens at the lexical level. The second step is to analyse these

tokens at the syntactic level and to output the databases in the SQL legacy system and

their relationships (Figure 6.1).

SQL Source Code

SQL Lexical
Analysis

Token

SQL Syntactic
Analysis

Databases and
Their Relationsh

Figure 6.1: Process of Parsing SQL Code

91

Chapter 6. SQL Development/Environment-Specific Models

6.5 Database-Based Model

A database-based model is a graph that describes the relationships between the

databases in an SQL legacy system, indicated as DBM(). It is composed of nodes and

lines. A node represents the database used in the program. The sequence of the

database-based model DBM() is based on the relationships between the databases.

6.5.1 Structure

6.5.1.1 Database Classification

Databases are the main objects in SQL programs. If a database generates one or more

other databases, or two or more database combine together to generate other databases,

then the former database or databases are termed root databases, and the latter database

or databases are termed node or leaf databases. The difference between a node database

and a leaf database is that a node database must create the new database, and a leaf

database must not create the new database. The database is regarded as the essential unit

of SQL legacy systems, and is termed an SQL model entity.

6.5.1.2 Database Layer

The database layer is a number that represents the depth of a database DB; producing

other databases, indicated as DL(DB;). The database layer of a root database is 0, the

database layer of the node databases that are directly produced by root databases is 1,

and the database layer of databases that are immediately produced by the database

whose layer is 1, is 2, etc.

6.5.1.3 Relationships

The relationships between the databases in SQL legacy systems are mainly of two types:

generation and association.

Let DB;, DBB, DBB; be three databases in a database-based model DBM(). In the

database-based model DBM(), database DB; is represented with one node.

The term generation means that a database is generated from another one or more

databases, or a database is part of another database (Figure 6.2), presented as DB; »

92

Chapter 6. SQL Development/Environment-Specific Models

DBB. In the database-based model DBM(), if database DBS is connected below one or

more other databases, such as DB; and DBB, it means that database DBs is generated
from databases DB; and DBB, indicated as (DB; + DBB)» DB,.

Database DBi

Database DBj

Figure 6.2: Generation Relationship of a Database-Based Model

The term association means that a database works together with other databases. For

example, if databases DB; and DBB join together to generate a new database DBk, then

the relationship between DB; and DBj is an association (Figure 6.3), indicated as DB;

DBB.

Database DBi Database DBj

Figure 6.3: An Example of an Association Relationship

Or, if database DBp generates two new databases DBq and DBr, then the relationship

between DBq and DBr is an association (Figure 6.4), DBq DBr.

Database DBq Database DBr
L_

Figure 6.4: Another Example of an Association Relationship

6.5.2 Classification of Database-Based Models

SQL Model 1: Association database-based model

An association database-based model is a database graph in which the relationships

between databases are all associations (Figure 6.5).

LDatabase
DBi - Database DBj Database DBk

Figure 6.5: Association Database-Based Model

93

Chapter 6. SQL Development/Environment-Specific Models

Let DBo be the original database, the set SAD{} be the set of all databases in P

(SAD=Set of All Databases), so that

SAD{}={DB; I DB; EP}, (6.1)

and the set SSD {} be the set of the databases whose relationships are the associations in

P (SAD=Set of Association Databases), so that

SSD{}={ DB; I (]k, k#i)=: ý (DBk"DB;)}. (6.2)

If

SSD{}= SAD{}, (6.3)

then the database-based model of the SQL legacy system is of the association type.

SQL Model 2: Generation database-based model

A generation database-based model is a database graph in which the relationships

between databases are all generations (Figure 6.6).

Let DB;, DBB, DBk be three databases in SQL legacy system P, the set SGD{} be the set

of the databases whose relationships are the generations in P (SGD=Set of Generation

Databases), so that

SGD { }={ DB; I (DB0 » DB;)
OR ((Elk, k: ýO) (DBk> >DB;))

OR ((E j, j: AO) =: > ((E DBB) >> DB;)) }, (6.4)

If
SGD{ }= SAD{ }-{DBo}, (6.5)

then the database-based model of the SQL legacy system is of the generation type.

Database DBi
L

L Database DBj

Database DBk

i

Figure 6.6: Generation Database-Based Model

94

Chapter 6. SQL Development/Environment-Specific Models

SQL Model 3: Composition database-based model

A composition database-based model is a database graph in which the relationships

between databases are associations and generations existing in the same database graph.

There are at least three states: two databases generate only one database; one database

generates more than one database; two or more databases combine together to generate

one or more databases (Figure 6.7,6.8,6.9 and 6.10).

Let the set SCD{ } be the set of the databases whose relationships include generation

and association in the same model in P (SCD=Set of Composition Databases), so that

SCD{}={ DB; I ((] k, k#i)=> (DBkc, ")DB;))

AND ((DB0 » DB;)

OR ((E]s, s: ý0) (DBs> >DB;))

OR ((I t, tý0) ((DB)> >DB;)))}. (6.6)

If
SCD {J #4i, (6.7)

then the database-based model of the SQL legacy system is of the composition type.

Database DBi

L Database DB Database DBk

Figure 6.7: An Example of a Composition Database-Based Model

Database DBi Database DBj

F
Database DBk

Figure 6.8: A Second Example of a Composition Database-Based Model

95

Chapter 6. SQL Development/Environment-Specific Models

Database DBi

Database DBk

Database DBj

Database DBl

Figure 6.9: A third Example of a Composition Database-Based Model

Database DBi I Database DBi2

Database DBiI J Database DBj2 Database DBj3

Database DBkI Database DBk2

Figure 6.10: A Fourth Example of a Composition Database-Based Model

6.6 Summary

A brief history of SQL and the characteristics of a common platform, executable

procedures, reduction of transformation, reuse of parts of a system, enhanced security

strategy, and its index benefit, have been presented. Based on the basic operations of

SQL, the two main relationships of generation and association between the databases in

an SQL legacy system have been presented. Then three database-based models of

SQL legacy systems, namely association, generation and composition, were described.

96

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

Chapter 7

Extracting UML Diagrams from COBOL

Legacy Systems

7.1 Introduction

Based on the development/environment-specific model of COBOL legacy systems,

which is a procedure-based model, the original code is restructured. Based on program

slicing techniques, the definitions and slice criteria of the original COBOL program are

acquired.

It is not necessary to use all the UML diagrams to model a COBOL legacy system. The

static aspect of COBOL legacy systems is described with the UML class and composite

structure diagrams. The dynamic aspect of COBOL legacy systems is depicted with the

UML sequence and interaction overview diagrams.

The application of modelling rules is also discussed.

7.2 Using Four UML Diagrams to Model COBOL

Legacy Systems

7.2.1 Static Modelling

UML 2.0 uses six diagrams to model the static parts of legacy systems, which are the

class, object, component, package, deployment and composite structure diagrams. The

object and composite structure diagrams are low-level modelling diagrams, whilst the

class, component, package and deployment diagrams are high-level.

Among the UML diagrams, the class diagram is the most fundamental in modelling the

structure of legacy systems. Because of the popular acceptance of the definition CLASS,

97

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

the class diagram is easy to understand when modelling legacy systems. The class
diagram should therefore be used in this context.

An object has the same characteristics as the corresponding class. The class is the

abstraction of the common characteristics of the object group. Most of the important

characteristics of the object are reflected in the corresponding class. Therefore, after the

class diagram has been used in modelling a COBOL legacy system, it is unnecessary to

use the object diagram in modelling.

Although the composite structure diagram is low-level, its connotation is different from

that of the object diagram. It is the description of the internal structure of a class and

thus has different purposes from the object diagram. It can be used to model the

complication of a class in detail. So the composite structure diagram is used in

modelling the internal structure of the classes of a COBOL legacy system.

The component diagram shows the dependencies amongst software components,

including the classifiers that specify them and the artifacts that implement them; these

include source code files, binary code files, executable files, scripts and tables. A

component represents a software entity in a system. The component diagram is used at a

high level when analysing a COBOL legacy system. After the class diagram has been

used in modelling a COBOL legacy system at a high level, the component diagram is

pleonastic and redundant for modelling the functionality of COBOL code. In order to

reduce redundancy and repetition when modelling COBOL legacy systems, the

component diagram is not used.

The package diagram is composed only of packages and the dependencies between

them [4]. A package is a UML construct that organises model elements, such as use

cases or classes, into groups. Packages are depicted as file folders and can be applied

to any UML diagram, although they are most common on use-case diagrams and class
diagrams because these models have a tendency to grow [92]. Because a COBOL

legacy system describes business rules and is complicated in practice, the package
diagram applies at too high a level when modelling COBOL legacy systems. After the

class diagram has been used, it is not necessary to use the package diagram to model
COBOL code.

The deployment diagram presents processors, devices and the connections between

98

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

them, which can comprise the run-time configuration of hardware nodes and the

software components that run on those nodes. A COBOL legacy system is modelled
from the functional aspect. The deployment diagram is too high-level for analysing
COBOL legacy systems from the static and structural points of view. Therefore, the

deployment diagram is not used when modelling COBOL legacy systems.

7.2.2 Dynamic Modelling

UML 2.0 uses seven diagrams to model the dynamic parts of systems, namely the

sequence, collaboration, activity, state machine, interaction overview, timing and use

case diagrams. The timing, state machine and interaction overview diagrams are
low-level modelling diagrams, whilst the sequence, collaboration, activity and use case
diagrams are high-level.

A sequence diagram is a high-level UML diagram that models the dynamic aspect of

systems. Sequence diagrams present the interactions between objects that achieve a

result. A sequence diagram describes how groups of objects collaborate in presenting

certain system behaviours. Typically, a sequence diagram describes the detailed

implementation of how a legacy system accomplishes its main tasks. A sequence
diagram presents an interaction in terms of a set of messages sent between objects that

all work together to provide a desired operational result, which is its main difference

from a collaboration diagram, which shows collaboration and association between

instances in a system. The sequence diagram is useful when modelling a COBOL

legacy system. It is used in presenting the dynamic aspects of the system.

A collaboration diagram shows the message flow between objects in an application, and

also implies the basic relationships between classes. It is another form of sequence
diagram although it is in a static style. A collaboration diagram shows details of how the

objects within a scenario interact, such as showing visibility, etc. The UML

collaboration diagram is used to model interactions between objects, and objects
interact by invoking messages on each other [51,101]. Because the composite structure
diagram has been used to model the internal structure of the classes in COBOL legacy

systems, it is not necessary to use the collaboration diagram.

An activity diagram describes the dynamic aspects of a system, also at a high level. It is

99

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

essentially a flowchart, showing the flow of control from activity to activity. An activity
is an ongoing nonatomic execution within a state machine. Activity diagrams may stand

alone to visualise, specify, construct, and document the dynamics of a society of objects,

or they may be used to model the flow of control in an operation. Because the sequence
diagram is used at a high level to describe the messages and the objects of a COBOL

legacy system, and presents the operations with messages and the message senders or

receivers, the activity diagram does not need to be used when modelling COBOL legacy

systems.

A use case diagram is defined as a high level diagram that shows the relationships

amongst actors and use cases within a system in terms of the UML specification. It

shows a set of use cases and actors and their relationships. Use case diagrams can be

used to model the context and requirements of a system from the stakeholders' point of

view. A use case is a requirement that the users of the system, termed actors, want the

system to do [28,115]. A use case contains a special function that can be specified as a

set of usage scenarios. As a user-centred analysis technique, the purpose of a use case is

to yield a result of measurable value to an actor in response to the initial request of that

actor. Use cases can be utilised to model the requirements of a system from the

stakeholders' point of view [74]. Because the modelling of a COBOL legacy system
focuses on the modelling of business rules in COBOL code and does not need to

determine the requirements of the users, the use case diagram is not used when

modelling COBOL legacy systems.

An interaction overview diagram is a diagram that is new in UML 2.0. It overviews the

control flow within a system or business process at a low level. It focuses on

overviewing the flow of control of the interactions. It describes the interactions where

messages and lifelines are hidden. Because the interaction overview diagram is

low-level and describes the control flow within a legacy system, it is suitable for

modelling COBOL legacy systems and is therefore used in the approach to modelling
COBOL legacy systems adopted by this thesis.

A timing diagram is used to explore the behaviours of one or more objects throughout a

given period of time. The timing diagram is new in UML 2.0 for UML 1.3. It depicts

the change of the state or condition of a classifier instance or role over time. Typically,

it is used to show the change in the state of an object over time in response to external

100

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

events. Timing diagrams are used to show changes and their relationships to clock times.

It provides a visual representation of objects changing state and interacting over time.

Because the timing diagram is suitable for the description of embedded systems, it is not

used in modelling COBOL legacy systems.

A state machine diagram describes the possible states of a single class and the events

that cause state transitions. It shows the sequence of states that an object goes through

during its life cycle in response to stimuli. It is useful for showing the life cycle of the

class. Generally, it is attached to a class of objects with an interesting dynamic

behaviour. When a transition in a statechart is triggered, the object leaves its current

state, initiates the action(s) for that transition, and enters a new state. Any internal or

external event is broadcast to all states of all objects in the system [84,89]. Because the

objects in a COBOL legacy system are extracted from variables and they often have

different values, the states of objects are changed so often that it is hard to capture their

states and describe them. Therefore, the state machine diagram is not used when

modelling COBOL legacy systems.

7.2.3 Modelling with Four UML Diagrams

Consequently, four UML diagrams: class, composite structure, sequence and interaction

overview, are used to model COBOL legacy systems.

7.3 Modelling COBOL Legacy Systems with UML

7.3.1 Class Diagrams

Rule 1: Using four UML diagrams to model COBOL legacy systems.

There are four COBOL development/environment-specific procedure-based models as

mentioned in Section 4.4.3: linear, branch, joint and synthetic.

Different models of programs in legacy systems have different structures, and different

structures result in different UML class diagrams when modelling legacy systems with
UML. So there are four kinds of UML class diagram corresponding to those four

COBOL development/environment-specific models.

101

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

A COBOL legacy system has a behavioural part, and is modelled using a UML

sequence diagram. The four COBOL development/environment-specific models present

not only the structural part but also the behavioural part, which comprises calling or

being-called relationships. Those calling or being-called relationships represent

transformations of the behaviour control from one procedure to other procedures.

Therefore, four UML sequence diagrams are presented, based on the four COBOL

development/environment-specific models.

A UML composite structure diagram depicts the internal structure of a classifier (such

as a class, component, or use case), including the interaction points of the classifier to

other parts of the system. It is most often used to show hidden internal details of a class,

an object, or a component, and how the static architecture will achieve a requirement
between elements that work together within a classifier. Although the COBOL

development/environment-specific models are different from each other, all of them are

composed of the procedure and variable classes that are extracted from the variables of

the programs. Both of those two classes are the same in the four different COBOL

development/environment-specific models. So in different COBOL

development/environment-specific models, the procedure classes and the variable

classes can be modelled with the same composite structure diagram. The composite

structure diagrams of the procedure and variable classes will not be influenced by the

differences between the four COBOL development/environment-specific models.

A UML interaction overview diagram overviews the control flow within a system or

business process at a low level. It focuses on the overview of the flow of control of the

interactions. It describes the interactions where messages and lifelines are hidden. No

matter what the differences are between the sequence diagrams modelling the COBOL

legacy system, the process of modelling the control behaviour and data flow of a

procedure in a COBOL legacy system is the same. So the application of the interaction

overview diagram is the same when modelling the low-level behaviours of the different

procedures in the four different COBOL development/environment-specific models.

The development/environment-specific models of COBOL legacy systems are of four

types: linear, joint, branch and synthetic procedure-based models. In order to simplify

the research in this thesis and not lose universality, the computing of
development/environment-specific models of COBOL legacy systems will focus on the

102

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

synthetic procedure-based model, which is the most complicated one out of the four

procedure-based models of COBOL legacy systems. The other three models will not be

computed, but the algorithms are similar.

Rule 2: Restructuring COBOL code.

Software restructuring is the modification of software to make the software easier to

understand and to change, or to make it less susceptible to error when future changes are

made [24]. The definition of software restructuring excludes software changes for other

purposes, such as code optimisation. Code optimisation does imply restructuring in a

sense, but normally does not concern the key element of improving software

maintainability.

Restructuring COBOL code includes deleting COBOL dead code, and valuating the

isolated program elements, etc [67,119].

Rule 3: Slicing COBOL code of model entities with the Program slicing method.

Some definitions are presented here, based on the approach of Weiser [132], Jiang [76]

and Agrawal [2].

A flowgraph G is a 3-triple G=<N, E, no>, where N is the set of nodes, E is the set of

edges, and no is the initial node. If m and n are two nodes in N, m dominates n if and

only if m is on every path from no to n. It is indicated by m DOM n or DOM(n)=m.

A hammock graph HG is a quadruple HG=<N, E, no, nl> with the property that <N, E,

no> and <N, E', nl> are both flowgraphs, where E"'= {<a, b>I<b, a> E E}. If m and n are

two nodes in N, m reversely dominates n if and only if m is on every path from ni to n.

It is indicated by m RDOM n or RDOM(n)=m.

Let G=<N, E, no>, nEN and assume

d; DOMn, 1<i<sandd; EN (7.1)

If there exists dj satisfying
d; DOM dd, where (7.2)

then dj is termed the immediate dominator of n. It is indicated as ID(n)= dd.

Let G=<N, E, no>, nEN and assume
103

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

rj RDOMn, 1-j-tandrj EN (7.3)

If there exists rl satisfying

rj DOM ri, where j=1,2,..., 1-1,1+1, ..., t (7.4)

then r, is termed the reversely immediate dominator of n. It is indicated as RID(n)= ri.

For an arbitrary statement n and a slicing criterion C=<p, V>, let

IMS(n) represent the set of immediate successors of n;

USE(n) represent all the variables whose value might be used at n;
MOD(n) represent all the variables whose value might be modified at n;
ND(n) represent all the statements which are on a path from n to RID(n) excluding

the endpoint and RID(n). ND(n) will be empty unless it has more than one
immediate successor;

RINc(n) be a set of variables related to the position of statement n. Each variable in

RIN, (n) has potential effects on the values of variables in V;

POS(C) represent the statement position specified in the slicing criterion C, i. e,
POS(C)=p;

VAR(C) represent the variable set of slicing criterion C, i. e, VAR(C)=V.

For a slicing criterion C=<p, V> and an arbitrary statement n in program P, the

algorithm of computing that slicing criterion C is

RIN, °(n)={VInp} U {USE(n)IMOD(n) n RIN, °(IMS(n)) :A}

U{ RIN, ° (IMS(n))-MOD(n)} (7.5)

Sc°= { nIMOD(n) n RIND°(IMS(n)) :? -- cb } (7.6)

Bc°= {bIND(b) n Sc°-? -, cb } (7.7)

RING'+i(n)=RIND (n) U RINBC(b) (n) (7.8)

Sci+1= { nIMOD(n) n RIND +'(IMS(n)) # c4 or nEB, '} (7.9)

Bc'+`= { bIND(b) n Sc`:;,: cb } (7.10)

where i >, 0.

The condition of stopping the iterations is

V n, nEN =>RINc'+i (n)=RIN, (n)

OR

(7.11)

104

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

The whole slice of the program P for a slicing criterion C is

i+l- i

where i >, 1.

(7.12)

Original Program Sliced Program

I ACCEPT SALARY. I ACCEPT SALARY.

2 ACCEPT MONTHS. 2 ACCEPT MONTHS.

3 MOVE O TO FLAGI.

4 MOVE 0 TO MONEY. 4 MOVE 0 TO MONEY.

5 IF (SALARY<=0) OR (MONTH<=0) 5 IF (SALARY<=0) OR (MONTH<=0)

6 DISPLAY-INVALID INPUT".

7 GO TO 001000-EXIT. 7 GO TO 001000-EXIT.

8 ELSE 8 ELSE

9 COMPUTE MONEY=SALARY*MONTHS 9 COMPUTE MONEY=SALARY*MONTHS

10 ENDIF 10 ENDIF

11 MOVE MONEY TO FLAGI

12 001000-EXIT. 12 001000-EXIT.

13 EXIT. 13 EXIT.

Figure 7.1: An Example of A Slice Criterion (13, {money})

0
b Ö

G9

11

I
Iý

12

13

Figure 7.2: Control Flow Graph of Example Program

DOM(n) I RDOM(n) I ID(n) I RID(n) I IMS(n) I ND(n)

105

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

DOM(1)=4 RDOM(1)={2,3,4,5,12} ID(1)=4 RID(1)=2 IMS(1)={2} ND(1)= c4
DOM(2)={1} RDOM(2)={3,4,5,12} ID(2)=1 RID(2)=3 IMS(2)={3} ND(2)= 4
DOM(3)= (1,2) RDOM(3)= (4,5,12) ID(3)=2 RID(3)=4 IMS(3)={4} ND(3)= cb DOM(4)= (1,2,3) RDOM(4)= (5,12) ID(4)= 3 RID(4)=5 IMS(4)={5} ND(4)= 4 DOM(5)= (1,2,3,4) RDOM(5)= (12) ID(5)= 4 RID(5)=11 IMS(5)={6,9} ND(5)={6 10} 7 9 DOM(6)= (1,2,3,4,5) RDOM(6)= (7,12) ID(6)=5 RID(6)=7 IMS(6)={7} , , ,

ND(6)= d) 4 DOM(7)= {1,2,3,4,5,6} RDOM(7)= (12) ID(7)= 6 RID(7)= 12 IMS(7)={12}
ND(7)=

DOM(9)= { 1,2,3,4,5 } RDOM(9)= (11,12) ID(9)= 5 RID(9)= 11 IMS(9)=(11)
ND(9)= di

DOM(11)={1,2,3,4,5,9} RDOM(11)= (12) ID(I1)=9 RID(11)=12 IMS(11)={12}
DOM(12)= (1,2,3,4,5) RDOM(12)= dA ID(12)=5 RID(12)=di IMS(12)= di ND(11)= di

ND 12 - 7,11

Figure 7.3: Definition Examples of an Original Program

USE(n) MOD(n) RIN, (n)
USE(1)= d (SALARY) MOD(I)= {SALARY} RINc° (1)= d)

USE(2)= 4 (MONTHS) MOD(2)= (MONTHS) p° (2)= (SALARY)
USE(3)= 4 MOD(3)= (FLAG 1} RINco (3)= (SALARY, MONTHS)
USE(4)= 4 MOD(4)= (MONEY) RIN° (4)= (SALARY, MONTHS)
USE(S)=(SALARY, MONTHS) MOD(5)= d) RINc° (5)= (SALARY, MONTHS, MONEY)
USE(6)= cp MOD(6)= d> RINC° (6)= (MONEY)

USE(9)= (SALARY, MONTHS) MOD(9)= (MONEY) RINc° (9)= (SALARY, MONTHS)

USE(11)={MONEY} MOD(11)={FLAG1} R1N° (11)= (MONEY)
USE(12)= cp MOD(12)= dD RINc° (12)= (MONEY)

Figure 7.4: Computation of RIN, °(n) of Example Program

MOD(n) fl RIND (IMS(n)) RIND (n)
MOD(I) (1 RIND (IMS(1))= (SALARY) RIND (1)= (p
MOD(2) fl RIN, °(IMS(2))= {MONTHS} RING' (2)= (SALARY)

MOD(3) fl RIN°(IMS(3))= 4 RIND' (3)= (SALARY, MONTHS)

MOD(4) fl RIN°(IMS(4))= (MONEY) RIND' (4)= (SALARY, MONTHS)

MOD(5) fl RIN, °(IMS(5))= cp RIND' (5)= (SALARY, MONTHS, MONEY)

MOD(6) (1 RIN°(IMS(6))= 4 RING' (6)= {MONEY)

MOD(9) fl RIN°(IMS(9))= {MONEY} RING' (9)= (SALARY, MONTHS)

MOD(11) fl RIN°(IMS(11))=4 RING' (11)= {MONEY}

MOD(12) fl RIN°(IMS(12))= cp RING' (12)= {MONEY}

SC°=(1,2,4,9) S, '=(1,2,4,5,7,9,12)

Figure 7.5: Computation of S, ° and Scl(n) of Example Program

106

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

As an example, Figure 7.1 shows the original COBOL program and its slice criterion

C=(13, {money}). The control flow graph for that example program is shown in Figure

7.2. With respect to the slicing approach of Jiang, Figure 7.3 summarises DOM(n),

RDOM(n), ID(n), RID(n), IMS(n), and ND(n). USE(n), MOD(n), and RIN, °(n) are

computed by the algorithm presented in Figure 7.4. From the information in the figures

and the definitions of the programming slices, the first level slice of that example

program in Figure 7.5 is obtained, S°={ 1,2,4,9). Based on the iterating conditions of

program slicing, the slice criterion of that example program C=(13, {money}) is

acquired, S, '={1,2,4,5,7,9,12) [123,124].

The original code contains a "GO TO" line in application programs written in the

COBOL language that makes the source code become spaghetti code. In order to make

the slice program sufficient, the statements including GOTO and corresponding labels

are contained in the slice [17,131,132].

All the variables in the slice Sc with respect to the slice criterion C=(p, V) are composed

of the relevant object set, the kernel of which is the variable V.

According to Weiser's introduction, slices are computed by computing consecutive sets

of transitively relevant statements based on data flow and control flow dependencies.

Program slicing consists of the computed part of a program that affect the values

computed at some point of interest. It contains static and dynamic slicing. Dynamic

slicing is defined as the kind of isolation that may relate to a specific input to the

program, while static slicing relates to all possible inputs.

A number of hybrid applications using static and dynamic slicing methods have been

suggested for the solutions of slicing programs containing procedures, unstructured

control flow, composite data types and pointers, and concurrency, in terms of accuracy

and efficiency. Program slicing is applied in debugging and program analysis, program
differencing and integration, software maintenance, testing, tuning compilers, and other

applications.

Program slicing is helpful in determining whether a change at some point in a program

will affect the behaviour of other parts of the program in software maintenance. Static

slicing decomposes a program into a set of components, and shows how each of those

107

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

components captures part of the original program's behaviour, and how changes in a

component can be merged back into the complete program in a semantically consistent

way.

Because COBOL legacy systems involve data flow and control flow dependencies, they

are suitable for the use of program slicing techniques in modelling them.

Rule 4: Layering class diagrams into three.

From the static point of view, the class diagram is treated as the king of all the diagrams

in UML [83,103]. The objects and classes of source code are identified and their

relationships and attributes extracted, and legacy code is represented with UML class
diagrams.

The structure of legacy code is complicated and it is displayed in different layers, which

are represented with three different kinds of class diagram.

The class diagram which presents the leaf program elements in source code is termed

the leaf class diagram, indicated as LEAF-PROCEDURE-NAME.

The class diagram which presents the node program elements in source code is termed

the node class diagram, indicated as NODE-PROCEDURE-NAME.

The class diagram which presents the root program elements in source code is termed

the root class diagram, indicated as ROOT-PROCEDURE-NAME.

Rule 5: Starting from leaf program elements.

Each program element is a single unit in a procedure-based model of a COBOL legacy

system and is regarded as the essential model entity.

The root program element is the combination factory where its assemblies or parts are

produced, although those assemblies or parts are the procedures. The root program is

invoked directly by the user or some external process, otherwise there would be no way

to execute it. By itself, the root program element is not a good candidate for the starting

point of understanding the legacy system, since it calls other program elements and
those program elements are unknown. The execution control goes back and forth among
the program elements with the exception of the root program element in the legacy

system. If the leaf program elements are not comprehended, it is difficult to understand

108

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

the main process or the rules that the source code presents.

Node program elements are even more difficult to migrate than root program elements.
They share the difficulty of root program elements, but also require that they must be

created from the legacy system so that the remainder of the legacy system can continue

to function in the same manner, and those node program elements can then be used by

other program elements. Meanwhile, they include the difficulty of the leaf program

elements that they call, and the flow of the execution control goes up and down to make

the executing procedures more "spaghetti-like". The node program elements are called
by the root program elements and call the leaf program elements. They are the worst

candidates for comprehending the legacy system.

Isolated program elements can be migrated easily. These elements could be used in any

given increment, since converting them does not increase or decrease the number of

elements that need to be developed from the legacy system.

Leaf program elements are the best candidates for the starting point of comprehending

the legacy system. They do not call back to legacy source code, and although they

require development, it is possible to minimise the number of these elements by

transferring an entire subsystem in a single iteration.

It is obvious that the root program element calls node or leaf program elements, leaf

program elements are always called by root or node program elements, and isolated

program elements neither call nor are called by any other program elements. Therefore,

the leaf program elements are the first to be understood at the structural level.

Rule 6: Generating pseudo classes.

For a leaf program element P, PV is its variable set and POP is its operation set. If

PV=4 (7.13)

then P is termed an empty program element. That empty program element is regarded as

a class, indicated as CLASS Procedure-Name-Empty. The operations in the empty

program element are transferred into the attributes and operations of that class.

For a leaf program element P, its slicing criterion C<<p, V; >, 1<i<n, and the

corresponding slicing program Sc;, PC is the slicing criterion set PC=(C;), and PCV is

109

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

the set of slicing criterion variables PCV(P)={ V; }.

For the first slicing criterion C1=<p, V1>, and its slice Sc , PCV(S, l) is composed of the

variables of the slicing program S,, 1. Let V1 be the first pseudo class (Figure 7.6), and
PCV(S,. l) is its attribute.

((Pseudo Class))

vi

Attribute: PCV(S, l)

Figure 7.6: The First Pseudo Class Vl

Let V2 be the second variable, and

V2 E (PCV(P)-PCV(Sc1)). (7.14)

For the slicing criterion C2=<p, V2>, its slice S. 2 and the variable set PCV(Sc2) are

acquired. Let V2 be the second pseudo class, and PCV(Sc2) is its attribute.

The iteration goes on until

(PCV(P)- 2: PCV(Sc;))=di. (7.15)

Then all the pseudo classes of all the leaf program elements of program P are acquired.

Assume that P is a procedure being sliced and Q is a procedure which is called at

statement i in P. The algorithm of interprocedural slicing CC extended from P to Q is:

CC=<n1Q, ROUT(i)f--A f1SCOPEQ> (7.16)

where n1Q is the last statement of Q, f--+A which means that the actual parameters will
be replaced by formal parameters. SCOPEQ represents all variables which are accessible
in procedure Q.

ROUT(i) =U RINc(j), where jE IMS(i). (7.17)

Rule 7: Generating real classes.

Pseudo class Vj; is slicing-dependent on PCV(Sc j;). Each pseudo class is one group
(Figure 7.7). Each group is related closely to each other for the purpose of describing

the common core. Each group has one nucleus. Although that core is not always

110

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

obvious, every parameter and related operations are part of the specifications of that

nucleus in that group. In every group, each parameter depicts one aspect of the

characteristics of that nucleus, such as its name, its age, its weight, its height, or its ID;

and every operation is the change, assessment, or detection of those aspects of the

characteristics of that nucleus, such as increasing or decreasing its weight, confirming

whether it is at that age, and determining whether it has another name.

((Pseudo Class))

vii
Attribute: PCV(S,. j;)

Figure 7.7: The it' Pseudo Class Vj; of the jth Layer Procedure

All the parameters and operations in that group describe the attributes of that nucleus,

the operations on that nucleus, and the relationships with other groups.

It is important to note that the name of the class, its attributes, and its operations are
domain-related. The domain is the place in which the problem is allocated. All the

definitions and extractions must be based on the domain knowledge [135].

Those parameters that are in the same group are served as its attributes because they are

relevant to each other. They change the main data structure and are updated in terms of

the control flow, and any operation that those parameters perform changes the state of

the class attributes.

It is necessary to check the validity of the classes and corresponding operations and

attributes. If a class is contained within another class, the former class is redundant for

the latter.

For class VAS, if

(3 t, t#s) = (PCV(SCJS) 9 PCV(Sjt)) (7.18)

then Vjs is termed an otiose class. If an otiose class is not a leaf class, it is deleted. Then

the real classes are generated.

The relationship between the slicing criterion C; <p, V; >, 1 <i<n and Cj=<p, Vj>, 1 <j<_n

111

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

is indicated as RC(C;, Cj)= PCV(S,;)(1 PCV(Sj). The relationship array corresponds to

the presentation of the relationship between the slicing criteria C; and CC, indicated as

RAC(ij)"
If RC(C;, Cj)=V

Then RAC(i, j)=0

Else RAC(i, j)=1 (7.19)

The algorithm for computing the relationship array is

For j: =1 to (n-1)

For i: =O+1) to n
If RC(C;, CC)=(D

then RAC(i, j)=0

Else RAC(i, j)=1

End-If

RAC(j, i)= RAC(i, j)

End-For

RAC(j, j)=0

End-For (7.20)

Rule 8: Presenting systematic call classes and the systematic manager class.

Systematic calls are the operations that directly obtain functions from the resource of

the operational environment in COBOL programming. They are represented as

FUNCTION or CALL statements in original code. They are specific in realising the

main functionality of legacy systems because they represent often used and already

tested functions. Therefore, systematic calls are regarded as an individual class.

The systematic call class is composed of the systematic calls in selected original code.

For example, part of the original code contains a systematic call "w$font" that uses four

presented variables (Figure 7.8). It is represented in the systematic call class in Figure

7.9.

When a systematic call is used in a legacy system, it sometimes utilises the undefined

variables in this program. In the following paragraph, the variable "aa3" is not defined

in this procedure, but it is defined in another procedure (Figure 7.10). The variable
"aa3" should be presented as an element in some other class.

112

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

initialise wfont-data.

move "Times New Roman" to wfont-name.

move 12 to wfont-size.

move I to wfont-char-set wfont-family.

move 0 to wfont-bold-state.

call "w$font" using wfont-get-font. TNR-twelve-font. wfont-data.

Figure 7.8: Part Code Containing a Systematic Call

Systematic call

w$font: Systematic call

Figure 7.9: Example of Systematic Call Class Presentation

move 3 to aal.

move 3 to aal.

call "x$compute" using aal, aal,

aa3.

Figure 7.10: Part Code Containing a Systematic Call

In complicated software systems, especially in early legacy systems written by

programmers lacking experience, the variables in the original code are confused and

cramped when defined and used. Unstructured programming languages give rise to

repetition and redundancy of code statements and variables. So the classes produced

from the legacy system will be numerous.

For example, the program presented below has three classes according to the method

introduced above: day-hour, month-day, and year-month.

In order to illuminate the undefined variables and cope with redundancy and repetition,

a new class termed Systematic Manager is defined, which is used to collect variables
from the sliced set.

The systematic manager class is composed of the variables undefined in the procedure

or collected from selected original code.

113

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

Thus the systematic manager class of the example in Figure 7.11 is presented in Figure

7.12.

Procedure division

E1

move 24 to day-hour.

move 31 to month-day.

move 12 to year-month.

write day-hour.

write month-day.

write year-month.

exit program

Figure 7.11: Part of Code Example

Systematic manager

day-hour: int
month-day: int
year-month: int

Figure 7.12: Example of Systematic Manager Class

Rule 9: Defining relationships between classes.

An association shows a relationship between two or more classes. Associations have

several properties:

"A name that is used to describe the association between two classes. Association

names are optional and need not be globally unique.

"A role at each end that identifies the function of each class with respect to the

associations.

"A cardinality at each end that identifies the possible number of instances.

Initially, the associations between classes are the most important because they reveal

more information about the application domain. Every association should be named and

roles assigned to each end. The associations between the classes are also

domain-related.

114

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

It is necessary to model generalisation relationships between classes. Generalisation is

used to eliminate redundancy from the analysis model. If two or more classes share

attributes or behaviour, the similarities are consolidated into a superclass.

Rule 10: Realising class diagrams.

After acquiring all the classes of leaf program elements, the node program elements of

program P need to be analysed. Because a leaf program element is a functional module

and it is called by the node program elements, it is defined as a class in analysing node

program elements that call leaf program elements.

For a leaf program element P, the leaf class is the class with respect to that leaf program

element, when analysing the procedures and the functions calling it, indicated as

CLASS LEAF-PROCEDURE-NAME (Figure 7.13). The class diagram which presents

the node program elements in source code is regarded as a class in node and root class

diagrams, and it is termed a node class, indicated as NODE-PROCEDURE-NAME

(Figure 7.14).

((Leaf Class))

Leaf-Procedure-Name

Attribute: PV(P)

Figure 7.13: Leaf Class

((Node Class))

Node-Procedure-Name

Attribute: PV(P)

Figure 7.14: Node Class

In a node program element, its contained leaf and node program elements are presented

with leaf and node classes. The other classes are realised as before. All node class

diagrams are then obtained according to the increase of the procedure layers PLO.

Assuming that the source code has the procedure layer j=no, Cj; represents the ith slicing

of the jth layer, and PP is the procedure whose procedure layer is j. The algorithm
115

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

computing the pseudo classes (presented in Figure 7.7), which are not empty program

elements, is similarly:

For j: =1 to no DO

Chi=<Pj, Vji>;

ATTRIBUTE (CLASS Vii)= PCV(Sjl);

i : =l;
While ((PCV(Pj)- 2: PCV(Sýji)) ý4i) DO

i: =i+1;

C; <pj, Vj; >;

ATTRIBUTE (CLASS Vj;)= PCV(Sj;);

End-While.

End-For (7.21)

After all the leaf and node class diagrams are produced, the root class diagram is

realised under the guidance above.

Rule 11: Acquiring class diagrams of four models.

The class diagram of a linear procedure-based model is described in Figure 7.15.

NODE-PROCEDURE-1 II Variablel

NODE-PROCEDURE-2I I Variablam

NODE-PROCEDURE-n II Systematic tall

LEAF-PROCEDURE-1 Systematic manager

Figure 7.15: Class Diagram of a Linear Procedure-Based Model

The class diagram of a branch procedure-based model is described in Figure 7.16. The

class diagram of a joint procedure-based model is described in Figure 7.17. The class
diagram of synthetic procedure-based model is described in Figure 7.18.

116

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

NODE-PROCEDURE-1 Variablo-l

NODE-PROCEDURE-21 NODE-PROCEDURE-22 NODE-PROCEDURE-o
Variable-m

LEAF-PROCEDURE-211 LEAF-PROCEDURE-221 LEAF-PROCEDURE-ol LEAF-PROCEDURE-e2 LEAF-PROCEDURE-o3 SyahmaNt call

Systematle manager

Figure 7.16: Class Diagram of a Branch Procedure-Based Model

1 NODE-P NODE-PROCEDURE-S NODE-PROCEDURE-1 NODE-PROCEDUREd Výdrblrl

NODE-PROCEDURE-41I INODE-PROCEDURE-511 I Variable-e

NODE-PROCEDURE-321 I NODE-PROCEDURZ411 II NODE-PROCEDURE-511

NODE-PROCEDURE-301 I NODE-PROCEDURE-41 I Synematie manager

LEAF-PROCEDURE-I

Figure 7.17: Class Diagram of a Joint Procedure-Based Model

N(IIIP_VI vnt`Fn11v R_tl NODE-PI ROCEDURGII INODF-PROCEDUR V. u.. l

NODE-PROCEDURE-211 NODE-PROCEDURE-311 INODE-PROCEDURE411 I V. 4.6lwn

LEAP-PROCEDURE-11 NODE-PROCEDURE-3.1 NODE-PROCEDURE-MI NODE-PROCEDURE-311

NODE-PROCEDURE-3.1 NODE-PROCEDURE-613ptem tk

LEAF-PROCEDURE-il

Figure 7.18: Class Diagram of a Synthetic Procedure-Based Model

117

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

Comparing the linear procedure-based model of a COBOL legacy system in Figure 4.6

with the synthetic procedure-based model in Figure 4.9 the former is simple in the

extreme. Similarly, the class diagram of a COBOL legacy system whose

procedure-based model is linear is considerably simpler than the synthetic one based on
the condition (4.17). Suppose that the COBOL legacy system is satisfied with the

condition (4.11), and the procedure-based model of that COBOL legacy system is linear

as described in Figure 4.6. Then its class diagram is directly obtained as the description

in Figure 7.15. The same applies to class diagrams of other procedure-based models of
COBOL legacy systems. Therefore, the procedure-based model of COBOL legacy

systems, in particular, diminishes the complexity of modelling and increases the

efficiency of understanding. Obvious consequences are saved time and reduced costs.

7.3.2 Composite Structure Diagrams

Rule 12: Collecting variables of a class for composite structure diagrams.

A composite structure diagram in UML 2.0 depicts the internal structure of a classifier
(such as a class, component, or use case), including the interaction points of the

classifier to other parts of the system. Composite structure diagrams, which are new to

UML 2.0, focus on instances and their internal structure, providing examples of how the

static architecture will achieve a requirement.

Composite structure diagrams are composed of parts (classes with a defined role in the

context of the enclosing composite), and connections (associations with limitations on

potential links in the context of the enclosing composite). This diagram is most often

used to show hidden internal details of a class, an object, or a component.

A composite structure diagram describes the relationships between elements that work

together within a classifier. It shows parts and connectors. The parts are not necessarily

classes in the model and they do not represent particular instances, but they may be

roles that classifiers can play. The parts are shown in a similar manner to objects. For

example, a message as the class has a name, length, id, user, location and content. A

composite structure diagram is presented as Figure 7.19.

A composite structure diagram is sometimes used to show the runtime architectures of

any kind of classifier.

118

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

Slicing criterion Ci=<p, VI> and its slice Sc, in program P, PCV(Scl) is composed of the

variables of the slicing program Sc1. Assume that Vl is a class, and PCV(S11) is its

attributes. The composition of Class V, is the members pcvvk of the set PCV(Sc1),

which is variable pcvvk of PCV(Sci), 1<k <n. Then the presentation of V, is as in Figure

7.20.

Message

Name ID Length Location Content User

Figure 7.19: An Example of a Composite Structure Diagram

Vi

pcvv pc11, v2 pcvv; pcvvn

Figure 7.20: Composite Structure Diagram of Class V,

The UML composite structure diagram is used to present the structure of the class and

some artifacts, especially the leaf program elements that are termed the leaf class.

The variables that describe the leaf class in leaf program elements perform the function

that is represented by the name of leaf class.

Assume that x; is a variable in leaf program element LP. Then for any variable x; in leaf

program element LP,

Vxi, x; in LP 3 (xi ELVS(LP)) (7.22)

LVSO is termed the leaf variable set.

The leaf variable set is defined as the set of all the variables in a leaf program element,

indicated as LVSQ. It forms the collection of the parts of leaf class LEAF-LP in a UML

composite structure diagram. For example, the leaf COBOL program DATE-EDIT

below has the leaf variable set, LVS(DATE-EDIT)={DW-WORK-YEAR,

DW-WORK-YYYY, DW-WORK-MONTH, DW-WORK-MM, DW-WORK-DAY,

DW-WORK-DD, DW-DAYS-IN-MONTH(2), DW-WORKI, DW-WORK2} (Figure

119

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

7.21).

DATE-EDIT.

MOVE DW-WORK-YEAR TO DW-WORK-YYYY.

MOVE DW-WORK-MONTH TO DW-WORK-MM.

MOVE DW-WORK-DAY TO DW-WORK-DD.

IF (DW-WORK-MM < O1 OR> 12)

GO TO 001000-EXIT.

MOVE 28 TO DW-DAYS-IN-MONTH(2).

DIVIDE 400 INTO DW-WORK-YYYY GIVING DW WORK1

REMAINDER DW-WORK2.

IF (DW-WORK2 - 0)

MOVE 29 TO DW-DAYS-IN-MONTH(2)

ELSE

DIVIDE 100 INTO DW-WORK-YYYY GIVING DW-WORK1

REMAINDER DW-WORK2

IF (DW-WORK2 NOT = 0)

DIVIDE 4 INTO DW-WORK-YYYY GIVING DW WORKI

REMAINDER DW-WORK2

IF (DW-WORK2 = 0)

MOVE 29 TO DW-DAYS-IN-MONTH(2).

001000-EXIT.

EXIT.

Figure 7.21: A Leaf COBOL Program DateEdit

Rule 13: Connecting the parts.

In composite structure diagrams, ports define the interaction point between a classifier

and its environment or between a classifier and its internal parts. A port specifies the

services that a classifier provides to and requires from its environment.

Collaborations and collaboration occurrences are also modelled in composite structure

diagrams. A collaboration describes the roles and attributes that define a specific

behaviour of the classifier. A collaboration occurrence represents a particular use of the

collaboration to explain the relationships between the properties of a classifier. To

identify the roles of the parts in the collaboration occurrence, a collaboration occurrence

is attached to a collaboration and then the collaboration occurrence is added to a

composite structure diagram.

Usually the connectors between the parts of the class in a composite structure diagram

are association or dependency. They show that one part corresponds to one or more

parts of the leaf class, one or more parts are dependent or independent on one special

part, etc.

120

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

The close relationships between the variables in a leaf program element are the bases of

the connectors. They are

" giving a value to

" getting a value from

" the conditional dependency

" the presupposition and the result

" the results and attendants of the computation.

Rule 14: Realising composite structure diagrams.

A composite structure diagram is similar to a class diagram, but it depicts individual

parts instead of whole classes. A UML composite structure diagram depicts the internal

structure of structured classifiers by using parts, ports, and connectors.

DATE-EDIT

DW-WORK-YEAR DW-WORK-MONTH DW-WORK-DAY DW-WORKI

DW-WORK-YYYY DW-WORK-MM
LDW-WORK-DD

DW-WORK2

DW-DAYS-IN-MONTH(2)

Figure 7.22: Composite Structure Diagram of DateEdit

After the parts and connectors of the leaf class are defined, it is easy to realise the

corresponding composite structure diagram with rectangles and relationships between

the parts of the leaf class. An example of a composite structure diagram is shown in

Figure 7.22 based on the leaf program in Figure 7.21.

7.3.3 Sequence Diagrams

Rule 15: Layering sequence diagrams.

Description of the dynamic aspects of legacy code is complicated. The research in this

section concentrates on the approach to modelling dynamic aspects of legacy code with

UML sequence diagrams.

Firstly, objects in the source code are acquired through slicing the legacy COBOL code.

121

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

Secondly, objects from outside the source code are acquired. It is necessary to achieve
the interactors that directly utilise that legacy code. The persons who utilise the legacy

code, the hardware that executes it, and other systems that interact with it, are served as
the interactors.

Thirdly, the operations of those objects are collected through program slicing, based on
the timing and sequence of the source code.

Finally, the sequence diagrams of the legacy COBOL code are realised.

The key to modelling the dynamic aspects of legacy code with sequence diagrams is to

achieve the objects of the legacy code.

The operations of legacy code are classified into different layers, especially in legacy

code containing node and leaf program elements. Those operations that are similar and

work sequentially and together are collected and presented as a message. In legacy code,

some kinds of complex computation, especially many mathematical formulas, are

represented by the messages in that application domain [104]. Meanwhile, it is

fundamental to order the messages of legacy code in sequence diagrams according to

the time and sequence they are executed by. The objects from which and to which the

messages are sent are recorded. It is important to concentrate on the critical operations
in order to refine the messages of legacy code. Not all the operations are treated as

messages or one message only refers to one operation [96,106].

As with class diagrams, three different kinds of sequence diagram are defined, based on

the structure of the legacy code in different layers.

The sequence diagram which presents the leaf program elements in the source code is

termed the leaf sequence diagram, indicated as LEAF-PROCEDURE-NAME.

The sequence diagram which presents the node program elements in the source code is

termed the node sequence diagram, indicated as NODE-PROCEDURE-NAME.

The sequence diagram which presents the root program elements in the source code is

termed the root sequence diagram, indicated ROOT-PROCEDURE-NAME.

The analysis of legacy COBOL systems with UML sequence diagrams starts from leaf

program elements.

122

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

Rule 16: Defining leaf and node objects.

In analysing legacy COBOL systems, there are two objects that are especially important,

one of which is Leaf-Object, the other being Node-Object.

The object that represents the leaf program elements in node sequence diagrams and

root sequence diagrams that call this leaf program element is termed the leaf object,
indicated as LEAF-PROCEDURE-NAME.

The object that represents the node program elements in root sequence diagrams and

note sequence diagrams that call this node program element is termed the node object,
indicated as NODE-PROCEDURE-NAME.

Rule 17: Slicing the program.

According to the description in Rule 3 in Section 7.3.1, for program P, VAR(P) is the

set of parameters of program P. Then it is sliced.

Rule 18: Acquiring objects in source code.

Let x be an arbitrary parameter of P, xE VAR(P). Its program slicing is C(x) = <n, x>.

Every element x of VAR(P) is a pseudo object. VAR(P) is a pseudo object set of P.

Let xl and x2 be two parameters of P, xl E VAR(P) and X2 E VAR(P). For the slicing

C(xl) _ <n, xl> and C(x2) = <n, x2>, if C(xl) CC(x2), then VAR(P)= VAR(P)-{ xl}.

Check every parameter of VAR(P), and then the remaining VAR(P) is the object set.

Let x; be arbitrary parameters of P, 1 <i <k, x; E VAR(P), and VAR(P) has k

parameters. Then the object of P is computed through:

For i=1 to (k-1)

For j=(i+1) to k

If C(xi) C C(xj) then

VAR(P)= VAR(P)-{ x; }

End-if

End-For

End-For (7.23)

123

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

For an arbitrary object x; E VAR(P), 1-i-m, its slicing is C(xi) = <n, xi>.

Rule 19: Finding the interactors.

It is important to identify who is going to be using the legacy code directly. This should
be done from outside the legacy code, based on domain knowledge. The matter is

deeply involved with human interaction and closely related to domain knowledge. The

candidates for actors include the people who interact with the code, the hardware that is

external from the code, and the other systems that have interaction with the code.

Software interacts with people and other systems in the real world. By "interactors of

the code" is meant the users of it and other systems that interact with it. The interactors

have relationships with the legacy code. The users of the code will perform special tasks

with it and the code can exchange information with other software, sending data to or

receiving data from other software,.

When the code is executed, it may exchange messages with other systems. It may send

data to and receive data from other systems, send signals to control other systems, and

receive signals to be controlled or be executed by other hardware systems. All these

systems are regarded as interactors of the legacy code.

Different interactors look at legacy code from different points of view. Each interactor

is interested in a special aspect of the legacy code. All the interactors are candidates to

be actors of the legacy code.

The stakeholders are closely related to the software system. They are important to the

analysis of legacy systems. End users, analysts, developers, system integrators, testers,

technical writers and project managers are all different kinds of stakeholder-each
brings a different agenda to a project, and each looks at the system in different ways at
different times over the project's life. System stakeholders are the people who are

closely related to the system. They can be direct users, indirect users, managers of the

users, senior managers, supporters who provide help, buyers who invest in the system,
developers who work on other systems and interact with the system being developed,

maintainers who will maintain the system, and system developers who will work on it.

Active stakeholder participation implies the need to have onsite access to people,

typically users or their representatives, who have an authority and the ability to provide
124

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

information pertaining to the system, and to make pertinent and timely decisions

regarding the requirements and prioritisation. System success requires a great deal of
involvement by system stakeholders. The system's goals will be accomplished by the

contributions of all the stakeholders.

Some of the stakeholders are regarded as the candidates of the system actors. This is

vital to the identification of the objects of the legacy system and the realisation of the

sequence diagrams. Because people are generally the most important candidates of the

actors, it is important to take into account the stakeholders of the legacy software

system. Some of the stakeholders can be regarded as actors with regard to the legacy

software system. Because legacy code is critical for businesses and organisations, it is

able to accomplish specified tasks, albeit ineffectively, inefficiently and riskily. The

direct and indirect users, managers of the company, supporters who provide thelp, and

maintainers of the legacy code, all are interactors.

It is essential to regard each of those interactors as an actor. If there are more than two

actors, a person should be considered as the most important actor candidate. Because

only people can utilise the software directly or indirectly for their own purposes, it

would be better to take into account all the users, maintainers and managers of the

company, or even the organisation of the business (Figure 7.23).

BankManaeer

receiveRequirement(

sendPIN()

searchCustomerDatabase()

ity()

getCurrency()

Figure 7.23: A Sequence Diagram for Printing Header

It is important, when deciding who are the actors, to think over the importance of the

candidates. It is correct that all candidates for actors are important to the legacy code.
However, different candidates may be of different importance as regards the legacy

code. The direct end users are the most important among all the candidates for actors of

125

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

the legacy code. In most cases, they would utilise the legacy code and determine when it

is executed. The operational results are reported directly to them. Then they decide on

what should be done next. Next may be the company managers, because they not only

use the legacy code indirectly but also manage the direct end users of the legacy code in

the company. Perhaps they direct a project of the business based on the output of the

legacy code. Both the direct end users of the legacy code and the company managers

use the legacy code for commercial purposes and in some cases their uses may be the

same. Next may be the indirect users and the maintainers. However, in most cases they

do not use the legacy code for business purposes.

Other interactors besides human beings are considered and chosen as actors, including

the hardware that executes the legacy code and other systems that interact with it. This

describes the interacting effect and process of how the legacy code is executed in the

hardware and what messages are exchanged with other systems. Any systems that

invoke the legacy code are regarded as actors.

Rule 20: Getting the sequential array.

When understanding the operations of legacy code, the preconditions and

post-conditions of each operation are presented based on domain knowledge [87,108].

Moreover, it is fundamental to order the operations of the legacy code in sequence
diagrams according to the time and sequence they are executed by. The objects from

which and to which the information is sent are recorded.

Let C(x) = <n, x> be a slicing of program P, s be an operation of C(x), m the sequential

number, vl the input parameter set of s, v2 the output parameter set of s, zl the

preconditions of s, z2 the post-conditions of s. The sequential array SA(C(x)) is

SA(C(x)) (m) = (m, vi, v2, s, z1, z2) (7.24)

Rule 21: Presenting the message array.

The sequential array SA(C(x)) is basic for knowledge theory from the point of view of
domain knowledge, and is dealt with in the messages which will form the new array
MA(C(x)).

Assume that C(x) = <n, x> is a slicing of program P. Let mes be a message of C(x), k

126

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

the sequential number, vl the input parameter set of mes, v2 the output parameter set of

mes, zl the preconditions of mes, z2 the post-conditions of mes. The message array
MA(C(x)) is

MA(C(x)) (k) = (k, vi, v2, mes, zl, z2) (7.25)

It is important to use the domain knowledge in the message presentation of P [108].

Those operations that are similar and work sequentially and together are collected and

presented as one message [87]. For example, the three operations of sending the value

of the day, the month and the year to the date are extracted into one message that is

termed "sending the date".

In legacy code, some kinds of complex computation, especially many mathematical
formulas, are represented by messages in the appropriate application area. For instance,

the formula

S=LengthI *Length2

is achieved as the message computing the rectangle area.

It is important to concentrate on the critical operations in order to refine the messages of

legacy code. Not all operations are treated as messages, and, especially, a single

operation is not regarded as a single message. The messages are based on domain

knowledge (Figure 7.24 and 7.25).

MOVE W01-HEADER-2 TO

PRINT-DATA.

WRITE PRINT-REC AFTER

ADVANCING 2.

ADD 2 TO WOO-LINE-COUNT.

MOVE W01-HEADER-3 TO

PRINT-DATA-

WRITE PRINT-REC AFTER

ADVANCING 1.

ADD 1 TO WOO-LINE-COUNT.

MOVE W01-HEADER-4 TO

PRINT-DATA-

WRITE PRINT-REC AFTER

ADVANCING 2.

ADD 2 TO WOO-LINE-COUNT.

MOVE W01-HEADER-5 TO

PRINT-DATA.

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems
WRITE PRINT-REC AFTER

ADVANCING 1.

ADD 1 TO WOO-LINE-COUNT.

MOVE W01-HEADER-6 TO

PRINT-DATA.

WRITE PRINT-REC AFTER

ADVANCING 1.

ADD 1 TO WOO-LINE-COUNT.

MOVE SPACES TO PRINT DATA.

WRITE PRINT-REC AFTER

ADVANCING 1.

ADD 1 TO WOO-LINE-COUNT.

PRINT-HEADER-2-END.

EXIT.

Figure 7.24: A Program Example

Company Emplovee Header Data Line
L

getDataLineHeader()

moveDataLineHeader()

print()

Figure 7.25: A Sequence Diagram of Printing Rest Header

Rule 22: Realising sequence diagrams.

A sequence diagram is an interaction diagram that details how operations are carried out

- what messages are sent and when (Figure 7.26). Sequence diagrams are organised

according to time. Normally time proceeds down the page.

A sequence diagram has two dimensions:

(1) the vertical dimension represents time.

(2) the horizontal dimension represents object interaction.

The vertical line is termed the object's lifeline. The lifeline represents the object's life

during the interaction. A message is represented by an arrow between the lifelines of the

sender and the receiver objects. A message is shown as a horizontal solid arrow from

the lifeline of the sender to the lifeline of the receiver. The arrow is labelled with the

128

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

name of the operation to be invoked or the name of the signal. Its argument values or

argument expressions may be presented as well. The arrow may also be labelled with a

sequence number. Optionally, a message can be prefixed with an * (iteration maker),

which shows that the message is sent many times.

Sequence diagrams are used to demonstrate the flow of control for a certain part of a

program. It shows how objects in the system interact, based on messages sent and

returned. Sequence diagrams show the timeflow of messages and present a detailed

view of relationships between objects, and of the passage of messages.

Layering is a common approach to systems to be organised. As a result, it makes sense

to layer the sequence diagrams of legacy code in a similar manner. That is done based

on the layers of the program calls in the legacy code. The root program element is

regarded as the first and the most important sequence diagram. Other program elements

are included in that diagram. The node program elements are presented before the leaf

and isolated program elements.

The primary actor of the legacy system is allocated at the top left hand side of the

sequence diagram. Other actors follow in order of time and importance. Actors that are

the reactors of the legacy system are described at the top right hand side of the sequence
diagrams and are treated as the entities that the legacy code interacts with.

The message name is justified and aligned with the arrowhead. The receiver of the

message implements the corresponding operations and it makes sense that the message

name is close to that of the classifier. The syntax of the implementation language of the

legacy code is utilised in naming the messages. This improves understandability and

readability.

In a sequence diagram, an object receives messages and invokes the operation of time

ordering. Only if a message has been executed can the next message then be performed
in the time dimension. So the time periods when messages are executed by objects are

clearly shown on sequence diagrams (Figure 7.26).

Return values are common in legacy code. When an object finishes processing a

message, control returns to the sender of the message. This marks the end of the

activation corresponding to that message, and is marked by a dashed arrow going from

129

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

the bottom of the activation rectangle back to the lifeline of the role that sent the

message giving rise to the activation. Activations and return messages are optional in a

sequence diagram. They are optionally indicated using a dashed arrow with a label

indicating the return value. When they are referred to in the next part of the sequence
diagram, it is necessary to model the return values. Otherwise, they are ignored in

sequence diagrams in order to make those diagrams of legacy code clearer and simpler.

The operations of a legacy code are classified into different layers, especially in legacy

codes containing node and leaf program elements. They are described in the sequence
diagrams of that legacy code.

130

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

en nnnnnc, flflIfln. IIDEi& 1nmala

_oPsnO_____liLl

_jjnems
of queue manager Is missing) butt WamingMessapeo

of queue manager Is missing] mrneWammgMessap6Q

(name of queue manager is missing] pinto

rname of queue is missing] bulldErrorMessageQ

]name of queue Is missing] moreErrot$ esesgsQ 31.

[name of queue Is missing] prlnt0

openo

]error occurs] buildErtonAessagep

[enor occurs] moneErrorMessageQ
i

Iarror occurs] pint'

''' esIFlratMssssseO

movMessape0

prlntQ

petNeotMessape0 (print and loop until error Oneursj_

]error occurs and there era more messages] buildErrorMeasage0

occurs and more messages] mov. ErrorMessage0

terror occurs and more messages] prlntoyy
IU'

elose0
i

(error of closing queue occurs] OuildEnorMessage0

rar occurs in closing queue] moveErrorMesssgeQ0

]error occurs in closing queue] prlnto

dioconnectQ

jenor occurs In disconnecting queue manager] bu110ErrommesageQ

nor occurs In disconnecting] mirmErtorMessage0

_Ljerror
occurs in disconnecting] pnntQ

J
1

Figure 7.26: An Example of a Sequence Diagram

Rule 23: Presenting the sequence diagrams of four models.

WaminoMeenwew CrrorM assa as OlýeliwM anaawr

ConnecQueueManagerQ

III WamingMesssgep
1

10MlESapeQý

"to

sting] MuIltlErtorMassagep

eEgaQ

7uildErtorMe9ea9e0

ii
1i

131

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

The sequence diagram of a linear procedure-based model of a COBOL legacy system is

presented in Figure 7.27, that of a branch model in Figure 7.28, and that of a joint model
in Figure 7.29.

System Manager Systeme6c Cdl NODE-PROCEDURE-1 NODE-PROCEDURE LEAF. PPDCEDUPE-1

operations of systematic
.
all

f1
operations of variable-i

ii
operations of NODE-PROCEDURE-1

operations ofNODE-PROCEDURE j

operahcos of NODE-PROCEDURE-o
i

operations of LEAF-PROCEDRUE"I

Figure 7.27: Sequence Diagram of a Linear Procedure-Based Model

Tp__

fl o¬_N0C_ALI-
'.

Figure 7.28: Sequence Diagram of a Branch Procedure-Based Model

~
d9deýýr

i

ýpradýeüý

qýrs dlgWJllOCFd11EI

yw aýdtEA
-PItOlBgiU1

7rad1lAfdWCiW1E1

dW0E7Aa'MU "

dHOpLPWCFDUNýA

Figure 7.29: Sequence Diagram of a Joint Procedure-Based Model

The sequence diagram of a synthetic procedure-based model of a COBOL legacy

132

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

system is presented in Figure 7.30.

4
NODE. PADCFDI11EI1 NDDE-IROffDOL. iI I dýEffiýEQiE. }I IE1FIRdLEq; AE1 NDDEP0.0L49IlAE] NODEIRDRDLiEL Ipi_r_ý.! r.,

-�v-npýi

ýaruirmlbl ý

gsreýiNDD6 OC&U I

gmladMODEIADC®IAEII

U fllODElAO®IRB2I

. iNODEPAOIt JU4I

11 gpr. dNODElAOLlmk

apes fLMF"A0fRU"k&I .. (NODE10. DCFDUIE11

"p . flwMlOIFLJJ 4

fir

Figure 7.30: Sequence Diagram of a Synthetic Procedure-Based Model

As mentioned at the end of Section 7.3.1, when comparing the sequence diagram of the

linear procedure-based model in Figure 7.27 with the synthetic procedure-based model
in Figure 7.30, the former is simple and direct, whilst the later is complex and confused.
If a COBOL legacy system has the condition (4.11), which means that its

procedure-based model is linear, then its sequence diagram is directly obtained from the

model in Figure 4.6 as Figure 7.27. The same applies to the sequence diagrams of other

procedure-based models of COBOL legacy systems. Therefore, the application of

models raises the efficiency and improves the quality of modelling COBOL legacy

systems.

7.3.4 Interaction Overview Diagrams

Rule 24: Layering interaction overview diagrams.

Interaction overview diagrams are new in UML 2.0. They overview the control flow

within a system or business process (Figure 7.31). The nodes within a diagram are
frames instead of the normal activities which can be seen on activity diagrams. There

are two types of frame shown: interaction frames which depict any type of UML

interaction diagram; and interaction occurrence frames which indicate an activity or

operation to invoke. Decision points are shown as diamonds, exactly as on UML

activity diagrams. There should be guards on all the exiting flows, labelling some of
the guards when it is not obvious what is meant.

133

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

GetMonth

month<O

month>=0

GetSalary

salary<O

salary>=0

Id

ComputeMoney

Figure 7.31: An Example of a Interaction Overview Diagram based on Figure 7.1

The description of dynamic aspects of legacy code is complicated. The research in this

chapter concentrates on modelling dynamic aspects of legacy code with UML

interaction overview diagrams. The operations of the legacy code are classified into

different layers, especially in legacy code containing node and leaf program elements.

The interaction overview diagram which presents the leaf program elements in source

code is termed the leaf interaction overview diagram, indicated as

LEAF-PROCEDURE-NAME.

The interaction overview diagram which presents the node program elements in source

code is termed the node interaction overview diagram, indicated as

NODE-PROCEDURE-NAME.

The interaction overview diagram which presents the root program elements in source

134

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

code is termed the root interaction overview diagram, indicated as
ROOT-PROCEDURE-NAME.

The analysis of legacy COBOL systems with UML interaction overview diagrams starts
from leaf program elements.

Rule 25: Defining the fork node.

Let s be a statement of program P. Node s in the corresponding program control flow

graph is termed the fork node if and only if

ND(s) ýcp (7.26)

In Section 4.3.1, basic COBOL operations are presented. Group Two and Group Three,

which are conditional operations and control flow operations respectively, contain the

fork nodes [88]. The fork nodes of COBOL code are composed of the set FN(P), where

FN(P)= {IF, IF... ELSE..., EVALUATE, PERFORM... UNTIL (BY)...,

GOTO... LABEL... }

Statements IF and IF... ELSE... are fork nodes of COBOL. They are normal to enabling

the realisation of the choices of the execution (Figure 7.32).

e

Figure 7.32: Fork Node IF... ELSE ...
based on Figure 7.2

The IF statement is used in Figure 7.33, and its control flow graph of fork node IF is

Figure 7.34.

So IF Statement

SI
Statement I

S2

Statement 2

Sn

Statement n

S(�+ i) END-IF

135

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

I S(n+2) Statement (n+2)

Figure 7.33: Fork Node IF

Sý

Iý

Si

Iý

Iý

$n

.
Sn+2 __. __..

Figure 7.34: Control Flow Graph of Fork Node IF

The IF... ELSE ... statement is used as in Figure 7.35. The control flow graph of fork

node IF... ELSE ...
in Figure 7.35 is Figure 7.36.

SO IF Statement

Si
Statement S,

S2

Statement S2

s3 ELSE

S4

Statement S4

S5

Statement S4

s6 END-IF

s7 Statement S7

Figure 7.35: Fork Node IF... ELSE

136

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

So _.

Si Sa

Sz Ss

S,

Figure 7.36: Control Flow Graph of Fork Node IF... ELSE
...

Statement EVALUATE is the fork node in COBOL code. It is similar to the fork node

IF... ELSE.... (Figure 7.37).

-_ So

Si Sý Ss S7

Sz Sa Se Sa

_ý . __ Sn - ___

Figure 7.37: Control Flow Graph of Fork Node EVALUATE

Statement GOTO... LABEL is the fork node in COBOL source code. A typical usage of

the GOTO statement is in Figure 7.38, and its control flow graph is given in Figure

7.39.

SO POINT I:

sl PARAGRAPHI

s2 IF Condition I

s3 PARAGRAPH2

s4 GOTO POINT2

s5 ENDIF

s6 PARAGRAPH3

s7 IF Condition2

s8 PARAGRAPH4

s9 GOTO POINTI

sio ENDIF

sl1 POINT2:

S12 PARAGRAPH5

Figure 7.38: Fork Node GOTO

137

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

s9 I s2

S8 ,. .
S6 S3

SII

S12

Figure 7.39: Control Flow Graph of Fork Node GOTO

Rule 26: Defining joint node and action node.

Let s be a statement of program P. Node s in the corresponding program control flow

graph is termed the joint node if and only if

sE JN(P) (7.27)

where
JN(P)= {END-IF, END-EVALUATE, EXIT, STOP RUN }

Let s be a statement of program P. Node s in the corresponding program control flow

graph is termed the action node if and only if

sE AN(P) (7.28)

where

AN(P)= VERB(SS) U VERB(SCD) U VERB(SCT) -FN(P)-JN(P)

VERB(SS), VERB(SCD), and VERB(SCT) are defined in Section 4.3.1, and FN(P) and

JN(P) in this section. That is,

AN(P)={ ACCEPT, DISPLAY, MOVE, INITIALISE, SET, ADD, COMPUTE,

DIVISION, MULTIPLY, SUBTRACT, STRING, UNSTRING, INSPECT,

INITIATE, GENERATE, TERMINATE, SUPPRESS, USE BEFORE

REPORTING, IN, OF, FUNCTION, DELETE, OPEN, CLOSE, READ, WRITE,

REWRITE, COPY, RELEASE, SORT, RETURN, START, USE... AFTER...,

USE FOR DEBUGGING, SELECT, CONTINUE, SEARCH, CALL, PERFORM,

138

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

CANCEL)

Rule 27: Layering nodes.

Let s be a node in the control flow graph of program P. The node layer is the number of

the node that represents its stratum in the program. It is indicated as NL(s).

Table 7.1: One Example of Node Layer NLO

Node Number Source Code NLO

I PROCEDURE DIVISION. 0

2 OPEN OUTPUT StudentFile 1

3 DISPLAY "Enter student details" 1

4 PERFORM GetStudentDetails 1

5 PERFORM UNTIL StudentDetails = SPACES 1

6 WRITE StudentDetails 2

7 PERFORM GetStudentDetails 2

8 END-PERFORM 1

9 CLOSE StudentFile 1

10 STOP RUN. 1

11 GetStudentDetails. 0

12 DISPLAY "Enter Id, Name, Gender" 1

13 ACCEPT StudentDetails 1

For example, in Table 7.1, the node layer of Node 1 is 0, NL(1)=0. That is, the node

layer of the procedure name is 0. Then, the node that is executed after the procedure

name has the node layer 1, NL(2)=1. If the next node is the fork, the first statement in

the fork has node layer 2. Similarly, for the statement that in the PERFORM statement
has node layer 2, NL(6)=2. And so on.

Rule 28: Presenting the control structure.

Let s be a node of program P, v be a variable of P, FNS be the set of fork nodes of

program P, so that

FNS(s)={sl(s E P) AND (s E FN(P))} (7.29)

Let FNVS be the set of the variables of FNS, so that

FNVS(v)={vl(v E P) AND (v E FNS(s))}. (7.30)

Assume that `d vk E FNV S(s), 1 <-<k-<T, v is program sliced and its slicing criterion Ck=<n,

139

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

vk>. Every Ck has a number of nodes. Finally, the set CSSO of all sliced nodes is

generated,

CSS(s)= 2: Ck (7.31)

The control structure of program P CS(P) is formed by the nodes in CSS() and the fork

nodes, that is,

CS(P)=CSS(P) U FN(P). (7.32)

Let PL; be a leaf program element of original COBOL code, its control structure
CS(PL;), 1: 5i<t. The basic control structure BCS(PL;) is

BCS(PL;)= CS(PL;) U JN(PL;)

=FN(PL;) U JN(PL;) U CSS(PL;) (7.33)

In order to realise the interaction overview diagram, the analysis of program P starts
from the leaf interaction overview diagram with the basic control structure BCS(PL)

and the node layers NLO.

Rule 29: Realising interaction overview diagrams.

Let s be an arbitrary node of the interaction overview diagram of program P. The

algorithm of the realisation of the interaction overview diagram is

For j: =0 to MAX(NL(P)) DO

While (BCSS (P) O) DO

If (s E BCSJ (P)) AND (NL(s)=j) Then

BCSj (P): = BCSj (P)-{s}

End-If

End-While

While (ANS (P) jq) DO

If (s E ANS (P)) AND (NL(s)=j) Then

ANS (P): = ANS (P)-{s}

End-If

End-While

End-For (7.34)

The interaction overview diagram of leaf program element PL; is composed of basic

140

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

control structure BCS(PL;) and action nodes AN(PL;):

0 Start point and end point. Every UML interaction overview diagram has a start

point. The start point is allocated at the top-left corner of the interaction overview
diagram and the end point is at the bottom-right corner. Both of them are modelled

as a filled-in circle with a border around it.

" Fork nodes FN(PL;) and joint nodes JN(PL;). It is possible that activities can occur
in parallel that are regarded as forks and joins. A fork should have a corresponding
joint. Each fork has one entry transition and each join has one exit transition.

" Sliced nodes CSS(PL;). Sliced nodes are arranged in the interaction overview
diagram based on the sequence of the nodes.

0 Action nodes AN(PL). An activity on a UML interaction overview diagram

typically represents the invocation of an operation, a step in a business process, or

an entire business process. When an activity, except for the starting or ending point,

has a transition into it but none out, or has a transition out but none into it, it is

possible that one or more transitions have been missed.

In a UML interaction overview diagram, a decision point is modelled as a diamond. The

guards (depicted using the format "[description]", which is a condition that must be true

in order to traverse a transition), on the transitions leaving decision points, help to

describe the decision points. Each transition leaving a decision point must have a guard.
The guards on the transitions leaving a decision point, or an activity, must be considered

alongside each another, and should not overlap. The guards on decision points form a

complete set. It is necessary that exit transition guards and activity invariants must form

a complete set.

Let PNj be a node program element of original COBOL code, its containing leaf

program elements PL;, 1: 5i5t. PL; is termed the procedure node of node program

element PNj, which is indicated as

PL; E PCN(PNj) (7.35)

The leaf program elements PL; in a node program element PNj are regarded as the

action nodes of PNp Therefore, the drawing of the node interaction overview diagram is

the same as the drawing of the leaf program element.

141

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

Interaction overview diagrams use the right level of detail in order to describe the

system's functionality. A model is a communication device, so it requires an adequate

level of detail to address the problem to be solved. Clarity and brevity are important to

avoid visual overload, and a model should present key features of the control flows.

It is important to limit the level of complexity of each interaction overview diagram. If

there are more than three possible paths (alternate or exceptional), it is necessary to use

additional interaction overview diagrams to promote understanding. It is also necessary
to use additional interaction overview diagrams if the processing requires specific data

elements.

After all the node interaction overview diagrams have been acquired, the root
interaction overview diagram is realised, based on the above.

7.3.5 Application of COBOL Rules

In some cases, when a program element of a COBOL legacy system has only a few

variables, or even none at all, it is not necessary to present its class diagram and

composite structure diagram. If a program element is short in length, such as only thirty

lines of statements, it is not necessary to obtain its sequence diagram and interaction

overview diagram. Or, if a program has more than a hundred statements, but its

structure is only repetition of an "IF... ELSE... " statement, its interaction overview

diagram is not necessary.

So, when a program element has one of the following characteristics, it is unnecessary

to follow those rules:

Cl: The number of variables is not more than ten.

C2: The number of statements is not more than fifty.

C3: The program structure is composed of the repetition of a fixed combination

of fewer than five kinds of statement in Group One in Section 4.3.

C4: The program structure is composed of the repetition of a condition or loop

statement in Group Two or Group Three in Section 4.3.

C5: A generated class contains not more than five variables.

As mentioned above, Rules 1 to 11 describe class diagrams. The COBOL legacy system
is input, restructured and sliced. When condition Cl occurs in Figure 7.40, it means that

142

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

this program element has no more than ten variables and it is unnecessary to model with

class and composite structure diagrams.

Rules 12 to 14 describe composite structure diagrams. The variables in a class are

collected. When condition C5 occurs, it means that a generated class contains not more

than five variables. It is not necessary to model this class with composite structure
diagrams.

Rules 15 to 24 describe sequence diagrams and Rules 25 to 29 describe interaction

overview diagrams. A program element is sliced. When condition C2 occurs, it means

that this program is shorter than fifty statements in length and it is not necessary to

model with sequence and interaction overview diagrams. If a program is longer than

fifty statements but it is composed of the repetition of a condition or loop statement,

then the structure of this program element is simple and it is not necessary to model it

with interaction overview diagrams. After presenting sequence diagrams, when

condition C3 occurs, it means that a program element is composed of the repetition of

the fixed conditions of fewer than five kinds of statement in Group One. Its structure is

simple and it is easy to understand. It is not necessary to model it with interaction

overview diagrams.

Consequently, when conditions Cl to C5 occur, the complexity of modelling COBOL

legacy systems is greatly reduced at that point.

143

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

Start

Rule 1-4

N
C1

Y

Rule 511

Rule 12

N Y
C5

Rule 13-14

Rule 15-17

N
CL J

Rule 18-2

N
C3

Rul=25-29

f_
End

Figure 7.40: Application of COBOL Rules

7.4 Summary

In this chapter, class diagrams and composite structure diagrams are used to describe the

static parts of a legacy system and its internal structure. Sequence diagrams and

interaction overview diagrams are used to model the dynamic parts of a legacy COBOL

system. Because of the presentation of the most important characteristics, or another

form of sequence diagram, or pleonasm and redundancy in modelling the functionality

144

N <-> Y

C4

Chapter 7. Extracting UML Diagrams from COBOL Legacy Systems

of COBOL code, or the focus on business proceedings, other UML diagrams are not
used.

Following the 29 rules, those four UML diagrams are obtained. At the end, application
of rules is presented. Normally, the modelling of a COBOL legacy system should
follow these rules, but in some cases it is different. Five conditions are described.

145

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

Chapter 8

Extracting UML Diagrams from HTML

Legacy Systems

8.1 Introduction

The information in every corner of the world is linked through web, and at the

beginning the web was designed with HTML. The desired web page is realised through

the correct usage of the tags by the translation of web browsers. And the tables, forms,

images, and sounds appear in web pages in the designed format [52].

HTML is the presentation of web and data format, and it does not focus on data flow or

control flow dependences. It has no behavioural functionality and is not sliced by

program slicing techniques.

A HTML legacy system is modelled with using not all the UML diagrams. Because of

no behavioural functionality, or the presentation of the most important characteristics,
based on development/environment-specific model, class diagram, composite structure
diagram, component diagram, and deployment diagram are used to describe the legacy

HTML system, while other UML diagrams are not used.

8.2 Using Four UML Diagrams to Model HTML

Legacy Systems

8.2.1 Not Having Dynamic Modelling

Because HTML uses cascading stylesheets to control the presentation of web pages, and
basic special effects and interaction are provided by JavaScript, which adds a lot of

power to basic HTML, it has its own characteristics which are different from other

146

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

programming languages.

The essential task of HTML is the service of Internet, and this is its biggest difference

with other programming languages. HTML does not take on the responsibilities of

calculation, real-time control, judgments and immediate response, batch disposal,

database data management, man-made intelligence, etc.

HTML is a great tool to present the data under the designed format, especially with

tables and frames. The nature of HTML means that it is the basic in web application. It

does not focus on the complicated control or the computation.

Therefore HTML legacy systems do not need to be modelled with UML dynamic

diagrams.

8.2.2 Static Modelling

UML 2.0 uses six diagrams to model the static parts of systems. The object and

composite structure diagrams are low-level modelling diagrams, whilst others are

high-level.

Among the UML diagrams, the class diagram is the most fundamental in modelling the

structure of legacy systems. As mentioned in Section 7.2.1, the class diagram should be

used to model HTML legacy systems, whilst the object diagram is unnecessary to be

used.

Although the composite structure diagram is low-level, it is the description of internal

structure of a class with different purposes from object diagram. The tables, forms,

images, and frames have the different and complex structures in web usage, and their

internal structure should be presented in detail in order to be more easily understood. So

the composite structure diagram is used in modelling the internal structure of the classes

of a HTML legacy system.

Because the most normal use for the package diagram is to organise use case diagrams

and class diagrams although not limited to these, and HTML is a great tool to present

the data under designed format, package diagram is not necessary to be used in

modelling a HTML legacy system.

147

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

The component diagram shows the dependencies amongst software components,
including the classifiers that specify them and the artifacts that implement them; these

include source code files, binary code files, executable files, scripts and tables. The

desired web page is realised through the correct usage of the tables, forms, images, and

sounds in web pages in the designed format. So component diagram is used in

modelling HTML legacy system.

The deployment diagram presents processors, devices, and the connections between

them, which can comprise the run-time configuration of hardware nodes and the

software components that run on those nodes. HTML uses the web servers and browsers

to execute the web presentation and information exchange. Therefore the deployment

diagram is used when modelling HTML legacy systems.

8.2.3 Using Four UML Diagrams to Model HTML Legacy

Systems

Consequently, four UML diagrams: class, composite structure, component and

deployment, are used to model HTML legacy systems.

8.3 Not Needing to Slice HTML Legacy Systems

According to the characteristics described in Section 5.2, the main characteristics of
HTML legacy systems is the presentation of web and data format. They do not focus on
data flow or control flow dependences. They are the great tool to present the data under

the designed format, especially with tables and frames, and the common platform for

the different data. They have few variables. Consequently, program slicing techniques

are not suitable for analysing HTML legacy systems.

8.4 Modelling HTML Legacy Systems

8.4.1 Class Diagrams

Rule 1: Using four UML diagrams to model HTML legacy systems.

148

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

As mentioned in Section 5.4.3, there are three HTML

development/environment-specific models: sequential, cyclical, and compositive
link-based models.

Different models of HTML legacy systems have different structures, and different

structures result in different structures of UML class diagrams when modelling legacy

systems with UML. So there are three kinds of UML class diagrams corresponding to

those three HTML development/environment-specific models.

UML composite structure diagram depicts the internal structure of a classifier (such as a

class, component, or use case). It is most often used to show hidden internal details of a

class. The three different HTML development/environment-specific models are

composed of procedure and variable classes. The modelling of these two classes are the

same, and not be influenced by the differences of the three HTML

development/environment-specific models. So the applications of composite structure

diagram to model the procedure and variable classes in the three different HTML

development/environment-specific models are the same.

UML component diagram is used to describe the dependencies between various

software components, including source code components, binary code components, and

executable components.

A component represents a software entity in a system. Although HTML legacy system

has three HTML development/environment-specific models, they have the same

components. So the three different HTML development/environment-specific models

are presented with the same component diagrams.

UML deployment diagram is the description of the processors, the devices, and the

connections between the processors and the devices, and shows the hardware for the

legacy HTML system, the software that is installed on that hardware, and the

middleware used to connect the disparate machines to one another.

No matter how different the three HTML development/environment-specific models are,

the processors, the devices, and the connections between the processors and the devices

are the same. So the three different HTML development/environment-specific models
have the same deployment diagrams.

149

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

The development/environment-specific models of HTML legacy system have three

sequential, cyclical, and compositive link-based models. In order to simplify the

research in the thesis and not lose the universality, the computing of
development/cnvironment-specific models of HTML legacy system will focus on

compositive link-based model, the most complicated one among the three link-based

models of HTML legacy systems. The other two models will not be computed. But the

algorithms are similar.

Rule 2: Layering class diagrams.

In a HTML legacy system, one web page is regarded as the essential unit of the

link-based model. The model entities are composed of the web systems. The structure

of HTML legacy code is complicated and is displayed into different layers, which is

represented with three different types of class diagrams.

The class diagram which presents the leaf web elements in source code is termed the

leaf class diagram, indicated as LEAF-WEB-NAME.

The class diagram which presents the node web elements in source code is termed the

node class diagram, indicated as NODE-WEB-NAME.

The class diagram which presents the root web element in source code is termed the

root class diagram, indicated as ROOT-WEB-NAME.

One example of HTML code is in Figure 8.1, and its class diagram is presented in

Figure 8.2.

<HTML>

<HEAD>

<TITLE>Biography ITITLE>

</HEAD>

<BODY>

<H1><CENTER>The Jazz King's Biography</CENTER></H1>

<TABLE BORDER="8" ALIGN="left">

<TR>

<TH>Record Name</TH>

<fH>Year Produced<ITH>

</TR>

<TR>

<TD>Midnight Jazz<ITD>

150

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

<TD> 1994</TD>

</TR>

<TR>

<TD>Summer Songs<I TD>

<TD> 1996</TD>

VfR>

<TR>

<fD>Live in Concert</TD>

<TD> 1998</TD>

</'IR>

<TR>

<TD>Best Hits</TD>

<TD>200047D>

<! rR>

</TABLE>

<P>The Jazz Kings burst onto the music scene in 1994 with their debut album entitled Midnight Jazz. Since then, the

band has been gaining popularity through the United States. <P><BR CLEAR="left">

<P>The band consists of five talented musicians who met in New Orleans in 1991. Since then, they have produced
four albums and have toured throughout the United States and Europe. Although their albums are great, the band

really must be seen live to be truly appreciated! The Jazz Kings play with a great deal of energy, and the audience is

always dancing in unison by the end of the first song! Whether they are playing a small club, or a large stadium, the

band is always at their best when on stage. VP>

<P></P>

<4BODY>

</HTML>

Figure 8.1: One HTML Code Example

IMAGE-Biography

-Tiger : IMAGE-Biography

LINK-Biography II TEXT-Biography II TABLE-Biography

; er : Li? gin-Biog aphyy -iheJazzKing sBiography : TEXT-Biography i---1-TheJazzKing sBiography : TABLE-Biography

Figure 8.2: Class Diagram of Code in Figure 8.1

Rule 3: Starting from root web element.

The analysis of legacy HTML code starts from root web element. Because the head part
describes the title and some introduction information, it is not included in the analysis

model.

Leaf web elements are the end of the web link. Because of the single direction of the

151

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

web link from root web element to leaf web elements, every leaf web element does not

contain the imported information. From leaf web elements, the link thread cannot be

able to be discovered. Therefore, the leaf web elements are not good start point to

analyse HTML code. Node web elements are difficult to find the linking clue

comparing with root web element. Because they are imported by root web element and
import leaf web elements, they share the difficulty of leaf web elements which are
imported and increase the difficulty of root web element to track the link road. They are

even worse to be the start point of analysing the HTML source code.

Root web element is the beginning of trailing web links. It is the starting point of the
line of web pages. No matter how many web pages are behind the root web element, it

is the essential unit to analyse the whole HTML code. It is the best start point of
tracking the link.

Because one leaf web element is one functional module and it is linked in the node or

root web elements, it is defined as one class in analysing node or root web elements that

call the leaf web element.

For one leaf web element P, leaf web class is the class with respect to that leaf web

element in analysing the webs linking it, indicated as CLASS LEAF-WEB-NAME.

The class which represents the node web element in source code is regarded as one class
in node and root class diagrams which link that web, and it is termed node web class,
indicated as NODE-WEB-NAME.

In one node web element, its contained leaf and node web elements are presented with
leaf and node classes.

Rule 4: Partitioning one web page into several blocks.

The web page is used to exchange information through Internet. -It is realised through

the correct usage of the tags by the translation of the web browsers. It is composed of

several parts, each one of which has the specific destination to describe the specific
function, such as the title, the main description, the main data, the help and the

additional information. And most of the presentation formats of data, which are tables,
forms, images, sounds, photos and films, are displayed in the web pages. The data are

presented with all manner of devices that display information on the Web: PCs with

152

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

graphics displays of varying resolution and color depths, cellular telephones, hand held

devices, devices for speech for output and input, computers with high or low bandwidth,

and so on. Different formats of data are presented with different description.

The web block is one part of one web page, which describes one specific function of

that web page, indicated WB-NAME. One web page is one set of data that describes the

main functionality. It is composed of several blocks. Those blocks are organised

together with different functions to support the entire functionality of the web page. For

example, one web page describes one definition UML. Then at least it has two web

blocks: definition name UML and definition description, which are indicated as

WB-UML and WB-UML-description.

The web blocks of one web page are former note, local header, local main, local footer,

and additional note.

The former note is one web block in one web page that describes the top web, the main

structure of the entire web system, the former web pages, the continuing web pages, etc.
It is usually located at the upper web page. It is indicated as WBFN-NAME.

The local header is one web block in one web page that describes the main functions of

the web page, the title of this web page, and the links to latter web pages. It is indicated

as WBLH-NAME.

The local main is one web block in one web page that realises the main functions of the

web page. It is indicated as WBLM-NAME.

The local footer is one web block in one web page that describes the explanation of the

web realisation, the supplement of the web, the updating information, the contact styles,

the information about the author, etc. It is usually located at the bottom of the web page.
It is indicated as WBLF-NAME.

The additional note is one web block in one web page that provides the additional

functions, such as helping, searching, statisticalising, recording, and advertising, and

describes the links to latter web pages. It is usually located at the bottom or sides of the

web page. It is indicated as WBAN-NAME.

In some cases, one web block has several parts. For example, local main of one web

page can be divided into local main part 1, local main part 2, ..., and local main part n.

153

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

In the root web element, there are several blocks, and each block has different data

descriptions.

Rule 5: Presenting five operation classes.

The HTML code has five groups operations: text, image, table, frame, and link. So the

corresponding five kinds of classes are defined.

The text class of one HTML code PP is defined as the class that describes the text of the

web element PP, indicated as Text Class. Its attributes include font, location, content,

period, subscript, superscript, etc. Its operations include "to delete line", "to format",

"to insert underline", "to quote", "to scroll", "to make the same style", etc (Figure 8.3).

(Text Class))

Class-Name

Font: integer

Colour: string

Location: string

Content: string

to delete line

to insert underline

to format

to quote

to scroll

to make the same style

Figure 8.3: Text Class

((Image Class))

Class-Name

Location: string

Content: string

to create

to embed
to substitute with

to set spacer

Figure 8.4: Image Class

154

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

The image class of one HTML code PP is defined as the class that describes the image

of the web element PP, indicated as Image Class. Its attributes include location, content,

etc. Its operations include "to embed", "to substitute with", "to make the map", "to set

spacer", "to create", etc (Figure 8.4).

The table class of one HTML code PP is defined as the class that describes the table of
the web element PP, indicated as Table Class. Its attributes include location, table head,

table body, table foot, caption, label, etc. Its operations include "to select", "to input",

"to make button", "to make group", "to create text area", etc (Figure 8.5).

((Table Class))

Class-Name

Location: string

Caption: string

Table Head: string

Table Body: string

Table Foot: string

Label: string

to select

to input

to make button

to make group

to create text area

to create volume

Figure 8.5: Table Class

The frame class of one HTML code PP is defined as the class that describes the frame

of the web element PP, indicated as Frame Class. Its attributes include location, content,

etc. Its operations include "to embed frame", "to substitute with", etc (Figure 8.6).

(Frame Class))

Class-Name

Location: string

Content: string

to embed frame

155

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

to create frame set

to substitute with

Figure 8.6: Frame Class

The link class of one HTML code PP is defined as the class that describes the link of the

web element PP, indicated as Link Class. It is the most important class among these

classes because it leads to other web pages. Its attributes include location, base, content,
layer, etc. Its operations include "to link", etc (Figure 8.7).

((Link Class))

Class-Name

Location: string

Base: string

Content: string

Layer: integer

to link

Figure 8.7: Link Class

Rule 6: Realising class diagram of one web block.

Each block of one web page contains all or part of those five classes, and each block is

defined as one class diagram. See Figure 8.8.

Frame Image

ion : string -location : string
: nt : string -content : string

Table Link
location : string on : string base : string)n : string

-content : string
read : string

_iayer : int
>ody : string
'oot: string +Iinko

Itsetspacer()

Text

-font : int
-colour: string
-location : string

Figure 8.8: Class Diagram of One Web Block

156

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

Rule 7: Realising class diagram of one web element.

One web page is composed of one or more of the web blocks, and each web block is

represented with one class diagram. Therefore class diagram of one web element is

composed of one or more of those class diagrams.

Assume that the HTML source code PW has the layer j=no, nos represents the maximum

number of the st' web element of the jt' layer, nest represents the maximum number of t`h

web block of the sth web element of the j`" layer, PEEk is the web element whose layer is

j, 1 <_s<_nj,, whose web element is k, 1 <k<nj , and PPPkI is the web block whose layer is j,

1<s5njs, whose web element is k, 1<_k-<nj,, 151<njst. The algorithm describing the class
diagrams of web element of HTML code PW is:

For j: =0 to no DO

For k: =1 to nj, DO

For 1: =1 to njkt DO

TextClass(PPPk!);

ImageClass(PPjkl);

TableClass(PPjkl);

FrameClass(PPJki);

LinkC1ass(PPjkl);

ClassDiagram(PPJkl);

End-For

C1assDiagram(PEJk);

End-For

End-For

ClassDiagram(PW); (8.1)
TextClassO, ImageClassO, TableClassO, FrameClassO, and LinkClassO are the

functions to create the classes of source code, and ClassDiagram(is the function to

draw the class diagram based on those classes.

When j=0, it is the class diagram of root web element, and others are the ones of leaf or

node web elements.

Rule 8: Presenting class diagrams of HTML models.

157

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

Sequential link-based model is one link-based model in which the relationships between

root web element and node web elements, node web elements, or node web elements

and leaf web elements, are ordinal. The class diagram of sequential link-based model is

described in Figure 8.9,8.10,8.11, and 8.12.

Figure 8.9: First Class Diagram of Sequential Link-Based Model

Figure 8.10: Second Class Diagram of Sequential Link-Based Model

Figure 8.11: Third Class Diagram of Sequential Link-Based Model

158

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

Figure 8.12: Fourth Class Diagram of Sequential Link-Based Model

Cyclical link-based model is one link-based model in which one or more relationships
between root web element and node web elements, node web elements, or node web

elements and leaf web elements, are loop. There is no ordinal relationship in this

link-based model.

The class diagram of cyclical link-based model is described in Figure 8.13.

Figure 8.13: One Class Diagram of Cyclical Link-Based Model

Compositive link-based model is one link-based model in which there exist two

relationships of loop and ordinal at the same link-based model between root and node

web elements, node web elements, or node web elements and leaf program elements.

The class diagram of compositive link-based model is described in Figure 8.14.

159

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

Figure 8.14: One Class Diagram of Compositive Link-Based Model

The class diagram of cyclical link-based model of HTML legacy system is simpler than

composite link-based model. If one HTML legacy system has the condition (5.6) and it

means that it has cyclical link-based model, then its class diagram is directly acquired

from Figure 5.12 and Figure 8.13. So as to class diagrams of sequential link-based

models of HTML legacy system.

Just like the description at the end of Section 7.3.1, the use of model for HTML legacy

system improves the modelling efficiency.

8.4.2 Composite Structure Diagrams

Rule 9: Presenting composite structure diagram of five classes.

Composite structure diagram in UML 2.0 depicts the internal structure of a classifier
(such as a class, component, or use case), including the interaction points of the

classifier to other parts of the system. Composite structure diagrams, which are new to

UML 2.0, focus on instances and their internal structure, providing examples of how the

static architecture will achieve a requirement.

This diagram is most often used to show hidden internal details of a class, an object, or

a component. It is composed of parts and connections.

The text class of HTML class diagram is composed of font, location, content, period,

160

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

subscript, superscript, deleted line, formatted text, inserted underline, quoted text,

scrolled text, etc (Figure 8.15). The image class of HTML contains location, content,

embedded image, text substituted with, made map, spacer, etc (Figure 8.16).

The table class includes location, table head, table body, table foot, caption, label,

selection part, created form part, button, text area, created volume, etc (Figure 8.17).

The frame class includes location, content, embedded frame, frame set, text substituted

with, etc (Figure 8.18). The link class includes location, base, layer, linkURLs, etc

(Figure 8.19).

Text

Font Location Content FormatedText DeletedLine

ScrolledText InsertedLine

QuotedText

Figure 8.15: Composite Structure Diagram of Text Class of HTML

Image

Location F-{ Content H Embeddedlmage H ReplacementText

Map II Spacer

Figure 8.16: Composite Structure Diagram of HTML Image Class

Table

Location Label Caption CreatedFormPart

Button TableHead SelectionPart

TextArca Table Body Created Volume

TableFoot

Figure 8.17: Composite Structure Diagram of Table Class

Frame

Figure 8.18: Composite Structure Diagram of Frame Class of HTML

161

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

Link

Location Base Layer LinkURLs

Figure 8.19: Composite Structure Diagram of Link Class of HTML

Sometimes one class is composed of several equivalent parts, and they have the similar

structure and the same functions. They are modelled with composite structure diagram

in the same way.

Sometimes one part of one class is complicated and has many small pieces. In this case,

the internal structure of that part of that class can be modelled with UML composite

structure diagram as well.

8.4.3 Component Diagram

Rule 10: Presenting component diagram of HTML legacy system.

It is important to have a component diagram in modelling the legacy HTML system. A

component diagram is defined by Object Management Group in 2001 as that shows the

dependencies among software components, including the classifiers that specify them

and the artifacts that implement them; such as source code files, binary code files,

executable files, scripts and tables. A component diagram is used to describe the

dependencies between various software components. A component represents a

software entity in a system. A component is represented using a rectangular box, with

two rectangles protruding from the left side. A Dependency is used to model the

relationship between two components. The notation for a dependency relationship is a

dotted arrow, pointing from a component to the component it depends on.

Web Browser ----------

I

Database SecuritySystem EmailSystem

Figure 8.20: One Component Diagram of Example In Figure 8.1

162

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

A component diagram shows the dependencies among software components, including

source code components, binary code components, and executable components. A

software module may be represented as a component type. Some components exist at

compile time, some exist at link time, and some exist at run time; some exist at more

than one time. A compile-only component is one that is only meaningful at compile

time; the run-time component in this case would be an executable program. A

component diagram has only a type form, not an instance form. Legacy HTML system

depicts the web page. It uses the wet browsers, the database, the application system, etc.

The component diagram of example in Figure 8.1 is presented in Figure 8.20.

8.4.4 Deployment Diagram

Rule 11: Presenting deployment diagram of HTML legacy system.

A UML deployment diagram is the description of the processors, the devices, and the

connections between the processors and the devices. It shows the hardware for the

legacy HTML system, the software that is installed on that hardware, and the

middleware used to connect the disparate machines to one another.

Client:
WebBrowser

Mainframe: WebServer:
ABCWeather UnixServer

DatabaseServer:
OracleDatabase

Figure 8.21: Deployment Diagram of One Example In Figure 8.1

163

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

Legacy HTML system is the presentation of the web usage. It uses the wet browsers,

such as Internet Explorer and Netscape, which is allocated in the client, the database,

such as FoxPro and Oracle, which is stored in the database server, and the application

system, such as the search engine and email, which is deposited in the user client. The

deployment diagram of example in Figure 8.1 is presented in Figure 8.21.

8.4.5 Application of HTML Rules

Based on the link-based model of HTML legacy system, four UML diagrams is able to

be presented through the above eleven rules. All the discussion above is in the most

complex situation. In some cases, one HTML legacy system may not link node web

elements, and it only has leaf web elements; one web page may only contain parts of
five local web blocks; one web page may only contain several paragraphs of text

description; or even it is composed of only one picture. Then those eleven rules do not

need to be followed one by one.

So, when one web legacy system has one of the following characters, it is unnecessary

to follow those rules:

Cl: It is composed of one root element and not more than three leaf web

elements.
C2: One web element only has one block.

C3: One web element is composed of several paragraphs of text.

C4: One web element only has one image, such as one picture or one photo.
C5: One of five blocks of one web element has only one class among text class,

image class, image class, table class and frame class.

As mentioned in this chapter, Rule 1 to 8 describes the realisation of class diagrams of

HTML legacy system. When Cl occurs, which means that this system only has one root

web element and not more than three leaf web elements, its class diagram is

unnecessary to be realised (Figure 8.22). When C2 occurs, which means that the web

element being discussed only has one block, its class diagram does not need to be

realised and Rule 4 to 6 are not used. When C3 happens, which means that the web

element only contains text format, its class diagram and composite structure diagram are

unnecessary to be realised and Rule 4 to 7 are not used. When C4 happens, which

means that the web element is composed of one image, its class diagram and composite

164

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

structure diagram are unnecessary to be realised. When C5 occurs, which means that the

web element only has one block, its class diagram does not need to be realised.

Consequently, when conditions Cl to C5 occur, the complexity of modelling HTML

legacy system at that point is greatly reduced.

Start

Rule 1-3

NY

NY

C2

Rule 4-5

NY

C5

(7Rule_6

Rule 7-8
ýý Rule 8

N
C3

Y

N <'C 4v-,,

jv

L Rule 9

Rule 10

C
Rule 11D

End

Figure 8.22: HTML Rules Application

Y

165

Chapter 8. Extracting UML Diagrams from HTML Legacy Systems

8.5 Summary

In this chapter, under the support of development/environment-specific model in

Section 5.4, four UML static diagrams are used to describe HTML legacy system.
Because of no behavioural functionality, other UML diagrams are not used.

Eleven rules are presented to realise those four UML diagrams. Based on link-based

models, class diagram is obtained from HTML legacy system. The statements of in

HTML code are composed of five groups. Three different kinds of web link layers are
distinguished-root web element, leaf web element and node program element.
Link-based model is indicated. It is composed of nodes and lines. The sequence of
link-based model PG is upper-to-bottom. The web the first node represents imports the

webs the next nodes represent. The sequence of the next nodes is the sequence being

imported in the first web. In response to three web layers, three class diagram-leaf,

node, and root class diagram, are introduced. The HTML code has five groups

operations: text, image, table, frame, and link. So the corresponding five kinds of

classes are defined. Based on one algorithm, class diagrams of HTML legacy system are

realised. Composite structure diagrams are composed of parts of those five

classes-text, image, table, frame, and link class. The component diagram and
deployment diagram of legacy HTML system are presented as well.

166

Chapter 9. Extracting UML Diagrams from SQL Legacy System

Chapter 9

Extracting UML Diagrams from SQL

Legacy Systems

9.1 Introduction

SQL is a full-featured relational database management system that offers a variety of

administrative tools to ease the burdens of database development, maintenance and

administration. T-SQL is Microsoft's proprietary extension to SQL and includes

additional functionality designed to support Microsoft SQL server. It is common for

large-scale database to use SQL to facilitate the database user and the administrator
interactions. This language offers a flexible interface for databases of all shapes and

sizes.

Because SQL has the operations of the data flow and control flow dependences,

program slicing techniques are suitable for analysing SQL legacy system.

A SQL legacy system is modelled with not all the UML diagrams. Based on
development/environment-specific model in Section 6.4, class diagram and composite

structure diagram are used to describe the static part of SQL legacy system and internal

structures of classes, and activity diagram describes the dynamic part of legacy system.
Other UML diagrams are not used.

9.2 Using Three UML Diagrams to Model SQL

Legacy Systems

9.2.1 Static Modelling

UML 2.0 uses six diagrams to model the static parts of systems. Because the class

167

Chapter 9. Extracting UML Diagrams from SQL Legacy System

diagram is the most fundamental in modelling the structure of legacy systems, so class
diagram is used to model SQL legacy systems. But object diagram is not used.

The composite structure diagram is low-level and is the description of the internal

structure of a class with different purposes to from the object diagram. It can be used to

model the complication of a class in detail. SQL is a full-featured relational database

management system that offers a variety of administrative tools to ease the burdens of
database development, maintenance and administration. This language offers a flexible

interface for databases of all shapes and sizes. Because every database has its own

specific structure, composite structure diagram should be used in modelling the internal

structure of a class of SQL legacy system.

The component diagram is used at a high level. After class diagram is used in modelling

a COBOL legacy system in high level, component diagram is pleonastic and redundant
in modelling SQL code. So the component diagram is not used.

The package diagram is adopted at too high a level in modelling a SQL legacy system,

after the class diagram is used, it is not necessary to use the package diagram.

The deployment diagram is the run-time configuration of hardware nodes and the

software components that run on those nodes. It is too high-level for analysing SQL

legacy systems from the static and structural points of view. Therefore, the deployment

diagram is not used when modelling SQL legacy systems.

9.2.2 Dynamic Modelling

UML 2.0 uses seven diagrams to model the dynamic parts of systems, timing diagram

and interaction overview diagram of which are new in UML 2.0.

A sequence diagram presents the interactions between objects that achieve a result at a
high level. It describes how groups of objects collaborate in presenting certain system
behaviours. Because SQL system mainly focuses on the databases and its main objects

are databases, and SQL system mainly creates or deletes the databases and it has few

messages between those databases like other objects in COBOL, BASIC and
FORTRAN languages, the sequence diagram that describes the objects and messages
between them is not used.

168

Chapter 9. Extracting UML Diagrams from SQL Legacy System

A communication diagram is used to model interactions between objects, and objects

interact by invoking messages on each other. The class is the abstraction of the common

characters of the object group. Most of the important characteristics of the object are

reflected on the responding class. Composite structure diagram has been used to model

the internal structure of the classes in SQL legacy system. It is not necessary to use the

collaboration diagram.

An activity diagram describes a flowchart showing the flow of control from activity to

activity at a high level. A SQL system has the control flow about the databases. So the

activity diagram is used in modelling SQL legacy systems.

Use case diagram shows the relationships among actors and use cases within a system
in terms of the UML specification at a high level. It is a set of use cases and actors and

their relationships. A use case is a requirement that the users of the system want the

system to do. Because the modelling of SQL legacy system focuses on the modelling of

the databases and it does not need to present the requirements of the users, the use case
diagram is not used in modelling SQL legacy systems.

An interaction overview diagram shows the control flow within a system at a low

level. SQL system has the control flow about the databases. However, SQL system

mainly focuses on the databases and its main objects are databases, and SQL system

mainly creates, deletes or changes the databases and it has several databases unlike so

many objects in COBOL-like or BASIC-like languages. The control flow in SQL

systems is modelled by activity diagram, and it is not necessary to use the interaction

overview diagram to model SQL legacy systems.

A state machine diagram shows the sequence of states that an object goes through

during its life cycle. Because a SQL system mainly focuses on the databases and its

main objects are databases, and a SQL system mainly creates, deletes or changes the

databases, the state machine diagram is not used in modelling SQL legacy system.

A timing diagram explores the behaviours of one or more objects throughout a given

period of time. It depicts the change of the state or the condition of a classifier instance

or role over time. Because a timing diagram is suitable for the description of embedded

system, it is not used in modelling SQL legacy systems.

169

Chapter 9. Extracting UML Diagrams from SQL Legacy System

9.2.3 Modelling with Three UML Diagrams

Consequently, three UML diagrams: class, composite structure and activity, are used to

model SQL legacy systems.

9.3 Modelling SQL Legacy Systems

9.3.1 Class Diagrams

Rule 1: Using three UML diagrams to model SQL legacy systems.

According to the description in Section 6.4.3, there are three SQL

development/environment-specific models: association, generation, and composition
database-based models.

Generation database-based model is a database graph in which the relationships
between databases are all generations. Association database-based model is a database

graph in which the relationships between databases are all associations. Composition

database-based model is a database graph in which the relationships between databases

are associations and generations existing at the same database graph. There are three

states: two databases generate only one database; one database generates more than one
database; two or more databases combine together to generate one or more databases.

Different models of programs in SQL legacy system have different structures, and
different structures result in different UML class diagrams when modelling band legacy

system with UML (Figure 9.1). So there are three types of UML class diagrams

corresponding to those three SQL development/environment-specific models.

A composite structure diagram is the description of the, internal structure of a class,

component, or use case, including the interaction points of the classifier to other parts of

a system. Although SQL legacy systems have three SQL

development/environment-specific models, all of them are composed of the procedure

and database classes. Both of those two types of classes are the same in those three
different SQL development/environment-specific models. Thus those three models have

the same composite structure diagrams.

170

Chapter 9. Extracting UML Diagrams from SQL Legacy System

M02-OPERATION-QOPEN

I NODE-CLOSE-INQUIRYQ

MQ-DATABASE

-W03-HCONN : stung
-W03-HOBJ-WAITQ : string
-W03-HOBJ-REPLYQ: string
-W03-HOBJ-CHECKQ : string
-W03-HOBJ-DISTQ: string
-W03-COMPCODE: string
-W03-REASON: string

LEAF-RECORD-CALL-ERROR

M02-OBJECT-CLOSE

-W02-WAITING-QNAME: string
-W02-REPLY-QNAME: string
-W02-CHECK-QNAME: string

Figure 9.1: One Example of Class Diagram

A SQL legacy system has behavioural aspects, and it is modelled with the activity

diagram. A activity diagram is an ongoing monatomic execution within a state machine.

Activities ultimately result in some action, which is made up of executable atomic

computations that result in a change in state of the system or the return of a value.

Actions encompass calling another operation, sending a signal, creating or destroying an

object, or some pure computation. A activity diagram models the sequential and

possibly concurrent steps in a computational process. It also models the flow of an

object as it moves from state to state at different points in the flow of control.

The three SQL development/environment-specific models present the different

behavioural parts. Therefore three different activity diagrams are presented based on the

three SQL development/environment-specific models.

The development/environment-specific models of SQL legacy systems are generation,

association and composition database-based models. In order to simplify the research in

this thesis and not lose the universality, the process described in this chapter of

computing development/environment-specific models of SQL legacy systems will focus

on composition database-based model, the most complicated one amongst the three

database-based models of SQL legacy systems. The other two models of SQL legacy

system will not be computed. But the algorithms are similar.

Rule 2: Slicing SQL legacy system.

171

Chapter 9. Extracting UML Diagrams from SQL Legacy System

As mentioned in Section 6.2, SQL is the common platform for the different relational
database, leads to the common base for the usage and development of database, and

provides the common interface of the different databases. The description of database is

one important task of SQL. And at the same time, SQL has procedures, including many

executable procedures. Those procedures provide the control and searching functions of

the databases. SQL legacy system has some variables and executes the tasks of judging,

looping, and computing.

Therefore, program slicing techniques are similar in analysing SQL legacy system as

slicing COBOL legacy system.

Rule 3: Layering class diagrams.

The class diagram which presents the root program elements in source code is termed

the root class diagram, indicated as ROOT-PROCEDURE-NAME. The class diagram

which presents the node program elements in source code is termed the node class

diagram, indicated as NODE-PROCEDURE-NAME. The class diagram which presents

the leaf program elements in source code is termed the leaf class diagram, indicated as

LEAF-PROCEDURE-NAME.

Rule 4: Generating class diagrams.

The databases that are created, changed, deleted and used to create the other databases

are defined as the classes, which are indicated as DB-CLASS-name (Figure 9.2).

((Database Class))

DB-CLASS-name

ID: int;

Volumes: int;

Rows: int;

To create 0;

To change();
To delete();

To use()

Figure 9.2: Database Class

172

Chapter 9. Extracting UML Diagrams from SQL Legacy System

The class that represents the leaf procedure element in source code is termed the leaf

class, indicated as LEAF-CLASS-procedurename. The class that represents node

procedure element in source code is termed the node class, indicated as
NODE-CLASS-procedurename (Figure 9.3 and 9.4).

(Leaf Class)

LEAF-CLASS-pro cedurename

ID: int;

layer: int;

To be usedo;
To useO

Figure 9.3: Leaf Class

((Node Class))

NODE-CLASS-proc edurename

ID: int;

layer: int;

To be usedO;
To use()

Figure 9.4: Node Class

Based on the classes and their relationships, after all the leaf class diagrams are

extracted from the leaf program elements, the node program elements start to be

analysed. At last the root class diagram is realised.

Rule 5: Presenting class diagrams of database-based models.

A generation database-based model is one database graph in which the relationships
between databases are all generations. The class diagram of a generation database-based

model is described in Figure 9.5.

An association database-based model is one database graph in which the relationships
between databases are all associations.

The class diagram of an association database-based model is described in Figure 9.6.

173

Chapter 9. Extracting UML Diagrams from SQL Legacy System

NODE-CLASS-I II DB-CLASS-l

NODE-CLASS-2 DB-CLASS-J

NODE-CLASS-e II DB-CLASS-k

LEAF-CLASS-1

Figure 9.5: Generation Database-Based Model

Figure 9.6: Association Database-Based Model

Figure 9.7: First Example of Composition Database-Based Model

174

Chapter 9. Extracting UML Diagrams from SQL Legacy System

A composition database-based model is one database graph in which the relationships
between databases are associations and generations existing at the same database graph.
There are three states: two databases generate only one database; one database generates

more than one database; two or more databases combine together to generate one or

more databases. The class diagram of a composition database-based model is described

in Figure 9.7,9.8,9.9, and 9.10.

Figure 9.8: Second Example of Composition Database-Based Model

Figure 9.9: Third Example of Composition Database-Based Model

175

Chapter 9. Extracting UML Diagrams from SQL Legacy System

Figure 9.10: Fourth Example of Composition Database-Based Model

As mentioned before, the class diagram of a composition database-based model of SQL

legacy systems is more complex than those of generation and association

database-based models. Based on the formula (6.1) to (6.7), it is easy to judge the model

conditions. Therefore when one SQL legacy system has association or generation

database-based model, it is of greatly less complexity than the one which has a

composition database-based model. Consequently the model usage of SQL legacy

systems is efficient.

9.3.2 Composite Structure Diagrams

Rule 6: Presenting composite structure diagrams of SQL legacy system.

A composite structure diagram describes the relationships between elements that work

together within a classifier. It shows parts and connectors.

The composite structure diagram is used to show the runtime architectures of any kind

of classifier. The database class of legacy SQL code is composed of name, table, size,

etc (Figure 9.11). The procedure class is composed of name, used database, created

database, deleted database, changed database, etc (Figure 9.12).

176

Chapter 9. Extracting UML Diagrams from SQL Legacy System

Database

Name Table Size Row Volume SubDatabase

Figure 9.11: Composite Structure Diagram of Database Class

Procedure

Name ýý UsedDatabase CreatedDatabase H DeletedDatabase ChangedDatabase

Figure 9.12: Composite Structure Diagram of Procedure Class

9.3.3 Activity Diagrams

Rule 7: Layering activity diagrams.

The UML activity diagram describes the dynamic aspects of systems. It is essentially a

flowchart, showing flow of control from activity to activity. An activity is an ongoing

nonatomic execution within a state machine. Activities ultimately result in some action,

which is made up of executable atomic computations that result in a change in state of

the system or the return of a value. Actions encompass calling another operation,

sending a signal, creating or destroying an object, or some pure computation. It models

the sequential and possibly concurrent steps in a computational process. It also models

the flow of an object as it moves from state to state at different points in the flow of

control. Activity diagrams may stand alone to visualise, specify, construct, and

document the dynamics of a society of objects, or they may be used to model the follow

of control of an operation (Figure 9.13).

The operations of legacy code are classified into different layers, especially in legacy

code containing node and leaf program elements. The analysis of legacy code starts

from leaf program elements.

The activity diagram which presents the leaf program elements in SQL source code is

termed the leaf activity diagram, indicated as LEAF-ACTIVITY-NAME.

The activity diagram which presents the node program elements in SQL source code is

177

Chapter 9. Extracting UML Diagrams from SQL Legacy System

termed the node activity diagram, indicated as NODE-ACTIVITY-NAME.

get student database name

add student name volume

add student ID volume

add student address volume

add student registry number volume

add student interests volume

store student database information

Figure 9.13: Activity Diagram of Getting Integer Part of Number

The activity diagram which presents the root program elements in SQL source code is

termed the root activity diagram, indicated as ROOT-ACTIVITY-NAME.

Rule 8: Presenting control graph.

The activity group is the SQL code operations that execute the data and databases with

the change, store, and display of information. It is indicated as ActionGQ. It is the joint

set of data group, procedure group, and safety group, which is

ActionGQ=GroupD(U GroupP() U GroupSQ (9.1)

Any arbitrary element s, sE ActionGO, is termed one action of that legacy code.

Let s; be one element of control group, s; E GroupCO, and its control layer is indicated

as CL(s;). The first control operation in the legacy code s; has the control layer 1,
178

Chapter 9. Extracting UML Diagrams from SQL Legacy System

CL(s;)=1,

and the parallel control operations have the same control layer 1; the first control

operation sj that is inserted in s; has the control layer 2,

CL(ss)=2,

and the parallel of sj has control layer 2, so on.

If one procedure has no control operation, then that procedure is termed the

empty-control procedure, indicated as PROCEDURE-CO-NAME.

The control graph is one graph that describes the control flow with the nodes s;, s; E

GroupCO, which represent the control actions. Every node has one control action and

unique control layer. The presentation of the empty-control procedure is defined as one

node with the indication PROCEDURE-CO.

Rule 9: Presenting activity array.

Every node in the control graph of legacy code is termed program activity, indicated as

AT. Each activity AT; represents the operations with the selection, judgment, and

management under one or more conditions. The empty-control procedure is presented as

the name with the indication PROCEDURE-CO.

Let n be the control layer of one procedure of legacy code, and t; be the number of

control action of ih control layer, O<i<n. The activity array is composed of all the

program activities of that program based on the domain knowledge. It is indicated as
AT(i, j).

Rule 10: Realising activity diagrams.

The leaf activity diagram of SQL legacy code is the graphical presentation of activity

array of that leaf procedure with the presentation of the control conditions and the

control graph. Let n be the control layer of one procedure of legacy code, t; be the

number of control action of ith control layer, O<i<n, and CD(i, j) be the control

conditions. Then the algorithm of computing the leaf activity diagram is

For i=0 to (n-1)

For j=1 to t;

179

Chapter 9. Extracting UML Diagrams from SQL Legacy System

CD((n-i), j)

AT((n-i), j)

End-For

End-For (9.2)

After all the leaf activity diagrams are realised, the leaf program elements in node and

root program elements are transformed into one activity. Some of node program

elements become leaf program elements with the replacement of the activity. With the

usage of the strategy (9.2), their activity diagrams are produced. And the loop continues

until the root program element becomes the leaf. So all the activity diagrams are

realised.

Let m be the procedure layer of legacy SQL code, u; be the number of the procedures of

the ith layer, 0<i<(m+1), ADO, k) be the jt' procedure of the ith layer. The algorithm of

the realisation of activity diagrams of SQL legacy code is

For i=0 to (n-1)

For j=1 to u;

AD((n-i), j)

End-For

End-For (9.3)

The UML activity diagrams model the complex operation, business rules, business

process, and software process [15,49]. They are used to model the dynamic aspect of
legacy system, which may involve the activity of any kind of abstraction in any view of

a system's architecture. Activity diagram models a workflow and an operation of a

system. An activity diagram is attached to any modelling element for the purpose of

visualising, specifying, constructing, and documenting that element's behaviour[62].

It is possible that activities can occur in parallel that are regarded as forks and joins. A

fork should have a corresponding join. One fork has one entry transition and one join

has one exit transition. Activity diagrams allow for a great deal of freedom. They use

the right level of detail to describe the system functionality.

It is important to limit the level of complexity of each activity diagram. If there are

more than three possible paths (alternate or exceptional), it is necessary to use

additional activity diagrams to promote understanding. It is also necessary to use

180

Chapter 9. Extracting UML Diagrams from SQL Legacy System

additional activity diagrams if the processing requires specific data elements.

Rule 11: Presenting activity diagrams of database-based models.

Association database-based model is one database graph in which the relationships
between databases are all associations (Figure 9.14). Generation database-based model
is one database graph in which the relationships between databases are all generations
(Figure 9.15). Composition database-based model is one database graph in which the

relationships between databases are associations and generations existing at the same
database graph. There are at least three states: two databases generate only one database;

one database generates more than one database; two or more databases combine

together to generate one or more databases (Figure 9.16,9.17,9.18, and 9.19).

operations on DB-i operations on DB-j operations on DB-k
I __/

,
01

ý

Figure 9.14: Association Database-Based Model

operations on DB-i

generate DB -j

operations on DB -j

generate DB-k

operations on DB-k

Figure 9.15: Generation Database-Based Model

181

Chapter 9. Extracting UML Diagrams from SQL Legacy System

operations on DB-i

generate DBy generate DB-k

operations on DB- operations on DB-k

Figure 9.16: First Example of Composition Database-Based Model

operations on DB-i operations on DB-j

generate DB-K

operations on DB-k

Figure 9.17: Second Example of Composition Database-Based Model

operations on DB-i) (operations on DB -j

generate DB-k) (generate DB-1

operations on DB-k) (operations on DB-1

Figure 9.18: Third Example of Composition Database-Based Model

182

Chapter 9. Extracting UML Diagrams from SQL Legacy System

operations on DB-iI operations on DB42

generate DB j1 generate DB j2 generate DB j3

operations on DB -j 1 operations on DB j2 operations on DB j3

generate DB-kl) (generate DB-k2

operations on DB-kl) (operations on DB-k2

Figure 9.19: Fourth Example of Composition Database-Based Model

As mentioned in Section 9.3.1, activity diagram of composition database-based model

of SQL legacy system is more complex than generation and association database-based

models. Under the help of the formula (6.1) to (6.7), after the judgement of the model

conditions of SQL legacy system, when one SQL legacy system has association or

generation database-based model, it is of greatly less complexity than the one which has

composition database-based model. It saves the time and reduces the costs and the

complexity. Therefore the model usage of SQL legacy system improves the efficiency

of software evolution.

9.3.4 Application of SQL Rules

As mensioned in this chapter, through Rule 1 to 11, three UML diagrams are realised
based on database-based model of SQL legacy system. If one SQL legacy system has

one or two databases, has not or only has one procedure, or its one procedure has not

more than thiry lines, some rules of those eleven rules may be passed over. So, when

one SQL legacy system has one of the following characters, it is unnecessary to follow

183

Chapter 9. Extracting UML Diagrams from SQL Legacy System

those rules:

C 1: It has only one database.

C2: The database has not more than four volumes.

C3: The procedure has not more than five variables.

C4: The procedure has not more than thirty lines.

SQL Rule 1 to 5 presents the realisation of class diagrams of SQL legacy system. When

CI occurs, which means that SQL legacy system only has one database, its class

diagram is unnecessary to be realised and Rule 4 and 5 are not used (Figure 9.20).

When C2 occurs, which means that one database of SQL legacy system has not more

than four volume, its composite structure diagram does not need to be realised and Rule

6 are not used. When C3 happens, which means that its procedure only contains no

more than five variables, its activity diagram is unnecessary to be realised and Rule 7 to

11 are not used. When C4 happens, which means that its procedure has not more than

thirty lines, its activity diagram is unnecessary to be realised and Rule 7 to 11 are not

used.

Consequently, when conditions C1 to C4 occur, the complexity of modelling SQL

legacy system at that point is greatly reduced.

C
Rule 4-5

--ý

Rule 6

N
C4

Rule 7-1 1

Figure 9.20: SQL Rules Application

Start

Rule 1-3

184

NY

Chapter 9. Extracting UML Diagrams from SQL Legacy System

9.4 Summary

In this chapter, eleven rules are presented to discuss the evolution of SQL legacy system.
Based on development/environment-specific model in Section 6.4, class diagram and

composite structure diagram are used to describe the static part of SQL legacy system

and its internal structure, and activity diagram describes the dynamic part of legacy

system. Because of the presentation of the most important characteristics or pleonasm

and redundancy, other UML diagrams are not used.

Because SQL also has the operations of the data flow and control flow dependences,

program slicing techniques are suitable for analysing SQL legacy system.

Based on database-based models, class diagram is obtained from SQL legacy system.
Four different kinds of program elements are distinguished: root program elements; leaf

program elements; node program elements; and isolated program elements. Procedures

are layered based on the calling relationships. They are classified into three groups: root,

node, and leaf procedure elements. And class diagrams of SQL legacy system are

divided into three root, node, and leaf class diagrams. The databases that are used in

SQL code are regarded as the classes, and the procedures are defined as the node or leaf

class. With the help of the procedure layers and graph, three class diagrams are

produced. Composite structure diagrams are presented as well to describe the internal

structure of the complex classes in generated class diagrams. Activity diagram shows

the flow from activity to activity. One code operation that belongs to the group of

exchanging information is defined as one action. The control operations that produce

the judgment form the control graph. Those actions that execute one function are

regarded as one activity, and the legacy SQL code produces the activity array. With the

help of the control graph, the leaf activity diagram is produced with the nodes that

represent the activity. Then, the node and root activity diagrams are realised.

185

Chapter 10. Tool and Experiments

Chapter 10

Tool and Experiments

10.1 Introduction

In this chapter, three cases are studied for domain-specific legacy systems in order to
describe how the theoretical and technical aspects of the proposed method in the thesis

were implemented. Those legacy systems are parsed at first, then the models are

searched out, and based on the models UML diagrams are acquired. Those case studies

also evaluate the proposed method in this thesis.

10.2 Tool Design

10.2.1 One Unified System----SEASAT

In order to demonstrate the evolution process, the proposed approach has been applied

to domain-specific legacy systems. The models of COBOL legacy system correspond to

the judgement conditions. In this thesis, one unified system is proposed, which is

termed SEASAT (Software Evolution for domAin-Specific legAcy sysTem). It opens

one source code file, parses it, searches the models, computes the slices, and displays

UML diagram. It is designed to demonstrate the proposed approach in this thesis.

SEASAT integrates all technical supports into a systematic method for software

evolution of domain-specific legacy systems. Although the tool does not show the

working processes step by step of 29 rules presented in Chapter 7,11 rules in Chapter 8,

and 11 rules in Chapter 9, it clearly describes the main thoughts of the proposed

approach in this thesis.

10.2.2 Detail Design Description

The unified system SEASAT is mainly composed of six parts, which are named as

186

Chapter 10. Tool and Experiments

"OpenSourceFile", "ParseSourceCode", "SearchMode", "SliceCode",

"DisplayUMLDiagram" and "Exit". Its main working flow is presented in Figure 10.1.

Start

Open Source File

Parse Source Code

Search Model

Slice Source Code

Display UML Diagrams

End

Figure 10.1: Tool Architecture

The first part of the unified system SEASAT is to open one source code file. One

textual file containing source code is regarded as the input. The demonstration interface

composes three text blanks. The text file is displayed in the first blank, and the

displaying message is presented in the second blank. If the source file is successfully

opened, one message which is "Source Code Displayed" is shown in the second blank.

Otherwise, the system exits.

The second part is to parse the source code. The system SEASAT parses the input

source code. In the second blank of the demonstration interface, all the candidates of the

statements containing the procedures, links or databases in input legacy system are
displayed. Then SEASAT computes the model entities and their relationships from

those candidates and display them in the third blank of the demonstration interface. At

last, it removes the redundancy of those model entities and shows the pure model

entities of input legacy system in the first blank.

The third part is to search the model. Based on the model conditions of COBOL legacy

systems (4.9) to (4.17) in Chapter 4, ones of HTML legacy systems (5.3) to (5.8) in

Chapter 5, and ones of SQL legacy systems (6.1) to (6.7) in Chapter 6, respectively, the

187

Chapter 10. Tool and Experiments

system SEASAT acquires the model of input legacy sytem. In the new demonstraition

interface which contains one text blank and one figure blank, the model entities of input

legacy system are shown in the text blank, and its model is presented in the figure

blank.

The fourth part is to slice code. SEASAT slices the input source code based on the

slicing techniques described in Section 6.3.1. The demonstration interface contains three
blanks. SEASAT displays all the used variables in the analysed source code from the

statements of input source code, and it removes the repetitions of those variables and

shows all the variables in the second blank. Also SEASAT computes the systematic

calls of input source code and displays them in third blank of the demonstration

interface.

The fifth part is to display UML diagrams. SEASAT computes the pseudo and real

classes and their relationships based on the program slicing results, and it stores them in

the database. Then in the new demonstration interface, the class diagrams of input

legacy system are displayed. Based on the rules in Chapter 7,8, and 9, the selected

UML diagrams of legacy system are shown.

The sixth part is to exit the system SEASAT.

Some figures display the main working interfaces using part source code as shown in

Appendix A, such as tool architecture in Figure 10.1, one interface in Figure 10.2, and

one working interface in Figure 10.5. In practice, because of the complexity of software

evolution of entire domain-specific legacy systems, SEASAT does not attempt to be

perfect. It mainly demonstrates the original ideas of proposed approach in this thesis.

As the fully implemented systems are highly complex, only parts of COBOL legacy

system are presented here with the usage of tool.

10.3 Case Study of COBOL Legacy System

10.3.1 COBOL Legacy Code-Manager Application

One legacy software system named Manager Application in COBOL is presented and

will be modelled with selected number of UML diagrams (Appendix A). This program

188

Chapter 10. Tool and Experiments

is designed to create the new manager file for the application that is performed once a

week on Friday. It is executed on a Window client, and communicates with a local Unix

server and a remote Window server. This legacy software is licensed SALESPRO

TECHNOLOGIES, INC. Its name is dmFileProc. Its running environment is Window.

10.3.2 Parsing COBOL Legacy Code

According to the description of Section 4.4.1.1, in legacy COBOL system Manager

Application System, the root program element is Initialisation section. The leaf program

elements are initialise-file-copy-tables section, all-tasks-complete-process section, and

Get-Download-File-Size section. Others are node program elements (see Table 10.1,

10.2, and 10.3). There is no isolated program element in legacy system Message

Application (Figure 10.2).

Table 10.1: Table of Program Elements In Source Code

Procedure Number Procedure Name Program Element

1 Initialisation root

2 Initialise-File-Copy-Tables leaf

3 Task-l-Process node

4 Task-2-Process node

5 Task-3-Process node

6 Task-4-Process node
7 Task-5-Process node

8 Task-6-Process node

9 Task-7-Process node

10 All-Tasks-Complete-Process leaf

11 Get-Download-File-Size leaf

12 Setup-Unix-Server-File-Transfer-Session node
13 Establish-Data-Port-Connection node

14 Establish-Unix-Data-Port-Connection node

Table 10.2: Table of Procedure Calling Relationships and Procedure Layers

Procedure Number Calling Procedures Procedure Layer PL()

1 2,3,4,5,6,7,8,9,10

Chapter 10. Tool and Experiments

2

3 2

4 10,11,12,

5 10

6 10

7 10

8 10,13

9 10

10

11

12 10,14

13 10

14 10

Table 10.3: Procedure Layers With Procedures

Procedure Layer PLO Procedures

0 2,10,11

1 3,5,6,7,9,13,14

2 8,12

3 4

4 1
i

OpsnSauýcäýe PsnSaýceCoOe SeacNA oS Cob 7iýpla; 9wpýn E7
Emm

Sowce Code Displyed'

b

ý".. ý .. ý

AWm wossnFcmmr9
mwe 1 lA

V
vensS

S. d by Nrp'PAS' EMMed W vee

i M" EeYNeE Ey sue
nro w. seMcan. nrW w+n pMr

0.1 oS
1 mý

lt .o
oa °<s. «ks C.., u ao. n,. n. ,.. m,.. w. n.. d.. ý.... exý. e. d. n-.. ýo-amewwn I

ým
w ý,. Do Do

la*k.
z a.

mo. e i to Irk]o.
t 1 ie 1a. k 2.. coanwW

on iw 1sk3+co . o.. voýbb
IW JsnmrOVi. bb noe Ito

mortoto

l le ýeü-Sca+ia p i. bl.

ei io im4 6 co-nn. p wbb

more 1 is Iuk.). ce. m e
mo`a I to IskrcOt0p0, -0. Ejb

xmn2Ol-tý

Figure 10.2: Opening Source Code

190

Chapter 10. Tool and Experiments

Then as mentioned in Section 4.4, the set SAP{} is the set of all procedures in COBOL

legacy system Manager Application System,

SAP{}={PP; IPP; EP}

Initialisation, Initialise-File-Copy-Tables, Task-l-Process,

Task-2-Process, Task-3-Process, Task-4-Process, Task-5-Process,

Task-6-Process, Task-7-Process, All-Tasks-Complete-Process,

Get-Download-File-Size, Setup-Unix-Server-File-Transfer-Session,

Establish-Data-Port-Connection, Establish-Unix-Data-Port-Connection },

In order to simplify the presentation of the procedures, the names of the procedures are

replaced with the number in Table 10.1, that is,

SAP{}={ 1,2,3,4,5,6,7,8,9,10,11,12,13,14}

The set SOOP{} is the set of the one to one procedures in COBOL legacy system

Manager Application System,

SOOP{}

={(PP;, PPS)I(PPi » PPS) AND ((Vk, kýj) = (PP1 **PPk))

AND ((`d m, mýi) (PPm ** PPS)) }

_4)

Because

SOOP{}: ý SAP{},

so the procedure-based model of COBOL legacy system Manager Application System is

not linear.

The set SOMP{} is the set of the one to many procedures in COBOL legacy system
Manager Application System,

SOMP{}={(PP;, PPS)I (PP; » PPS)

AND Mlk, k#- j) (PP; »PPk))

AND ((V m, mýi) (PPm PPS))

AND ((`d m, mýi) (PPm PPk)))

={1,4,8,12)

191

Chapter 10. Tool and Experiments

Because

SOMP{}: ý SAP{},

so the procedure-based model of COBOL legacy system Manager Application System is

not branch.

The set SMOP{ } is the set of the many to one procedures in COBOL legacy system
Manager Application System,

SMOP{ }={ (PPj, PPS)I (PP1 >> PPS)

AND((A k, kýi) (PPk >> PPS))

AND ((b m, m#j) => (PP; : 4-: 4- Pp,,,))

AND ((V m, mýj) ý(PPk PPm))}

={2,10}

Because

SMOP{}ý SAP{}-{1},

so the procedure-based model of COBOL legacy system Manager Application System is

not joint.

The set SSP{} is the set containing the many to many procedures in COBOL legacy

system Manager Application System,

SSP{ }_{ PPk I ((3 i, j, k, i: ýj, j: 4, ilk) =: > ((PP, > >PP;) AND (PP; > >PPk)))

AND ((El r, s, r#s, sek, rýk) ((PPr> >PPk) AND (PPS> >PPk)))}

={3,5,6,7,9,13,14}

Because

SSP{}ý4

so the procedure-based model of COBOL legacy system Manager Application System is

synthetic (Figure 10.3,10.4, and 10.5).

192

Figure 10.3: Procedure-Based Model of ManagerApplication System

Chapter 10. Tool and Experiments

pedortni bI byte-hold=md-cmd. bym or gd(Up-UIILX-Senc1-IIIe-tITILfc1-

go to ¢tasks complete-process
alI-tno1
TII lsks-complete-process perform uml byre-bold - and-emd byte or

md-per{wm ettabl15I1-toux-data-vOli-

petfomtertabhsh-ims-dat.. port- COIIDettlOll
can- all- t Tgko-c olllplete-plOcecg

go to aU-hfks-compiete-process all-IT 6. COIIIpIMf-pI OfeSd
pesfosm ina pm-pof(parv-cot)='C
md-per(oom
perform omhl comma-ont =4

end-perform
pesfosm uml past-pof(paro-cd) _""

md-perform
perform omel put-pos(pw-cnt)

. d-perform
go to ail-tuka-complete-process

pesfomo U bl est-dm-progrm =I
and-perf
perform uchl byte-hold = and-cmd-byte or
end-perform

go to aA-t. sks-complete-process
pesfosm m01 byte-hold = and-emd. byte or
md-peffossn

paf nubleh-tm-data. port.
ceroecuon

go to at-tub-complete-process
perform U old past-pos(paw-CIA)

mdperform

Figure 10.4: Parsing Part COBOL Legacy System

setup-unix-server-file4ran for-session

L

Figure 10.5: Synthetic Procedure-Based Model of Part COBOL Code

10.3.3 Slicing Programs

Slicing programs in COBOL and SQL is the first step to extract classes from source

code. Program slicing techniques are based on Weiser [1311, and they are sufficient

(Figure 10.6).

193

Chapter 10. Tool and Experiments

OpaSOUCeý4 Pa+eSoýcdoh SeaclMOEd SkeCOd OndayOipan EM

VARIABLES ARE

unv-trmsmrt-type

-sind-co end
send-r d-length

- ornection-hurdle
',, ags-write
''. g -Flush

byte-hold
e

curd-lengtls
nun-bytZýmad
. gs-read
parse-receive-commmmd
pane-command-code
task-2-act-wlble
task-2-ac-act-vssible
tuk-2-wsbk

''. hsk-2-, co-ere-vscble
task- 3-tc o-mcmp-xstble
task-4-ko-mcmp-nable
task-5-Aso-mcmp--bk
task-6 -tc o -mcmp-vssible
task- 7 -rt o -mcmp hssble
task-mcomplete-visible

ok-btn-status
parse-parv-receive-command

Sl"STEMLaT7(' CALL
INCLUDES
%$ ockd"
"c$, ockeI"
"dsockel"
%$ ockn"
"dsocket"
%UockM�

PURE C. UL
"c$-ockct"

Figure 10.6: Slicing Part COBOL Legacy System

10.3.4 UML Class Diagrams

10.3.4.1 Producing Classes

Suppose that the slicing result of one leaf program element P is C; =<p, V; >, I, < i <n,

the slicing criterion set PC={ C; }, and the set of slicing criterion variables

PCV(P)={ V; }. The algorithm of computing the relationship array is executed and

acquires the value RAC(i, j).

10.3.4.2 Leaf and Node Classes

There is no leaf empty program element in legacy COBOL system Manager Application

System, and there are three leaf classes that represent three leaf program elements and

ten node classes that represent ten node program elements (see Table 10.4 and 10.5).

Table 10.4: Table of Leaf Classes

Procedure Number Leaf Class Name

2 LEAF-Initialise-File-Copy-Tables

10 LEAF-All-Tasks-Complete-Process

11 LEAF-Get-Download-File-Size

194

Chapter 10. Tool and Experiments

Table 10.5: Table of Node Classes

Procedure Number Node Class Name

3 NODE-Task- I -Process
4 NODE-Task-2-Process

5 NODE-Task-3-Process

6 NODE-Task-4-Process

7 NODE-Task-5-Process

8 NODE-Task-6-Process

9 NODE-Task-7-Process

12 NODE-Setup-Unix-Server-File-Transfer-Session

13 NODE-Establish-Data-Port-Connection

14 NODE-Establish-Unix-Data-Port-Connection

Figure 10.7: Class Diagram of Part COBOL Code

10.3.4.3 Starting from Leaf Program Elements

The three leaf procedures are regarded as three leaf classes. The analysis of modelling

legacy system starts from leaf program elements.

Procedure Realising_Leaf Class_Diagram

Begin

Call Parsing_COBOL()

Call Slicing_Program()

195

Chapter 10. Tool and Experiments

***to delete the redundant slicing ***

For t=1 to (n-1)

For s=(t+1) to n
If (PCV(Scs) 9 PCV(Sct)) AND (POV(Sc,) 9 POV(St))

Then PC(P)=PC(P)-{CAS }

End-If

End-For

End-For

** *to setup the relationships between classes*
For j: =1 to (n-1)

For i: =(j+l) to n

If RC(C;, CC)= cD

then RAC(i, j)=0

Else RAC(i, j)=1

End-If

RAC(j, i)= RAC(i, j)

End-For

RAC(j, j)=O

End-For

** *to realise leaf class diagrams* **

Call Drawing_Class_Diagram

End-Procedure

The leaf procedure Initialise-File-Copy-Tables only has three parameters:

usr-curtze-files, usr2-curtze2-files and copied-manager-files. Based on the program

slicing, there are three individual slicings and they are three individual classes. It is too

simple in practice for the analysis of leaf procedure Initialise-File-Copy-Tables.

Because the whole leaf procedure has been defined as one leaf class, it is suitable for

modelling the leaf procedure with composite structure diagram.

The leaf procedure All-Tasks-Complete-Process is the same as leaf procedure
Initialise-File-Copy-Tables. Although leaf procedure Get-Download-File-Size has many

parameters, it is analysed with composite structure diagram in replace of class diagram

as well.

196

Chapter 10. Tool and Experiments

10.3.4.4 Modelling Node Program Elements

In node program elements, the called leaf program elements are defined as leaf classes

and the called node program elements are defined as node classes. The parameters in

node program elements are sliced based on the program slicing, and some of them are

collected as System Manager Class. The calls that belong to system form the Systematic

Call Class. Then the node class diagrams are produced.

Suppose that systematic calls SYSC; ,1
ýiým, make use of the array SYSCA(i),

SYSCA(i)= SYSC;, 1 <-i<m, and the variables of SYSCA(i) form the variable set

SYSCAV(i), SYSCAV(i)={variable(SYSCA(i))}.

Procedure Realising Node_Class Diagram

Begin

** *to setup variable classes and their relationships* **

Call Realising_Leaf Class Diagram

** *to setup relationships between variable and systematic call classes***

For j: =1 to n

For i: =1 to m

If SYSCAV(i) f1 PCV(Sj)= cD

then RAC(i, j)=0

Else RAC(i, j)=1

End-If

End-For

End-For

** *to realise leaf class diagrams* **

Call Drawing_Class_Diagram

End-Procedure

The node class diagrams of legacy COBOL system are produced in Figure 10.7 to

Figure 10.17 corresponding to those ten node program elements.

197

Chapter 10. Tool and Experiments

Systematic call

-c$socket : Systematic call

Unix-server-port

-unix-server-address : char Unix-connection-handle
Systematic manager -unix-username : char

-task- I -act-visible : int -unix-password: char
-task-l-ico-act-visible : int -ags-create-client: char I +connecto F
-task-l-visible : int -ags-read : char

- -task- I -ico-err-vis ible : int char

-task-2-ico-incmp-visible: int -ags-flush : har

-task-3-ico-incmp-visible; int 1-ic v -task- v isible : int

-task-4-ico-incmp-visible: int isi -task-2-visible : int Parse-command-code

-task-5-ico-incmp-visible : int -task-2-act-visible : int
-task-2-ico-act-visible : int -unix-receive-command : char

-task-6-ico-incmp-visible: int
-pro int -bar-visible: -unix-receive-emd-length: : int

-task-7-ico-incmp-visible : int
-trt n- ap-1-label-visible : int - byte-hold : char

-task-incomplete-visible : int
-tran-2-label-visible : int -endend-c md- byte : char

-ok-btn-status : int
-max-cmd-length : int
-num-nytes-read: int
-parse-receive-command: char
-unix-send-command: char

LEAF-all-tasks-complete-process -unix-send-cmd-length: int

Figure 10.8: Class Diagram NODE-Task-l-Process

unix-directory
d-command : char
d-emd-length : int Parse-command-code

section-handle : ist
iv -command h

Systematic call -task-2-act-visible : ist

-task-2-ico act i ibl i t e e :c ar
eive-cmd-length : ist c$ ket : Systemabc call

-v - s e: s
task-2-visible: ist

-length : ist -task-2-ico-eir-visible : ist
-byte : ist -task-3-ico-incmp-visible: ist
: eive-command : char -task-4-ico-incmp-visible: ist

h d -ta k S i i i ibl i :c ar
es-read : ist Systematic manager

s - - co- ncmp-v s e: st
-task-6-ico-incmp-visible : ist

ta-receive-command char -ags-create-client : char -task-7-ico-incmp-visible: ist
-record : char -ags-read : char -task-incomplete-visible : ist

-ags-write: char -ok-bm-status : ist

-ags-flush : char
usr-curtze-cnt -task-2-act-visible: ist

task-2 ic t i ibl i
tanager-cnt : ist - o-ac -v s e: st

-task-2-visible: ist
efllesO : char -task-2-ico-visible: ist
-path : char -task-3-visible; ist LEAF-get-download-file-size
ianager-flesc : ist

-task-3-act-visible: ist
-file-name : char -task-3-ico-act-visible: ist

char -prog-bar-visible: ist
action : char -tran-l-label-visible : ist
-col : float

-tran-2-label-visible: ist
; ionLabel l: char

-blank-label-visible : ist
sionLabe12 : char LEAF-all-tasks-complete-process
; ionProgressBar: char
file : char
e-cnt : ist
"cnt : ist
float
"byto-size; ist Usr2-curtze2-cot
-rem : ist
cnt : ist -usr2-cume2-filesO : char NODE-setup-unix-server-rile-transfer-session
-connection-handle : char
gaining-sw : ist
-error-text : char

Figure 10.9: Class Diagram NODE-Task-2-Process

198

Chapter 10. Tool and Experiments

Parse-command-code Systematic call

-task-3-act-visible: int
11-cSsocket:

Systematic call
-task-3-ico-act-visible : int

-task-3-visible: int

-task-3-ico-visible : int

-task-4-visible : int Unix-send-command

-task-4-act-visible : int Systematic manager
-unix-receive-command: char

-task-4-ico-act-visible : int
-ags-close : char -unix-receive-cmd-length: : int

-ags-read : char -byte-hold: char
-ags-write: char -end-cmd-byte : int

-ags-flush : char -max-cmd-length : int
task-3-ico-err-visible -unix-connection-handle : int -num-bytes-read: int

-task-4-ico-incmp-visible : int -unix-send-cmd-length : int

-task-5-ico-incmp-visible : int

-task-6-ico-incmp-visible: int
-task-7-ico-incmp-visible: int LEAF-all-tasks-complete-process
-task-incomplete-visible: int

-ok-btn-status : int

Figure 10.10: Class Diagram NODE-Task-3-Process

Status-code

-task-4-act-visible : int

-task-4-ico-act-visible : int

-task-4-visible: int

-task-4-ico-err-visible : int

-task-5-ico-incmp-visible : int

-task-6-ico-incmp-visible : int

-task-7-ico-incmp-visible: int

-task-incomplete-visible: int

-ok-btn-status : int

Systematic manager

-batch-cmdNT2K: int

-csys-minimized: int

-original-path: char
-rename-path: char
-status-code : int

-task-4-ico-visible : int

-task-5-visible: int

-task-5-act-visible : int

-task-5-ico-act-visible : int

LEAF-all-tasks-com plete-process

Systematic call

-c$system : Systematic call 1-cbl

copy file : Systematic call

Figure 10.11: Class Diagram NODE-Task-4-Process

ftp-connection-handle II Ftp-server-port

c-5-act-visible: int
Systematic manager -ftp-server-address : char

c-5-ico-act-visible : int -gp-usemame : char
c-5-visible: int -ags-create-client : char -ftp-password: char
c-5-ico-err-visible : int -ags-read : char
c-6-ico-incmp-visible : int -ags-write : char
c-7-ico-incmp-visible : int -ags-flush: char
c-incomplete-visible: int -task-5-act-visible: int Systematic cal
btn-status : int -task-5-ico-act-visible : int -c$socket : Systematic call

-task-5-visible : int
k i i ibl i 5 -tas - co-v s e: nt -

Parse command-code -task-6-visible : int

-task-6-act-visible : int Ftp-receive-command

"send-command : char -task-6-ico-act-visible : int -max-cmd-length: int

"send-cmd-length : int -end-cmd-byte : int
5-ico-visible : int k i h d - -parse-rece ve-comman ar :c

k-6-visible: int b t h ld h
k-6-act-visible : int LEAF-all-tasks-complete-process - y e- o :c ar

-num-bytes-read: int
k-6-ico-act-visible: int -ftp-receive-cmd-length : int

Figure 10.12: Class Diagram NODE-Task-5-Process

199

Chapter 10. Tool and Experiments

Ftp-directory
LEAF-get-download-file-size LEAF-all-tasks-completeProcess

mmand : char
id-length : int
ion-handle : int
t-type : char
i: char
: ord : char NODE-setup-unix-server-file-transfer-session
nnection-handle : int

Systematic manager

-ags-close: char
"ags-read : char Ftp-receive-command
ags-write : char Sendin -file-name

eive"cmd-len th : int fl h h
g

g -ags- us :c ar
old : char -task-6-act-visible : int pr prog-bar-cnar-cnt : int int

id-byte : int -task-6-ico-act-visible : int : char -sending-file-path

nd-length : int -task-6-visible : int : int -total-file-size
ytes-read : int -task-6-ico-visible : int --size- hit

: ceive-command : char -task-7-visible: int demp"ze int

ceive-cmd-length : int -task-7-act-visible : int - : char -temp-bar-rem ar-rc tem c
receive-command : char -task-7-ico-act-visible : int - g-b : :

- b i t 'asv-receive-command : char grog- ar-rem ; n
fil - ename : char

-transmit-action: char
-tran-labt-col : float
-prog-bar-visible : int
t 1 l b l i ibl i t

Parse-command-code Systematic call
- rap- - a e -v s e: n
-tran-2-label-visible: int

act-visible : int
-cäsocket : Systematic call -blank-label-visible: int

ico-act-visible : int
-cSfileinfo : Systematic call -transmissionLabell : char

visible ; int "transmissionLabel2 : char
ico-err-visible : int "transmissionProgressBar : char
ico-incmp-visible : int -blankLabel : char
complete-visible : int -bar-col : float

"status : int -sendingfile : char
-swl : int
-num-times-read : int

Figure 10.13: Class Diagram NODE-Task-6-Process

Ftp-send-command
Systematic mana er S t ti ll

d d l th i t
g ys ema c ca

n en -cm - eng :
onnection-handle : int -ags-close : char -c$socket : Systematic call

-ags-read : char
-ags-write : char
-ags-flush : char

Parse-command-code -task-7-act-visible : int

-task-7-ico-act-visible : int
Ftp-receive-command

. 7-act-visible : int -task-7-visible : int -byte-hold : char

. 7-ico-act-visible : int -task-7-ico-visible : int -ftp-receive-cmd-length : int

. 7-visible : int -end-cmd-byte: int
i - i ibl i t 7 -max-cmd-len th i t co v s e: n . - g : n

'incomplete-visible : int -num-bytes-read: int
tn-status : int LEAF-all-tasks-complete-process -parse-receive-command : char

Figure 10.14: Class Diagram NODE-Task-7-Process

200

Chapter 10. Tool and Experiments

LEAF-all-tasks-complete-process
Unix-transmit-type

-unix-send-command : char
-unix-send-cmd-length: int
-unix-connection-handle: int

Unix-receive-command

-max-cmd-length: int

-end-cmd-byte: int

-parse-receive-command : char
-byte-hold : char
-num-bytes-read : int

-unix-receive-cmd-length : int

Figure 10.15: Class Diagram NODE- Setup-Unix-Server-File-Transfer-Session

Comma-cnt
S stematic call int y

nt: int -c$socket : Systematic call
1-cnt : int
2-cnt: int
umber-value : int

-numI : int Systematic manager
-num2: int

: char -ags-create-client : int

osO : char
1-posO : char
2-posO : char
-port : int

-address : char
LEAF-all-tasks-complete-process

onnection-handle : int

Systematic manager
-read : char

NOE-establish-unix-data-port-connection

-write : char

-flush : char

parse-command-code

-task-2-act-visible : int
Systematic call -task-2-ico-act-visible : int

cet : Systematic call -task-2-visible : int

-task-2-ico-err-visible : int

-task-3-ico-incmp-visible : int
task-4-ico-incmp-visible : int

-task-5-ico-incmp-visible : int

-task-6-ico-incmp-visible: int

-task-7-ico-incmp-visible: int

-task-incomplete-visible : int

-ok-btn-status : int

ftp-data-connection-handle

task-6-act-visible : int
task-6-ico-act-visible : int
task-6-visible : int
task-6-ico-err-visible : int
task-7-ico-incmp-visible: int
Wk-incomplete-visible: int
ok-btn-status : int

Figure 10.16: Class Diagram NODE- Establish-Data-Port-Connection

Unix-data-connection-handle

-task-2-act-visible : int

"task-2-ico-act-visible : int

"task-2-visible : int

"task-2-ico-err-visible : int

"task-3-ico-incmp-visible : int

"task-4-ico-incmp-visible : int

"task-5-ico-incmp-visible : int

"task-6-ico-incmp-visible : int

"task-7-ico-incmp-visible : int

-task-incomplete-visible: int
ok-btn-status : int

Systematic call

-c$socket : Systematic call

Systematic manager

-ags-create-client : int

LEAF-all-tasks-com plete-process

Comma-cnt

-pasv-cnt: int
-pasv-ip-cnt: int
-pasv-portl-cnt : int
-pasv-port2-cnt : int
-decimal-number-value: int
-pasv-port-numl : int
-pasv-port-num2: int
-pasv-poso : char
-pasv-ip-poso : char
-pasv-portl-posO : char
-pasv-port2-poso : char
-unix-server-port : int
-unix-server-address : int
-unix-data-connection-handle : int

Figure 10.17: Class Diagram NODE- Establish-Unix-Data-Port-Connection

201

Chapter 10. Tool and Experiments

10.3.4.5 Modelling Root Program Element

The algorithm of producing root class diagram is similar with the one of producing node
class diagram.

The root program element Initialisation contains leaf classes and note classes that are
modelled before. It also contains parameters that form the class Systematic manager. At
last, the root program element ROOT-Initialisation is produced (Figure 10.18).

202

Figure 10.18: Class Diagram Initialisation

Chapter 10. Tool and Experiments

10.3.5 UML Composite Structure Diagrams

There are three leaf program elements in legacy COBOL system Manager Application

System (Table 10.6). Each leaf program element has LVS(), and the relationships

between the variables in LVSO are defined in Section 7.3.2. Then those leaf classes are

presented with UML composite structure diagrams (Figure 10.19,10.20 and 10.21).

Table 10.6: Table of Leaf Program Element

Procedure Number Name

2 Initialise-File-Copy-Tables

10 All-Tasks-Complete-Process

11 Get-Download-File-Size

LEAF-initialise-file-copy-tables

usr-curtze-files() usr2-curtze2-files() copied-manager-files()

Figure 10.19: Composite Structure Diagram Initialise-File-Copy-Tables

LEAF-all-tasks-complete-process

exit-dm-program key-status event-type cmd-close

Figure 10.20: Composite Structure Diagram All-Tasks-Complete-Process

LEAF-get-download-file-size

parse-data-cnt file-size-cnt total-file-size division-value

parse-data-pos(file-size-poso Pile-total-byte-size Division-remainder

bytes-remaining-sw

tot- l -cnt tot- l -pos() table-file-1

tot-2-cnt tot-2 Pos() table-file-2

tot-3-cnt tot-3-pos() table-file-3

tot-4-cnt tot-4-pos() table-file-4

tot-5-cnt tot-5-pos() table-file-5

tot-6-cnt tot-6-POS() table-file-6

tot-7-cnt tot-7-pos() table-file-7

tot-8-cnt tot-8-pos() table-file-8

tot-9-cnt tot-9-POS() table-file-9

tot-l0-cnt tot-10-posO table-file-10

Figure 10.21: Composite Structure Diagram Get-Download-File-Size

203

Chapter 10. Tool and Experiments

10.3.6 UML Sequence Diagrams

10.3.6.1 Three Kinds of Sequence Diagrams

In this legacy system Manager Application System, there are three leaf program

elements Initialise-File-Copy-Tables, All-Tasks-Complete-Process, and
Get-Download-File-Size. The root sequence diagram is ROOT-initialisation. There are
ten node sequence diagrams (Table 10.7).

Table 10.7: Table of Node Program Elements

Procedure Number Name

3 NODE-Task- I -Process
4 NODE-Task-2-Process

5 NODE-Task-3 -Process
6 NODE-Task-4-Process

7 NODE-Task-5-Process

8 NODE-Task-6-Process

9 NODE-Task-7-Process

12 NODE-Setup-Unix-Server-File-Transfer-Session

13 NODE-Establish-Data-Port-Connection

14 NODE-Establish-Unix-Data-Port-Connection

10.3.6.2 Starting from Leaf Sequence Diagrams

Based on Section 7.3, the program of realising leaf sequence diagram is presented as:

Procedure Realising_Leaf Sequence_Diagram

Begin

Call Parsing_COBOL()

Call Slicing_Program()

to acquire objects
For i=1 to (k-1)

For j=(i+1) to k

If C(xi) C C(xj) then

VAR(P)= VAR(P)-{ x; }

End-if

204

Chapter 10. Tool and Experiments

End-For

End-For

** *to acquire messges*

For i=1 to k

MA(C(x)) (i) =(i, vl;, V2i, mes;, zl;, z2)

End-For

*** drawing sequence diagram* **

Call Drawing_Sequence_Diagram()

End

Sometimes one leaf program element is simple and easy to be understood with a few

variables or in simple or repeated structure. Then it is unnecessary to present sequence
diagrams of those kinds of leaf program elements. The three leaf program elements in

Manager Application System are Initialise-File-Copy-Tables,

All-Tasks-Complete-Process, and Get-Download-File-Size, and they are simple. Based

on the conditions described in Section 7.3.5, they do not need to be modelled with

sequence diagram.

10.3.6.3 Node Sequence Diagrams

The node program elements contain leaf and node program elements, which are

presented as leaf objects and node objects. Suppose that the leaf objects of one node

program element are the array LFO(i), 1 <, i, <p, and the node objects are the array

NDO(j), l-j<q.

Procedure Realising Node_Sequence_Diagram

Begin

to acquire objects

Call Realising_Leaf Sequence-Diagram

** *to acquire messges*
For i=1 to k

MA(C(x)) (i) =(i, Vli, V26 mesi, zli, z2i)

End-For

For i=1 to p
MA(C(x)) (i+k) = (i+k, V1(i+k), V2(i+k), mes(i+k), Z1(i+k), Z2(i+k))

End-For

205

Chapter 10. Tool and Experiments

For i=1 to q

MA(C(x)) (i+k+p) = (i+k+p, Vl(i+k+p), V2(i+k+p), mes(i+k+p), Zl(i+k+p), Z2(i+k+p))

End-For

** *drawing sequence diagram* **

Call Drawing_Sequence_Diagram()

End

The ten node program elements in Manager Application System (Table 10.7) are

modelled with sequence diagrams. The leaf program elements called in node program

elements are regarded as the special objects, named with the beginning "LEAF-".

The parameters in every node program element are sliced. Based on Section 7.3, the

objects are acquired. The outside interactor of this legacy COBOL system is defined as
System Manager. Then the ten node sequence diagrams are produced (Figure 10.22 to

10.31).

System Manager ftp-send-command Systematic Call LEAF-all-tasks-comolete-
process

initialize ftp command

send "QUIT" command

[not-connected] close co lion

recieve connection command
I' 41

[existing one connection]receive connection command
1I1

close

send username

close

send password

close

receive command

close

set flag

Figure 10.22: Sequence Diagram NODE-Task-l-Process

206

Chapter 10. Tool and Experiments

System Manager unixdýectorv

I
rti
iwltch to "usr" unix-directory
II ýAlý
receive connection command

4

switch to "usr/curtze" umx-directory

recieve connection command

LEAF- all-tasks-corn olete-
vocess

Lion

ODE-c Ip-Lix-server-
fi1e-trn_ fer-s s ion

LEAF-get-download-file-

Figure 10.23: Sequence Diagram NODE-Task-2-Process

System Manager unix-server
iE F- ll-t kc omnlete-

Drocess

II
II

I

H
initialize unix-server

send quit command

recieve connection command

j
close connection

[not-connected] close entire connection

Figure 10.24: Sequence Diagram NODE-Task-3-Process

207

Chapter 10. Tool and Experiments

System Manager Systematic Call

perform batch command to minimize file

rename copy file

LEAF-all-tasks-complete-
process

[not successful] close entire connection

delete original path

set flag

Figure 10.25: Sequence Diagram NODE-Task-4-Process

, System Manager fp-server-port

it

initialize Rp-server

establish ftp connection
5I

LEAF-a11-tasks-complete-
process

[not-connected]close entire connection

receive ftp connection command

send username

[not-connected]close connection

receive ftp connection handle

send password

[not successful] close connection

receive response command

[not successful] close connection

Figure 10.26: Sequence Diagram NODE-Task-5-Process

208

Chapter 10. Tool and Experiments

System Mangier fto-directory

switch to "sales" ftp-directory

switch to "Sales/Updates" ftp"directory

switch to "SaleslUpdates/9998"

Systematic Call LEAF-all-tasks-complete-
process

NODE-establish-data-port-
eonnection

Figure 10.27: Sequence Diagram NODE-Task-6-Process

209

Chapter 10. Tool and Experiments

System Manager ftp-send-command Systematic Call LEAF-all-tasks-complete-

initialize ftp command

send "QUIT" command

recieve connection command

close connection

[not-connected] close co tion

Figure 10.28: Sequence Diagram NODE-Task-7-Process

System Manager unix-transmit-tvoe Systematic Call
LEAF-all-tasks-complete-

process

initialize transmission type

set transmission type "I"

receive handle

establish "PASV" mode

[not connected] close connection

establish Unix data port connection

(not successful] close connection

Figure 10.29: Sequence Diagram NODE-Setup-Unix-Server-File-Transfer-Session

System Manager pasv-cnt Systematic Call LEAF-all-tasks-complete-
process

R
initialize port

set port IP address

send first-part port data number
IýJI{

send second-part port data number

store port number and address

connect ftp server

[not connected] close connection

Figure 10.30: Sequence Diagram NODE-Establish-Data-Port-Connection

210

Chapter 10. Tool and Experiments

tem Manager Systematic Call

I1

initialize port

set port IP address

send first-part port data number

send second-part port data number

store port number and address I

connect unix server I

[not connected] close connection

Figure 10.31: Sequence Diagram NODE-Establish-Unix-Data-Port-Connection

10.3.6.4 Root Sequence Diagram

The computation of root program element is similar with the computation of node

program element.

The root program element Initialisation in legacy COBOL system Manager Application

System calls two leaf program elements and seven node program elements (Table 10.1

and 10.2). Those program elements produce two leaf objects and seven node objects.
The outside interactor of this legacy COBOL system is defined as System Manager.

Then the root sequence diagram is produced (Figure 10.32).

F
LEAFmlulia. fik. MýEa___ NOD

____ ______ ______

_
NODEöi. 7aass

iii!!
i;

Figure 10.32: Sequence Diagram Initialisation

211

Chapter 10. Tool and Experiments

10.3.7 UML Interaction Overview Diagrams

Because LEAF-Initialise-File-Copy-Tables and LEAF-All-Tasks-Complete-Process

have simple structures and LEAF-Get-Download-File-Size has repeated structure, they

are not modelled with interaction overview diagram based on Section 7.3.5.

10.4 Case Study of HTML Legacy System

10.4.1 HTML Legacy System

One HTML legacy system, which is named as Weather - ABC News, is regarded as the

modelling example with part UML diagrams (Appendix B). It is some web pages that

presents the weather forecast through the Internet of News of Australian Broadcasting

Corporation.

10.4.2 Parsing HTML Legacy Code

In HTML legacy system Weather - ABC News System, the root web element is ABC

News, and the node web element is Weather-ABC News. The left are the leaf web

elements (Table 10.8,10.11, and 10.12).

Table 10.8: Table of Program Elements In Source Code

Web Number Name Web

Element

1 ABC-News root

2 Weather-ABC News node
3 Weather-New South Wales-ABC News leaf

4 Weather-Victoria-ABC News leaf

5 Weather-Queensland-ABC News leaf

Table 10.9: Table of Web Link Relationships and Layers

Web Number Link Web Layer WL()

1 2 0

2 3,4,5 1

212

Chapter 10. Tool and Experiments

3 2

4 2

5 2

Table 10.10: Web Layers

Procedure Layer PLO Procedures

0 1

1 2

2 3,4,5

Based on the description in Section 5.4.3, the set SAW{} is the set of all web elements
in HTML legacy system Weather - ABC News System,

SAW{}={ PP; I PP; EP}

_{ ABC-News, Weather-ABCNews, Weather-New SouthWales-ABCNews,

Weather-Victoria-ABCNews, Weather-Queensland-ABCNews }

={1,2,3,4,5},

The set SOW{} is the set of the web elements whose relationships are ordinal in HTML

legacy system Weather - ABC News System,

SOW{}={ PPk I (Vk, k:? '- 0, PPkE {DOM(PPo)})= (PPo !E {DOM(PPk)})}

_4

Because

SOW{) :A SAW{}-{ PPo},

so the link-based model of HTML legacy system Weather - ABC News System is not

sequential.

The set SCW{} is the set of the web elements whose relationships are loop in P

(SCW-Set of Cyclical Webs),

SCW{}={ PPS I ((Vk, kýj) AND (PPkE SCW{}))

ý((PPkE {IM(PPi)})AND (PPS E {IM(PPk)}))},

={2,3,4,5)

Because

213

Chapter 10. Tool and Experiments

SCW{} ý SAW{},

so the link-based model of HTML legacy system Weather - ABC News System is not

cyclical.

The set SPW {} is the set of the web elements whose relationships contain ordinal and

loop at the same link-based model in P (SPW-Set of comPositive Webs),

SPW { }={ PPk I ((ME {DOM(PPo)}) (PPo !c {DOM(PPk)}))

AND((] m. m: ýk) =ý((PPm E {IM(PPk)}) AND (PPk E {IM(PPm)})))},

={2}
Because

cý, SPW{}: ý

so the link-based model of HTML legacy system Weather - ABC News System is

compositive (Figure 10.33).

Figure 10.33: Compositive Link-Based Model of Weather-ABCNews System

10.4.3 UML Class Diagrams

10.4.3.1 Three Layers of HTML Class Diagrams

In HTML legacy system Weather - ABC News System, the root class diagram is the

root program element ABC News, and node class diagram is the node program element

Weather-ABC News (Table 10.11). There are three leaf program elements (Table 10.12).

214

Chapter 10. Tool and Experiments

There is no isolated program element in legacy system Weather - ABC News System.

Table 10.11: Table of Node Classes

Web Number Node Class Name

2 NODE-Weather-ABC News

Table 10.12: Table of Leaf Classes

1 0.4.3.2

Web Number Leaf Class Name

3 LEAF-Weather-New South Wales-ABC News

4 LEAF-Weather-Victoria-ABC News

5 LEAF-Weather-Queensland-ABC News

Starting from Root Web Element

Differently from modelling legacy COBOL system, the analysis starts from root web

element ROOT-ABC-News.

There are four blocks in root web elements: local header, local main, local footer and

additional note. Each one is regarded as one class diagram according to Section 8.3

(Figure 10.34 to 10.37). Those four blocks then form the web, which is corresponding

to the root class diagram (Figure 10.38 to 10.44).

LINK-News Home

News Home : LINK-ABC News

-Just In : LINK-ABC News
Australia : LINK-ABC News

-World : LINK-ABC News

-Business : LINK-ABC News

-Sport: LINK-ABC News

-Entertainment : LINK-ABC News
Weather : LINK-ABC News

-Opinion : LINK-ABC News

, Bloss : LINK-ABC News

LINK-ABC News

Video : LINK-ABC News
Audio : LINK-ABC News
Photo : LINK-ABC News
Podcasts/RSS : LINK-ABC News

IMAGE-ABC News LLVK-NewsRadio

Win : LINK-ABC News
Real : LINK-ABC News

TEXT-ABC News

-NewsRadiol : TEXT-ABC News
-NewsRadio2 : TEXT-ABC News

Figure 10.34: Class Diagram Local Header of ROOT-ABC-News

215

Chapter 10. Tool and Experiments

LINK-TopStories

-Justin : LINK-ABC News

"MostPopular : LINK-ABC News
-Costello says Rudd naked' on tax system understanding : LINK-ABC News
-Cyberspace driving liquid terrorism : LINK-ABC News

IMACE"Newslmage TEXT-TopStories -Police probe Hicks on range of topics : LINK-ABC News
Organised crime a looming threat to Aust : LINK-ABC News
-Court hears mother felt violated' by twin conception : LINK-ABC News
-Vic rejects Federal plan to hold back Murray water : LINK-ABC News
-Thai crash investigators say alerts not all working : LINK-ABC News
-Israel proclaims Gaza Strip enemy entity : LINK-ABC News

-Media Watch's Attard to leave program : LINK-ABC News
-Thurston cleared of dangerous throw charge : LINK-ABC News

LINK"NSWNews
LINK-NSW

-Worker says horse float quarantine lax at airport : LINK-NSWNews
NSWIACT : LINK-ABC News Dental group suspects Govt withholding waiting list : LINK-NSWNews
VIC : LINK-ABC News "50,000 horse flu vaccinations for NSW : LINK-NSWNews
QLD : LINK-ABC News TEXT-NSW

-Smith hoping for big support at Eels game : LINK-NSWNews
WA : LINK-ABC News -NSW local councils may scrap WorkChoices : LINK-NSWNews
SA : LINK-ABC News "Qld Police target truckles in drug blitz : LINK-NSWNews
TAS : LINK-ABC News -NSW Police investigating 457 visa cancellation : LINK-NSWNews
NT: LINK-ABC News Nairn faces gelling over chief of staff comments : LINK-NSWNews

-More : LINK-NSWNews

Figure 10.35: Class Diagram Local Main of ROOT-ABC-News

LINK-Sections

News Home : LINK-ABC News
Just In : LINK-ABC News
Australia : LINK-ABC News
World : LINK-ABC News
Business : LINK-ABC News
Sport : LINK-ABC News
Entertainment : LINK-ABC News
Weather : LINK-ABC News
Opinion : LINK-ABC News
Blogs : LINK-ABC News
Tag Library: LINK-ABC News
Archive : LINK-ABC News

LINK-Subscribe

-Podcasts : LINK-ABC News

-RSS/Feeds : LINK-ABC News

LINK-Media

Video : LINK-ABC News

-Audio : LINK-ABC News

-Photos : LINK-ABC News

TEXT-SiteMap

LINK-Contribute

Upload : LINK-ABC News
Email/Mobile : LINK-ABC News

LINK-ContactUs

-FeedbackFonn : LINK-ABC News

Figure 10.36: Class Diagram Local Footer of ROOT-ABC-News

216

Chapter 10. Tool and Experiments

TEXT-SearchtheABC

LINK-ABCHome

-Radio : LINK-ABC Home

-Television : LINK-ABC Home

-News : LINK-ABC Home

-More Subjects : LINK-ABC Home

-Shop : LINK-ABC Home

Figure 10.37: Class Diagram Additional Note of ROOT-ABC-News

LINK-ABC Newa

Video : LINK-ABC News
Audn : LINK-ABC Newt
Photo : LINK-ABC News
Podcasts/RSS ý LINK-ABC News

LINK-Newt Home

-Newa Home " LINK-ABC Newa

-Just In. LINK-ABC News

-Australia: LINK-ABC News
World : LINK-ABC News

-Business: LINK-ABC News

-Sport : LINK-ABC News

-Emenamment LINK-ABC Newa
Weather: LINK-ABC News

Apwon : LINK-ABC News

-Bloom " LINK-ABC News

LINK-Weather Home

. NSW/ACT: LINK-Weather Home
-VIC : LINK-Watlrcr Home
-QLD : LINK-Weather Home
WA: LINK-Weather Home

-SA: LINK-Weather Home

-TAS : LINK-Weather Home
NT: UNK-Weather Home

LINK-Sections

-News Nome: LINK-ABC News

-Just In : LINK-ABC News
Australia LINK-ABC News

-World. LINK-ABC News

-Bonmau: LINK-ABC News

-Sport : LINK-ABC News

-EzxenammcM. LINK-ABC News
Weather LINK-ABC News

-Opwoe .
LINK-ABC Novus

-Bloge. LINK-ABC News

-Tag Library: LINK-ABC News

-Aiotove " LINK-ABC News

LINK-Subscribe

-Podcasn : LINK-ABC News
-RSSffeede : LINK-ABC News

LLNK-Ncw Radio

-Wu LINK-ABC News

-Real " LINK-ABC Newa

TEXTSiteMip

TEXT-ABC New,

Newdtsdml : TEXT-ABC Newa
NcwsRsda2, TEXT-ABC News

IMAGE-ABC

LINK-ABC

2007ABC: LINK-ABC News

-PrivacyPohcy - LINK-ABC New,

TEXT-ABC Neal

-NeasRedwl : TEXT-ABC Newa

-NewsRadio2 " TEXT-ABC New!

LINK-Satellite

-Synoptic : LINK-Satellite

-Redx " LWKSweWte
Video " LINK-Satellac

TABLE-Weather

-CapitalCityForcast. TABLE-Weather

-Yesterday'tTemperature " TABLE-Weather

-ImemationalCertres " TABLE-Weather

LINK-Mdia

Video : LINK-ABC Newa
Audi : LINK-ABC News
Plmme : LINK-ABC New.

LINK-Contribute

Uplood. LINK-ABC Now
Enwl/Mobde LINK-ABC News

LINK-ContutU,

-FeedbsckFonn " LINK-ABC News

Figure 10.38: Class Diagram ROOT-ABC-News

217

Chapter 10. Tool and Experiments

LINK-ABC News

-Video : LINK-ABC News
-Audio : LINK-ABC News

-Photo : LINK-ABC News
-Podcasts/RSS : LINK-ABC News

LINK-News Home

-News Home : LINK-ABC News

-Just In : LINK-ABC News

-Australia : LINK-ABC News

-World : LINK-ABC News

-Busmess : LINK-ABC News

-Sport: LINK-ABC News

-Entertainment : LINK-ABC News

-Weather : LINK-ABC News

-Opinion : LINK-ABC News

-Blocs : LINK-ABC News

IMAGE-ABC News

LINK-NewsRadio

Wm: LINK-ABC News

-Real : LINK-ABC News

TEXT-ABC News

-NewsRadiol : TEXT-ABC News
NewsRadio2 : TEXT-ABC News

Figure 10.39: Class Diagram Former Note of NODE-Weather-ABC News

TEXT-weather

LINK-Weather Home

NSW/ACT : LINK-Weather Home
VIC : LINK-Weather Home
QLD : LINK-Weather Home
WA : LINK-Weather Home
SA : LINK-Weather Home
TAS : LINK-Weather Home
NT : LINK-Weather Home

Figure 10.40: Class Diagram Local Header of NODE-Weather-ABC News

LINK-Satellite

-Synoptic : LINK-Satellite

-Radar : LINK-Satellite

TEXT-Weather -Video : LINK-Satellite
IMAGE-Satellitelmage

1
-fl

TABLE-Weather

CapitalCityForcast : TABLE-Weather
Yesterday'sTemperature : TABLE-Weather
IntemationalCertres : TABLE-Weather

Figure 10.41: Class Diagram Local Main of NODE-Weather-ABC News

218

Chapter 10. Tool and Experiments

LINK-Subscribe LINK-Contribute LINK-Media

sts : LINK-ABC News
-Upload : LINK-ABC News -Video : LINK-ABC News

eeds : LINK-ABC News
-Email/Mobile: LINK-ABC News -Audio : LINK-ABC News

-Photos : LINK-ABC News

LINK-ABC News TEXT-SiteMap

TEXT-ABC News

-ABCI : TEXT-ABC News

LINK-Sections

News Home : LINK-ABC News
Just In : LINK-ABC News
Australia : LINK-ABC News
World : LINK-ABC News LINK-ContactUs IMAGE-ABC
Business : LINK-ABC News

-FeedbackForm : LINK-ABC News
Sport: LINK-ABC News
Entertainment : LINK-ABC News
Weather : LINK-ABC News
Opinion : LINK-ABC News
Blogs : LINK-ABC News
Tag Library: LINK-ABC News LINK-ABC
Archive : LINK-ABC News

-2007ABC : LINK-ABC News

-PrivacyPolicy : LINK-ABC News

Figure 10.42: Class Diagram Local Footer of NODE-Weather-ABC News

TABLE-SearchtheABC

TEXT-SearchtheABC

LINK-ABCHome

Radio : LINK-ABC Home
Television : LINK-ABC Home
News: LINK-ABC Home
More Subjects : LINK-ABC Home
Shoo : LINK-ABC Home

Figure 10.43: Class Diagram Additional Note of NODE-Weather-ABC News

219

Chapter 10. Tool and Experiments

LINK-News Home

-News Home : LINK-ABC News

-Just In: LINK-ABC News

-Australia : LINK-ABC News

-World : LINK-ABC News

-Business : LINK-ABC News

-Sport: LINK-ABC News

-Entertainment : LINK-ABC News

-Weather : LINK-ABC News

-Opinion : LINK-ABC News

-Blocs : LINK-ABC News

IMAGE-Satellitelmage

LINK-Weather Home

NSW/ACT : LINK-Weather Home
VIC : LINK-Weather Home
QLD : LINK-Weather Home
WA : LINK-Weather Home
SA : LINK-Weather Home
TAS : LINK-Weather Home
NT: LINK-Weather Home

LINK-ABC News

-Video: LINK-ABC News

-Audio : LINK-ABC News

-Photo: LINK-ABC News

-Podcasts/RSS : LINK-ABC News

IMAGE-ABC News

TEXT-Weather

TEXT-ABC News

-NewsRadiol : TEXT-ABC News
NewsRadio2: TEXT-ABC News

LINK-Satellite

-Synoptic : LINK-Satellite

-Radar: LINK-Satellite

-Video : LINK-Satellite

TABLE-Weather

CapitalCityForcast: TABLE-Weather
Yesterday'sTemperature : TABLE-Weather
IntemationalCertres : TABLE-Weather

LINK-Media

Video : LINK-ABC News
Audio: LINK-ABC News
Photos : LINK-ABC News

LINK-Sections

-News Home: LINK-ABC News

-Just In: LINK-ABC News

-Australia : LINK-ABC News

-World : LINK-ABC News

-Business : LINK-ABC News

-Sport: LINK-ABC News

-Entertainment : LINK-ABC News

-Weather : LINK-ABC News

-Opinion : LINK-ABC News

-Blogs : LINK-ABC News

-Tag Library: LINK-ABC News

-Archive : LINK-ABC News

LINK-Subscribe

-Podcasts : LINK-ABC News
RSS/Feeds : LINK-ABC News

TEXT-ABC News

NewsRadiol : TEXT-ABC News

"NewsRadio2 : TEXT-ABC News

IMAGE. ABC

LINK-ABC

-2007ABC : LINK-ABC News

-PrivacyPolicy : LINK-ABC News

LINK-Contribute

-Upload : LINK-ABC News

-EmaiVMobile : UNK-ABC News

LINK-ContactUa

-FeedbackForm : LINK-ABC News

Figure 10.44: Class Diagram NODE-Weather-ABC News

10.4.3.3 Three Leaf Web Elements

In HTML legacy system Weather - ABC News, there are three leaf web elements:
Weather-NewSouthWales-ABCNews, Weather-Victoria-ABCNews, and

TEXT-SiteMsp

LINK-NewsRadio

Win : LINK-ABC News

-Real : LINK-ABC News

220

Chapter 10. Tool and Experiments

Weather-Queensland-ABCNews (Table 10.8). They are linked from the note web

element Weather-ABCNews.

Because those three leaf web elements have similar blocks as the note web element
Weather-ABCNews, their blocks are not modelled with class diagram. Those three leaf

web elements are modelled with class diagram on Section 8.5 (Figure 10.45 to 10.47).

LINK ABC Newa

-Video : LINK-ABC Newa

-Audio : LINK-ABC News
-Photo : LINK-ABC News
-Podcasts/RSS : LINK-ABC News LINK-NewsRadi

Wm : LINK-ABC News
LINK-Neva Horo Real : LINK-ABC News

a Home : LINK-ABC Newa
In : LINK-ABC News
raha : LINK-ABC News
id: LINK-ABC News IMAGE -ABC Newa
ness : LINK-ABC News
rt: LINK-ABC Newa
rtainment : LINK-ABC News TEXT-ABC News

ther: LINK-ABC News -NewsRadiol : TEXT-ABC News

lion : LINK-ABC News -NewsRadio2 : TEXT-ABC News
cs : LINK-ABC News

v

t
r

IMAGE-NewSouthWalea TEXT-NewSouthWalea

-New South Wales : TEXT-Weather TABLE-Weather

-Coastal wind warning : TEXT-Weather -State Centres Forecast : TABLE-Weather
-Fire weather warning : TEXT-Weather -Four Day Outlook : TABLE-Weather

-Severe weather warning : TEXT-Weather -Yesterday's Temperature : TABLE-Weather
LINK-Weathe -Coastal Waten : TEXT-Weather

leather Home : LINK-Weather
SW/ACT : LINK-Weather
1C: LINK-Weather
LLD : LINK-Weather
�A : LINK-Weather
A: LINK-Weather
AS: LINK-Weather LUSK-Sections
IT : LINK-Weather

News Home : LINK-ABC News
-Just In : LINK-ABC News
Australia: LINK-ABC News

LINK-Media World : LINK-ABC News

-Video : LINK-ABC News Business : LINK-ABC News

Audio : LINK-ABC News TEXT-SireMap -Sport: LINK-ABC News

-Photos : LINK-ABC News
Entertainment : LINK-ABC News
Weather: LINK-ABC News

-Opinion : LINK-ABC News
Blogs : LINK-ABC News
Tag Library: LINK-ABC News

LINK-Subscribe Archive : LINK-ABC News
? odcaata : LINK-ABC News TEXT-ABC Newa

25S/Feeds: LINK-ABC News -NewnRadiol : TEXT-ABC News I
NewsR&dio2: TEXT-ABC News

1

LINK-Contribute

RNAGE-ABC -Upload : LINK-ABC News
-EmaiVMobile : LINK-ABC News

LINK-ABC LINK-ContattUs
LINK-ABC News

licy " LINK-ABC Newa
FadbeckFonm : LINE: -ABC Newa

Figure 10.45: Class Diagram LEAF-Weather-New South Wales-ABC News

221

Chapter 10. Tool and Experiments

LINK-ABC News

-Video : LINK-ABC News
Audio : LINK-ABC News

-Photo : LINK-ABC News

-Podcasts/RSS : LINK-ABC News

LINK-News Horn

-News Home : LINK-ABC News

-Just In : LINK-ABC News
Australia: LINK-ABC News
World : LINK-ABC News
Business : UNK-ABC News
Sport: LINK-ABC News
Entertainment : LINK-ABC News

-Weather : LINK-ABC News

-Opinion : LINK-ABC News

-Blocs : LINK-ABC News

IMAGE-Victoria

LINK-Weathe

-Weather Home : LINK-Weather
NSW/ACT : LINK-Weather

-VIC: LINK-Weather

-QLD : LINK-Weather
-WA: MX-Weather

-SA : LINK-Weather

-TAS : LINK-Weather
-NT: LINK-Weather

IMAGE-ABC News

TEXT-Victoria

-New South Wales : TEXT-Weather
-Coastal wind warning : TEXT-Weather

-Small boat alert: TEXT-Weather
-Severe weather warning : TEXT-Weather
-Coastal Waters : TEXT-Weather

LINK-Media

-Video : LINK-ABC News

-Audio : LINK-ABC News

-Photos : LINK-ABC News

LINK-Subscribe

-Podcasts: LINK-ABC News

-RSS/Feeds: LINK-ABC News

TEXT-ABC News

-NewsRadiol : TEXT-ABC News
NewsRadio2 : TEXT-ABC News

IMAGE-ABC

LLNK-ABC

-2007ABC : LINK-ABC News
PrivacyPolicy : LINK-ABC News

LINK-NewsRadi

-Win : LINK-ABC News
Real : LINK-ABC News

TEXT-ABC News

-NewsRadiol : TEXT-ABC News

-NewsRadio2: TEXT-ABC News

TABLE-Weather

-State Centres Forecast : TABLE-Weather

-Four Day Outlook : TABLE-Weather

-Yesterday's Temperature : TABLE-Weather

LINK-Sections

News Home : LINK-ABC News
Just In : LINK-ABC News
Australia: LINK-ABC News
World : LINK-ABC News
Business : LINK-ABC News

-Sport: LINK-ABC News
Entertainment : LINK-ABC News
Weather: LINK-ABC News

-Opinion : LINK-ABC News

-Blogs : LINK-ABC News
Tag Library : LINK-ABC News
Archive : LINK-ABC News

LINK-Contribute

-Upload : LINK-ABC News
-Email/Mobile: LINK-ABC News

LINK"ContactUi

"FeedbackFonn : UNK-ABC News

Figure 10.46: Class Diagram LEAF-Weather-Victoria-ABC News

222

Chapter 10. Tool and Experiments

LINK-News Horn

News Home. LINK-ABC News
Just In : LINK-ABC News
Australia: LINK-ABC News
World : LINK-ABC News
Business : LINK-ABC News
Sport: LINK-ABC News
Entertainment : LINK-ABC News
Weather : LINK-ABC News
Opinion : LINK-ABC News
Blo¢s : LINK-ABC News

IMAGE-Queensland

LINK-Weathe

-Weather Home : LINK-Weather

-NSW/ACT: LINK-Weather

-VIC : LINK-Weather

-QLD : LINK-Weather

-WA: LINK-Weather

-SA : LINK-Weather

-TAS : LINK-Weather

. NT: LINK-Weather

LINK-Media

-Video : LINK-ABC News

-Audio : LINK-ABC News

-Photos : LINK-ABC News

LINK-ABC News

-Video : LINK-ABC News

-Audio : LINK-ABC News

-Photo : LINK-ABC News

-Podcasts/RSS: LINK-ABC News

IMAGE-ABC News

TEXT-Queensland

-New South Wales : TEXT-Weather

-Coastal wind warning : TEXT-Weather

-Fire weather warning : TEXT-Weather

-Coastal Waters: TEXT-Weather

LINK-Subscribe

"Podcasts : LINK-ABC News
RSS/Feeds : LINK-ABC News

TEXT-ABC News

-NewsRadiol : TEXT-ABC News
NewsRadio2 : TEXT-ABC News

TEXT-SiteMap

IMAGE-ABC

LINK-ABC

2007ABC : LINK-ABC News

-PnvacyPolicv : LINK-ABC News

LINK-NewsRadi

-Win : LINK-ABC News
Real : LINK-ABC News

TEXT-ABC News

"NewsRadiol: TEXT-ABC News

-NewsRadio2: TEXT-ABC News

TABLE-Weather

-State Centres Forecast : TABLE-Weather

-Four Day Outlook : TABLE-Weather

-Yesterday's Temperature : TABLE-Weather

LINK-Sections

-News Home : LINK-ABC News

-Just In : LINK-ABC News

-Australia: LINK-ABC News

-World : LINK-ABC News

-Business : LINK-ABC News

-Sport: LINK-ABC News

-Entertainment : LINK-ABC News

-Weather : LINK-ABC News

-Opinion : LINK-ABC News

-Slogs : LINK-ABC News

-Tag Library: LINK-ABC News
Archive : LINK-ABC News

LINK-Contribute

-Upload: LINK-ABC News

-EmaiUMobile : LINK-ABC News

LINK-ContactUs

-FeedbeckForm : UNK-ABC News

Figure 10.47: Class Diagram LEAF-Weather-Queensland-ABC News

10.4.4 UML Composite Structure Diagrams

Composite structure diagram is the description of internal structure of class. The classes

that are composed of several equivalent parts and have the similar structure and the

223

Chapter 10. Tool and Experiments

same functions are not modelled in this chapter. The five typical classes, which are text,

image, table, framework, and link classes, are presented with UML composite structure
diagrams in Chapter 8.

The complex classes of HTML legacy system Weather - ABCNews are complicated in

the structures and have many different small pieces with different functions. Those

classes are LINK-TopStories, LINK-NSWNews, LINK-NSW, LINK-Sections,

LINK-NewsHome, TABLE-Weather, and InternationalCertres. They are described with

UML composite structure diagram in Figure 10.48 to 10.54. The classes whose

structures are simple and that have a few parameters are not modelled.

LINK"TopStories

Just In

Most Popular

Costello says Rudd'naked' on tax system understanding

Cyberspace driving'liquid terrorism

Police probe Hicks on range of topics

Organised crime a looming threat to Aust
I

Court hears mother felt'violated' by twin conception

Vic rejects Federal plan to hold back Murray water

Thai crash investigators say alerts not all working

Israel proclaims Gaza Strip enemy entity
I

Media Watch's Attard to leave program
I

Thurston cleared of dangerous throw charge

Figure 10.48: Composite Structure Diagram of LINK-TopStories

224

Chapter 10. Tool and Experiments

LINK-NSWNews

Worker says horse float quarantine lax at airport

I Dental group suspects Govt withholding waiting list I

1 50,000 horse flu vaccinations for NSW

I Smith hoping for big support at Eels game I

NSW local councils may scrap WorkChoices

Qld Police target truckies in drug blitz

NSW Police investigating 457 visa cancellation

Nairn faces grilling over chief of staff comments I

More

Figure 10.49: Composite Structure Diagram of LINK-NSWNews

LINK-NSW

Figure 10.50: Composite Structure Diagram of LINK-NSW

225

Chapter 10. Tool and Experiments

LINK-Sections

News Home

Just In

Australia

World

Business

Sport

Entertainment

Weather

Opinion

Blogs

Tag Library

Archive

Figure 10.51: Composite Structure Diagram of LINK-Section

LINK-NewsHome

News Home

Just In

Australia

World

Business

Sport

Entertainment

Weather

Opinion

Blogs

Figure 10.52: Composite Structure Diagram of LINK-NewsHome

226

Chapter 10. Tool and Experiments

TABLE-Weather

Capital City Forecast

I Yesterday's Temperature

International Centres

Figure 10.53: Composite Structure Diagram of TABLE-Weather

International Centres

Centre Forecast Min Max

Figure 10.54: Composite Structure Diagram of IntemationalCentres

10.4.5 UML Component Diagram

ABC-News Database

Security System

System Manager ---------------

Web Browser

Updating System

Weather Database ----------------I

Figure 10.55: Component Diagram of Weather-ABCNews

227

Chapter 10. Tool and Experiments

10.4.6 UML Deployment Diagram

Loader:
ABCNews

WebServer:
UnixServer

----ý_ý L1L------

Mainframe:
ABCWeather

Dealer:
UpdatingServer

,
/7777 '77

DatabaseServer:
OracleDatabase

Figure 10.56: Deployment Diagram of Weather-ABCNews

10.5 Case Study of SQL Legacy System

10.5.1 SQL Legacy System

One SQL legacy system, which is named as SimulatingINSERT, is regarded as the

modelling example with part UML diagrams (Appendix C). It is one SQL example to

create one statement that has the same function as the INSERT statement in SQL. The

statement in this legacy system is presented as one procedure named as

sp_generate_inserts. It is written by Narayana Vyas Kondreddi at

http: //vyaskn. tripod. com and tested on SQL Server 2000.

228

Chapter 10. Tool and Experiments

10.5.2 Parsing SQL Legacy Code

In SQL legacy system SimulatingiNSERT code, the database used is Master. The root

program element is Master, and the leaf program element is sp_generate_inserts (Table

10.13). Suppose that the procedure sp_generate_inserts uses the database

sp_generate_inserts. It is obvious that the development/environment-specific model of
SQL legacy system SimulatingINSERT code is generation database-based model

(Figure 10.57).

Table 10.13: Table of Program Elements in Source Code

Number Name Element

1 Master root

2 sp_generate_inserts leaf

0]

1 2

Figure 10.57: Generation Database-Based Model of SimulatingINSERT

10.5.3 Slicing SQL Source Code

Based on the program slicing techniques, SQL source code is sliced.

10.5.4 UML Class Diagrams

10.5.4.1 Two Layers of Procedure Elements

In legacy SQL system Simulating INSERT system, the root program element is named

as Master, and the leaf program element is the procedure sp_generate_inserts. There is

no node and isolated program element in legacy system Simulating INSERT system.

10.5.4.2 Class Diagram

Legacy SQL system Simulating INSERT system has three classes, one root class
ROOT-Master, and two leaf class LEAF-master. dbo. sp_MS_upd_sysobj_category and

229

Chapter 10. Tool and Experiments

LEAF-sp_generate_inserts based on Section 9.3. Then its class diagram is realised in

Figure 10.58.

ROOT-Master

LEAF"master. dbo. sp MS upd sysobjcategory LEAF- spjenerate inserts

Figure 10.58: Class Diagram of Simulating INSERT System

10.5.5 UML Composite Structure Diagrams

In modelling SQL legacy system Simulating INSERT system, UML composite structure
diagram is used to describe the internal structure of the leaf program element
LEAF-sp_generate_inserts (Figure 10.59).

LEAF-sp generate inserts

@cols_to_include @cols to_exclude

@table_name

@owner

@IDN @Column_ID @Column Name @Column_List a@Actual Values

@Start Insert @target table

@Data Type

@ommit computed_cols

@include timestamp

@include_column_list @top @Start_Insert @from

@debug_mode

@disable_constraints

Figure 10.59: Composite Structure diagram of LEAF-sp_generate_inserts

230

Chapter 10. Tool and Experiments

10.5.6 UML Activity Diagrams

10.5.6.1 Three Layers of Activity Diagrams

In legacy SQL system Simulating INSERT system, the root program element Master

result in the root activity diagram ROOT-Master, and leaf program element

sp_generate_inserts results in the leaf activity diagram LEAF-sp-generate-inserts. There

is no node and isolated program element in legacy system Simulating INSERT system

so there is no node or isolated activity diagram.

10.5.6.2 Starting from Leaf Program Elements

The analysis of modelling legacy SQL system starts from leaf program element. Based

on Section 9.3.3, control graph is obtained from SQL code Master, and the activity

array AT(1,1) is acquired.

AT(1,1,1)="check original data";

AT(1,1,2)="set target table";

AT(l, 1,3)="get the first column's ID";

AT(l, 1,4)="[column_ID is not null] get column's name and type";

AT(1,1,5)="delete extra characters";
AT(1,1,6)="form executing string".

Then the activity diagram of LEAF-sp-generate-inserts is produced in Figure 10.60.

10.5.6.3 Leaf and Node Activities

The leaf activity in this legacy SQL system is LEAF-sp_generate_inserts activity. There

is no node activity.

10.5.6.4 Root Activity Diagram

The activity array AT(O, 1) of ROOT-Master is acquired.

AT(O, 1,1)="use master database";

AT(O, 1,2)="[sp_generate_inserts exists] drop sp_generate_inserts";
AT(O, 1,3)="turn system-category on";
AT(O, 1,4)="create procedure sp_generate_inserts";
AT(O, 1,5)=" turn system-category off';
AT(O, 1,6)="grant to sp_generate_inserts public".

231

Chapter 10. Tool and Experiments

Then the activity diagram of ROOT-master is produced in Figure 10.61.

check original data

set target table

get the first column's ID

@Column ID null 70ý7 @Column ID not null

get column's name and data type

delete extra characters

forming executing string

Figure 10.60: Activity diagram of LEAF-sp_generate_inserts

232

Chapter 10. Tool and Experiments

use master database

sp_generate_inserts not existing sp_generate_inserts existing

drop spgenerate-inserts

tum system-category on

create procedure sp_generate_inserts

turn system-category off

grant spgenerate_inserts to public

Figure 10.61: Activity Diagram of ROOT-Master

10.6 Summary

In this chapter, three cases are studied. One COBOL legacy system named Manager

Application is presented to create the new manager file that is performed once a week

on Friday. It is modelled with UML class diagram, composite structure diagram,

233

Chapter 10. Tool and Experiments

interaction overview diagram, and sequence diagram. One HTML legacy system named

as Weather-ABCNews is regarded as the example to present the weather forecast

through the Internet of News of Australian Broadcasting Corporation. It is modelled

with UML class diagram, composite structure diagram, component diagram and

deployment diagram. One SQL legacy system named as Simulating INSERT is

regarded as the example to create one statement that has the same function as the

INSERT statement in SQL. It is modelled with UML class diagram, composite structure

diagram, and activity diagram. One tool demonstrates the proposed approach.

234

Chapter 11. Discussion and Conclusions

Chapter 11

Discussion and Conclusions

11.1 Comparison and Evaluation

Traditional studies obtained UML diagrams from legacy code through program slicing
techniques, which have shortcomings. Formal methods lack a common platform and
this leads to confusion and difficulties with the comprehension and reuse of original

code. The problem with model-driven engineering is that it can lead to a lockin in the

abstractions and generator technology adopted when the project starts. Other methods

also lack a common platform, which seriously impedes the reuse of legacy systems.
Using all the UML diagrams results in redundancy.

The proposed approach overcomes these disadvantages of traditional studies by using
development/environment-specific models. Modelling enables IT to be more efficient in

reacting to business users' requests for new systems or changes to existing ones, and it is

able to build applications once and use them many times. It satisfies the users by giving

them immediate answers to questions as they arise. It enables IT to be nimbler and

quicker in reacting to business changes, rather than having IT be a constraint on the
business. Modelling has the ability to help break down the applications supporting

various products into pieces that can be saved or discarded as duplicative.

The proposed approach is based on development/environment-specific models. They are
different for different legacy systems. The proposed development/environment-specific

model of COBOL legacy systems is based on the characteristics and operations of
COBOL, and is the linear, branch, joint, and synthetic procedure-based model; the

proposed development/environment-specific model of HTML legacy systems is the

sequential, cyclical, and compositive link-based model; and the proposed
development/environment-specific model of SQL legacy systems is based on the

characteristics and operations of SQL, and is the association, generation and

composition database-based model.

235

Chapter 11. Discussion and Conclusions

The traditional studies sliced legacy code with program slicing techniques based on
Weiser's approach. However, the slices are computed by computing consecutive sets of

transitively relevant statements based on data flow and control flow dependencies.

COBOL and SQL legacy systems involve data flow and control flow, and program

slicing techniques are suitable for modelling them, whilst HTML legacy systems are the

presentation of web and data formats, and do not focus on data flow or control flow

dependencies, and program slicing techniques are not suitable for analysing HTML

legacy systems.

The proposed approach presents the differences in applying program slicing techniques

between COBOL and SQL legacy systems on the one hand, and HTML legacy systems

on the other. The first two types can be sliced, but not the last one.

Traditional studies presented all the UML diagrams. As a theory, UML should be all

that is needed to model real systems. It is necessary for UML to be sufficient because it

is a universal modelling theory and it should have the capability of being suitable for

different systems. But some of the UML diagrams are similar or even redundant in

some ways and in some areas, especially in software systems. When using UML in the

designated area, it should be edited so as to be suitable for the given modelling systems.

It is not necessary to use all of its thirteen diagrams to model those legacy systems.

The proposed approach uses four UML diagrams, which are the class, composite

structure, sequence and interaction overview diagrams, to model COBOL legacy

systems; uses four UML diagrams, which are the class, composite structure, component

and deployment diagrams, to model HTML legacy systems; and three UML diagrams,

which are the class, composite structure and activity diagrams, to model SQL legacy

systems.

11.2 Summary

The proposed approach in this thesis is an attempt to reduce some of the problems
inherent with domain-specific legacy systems. It involves many issues including models,

program slicing techniques and UML. Although formal methods, cognitive methods and

model-driven engineering of software evolution have been around for some years,
dedicated approaches using the integration of development/environment-specific

236

Chapter 11. Discussion and Conclusions

models of domain-specific legacy systems and some UML diagrams did not exist.

In order to deal with those existing shortcomings, development/environment-specific

models are generated. The development/environment-specific model of COBOL legacy

systems is based on the characteristics and operations of COBOL, and is a

procedure-based model. It is a graph that describes the calling and being-called

relationships of those procedures in COBOL legacy systems, and has four types. The

development/environment-specific model of HTML legacy systems is a link-based

model. It is a graph that describes the importing or being-imported relationships of

those webs in HTML legacy systems. It has three types. The

development/environment-specific model of SQL legacy systems is a database-based

model. It is a graph that describes the database relationships in COBOL legacy systems,

and has three types.

29 rules are used to model COBOL legacy systems with four UML diagrams. In Section

7.3.5, the rules application is presented. Eleven rules then model HTML legacy systems

with four UML diagrams. Finally, another eleven rules model SQL legacy systems with

three UML diagrams.

11.3 Significance of Contributions and Evaluation

The major contribution of the thesis is the presentation of
development/environment-specific models of legacy systems and an approach towards

the software evolution of domain-specific legacy systems with some UML diagrams. In

concrete terms, the original contributions of this thesis are described as follows:

OC1: In Chapter 4,5, and 6, development/environment-specific models of three

domain-specific legacy systems, which are a procedure-based model of COBOL

legacy systems, a link-based model of HTML legacy systems, and a
database-based model of SQL legacy systems, are defined based on the

characteristics and operations of these domain-specific legacy systems. They

integrate formal methods and cognitive methods of software evolution and

contain structural and operational information about working flow or executable
functions.

237

Chapter 11. Discussion and Conclusions

OC2: In Chapter 7, four out of thirteen UML diagrams are used to model COBOL

legacy systems; in Chapter 8, four UML diagrams are used to model HTML

legacy systems; and in Chapter 9, three UML diagrams are used to model SQL

legacy systems. It is made clear that only some of the set of UML diagrams are

used to model domain-specific legacy systems, so as to eliminate the redundancy

of UML application.

OC3: In Chapter 10, a system is developed to demonstrate the effectiveness of the

proposed approach by applying and integrating evolution rules in model

applications based on parsing and slicing domain-specific legacy systems.

OC4: In Chapter 7,8, and 9, a set of rules is devoted to modelling domain-specific

legacy systems with their application conditions.

11.4 Revisiting Criteria for Success

The approach presented in the thesis is based on the criteria for success in Chapter 1.

The analysis of those criteria for success is performed as follows in order to judge the

success of the research.

" For those domain-specific legacy systems, is it possible and necessary for them to

be modelled with UML?

UML is a graphical language for visualising, specifying, constructing, and
documenting the artifacts of a software-intensive system. It is appropriate for

modelling, ranging from enterprise information systems to distributed Web-based

applications and even to hard real-time embedded systems. It is a very expressive
language with the graphic presentation of diagrams addressing the views that need

to be developed and the models extracted from systems. Because a legacy system
is a computer software system, UML is able to model it. A legacy system

comprises large, complicated, old, heavily modified, difficult to maintain and

old-fashioned software that is still important to the organisation. In order to reuse

and restructure the legacy system, it needs to be modelled using UML diagrams.

" Is it necessary for those three kinds of legacy system to be modelled with all of the

UML diagrams?

238

Chapter 11. Discussion and Conclusions

Since UML was released, it has become regarded as the new modelling standard,
because most of the currently existing methods have been integrated within UML.

As a theory, UML is all that is needed to model real systems. It is the integration of

many different methods in different views from different layers. It is necessary for

UML to be sufficient because it is a universal modelling theory and it should have

the capability of being suitable for different systems. It therefore contains a certain

number of concepts, which are similar or even redundant in some ways and in

some areas, especially in software systems. A large number of definitions are

presented that are not needed in the specific area but only for theoretical reasons.

Therefore, when using UML in the designated area, it should be edited so as to be

suitable for the modelling systems in question. It is not necessary to use all of its

thirteen diagrams to model those legacy systems.

In practice, for given modelling tasks in given modelling areas, UML is well

placed to cope with the problems at hand. Comprehension of systems is

complicated and it is influenced by different aspects of the systems that could

relate to structure, behaviour, execution process, error detection, etc. Each of those

requires a different understanding from a different point of view. Therefore, when

modelling real legacy systems, the research in this thesis has identified the most

appropriate modelling approach, using UML, for the given tasks. Only some of

those thirteen UML diagrams were selected and utilised in order to model
domain-specific legacy systems.

" If not necessary, how many UML diagrams are suitable for modelling COBOL

legacy systems? What are they? Are they enough for the modelling task? Why?

The class and composite structure diagrams were used to model the static parts of
COBOL legacy systems, and the sequence and interaction overview diagrams to

model the dynamic parts.

The class diagram is the most fundamental of the UML diagrams for modelling the

structure of legacy systems. Because of the popular acceptance of the definition

CLASS, the class diagram is easy to understand in modelling a legacy system. So,

the class diagram should be used to model legacy systems.

Although the composite structure diagram is low-level, its connotation is different

239

Chapter 11. Discussion and Conclusions

from that of the object diagram. It describes the internal structure of a class and for

different purposes from those of the object diagram. It can be used to model the

complication of a class in detail. The composite structure diagram should therefore

be used when modelling the internal structure of classes of COBOL legacy

systems.

The sequence diagram is a high-level UML diagram that models the dynamic

aspects of modelled systems. Sequence diagrams present the interactions between

objects when achieving a result. A sequence diagram describes how groups of

objects collaborate in presenting certain system behaviours. Typically, a sequence

diagram describes the detailed implementation of how a legacy system

accomplishes its main tasks. A sequence diagram presents an interaction in terms

of a set of messages sent between objects that all work together to provide a

desired operational result, which is its main difference from a collaboration

diagram which shows collaborations and associations between instances in a

system. The sequence diagram is useful in modelling COBOL legacy systems. It is

used in presenting the dynamic aspects of COBOL legacy systems.

The interaction overview diagram is a diagram which is new in UML 2.0. It

overviews the control flow within a system or business process at a low level. It

focuses on the overview of the flow of control of the interactions. It describes the

interactions where messages and lifelines are hidden. Because the interaction

overview diagram is low-level in describing the control flow within a legacy

system, it is appropriate for modelling COBOL legacy systems, and therefore it is

used in this thesis.

An object has the same characteristics as the corresponding class. Most of the

important characteristics of the object are reflected in the corresponding class.
Therefore, after the class diagram has been used in modelling a COBOL legacy

system, it is unnecessary to use the object diagram in modelling.

The UML collaboration diagram is used to model interactions between objects, and

objects interact by invoking messages on each other. The collaboration diagram is

another form of sequence diagram, and the sequence diagram is used in modelling
COBOL legacy systems. Because the composite structure diagram has been used

240

Chapter 11. Discussion and Conclusions

to model the internal structure of the classes in a COBOL legacy system, it is not

necessary to use the collaboration diagram.

The component diagram could be used at a high level to analyse legacy COBOL

systems. After the class diagram has been used in modelling a COBOL legacy

system at a high level, the component diagram is pleonastic and redundant for

modelling the functionality of COBOL code. The component diagram was
therefore not used in this research.

Because a COBOL legacy system is a description of business rules and is

complicated in practice, the package diagram is at too high a level to be useful in

modelling COBOL legacy systems. After using the class diagram it is therefore not

necessary to use the package diagram to model COBOL code.

A COBOL legacy system is modelled from the functional point of view. The

deployment diagram is too high-level for analysing COBOL legacy systems from

the static and structural points of view. Therefore, the deployment diagram is not

used in modelling COBOL legacy systems.

The UML activity diagram describes the dynamic aspects of a system at a high

level. It is essentially a flowchart, showing the flow of control from activity to

activity. An activity is an ongoing nonatomic execution within a state machine.
Activity diagrams may stand alone to visualise, specify, construct and document

the dynamics of a society of objects, or they may be used to model the flow of

control of an operation. Because the sequence diagram is used at a high level to

describe the messages and objects of COBOL legacy systems, and presents the

operations with messages and the message senders or receivers, the activity
diagram does not need to be used when modelling COBOL legacy system.

The use case diagram is defined as a high-level diagram that shows the

relationships amongst actors and use cases within a system in terms of the UML

specification. It shows a set of use cases and actors and their relationships. Use

case diagrams can be used to model the context and requirements of the system
from the stakeholders' point of view. A use case is a requirement that the users of

the system, termed the actors, want the system to do. A use case contains a special
function that can be specified as a set of usage scenarios. As a user-centred

241

Chapter 11. Discussion and Conclusions

analysis technique, the purpose of a use case is to yield a result of measurable

value to an actor in response to the initial request of that actor. Use cases can be

utilised to model the requirements of the system from the stakeholders' point of

view. Because the modelling of COBOL legacy systems focuses on the modelling

of the business rules in COBOL code, and does not need to determine the

requirements of the users, the use case diagram is not used in modelling COBOL

legacy systems.

Timing diagrams are used to show changes and their relationship to clock times. It

provides a visual representation of objects changing state and interacting over time.

Because the timing diagram is suitable for the description of embedded systems, it

is not used in modelling COBOL legacy systems.

A state machine diagram describes the possible states of a single class and the

events that cause state transitions. It shows the sequence of states that an object

goes through during its life cycle in response to stimuli. It is useful for showing the

life cycle of the class. Generally, it is attached to a class of objects with an
interesting dynamic behaviour. When a transition in a statechart is triggered, the

object leaves its current state, initiates the action(s) for that transition and enters a

new state. Any internal or external event is broadcast to all states of all objects in

the system. Because the objects in a COBOL legacy system are extracted from

variables and they often have different values, the states of objects are changed so

often that it is hard to describe them, and to do so would be meaningless. Therefore,

the state machine diagram is not used in modelling COBOL legacy systems.

Consequently, four UML diagrams, which are the class, composite structure,

sequence and interaction overview diagrams, are used to model COBOL legacy

systems.

" How many UML diagrams are suitable for modelling HTML legacy systems? What

are they? Why?

Four UML diagrams, which are the class, composite structure, component and
deployment diagrams, are used to model HTML legacy systems.

The essential task of HTML is the service of the Internet, and this is its biggest

restriction and difference from other programming languages. HTML does not take

242

Chapter 11. Discussion and Conclusions

on the responsibilities of calculation, real-time control, judgments and immediate

response, batch disposal, database data management, man-made intelligence, etc.

HTML is an excellent tool for presenting data under a designed format, especially

with tables and frames. The nature of HTML means that it does not focus on

complicated control or computation. Therefore, legacy HTML systems do not need

to be modelled with the dynamic UML diagrams.

The class diagram is the most fundamental of the UML diagrams used in

modelling the structure of legacy systems. As mentioned before, the class diagram

should be used when modelling HTML legacy systems, but it is not necessary to

use the object diagram.

The composite structure diagram is low-level, and it describes the internal structure

of classes, having a different purpose from that of the object diagram. Tables,

forms, images and frames have different and complex structures in web usage, and

their internal structures should be presented in detail in order for them to be more

easily understood. So, the composite structure diagram should be used in

modelling the internal structure of classes in HTML legacy systems.

The component diagram shows the dependencies amongst software components,
including the classifiers that specify them and the artifacts that implement them;

such as source code files, binary code files, executable files, scripts and tables. The

desired web page is realised through the correct use of tables, forms, images and

sounds in web pages of the designed format. So the component diagram is used in

modelling HTML legacy systems.

The UML deployment diagram presents the processors, devices and the

connections between them, that can be the run-time configuration of hardware

nodes and the software components that run on those nodes. HTML uses web

servers and browsers to execute web presentation and information exchange.
Therefore, the deployment diagram is used in modelling HTML legacy systems.

The collaboration diagram is another form of sequence diagram. HTML is an

excellent tool for presenting data under the designed format, especially with tables

and frames. It does not focus on complicated control or computation. So it is not

necessary to use the collaboration diagram when modelling HTML legacy systems.

243

Chapter 11. Discussion and Conclusions

Because the most common use of package diagrams is to organise use case
diagrams and class diagrams, although not limited to these, and HTML is an

excellent tool for presenting data under the designed format, it is not necessary to

use the package diagram when modelling HTML legacy systems.

Consequently, four UML diagrams, which are the class, composite structure,

component and deployment diagrams, are used to model HTML legacy systems.

" How many UML diagrams are suitable for modelling SQL legacy system? What

are they? Why?

Three UML diagrams, which are the class, composite structure, and activity
diagrams, are used to model SQL legacy systems.

Because the class diagram is the most fundamental of the UML diagrams in

modelling the structure of legacy systems, it is used to model legacy SQL systems,
but the object diagram is not used.

The composite structure diagram can be used to model the complications of a class
in detail. SQL is a full-featured relational database management system that offers

a variety of administrative tools to ease the burdens of database development,

maintenance and administration. The language offers a flexible interface for

databases of all shapes and sizes. Because every database has its own specific

structure, the composite structure diagram should be used in modelling the internal

structure of classes of SQL legacy systems.

The UML activity diagram describes a flowchart showing the flow of control from

activity to activity at a high level. SQL systems involve the flow of control within
databases. So the activity diagram is used in modelling SQL legacy systems.

The UML collaboration diagram is used to model interactions between objects, and

objects interact by invoking messages on each other. The class is the abstraction of

the common characteristics of the object group. Most of the important

characteristics of the object are reflected in the corresponding class. Because the

composite structure diagram has been used to model the internal structure of the

classes in an SQL legacy system, it is not necessary to use the collaboration
diagram as well.

244

Chapter 11. Discussion and Conclusions

The component diagram is at a high level. After the class diagram has been used in

modelling a COBOL legacy system at a high level, the component diagram is

pleonastic and redundant in modelling SQL code. So the component diagram is not

used.

The package diagram is at too high a level for modelling SQL legacy systems. As

the class diagram has been used, it is not necessary to use the package diagram as

well.

The UML deployment diagram has to do with the run-time configuration of
hardware nodes and the software components that run on those nodes. It is too
high-level for analysing SQL legacy systems from the static and structural points

of view. Therefore, the deployment diagram is not used for modelling SQL legacy

systems.

Sequence diagrams present, at a high level, interactions between objects when

achieving a result. A sequence diagram describes how groups of objects

collaborate in presenting certain system behaviours. Because the main focus and

objects of SQL systems are databases, which are created and deleted, there are few

messages passing between those databases, as there would be with the COBOL,

BASIC and FORTRAN languages. The sequence diagram, describing objects and

messages between them, is therefore not used.

The use case diagram shows, at a high level, the relationships amongst actors and

use cases within a system, in terms of the UML specification. It is a set of use

cases and actors and their relationships. A use case is a requirement that the users

of the system want the system to do. Because the modelling of an SQL legacy

system focuses on the modelling of the databases, and it does not need to
determine the requirements of the users, the use case diagram is not used in

modelling SQL legacy systems.

The interaction overview diagram shows the control flow within a system at a low

level. SQL systems are concerned with control flow within the databases. However,

SQL systems mainly focus on databases, their main objects are databases, and they

mainly create or delete databases, which is unlike the handling of objects in

COBOL-like or BASIC-like languages. The control flow in SQL systems is

245

Chapter 11. Discussion and Conclusions

modelled by the activity diagram, and it is not necessary to use the interaction

overview diagram to model SQL legacy systems.

A state machine diagram shows the sequence of states that an object goes through
during its life cycle. For the same reason as above, it is not used in modelling SQL

legacy systems.

The timing diagram explores the behaviours of one or more objects throughout a

given period of time. It depicts the change of the state or condition of a classifier
instance or role over time. Because the timing diagram is suited for the description

of embedded systems, it is not used in modelling SQL legacy systems.

Consequently, only three UML diagrams, which are the class, composite structure

and activity diagrams, are used to model SQL legacy systems.

" Is it necessary for all legacy systems to be sliced? Why?

According to Weiser's introduction, slices are computed by computing consecutive

sets of transitively relevant statements based on their data flow and control flow

dependencies. Because COBOL and SQL legacy systems involve data flow and

control flow dependencies, they are suitable for the use of program slicing

techniques in modelling them.

However, the main characteristics of HTML legacy systems are the presentation of

web and data formats. They offer common platforms for different data. They have

few variables. Consequently, program slicing techniques are not suitable for

analysing HTML legacy systems.

" Is it helpful to use models in software evolution?

Models enable IT to be more efficient in reacting to business users' requests for

new systems or changes to existing ones, and make it more feasible to build an

application once and use it many times, thus enabling faster reactions to business

changes. They reduce the need to access the basic components of applications and

promote the sharing, by building frameworks, of various pieces of functionality

across applications. They can also help to break down the applications supporting

various products into pieces that can be saved or discarded as duplicates, in order
to integrate the users' products with existing products. The use of models

246

Chapter 11. Discussion and Conclusions

overcomes the disadvantages inherent in traditional studies of software evolution.

" Is it right to build development/environment-specific models of COBOL, HTML,

and SQL legacy systems?

The development/environment-specific models of COBOL legacy systems

correspond to the procedure relationships in COBOL legacy systems. The

procedure relationship describes the calling or being-called relationship between

the two procedures in a COBOL legacy system, and has four kinds: one to one, one
to many, many to one, and many to many. Its model is based on the characteristics

and operations of COBOL, and is a procedure-based model which is a graph that

describes the calling and being-called relationships of those procedures in COBOL

legacy systems. It has four kinds: linear, branch, joint, and synthetic

procedure-based models.

The development/environment-specific models of HTML legacy systems

correspond to the web relationships in HTML legacy systems. A web relationship
depicts the linking or being-linked relationship between two web pages in an
HTML legacy system. It has two kinds: ordinal and loop. Its model is a graph that

describes the importing or imported relationships of those webs in an HTML

legacy system. It has three kinds: sequential, cyclical, and compositive link-based

models.

The development/environment-specific models of SQL legacy systems correspond

to the database relationships in SQL legacy systems. The relationships between

databases in SQL legacy systems are mainly of two types: generation and

association. A models is based on the characteristics and operations of SQL, and is

a database-based model which is a graph that describes the database relationships
in a COBOL legacy system. Database-based models are of three types: association,

generation and composition.

" Is the realisation of those UML diagrams obtained from COBOL legacy systems

appropriate?

The experiment on an COBOL legacy code was performed in Section 10.3 and was

successfully based on Chapter 4 and 7. Therefore, the realisation of those UML

diagrams from COBOL legacy systems is appropriate. The definitions and

247

Chapter 11. Discussion and Conclusions

algorithms are correct. Those algorithms result in UML diagrams from legacy

COBOL code.

" Is the realisation of those UML diagrams from HTML legacy systems appropriate?

After the experiment on an HTML legacy code was successfully performed in

Section 10.4, based on Chapter 5 and 8, the answer to the question is positive. The

definitions and algorithms are correct and the realisation of those UML diagrams is

appropriate.

" Is the realisation of those UML diagrams from SQL legacy system appropriate?

As mentioned in Section 10.5, the experiment on an SQL legacy code was

successfully based on Chapter 6 and 9. Therefore the answer to the question is

positive.

11.5 Conclusion

A model is a description designed to show the structure or workings of a system. A

model enables IT to be more efficient in reacting to business users' requests for new

systems or changes to existing ones. A model makes it feasible to build an application

once and use it many times.

A model creates an IT infrastructure that can quickly react to business changes, rather

than IT being a constraint on the business. A model gives the users immediate answers

to questions as they arise. A model makes IT more flexible and quicker to react to the

changes affecting a business.

A model reduces applications to their basic components, so that parts of them can be

reused or dropped by various parts of the company as needed. A model shares various

pieces of functionality across applications and builds a framework. It is attractive to

both IT professionals and business managers. A model is handy when engineers are

trying to slice and dice functionality into atomic pieces of business functions.

A model has the ability to help break down the applications supporting various products
into pieces that can be saved or discarded as duplicates in order to integrate the users'

new products with their existing products, so that there will be no overlap.

248

In

Chapter 11. Discussion and Conclusions

The proposed approach is based on development/environment-specific models. They are
different in different legacy systems. The proposed development/environment-specific

model of COBOL legacy systems is based on the characteristics and operations of
COBOL, and is a procedure-based model; the proposed
development/environment-specific model of HTML legacy systems is a link-based

model; and the proposed development/environment-specific model of SQL legacy

systems is based on the characteristics and operations of SQL, and is a database-based

model.

The proposed approach addresses the shortcomings of traditional studies. It presents the

suitability of program slicing techniques to different legacy systems, and uses a

selection of UML diagrams rather than all of them.

11.6 Future Work

11.6.1 Limitations

The proposed approach in this thesis has some limitations in the research area. In order

to address those limitations, the directions of possible future work are outlined below.

The limitations of the approach proposed in this thesis include the following aspects:

(1) Domain knowledge is an important issue in software engineering, but the approach

proposed in this thesis does not focus on domain knowledge.

(2) Besides the program slicing techniques outlined by Weiser, other slicing techniques

are not considered or used in the proposed approach.

(3) An area for future research involves the extension of the approach described in this

thesis into other fields, that is, there is a need to find out whether or not the approach

presented in this thesis can be used to meet the modelling of legacy systems from other
fields besides the software evolution of domain-specific legacy systems. In this context,

real-time legacy systems in particular should be considered.

(4) The purpose of software evolution is to reuse legacy systems. The proposed

approach does not demonstrate reuse.

249

Chapter 11. Discussion and Conclusions

11.6.2 Directions for Future Work

In order to address the limitations mentioned above, further research should be focused

on the following aspects:

(1) Although software evolution of domain-specific legacy systems is related to domain

knowledge, the proposed approach does not include all the domain knowledge of
domain-specific legacy systems. Further research should discuss software evolution of
domain knowledge of domain-specific legacy systems.

(2) Other slicing techniques, including FERMAT used in Wide Spectrum Language

(WSL), are useful. Further research should present other slicing techniques, compare the

slicing results, and judge their suitability for different legacy systems.

(3) Real-time systems are diversified and complicated, and different branches have

distinct characteristics. Further research should therefore include real-time legacy

systems.

(4) The next area for further research will be the forward engineering of
domain-specific legacy systems from UML into software, in order to improve the

development of the software application.

250

References

References

[1] J. R. Abrial, S. A. Schuman, and B. Meyer, Specification Language Z

Massachusetts Computer Associates Inc., Boston, USA, 1979.

[2] H. Agrawal, "On Slicing Programs with Jump Statements", In Proceedings of

The ACM SIGPLAN'94 Conference on Programming Language Design and

Implementation, pp 302-312, USA, 1994.

[3] G. Alkhatib, "The Maintenance Problem of Application Software: An Empirical

Analysis", Journal of Software Maintenance: Research and Practice, 4(1):

83-104,1992.

[4] S. W. Ambler, The Elements of UML 2.0 Style, Cambridge University Press,

ISBN: 0-521-61667-6,2005.

[5] F. D. Anger, R. V. Rodriguez and M. Yound, "Combining Static and

Dynamic Analysis of Concurrent Programs", In Proceedings of the International

Conference on Software Maintenance, pp98-99, IEEE Computer Society Press,

1995.

[6] P. Antonini, P. Benedusi, G. Cantone and A. Cimitile, "Maintenance and
Reverse Engineering: Low-Level Design Documents Production and
Improvement", In Proceedings of the Conference on Software Maintenance, pp.
91-100, IEEE Computer Society Press, 1987.

[7] R. Arnold, Software Re-Engineering, IEEE Computer Society Press, ISBN

0-8186-3271-2,1992.

[8] L. J. Arthur, Software Evolution: The Software Maintenance Challenge. John

Wiley and Sons, New York, 1988.

[9] P. Baumann, "Beauty and the Beast or A Formal Semantic Description of the

Control Constructs of COBOL and its Implementation", IFI Technical Report

93.39, IFIL, 1993.

[10] P. Baumann, J. Fassler, M. Kiser, Z. Ozturk and L. Richter, "Semantics-Based

Reverse Engineering", Technical Report 94.08, Department of Computer

Science, University of Zurich, Switzerland, 1994.

251

References

[11] M. Ben-Menachem and G. S. Marliss, Software Quality Production Practical,

Consistent Software, International Thomson Computer Press, 1997.

[12] K. H. Bennett, T. Bull and H. Yang, "A Transformation System for

Maintenance-Turning Theory into Practice", In IEEE Conference on Software

Maintenance, Florida, USA, 1992.

[13] K. H. Bennett, "An Overview of Maintenance and Reverse Engineering", In The

REDO Compendium, John Wiley Sons, Inc., Chichester, 1993.

[14] K. H. Bennett, "Legacy System: Coping with Success", IEEE Software 12 (1):

pp. 19-23,1995.

[15] S. Bennett, S. McRobb and R. Farmer, Object-Oriented Systems Analysis and
Design using UML, The McGraw-Hill Companies, 1999.

[16] J. F. Bergeretti and E. B. Carre, "Information-flow and data-flow analysis of

while-programs", ACM Transactions on Programming Languages and Systems

Vol. 7, Issue 1 (1985), pp. 37-61,1985.

[17] V. Berzins, Software Merging and Slicing, IEEE Computer Society Press, ISBN

0-8186-6792-3,1995.

[18] J. C. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R. Moore and B. Ritchie, Proof in

VDM. " a Practitioner's Guide. ISBN 3-540-19813-X, Springer, 1994.

[19] D. Bjorner and C. B. Jones, The Vienna Development Method: The

Meta-Language, Springer, ISBN 0-387-08766-4,1978.

[20] G. Booch, Object-Oriented Analysis and Design with Applications, 2 °d edition,
Benjamin Cumming, 1994

[21] G. Booch, J. Rumbaugh and I. Jacobson, The Unified Modelling Language User

Guide, Reading, MA: Addison-Wesley-Longman, Inc., 1999.

[22] R. Bowdidge and W. Griswold, "Supporting the Restructuring of Data

Abstractions through Manipulation of a Program Visualisation", ACM

Transactions of Software Engineering and Methodology 7 (2), pp. 109-157,

April 1998.

[23] J. Brand and E. Visser, "Generation of Formatters for Context-Free Languages",

ACM Transactions on Software Engineering and Methodology, 5, pp. 1-41,

1996.

252

References

[24] J. Brand, P. Klint and C. Verhoef, "Reengineering Needs Generic Programming

Language Technology", ACMSIGPLAN Notices, 32(2), pp. 54-61,1997.

[25] P. T. Breuer and K.. Lano, "Creating Specification from Code:

Reverse-Engineering Techniques". Journal of Software Maintenance: Research

and Practice, John Wiley and Sons Limited, 1991.

[26] M. Brodie and M. Stonebraker, Migrating Legacy System, Morgan Kaufmann

Publishers, 1995.

[27] A. J. Brown, "Specifications and Reverse Engineering", Journal of Software

Maintenance: Research and Practice, 5(3), pp. 147-153,1993.

[28] R. J. A. Buhr, Use Case Maps for Object-Oriented Systems, Prentice Hall, 1996.

[29] G. Canfora, A. Cimitile and U. De Carlini, "A Logic Based Approach to

Reverse Engineering Tools Production", Proceedings of the International

Conference on Software Maintenance, IEEE Computer Society Press, pp. 83-91,

1991.

[30] A. Cau, and H. Zedan, "Refining Internal Temporal Logic Specifications", In

The 4th AMAST Workshop on Real-Time Systems, Concurrent, and Distributed

Software (ARTS'97), Spain, 1997.

[31] B. H. Cheng and G. C. Gannod, "Abstraction of Formal Specifications from

Program Code", In Proceedings of the 3'd International Conference on Tools for

Artificial Intelligence, pp. 125-128,1991.

[32] E. J. Chikofsky and J. H. CrossIl, "Reverse Engineering and Design Recovery:

A Taxonomy", IEEE Software, Vol. 7, No. 1, pp. 13-17,1990.

[33] J. Cho and H. Garcia-Molina, "The Evolution of the Web and Implications for

An Incremental Crawler", In Proceedings of the 26`" International Conference

on Very Large Databases, 2000.

[34] J. D. Choi, B. Miller and R. Netzer, "Techniques for Debugging Parallel

Programs with Flowback Analysis", ACM Transactions on Programming

Languages and Systems, Vol. 13, Issue 4, pp. 491-530,1991.

[35] W. C. Chu, and H. Yang, "A Formal Method for Software Maintenance", In

IEEE International Conference on Software Maintenance (ICSM'96), Canada,

1996.

253

References

[36] A. Cimitile and U. D. Carlini, "Reverse Engineering: Algorithms for Program

Graph Production", Software Practice and Experience, 21(5): pp. 519-537,1991.

[37] E. M. Clarke and J. M. Wing, "Formal Methods: State of the Art and Future

Directories", ACM Computing Surveys, Vol. 28(4), pp. 626-643,1996.

[38] D. Coleman, Object-Oriented Development: The Fusion Method, Prentice Hall,

1994.

[39] C. Collberg, S. Kobourov, J. Nagra, J. Pitts and K. Wampler, "A System for

Graph-Based Visualisation of The Evolution of Software", ACM Symposium on

Software Visualisation, pp. 77-86, ACM Press, 2003.

[40] J. Conallen, Building Web Applications with UML, Addison-Wesley, 2003.

[41] M. Cotterell and B. Hughes, Software Project Management, International

Thomson Computer Press, 1995.

[42] M. Coughlan, "Introduction to COBOL",

http: //www. csis. ul. ie/COBOL/Course/COBOLIntro. htm, 2002.

[43] K. Czarnecki and U. W. Eisenecker, Generative Programming, Addison Wesley,

2000.

[44] J. Davies and J. Woodcock, Using Z, Prentice Hall, ISBN 0-13-948472-8,1996.

[45] A. Deursen, P. Klint and J. Visser, "Domain-Specific Languages: An Annotated

Biblography", A CM SIGPLAN Notices, 35(6): pp. 26-36,2000.

[46] A. Diller and R. Docherty, "Z and Abstract Machine Notation: A Comparison",

Journal of Z Users Conference 1994,1994.

[47] M. Dorfman and R. Thayer, Software Engineering, IEEE Computer Society

Press, Los Alamitos, CA, 1997.

[48] D. Doyle, H. Geers, B. Graaf and A. van Deursen, "Migrating A

Domain-specific Modelling Language to MDA Technology", In J. M. Favre, D.

Gasevic, R. Lammel and A. Winter, editors, Proceedings of the 3rd

International Workshop on Metamodels, Schemas, Grammars, and Ontologies

for Reverse Engineering (ateM 2006), pp. 47-54, Johannes

Gutenberg-Universitat Mainz, 2006.

[49] D. F. D'Souza and A. C. Wills, Objects, Components, and Frameworks with
UML, Addison-Wesley, 1999.

254

References

[50] E. Duesterwald, R. Gupta and M. Soffa, "Rigorous Data Flow Testing through

Output Influences", In Proceedings of the Second Irvine Software Symposium

ISS'92 (California, 1992), pp. 131-145,1992.

[51] G. Engels, R. Hucking, S. Sauer and A. Wagner, "UML Collaboration Diagrams

and Their Transformation to Java", In Proceedings of The Second IEEE

International Conference on The Unified Modelling Language (UML99), pp.
473-488,1999.

[52] D. Fetterly, M. Manasse, M. Najork and J. Wiener, "A Large Scale Study of The

Evolution of Web Pages", In Proceedings of the 12th International World Wide

Web Conference, Hungary, 2003.

[53] M. Fischer, J. Oberleitner, H. Gall and T. Gschwind, "System Evolution

Tracking through Execution Trace Analysis", International Workshop on
Program Comprehension, pp. 23 7-246,2005.

[54] A. S. Fisher, CASE Using Software Development Tools, Second Edition, John

Wiley & Sons, Inc., 1991.

[55] J. S. Fitzgerald and P. S. Larsen, Modelling Systems: Practical Tools and
Techniques in Software Engineering, Cambridge University Press, ISBN

0-521-62348-0,1998.

[56] J. S. Fitzgerald, P. S. Larsen, P. Mukherjee, N. Plat and M. Verhoef, Validated

Designs for Object-oriented Systems, Springer, ISBN 1-85233-881-4,2005.

[57] M. Fowler, UML Distilled, Second Edition, Addison-Wesley, 2000.

[58] B. Graaf and A. v. Deursen, "Model-Driven Consistency Checking of
Behavioural Specifications", In Proceedings of Fourth International Workshop

on Model-based Methodologies for Pervasive and Embedded Software

(MOMPES 2007), IEEE Computer Society, 2007.

[59] B. Graaf, S. Weber and A. van Deursen, "Model-Driven Migration of
Supervisory Machine Control Architectures", Journal of Systems and Software,

2007.

[60] I. Graham, The OPEN Process Specification, Addison-Wesley, 1997.

[61] I. Graham, Requiremenst Engineering and Rapid Development, Addison-Wesley,

1998.

255

References

[62] I. Graham, Object-Oriented Methods Principles & Practice, Third Edition,

Addison-Wesley, 2001.

[63] J. Greenfield, K. Short, S. Cook and S. Kent, Software Factories: Assembling

Applications with Patterns, Models, Frameworks, and Tools, Wiley, 2004.

[64] W. Griswold, M. Chen, R. Bowdidge and J. Morgenthaler, "Tool Support for

Planning the Restructuring of Data Abstractions in Large Systems", Proceedings

of the ACM SIGSOFT'96 Symposium on the Foundations of Software

Engineering (FSE-4), San Francisco, 1996.

[65] P. A. V. Hall, Software Reuse And Reverse Engineering In Practice, Chapman

& Hall, 1992.

[66] S. Hallsteinsen and M. Paci, Experiences in Software Evolution and Reuse:

Twelve Real World Projects, Springer, 1997.

[67] T. Harmer, P. McParland and J. Boyle, "Transformations to Restructuring and

Reengineering COBOL Programs", Journal of Automated Software Engineering,

5, pp. 321-345,1998. [68] IOSoftware, http: //www. io-software. com,

Interactive Objects Software GmbH.

[68] H. Huang, W-T. Tasi, S. Bhattacharya, X. Chen and Y. Wang, "Business Rule

Extraction Techniques for COBOL Programs", Journal of Software

Maintenance, 10(1): pp. 3-35,1998.

[69] R. Huffy and M. Spence, Mastering COBOL Programming, Macmillan Press Ltd,

1997.

[70] IEEE, IEEE Std. 1219: Standard for Software Maintenance, Los Alamitos CA.,

USA. IEEE Computer Society Press, 1993.

[71] IEEE, IEEE Standard Collection: Software Engineering, IEEE Inc., New York,

1997.

[72] ISO, 1S012207, International Standards Organisation Information Technology

Software Lifecycle Processes, Geneva, Switzerland, 1995.

[731 ISO, ISO/IEC 19501, International Standards Organisation, Information

Technology, Geneva, Switzerland, 2005.

[74] I. Jacobson, M. Christerson, P. Jonsson and G. Qvergaard, Object-Oriented

Software Engineering, A Use Case Driven Approach, Addison-Wesley, 1992.

256

References

[75] I. Jacobson, G. Booch and J. Rumbaugh, The Unified Software Development

Process, Addison Wesley Longman, 1999.

[76] J. Jiang, X. Zhou and D. J. Robson, "Program Slicing for C-The Problem in

Implementation", In Proceedings of The Conference on Software Maintenance,

pp. 182-190,1991.

[77] C. B. Jones, Systematic Software Development using VDM, Prentice Hall, ISBN

0-13-880733-7,1990.

[78] N. Jones, C. K. Gomard and P. Sestoft, Partial Evaluation and Automatic

Program Generation, Prentice Hall, 1993.

[79] M. Kamkar, Interprocedural Dynamic Slicing with Applications to Debugging

and Testing, PhD thesis, Linkoping University, 1993. [80] G. Kiczales, J.

Lamping, A. Mendhekar, et al., "Aspect-Oriented Programming", European

Conference on Object-Oriented Programming (ECOOP'97), Finland, Jun. 1997,

pp. 220-242.

[80] A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven

Architecture Practice and Promise, Addison-Wesley, 2003.

[81] C. Koom, "Connecting Semantic Tools to A Syntax-Directed User Interface",

Computing Science in the Netherlands (CSN93), H. A. Wijshoff editor, SION,

pp. 217-228,1993.

[82] B. Korel and J. Laski, "Dynamic program slicing", Information Processing

Letters, Vol. 29,3 (1988), pp. 155-163,1988.

[83] C. Larman, Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design, Prentice-Hall, Inc., 1998.

[84] D. Latella, I. Majzik and Massink M., "Towards A Formal Operational

Semantics of UML Statechart Diagrams", In The Proceedings of The Third

International Conference on Formal Method for Open Object-Oriented

Distributed Systems, pp 334-347, Kluwer Academic Publishers, ISBN

0-7923-8429-6,1999.

[85] M. M. Lehman and L. A. Belady, Program Evolution-Process of Software

Change, Acad. Press, London, 1985.

[86] Y. Li and H. Yang, "Code Understanding through Context Oriented Uncertainty

257

References

Reasoning for Information System Reengineering", 2nd International

Conference on Enterprise Information Systems (ICEISOO), pp. 163-170, Stafford,

England, 2000.

[87] Y. Li, Automating Domain Knowledge Recovery from Legacy Software Code,

PhD thesis, De Montfort University, 2002.

[88] T. Li, An Approach to Modelling and Describing Software Evolution Processes,

PhD thesis, 2007.

[89] J. Lilius and I. Porres, "The Semantics of UML State Machine", Technical

Report 273, Turku Centre for Computer Science, 1999.

[90] K. Liu, A. Alderson, B. Sharp, H. Shah and A. Dix, "Using Semiotic Techniques

to Derive Requirements from Legacy Systems",

http: //www. dur. ac. uk/CSM/SABA/leaacy-wksi)l/staffs. html, School of
Computing, Staffordshire University, 1998.

[91] X. Liu, Abstraction: A Notion for Reverse Engineering, PhD thesis, De Montfort

University, 1999.

[92] S. Lujan-Mora, J. Trujillo and I. Song, "Multidimensional Modelling with UML

Package Diagrams", In the Proceedings of 21" International Conference on
Conceptual Modelling, pp. 199-213, Finland, 2002.

[93] S. McRobb, R. Miliham, J. Pu and H. Yang, "Visualising COBOL Legacy

Systems with UML: An Experimental Report", Book chapter in Advances in

UML and XML based Software Evolution, IDEA Group Publishing, 2005.

[94] M. Mernik, J. Heering and A. Sloane, "When And How to Develop

Domain-Specific Languages", ACM Computing Surveys, 37(4): pp. 316-344,

2005.

[95] J. Miller and J. Mukerji, (editors), MDA Guide Version 1.0.1, OMG, 2003.

[96] R. Millham, J. Pu and H. Yang, "TAGDUR: A Tool for Producing UML

Sequence, Deployment, and Component Diagrams Through Reengineering of
Legacy Systems", In the Proceedings of the 8th LASTED International

Conference on Software Engineering and Applications (SEA), Innsbruck,

Austria, 2004.

[97] P. Mosses, (ed.), "Denotational Semantics", Handbook of Theoretical Computer

258

References

Science (Vol. B): Formal Models and Semantics, MIT Press, Cambridge, MA,

USA, pp. 575-631,1991.

[98] H. A. Müller, Rigi User's Manual, Version 5.4.4, Department of Computer

Science, University of Victoria, 1998.

[99] OMG, Unified Modelling Language, http: //www. uml. org, 2007.

[100] K. Ottenstein and L. Ottenstein, "The Program Dependence Graph in A

Software Development Environment", In Proceedings of the ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software

Development Environments (1984), pp. 177-184, SIGPLAN Notices 19(5),

1984. [101] M. W. Maier, D. Emery and R. Hilliard, "Software Achitecture:

Introducing IEEE Standard 1471", IEEE Computer, vol. 34(4), 2001, pp.

107-109.

[101] G. Overgaard, "A Formal Approach to Collaborations in The Unified Modelling

Language", In Proceedings of The Second IEEE International Conference on

The Unified Modelling Language (UML99), pp. 99-115,1999.

[102] M. Page-Jones, Fundamentals of Object-Oriented Design in UML, Dorset House

Publishing, 2000.

[103] J. Pu, S. Li and H. Yang, "Modelling Legacy Code with UML Class Diagram",

In the Proceedings of the 9th Chinese Automation and Computing Society

Conference in the UK, Luton, England, 2003.

[104] J. Pu, R. Millham and H. Yang, "Acquiring Domain Knowledge in Reverse

Engineering Legacy Code into UML", In the Proceedings of the 7th LASTED

International Conference on Software Engineering and Applications (SEA),

Marina del Rey, USA, 2003.

[105] J. Pu, Z. Zhang, Y. Xu and H. Yang, "Reusing Legacy COBOL Code with UML

Collaboration Diagrams via Wide Spectrum Language", In the Proceedings of

the 2005 IEEE International Conference on Information Reuse and Integration

(IRI'05), IEEE Systems, pp. 78-83,2005.

[106] J. Pu, Z. Zhang, R. Millham, Y. Xu and H. Yang, "Modelling Web-Based

System with UML Sequence Diagrams", In the Proceedings of LIDIS Virtual

Multi Conference on Computer Science and Information Systems (MCCSIS'05),

International Association for Development of the Information Society, 2005.

259

References

[107] J. Pu, Z. Zhang, J. Kang, Y. Xu and H. Yang, "Using Aspect Orientation in

Understanding Legacy COBOL Code", In the Proceedings of IEEE

International Computer Software and Applications Conference

(COMPSAC2007), pp 385-390,2007.

[108] B. Qiao, Evolution of Web-Based System, PhD thesis, De Montfort University,

2005.

[109] J. Ransom, I. Sommerville and I. Warren, "A Method for Assessing Legacy

System for Evolution",

http: //www. dur. ac. uk/CSMISABA/legacy-wkspl/lancaster. html, Computing

Dept., Lancaster University, 1998.

[110] M. Rieger and S. Ducasse, "Visual Detection of Duplicated Code",

Object-Oriented Technology (ECOOP'98 Workshop Reader), Demeyer and
Bosch (Ed.), LNCS 1543, Springer-Verlag, pp. 75-76,1998.

[111] RISE, "Software Evolution", http: //www. dur. ac. uk/-dcsOwwwl/csm/, Research

Institute in Software Evolution, University of Durham, England, 1999.

[112] B. Ritchie, J. Bicarregui and H. Haughton, "Experiences in Using the Abstract

Machine Notation in a GKS Case Study", In the Proceedings of the Second

International Symposium of Formal Methods Europe on Industrial Benefit of
Formal Methods, Vol. 873, pp. 93-104, Springer, 1994.

[113] D. Roberts, J. Brant and R. Johnson, "A refactoring tool for Smalltalk", Theory

and Practice of Object Systems, 3(4), pp. 253-263,1997.

[114] D. Roberts, Practical Analysis for Refactoring, PhD thesis, University of Illinois

at Urbana-Champaigh, 1999.

[115] D. Rosenberg, Use Case Driven Object Modelling with UML: A Practical

Approach, Addison-Wesley, 1999.

[116] J. Rumbaugh, M. Blaha, W. Premerlani and W. Lorensen, Object-Oriented

Modelling and Design, Prentice Hall, 1991.

[117] J. Rumbaugh, "Series on 2nd Generation OMT", Journal of Object-Oriented

Programming, 7 and 8,1994.

[118] J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modelling Language

Reference Manual, Addison-Wesley-Longman, Inc., 1999.

260

References

[119] A. Sellink, H. Sneed and C. Verhoof, "Restructuring of COBOL/CICS Legacy

Systems", Science of Computer Programming, 45(2-3), pp. 193-243,2002.

[120] M. D. Storey, F. D. Fracchia and H. A. Muller, "Cognitive Design Elements to

Support the Construction of a Mental Model During Software Visualisation", 5th

Workshop on Program Comprehension (WPC'97), pp. 17-28, Dearborn, USA,

1997.

[121] A. A. Takang and P. A. Grubb, Software Maintenance: Concept and Practice,

International Thomson Computer Press, 1996.

[122] J. B. Thompson, Structured Programming with COBOL and JSP, John Barrie

Thompsom and Chartwell-Bratt Ltd, 1989.

[123] F. Tip, "A Survey of Program Slicing Techniques", Report CS-R9438, Centrum

voor Wiskunde en Information (CWI), 1994.

[124] F. Tip, Generation of Program Analysis Tools, PhD thesis, University of
Amsterdam, 1995.

[125] C. Townsend, "Future of COBOL", LegacyJ Corporation, A LegacyJ

Whitepaper, http: //www. leizacyi. com/cobol/FutureOfCobol. l)d f, 1998.

[126] G. Venkatesh, "The Semantic Approach to Program Slicing", In Proceedings of

the ACM SIGPLAN'91 Conference on Programming Language Design and
Implementation (1991), pp. 107-119, SIGPLAN Notices 26(6), 1991.

[127] M. Ward, Proving Program Refinements and Transformations, PhD thesis,

Oxford University, 1989.

[128] M. Ward, F. Callis and M. Munro, "The Maintainer's Assistant", In Proceedings

of International Conference on Software Maintenance, IEEE Computer Society

Press, Los Alamitos, CA, 1989.

[129] M. Ward, "Program Analysis by Formal Transformation", The Computer

Journal, 39(7), 1996.

[130] I. Warren, The Renaissance of Legacy Systems: Method Support for

Software-System Evolution, Springer, 1999.

[131] M. Weiser, Program Slices: Formal, Pshchological, and Practical

Investigations of An Automatic Program Abstraction Method, PhD thesis,

University of Michigan, 1979.

261

References

[132] M. Weiser, "Program Slicing", IEEE Transactions on Software Engineering, 10,

4 (1994), pp. 352-357,1984.

[133] R. Wirfs-Brock, Designing Object-Oriented Software, Prentice Hall, 1990.

[134] WSL, http: //www. smltd. com/wsl. htm, 2007.

[135] H. Yang, "The Supporting Environment for A Reverse Engineering

System The Maintainer's Assistant", IEEE Conference on Software

Maintenance (ICSM91), Sorrento, Italy, 1991. [136] M. Riebisch, "Towards a

More Precise Definition of Feature Models", Modelling Variability for

Object-Oriented Product Lines ECOOP Workshop, pp. 64-76, Germany, Jul.

2003.

[136] H. Yang, "Software Maintenance in Europe and The Maintainer's Assistant",

Conference on Software Engineering, Hong Kong, 1994.

[137] H. Yang, W. Chu and Y. Sun, "Practical System of COBOL Program Reuse for

Reengineering", 8th International Workshop on Software Technology and

Engineering Practice (STEP'97), pp. 45-57, London, 1997.

[138] H. Yang, P. Luker and W. Chu, "Measuring Abstractness for Reverse

Engineering in A Re-engineering Tool", IEEE International Conference on
Software Maintenence - 1997, pp. 48-57, Bari, Italy, 1997.

[139] H. Yang, "Tackling the Abstraction Problem for Reverse Engineering in a

System Reengineering Approach", IEEE International Conference on Software

Maintenance - 1998, pp. 284-293, Washington D. C., 1998.

[140] H. Yang, X. Liu and H. Zedan, "Abstraction: A Key Notion for Reverse

Engineering in A System Reengineering Approach", Journal of Software

Maintenance: Research and Practice, 12(5), pp. 197-228,2000.

[141] H. Yang and M. Ward, Successful Evolution of Software Systems, Artech House,

2003.

[142] H. Yang, Advances in UML and XML-Based Software Evolution, Idea Group

Pub, 2005.

[143] J. Ziegler, "COBOL-Next Big Thing? " Contract Employee's Newsletter,

http: //www. pacepros. com/CENewsletter html/cenewsletter 03numberO6. html,

2003.

262

Appendix A: COBOL Legacy System

Appendix A:

COBOL Legacy System

One COBOL legacy system named Manager Application is presented and was modelled
with part UML diagrams. It is designed to create the new manager file for the

application that is performed once a week on Friday. It is executed on a Window client,
and communicates with a local Unix server and a remote Window server. This legacy

software is licensed by SALESPRO TECHNOLOGIES, INC.

identification division.
program-id, dmFileProc.
installation. SalesPro Technologies,
author. Shawn Kunoskr.
environment division.
Configuration section.
source-computer, IBM-PC.
object-computer. IBM-PC.

input-output section.
file-control.
copy "sendmgFile. il".
copy "necimngFde. nl".

data division.
file section
copy "sendmgFde. fd".
copy "reoervmgFile fd".

working-storage section.
copy "acucobol, def.
copy "acugm def.
copy "controls. def .
copy "crtvan der
copy "fonta. def .
copy "palette der.
copy "winvers der
copy "socket. def .

01 eeendmg-file-path.
03 filler

"c lop I000\managen\".
03 sending-file-name

01 receiving-file-path.
03 filler

'c: \Sp 1000\managen\".
03 receiving-file-name

01 ew1
01 and-close

01 task-l-v mble
01 task-l-act-visible
01 task-l-ico-visible
01 task-l-ico-act-v. sible
01 task-l-ico-etr-visible
01 task-l-ico-mcmp-visible
01 bit-task l-hendle
01 bit-task"ct-handle
01 bit-taskl-err-liandle
01 bit-taskl-incmp-bandle

01 task-2-visible
01 task-2-act-visible
01 task-2-tco-visible
01 task-2-ico-act-vIaible
01 task-2-ico-invuible
01 task-2-ico-incmp-visible
01 bit-tesk2-handle
01 bit-taek2-act-handle
01 but-tesk2-err-handle
01 bn-tesk2-mcmp-handle

01 task-3-visible
01 task-3-act-visible
01 task-3-ico-visible
01 task-3-icsact-visible
01 task-3-ico-ert-visible
01 task-3-ico-mcmp-visible
01 bit-tesk3-handle
01 bit-task3-act-handle
01 bit-task3-err-handle
01 bit-tatk3-mcmp-handle

Pic x(19) value

pc x(20) value spaces

Pic x(19) value

Pic x(20) value spaces

Pic 9 value 0.
Pic 9 value 0

Pic 9 value 0.
Pic 9 value 0.
Pic 9 value 0.

Pic 9 value 0
pie 9 value 0.
pie 9 value 0.

Pic 9(9) comp-4 value 0
Pic 9(9) comp-4 value 0.
pie 9(9) compß value 0.
pie 9(9) comp-4 value 0.

pc9 value 0.
Pic 9 value 0.
Pic 9 value 0.

Pic 9 value 0.
pie 9 value 0
Pic 9 value 0.

pie 9(9) comp-4 value 0
plc 9(9) comp-4 value 0
pie 9(9) comp-4 value 0.
pie 9(9) comp-4 value 0.

pie 9 value 0.
pie 9 value 0.
pie 9 value 0.

Pic 9 value 0.
Pic 9 value 0.
pie 9 value 0.

pie 9(9) comp-4 value 0.
pie 9(9) comp-4 value 0.
pie 9(9) comp-4 value 0.
pie 9(9) comp-4 value 0.

01 task-4visible pie 9 value 0.
01 task-act-visible Pic 9 value 0.
01 task-4-ico-visible Pic 9 value 0
01 task-4-ico-act-visible pie 9 value 0.
01 task-ico-err-visible pie 9 value 0.
01 task-4-ico-inemp-visible pie 9 value 0.
01 bit-task4-handle pie 9(9) comp-4 value 0.
01 bit-task4-act-handle pie 9(9) comp4 value 0.
01 bit-task4-errhandle pie 9(9) comp-4 value 0.
01 bit-task4-incmp-handle pie 9(9) comp- value 0

01 task-S-visible Pic 9 value 0.
01 task-5-act-visible pie 9 value 0.
01 task-5-ico-visible pie 9 value 0.
01 task-5-ico-act-visible pie 9 value 0.
01 task-5-ico-ernvisible pie 9 value 0.
01 lank-5-ico-mcmp-visible pie 9 value 0.
01 bit-tasld-handle Pic 9(9) comp- value 0.
01 bit-tasks-act-handle pie 9(9) comp-4 value 0.
01 bn-task5-err-handle pie 9(9) comp-4 value 0.
01 bit-task. 5-memp-handle pie 9(9) comp-4 value 0.

01 task-6-visible pie 9 value 0.
01 task-6-act-visible Pic 9 value 0.
01 task-6-ico-visible pie 9 value 0.
01 task-6-ico-act-visible Pic 9 value 0.
01 task-6-ico-ert-visible pie 9 value 0.
01 task-6-ico-incmp-visible pie 9 value 0
01 bit-task6-bandle pie 9(9) comp- value 0.
01 bit-task6-act-handle pie 9(9) comp-4 value 0.
01 bit-task6-err-handle pie 9(9) comp- value 0.
01 lid-task6- nemp-handle pie 9(9) comp- value 0.

01 tack-7-visible pie 9 value 0.
01 task-7-act-visible pie 9 value 0.
01 task-7-ico-visible pie 9 value 0.
01 task-7-tco-act-visible pie 9 value 0.
01 task-7-icooffvieible pie 9 value 0.
01 task-7-ico-incmp-visible pie 9 value 0.
01 bit-task7-handle pie 9(9) comp-4 value 0.
01 bit-task7-act-bandle pie 9(9) cop-4 value 0
01 bit-task7erc4andle pie 9(9) comp-4 value 0
01 bit-task7-incmp-handle pie 9(9) comp-4 value 0.

01 prog-bar-visible pie 9 value 0.
01 nan-l-label-visible pie 9 value 0.
01 han-2-Zabel-visible pie 9 value 0.
01 blank-label-visible pie 9 value 0.

01 task-complete-visible pie 9 value 0.
01 task-incomplete-visible pie 9 value 0.
01 ok-btn-statue pie 9 value 0.

01 batch-cmdNT2K pie x(40) value
'brad me Ic \Sp 1000\managenlCREATZ1P. bat".

01 onginal-path.
03 ongmal-dove-letter Pic x value apace.
03 ongmal-pathl pie x(29) value

". VSp l 000\managers\manager. np".

01 rename-path.
03 rename-drive-letter Pic x value space.
03 rename-pathl Pic x(30) value

"ASP 10001managerslmanager 9998".

01 target-path pie x(32) value
"/SaleaNpdates/9998/dummy tit"

01 unix-server-address Pic x(15) value spaces.
01 umx-serverport pie x(6) value spaces.
01 un x-sendcommand pw x(500) value apace.
01 um-receive-command pie x(500) value spaces.
01 unuc-send-cmd-length pie 9(3).
01 umx-receive-cmd-length pie 9(3).

263

Appendix A: COBOL Legacy System
01 umx-usemame Pic x(11) value Spaces. 03 pasv-portl-pos occurs 4 times Pic 9. Ol umx-password Pic x(20) value spaces. 01 rtl-cnt pasv-po Pic 99 value 0.
01 umx-0vectory, ppie x(7) value spaces.
01 unix-file-path pie x(50) value spaces. 01 pasv-port-num2 pie 9(4) value 0.
Ol umx-trams-type Pic xx value spaces. 01 r-pasv-port-num2 redefines pasv-port-num2.

03 pasv-pott-pos occurs 4 times Pic 9. 01 ftp-server-address Pic x(15) value spaces. 01 pasv-port2-cnt pie 99 value 0
01 ftp-serverport pie x(6) value spaces.
01 ftp-send-command pie x(500) value spaces 01 comma-cm Pic 9(3) value 0.
01 ftp-receive-command pie x(500) value spaces
01 ftp-send-emd-length pie 9(3). 01 decimal-number-value pie 9(6) value 0.
01 ftp-receive-cmd-length Pic 9(3).
01 ftp-usemame pie x(l 1) value spaces. 01 usremtze-files occurs 7 times pie x(20). 01 ftp-password Pic x(20) value spaces. 01 usr-cunzeont pie 99 value 0.
01 ftp-directory pie x(7) value spaces.
01 ftp-trammel-type pie xx value spaces 01 usr2-curtze2-files occurs 2 tunes pie x(20) 01 ftp-file-path pie x(50) value spaces. 01 usr2-curtze2-cnt pie 99 value 0.

01 byte-hold pie x value space. 01 copied-manager-files occurs 9 times pie x(20). 01 end-cmd-byte pie x value x"OA". 01 copied-manager-cot pie 99 value 0.
01 end-data-emd-byte pie x value x"SE".
01 num-bytes-read pie 9(3) value 0. 01 filecopy-eitor-text pie x(70) value spaces 01 max-emd-length pie 9(3) value 0,
01 file-total-byte-size pie 9(10) value 0. 01 division-value pie 9(9) value 0.

01 division-remainder pie 9(9) value 0.
Ol parse-receive-command pie x(160) value spaces. 01 bytes-remaining-sw pie 9 value 0.
01 r-parse-receive-command redefines parse-teeceive-command.

03 parsecommand-code pie x(3). 01 file-name Pic x(30) value spaces.
03 parse-remammg-cmd pie x(157).

01 transmit action pie x(12) value spaces
01 parse-paw-receive-command pie x(60) value spaces.
01 rparse-pasv-receive-eommand redefines 01 prog-barcnt pie 9(6) value 0.

parsepasv-receive command. 01 prag-bar-rem pie 9(4) value 0.
03 pasv-pos occurs 60 times Pic x.

01 pasvcm pie 99 value 0. 01 bar-col pie 99v99 value 0.

01 parse-data-roceive-command pie x(300) value spaces 01 tran-lab2-col pie 99v99 value 0.
01 r-parsedata-eecave-command redefines

parse-data-receive-command. 01 temp-bar-cot pie 9(6) value 0.
03 purse-data-pos occurs 300 times Pic x. 01 temp-bar-rem pie 9(4) value 0.

01 parse-data-cnt pie 9(3) value 0.
0 sum-times-read pie 9(7) value 0.

01 total-file-size plc 9(10). . 01 r-total-file-size redefines total-file-size. 01 exit-dm-program pie 9 value 0.
03 file-size-pos occurs 10 times pie 9.

01 file-size<m pie 99 value 0. 01 status-code pie 9 value 0.
01 temp-size-cnt Pic 99 value 0. 01 ace-dunk pia xx value spaces.

01 file-info. 77 small-font handle of font.
03 file-size pie x(8) comp-x. 77 TNR-ten-foot handle of font,
03 file-date Pic 9(8) comp-x. 77 TNR-twelve-font handle of font.
03 file-time pie 9(8) comp-x. 77 TNR-sixteen-font handle of font.

77 key-status is special-names crt status pie 9(4) value 0.
01 anal-file-I pie 9 value 0 77 ttp-connection-handle usage handle.
01 r-total-file-l redefines total-file-1. 77 ftp-data-connection-handle usage handle

03 tot-l-pos occurs I tunes pie 9. 77 unixconnection-handle usage handle
01 tot-Icat pie 9 value 0. 77 unitdata-connection-handle usage handle.

77 main-window handle of window
01 total-file-2 pie 99 value 0.
01 r-total-file-2 redefines total-file-2. 77 orange value x#428200.

03 tot-2-pos occurs 2 times pie 9.
Ol tot-2-ent Pic 9 value 0. Screen section

copy "dmfilese een see.
01 total-file-3 pie 9(3) value 0.
01 r-total-file-3 redefines total-file-3. procedure division.

03 tot-3-pos occurs 3 times pie 9. vutia tsation.
01 tot-3-cm pie 9 value 0. set environment "V VERSION" to 3.

set environment "FILE-IO-PROCESSES-MESSAGES" to 1.
01 total-file-4 pie 9(4) value 0. ad environment "QUIT-MODE" to 999.
01 r-total-file-4 redefines total-file. accept small-font from standard object "small-font".

03 tot-4-pos occurs 4 times Pic 9. move 14 to weal-color-id
01 tot-4-cm Pic 9 value 0 move 212 to wpal-red

move 208 to wpal-green
01 total-file-5 pie 9(5) value 0. move 200 to wpal-blue
01 r-total-filo-5 redefines total-file-S. call " wSpalette" using wpalette-set-color, wpaleetedata.

03 tot-5-pos occurs 5 times pit 9. move II to wpal-eolor-id.
01 tot-5-cot Pic 9 value 0. move 0 to wpal-red

move 0 to wpal-green.
01 total-file-6 pie 9(6) value 0. move 128 to wpal-blue.
01 r-total-file-6 redefines total-file-6. cell "wSpalette" using wpalette-set-color, wpalette-data. 03 tot-6-pos occurs 6 times pie 9. initialise wfont-data
01 tot-6<m pie 9 value 0. move "Times New Roman" to wfont-name.

move 10 to wfont-size.
01 total-file-7 pie 9(7) value 0 move I to wfom<har-set wfom-family.
01 r-total-file-7 redefines total-file-7. move 0 to wfone-bold-state.

03 tot-7-pos occurs 7 times pie 9. call 'wSfont" using wfont-get-font, TNRtwelve-tont,
01 tat-7-cm Pic 9 value 0. wfont-data,

initialise wfoot-data, 01 total-file-8 Pic 9(8) value 0 move "Tunes New Roman" to wfont-name
01 r-total-file-9 redefines total-file-S. move 12 to wfont-size.

03 tot-8-pos occurs 8 tunes pie 9. move I to wfom-ehar-set wfoet-family 01 tot-8-cst pie 9 value 0. move 0 to wfoot-bold-state.
call "wSfom" using wfontget-font, 7NR-twelve-font.

01 total-file-9 pie 9(9) value 0 wfont-data 01 r-total-file-9 redefines total-file-9. initialise wfont-data. 03 tot-9-pos occurs 9 tunes pie 9 move 'Times New Roman" to wfont-name.
01 tot-9-cnt pie 9 value 0. move 16 to wfontsize.
01 total-file-10 pie 9(10) value 0.

move I to wfom-char-set wfoetbold-state wfont-family
call "wSfont" using wfont-get-font, TNR-sixteen-font,

01 rtotal-file-10 redefines total-file-10. wfont-data 03 tot-l0-pos occurs 10 times pie 9 copy reamurce
01 tot-10-cut pie 99 value 0. "\Development\DM File ProcesslresourcelcurrentArrow. bmp".

01 file-b file-cut pie 9(10) value 0
copy resource
"lDevelopment\DM File Processkesource\ inishedCheckbmp".

01 temp-byte-cot pie 9(10) value 0. copy you
viDevelopment\DM File ProcesakesourcekrrorCheck. bmp". 01 pasv-ip-address pie x(15) value spaces. copy resource

Ol r-pasv-iii-address redefines pasv-ipaddress. "1Development\DM File Prowskesource\ineompleteCheckbmp".
03 patvap-pos occurs 15 tunes pie x. move "c" to original-drive-letter rename-drive-letter. 01 paav-, Ptm Pic 99 value 0 move 500 to max-cmd-length

perform inma ise-file-copy-tables, Ol pasv-pos-numl pie 9(4) value 0, display standard graphical window 01 r-pasv-port-numl redefines pasv-port-numl. screen line 252

264

Appendix A: COBOL Legacy System
sawn column 295 move 0 to taskcomplete-visible. Imes 35.5

move 0 to task-incomplete-visible.
sue 44.15 move 0 to ok-but-status. cell height 10 perform task-l-process
cell width 10 pe rform t ask-2-proce s s.
control font small-font pe rform task e roc -3-ps s. craft
link to thread

perform task-4-process
perform task-5-process,

no scroll perform task-process.
no wrap perform task-7-process
background-low

" perform all-tasks-complete-process title Distinct Manager File Process"
handle is main-window.
call 'w$bitmap' using wbnmap-load, "cumrntArrow. bmp',

giving brt-taskl-act-handle. task-l-process.
call "w$bmnap" using wbitmap-load, "fimshedCheck limp", display main-foam.

giving bit-taskl-handle. move '21' to umx-serverport
call "w$brtmap" using wbitmap-load, "errorCheck limp", move "200.0 0.11" to unixserver-address. giving bit-tasklerr-handle. move "userl" to uni-usemame.
call "wSbrtmap" wing wbitmap-load, "mcompleteCheck limp", move "passwordl" to writ-password

giving bit-task)-m mp-handle.
"

call 'cSsocket" wing agscreate-client, Unix-server-port,
call wSbnmap" wing wbrtmap-load, "currentArrow limp", unu-server-address giving uni-connection-handle. giving bit-task2-act-handle. if unuo-connecuon-handle -0
call'wSbrtmap" using wbnnup-load, "fimshedCheckbmp", move 0 to task-l-act-visible

giving bit-task2-handle. move 0 to task-l-ico-act-visible
call "wSbmnap" wing wbnmap-load, "errorCheck limp", move I to task-I-vmble

giving bit-task2-err-handle. move 1 to task-l-ico-err-visible
call 'w$bmunap" wing wbnmap-load, "mcompleteCheckbmp", move 1 to task-2-ico-memp-visible

giving bit-task2-mcmp-handle. move 1 to task-3-ico-memp-visible
call "wSbumap" using wbumap-load, "cunentArrow. bmp", move Ito task-4-ico-mcmp-visible

giving bit-task3-act-handle. move 1 to task-5-ico-incmp-visible
call "w$brtmap" using wbunmp-load, "finishedCheck bmp", move I to task-6-ico-incmp-visible

giving bit-task3-handle. move I to tank-7-ico-mcmp-visible
call'w$bnmap" using wbrtmap-load, "enorCheck limp", move I to risk-incomplete-visible

giving bit-task3-err-handle. move I to ok-bin-status
call "w$bitmap" using wbrtmap-load, "mcompleteCheck bmp", display message box

giving bit-task3-incmp-handle "Unable to connect to the local server, There may be ap call "w$bnmap" using wbrtmap-load, "cunantArrow. bmp", - "roblem with your Internet connection. Contact your su PP
giving bit-task4, act-handle. - "ort administrator. "

call "w$bumep" wing wbitmap-load, "fimshedCheck bmp", title "District Manager File Process"
giving bit-task4-handle. type mb-ok

call "w$brtmap" using wbrtmap-load, "errorCheck limp". icon mb-wining-icon
giving bit-task4-err-handle. go to all-tasks-complete-process

call'w$bnmap" wing wbnmap-load, "mcompleteCheckbmp", end-if.
giving bit-task4-mcmp-handle initialise unix-receive-command byte-hold.

call "wSbitmap" using wbumap"loud, "cursentAsrow. bmp", move I to unoe-receive-cmd-length
giving bit-taskS-act-handle. perform until byte-hold - end-cmd-byte or

call "w$bnmap" using wbumap-load, "finishedCheck bmp", umx-receivecmd-length > max-cmd-length
giving bit-tasks-handle. move Ito num-bytes-read

call "wSbnmap" using wbitmap-load, "errorCheckbmp'. all "c$socket" wing dx-connxtion"handle
bit-tasks-err-handle. , byte-hold, num-b

call "wSbltmap* wing wbrtmap"load, "incompleteCheckbmp", string byte-hold delimited
by au

into
giving bit-tanks-mcmp-handle. umx-receive-command with pointer

call "w$bnmap" using wbitmap-load, "cunemArrow bmp", unix-receive-cmd-length
giving bit-task6-act-handle end-perform.

call "w$bumap" using wbrtmap-load, "fimshedCheckbmp", move unurreceivecommand to parse-receivecommand.
giving bn-task6-handle. if pane-command-code - "220"

can "wSbrtmap" using wbrtmap-load, "errorCheck limp". initialise uni-receive-command byte-hold
giving bit-task6er-handle. move Ito umx-receive-cmd-length

call "wSbrtmap" wig wbitmap-load, "mcompleteCheck limp", perform until byte-hold - end-cmd-byte or
giving bit-task6-incmp-handle

" unix-receuve-cmd-length > max-cmd-length
can 'wSbrtmap" using wbnmap-load, cumentArrow bmp", move I tonum-bytes-read

giving bit task7-act-handle. call "cSsocket" wing ags-read,
call "wSbumap" using wbumap-load, "finishedCheck limp", unmtonnection-handle, behold sum-bytes-read

giving bit-task7-handle. string byte-hold delimited by size into
, an "w$bnnmp" wing wbnmap-load, "errorCheck. bmp", unix-receive-command with pointer

giving bit-task7err-handle. umx-receive-cmd-length
cell "w$bnmap" wing wbrtmap-load, "mcompleteCheckbmp", end-perform

giving bit"task7-incmp-handle. move unix-receive-command to parse-receive-command
move I to task-l-act-visible. else
move I to task-l-sco-act-visible. move 0 to task-l-act visible
move 0 to task-laco-err-visible. move 0 to task-l"ico-act-visible
move 0 to task-l-tco-mcmp-visible. move Ito task-1-visible
move 0 to task-2-ico-visible, move Ito task-l-ico-err visible
move 0 to task-2-tco-act-visible move Ito task-2-ico-incmp-visible
move 0 to task-2-act visible. move Ito task-3-ico-incmp-visible
move 0 to task-2-1co-err-visible move Ito task-4-ico-incmp-visible
move 0 to task-2-mco-uwmp-visible. move I to task-5-ico-mcmp-visible
move I to task-2-visible. move I to task-ico-incmp"visible
move 0 to task-3-ico-visible. move I to tank-7-ionanemp-visible
move 0 to task-3-ico-act-visible. move I to task-incomplete-visible
move 0 to task-3-act-visible. move Ito ok-bin-status
move 0 to task-3-ico-err-visible. display message box
move 0 to task-3--viable. tco-mc "Unable to connect to the local server. The connection w
move 1 to task-3- . - "as refused. The port or III address may be incorrect. C
move 0 to task-ico-visible. - "cites your support administrator. "
move 0 to task-4-wo-act-visible, title "District Manager File Process"
move 0 to task-4-act-visible. type mb-ok
move 0 to task-4-ico-er-visible. Icon mb-warning-icon
move 0 to task-4-tco-incmp-visible. go to all-tasks-complete-process
move I to task-4-visible end-if
move 0 to task-5-ico-visible.
move 0 to task-5-ico-act-visible.
move 0 to task-S-act-visible. if pane-command-code - "220"
move 0 to task-S-ico-err-visible. initialise unix-send-command
move 0 to task-5-ico-mcmp-visible. move I to unix-sendcmd"length
move I to task-5-visible, string "USER " delimited by size move 0 to task-6"icu-visible. umx-usemame delimited by spaces
move 0 to task-6-tco-act-visible. x"OA" delimited by size
move 0 to task-6-act-visible. into umx-send-command with pointer move 0 to taskbtco-ert-visible umx-send-cmd-length
move 0 to task-6-ico-mcmp-visible. subtract I from Unix-send-cmd-length move I to task-6-visible. Call "c$socket" using ags-wate, unutcamection-handle,
move 0 to task-7-sco-visible. unix-sendcommand, mix-send-cmd-length move 0 to task-7-1co-act-visible call "cSsocket" using ags-flush, umx-connection-handle move 0 to task-7-act-visible. else
move 0 to task-7-icoerr-vusble. move 0 to task-l-act vunble move 0 to task-7-wo-memp"vinible. move 0 to task-I-wo-act-visible
move 1 to task-? -visible. move I to task-l-visible
move 0 to prog-bar-visible. move I to task-l-ico-err-visible
move 0 to Iran-I-label-visible. nave I to task-2-ico-incmp-visible
move 0 to tran-2-label-visible. move I to task-3-ico-mcmp"vuible
move 0 to blank-label-visible,

move Ito task4-iceincmp-visible

265

Appendix A: COBOL Legacy System
move Ito task-5-ico-incmp-visible
move Ito task-ico-mcmp-visible task-2-process.
move Ito task-7-sco-incmp-visible display main-form
move 1 to task-mcomplete-vusble move "usr' to -directory.
move Ito ok-btn-status initialise unix-send-command. display message box move I to umx-send-emd-length. "Unable to connect to the local server. The oamection w string "CWD " delimned by size "as refused. The port or IF address may be incorrect. C
" um -dmxtory delimited by spaces
one your support administrator. " x"OA" delimited by aue title "District Manager File Process" into unix-send-command with pointer type mb-ok umx-send-cmd-length
icon mb-wammg-icon subtract I from unix-send-cmd-length.
go to all-tasks-complete-process call "cSsocket" using aBS-write. umx-eonnecoon-handle

end-if
initialise unix-receive-command byto-hold

, umx-send-command, unoo-send-cmd-length
call "cSsocket" using ags-flush, unix-connection-handle.

move I to unix-receive-cmd-length initialise unix-receive-command byte-hold,
perform until byte-hold - end-cmd-byte or move I to umx-receive-cmd-length

Unix-receve-cmd-length > max-emd-length perform until byte-hold - end-cmd-byte or
move I to num-bytes-read

" " umx-receivecmd-length > max-cmd-length
call cSsocket using ags-read, umx-connection-handle, move I to num-bytes-read byte-hold, num-bytes-read call "cSsocket" using ags-read, umx-connection-handle,
string byte-hold delimited by sin into eee byte-hold, numb

umx-reeeivecommand with pointer iz string byte-hold delimited by Dy sau into
umx-receive-cmd-length unm-receive-command with pointer

end-perform wax-receive-cmd-length
move unix-receive-command to panx-recesvecommand. end-perform.

move umx-receive-command to parse-receive-comnumd

if patsecommand-code "'331"
initialise umx-send-command if psrso-command-code - "250"
move I to unix-sendcmd-length move "curtu" to unix-directory
string "PASS 'delimited by sin initialise unix-send-command

onus-password delimited by spaces move Ito unix-send-cmd-length
x"OA" delimited by au string "CWD " delimited by size into mix-send-command with pointer umx-0mxtory delimited by spaces
umx-send-emd-length x"OA" delimited by size

subtract I from umx-send-cmd-length into umx-send-command with pointer
call "cSsocket" using ags-wate, unix-connection-handle, umxsend-cmd-length

umxsend-command, unut-send-emd-length subtract I from unixsend-emd-length
can "c$sacket" using ags-flush, unurwnnection-handle call "c$socket" using ags-wnte, umxconnection-handle,

else unix-send-command, unix-send-cmd-length
move 0 to task-l-act-visible call "eSsocket" using ags-flush, umx-connection-handle
move 0 to task-l-icowa-visible initialise unix-receive-command byte-hold
move l to task-l-visible move Ito umx-receive-emd-length
move 1 to task-I-ice-err-visible perform until byte-hold - end-cmd-byte or
move l to task-2-ico-memp-visible umx-receive-emd-length > max-cmd-length move Ito task-3-ico-incmp-visible move I to num-0 -read
move Ito task-4-ico-mcmp-visible call "c$socket" wing
move I to task-5-ico-mcmp-visible unm-connection-hand e, byte-hold, num-0 -
move 1 to task-6-ico-incm visible P- string byte-hold delimited by size into
move I to task-7-ico-mcmp-visible umx-receive-command with pointer move 1 to task-incomplete-visible umx-receive-cmd-length
move 1 to ok-bm-status end-perform
display message box move umx-receive-command to parse-receive-command "Unable to connect to the local server. The connection w else "as refused. An incorrect user name was detected. Conte move 0 to task-2-act-visible
"ct your support administrator " move 0 to task-2-ico-act-visible
title "District Manager File Process" move Ito task-2-visible
type mb-ok move I to task-2-ico-err-visible
icon mb-wanting-icon move I to task-3-ico-mcmp-visible
go to a0-tasks-eomplete-process move I to task-4-ico-mcmp-visible

end-if move I to task-5-ico-mcmp-visible
initialise umx-receive-command byte-hold. move Ito task-6-ico-mcmp-visible
move l to Unix-receive-emd-length. move I to task-7-sco-incmp-visible
perform until byte-hold - end-cmd-byte or move I to task-incomplete-visible

umx-receive-cmd-length > max-cmd-length move I to ok-bm-status
move I to num-bytes-read display message box
call "cSsocket" using ags-read, umx-connection-handle,

byte-hold, num-bytes-read "Unable to copy manager files. The directory'/use was string byte-hold delimited by sin into
- "unable to be reached Contact your support sdmmstrato

utux-receivecommand with pointer "r "
umx-receive-cad-length title "District Manager File Process"

end-perform. type mb-ok
move unix-receivecommand to parse-receive-command. awn mb-waning-icon

go to all-tasks-complete-process
end-if if parse-command-code- '230"

move spaces to accyunk
else if parse-command-code - "250"

move 0 to task-l-act-visible perform setup-umx-server-file-transfer-session
move 0 to task-l-[watt-visible else
move Ito task-l-viable move 0 to task-2-act-visible
move I to task-l-ieo-err-vmble move 0 to task-2-tco-act-visible
move I to task-2-ice-incmp-visible move I to task-2-visible
move Ito task-3-ico-mcmp-visible move I to task-2-ico-err-visible
move Ito task-4-ico-memp-visible move Ito task-3-ico-memp-visible
move Ito task-5-ico-memp-visible move I to task s-tco-incmp-visible
move Ito task-ice-incmp-visible move I to task-5-sco-incmp-vssible
move Ito task-7-ico-memp-visible move I to task-6-tco-incmp-visible
move Ito task-incomplete-visible move I to task-7-ieo-incmp-visible
move Ito ok-bm-status move I to task-incomplete-visible
display message box move I to ok-bm-status 'Unable to connect to the local server. The connection w display message box
"as refused. An incorrect user name or password was dete
"

"Unable to copy manager files, The directory '/usr/curtz
cted. Contact your supportadmuusttator. "

' - "e' was unable to be reached. Contact your supportadmen title District Manager File Process" "Istrator, "
type mb-ok title "District Manager File Process"
icon mb-warning-icon type mb-ok
go to all-tasks-complete-protean icon mb-wanting-icon

end-if. go to nIl-tasks-complete-process
move 0 to task-l-act-visible. and-if
move 0 to task-I-ico-act-visible
move I to task-l-visible
move I to task-l-tco-visible. move I to usr-curtze"cm. move 0 to task-2-visible move I to copied-managercm.
move I to task-2-act-visible. perform until usrrurtze-cm> 7
move I to task-2-sco-eil-visible, move usrcurtar-files(usr-eurtae-cnt) to unix-file-path
move I to prog-bar-visible initialise unix-send-command
move I to tier-l-label-visible. move I to unix-send-cmd-length move I to torn-2-label-warble. string "RETR" delimited by size

unit-file-path delimited by spaces
x"OA" delimited by size
into unix-send-command with pointer

266

Appendix A: COBOL Legacy System
unix-send-cmd-length file-copy--text

subtract I from unutaend-cmd-length title "District Manager File Process"

call "clisocket" using ags-write, mix-connection-handle, type mb-ok
umx-tend-command, umx-uend-cmd-length icon mb-warning-icon

can "c$aocket" using agsdiush, unix-connection-handle perform setup-umx-servo-file-transfer-cession
initialise unix-receive-command byte-hold end-if
move Ito umx-rewverand-length add Ito usr-curta-cm
perform until byte-hold - end-emd-byte or add l to copied-managercat

umx-receive<and-length > max-cmd-length destroy trwmusionProgressBar
move I to num-bytes-read end-perform.
call "c$socket" using ags-rad,

umx-connection-handle, byte-hold, num-bytes-read
string byte-hold delimited by uze into initialise umx-send-command.

umx-receive-command with pointer move I to umx-send-cmd-length.
unm-receive-cmd-length string "CDUP" delimited by size

end-perform x"OA" delimited by size
move unix-moi tve-command to pane-receivearommand into un xsendcommand with pointer
if pane-command-code " "125' or umx-send-cmd-length.

parse-command-code -"150" subtract I from umx-send-emd-length.
move unuareceive-command to call "c$socket" using ags-write, umx-connection-handle,

pane-data-receive-command unur-'endwmmud, unm-sendtmd-length.
perform get-download-file-size call'clisocket' using ago-flush, unuaeonnection-handle
move copied-manager-51a(copied-manager-cnt) to initialise unur-rocmve- ommand byte-hold.

receiving-file-name move I to unix-receivetmd-length.
move teceivmg-file-name to file-name perform until byte-hold - end-cmd-byte or
move "Downloading. " to tnmmarocuon umx-receive-rind-length > max-cmd-length
move 12.75 to torn-bbl-col move I to num-bytes-read
display transmmionlabel l call "c$socket" using ags-etad,
display transmissionlabel2 umxconnection-handle, byte-hold, num-bytes-read
display trsnsmissionProgressBar string byte-hold delimited by size into

open output recciwngfile unix-receivecommand with pointer
initialise unur-eeceive-command byte-hold unm-receive-emd-length
move I to umx-receivecmd-length endperfonn.
move 0 to file-bytecnt move uni-receive-command to parse-receive-command.
move 0 to temp-byte-ens if pane-commend-code - "250"

move 0 to prag-barmt initialise uwc-send-command
move 6 10 to bar-col move I to mix-send-cmd-length
divide file-total-byte-sic by 41 giving prog-bar-ritt string 'CDUP" delimited by size

remainder prog-bar-rem x"OA" delimited by size
perform until file-byte-Ord - file-total-byte-size into uni-send-command with pointer

initialise unuc-receive-command byte-bold unit-sendcmd-length
move I to unm-receive"cmd-length subtract I from unit-send-cmd-length
move I to num-bytes-read call "c$socket" using ags-write, umx-connection-handle,
perform until unuo-rcceive-cmd-length > umx-sendcotmnand, unm-tend-emd-length

max-emd-length or call'c$socket" using ags-flush, unix-connection-handle
file-byte mit = file-total-byte-size initialise ums-receivecommand byte-hold

call "cSsocket" using ags-rad, mow I to max-receive-emd-length
unuc-0ata-connection-handle, byte-hold, perform until byte-hold - end-cmd-byte or
num-bytes-read umx-receiveemd-length > maxond-length

add num-bytes-read to file-byte-cot move I to rum-bytes-read
temp-byte-cot all "c$socket' using ags-rcad,

iftemp-byte-cm» prag-bar-ent un x-connecnon-handle, byte-hold, num-byte-read
display frame, line 29.20, col bar-col, string byte-hold delimited by size into

Itnes 1.15, size 1, fill-color 11. unit-receive-command with pointer
background-high, lowered unm-eecnve-and-length

add 0 90 to bar-col end-perform
move 0 to temp-byte-cat move unit-receive-command to parse-receivecommand

end-if else
string byte-hold delimited by size into move 0 to task-2-act-visible

mix-receive-command with pointer move 0 to task-2-wo-act-visible
umx-receive-cmd-length move I to task-2-visible

end-perform move I to task-2-ico-err-visible
move umx-receive-commend to receiwng-record move 1 to task-3-ice-incmp-visible

write receiving-record move I to task-4-tco-inemp-visible
end-perform move I to task-5-too-memp-viable
if bytes-remaimng-sw -I move I to task-ico-mcmp-visible

close receivmgFile move I to task-7-ice-incmp-visible
else move 1 to task-mcomplete-visible

display frame, lux 29.20, col bar-col, move I to ok-bus-sums
Ines 1.15, size 1, fin-color 11, display message box
background-high, lowered "Unable to copy manager files. The directory 'hur/curls

call "c$socket" using agsclose, - "e' was unable to be exited from. Contact your supports
mm-data-connection-handle "dinninstrator. "

close receivmgFde title "District Manager File Process"
end-if type mb-ok

else icon mb-warning-icon
string "Unable to copy" delimited by size go to all-tasks-complete-process

usr-curtze-files(usr-curtze-ces) end-if.
delimited by space if parse-command-code " "250"

.
Chck'OK'to continue' delimited by size initialize uni-send-command

into file-copy-error-text move I to snot-send-emd-length
display message box string "CDUP" delimited by size

file-copy-error-text x"OA' delimited by size
title "District Manager File Process' into umx-send-comma d with pointer
type mb-ok unuo-send-cmd-length
icon mb-warning-icon subtract I from umx-tend-cmd-length
call 'cSsoeket' using ages-clac, call cSsoeket' using ags-write, unit connection-handle,

unetdata-coonecuon-handle unix-send-command, unursend-emd-length
perform setup+mus-server-file-ts mfa-erasion call 'c$socket' using cgs-flush, untie-connection-handle

end-if initialise unm-receive-command byte-hold
initialise unix-receive-command byte-hold move I to umx-receive-emd-length
move Ito unuo-rccci e-cmd-length perform until byte-hold - end-emd-byte or
perform until byte-hold - end-emd-byte or umx-receive-emd-length > max-emd-length

umx-receive-cmd-length > max-emd-length move I to rum-bytes-read
move I to sum-bytes-read call "c$socket' using ags-read,
call "c$socket" using ags-read, umx-connecuon-trendle, byte-hold, rum-byte-road

unm<onnecnon-handle, byte-hold, num-bytes-read string byte-hold delimited by tat into
stung byte-hold delimited by size into Unix-receive-command with pointer

umx-receive-command with pointer umix-recerve-cmd-length
umx-receive-cord-Imgth end-perform

end-perform move unit- eceivecommand to parse-receive-command
move unix-receive-command to parse-raceive-command else
if parx-rommand-code - "226" move 0 to task-2-act-visible

perform aempwux-server-file-transfer-session move 0 to task-icoact-visible
else move I to task-2-visible

string "There was a problem copying the file " move I to task-2-tco-err-visible
delimited by size move I to task-3-ico-incmp-visible
ua<urtae-filcs(usr-cvrtze-cm) move Ito task-4-ico-mcmp-visible
delimited by spaces move I to task-5-ico-incmp-visible

It may not have copied correctly. Click '0 move I to task-6-ice-memp-vuible
'K' to continue. " delimited by spaces move Ito task-7-ico-incmp-visible
into file-copy-error-text move I to tasktincoenplcte-visible

display message box move I to ok-bin-status

267

Appendix A: COBOL Legacy System
Epley age box
"Unable to copy manager file. The dhrectoay fur was u
'table to be exited from. Contact you mppat edmamatr

title "District Manager File Procen"

type mb-ok
icon mb-waning-icon
go to dl-taskseompleteyrocest

end-if.

if poae-command-code - "250"
move barg' to unix-directory
imuaiue unix-send-command
move Ito umx-send-cmd-length
 ing "CWD' delimited by size

umx-directory delimited by spaces
x"OA' delimited by nm
into unit-said-command with pointer
umx-send-and-length

subtred I from unix-tend-and-length
call "c$aocket' using ags-wnte, umx-connection-handle,

unix-send-command, umx-amd-cmd-length
call "cSsocket" using ages-flush, umx-connection-handle
initialise umx-receivecommand byte-hold
move I to unuo-racerve-cend-length
perform until byte-hold . end-cmd-byte or

umx-rece vccmd-Imgth> mac-cmd-length
move I to num-bytes-rad
call "cSsocket" using ages-read,

umxconnection-handle, byte-hold, num-bytes-read
string byte-hold delimited by size into

unix-receive-command with pointer
umx-receive-cmd-length

end-perform
move snot-receive-command to pane-receive-command

else
move 0 to hak-2-ect-visible
move 0 to hak-2-ico-act-visible
move I to task-2-viable
move I to task-2-ico-art-visible
move I to task-3-ico-mcmp-visible
move I to tauk--ico-mcmp-visible
move I to task-5-ico-uwmp-visible
move I to task-wo-mcmp-vuible
move I to task-ico-mcmp-visible
move I to task-incomplete-visible
move I to ok-btn-antires
display message box
'Unable to copy manager files. The root directory was an
"able to be reached. Contact your support administrator.

title 'District Manager File Process"
type mb-ok
icon mb-wumng-icon
go to all-taskaeompleteprocees

end-if.

if parse-commend. code - "250"

move'curtze2" to unu-directory
initialise unuo-tend-commend
move I to umx-send-cmd-length
sing'CWD " delimited by size

umx-directory, ddelimited by spaces
x"OA" delimited by size
into unix-send-command with pointer
unut-rend-emd-length

subtract I from umx-und-and-length
all'c$socket" using ags-wnte, unurwmeetion-bandle,

umx-send-command unmsend-cmd-length
call "cSnocket" using ags-flush, unix-connection-handle
initialise umx-reeervaeommand byte-bold
move Ito umx-reccive-cmd-length
perform until byte-hold - end-emd-byte or

umx-reeervo emd-length > max-cmd-length
move Ito num-bytes-read
call "c$socket" using egs-read,

unix-connection-handle, byte-hold, cum-bytes-rad
string byte-hold delimited by suze into

unix-receive-comnumd with pointer
umx-receive-emd-length

end-perform
move unuo-receive-command to parse-receive-command

else
move 0 to task-2-ect-visible
move 0 to task-2-ico-act-visible
move I to task-2-visible
move I to task-2-ico-art-visible
move I to task-3-ico-incmp-visible
move I to task-4-ico-incmp-visible
move I to task-5-ico-mcmp-visible
move I to taskfi-ico-incmp-visible
move I to task-7-ico-mcmp-visible
move I to task-incomplete-visible
move I to ok-box-status
display message box
"Unable to copy manager files. The directory Yusr2' was
'unable to be reached. Contact your support adnumstrat
. W..
title "District Manager File Procne"
type mb-ok
icon mb-warning-icon
go to all-tasks-complete-process

end-if.

if pane-commandcode - "250"
perform setup. umx-server-file-umfer-iasion

else
move 0 to task-2-act-visible
move 0 to tuk-2-ieo+R-wible
move I to task-2-wrble

move I to tavk-2-wo-err-wible
move I. to task-3-ace-mcmp-vzstble
move I to task-ico-memp-vurble
move I to task-5-ico-mcmp-visible
move I to task-6-tco-mcmp-visible
move I to task-7-ieo-mcmp-visible
move I to ink-incomplete-visible
move l to ok-bm-status
display message boos
"Unable to copy manager files. The diraxory'/osrVcurt
*w2' was unable tobe reached. Contact your support edm
"mistrmor. "
title "District Manager File Process"
type mb-ok
icon mb-warning-icon
go to all-tasks-complete-process

end-if.

move I to usr2-wrtze2-cnt.
perform until usr2-curtze2-em> 2

move usr2-cwtze2-files(usr2-curtze2-cnt) to
umx-file-path

nunalue umx-send-command
move I to unm-send-cmd-length
string "REFR " delimited by size

umx-file-path delimited by spaces
x"OA" delimited by size
into unix-send-command with pointer
umx-send-cmd-length

subtract I from unursend-emd-length
call "c$soeket" using age-wnte, umx-coenectron-handle,

umx-send command, unus-send-emd-length
call "cSsocket" using age-flush, unix-connection-handle
iortialise umx-rcenva-command byte-hold
move I to umx-reeave-cmd-length
perform until byte-hold - end-cmd-byte or

umx-receive-cmd-length > max-cmd-length
move 1 to num-bytes-read
call "cSaocket" using ags-read,

unucsonnection-handle, byte-hold, num-bytes-read
string byte-hold delimited by size two

umx-receive command with pointer
unm-receive-cnd-length

end-perform
move unix-receivecomm and to parse-receive-command
if parse-command-code - "125" or

parse-commandcode -"ISO"
move unix-receive-command to

pane-data-mceive-command
perform get-download-file-sue
move copied-manager-files(copied-managerem) to

recenrmg-file-name
move ramvmg-file-name to file-name
display trammussionl. abel l
display transmusionLabel2
display trsnsmissionProgressBar
open output receivmgfle
initialise umx-receive-command byte-hold
move I to umx-recesve-cmd-length
move 0 to file-byte-cm
move 0 to temp-byte-eint
move 0 to prog-baraxa
move 6.10 to bar-col
divide file-total-byte-size by 41 giving prog-bar-cnt

remainder profi-bar-rem
perform until file-byteKnt - file-total-byte-size

initialise uni-receive-command byte-hold
move I to Unix-receive-cmd-length
move I to num-bytes-read
perform until emir-recerve-cmd-length >

nun-cmd-length or
file-byte-crd - file-total-byte-sue

call "c$socket" using ago-read,
unuo-dataconnection-handle, byte-hold,
num-bytes-read

add mum-byres-read to file-byte-cat
temp-byte-cot

if letupbyte-c t >- prog-bar-ag
display frame, line 29 20, col bar-col,

lines 115, size 1, fill-color 11,
background-high, lowered

add 0.80 to bar-col
move 0 to temp-byte-cut

end-sf
string byte-hold delimited by size into

umx-receiv -command with pointer
umx-receive-cmd-length

end-perform
move unix-receive-command to receiving-record
write receiving-record

end-perform
if bytes-remaining-sw -1

close recervmgFde
else

display frame, line 29.20. col bar-col,
lines 1.15, size 1, fill-color It,
background-high, lowered

call "cSsocket" using ags-close,
umx-data-co'mecuon-handle

close recervmgFAe
end-if

else
stung "Unable to copy" delimited by size

usr2-curtze2-files(utr2-au t=2em)
delimited by spaces

.
Click 'OK' to continue" delimited by size

into file-copyerror-text
display message box

file-copy-error-text
title "District Manager File Process"
type mb-ok
icon mb-warming-icon

268

Appendix A: COBOL Legacy System
call'c$socket' using ago-close,

umx-data-connection-handle
perform sctup-amx-server-file-transfer-session

end-if
imualue unix-recervecommand byte-hold
move Ito unix-realve-emd-length
perform until byte-hold - end-cmd-byte or

umx-meesve-emd-Iength> max-emd-length
move I to eumbytes-read
call "c$socket' using age-read,

umx-connecuon-handle, byte-hold, num-bytes-read
string byte-hold delimited by size into

umx-receivecommend with pointer
umx-nxeive-cmd-lcngth

end-perform
move unix-receive-command to purse-receive-command
if parse-command-code -'226"

perform setup-unit-server-file-transfer-suasion
else

string "(here was a problem copying the file
delimited by size
usr2-curtze2-files(usr2-curtze2-rnt)
delimited by spacce

. It may not have copied correctly. Click'0
"K' to continue. " delimited by spaces
into file-copy-error-text

display message box
file-copyerror-text

title "Distnct Manager File Process'
type mb-ok
icon mb-wanting-icon
perform setup-umx-server-file-tmnafer-triton

and-sf
add Ito usr2curtze2-cnt
add Ito copied-mutiger ant
destroy trensmissionProgressBar

end-perform
move 0 to task-2-act-visible.
move 0 to task-2-icwct-visible.
move I to task-2-visible.
move 1 to task-2-ico-visible.
move 0 to task-3-visible
move 1 to task-3-act-vtsiblc.
move I to tank-3-ico-act-visible.
move 0 to prog-bar-visible.
move 0 to tran-l-label-visible.
move 0 to tran-2-label-visible.
move I to blank-label-visible.

task-3-process.
display main-form
initialise unix-scrid-command
move 1 to umx-sendcmd-length.
string "QUIT" delimited by aim

x"OA" delimited by size
into umx-send-command
with pointer un x-send-cmd-length.

subtract I from unix-send-emd-length.
call "cSsocket" using ago-wate,

umx-connection-handle, unu-send-command,
umx-send-cmd-length.

call "cSsocket" using ags-flush, unix-connection-handle.
initialise umx-receivecommand byte-hold.
move I to umx-receive-emd-length.
perform until byte-hold = end-cmd-byte or

umx-receive-cmd-length > max-emd-length
move I to num-bytes-read
call -cSsocket" using ags-read, umx-connection-handle,

byte-hold, num-bytes-read
string byte-hold delimited by size into

umx-receivecommand with pointer
umx-receivecmd-length

end-perform.
move unix-rweive-command to parse-receive-command.

if parsecommand-code - "221"
call "cSsocket" using ags-close, unix-connection-handle
move 0 to task-3-act-visible
move 0 to task-3-ico-act-visible
move I to task-3-visible
move I to task-3-ico-vismble
move 0 to task-4-visible
move I to task-4-act-visible
move I to task-4-wo-act-visible

else
move 0 to task-3-act-visible
move 0 to task-3-ico-act-visible
move I to task-3-visible
move I to task-3-ico-err-visible
move I to task4-tco-inemp-visible
move I to task-3-ico-mcmp-visible
move I to task-6-ico-mcmp-visible
move I to task-7-ico-incmp-visible
move I to task-incomplete-visible
move 1 to ok-bin-status
display message box
"Unable to logoff of the local server. The manager files
"were successfully copied, however the proper logoffpro
"cedure was not performed. This could cause future tonne
"cbon problems. Contact your support administrator. '
title 'Distract Manager File Process"
type mb-ok
icon mb-warning-icon
call "cSsocket" using age-close, unix-connection-handle
go to all-tasks-complete-process

end-if.

task-4-process.
display mun-form.
call "cSsystem" using batch-cmdNT2K csys-minimized

call "cbl_copy_file" using onginal-path rename-path giving
status-code

if statuscode
move 0 to tank-4-act-visible
move 0 to task-4-ico-act-visible
move 1 to task-4-visible
move Ito task-4-ico-crr-vssible
move 1 to task-S-ico-mcmp-visible
move 1 to task-6-ico-mcmp-vunble
move I to task-7-ico-mcmp-visible
move I to task-incomplete-visible
move I to ok-btn-status
display message box
"A problem was encountered while attempting to create the
' manager zip file. Please exit the prognon and try ages
'n or contact your support admimstrator. '
title "District Manager File Process"
type mb-ok
icon mb-warning-icon
go to all-tasks-aomplete-process

end-if
call 'cSdelete" wing onginal-path.
move 0 to task-4-act-vssible.
move 0 to task-4-ico-act-viable.
move Ito task-4-visible.
move 1 to task-4-sco-vtsible.
move 0 to task-5-visible.
move I to task-5-act-vmble.
move Ito task-5-ico-ist-visible.

task-S-process.
display main-form
move "21 "to @p-server-port

move 'I11.1.11111 V to ftp-server-address.
move "usemamel" to ftp-usememe
move "passwordl7" to ßp-password,

call "cSsocket" using ags-create-client, @p-server-port,
@p-server-address giving ftpconnecuon-handle.

if ftp-connection-handle -0
move 0 to task-5-act-visible
move 0 to task-5-ico-act-visible
move I to task-5-visible
move Ito task-5-ico-err-visible
move I to task-6-roo-incmp-visible
move Ito task-7-ico-inemp-visible
move Ito task-incomplete-vnible
move I to ok-bm-status
display message box
"Unable to connect to the FTP server. There may be a pro
"blem with your Internet connection. Contact your suppor
"t administrator. "
title "District Manager File Process"
type mb-ok
icon mb-warning-icon
go to all-tasks-complete-process

end-if
initialise ftp-receive-command byte-hold.
move I to 8p-receive-cmd-length.
perform until byte-hold - end-cmd-byte or

ftp-receive-cmd-length > max-cmd-length
move l to num-bytes-read
call "cSsocket' using aga-read, ftp-connection-handle,

byte-bold, num-bytes-npd
string byte-hold delimited by size into

ftp-receive-command with pointer
ftp-nxeive-cmd-length

end-perform
move ftp-recmve-command to parse-receive-command.

if parse-command-tode -"220"
initialise ßp-send-command
move Ito ftp-send-cmd-length
along "USER" delimited by size

ß{wsemame delimited by spaces
x"OA" delimited by size
into ßp-seed-command with pointer
ftp-und-cmd-length

subtract I from Sp-sendcmd-length
call "c$socket" using ago-write, ftp-connection-handle,

ftp-send-commend, flp-smd-cmd-length

call "cSsocket" using age-flush, ßpconnectton-handle
else

move 0 to task-5-act-visible
move 0 to task-5-wo-act-visible
move I to task-5-visible
move I to task-5-woesr-vnnble
move I to task-ieo-memp-visible
move 1 to task-7-ico-mcmp-visible
move 1 to task-incomplete-visible
move I to ok-but-status
display message box
"Unable to connect to the FTP server. The connection was
"refused by the server. The port or IP address maybe i
"ncomxt. Contact your support administrator. "
title "District Manager File Process"
type mb-ok
icon mb-wwmng-icon
go to all-tasks-complete-process

end-if.
initialise ftp-receive-command byte-hold.
move I to flp-receive-curd-length.
perform until byte-hold - end-emd-byte or

ftp-recervecmd-length > max-cmd-length
move Ito nom-bytes-reed
call "cSsocket" using ags-read, ft-connection-handle,

byte-hold, nom-bytes-read
string byte-hold delimited by atze into

ftp-receivecommand with pointer
ßp-mceive-emd-length

269

Appendix A: COBOL Legacy System
end-perform. flp-send-command, ftp-send-cmd-length
move Itp-receivaeommand to parse-receive-coeemand. call "cSsocket' wing age-flush, ftp-connection-handle

else
move 0 to task-6-act-visible

if parse-command-code -'331" move 0 to task-6-ico-act-visible
wUahse ftp-tend-command move Ito task-6-wible
move Ito Rp-send-cmd-length move Ito task-6-rco-err-visible
struig "PASS' delimited by on move Ito task-7-ico-inemp-visible

Ilppassword delimited by sparr move Ito task-incomplete-visible
x"OA' delimited by size move I to okbUrstatus
into ftp-send-command with pointer display message box
rtp-oe id-cmd-length 'Unable to t ansmit manager 9998 file. The directory'/S

subtract I from ftp-send-cmd-length "ales' was unable to be reached. Contact your support ad
call "cSsocket' using egs-write, ftp-connection-handle, - 'ministrator. '

ftp-send-command, Rp-send-cmd-length title 'District Manager File Process'
call "cSsocket" using ags-flush, ftp-tonet ion-handle type mb-ok

else icon mb-wanung-icon
move 0 to task-Stitt-visible go to all-casks<anplete-process
move 0 to task-3-wo-act-visible end-if
move I to task-5-visible uutialise ftpi-movive-command byte-hold
move I to task-5"ica-err-visible move I to ftp-receivecmd-length.

move I to task-6-wo-mcmp-visible perform until byte-hold - end-cmd-byte or
move I to task-7-tco-inemp-visible ftp-roceivewmd-Irngth > max-emd-length
move I to task-incomplete-vmble move I to num-bytes-read
move I to ok-brr-status call "c$socket' using ags-nsd, ftp-connection-handle,
display message box byte-hold, num-bytes-read
'Unable to connect to the FFP server. The connection was string byte-hold delimited by size into
" refused by the server. An incorrect username was deter ftp-receive-command with pourer
'ted. Contact your support administrator. ' ftp-receive-cmd-length
title "District Manager File Process" end-perform.
type mb-ok move lip-receivecommand to parse-receivecommand.
icon mb-warring-icon
go to all-tasks-complete-pmeesa

end-if. if pari-commandcode-'250"
initialise ftp-reeeivecmnmsnd byte-hold move "9998" to Pip-directory

move I to ftp-receive-cmd-length. i ittalise ftp-send-command
perform unul byte-hold - end-emd-byte or move I to ftp-send-cmd-length

ftp-receive-emd-Icngth > max-emd-length string "CWD " delimited by size
move I to num-bytes-road ftp-directory delimited by spaces
call 'cSsocket" using ags-read, ßp-connetion-handle, x"OA" delimited by size

byte-hold, num-bytes-read into ftp-send-command with pointer
stung byte-hold delimited by size into ftp-send-cmd-length

ßp-receive-command with pointer subtract I from ftp-send-emd-length
ftp-receive-emd-length call'c$socket" using ags-write, flp-connection-handle,

end-perform. flp-send-command, flp-send-cmd-length
move ftp-receive-command to parsenxxive-command call "cSsocket' using ags-flush, ftpcomrocton-handle
if parsecommand-code - "230" Cho

move 0 to cask-3-act-visible move 0 to task-6-act-visible
move 0 to task-5-ico-act-visible move 0 to task-6-tco act-wible
move I to task-5-visible move I to task-6-wible
move I to task-S-ico-visible move I to task-6-ico-err-visible
move 0 to tank-6-visible move I to task-7-ico-inomp-visible
move Ito task-64ct-wible move I to task-incomplete-visible
move I to task-twad-wible move I to ok-bVrstatus

else display message box
move 0 to task-5-act-visible "Unable to trensmrt manager 9998 file The di ectory'IS
move 0 to task-5-ieo-act-visible - "ales/Updates' was unable to be niched. Contact your su
move I to task-5-viable 'pport administrator. "
move I to task-ico-err-visible title "District Manager File Process"
move I to task-wo-memp-visible type mb-ok
move I to task-7-ico-uremp-wible icon mb-waning-icon
move I to task-incomplete-visible go to all-tasks-complete-process
move 1 to okbm-status end-rf
display message box initialise Ilp-roceive-command byte-hold.
"Unable to connect to the FTP server. The connection was move I to ftp-receive-emd-length.
" refused by the server. An incorrect usemame or pmswo perform until byte-hold - end-cmd-byte or
"rd was detected. Contact your support administrator. ", flp-receive-emd-length > max-emd-length
tide "District Manager File Process" move I to num-bytes-read
type mb-ok call'cSsocket" using ags-Rad, ftpwnnection-handle,
icon mb-wanting-icon byte-hold, num-bytes-read
go to all-tasks-complete-process string byte-hold delimited by size into

end-if ßp-receive-command with pointer
ftp-receive-cmd-length

end-perform.
taekfi-proceea. move ftp-receivecommand to parse-receive-command.

display main-form.
move "Sales" to ftp-directory.
kutuloe ftp-send-command. if parse command-code -'250"
move I to ftp-send-cmd-length. move 'I' to flp-transmit-type
string "CWD " delimited by size initialise Ap-send-command

ftp-directory delimited by spaces move I to ftp-send-emd-length
x"OA" delimited by size strug 'TYPE " delimited by size
into ftp-send-command with pointer ftp-transmit-type delimited by spaces
ftp-aeend-cmd-length x"OA" delimited by sire

subtract I from ftp-aend-cmd-length. into ftp-und-command with pointer
call'cSsocket" using ags-wnte, ßp-connection-handle, ftp-send-cmd-length

ftp-srndcommand, ftp-send-cmd-length. subtract I from ftp-send-cmd-length
call "cSsocket" using ags-flush, ftp-connection-handle. call "cSsocket" using ags-write, lip-connection-handle,
vunalue ftp-receive-command byte-bold. Itp-send-command, flp-send-cmd-length
move I to ftp-receive-cmd-length. call "cSsocket" using cgs-flush, ftp-connection-handle
perform until byte-hold - end-cmd-byte or else

ftp-rcceivecmd-length > max-cmd-length move 0 to task-6-act-visible
move I to num-bytes-read move 0 to task-6-wo4ct-visible
call 'eSsocket' using ags-read, ftp-connection-handle, move I to task-6-visible

byte-hold num-bytes-read move I to taskb-iea-err-visible
string byte-hold delimited by on into move I to task-7-rw-mcmp-visible

ftp-receive-command with pointer move I to task-incomplete-visible
ftp-reeeive-cmd-length move I to ok-buo-rtatus

end-perform. this displays a message box indicating that the
move ftp-receivecommand to parse-receive-command. VSales/Updates/9998 directory could not be navigated to.

display message box
"Unable to transmit manager. 9998 file. The directoryIS

if parse-command-code - "250" - 'ales/Updates/9998' was unable tobe ruched. Contact yo
move 'Updates" to ftpdirectory 'ur support administrator "
aunalue ftp-send-command title "District Manager File Process"
move I to ftp-send-cmd-length type mb-ok
string "CWD " delimited by size icon mb-warning-icon

ftp-directory delimited by space go to all-tasks-complete-process
x"OA" delimited by size end-if.
into ßp-send-command with pointer initialise ftp-receive-command byte-hold.
ßp-send-emit-length move I to ftp-receive-emit-length.

subtract I them ftp-send-emd-l ngth perform until byte-hold - end-emd-byte or
call 'cSsockd" using ags-write, ftpconnecion-handle, ftp-receive-cmd-length > max-cmd-length

270

Appendix A: COBOL Legacy System
move I to num-bytes-read move 11.25 to nan-labt-col
all "cSsocket" using ags-nxd, ft-connection-handle, move Ito prog-bar-visible byte-hold, num-bytes-read move Ito Iran-l-label-visible
string byte-hold delimited by size into move Ito tree-2-label-visible

ft-receivecommand with pointer move 0 to blank-label-visible
ftp-receivecmd-length displaytransmsssionLabell

end-perform. display transmus onLabel2
move ftp-receive-command to pane-receivecommand. display tnmsmusionProgressBar

display blank-MI
move 0 to temp-bytecnt

if parse-command-code . "200' move 6.10 to bar-col
move I to ftp-send-cmd-length open input sendmgfile
string "PASV" delimited by size read sendmgfile next record at end

x"OA" delimited by nm move I to swl
into @p-send-command with pointer end-read
Rp-send-cmd-length perform until swl -i

subtract I from ftp-send-cmd-length initialise ftp-send-command
call "cSsocket" using ags-write, ftp-connection-handle, move I to Llp-send-cmd-length

ftp-send-command, ftp-send-cmd-length string sending-record delimited by size
can "cSsocket" using ags-flush, @p-connection-handle into ftp-send-command with pointer

else ßp-send-emd-length
move 0 to task-6-act-visible subtract 1 from ftp-send<md-length
move 0 to task-6-tco-act-vmble call "cSsocket" using ags-write,
move I to task-6-visible ftp-data-connection-handle, ftp-seedcommand,
move 1 totaak-6-ico-err-visible ftp-sendcmd-length
move 1 to task-7-ico-uxmp-visible add 1 to hum-times-read
move 1 to task-incomplete-visible if hum-times-read >- prog-barmt
move 1 to ok-ben-status display frame, line 29.20, col bar-col,
display message box lines, 115, size 1, fill-color 11,
"Unable to tram mit manager 9998 file. The t ansmission background-high, lowered
'type was not accepted by the sower. Contact your suppo add 0 80 to bar-col
"rt administrator. ' move 0 to hum-times-read
title "District Manager File Process" eud-if
type mb-ok read sendmgfile next record at end icon mb-warning-icon move I to awl
go to all-tasks-complete-process end-read

end-if, end-perform
imtultse ftp-reeeivecommand byte-hold. display frame, line 29.20, col bar-col,
move Ito ftp-receive-cmd-length. lines 1.15, size 1, fin-color 11,
perform until byte-hold - end-cmd-byte or background-high, lowered

ftp-recerva<md-length > max-cmd-length call "c$socket' using ags-flush,
move I to num-bytes-read ftp-data-connection-handle
all "d$socket" using ags-read, ftp-connection-handle, close sendmgFsle

byte-hold, hum-bytes-read call "c$socket" using agsclose,
string byte-hold delimited by size into ftp-data-co nection-handle

ftp-receivecommand with pointer else
ftp-recervecmd-length move 0 to task-6-act-visible

end-perform, move 0 to task-6-ico-act-visible
move ftp-receivecommand to penis>saceivecommand move 1 to task-6-visible

move 1 to task-6-sco-err-vlaible
move 1 to task-7-ico-incmp-visible

if parsecomnund-code - "227" move 1 to task-incomplete-visible
move ftp-receive-command to parse-past-receivecommand move 1 to ok-but-status
perform establish-data-portconnection display message box

else "Unable to transmit manager 9998 file. The file cannot b
move 0 to task-act-visible - "e located on the local machine. Contact your support ad
move 0 to task-6-tao-act-visible - "mimstrator. '
move I to task-6-visible title "District Manager File Process"
move I to task-6-tco-err-visible - type mb-ok
move l to task-7-ico-mcmp-visible icon mb-wammg-icon
move I to task-incomplete-visible go to all-tasks-complete-process
move I to ok-btn-status end-if
display mange box initialise ftp-receive-command byte-hold.
"Unable to transmit nuuutger. 9998 file. The request for a move I to ftp-recerve-cmd-length
'data transmission port was denied by the server. Contac perform until byte-hold . end-cmd-byte or 't your support administrator' flp-seoerve-cmd-length > max-cmd-length
title "District Manager File Process" move I to num-bytes-read
type mb-ok call "cSsocket" using ags-reed, fpconnection-handle,
icon mb-waning-icon byte-hold, num-bytes-read
go to all-tasks-complete-process string byte-hold delimited by size into

end-if, ftp-receivecommand with pointer
ftp-receivecmd-length

end-perform.
move "manager. 9998" to ftp-file-path move ftp-receive-command to parse-receive-command.
initialise 8p-send-command if parse-command-code - "226"
move I to ftp-send-cmd-length move 0 to task-6-sct-visible
string "STOR " delimited by size move 0 to task-6-uo-act-visible

ftp-file-path delimited by spaces move I to task-6-visible
x"OA" delimited by sae move 1 to task-6-ico-visible
into ftp-seed-command with pointer move 0 to task-7-visible
ftp-sendcmd-length move l to task-7-act-visible

subtract I from ftp-send-cmd-length move I to task-7-uo-act-visible
call "cSsocket" using ags-write, ftpconnection-handle, move 0 to prog-bar-visible

ftp-sendcmnnund, ftp-send-cmd-length move 0 to tran-l-label-visible
call "cSsocket" using ags-flush, ftpconnection-handle move 0 to tran-2-label-viable
initialise ftp-receive-command byte-hold, move I to blank-Zabel-visible
move I to ftp-sxeive-cmd-length. else
perform until byte-hold - end-cmd-byte or move 0 to task-act-visible

ftp-receive-cmddength > max-cmd-length move 0 to task-6-ico-act-visible
move I to num-bytes-read move I to task6-visible
call "d$socket" using ags-read, ftp-connection-handle, move I to task-6-ico-err-visible

byte-hold, mim-bytes-read move 1 to task-7-ico-mcmp-visible
string byte-hold delimited by size into move 1 to task-incomplete-visible

ftp-receive-command with pointer move I to ok-but-status ttp-receive-cmd-length display message box
end-perform '"Thee was a problem with the file transfer. The manager
move ftp-receive-command to parse-receive-command - ". 9998 file may not have seem correctly. Contact your su if parse-command-code ""125" or pane-command-code " "150" - "ppost administrator "

move "manager. 9998" to sending-file-name title "District Manager File Process"
move 0 to prog-barmt type mb-ok call "cSfilemfo" using sending-file-path, file-info icon mb-warning-icon
move fileaae to total-file-size go to all-tasks-complete-process divide total-fileyiu by 500 giving temp-bar-ant end-if.

remainder temp-bar-rem
if temp-barcut >- 41

divide temp-barem by 41 giving pmg-bar-it
remainder prog-bar-rem Wk-7-process

else display main-form. divide 41 by temp-barcut giving prog-barem initialise ttp-send-command,
remainder prog-bar-rem move I to ftp-send-cmd-length.

end-if string "QUIT" delimited by uze move sending-filename to file-name
' " x"OA" delimited by size

move Uploading to transmit-action into ftp-send-command

271

Appendix A: COBOL Legacy System
with pointer Itp-oendemd-length.

subtract I fiom Rp-. endcmd-length.
call "c$oocket' using Igt-write.

ftpwmewon-handle. ßp-send-command.
ftp-sendemd-length.

call "cSiocket" using igs-flush, ft-connection-handle.
initialise ßp-roeetvetommand byte-hold.
move Ito ftp+acrveemd-length.
perform until byte-hold - end-cmd-byte or

ftp- eceive-emd-length > maxemd-length
move Ito num-bytd-read
call'cSiocket" using ngs-mad, 8p-connection-bandle,

byte-hold, nombyten-read
WmQ byte-hold delimited by nu into

ftp-recetvecommand with pointer
ftp-receive-cmd-length

end-perform.
move ftP-MM VO-command to pare-receivaeommand.

if paneeomnund-code - "221"
call'cSeocket" using age-close, 8p-connection-handle
move 0 to task-7-act-visible
move 0 to task-7aeosct-vuuble
move I to task-7-visible
move Ito task-7-teo-visible
move 1 to task-complete-visible
move 1 to ok-bm-status

else
move 0 to task-7-act-visible
move 0 to task-7-ico-act-visible
move Ito task-7-visible
move I to task-7-woerr-visible
move I to task-incomplete-visible
move I to ok-bm-status
display message box
"Unable to logoff of the FTP server. The manager he we
e succenfully transmitted, however the proper logoff pr

"ocedure was not performed. This could cause future corn
"action problems. Contact your support administrator. ",
title "District Manager File Process"

type mb-ok
me mb-warning-icon
can "cSsocket' using age-close, flp-connection-handle
go to alliaske-complete-process

end-if.

establish-data-port-connection.
move 0 to comma-cat
move I to pur-cnt
move I to paav-ip-cm
move I to paev-pottient,
move I to pasv-port2-cnt.
initialize decimal-number-value
initialise paev-port-numl.
initialize pasrv-port-nurnI
perform until pasv-pon(paev-cnt)

add I to paevem
end-perform.
add I to pm-cnt.
perform until Comma-cut "4

if paev-poa(pasv-cnt) not "'
move pasv-"(pa+v-ent) to

pas'-ip-Pos(pasv-ip-cnt)
add I to paev-ip-cnt

else
add I to comma<nt
if comma-aR not -4

move'. " to PaP-Po(pasv-ip-t)
add Ito pm-tpeut

end-if
end-if
add I to pawn

end-perform.
perform until pate-pos(pasv-ast)

move pasv-portl. pos(2) to psn"portl-pos(l)
move pauv. portl-poe(3) to pasv-portl-pos(2)
move pasv-portl-pos(4) to pasv-portl-pu(3)
move peav-poa(pasv-cm) to pasv-portl-pos(4)
add Ito paevcu

end-perform.
add I to parvem,
perform until pa+v-poe(pasvont) - ý"

move pen'-port2-pos(2) to pasv-port2-poe(l)
move pasv-port2-pos(3) to pasv-pott2-pos(2)
move Paxv-port2-Wa(4) to pasv-port2-pos(3)
move paav'pa(Pa+v'urc) to pasv-port2-pos(4)
add I to puvem

end-perform.
compute decimal-number-value - paav-port-numl * 256
compute deemul-number-value a decimal-numbs-value +

pasv-port-num2
move decimal-number-value to Rp-server-port
move paar-ip-ddnas to ßpserva eddreu
call "c$sockct" using age-aeate-client, ßp-server-port,

ftp-serva4ddr giving flp-data-eonnecuon-handle.
if flp-data-connection-bandle -0

move 0 to task-6-ad-visible
move 0 to task6-iao-act-vuible
move I to task-6-visible
move I to task-6-ko-cri-visible
move I to task-7-ico-memp-visible
move I to lank-incomplete-visible
move I to ok-bho-status
display message box
"Unable to tnnaM manager. 9998 file. The trvumuaion

" "port specified was not avadale. Contact your support a
" 'dmimatrator. '

title "District Manager File Process"
type mb-ok
icon mb-warning-icon

go to a11-tasks-cmpieteproccas
and-if.

setup-unix-serves-file-eransfer-session.
move "1" to umx-aansmd-type.
initialise unoasend-command.
move I to unuc-send-cmd-length.
string 'TYPE ' delimited by size

umx-transmit-type delimited by spaces
x"OA" delimited by size
into uns-send-command with pointer
umx-send-emd-length.

subtract I from umx-sendcmd-length.
call 'cSsocket" using ags-vmte, unue-connection-handle,

woe-send-command, unu-send-emd-length,
call "cSsoeket' using ergs-flush, usnx-connection-handle.
initialise umx-receivecommand byte-hold
move Ito umx-receive-trod-length
perform until byte-hold - end-cmd-byte or

umx-reccive-cmd-length> max-cmd-length
move I to num-bytes-read
call'cSsocket" using ergs-read, umx-connection-handle,

byte-hold, num-bytes-rcad
: trug byte-hold delimited by size into

unu-receive-command with pointer
umx-recave-emd-length

end-perform.
move unm. receivecommand to panty-reeave-command.
if parse-command-code - "200"

initudise unm-send-command
move 1 to unix-send-cmd-length
string "PASV" delimited by size

x"OA* delimited by size
into unit-send-command with pointer
umx-send-emd-length

subtract I from umx-send-cmd-length
call 'cSsocket" using ags-write, umx-connection-handle,

unix-send-command, umx-send-emd-length
call'cSsocket" using ags-flush, umx-eamecuon-handle

else
move 0 to task-2-act-visible
move 0 to task-2-ico-act-visible
move I to task-2-viable
move I to task-2-ico-ar-visible
move I to task-3-ico-mcmp-visible
move 1 to task-4-ieo-mcmp-visible
nave 1 to task-5-ico-mcmp-visible
move I to tack-6-ico-mcmp-visible
move I to tank-7-wo-mcmp-visible
move I to task-incomplete-visible
move Ito ok-bin-status
display message box
'Unable to copy manager files. The tnuumission type was
'not accepted by the local machine. Contact your suppor
It administrator. "
title "Distract Manager File Process"
type mb-ok
icon mb-warning-icon
go to all-tasks-complete-process

end-if.
moralise unuo-receive-command byte-hold
move Ito umx-receive-cmd-length.
perform until byte-hold = end-cmd-byte or

umx-receive-cmd-length > max-emd-length
move I to num-bytes-read
call "cSsocket" using egs-ead, unix-connection-handle,

byte-hold, mum-bytes-read
string byte-hold delimited by sae into

unix-recave-command with pointer
iron-recerve-cmd-lcngth

end-perform,
move unit-receive-command to pane-rxeve-commend.
if parse-command-code - "227"

move unix-receive-command to parse-pasv-receive-command
perform establish-vorm-data-port-connecuon

else
move 0 to task-2act-v, sible
move 0 to task-2-ico-act-visible
move I to task-2-visible
move I to task-2-ico-err-visible
move I to task-3-ico-incmp-visible
move I to task4-ico-incmp-visible
move l to task-5aeo-mcmp-visible
move I totask-6-ico-mcmp-visible
move I to task-7-ico-incmp-visible
move I to task-incomplete-visible
move Ito ok-bm-status
display message box
"Unable to copy manager files. Te request for a data lr
'ansm ssion port was denied by the local machine. Contac
or your support admmurtsetor. '

title 'District Manager File Process"
type mb-ok
Icon rub-warning-icon
go to all-tasks-complete-process

end-if.

estsblicb-unix-data-porttonnection.
move 0 to commsent
move I to pasv cnt.
move I to pasv-ip-M
move l to pasvportl. cnt.
move I to pasv-port2-Cnt.
uutialise decimal-number-value.
initialise pasv-port-numl.
hutialue pasv-port-numl
perform until pnv-pos(puv-cnt) " "ý"

add 1 to pasv-cnt
end-perform.

272

Appendix A: COBOL Legacy System
add I to pav-cos. end-perform
perform until comma-cm -4 move total-file-2 to file-total-byte-size

if paav-poe(paov. cm) not " ", " when 3
move pasv-pw(Paav-cm) to move I to tot-3-cnt

P -"-(P--'P-) perform until tot-3<nt> filestze-cat
Add I to pasv-[pent move filesve-pos(tot-3-cnt) to

olio tu-3-pos(toe-3-cnt)
add I to comma-cm add I to tot-3-cra
dcomma-ft not .i4 end-perform

move ". " to parv4pßaa(puv4p cnt) divide total-file-3 by 500 giving division-value
add Ito pasv-Iptnt remainder division-remainder

end-if if division-remainder not =0
and-if compute file-total-byte-size - total-file-3 -
odd I to pasv-tnt division-renuunder

and-perform. move I to bytes-remaining-sw
perform un4l pwpas(peav-cm) - ;" else

nova pasv-port l-poe(2) to paav-portl-poe(t) move total-file-3 to file-total-byte-sme
move puv-portlpeu(3) to pasv-port l-pos(2) move 0 to bytes-remainmgsw
move pasv-port I-poa(4) to parv-port -pos(3) end-if
move pasv-pos(parv-em) to pass-portl-pos(4) when 4
add I to puvent no" I to tot-4-rnt

and-perform. perform until tot-4-cm > filesize-cm
add I to pasvcnt. move filesize-pos(tot-4-cnt) to
perform until paav-pos(paev-cnt) tot-4-pos(tot-4-cnt)

move pasv-port2-pos(2) to pasv-port2-paa(l) add I to tot-4-em
move puv-port2-pos(3) to pasv-port2-pos(2) end-perform
move puv-port2-poe(4) to pasv-pat2-pos(3) divide total-file-4 by 500 giving dimion-value
move pairv-pes(Wa'-cm) to pasy-port2ßw(4) remainder divuson-remainder

add I to pesvtnt if drvoion-renuunder not"" 0
end-perform. compute file-total-byte-size - teal-file- -
compute decimal-number-value - pasv-port-nail ' 256. division-mnainder
compute decimal-number-value " decimal-number-value f move I to bytes-remainingsw

pasvportsum2. else
move decimal-number-value to umxserver-pott. move total-file-4 to file-total-byte-erze
move pass-ipsddress to umxserveraddress. move 0 to bytes-rematningsw
call "cSsoeket" using egscreateclient, unurserver-port, end-if

unm-serversddw giving umx-dah<onnection-handle. when 5
if uux-data-connechon-handle a0 move I to 1ot-5-em

move 0 to task-2-act-visible perform until tot-S<m > filesfze-cast

move 0 to task-2-wo-act-visible move f lestu-pos(tot-5-cnt) to
move I to task-2-vuible tot-5-poe(tot-5-cm)
mow I to task-2-woerr-visible add I to tot-5-cat
move I to task-3-ico-mcmp-visible end-perform
now I to task+ico-mcmp-vwble divide total-file-S by 500 giving division-value

move I to tank-5-ico-incmp-visible remainder division-remainder
move I to task-ico-incmp-visible if division-rems oder not -0
move I to lank-7-tco-incmp-visible compute file-total-bytestze - total-file-S -
move 1 to task-incomplete-visible division-remainder
move I to ok-0tn-stave move I to bytes-remammg-sw
display message box else
"Unable to copy manager files. The tremmissaun port spe move total-file-S to filetahl-byte-size
"tried was not avadale. Conrad your support admmtstr move 0 to bytes-mtuiningsw
ntor " end-if
title "District Manager File Process" when 6
type mb-ok move I to tot-6-cnt
icon mb-wamtng-icon perform until tot-6cnt > filestzeent

go to ill-tasks-complete-process move filesize-pos(tot-6-cnt) to
end-if tot-6-pos(tot-6-cm)

add I to tot-6-cnt
end-perform
divide total-filefi by 500 giving division-value

inmalise-file-eopy-tables. remainder drvtsion-remainder

move "alphuman" to usr-curtze-11les(1). if dtvuten-rernamder not -0
move "alphacust" to uu-curtze-filee(2) compute file-total-byte-size - total-file-6 -
move "mast cued" to wr-curtse-files(3). d maion-reminder
move "mast. demo" to usr-curtze-files(4). move 1 to bytes-remainmgsw
move "anuuifile" to wr-curtze-files(5). else
move "most wkbus" to wr-curtze-files(6). move total-file-6 to file-total-byte-size
move "mast. wksalee" to wir-curtze-files(7). move 0 to bytes-remammg-sw
move "mast chant" to wr2-curtze2-files(l). end-if
move 'more custf" to usr2-curtre2-files(2). when 7
move "alpbasmn fie" to copied-manager-files(l). move I to tos-1<nt
move'alphacet fle" to copied-manager-files(2). perform until tot-7wnt> file-size-cm
move "custf fie" to copied-manager-files(3). move file-eize-pos(tot-7-cnt) to
move "demo. fle" to copied-manager-files(4) tot-7-pos(tot-7cnt)
move'sman fie" to copied-manager-files(5). add I to tot-7-cnt
move 'wkbw fle" to copied-manager-files(6). end-perform
move "wksales fie" to copied-manager-files(7). divide total-file-7 by 500 giving division-value
move "eusthut. fle" to espied-manager-files(8). remainder division-remainder

move "morecust fle" to copied-manager-files(9) ifdtvision-renuunder not -0
compute file-total-byte-size - total-file-7 - division-reminder

move I to bytes-rema ningsw
get-download-file-size. else

move 1 to pane-dataent move total-file-7 to file-total-byte-size
move I to filesiu<nt. mow 0 to bytes-rematmngsw
move 0 to tow-file-size. end-if
perform until pane-data-pos(parse-data-cnt) - "(" when 8

add I to parse-data-cnt move I to tot-8-cat
end-perform, perform until tot-fcot> file-size-cm
add I to parse-data-cm, move filesux-pos(tot-8-cnt) to
perform until pane-data-pos(parsedatacnt) - tot-8-pos(tot-flan)

move Parse-data-pm(parse-data-cm) to add I to tot-8<nt
filesize-poe(file-size-eis) end-perform

add Ito parse-data<td divide total-file-8 by 500 giving division-value
add Ito filesize-cm remainder division-remainder

end-perform. if division-remainder not -0
subtract I from filestze<nt. compute file-total-bytesize " total-file-8 -
evaluate filesvscM division-remainder

when I move I to bytes-remammgsw
move I to tot-l-cnt else
perform until to-I<na> filesize-cm move total-file-8 to file-total-byte-size

move filesize-pos(tot-I-cnt) to move 0 to bytes-remaining-sw
tot-lyw(tot-l-cm) end-if

add I to tot-l-cm when 9
end-perform move I to tut-9-tnt
move total-file-I to filetoral-bytesize perform until tut-9-cris > filestze<nt

when 2 move filesize-pos(tot-9-ent) to
move I to tot-2-cm: tot-9-pos(tot-9-cm)
perform until tot-2-cm> filesize tnt add I to tot-9-cm

move filesae-pos(tot-2-ent) to end-perform
tot-2-pos(tot-2-cm) divide total-file-9 by 500 giving division-value

add Ito tot-2-cnt remainder division-remainder

273

Appendix A: COBOL Legacy System
if division-remunder not -0

compute file<uul-byte-uze - total-Elle-9 -
division-mnuinda

move I to bytes-remmmng-ew

else
move total-file-9 to file-total-byto-eao
move 0 to bytes-remunmg-ew

md-if
when 10

move 1 to tat10-cnt
perform until tot-IC-cut> file-size-cat

move fileaumpos(tot-I0cm) to
tot- l0-pou(tot-10t; nt)

add Ito toa10-ait
and-perform
divide wail-61m10 by 500 giving division-value

remvnder division-remainder
if division-remunda not "0

compute file-total-byte-size - total-file-10
division-romamda

mow I to bytes-remunmg-sw

else
mow total-Ole-10 to 8Ie-total-byte-uize
move 0 to bytes-remaining-ew

end-if
end-evaluate.

all-tasks-complete-process.
move 0 to eandm-program.
display main-fain.
perform until exit-dm-program -I

accept main-turm on exception continue
evaluate key-statue

when 999
move l to exit-dm-program

when96
evaluate event-type

when emd-close
move Ito exit-den-program

end-evaluate
end-evaluate

end-accept
end-perform.
exit program.

274

Appendix B: HTML Legacy System

Appendix B:

HTML Legacy System

One HTML legacy system, which is named as Weather - ABC News, is regarded as the

modelling example. It is some web pages that present the weather forecast through the
Internet of News of Australian Broadcasting Corporation.

<I
<I-NEWS WEB->
<I-%

c html mim-"hop //wwww3. org/1999/xhtmi" wnl. lang-"cn">
aead>

<ntle>ABC News (Australian Broadcasting Corporation)<lmle>
<mete httpequiv- Content-Type" content-"t ext/html, eharset-so-8859-1" />
<meta name-"Title" content-"ABC News" >
Oink rel-"styleshuct" type. "text/css" hn: f-"/news/style/news. css' media-"screen,
projection" >
Oink rel.. "stylesheet" type" "text/cu' href-"/newalstyle/newsprint css" media="prim" />
<hnk tel-"altenmte" type-"applicanodms+xml" titler"RSS"
href="http //www abc net au/news/mdexea/jusun/rss inn" i

<scnpt type-'text/lavascnpt" are-"/newa/scnpts2007/common js"K/scnpt>
vhcad>

<bod»

<drv id-"wrapper" class-"section">
<drv id-"main" class-"secnon">

<I- Start header ->
<drv id-"mv" class-"nav">
<div id-"newsradio-widget">

<a hrcf "http //www abc. net au/newsradio/">NewsRadio

Now Playing ? span class="onnow">News
Update

Listen. <a hmf "http //wv. w she net au/n mclio/audio/wmplayer htm"
onchck-"return popup(this. hre& 600,250, nrwsradio); ">Win
4 href "http //www she net au/newamdio/audio/realplayer him" onclick-"retum
popup(ttus. hrnf, 600,250, newsradio'), ">Realya>
Vem>
Vspan>
</drv>
<divid="mv 1st" class-"nav">
<drvid-"header" class-header'>
4 href "/newnP>
<ung arc-"/newsIimgt2007/header_logo prig" width-"305" height-"83" border-"0"
alt-"ABC News" />
Vv
Vdw>
<p>

4href-"/news/videc"">Video a>

4 hre. "/news/audioP>Audioga>

<a h "/news/photos/">PhotosVa>
<]span>

 gspan>

4 hrF-"/news/feeds/">Podcavts/RSS
Vspan>
Vspan>
`< d'ý
Vdrv>
<div id-"nav_2nd" class-'nav">
<p>

<a hreF-' /sewsP>News Home<a>
vspan>
<Spanld='njusnn'>

<a href"/news/jusnnl">just In

<spanid="n-ausUaha">
<a hleh"/news/austmliar>Australiaga>

<a bn fi"/news/world/">World<la>

<a hnf "/news/busmess/">Bwinms
-e/span>

<a hn; F-"/news/sportt*>Sport<la>

<a hrefi"/news/entertanment/'>Entertanment

<a href-"/news/weather/*>Weather<Ja>

j

Opinion
Vspan>

Blogs qa>

4p>
4d v>
ddiv>
<I- End header ->

<I--<div id="globalmessegd'>

<drv id="content" class-"section">
<div id="homepage" class="section">
Nov id="headlines' class-"secdon">
<div class-"columns section>
<div class="column2a section" id="topstory>
<div class--"section headline*>

vd, v>
<div class-"column2b section" id""topstories">
<div class="secbon">
<div class-"tabs">
4 hmi="Ttab"topstories" onclick-"return tabLoad(tlus,
'mamTabContent', '/newsAists/topstones/otherstones mc`), ">Top Stones4a></apan>
<a hre "? tabjustin" onclichs"retum tabLoad(this, 'mamTabContent',
'/news/indexes(usnn/fmntpage inc); ">Just ln
<a hmF-"'hab=mostpopular' onclick="retum tabLoad(this, lnainTabContent',
'/news/includes/mostpopulanaones mc), '>Most Populare/a>
</drv>
<div id="mamTabContent">

41 class-"headhne">
Costello says Rudd flaked' on tax
system undentandmg

4mg arc-"/newilang/2007/muu audio gif" width="I l" height="8" alWAudio" D
vmg mr"/new/img/2007/miniahoto gif widths"I l" height-"B" alt-"Photo" A
<1span>

<A> N class-"headlme">
4 hreW/news/smries/2007/09/19/2037955. htm">Cybenpace driving liquid
tenorism'Va>

span class"medta">
4mg arc="/news/img/2007/mini_audio gif' width-' I l' height i" ah'"'Audio" 1

</h>
Qi class-"hadhne">
4 href"/news/stonesI007/09/19/2037944 htm">Police probe Hicks on range of
topuat/a>

4mg snr"/newe/img/2007/mvtivideo gif width 11" height-"8' ah-Video" D

275

Appendix B: HTML Legacy System
<mg snr"/newsfung/2007/mmiphoto gir width="11" height-"8" alt-Photo" A

<Aa
<G clamor"headlme">
4 href; "/news/storiesß007/09119/2037960 htm">Orgamsed come a looming threat to
Aus

<1mg am"/newehmg7007/mori photo gif" width-"11" height&"8" alt="Photo" D
dspan>
<15>
<liclass-"headhne">
<a href-"/new3/stones2007/09/19/2037780. htm">Court hears mother felt 'violated' by
twin conception
VIO
<Iiclass""headhne">
<a href-"/news/stones/2007109/19/2037932 htm">Vic Meets Federal plan to hold back
Murray water, /0

<1mg src-"/news/img/2007/num. photo gif" width="Il"height="8" alt-"Photo"

Vlv
<h class="headlme">
<a hn: f "/news/stones/2007/09/19/2038073 htm">Thai mash investigators say alerts not
all working4N

<1mg erc="/newsPong/2007/mm- video. gif" width "I l' height '8" alt-"Video">
Vmg src-"/news/ung/2007/mim_photo gif" width="l l" height-"8" alt="Photo" />
vspan>
vh>
<Ii class="headhne">
<a href "/news/stories/2007/0 9/1 9/203 8 125. htm">Israel proclaims Gaza Strip enemy
entity-; /a>
</It>
<Ii class""headline">
4 hn: f-"/news/stones/2007/09119/2038080 htm'>Media Watch's Anard to leave
peogmm
<spas class-"meda'>
<1mg src"/newshmg/2007/mmiphoto gif width="11" height="8" alt="Photo" />

</h>
<Ii elass""headlme">
<a href""/news/stones/2007/09/19/2038082 htm">Thurston cleared of dangerous throw
cha'ge

<vmg arc-"/newslmg/2007/mini_video gil width-"11"height="8" ah=*Vjdeo" />
<tmg srcr"/newshmg/20071mimyhoto gif" width-"11" height-' " alt, -: 0'Photo" />
Jsparv
</h>

</dw >
Vdiv>
<dwv class-"aection">
<dwv claaa="tabs2" ids"atattTabs">
<a href-"? state-nsw" onclick="return statcTabLcad('nsw+); "
tale-"New South Wales" id-"t-nsw">NSW4a>Vspan>
<apan><a href-"? state=vic" anchclw return stateTabLoad('vic ," title="Victona"
id=, t-vic">VIC
<a hmf= lstate=gld" onclick="mtum atateTabLoad(gld), " bile="Queensland"
id="t-qld">QLDUspan>
<a href ? atate=wa" oncIick-"retum atateTabLoad(waV; " tnle='Westem
Austnha" id="t-wa">WA
<span<a hnd-"7statewa" onchck="nmun statcTabLoad('sa). " title="South Austmha"
id='t-sa">SA
<a hre "7stateatas" onclick rchsm atateTabLoad(Yas), " title='Tasmama"
id= t-tas">TAS
<a href-"7atatem act" onclick="return stateTabLoad('act), " tale="Australian Capital
Temtory" id="t-as">ACT
<a hrcf""7atate=nt" onclick="retum stateTabLoadfnt); " title-Northern Territory"
id="t-nt">NTVa>
c/drv>
<drv id-"atateContent">
<al>
<h elass="headhne">
<a href-"/news/stories/2 007/09/19/203 8116. htm">Worker says hose float quarantine lax
at auryort

<ung src-"/newsAmga007/mini_audio gif' width-"11" height="8" alt="Audw" />
<ung any"/newahmg/2007/mim photo. gir width=" I l" bcight="B" alt "Photo" D

</h>
<h class<"headhne">
<a h ref-'/newdatones/200 7/09/19/2 03 803 2htm">Dcntal group suspects Govt
withholding waiting list<a>
</h>
<h class="headline">
<a href"/news/stones/2007/09/19/2037980htm">50,000 horse flu vaccinations for
NSW
<h>
<h class-"headhne">
<a href-"/news/stonwl2007/09/19/2037968 htm">Smnh hoping for big support at Eels
game<la>

<mg; anr"/news/ung/2007/mudjshoto gir width-"I V height="8" alt="Photo" />

</h>
<li class='headlme">
<a href-"/news/stones/2007/09/19/2037959 htm">NSW local councils may scrap WorkChoiccs
4h>
<Ii class' headline">
4 href "/news/stones! 2007/09/19/2037954. htm">Qld Police target truckles in drug
bhtz
<Ah>
<h elesaýheadhne">
4 href"/news/stones/2007/09/19/2037930htm">NSW Police investigating 457 visa
cancellationVa>
</h>
0 class headhne">
<a href "Mews/stones/2007/09/19/2037873 htm">Narm faces grilling over chief of staff
comments

</h>
<p>
<a h of /ncwre/mw/defauI htm" chess-"mo >Mor<a>
VP>

Vdiv>
Vdrv>
Vdrv>
</d v>

<I- Start footer ->
<dtv id="footer"class-"section">
<div id="ademap" class-"section">
Qr2>Sne Map</b2>
<div class="group">
43>Sec4ons4h3>

<h><a hn "/news/">News Home, /a></h>

li> ra hmf"/news/jusnnr>Just In<a></h>
<Ii><a hrrf "/news/austmha/ >AustrahaVa></h>
<a hrcW/news/world/">Wodd</h>
<ahref /news/business/">BusmessVa></h>
<h><a href "/news/spoN">SponVa>
<a href-*/news/entertammentr>Entenamment<a></h>
<h><a href "/news/weather/">Weather
<h>Ogmon< h>
<h>Blogs<a>
<h>Tag Library<a><Ai>
<Ii>Archive<a></Ii>
Vui>
</drv>
<div class="group">

h3>Med, a</h3>
<uI>
<%><a hr f="/news/video/">VideoCa>Vh>
<h><ahre "/news/aud, op>AudioVIP
<Ii><a href "/news/photos/">Phoros<Ai>
Vul>
ch3>Subscnbe</h3>

<It><a hn f="/newe/feeds/">PodcastCa>
<h><a href "/news/feeds/rss htm">RSS FeednVa><A, >
Vul>
4ü>Contact Us</h3>

<h><a hn: f6"/newu/contact/">Feedback Fonn</h>
Vul>
</dw>
<div dass-"gmup>

h3>Contnbutevb3>
<ut>
<a href-"/news/upload/">UploadCa></IP
<h>Emad/Mobile
Vul>
Vdrv>
<drv class="group">
Vdrv>
</drv>
<div id="finepnm" class="secnon>
<h2><ung src="http //www she net au/newsrung/2007/footer_abc 1ogo. png" width="121"
height="37" alt="ABC I abc. net au" /></h2>
<p><ttmall>Thhs service may include material from Agence France-Presse (AFP), APTN,
Reuters, AAP, CNN and the BBC World Service which is copyright and cannot be
reproduced. Vsmall></p>
<p><small>AEST - Australian Eastern Standard Time which as 10 hours ahead of UTC
(Greenwich Mean'Rme)Vsmall>Vp>
<p><a href 'http//www abc. net, au/common/copyngh htm">&. copy, 2007 ABC <a
hrcf-"httpl/www abc. net. au/privacy htm">Pnvacy Pohcy</p>
</dtv>
Vdrv>
<scnpt type="text/javascnpt">
<i_
aetvettimestamp -new Date('September 19,2007 22 01.41'),
tenLoadEvento;

</nctipt
<I- End footm -a

</div>
4div>
<Poady>
vbtmI>

<i-WEATHER WEB->
<1
<I

Inml xmins-"httpJ/wwww3. org/1999/xhtml" xml"lang-"en">
aead>
<htle>Weather -ABC Newa (Australian Broadcasting Corporation)</title
<meta hapequiv-"Content-Type" tontent-"text/html, charset-iso-8859-1" />
<meta tame-Title" content="Weather" />
<hnk eel-"styleaheet" type-"textIe s" hreW/newa/style/nem. eaa" media-"screen,
projection" /
clink rel-"styleaheet" type-"ted/css" hrn "/newn/style/news-print ese" media="print" />
<Scnpt type-" text/javascnpt" arc-"/news/acnpts/2007/common. 3a"></script>
</head>
<body>
<I-ABC nav: Global Nav - XHTML, no imported styles ->
<div ids"gN Nav">
<drv id-"gN ahgn">
<fotm acuon="httpl/search abc net au/search/search cgi" method="get" id-"gN form'
target"""-top">
<input type-"hidden" name-"form" value-"simple` />
<tnput type""hidden" name-"sum-ranks" value-20' I>
<tnput type-"hidden" eame='bollecnon" value"""abcall" D

276

Appendix B: HTML Legacy System
--label fbr-"SN_qucry-, <a
hrel; Tttp"//aearcb abe net aa/aearc&ae rch. eVTco118ctionabcall&, form-ample"
target" top'>Search the ABCVl><Aabel>
4nput type-"text' id-"gN_query' name-"query" value-"" sux-"20" maxlength-"30" D
4nput type-"submit' id""gN_mbmit" value-" Search the ABC " title-"Search the ABC"

u/fomv
<p id-%N text"><a id-'gN home" href""http //www abc net nur
tuga""' top">ABC&nbap, HomeVa> I Vspan><a ids"gN_ ad, o" clan-"pipe"
hreß'httpl/www. abe. aet. au/radior target top">Radioc/a> I <a
rd-"gN tv' class-"pipe' hlef "http //www abe net au/tv/"
targct""_tep">Televiaien I Vapan>4 id-'gN_newa' claw-pipe"
href'httpJ/wwwabe. net au/newel' target-" top">Newe I Vapan>4
id-"&N more" class-"Pipe" hreF"http"//wwwabcnet. au/abjaro. htm"
target-"_top">More&nbap, Sub/ecru&N8230; Va><apan> I Vapann><a ids"gN shop"
href; "http//chop abe. net. au/" teiget.. " top">ShopVp>
</div>
Vdrv>
<I- end ABC nav, ->

<drv id-"wrapper" clan-"saUon">
<div id-"min* class-"iecdon">
<I- Start header ->
<div id-"nav" clan. "nav">
<div id-"newendio-widget">

<stmng>
<a hn: l; "httpJ/www abc net au/newsrathar>NewiRadio<h>
<hnung>

<spin id-'newsradio-widget-nowplaying">
Now Playing ? span class-"onnow">BBC Newa Hww. pan>

vepnn>

Lu[a: 4 pref. "http //www abe. net au/newsredio/audw�wmplayer htm"

oncIick-"return popup(thu hret; 600,250, %cwsndio), ">Wm
<a hn. f-"http /Avww abe net au/newsradio/audiohoalplayer htm" onchcl-"return
popup(dus. hret; 600,250, ' aewsradso); ">Ral
Vem>
vspw
vdiv>
<drv id-"oav I rt" claaWnav">
<div id-"header" class-"hader">
4 hrel; "/newsr>
<img srr"/news/img/2007/header Togo png" width-"305" height-"83" border-"0"

alt-"ABC News" />
VV
vdiv>
<p>

4 href /new&Mded">Ydeo<a>
vspan>

<a hn: f-"/news/audioPbAudsoya>

<a href-"/news/photosT>Photos

j</span

4 hret="/news/feeds/">Podcasta/RSS
vspan>

up>
vdiv>
<div id-"nav 2nd" class-"nav">
<p>
<spanid-"n-newshomc'>
<a hoof""/ncwnP>News Home
Vspan>

<a href "/news/jusnn('>3ust In<a>

<a hre! '"/newa/australia/>Australia
<hpan>
Vpan id-"n-world">
4 hn: E-"/news/world/">Worldga>
<span

4 hn "/news/busmasr>Busmas

<a hr#"/news/sportP>Sport<h>

<a href "/news/enteetamment/">Entertamment

<spaa id-'n-wather">
<a heef /newilwatherr>Weather

-span class-"sepantor">Ivspan>

4 hrefl""/news/opmionr'>Opuuon<V

<a hz"/news/blogs/">Blogs

vp>
vdiv>
</div>
<I- End header ->

<div id=iubheader" class-"had"">
ml>Wcathcr</hl>
Vdly>
<div id="nav 3rd' clean"nav">

<spsn cla-" cuve"xa hrcf-"/ncws/wathed">Wathcr Honwgi> ! pan>
<spav<a href-" newslwather/nsw/">NSW /ACT</ax/span>
<a hx f. hcws/wathcr/vicr>VICVa>Vspan>
<& hn; P="/news/wather/gld/>QLDNax/span>
<spanxa hlnf-"/news/wather/wa/">WANV
<* hn f-"hicws/wather/sa/ >SAVa>Vspan>
<* hn "/news/washedtas/ >TASVa>4epad
Vpa ><a hn: ß"/ncwswcntha/nM'>NT4aX4spW

vmv>

<I--<drv id-"plobalme age">ydiv>->

<div id="content" class- echon">
<div ids"homcpagc" claau- iccuon">
<div id-"headlines" chus-"section">
<$cnpt typr'tcxt/java=cnpt">
q_
function thowVideoWeather) (

thowVideo('h ewdtesta/vidco_weathedmediarss., md',
document gctElementByld(anchor')),

return true;
}

</acnpt>
<div clas. "taba>
<a href "? tabsatelhte" onchck-"return tabL. oad(thm.
rvwthaTabContent', 'Avearherfeeluda/aua am v2. incý; ">Satellrte</rpan>
<a href='? tab-synoptic" onclick-"return tabLoad(dus, weatharTabContcnt',
'/weather/mcludea/nat_tyn_commentary

_v2
incj, >Synopne</t>Vapan>

<a hre&"'hab-radar" onclick. "retum tabLoed(this, rveatherTabContent',
'/news/weathafincludes/radarhtmj, ">Radar
vpan><a hn: f="Rab video" oncIick-"return tabLoad(thu, 'weathe TabContcnt',
'/news/weather/meludes/video. htm', showVideoWeather); ">Video</span
vdiv>
<div id-"west crTabCootcre>

<div id-"weathcrMap>4mg width-360" height-'288" alt-"Satellite image. National
Tue 1000 pm EST" arcs"/weather/img/web_sat_am_lateat jpg"
id-"atatesatimage">4a></h2>
<p>Tue'O 00 pm EST/p>
<p>Scattcred cloud is creasing southwest WA with a cold front, bringing a burst of
moderate shower,. Cloud is forming over SA ahead of a trough, but is only causing the
odd shower and storm due to dry wann northerly winds. Mostly clear elsewhere under a
broad area of high prenamo. </p>
-1/dtv>

ydav>
<div id-"auuapciua' classm"scction">
m2>Caprtal City FmecasK/h2>
<div cleeW"columns scchon'>
<div claaew"column2a coction">
<dtv cleaWaccuou">
<table><hablc>
Vdrv>
<Idiv>
<div claw-"columu2b satiou">
<drv clear"swuon>
4able><hablc>
</div>
</div>

Vdiv>
<div id-"ausmmmaxuam" class-"section">
4WDYcstcrda)'s TempereturcVh2>
<table>
ttr>
<th>Mmimum. c >
<WCbarlotte Pass, NSW<h4>
ad>-6.0°C<M

ar>
<th>Mawmum. <kh>
<td>Caps Nelson, VIC</nl>
<td>51 2'CV[d>
</U>
vtablc>

<Idiv>
<div id-"world-city-lday" clan-"eection">
42>Intemathonal Centres</b2>
<table class-"zebn">
<thead>
<V>
<lb clav-"wmty">Centreyth>
<th class-"wfcaffi">Forccast h>
<tb clasi-"wnun'>MieVth>
<6 class-"wmax">Max<Ah>

Vtbead
<tbody>
<tr slaw-"ro">
<td clan-"wcrty">Beijmg Chma</tcl>
<Id class-"wfcest">Moderate n <Ac>
<td class-"wmfn"> 16<M>
<td clama-"wmex">23 Vtd>
<1h>
<trcless-"rl">
Rd class-"wcny>Bewt, lcbanoe</td
Qd dass-'wfcast >Sunny. "
vdclase % m">25Vtd>
qd class-"wmax>351hA
<Rr>
<U clna-"N">
Qd class-"wcnyxaro, Eayp«d>
<td class-"wfcast">Pertly cloudy<M
4d clau-"wmm">2l<hd>

277

Appendix B: HTML Legacy System
<td class-"wmax">31<4td>
-hr>
<tr class-"rl ">
-ad clas. wcity">blamabad, Pakisun<Rd>
<td elms-"wfwt">Pardy cloudycltA
<td class-"wmm">2I<kd>
<td clus-"wmax">36</td)
<IV>
<tr class-"r0">
4d class-"wcity">Jakana, IndonesuNt*
<td class-"wßart">Ram<hd>
<td classl'wmm">24<hd>
<td class-"wmax'>32<kd>
<hr>
<tr class-"rl">
<td class-"wcity">JemsaIcm, lsnclVtd>
<td dass-"wfca t">Fair</td>
<td class-"wmm'>21<hd>
<td class-"wmax">29<Itd>
<t>
<tr claas-"rO">
<td class-"wcity">Johanneaburg, South ABica</td>
<td class-"wfcart">Fme</td
<td class-'wmin'>IO<Ad>
<td class-"wmax >29<hd>
</I>
pr class-"r1">
<td class-"wcity">Kuala Lumpur, Malaysia</td>
<td class-"wfcast">Thundentom ; </td>
<Id class-'wmm">24<Rd>
<td class-'wmax">32<hd>
<14>
<tr class-"A'>
<td class-"weity">London, United Kingdom<AA
<td class-"wfcast">Sunny<AA
<td class-"wmm">IO</Id>
<id class-"wmax"> 16<f4>
<Ar>
<tr class-"rl">
<td class-'wcity">Los Angeles, United States<hd>
<td class-w@ast'>Pattly cloudy</td>
<td class-"wmm"> I S<hd>
<td class-"wmax">24ytd>
<Ar>
<tr clauu r0">
<td class-"wcrty">Moscow, Russuptd>
<Id class-" wfcast'>Ovicecast ram<M>
<td class-"wmm">7</A
<td class-"wmax">16</tA
<At>
<tr class-"rl">
<td class-"wcity'>New Delhi, lndu</A
<td class-'wkast">Thundentonn<hd>
<td class-'wmu">25</t4
ad class-"wmax'>36</td>
<AP
<1r Class-"rO">

<td class-"wcny">New York, United Statcs<hd>
<td class-"wfcast">Sunny<hd>
<td class-'wmin">l l<Ad>
<td class-"wmax>23</td
< t>
<trclass-"rl">
<rd class-'wcity">Paris, Fnma<Jtd>
ad claaa-"wfcast">Scattetcd showem</td'
<td class-'wmin >IOc d>
ad dass-"wmaa"> 15
<Ar>
<trclass-"t0'>
<td class-'wcrty">Port Moresby, Papua New Gumea<hd>
<td class-'w@ast*>Possible showerQt4>
<td class-"wmin">24<M >
<td class-"wmax">29<RA
<hr>
<tr clasp' rl">
<td class-'wcny">Rjo de Janeiro, Bnal<hd>
<id class-"wfcast'>Clcanng showcK/td>
<td class-"wmm'>lg<hd>
lad class-"wma t">25<A0
</V>
<tr class-"N">
<td class-"wcity">Romo, Italyytd>
<td class-"wfcaet">Rain<hd>
<td class-"wmin'>20<hd>
<td class-"wmax">27<hd>

<tr clads-"rl">
<td class-"wctty">Tokyo, Japan<hd>
<td class-"wfeaet">Fme becoming eloudy<cd
<td class-"wmm">26<hd>
lad class-"wmax'>32<Ad>

ar claas-'ro">
<rd clash ' wcny">Wellington, New Zealande d>
<td class-"wfcast">Showen<hd>
<Id class-"wmin">7 cM>
<td class-"wmax">l6<hd>
<14>
<Rbody>
</table>

</drv>
</drvh
<div id="tools" clot-"iccuon*>
<dtv class-"secuon search' xWscuab'>
ßDSearth for news<Po2>
<form ecuar"MUp. /heuch she net su/mucWsearcb egi" method-t"gct" name-"simple">
<input ypc tcxt* clan-"text" name-"query' value-"' tar"15' A
<input type-"hidden" name-"collection" value-"alicnews" f>
Input typ"hiddrn" name-"form" value-"news" P.

< input typr9udden" muhe-"num nnln" value-"20" D
<button typr"subm t">Search</button>

vfonn>

vmv>

</div>
</div>
</div>
<I- Start footer -. >
<div id-"footer" class-"section">
<div id-ntemap" class='secnon^>
4i2>Sae Map</h2>
<div class group">
4i3>Suctions<lh3>

<h><a href-"/news/">News Home qa></h>
<h><a hmf ^/news/jushnl">lust InVa><lb>
<h><a hmf "/news/ausualia/">Austraha< a></h>
<a hrcf /nevn/worldl'>World<h></h>
<It><& hmf-"/news/busmeso/ >BusmessVa><At>
<h><& href"/news/nport/">Spoct
<h><& href-"/news/entenamnrent/'>Ente 1anunem<AP
<h><* hn: ß'/news/weatherP'>Weathet</h>
40a hreP^'/ncwslopmiowl >Opmmon</h>
<It><& href '/newslblogs/'>Blogs
<h>ca href "/newdtag/">Tag Libraryga><h>
<It><& href`"/news/archrveP>Arvhne<Ai>
</ub
</div>
<div class-"group">
vb3>Medut</h3>

<h><ahref /news/video/">Ydeo
<h><a hrcf /news/audto/^>Audio<h><AA
<h><a hreW/news/photos/">Pbotoa ga><Ai>

h3>Subscnbe</h3>

<h><a href-"/news/feedsl">Podcasts</ax/Ii>
Qi><a href&"/news/feeds/rss. hun >RSS Feeds<Al>

r 3>Contact Usvb3>

<It><& hfe("/news/contactP>Feedback Form</h>
</ui>
</div>
<div clase-"group">
4ü>Contnbutc<h3>
<ut>
<h><a href-"/news/uploadr>Upload</h>
4J<a href "/news/upload send htm">EmaitMobde<h><Ai>

</div>
<div clues-"group">
</div>

</dtv>
<div id-'6nepnnt" class-"secnon">
<h2><img srcc"http //www. abc net au/newahmg/2007/footer_abclogo ling" width-"121"
height"37" alt-"ABC I abc. net au" l></h2>
<p><amall>This service may include material from Agence France-Presse (AFP), APTN,
Reuters. AAP, CNN and the BBC World Service which is copyright and cannot be
reproduced. </small></p>
<p><small>AEST a Australian Eastern Standard Tune which is 10 hours ahead of UTC
(Greenwich Mean Tune), /small></p>
<p><a hrcWhttpl/wwwabcnetaulcommon/eopyngh. htm'>©, 2007 ABC <a
bref-'hopJ/www ebe net au/p v cy htm">Privacy Pohey e i>
</div>
</div>
<script type-"textlavascript">
<I-
eorvertimesnmp -new Date('September 19,2007 23.53: 10');
tunLoadEvento;

</seript>
<I- End footer -->

</div>
Vdrv>
</body>
<AMI>

<I <I
<I--NSW WEB-. >
<1
<1

<html xmins-fittpl/www w3 org/1999/xhtml" xml9aneen">
<bead>
<tnle>Weather " New South Wales - ABC News (Aumahan Broadcasting
Coryoreaon)<Jbtle>
<meta httpequ- -"Content-Type^ content texvhtml. char etwso-k859-1"n
<meta name-ride content=Weather - New South Wales" D
, link rel-"stylesheet" type="text/as" href-"/new%Istyldnews as" medu-"scran,
projection" />
<link rel-"atylesheet" typea"textJat" hreF /news/style/news-pnnt. css" nwdia-"print" h
<script typr"tc%t avascnpt" srP"/news/tcnpts/2007/commonjd'x/script>
</had>

<bod»
<I- ABC nay Global Nav - XHTML, no imported styles -> <div id-"gN Nav">
<div id-"gN align">
<form action-"httpJ/aench abe net au/search/scauch cgt" method' get" id-"gN form"

<input type-"hidden" namc-"form" value. -simple"
<input typWhidden" name-"num renke" value-"20" />
<input type hidden" name-"collection" value-abcall" />

278

Appendix B: HTML Legacy System
<label for-"gN_query"><a
href"http"//search abc att. au/search/search. egi? collcchon-abcall&, fonnsimplc"
target=" tap">Search the ABC</Iabel>

<input type-'text" id-"gN_query" Hamer"query" vatuc size-"20" maxlength="30" D
<input type-"submd" ids"gN submM value=" Search the ABC " title-"Search the ABC"
n
vfomv
<p zd="gN text"><a id-"gN_home" hro1="http. //www abe net au/U
target _top">ABC , Home I <a ld="gN_radto" class-"pipe"
href "http //rn abc net au/radior target-' top">Radho I <a
ida"gN tv" class-"pipe" href-'Tttp //rn she net aufv/"
talget- _top">Television</s> I <a id="gN_news" class="p, pe"
href "httpJ/wwwabe net aa/news/" target="_top">Newa I <Japan><a
id="gN morc" class="pipe" href-"httpJ/www abc net. au/subjects him"
talget-"_top'>More , Sub/eels&08230, I <a id-"gN shop"
hrefs"http //shop abc. net au/" target-" top">Shop</p>

<Miv>
</m. >
<I- end ABC nav ->

<div id="wrapper" class="secuon">
<div id-"main" class="seedon">
<I- Start header ->
<div id="nav" class="nav">
<div td="newaradio-widget">

<a href "http //www abc net au/newsradio/">NewsRadio4a>
dstrong>
vspan>

Now Playing 7span class-"onnow">ABC PM Features

lunen: <a hrnf "http //www abc net au/ newsradio/audto/winplayer htm"
onclick" return popup(this href, 600,250, 'newsradio), ">Wm
<a href"http //www abc net au/newsrsdio/audio/realplayer htm" onclick""return
popup(this href 600,250, 'newsradid), ">Real

<Japan>
</div>
<divid""nav_lst class-"nav">
<div id""header" class-"header">
4 href "/newsP>
<img arc. "/newshmg/2007/header_logo peg" width="305" height="83" border="0"
alt-"ABC Newa" /

vdiv>
<p>
<spinid-"a-vsdeo">
<a hn: f-"/newsMdeo/">Ydeo<Ja>
vapan>
<spanid="n-aud, o">
Audw

<a hrcf-"/news/photoar>Photoa

j

4 hmf="/news/feeds/">Podcasts/RSSUa>

</P>

<div id-"nav 2nd" class="nav">
<p>

<a hreh"/newal">Newa Home<a>
</span

<a hre ""/newa/justiw'>JustInya>

4 href "/news/auaualiaP'>Australia
, /span>

4 hmf-"/newa/worldl">World
Vspan>

<a href-"/newa/busmessr>Busmeas

<a hn "/ncws/aport/>Sport<a>

<a hnf "/news/entertammentP'>Entertauunent
vapan>

4 hrtf-"/news/weather/">Weather<a>

j

4 hnef-"/newa/opimon/>Optmon<1a>
</apan>

<a href-"Inews/blogs/">Blogs

vdrv>
</div>
<I- End header -. >

<drvid="nav_3rd"class. "nav">

<a hrcf-"/news/weather/*>Weather Home</ax/span>
(ahreW/news/weather/nswr>NSW /ACTVa>Vspan>
<a hreh"/ncws/weather/vic/"> V ICNspan>
<a hn: fr"/news/weather/gld/">QLDUa>x/span>
<a hre-"/news/weather/wa/*>WA< a>
xa href="/news/weather/sa/">SA
<a href-"/news/weather/tas/'>TAS
Vpan><ahref /news/weather/nt/">NTda>Vspan>
ciy
Vdrv>

<I--<div id="globalmessage">
</div>-->
<div id="content" clue="secnon">
<div id="homepage" class="section">
<div id="headlines" class-"section">
<div id""sat-stau-latest" class="secnon">
<div sd="weatherMap"><img width="360" height="288" alt="Satellite image. NSW Wed
goo pm EST" src="/weatherhmg/web aat_ce nsw lateatipg"
id="statesanmage"> 1t2>New South Wales</b2>
<p>Wed? 00 pm EST</p>
<p>A band of cloud is crossmg NSW ahead of a trough, causing showers to develop to the
south There is the odd lightning stoke amongst this cloud in the northwest but with next
to no ram due to hot, dry northerlies. Mostly clear in the northeast under a ridge of high
pressure. Vp>
</div>

Vdiv>
<div id-"statewam" class-"aecnon">
<div class-"wwammg">
<b3>Coastal wind warmng</h3>
<p elassýwissued">lssued at 19 03PM on Wednesday 19 September 2007</p>
<p>Gale force Wind Warning from Gabe Island to Wool. Strong Wind Warning extends
north to Tweed Heads </p>
Vdw>
<div class="wwammg">
4ü>Fire weather wammg</h3>
<p classes"wissued">Issued at 16.2OPM on Wednesday 19 September 2007</p>
<p>Toeal Fire Ban for the Far North Coast for Tbursday. <lp>
vdiv>
<div class "wwammg">

QLi>Severe weather wamnlg</63>

<p classy"wusued">lssued at 17.11PM on Wednesday 19 September 20074p>
<p>Severe Weather Warning for Hazardous Winds for Alpine Areas Of Southern
Tablelands, ACT &, Southwest Slopes Above 1900 Metres </p>
<1dwv>

<Idiv>
<dre 1d"Btatecmnlea" clau&'seetlon">
<h2>State Centres Forecast</h2>
<dry class="columns sectton">
<div class="column2a sectton">
<dtv class="section">
<table>
<tr>
<td class="aucity">
m3>Albuty</h3>
<p>Cleanng shower</p>

<td clans="autemp">
<p>8</span - I7</p>
</tA
<td>4mg width="30" he, ght="30" srt "/wentherlcons/clearing_shower_sm. giF
alt="Cleanng shower"x/td>
<hr>
<U>
<td class="aucity">
Qh >Bega<3>
<p>Showers</p>

<Id class="autemp">
<p 7 - 17</p>

<td><img width="30" height="30' aro="/weather/cons/showeo sm gif"
alt-"Showers"><td>
<hr>
<tr>
<td class="aucay'>
-43>Broken Hdl</h3>
<p>Mostly mmny</p>
<Ad>
<td class="autemp">
<p 8</span - 20gspanx/p>
<Rd>
<tA<img width="30" height="30" arc="/weather(icons/mostly_sunny_sm. gif"
alt="Mostly sunny"><Ad>
</u>
<tr>
<Id class="aucity">
4h >Canbetra</h3>
<p>Showers</p>
<Ad>
<td class="autemp">
<p>4</span - I5</p>
<Ad>
<td><img width-"30" height="30" src-"/weatherficons/showers sm gif'
ass"Showces">cMv

<tr>
4d class="aucity">

ß3>Coffs Haftur</h3>
<p>MosIy sunny</p>

<14 class-"autemp">
<p>I2dspan> - <spaa class-"max">26</p>
<Ad>

<div id-"mbheader" cleeWhcader">
ml>Weather</hl>
<Idiv>

Rd 4mg width-"30" height-"30" srcr"/weathmfiaons/mocty_. unny_em gir
alt'. "Mostly sunny"> *

279

Appendix B: HTML Legacy System
<tr>
<td class-"wcity">

b3>DubboCh3>
<p>Mostly sunny<lp>
<Ad>
<td class-"autemp'>
<p>a - I 8Vp>
<hd>
<td <img width-"30" height="30" arc-"/weatherficons/mostly_sunny_sm gat'
alt-"Mostly sunny'><hA
<At>
<tr>
<td class-"aumty">
<h3>Lismorc</h3>
<p>Mostly sunny<lp>
<hd>
<td class-"autemp">
<p>l I - 3I</spsn></p>
</Id>
<td <img width-"30" height="30" src-"/weatheJicons/mostly_sunny_sm. gir
aha"Mostly sunny--, Ad>
<hr>
</table>
<ldiv>
<ldiv>
<div class-"column2b section">
<drv class-"section">
<tabic>
<tr>
<td class-"wcny">
Q3>Newcastle<Th3>
<p>Windy with showendp>
<hd>
<td class-"auutemp'>
<p>13-tspan> - 23</p>
<hm
<td><img width-"30" height-"30" stc-'/weather/icons/windy_with_showers_sm gir
alt-"Wmdy with showers> Ad

<tr>
<td dass-"aucny">
4ü>Otangc</b3>
<p>ShoweroVp>
</Id>
<td class-"autemp">
<p>S - l l</p>
</tm
<td><img width-"30" height-"30" src /weathedcons/showcrs sm gif"
alt-"Showen"><hd>
<AP
<tr>
<td class-"wcny">
th3>Sydney</h3>
<p>Windy with showers</p>

<td class-'wtemp">
<p>I4 - 21</p>
</td>
<td><img width-"30" height'-"30" arc-"/weather/icons/windy_with_showers sm gif
alt-"Wordy with showers"></td>
</tr>
<tr>
<td class-"aucny">
40>Tamworth</lü>
<p>Mostly sunny /p>
</td>
<td class="autemp">
<p> cspan class-"mm">IO - 21Uspan><Ip>
<Ad
<td><img width-"30" height-"30" src- /weather/icons/mostly_sunny_em gir
alt-"Mostly sunny"><hd>
</tr>
<tr>
<td class-'wcity
43>Wagga Wagga<N3>
<p>Cleanng shower</p>
<hd>
<td class-"autemp">
<p>6 - 11<lspan></p>
<hm
<td> mg width="30" height-"30" arc-"/weather/icont/cleanng_shower_sm gir
ah-"CIcanng shower">qtd>

<U>
<td class-"auch' >
m3>Wollongong<flü>
<p>Showen</p>
</tA
<td claw-"autcmp">
<p>12 - 19<4span></p>
<RA
<td><4mg width-"30" height-"30" am-"/weathedhconshhowen sm gi
alt-"Shower"x/N>
<hr>
</table>
Vdiv>
</drv>

chv>
<div id"state4day class-"aechon">
ß7>Fau Day OuUook</b2>
<tabla>
ahaad>
<tr>
<th>Wcdncadayciüv
<th>ThuredayNtb>
cth>Fnday<hh>
<UVSat rdayVth>

ýAhavb
<tbody>

<U> <U>Wnrmer northerly winds. Very warm in west A cooler change with showers in west
and south <R&-
<td>Cool change spreading throughout Wet and windy in the southeast. <Ad>
<td>Mosdy sunny throughout after a cold morning. Possible shower along the Hunter
coast VIA
<ld>LigM showers possible on coast Mostly sunny inland. Warm northeasterlies in west.
<Ad>

<hbody>
<hable>

vdiw
<div id-"stateminmaxlain" class-"se tion">
m]>Yesterday's Tempaature<lb2>
<table>
<tr>
<th>Mmimum: <Rh>
Vd>Cooms, NSW<hd>
< -2.0°CG[d

<v>
<th>Maxwmum <Ah>
<td>Wanaafin8, NSWdtd>
<td>35.0°C4td>
Utr>
</Iable>

</div>
<div id-"StateCoastalWaters" class"secnon">

h2>Conslal Watm<A2>
<h3>Canberra Lakes</h3>
<p>Northwesterly 251351mdh. </p>
43>Far North Coastvh3>

<p>Wednesday: N/NE 10/15 knots <, p>, Thursday N/NW 15/20 knots, increasing to
25/30 knots during afternoon ahead of a late S/SW change 25/33 knots. Sea: Up to 3.0
in Swell. Up to 20 mVp>
<h3>Hunter Waters</h3>
<p>Wednesday: N/NE 10/15 knots, reaching 20/25 knots later&h, p>, Thumday. N/NW
20/25 knots, mweasmg to 25/30 knots ahead an afternoon or evening S/SW change 30/40
knots. Sea: Up to 4.0 in Swell: Up to 2,0 m</p>
<h3>IllawarraVh3>
<pWednesday N/NE 10/15 knots, reaching 20/25 knots later&h, p>, Thursday: N/NW
20/25 knots, increasing to 25/30 knots ahead of a S/SW change 30/40 knots during the
morning. Isolated thunderstorms. Sea: Up to 4.0 in Swell: Up to 2.0 m</p>
<b3>hhd North Coast</h3>
<p>Wednesday: N/NE 10/1S knots increasing to 15/20 knots offshore and in the south
later<, p>, Thursday N/NW 15/20 knots, increasing to 25/30 Irrots ahead of an
afternoon or evening S/SW change 30/40 Irrots. Sm Up to 40m Swell- Up to 20 m</p>
43>South Coast</h3>
<p>Wednesday NW/NE 25/30 Irrots chiefly offshore ahead of S/SW 30/40 knots change
later <, p>, Thursday S/SW 30/40 knots, easing to 20/25 knots later. Sea, Up to 4.0
in Swell: Up to 2.0 nsgp>
Cü>Sydney Inshora</h3>
<p>Wednesday: NE 10/15 knots, reaching 15/20 knots later. <, p>, Thursday. N/NW
25/30 knots, ahead of a S/SW change 30/40 knots by the afternoon. Sea Up to 1.0
m </p>
<h3>Sydney OffshoreVh3>
<p>Wednesday N/NE 10/15 knots, reaching 20/25 knots later&It, p>, Thursday: N/NE
20/25 knots, strengthening to 25/30 knots ahead of a S/SW change 30/40 knots during the
late morning or early a&ernoon. Isolated thunderstom s. Sea, Up to 4.0 in Swell: Up to
20m</p>

</dlv>

</div>
<div id="tools" class-"section">
<dtv class="section search" zd="search">
<b2>Search for news<1i2
<form scuon="httpi/search abc net au/search/search cgi" method-"get' name-"simple'>
<input type-"text" class="tcxt name-"query" value="" sue=" 15" />
<input type="ludden" name-"collection" value="abcnews" />
<input type-"hidden" name-"form" value="news" />
<input type="hidden" name"num_ranks" value="20" A
<button type="submit">Search</button>
</form>
</div>

vmv>
vdiv>
vmv>
a_ Start footer ->
<div id="footer" class sectioa">
<div ide"sitemap" class="secnon">
42>Site Map</h2>
<div class="group">
Qü>Secnom, W>
<u1>
<h>News Home
<h><a hrvfr /news//ueun/">bust ln</h>
<a hrels"/news/austrahal">Austraha</h>
<a href-"/news/worldr>World</h>
<h>4 hret-"/news/busmess/">Busmess4a>Ni>
<h><a hreta"/eews/sport/">Sport</h>
<h>Entertammentga>Ni>
4i><a href-"/news/weatherr>Weathere/a>
<h>OpimoiVa></h>
<a hre>="/newsblogsP'>Blogseta></h>
4r><a hmf-"/newshag/">Tag Libmry<la><Ai>
<h><a href6"/news/arcluve/">Archive
</id>
Vdrv>
<dtv clan group">
m3>Media<4h3>

4i><abref "/newahadeoN>Vtdeo</h>
4t><a hmf'"/newa/audrtf>Audio</h>

h><a href-' /news/photos/">Phaus<Al>
4ul>
Qh3>Subscnbe</13>

280

Appendix B: HTML Legacy System

<a href /news/f cds/ >Podwn</10
4i><a hreF"/news/feeds/rss htnm">RSS FeedseIb>

b3>Contaet Us</h3>

Qi><%href="/news/contact/">Fecdback Fonngh>
<tul>
</div>
<div class-"group">
43>Contnbute</h3>

Qp<a href-"/news/uploadr>Upload</h>
<a href-"/news/upload/send htm">EmaiVMobde

</d. v>
<div class-"group">
</div>
</div>
<div id-"finepnm" class-"section">
<h2><img arc"http: //www abc net au/newsfimg2007/footer_abc_togo. png" width-"121"
height-"37" ah-"ABC I she net au" /></h2>
<p><small>Tlus service may include material from Agence France-Presse (AFP). APTN,
Reuters, AAP, CNN and the BBC World Service which is copyright and cannot be

reproduced </amell></p>
<p><small>AEST - Australian Eastern Standard Time which is 10 hours ahead of UTC
(Greenwich Mean Time)</small></p>
<p><a href-"http"//www. abc net au/common/copyngh btm">©, 2007 ABC <a
href"http"//www abc. nct. au/pnvacy htm">Pnvacy PohcyUa></p>
Vdiv>
</dav>
<scnpt type-"text/javascript">
<I-

aerverumestamp -new Date('September 19,2007 2155: 30);
nmLoadEventü;

Vacript>
<I- End footer ->

Wdiv>
4div>
<ibndy>
vhtml>

a-VIC WEB- >

<1

4uml xmlm-"http //wwww3. org/l999/xhtml" xml lang-" en">
<head>
<titlerWeacher - Victoria -ABC News (Australian Broadcasting Corponuion)<hnle>
<mets hupequiv""Content-Type" content="tezt/html; charset-iso-8859-1" />
<mets nameWTitle" content-'Westher - Victoria" />
<link rel="stylesheet" type "text/css" hreta"/news/style/news. csa" media="screen,
projection"/>
, link rel-"stylesheet" type-"text/css" hndm"/news/etyle/newspnnt ess" media-"punt" />
<script type-"teN/avascript" arc-"/news/scnpts/2007/common js"></script>
<ibead>
<body>
<I- ABC eav: Global Nav - XHTML, no imported styles ->
<drv id-"gN Nav">
<div id-"gN_align">
<form action' http //search abe net au/search/search. egi" method-'get" id="gN form"
target---top">
<input type-"hidden" name="form" value="simple" P
<input type="hidden" name="rum ranks" value"20" />
<Input type-"hidden" name"-collection" value="abcall" p
<label for="gN_quety"><a
href "http //search abc net au/search/search cgitcollection-abcall&, form-simple"
target-" top">Search the ABC</Iabel>
<input type=tcXt" id="gN_query" name="query" value"" size-"20" maxlength-"30" A
<input type-"subm. t" id-"gN submit" value=" Search the ABC " title="Search the ABC`
n
<'form>
<p sd'"BN_text"><a id="gN_home" hreWhttp //www abc. net au/"
target=" top">ABC , Home4a> I <a id-"gN_radso" class-"pipe"
hný'"http //www. abc. net au/radid" target=" top">Radioe a><spa >I 4span><a
id-"gN ttv' class-"Pipe" hrefi"httpJ/www abc. net auhv/"
target=" top">TelevuionVa> I <a id-"&N news" class-"pipe"
href="http! /www she net au/news" taget= . top">News I <a
id="gN morc" class="pipe" href "httpJ/www abe net au/subject him*
target="_top">More , Subjectsti8230, I </spanxa id="9N shop"
href "http //shop she act an/" talget="top">Shop</p>
</dsv>

<l_ end ABC nav a

<div id="wrapper" class-"section">
<drv id-"mun" dass-"sechon">
<I-- Start header .>
<div id-"mv" clm""nav">
<dtv td="newsnadto-widget">

<SU, Dng>
<a href-"http: //www abc net au/newsradto/">NewsRadio<a>

Now Playing.? span thus-"onnow">ABC PM
Featurcs4span>

span td="newsradio-widget-listen">
Ltsten: <a heef httpi/www. abc net adnewsradtdaudto/wmptayer him"
ochck="return POPup(thu href 600,250, 'oewatadio), ">W14y
<a hr'"httP //www abe net au/newsradte/tudto/realplayer him" onclick="return
popup(thu href 600,250,1n ewsradw'), ">Real<a>
<lenm>

</(V>
<div id="nav lat" class="nav">
<drv id="header" clasa=üeade? >
<a hreF-"/news/>

amg src /news/img/2D07/headerIogo prig" width ""305" height="83' border. ""0"
ah="ABC News" D
<a>
<Idiv>
<p>

Ydeo<Ja>

<spanid="n-audio">
Audso
</spa. >

<a hrn '/news/photos/>Photos

j
<spanid="n-feeds">
PodcasWRSS

</p>
</drv>
<drvid-"nav_2nd"class""nav">
<p>

<a hre1="/news/">News HomeCa>

Just In

<spanid="n-austraha">
Ausiiahada>

V hmf"/news/worldP'>World

<, pan id-"a-business">
<a href"" /aews/busmesa/ >Busmess<a>
Vspan>

<a hnf"/news/spostf >S port

<a hn: t="Mews/entertawnent/">Entertainment
vspan>

<ahn: fa"/news/weathed">Weather

j

<a href-"/news/opmsoni">Op inion

<spansd-"n-blogs">
<a href"/aews/blogs/">Blogs<a>
/span

</drv>
vdiv>
<I- End header ->

<div id="subheader" class="header">
cb1>Wenther</hl>
Vdiv>
<dwvld="nav 3rd" class-"nav">
ý> -
<spnNV hrcf "/news/weathcrP>Weather Home
<spanxa href="/news/weather/nswl">NSW / ACT
<a href-"/news/weather/vid">VICG/spen>
<spsn><a brtF"/news/weather/gldP'>QLIXIa></spen>
<spanxphref /news/weather/wa/">WA
<spa ahrcf-"/news/weather/sa/">SAdspen>
<spa hrc ="/news/weatherhasr>TAS</s>
<ahref "/news/weather/ntP'>NT
</p>
</drv>

<I--<drvid-"globalmeesage">
</div>-->

<d, v id-"comem" class. "secbon">
<drv id-"homepage" class="section">
<drv id-"hadlmes" class-"secbon>
<div ids"sat-state-later" class="xcton">
<div id-"watherMap"><img width-"360" height-"288" alt Satellite image. VIC Wed
Soo pm EST are-"lwathedimg/web_aat_cc vie latest jpg"
ida"statesabmage">Qi2> Victona</h2>
<p>Wed?: 00 pm EST</p>
<p>A thick cloudband is crossing VIC with a low pressure trough is generating patchy
light rain, mostly just north of the ranges. Its clearing temporarily Bands of cloud further

west are travelling with a cold front and are bringing a burst of heavier, squally thundery
showers </p>

vmv>

amv>
<div id="atatewam" class-'section">
<dw class-"wwanung">
cb3>CoasW wind waming</b3>
<p classW"W Ussued">Issued at 16.32PM on Wednesday 19 September 2007</p>
<p>Strong Wind Warning for West of Cape Otway</p>
vd, v>
<dtv class-"wwalning">
<b3>Coastal wind waming</h3>
<p class- wissued">lssued at 16 42PM on Wednesday 19 September 2007</p>
<p>Strong Wind Wanung for Cape Otway to Wdsons Promontory</p>

281

Appendix B: HTML Legacy System
vdiv>
<drv Blase-"wweming">
4t3>Coaatal wind wa ung</h3>
<p Blas. wuasued">Issued at 16.48PM on Wednesday 19 September 2007</p>
<p>Suoug Wind Warning for East of Wilson PromontoryVp>
</div>
<div clasWwwammg">
<b3>Small boat alert</h3>
<p Class-"wissued">lssued at 17.22PM on Wednesday 19 September 2007</p>
<p>Strong Wind Warning for Port Phillip and Western Port<p>
</div>
<div clue-"wwammg">
<h3>Severe weather wammg</h3>
<p class-"Wissued">Issued at 16.33PM on Wednesday 19 September 2007</p>
<p>Severe Weather Warning for Loealued Damaging Winds for the Alpine Districts.
Cancelled for North Central and Cenuel. </p>
vdsv

</div>
<div id-"statacentres" elass-"socnon">

b2>State Centres ForecaatUh2>
<div class-"columns secuon">
<div claw-"column2a section">
<div class-"aechon">
<table>
<tr>
<td chit-"aucity">

h3>Albury</h3>
<p>Cleanng showor</p>
</td>
<td class-"autemp">
<p>BVspan> - 17</p>
<Ad>
<td>4mg width-"30" height-"30" arc-"/weathericoas/cleanng_ahower_am gir
alt-"Cleanng shower"></td>
</Ir>
<tr>
<td class-"aucity">

b3>BendigoNÜ>
<p>Clcanng shower</p>
</td>
<td class-"autemp">
<p>5 - 16</p>

<td><tmg width-"30" height-"30" arc'/weather/icons/cleanng_shower sm gil"
alt-"Cleanng shower">Vtd>
</Ir>
<tr>
<td class-"aucny">
<h3>Horsham</h3>
<p>Mostly cloudy</p>
<hd>
<td class-"autcmp">
<p>4 - 16</p>
</tN
<td><img width"" 30" height-"30" arc-"/weather/icons/mostly_cloudy_am giP
alt-"MosOy cloudy"><hd>
<o>
</table>
</div>
-/do
<div class-"column2b section">
<div class-"sectmn">
<table>
<U>
ctd class-"aucny">
<h3>Melboume</h3>
<p>Cleanng shower<p>

<td class-"autemp">
<p><spaa class-"mm">10 - 16<spaa>Vp>
<Ad>
<td><img width-"30" height-"30" are-"/weatheJseons/clearing_shower_smgir
att="Cleanng shower"></td>
Vtr>
<tr>
<Id class-"aucitý'>
<h3>Mdduravlü>
<p>Mostly cloudy</p>
<Rd>
<Id class-"autemp">
<p>7</span - 19</p>

<th>SaturdayVth>
4tr>
<hhead>
<tbody>

<td>Waan in the east ahead of cool change. Cool change and showers, inertly on ranges.
</tm
<td>Wet and windy in the east One or two light showers in the west. <Ad>
<td>Showen redeveloping over south and mountains. Partly cloudy but generally dry in
the north. <Ad>
<td>Ltght showers clearing from southeast. Cold morning Increasingly sunny. <RA

</tbody>
< iable>

ddiv>
<drv id-"statemmmaxMin" class-"scction">
<b2>Yesterda)? s Temperature' b2>
<table>

<th>Mmimum-<t >
<td>Benella, VICVtm
<td>I. 0'C</td>
<Ar>
<tr>
<th>Maxumum </th>
<td>Mildura, VIC<MA
<td>25.0°C<hd>
<hl>
<hable>

<mV>
<div rd="StateCoastalWatera" class-"seonon">
4t2Coastal Waters</h2>
<h3>Bastem Bass Strait-4/h3>
<p>Wednesday. Northeast/northerly winds 10/20 knots increasing to 15/25 knots offshore
tending west to northwesterly 10/20 knots from the west later, locally reaching 25 knots in
the south <, p>, Thursday. West/southwesterly winds 25/33 knots extending throughout
during the morning, then easing to 15/25 knots from the west during the afternoon and
evening. Sea. Up to 40 on Swell: Up to 2S m</p>
0b3>Cnppsland 1, akee</lü>
<p>Northwesterly winds 10 knots ahead of a 10 knot west to southwesterly change during
the evening. Winds freshening during Thursday to 15/25 knots then casing later. Scattered
showers developing overnight then clearing during the day. </p>
<h3>Melboume Bays</h3>
<p>Tonight and Thursday North to northwesterly winds of 20/25 knots tending west to
southwesterly this evening at 15/20 knots although reaching 30 knots at times with shower
or thunderstorm activity. Southwesterly wind increasing throughout during the morning to
20/30 knots before moderating to 15/20 knots during the afternoon and then tending west
to northwesterly at around 10 knots in the evening Sea Up to 1.5 m </p>
4ü>Northem Bass Strait</h3>
<p>Wednesday: West to northwesterly winds 15/25 knots &ft, p>, Thursday:.
Southwesterly winds 20/30 knots extending throughout in the early morning then winds
casing to 15/20 knots during the afternoon. Sea: Up to 40m Swell. Up to 3.0 m<p>
ýh3>Southern Bass Strait<1b3>
<p>Wednesday. East to northeast winds 10/20 knots &h, p>, Thursday. Chiefly east to
northeasterly winds 5/15 knots, increasing to 10/20 knots before a 20/30 knot northwest
change extends from the west later in the day Sea: Up to 2.0 m Swell: Up to 1.0 m</p>
<h3>Westem Bass Strsit</h3>
<p>Wednesday: West/northwesterly winds 20/30 knots shifting west to southwesterly
tonight <, p>, Thursday. Southwesterly winds 25/30 knots gradually easing to 15/20
knots in the afternoon then tending west to northwesterly at 15/25 knots in the
evening Sea Up to 40m Swell, Up to 40 m</p>

amv>
vmv> <dtv id-"tools" class-"secnon">
<drv class-"section search" id="search">
4il>Search for mewsvdb2
<form action-"http //search abc. net au/seaah/scarch. cgi' method-"get" names"simple">
<input typee"tcxt" class-text" name="9ucry" value-"" size-"I 5" >
<Input type-"hidden' name-"collection" valuer"abcnews" /
<input type-"hidden' namrr"form" value"news" />
<input type"hidden" nam -"num_nvdn" value="20" />
<button type-"submit">Search</button>
</form>
ddiv>
vdrv>
</div>
</div>

<td>Gmg widtW30" height-"30" src="/weather/icons/most1y_cloudy_em git"
alt="Mostly cloudy">Utd <I- Start footer->
</V> <drv id="footer" class""section">
<ii> <div id="snemap" class="section">
<td classes"aucny"> 4s2>Sde Map< h2>
m3>Salegh3> <div class-"group">
<p>Showrn</p> h3>Secuonsch3>

<td class-"autemp"> <h><a bref /news/">News Home<11P
<pxryan class.. "mia">7</spW . I5 Vspsn></p> Just Jn</h>
<Ad> <h>Austraha<a>Vh>
<td><rmg width. -"30" height-"30" srW/weatherficons/showers sm gif" World</h>
alt="Showers"></td> 4r>Busmess</h>
</tF> <h><a hmW/news/sportt'>Sport</It>
<fable> <a h of "/news/entertmnment/'>Entertawnent<Ah>
</div> <h><a href" /news/weather/">Weathcr</h>
ddrv> <G>OP.. imon</ax/h>

<h-a hn f "/ncws/blogst">Bloga</h>
Tag Library</l>

</(v> 1t><a hretb"/news/archrve/">Arcluve</h>
vifiv> vau <div ide"state4day" class-"section"> </div>
<h2>Four Day Oudook</h2> <div class-"group">
<tabk> ý&3>MediaVh3>
<thead <ub
ar> <h><a href6"/news/videa/">Ydeo<AP
<UPWednesday<th> 4><a hmf "/news/audro/*>Audio</h>
NvThunsday</th> <h><ahrcf "/news/photos/">Photosga>
<th>Friday<Ah> </ub

282

Appendix B: HTML Legacy System
Q3>Subscnbc<1h3>
NI>
<><a href. "/news/feeds/">Podcasts<ta>
<h><a hraf "/newa/feeds/rss htm">RSS Feeds<a></1i>

43>Contaat Um</h3>

<h><& href"/newa/contact>Feedback Form

</dtv>
<div elas""group">
ß3>Contnbute</h3>

<h><a href. "/newn/upload/">Upload</h>
<h><a href- /newa/upload/sead htm'>EmeuVMobde<la></h>

</d v>
<d. v claw "group">
</div>
</div>
<div id="fineprint" class-"eecnon">
<h2><img src-"http. //www abc. net au/newa(mg/2007/footer_abe_logo png" width-"12 I"
height-"37" alt-"ABC I abc net au" /></h2>
<p><enul>Thu service may include material from Agence France-Presse (AFP), APTN,
Reuten. AAP, CNN and the BBC World Service which ts copyright and cannot be
reproduced </small></p>
<p><snull>AEST - Australian Eastern Standard Time which is 10 hours ahead of UTC
(Greenwich Mean Time)4smaR></p>
<p><a hmf-"http: //www. abc. net au/eommon/copyngh htm">©, 2007 ABC <a
href "httpf/www abc net au/privacy htm">Privacy Policy</p>
</div>
</div>
<scripttypc "text/javasonpt">
<I-
servernmestamp - new Date('September 19,2007 21.57.16');
tunLoadEvento;
a
</scfipt>
<I- End footer ->

</drv>
vdw>
</body>
vMml>

<Iý
<I-QLD WEB->
<I
<I

4nml xmins "http //www. w3. ofg/1999/xhtml" and lang="en">
<head>
<Utle>Weather - Queensland - ABC News (Australian Broadcasting Corporatson)</title>
<meta hapequiv-"Content-Type" content-"text/html, charset"9so-5859-1" />

<meta namWTitle" content-"Weather - Queensland" />
<link rele"stylesheet" type-"text/us" href "/news/style/news us" media="screen,
projection" >
<link rel-"styleuheet" type.. "test/ess" Knef-"/news/style/news-prim ess' media="print" />
<scnpttype-"text/javascnpt"src "/news/scnpts/2007/common/s"></scnpt>
</head>
<body>
<I-ABC nav: Global Nav " XHTMI, no imported styles ->
<div id""'gN Nav">
<div ids"gN_ahgn">

<fonts actions"http: //search abc net au/search/search cgs" method-"get" id="gN form'
target° _top">
<Input type-hidden" name-"form" value-"sample" f>
<Input rypr"hidden" name-"num_r mks' value"20" />
<input type-"hidden" name-"collection" value-"abcall" D
4abel fore"8N_query'><a
hrefb"httpl/search abc. net, au/searchhearch cgi? collection-abcall&, fonn=simple"
target-" top">SearchtheABC</Iabel>
<mput type-"text" id-%N-query" name-"query" value-"" size-"20" maxlength-"30" />
<input type-"submit" id="gN_submu" value-' Search the ABC " title-"Search the ABC"
P.
</formt>
<p id-"gN_text"><a ids"gN_home" hmf-"http //www abc, net ao/"
target-"_top">ABC HomeVa> I <a id="gN_radio' class-"pipe"
href-"http: //www she net au/radio/" traget-" top'>Radio I </apan><a
id-"gN_ty' clans-"pipe" hret6"httpl/wwwabcnet. auttv/"
target-'_top">Television I <a id="gN_news" class-"pipe"
href-"httpJ/wwwabc. aetau/newsr target-" top">Nc%s, /. Vpan> I </spao><a
sd-"gN_more" class-"pipe hrei='httpJ/www, abc net au/sub/ocis. htm"
taget-"_top">More&nblp, Subjects&H8230; </axspan> I <a ida"gN_ahop"
href='7utpJ/shop abc. net au/" target- _top'>Shope/p>
4div>
</div>
<I-end ABC nav -

<div id-"wrapper" class-"sccvon'>
<div td-"main" class="secaon">
<I- Start header a
<div id-"nav" class-"nav">
<dtv ids"newsrndto-widget >
4pan id-"newarndio-widget-UNe">

<a hsef "hap//www erbe net au/newuadior>NewsRadio
</soong>

<spen id-"newsrsub widge-nowplaying">
Now Pla ivng.? span chus-"onnow">ABC PM Featun: s

-, /span>

<cn>Liaten: <a hruf-"httpJ/www. abc. nct aulnewuadro/audaoiwmplayerhtm"
onclich-"return popup(thu href 600,250. i cwsradw); ">WmyN
4 href"httpJ/www abc net au/neweradio/audio/rva ayer htm" onclick "return
popup(this href 600,250, newsradio'); >ReaI

Vem>
</$pan>
</div>
<dtv id="nav 1st" class="nav'>
<div id="header" class="header>
<a hsef "/news/">
<mg arc"/news/img/2007/header_logo. png" width-'305" height='93" border=00"
a1t="ABC News" />
vv
Vdiv>
<p>

<a h "/news/wdea/>Ydeo<a>

<a hre1="/aews/audwP">Audio<Ja>

Vh of /news/photosl">Photosga>

f </span

<a hmf-"/news/feeds/">PodcaaWRSSVa>

<Jp>
. q/(v>
<div id="nav_2nd" class='nav">
<p>

4 href /newaP'>News HomeVa>
<Japan>

Just In<a>
Vspan>

<a href "/news/austialiar>Aushaha

Vpan id='n-world">
Wodd

<a hn: h"/news/busmessC>Busmesa4a>

<a href 'fnews/sporLl">SportVa>
<Japan>

<a href /news/entertammentt*>Eatertahunent<a>

<a hrnf "/oewa/weather/ >WeathereJa>

IVspan>
<spanid="n-opmion">
<a hre1='/news/opmton/'>Opnuon<la>

<spanid="n-blogs">
<a hn fi"/newaPologsP>Blog<Va>

Vp>
Vd v>
Vdiv>
<I-. End header ->

<drvi&"subheader" class-"header">
al>Westher</hl>
vmv>
<divid-"nav3rd" class-"nav >

<a href6"/news/weather/">Weather Home
<a hr f-"/news/weather/nswr>NSW / ACTda>
<a brei-"/news/wesrherhid">VICVe>Vspan>
<a hrvf-"/news/weather/gldl">QLD4span>
<s hn is"/news/wea[her/war>WA

<span-4 hreF"/news/weather/ss/">SAVs></spen>
<span? 4 hn: f-"/news/weather/ffisl">TAS< span
4 hrel="/news/weather/nt/">NT

vahv>

<1--<div id-"globaImossagc'>
ddiv>-->

<div id="content" class="section">
qdm id="homepage" class-"secdon">
<div id="headlmes" class-"seohon">
<drv id="sat-state-latcst" elass='section">
<drv id-"weatherMap"><lmg width="360" height="288" alt-"Satellite image. QLD Wed
8 00 pm EST srrr"/weatherhmg/web sat ee_gld_latestjpg"
id="statesadmege">42>Queensland</h2>
<p>Wed?. 00 pm EST</p>
<p>Slaes are almost totally clear across QLD due to a high pressure system over the mat
Patchy high cloud is crossing the south near a weak trough, but is not bonging any ram
due to dry, hot northerly winds. There is just the odd lightning Mike near the southwest
border qp>
</div>

</drv>
<dtv id="statewam" class-"section">
<dwv classes"wwsnung">
m3>Cosstal vvnnd waming</63>
<P clav-"wusued">Issued at 15 27PM on Wednesday 19 September 2007</p>
<p>Suwag Wind Warning for Double Wand Pont to Coolangsas, Including Moreton
Bagyp>
</d v>
<drv class"wwarmng">
m7>Fm: weather wammg</h3>

283

Appendix B: HTML Legacy System
<p elass. "wissucd">Issued at 15.25PM on Wednesday 19 September 20074p>
<p>Fire Weather Wallung for Darlmg Downs and Southeast Coast Distncts for
ThursdayvN
c/drv>

</div>
<div id-"atatecentres" class-"section">
4i2>State Centres Forecast<1b2
<div class-"columns secfon">
<div class-"column2a seouon">
<div class-"sechon">
<table>
<tr>
<Id clue-"aucity">
<h3>Bnsbanc« h3>
<p>Windy</p>
A&

<td class""autemp">
<p>12 - 30</p>
</td>
<td><img width-"30" height-"30" arc-"/weatherheow/windy_sm gil
aIt-"Wmdy"><td
</tr>
<er>
<td class-"aucity">
ß3>Bundaberg<1h3>
<p>Sunny</p>
</td>
<td class-"autemp">
<p><apan class-"min'>l5 - 2S</p>
<A&
<td'gmg width-"30" height-"30" arc-"/weather/icons/aunny_am gil" alt="Sunny"></td>
<ltr>
<tr>
<td clasa-"aucityý">
4t3>CaimaVh3>
<p>Sunny</p>
</td>
<td clasiteautemp">
<p>17</span - 304p>
</tA
<td><! td>
<At>
<tr>
<td class-"aucity">
-W>Gold Coast<At3>
<p>Windy<Jp>
<Ad>
<td class-"autemp">
<p>15dspao> -28</p>
</td>
<td><img width-"30" height-"30" me "/weather/icons/wmdy_am. g"t"
alt-"Wmdy"><M'
</tr>
<tr>
<td class-"aucity">

h3>Longreach</h3>
<p>Sunny</p>
Utd>
<td clans-"autcmp">
<p>t 1 - 33</p>

</to <td</td>
Otr>
<tr>
<td clan sucity">
ß3>Mackay</h3>
<p>Fog then sunny</p>
<Ad>
<td class-"autemp">
<p>16 gspan> - 27Vspan></p>
the
<tAgmg width-"30" height-"30" arc-"/weatherlcons/fog_ahen_sunny_sm gi aha"Fog
then sunny"><Ad>
<ltr>
</table>
</drv>
Vdiv>
<dm class-"column2b section">
<div class-"section">
<table>
<tr>
<td claas-"aucity">

h3>Mt isa</h3>
<p>Sunny</p>
<Ad>
<td claw" autemp">
<p>1211span - 34</spae></p>
<Ad>
<td><k*
<At>
<tr>
<td class-"aucity">
'c 3>Rockhampton4h3>
<p>SunnyVp>

<td class-"autemp">
<p>13</span - 30</p>
<Ad>
<td>c/td>
'Ar>
<tP
<td class-"aucity">
4i3>SumInne Coant</h3>
<p>Wmdyc/p>
<Ad>
<td class-"autemp">
<p>15 - Vpan class-"max">29</p>
<Ad>
<td><Img width-"30" height=10" sm-"/weather/iconslwindy_smgit"
alt-"Wmdy"x/td>
<At>

<tr> <[d clau "aucity">
h3>Toowoomba<Po3>

<p>Mustly sunny</p>
</td>
<td classes"eutemp">
<p><spae clasWmm">I2 " 25</p>

<td><img width"30" height-"30" snr"/weather(cons/mosty_sunny_/m git"
alt-"Mostly sunny"><hd>
</t»
<tr>
<td clssaýeucity'>
ß3>Townsvdle</h3>
<p>Sunny</p>
<hA
<td class="autemp">
<p>17</span - 29<4span>-4p>
</t A>
<td><smg width-"30" height-"30" mm-"/weathe /icons/sueey_sm Sir alts"Sunny"><hd>
</V>
<'table>
<dtv>
</div>

vdrv>
vmr>
<dtv id-"state4day' dass="aecnon'>
WiFour Day OutlookVh2>
<table>
<thead>
<tr>
<th>Wednesday< th>
<th>ThursdayUth>
<th>Friday</th>
<th>Sat. dayUth>
c/u>
Vthead>
<tbody>
<tr>

Mostly sunny throughout. Coastal sea breezes. Hotter northerly winds in the west.
Warm in east. <Ad>
<td>Mostly sunny throughout. Coastal sea breezes. Cooler southerly change crossing the
south. <Ad>
<td>Mostly sunny throughout Coastal am breezes Mild in the southeast Warm elsewhere
inland <Ad>
<tc>Mosty sunny throughout Coastal sea breezes. Possible early shower about the
southeast coast. <Ad>
<Ar>
Vtbody>
Vtable>

ddiv>
<div id="statcminmaxram" class="sccaon">
m2>Yesterday'i TemperatureNb2>
<table>
<tr>
<tb>Mmunum: <Rh>
<td>Dalby, QLD<Ad>
<td>3 0°Cchd>
</tr>
<tr>
ah>Maximum. Nth>
ad>Bouha, QLD<R*
<td>39 0°CVtd
<IU>
< table>

</drv>
<div id="StateCoastalWaters" classm'aection">
<bbCoastal Waten<7h2>
4ü>Capricornra i3>
<p>Wednesday SE/NE winds 10/IS knots &It; p>, Thurday, N/NW winds 5110 knots
increasing to 15/20 knots in the afternoon. Sea Up to 16 in </p>
<h3>Central Coast</b3>
<p>Wednesday: SE winds 10/15 knots. Inshore afternoon NE seabreezes at 15
knots &h, p>, Thursday: EINE winds 10 knots. Lighter winds inshore early. Inshore
afternoon aeabreeze 15 knots. Sea. Up to 12 in </p>
<b3>Fraser Is Vaters</h3>
<p>Wednesday SE/NE winds 10/15 knots <, p>, Thunday: NW/N winds 15/20 knots,
increasing to 20/25 knots in the afternoon. Sea. Up to 19 on <lp>
46>Gneat Bamer Reef</h3>
<p>Wednesday. SE/E winds 10/15 Irrots &h, p>Thurnday. N/NE winds at 10
knots. Sea: Up to 1.2 m </p>
'b3>Hervey BaycIb3>
<p>Wednesday. SE/NE winds 10/151mots. &It, p>, Thursday: N/NW winds 10115 knots.
reaching 15/20 knots in the afternoon. Sen. Up to 1.4 m </p>
4i3>Keppel Bayt/h3>
<p>Thunday: SW to SE winds 10115 knots increasing to 20/30 knots on Friday mainly in
outer waters. Sa. Up to 25 in </p>
4ü>Moreton Bay</ 3>
<p>Wednesday. SE/NE winds 10/15 knots &h, p>, Thurzday. NW/N winds at 15/20
Irrots increasing to 25/30 knots early afternoon ahead of a late afternoon 20/30 knot SW7y

change. Sea: Up to 1.3 in </p>
<h3>North Tropical Waters</h3>
<p>Wednesday: SE winds 10/15 knots increasing to 15/20 knots north of
Cairns &R, p>, Thursday. SE/E winds 10/I5 knots though 15/20 knots are expected north
of Cairns in the morning Lighter winds inshore early. Sea. Up to 1.6 in </p>
<b3>Nottheast Gulf<th3>
<p>Wednesday: SE/E winds 15/20 knots. Winds easing to 10/15 knots inshore south of
Weipa in the afternoon. Inshore afternoon seabreezes &h, p>Thursday. SE/E winds
15120 knots. Winds easing to 10/IS knots inshore south of Weipa in the afternoon. Inshore
afternoon seabreezes. Sea: Up to I It in </p>
<5i3>Penuuula Watenyh3>
<p>Wednesday: SE winds 19/23 knots &h, p>, Thursday: SE winds 19/23 knots easing
to 15/20 knots in the afemooo, Sea. Up to 2.2 in </p>
<h3>Southcast CoastVh3>
<p>Wednesdayy SEME winds 10/15 Irrots &h, p>, Thursday: NW/N winds at 15/20
Irrots increasing to 25130 knots early afternoon ahead of a late afternoon 25/30 knot SW9y
change. Sea Up to 30 in </p>

284

Appendix B: HTML Legacy System
b3>Southeast Gu1K/h3>

<p>Wednesday: Variable winde 10 knots with inshore aeabreeua 10/15
knots <, p>, Thumdey EINE winde 10/I5 knots, easing to 10 knots to the afternoon
with inshore seabreezes. Sea: Up to 0.6 m </p>
<h3>Tropical Waten</h3>
<p>Wedneaday SEINE winds 10/15 Irrats. &h, p>, Thmaday. SEME wands 10/15
know. Sa. Up to 1.2 m </p>

Vdrv>
Vdiv>
<dtv id-"tools" class-"section">
<div clas Wsecnon search" id-"search">
4i2>Search for newuVh2>
<f om aenm""http//search she net au/search/search cgi" method-"get" name-"simple">
<input type text" class="text" name-"query" value-"" size-"15"p
<input type-"h, dden" name-"collection" value-"abenews" />
<Input type-"hidden" name-"form" value-"news" h
<input typo-"hidden" name-"num rankt" value-"20" P
<button typr'subma">Search</buuon>
Vfonn>
</div>
</drv>
Vdiv>
</div>

<I- Stan footer ->
<dtv id-"footer" class-"secnon">
<div id-"sitemap" class-"section">
4i2>Sne MapVh2>
<div class-"group">
4ü>Seeuom, th3>

<h><a href-"/newnr>News Home</h>
<ahref /news/jusbn/">JustInya>Vh>
<tv<a href-"/newa/austmlta/">Auslrehay1P
<a href /news/world/">Wmldlta></h>
', <a href-"/news/businead">Busmess</h>
Sport< a></1i>
<& href-"/newa/entertau, ment/">EntertammenK/a>
<a href-"/news/weather/">Weather</h>
<a href"/news/opmionP>Opimon<1a></h>
<a htof- /news/blogs/">Blogs<a></h>
<a href /newshagP'>Tag Library<la></h>
<a href-"/news/archrve/">Archive</h>
</UI
</div>
<div class-"group">
<h3>Media</h3>

<a href-"/newe/video/">Video</h>
Qi>Audio<Ai>
<a href-"/news/photos/">Photos
tul>
t 3>Subscribe</h3>

<Ii><a href-"/news/feeds/">Podcasts<Ai>
<Ii><a hn: fW/news/feeds/rss htm">RSS Feeds
<tul>
<h3>Contact Ua</b3>

<h><& hmf-"/news/contact/">Feedback Fonn</I1>

</div>
<d, v clano-"group">
ß3>Contnbute4) 3>

4O<a href-"/news/upload/">Uploaddb>
<h><& href-"/news/upload/send. htm">Email/Mobde<a>
Vul>
Vdty>
<drv claw-"group">
Vdiv>
VCbv>
<div ids"fineprint" class-"section">
ch2><img arc-"http. //www she net au/news/img/2007/footer_abclogo ling" width="12I
height-17" alWABC I abe. net au' /></h2>
<p><small>Thu service may include material from Agenee France-Presse (AFP), APTN,
Reuters, AAP, CNN and the BBC World Service which is copyright and cannot be
reproduced Vamall></p>
<p><small>AEST - Australian Eastern Standard Time which is 10 hours ahead of UTC
(Greenwich Mean Tune)Vsmall>c/p>
<p><a hrefi"http. //www. abc. net au/common/copyrigh htm">©, 2007 ABC 4
href "http //www abe. net. au/pnvacy htm">Pnvacy Policy<Ip>
</div>
</d. v>
<script type-"text/javasenpt">
<I-
serverumestamp - am Date('September 19,2007 21 58 27);
runLoadEven«);

Vscript>
<I- End footer ->

Vdiv>
vmv>
</body>
vmtmi>

285

Appendix C: SQL Legacy System

Appendix C:

SQL Legacy System

One SQL legacy system, which is named as SimulatingINSERT, is regarded as the

modelling example. It is one SQL example to create one statement that has the same
function as the INSERT statement in SQL. The INSERT statement is presented as one

procedure named as sp_generate_inserts in this legacy system. It is written by Narayana

Vyas Kondreddi at http: //ylaskn. tripod. com and tested on SQL Server 2000.

SETNOCOUNTON
GO

PRINT'U! ing Master database
USE muter
00

PRINT 'Checking for the e, ustrnce of this procedure
IF (SELECT OBIECT_ID('spjenerate_inserta, 'P)) IS NOT NULL

BEGIN
PRINT Procedure already exists. So, dropping W
DROP PROC spgenerate_inserp

END
GO

EXEC meeter. dbo sp MS upd sysobj_category I
GO

CREATE PROC sp jcnerate_insertt

@table name varchar(776),
@tatgel_table vercbar(776) - NULL,
@mclude column list bit - 1,
@from varchar(800) - NULL,
@mclude timestamp bit - 0,
@debug_mode bit - 0,
@owner verchar(64) - NULL,
@ommrt_images bit 0,
@omma identity bit - 0,
@top int - NULL,
@cols_to include verchar(8000) -NULL,
@cols to_exclude vercher(8000) - NULL,
@disable constraints bit - 0,
@omm t computcd_cols bit -0

AS
BEGIN

SET NOCOUNT ON

IF ((gco6_to include IS NOT NULL) AND (@wh_to exclude IS NOT NULL))
BEGIN

RAISERRORCUse either @cole to_miude or Qwle to_exclude Do
not use both the Fanmeten at once', 16,1)

RETURN -I
END

IF (((ajcoI,
_to_include

IS NOT NULL) AND (PATINDEXC-W, @ cold to_include) - 0))
BEGIN

R ISERRORMvalid use of @cols W include property, I6,1)
PRINT 'Specify column names surrounded by single quotes and

separated by commas'

"Ride id", "titl
PRINT TS: EXEC sp-geneau inserts tides, Qcolf_to_include

e""
RETURN-1

END

IF ((@cola_to_exclude IS NOT NULL) AND (PATINDEX(" %
, @colt to exclude) - 0))

BEGIN
RAISERROR(7nvabd use of @coI to_exclude ptoperty, 16, l)
PRINT 'Specify Column names surrounded by single quotes and

separated by commue'
PRINT To EXEC op generete_inaeite odes, (colt to_exclude

""title id'' title"'"
RETURN -1

END

IF (PARSENAME(@table_name, 3)) IS NOT NULL

BEGIN
RAISERROR(Do not specify the database name. Be in the required

database and just specify the table name. ', 16,1)
RETURN-I

END

IF @owner IS NULL
BEGIN

IF ((OBJECT_ID(@table_name, 'U) IS NULL) AND
(OBJECT ID(@table name, 'V) IS NULL))

BEGIN
RAISERRORCUser table or view not found. ', 16,1)
PRINT 'You may am this error, if you are not the

owner of this table or view. In that case use @owner parameter to specify the owner name. '
PRINT Make am you have SELECT pemussxon

on that table or view'
RETURN-1

END
END

ELSE
BEGIN

IF NOT EXISTS (SELECT I FROM
INFORMATION_SCHEMATABLES WHERE TABLE NAME - @table_name AND
(TABLE TYPE - 'BASE TABLE' OR TABLE_TYPE - 'VIEW) AND
TABLE SCHEMA-@owner)

BEGIN
RAISERROR('User table or view not found. ', 16, I)
PRINT You may see this error, if you are not the

owner of this table. In that case use @owner parameter to specify the owner Mme. '
PRINT' Make sun: you have SELECT permission

on that table or view. '
RETURN-I

END
END

-Variable declaration
DECLARE @Colume_ID mt,

(Column List varcbar(8000),
@Columa Name varcha'(128),
Qa Start Invert varchar(786),
(Data Type vaeehae(128),
@Actual Values varchar(8000),
@IDN varchar(128)

SET@IDN-"
SET @Columu_ID -0
SET @Column_Name -"
SET@ColumnLi9t-"
SET @Aetual_Wlues ="

IF a@owner IS NULL
BEGIN

SET @Star
_Insert

- INSERT INTO
RTRIM(COALESCE(@tmget_tabIc, @table_name))

END
ELSE

BEGIN
SET a ̀Star Insert-INSERT'+'F+ LTRIM(RTRIM(@aowner))+'J

+T+ RTRIM(COALESCE(@target_table, @table_name)) +1
END

SELECT @Column ID. MIN(ORDINAL POSITION)
FROM INFORMATION SCHEMA COLUMNS (NOLOCK)
WHERE TABLE__NAME - (3table name AND
(@ownu IS NULL OR TABLE SCHEMA- @owner)

WHILE @Column ID IS NOT NULL
BEGIN

SELECT @Column Name
QUOTENAME(COLUMNNAME).

@Data Type - DATA TYPE
FROM INFORMATION

_SCHEMA
COLUMNS (NOLOCK)

WHERE ORDINAL POSFFION - @Column ID AND
TABLE NAME - @a tablc_name AND
(@owner IS NULL OR TABLE SCHEMA - @owner)

286

Appendix C: SQL Legacy System

IF (acole_IO_ioclude IS NOT NULL -Selecting only user specified
colm on

BEGIN
IF CHARINDEX(+

SUBSTRING(QColumn Name, 2, LEN(@Column_Neme). 2) +'^, @col! to include) "0
BEGIN

GOTO SKIP LOOP
END

END

IF @coIs_to exclude IS NOT NULL -Selecting only user specified
columns

BEGIN
IF CHABINDEX(+

SUBSTRING(©Column Name, 2, LEN(@Column Neme). 2) + ", @coIs to exclude) o
0

BEGIN
GOTO SKIP LOOP

END
END

IF (SELECT
COLUMNPROPERTY(OBJECT ID(QUOTENAME(COALESCE(@owncr, USER-NA
MEO)) +'. '+ table_neme), SUBSTRING(®Column Neme, 2, LEN(@Column_Nsme) -
2); hldenutV)) -I

BEGIN
IF (tonuni identity -0 -Dctermmg whether to include or

exclude the IDENTITY column
SET @IDN - @Column Name

ELSE
GOTO SKIP LOOP

END

IF @ommn Computed colt -I
BEGIN

IF (SELECT
COLUMNPROPERTY(OBIECT_ID(QUOTENAME(COALESCE(@own«, USER NA
MEQ)) +'. '+ Dyable name), SUBSTRING(Qa Column Name, 2, LEN(gColumnName) -
2); IsComputed')) -I

BEGIN
GOTO SKIP LOOP

END
END

SELECT @Column ID= MIN(ORDINAL_POS1770N)
FROM INFORMATION SCHEMA COLUMNS (NOLOCK)
WHERE TABLE NAME - @table_name AND
ORDINAL POSITION > (&, Column_iD AND
(@owner IS NULL OR TABLE_SCHEMA - @mwer)

END

SET @Colunm Lirt - LEFT(a@Column_Listjcn(@CoIumn List) " 1)
SET @Aco al Values - LEFT(@Actual_Values, len(@Aaua1Vslues) . 6)

IF LTRIM(QColu List)
BEGIN

RAISERRORCNo columns to select. There should at leert be one
volume to generate the output, 16,1)

RETURN-I
END

IF (@include column_list o 0)
BEGIN

SET@Actual Wlua-
SELECT'+
CASE WHEN @top IS NULL OR @top <0 THEW ELSE'

TOP'+ LTRIM(STR(@top)) +" END +
+RTRIM(@S Inurt)+

`"+'+"("+RTRIM(@Column Lut)+ '"+'+ý^+
"+"VALUES("+"+ @Actuui Va1ua ++*)-+"+
COALESCE« from` FROM '+ CASE WHEN @owner IS

NULL THEN " ELSE 'r + LTRIM(RTRIM(@owncr)) + 1' END + '(' +
nhm(@nbic_uame) +I +'(NOLOCK))

END
ELSE IF (@mclude columnist - 0)

BEGIN
SET @Aausl_'Alua

'SELECT'+
CASE WHEN@top IS NULL OR @top <0 THEN' ELSE'

TOP "+LTRIM(STR(@top)) +' ` END +
+ RTRIM(@Start_Insat) +

"+ VALUES("+'+ @Acwal Values++r +'"+
COALESCE(@from"' FROM "+CASE WHEN @awne IS

NULL THEN " ELSE '(' + LTRIM(RTRIM(@owncr)) + 'J' END +I+
rtrým(@Gblc_name) +I +'(NOLOCK))

END

tF(ta, Data_Type in Cunage9)
BEGIN

IF (@ommrt images - 0)
BEGIN

RAISERROR(Tables with
image columns are not inpported. ', 16,1)

PRINT 'Use r@ommrt images -
I parameter to generate INSERTS for the rest of the columns'

PRINT D0 NOT ommit
Column Lot in the INSERT statements If you ommit column list using
@include column list-O, the generated INSERT; will fall. '

RETURN-1
END

ELSE
BEGIN
GOTD SKIP LOOP
END

END

SET ®Actud WIum - (AcuW Velucm +
CASE

WHEN @Data Type IN Cc ?. Warcha?, 'nchaf, 'nvarchar9
THEN

COALESCE(""' + REPLACE(RTRIM('
+@Column Name+J, '""", "'"^")+-, "NULL"y

WHEN Ga Data Type IN f datenme', 'smalldatetime)
THEN

COALESCE(- +
RTRIM(CONVERT(char, ' + @Column_Name +', 109))+-, "NULL''

WHEN @Data_Type IN ('umqueid-tifiee)
THEN

COALESCE(-- +
REPLACE(CONVERT(chat(255), RTRIMC + (3a Column Name +

WHEN @Data Type IN Ctcxt, 'ntext)
THEN

'COALESCE('" +
REPLACE(CONVERT(char(8000), ' + @Colume Name + ^"", -"n+""^", ^NULL')'

WHEN @Data_Type IN Cbmary, hrbmmy)
THEN

COALESCE(RTRIM(CONVERT(chu, ' +
'CONVERT(int, '+@Column Name +'))), 'NULL")'

"EN @Data_Type IN ('ameatamp', rowrernon)
THEN

CASE
WHEN (include time"

THEN
'DEFAULT"

ELSE

COALESCE(RTRIM(CONVERT(char, ' +'CONVERT(mt' + @Columa Name
+ý)), "NULL')'

END
WHEN @Data Type IN efloat'W, 'moaeyr, 'amallmoney)

THEN
'COALESCE(LTRIM(R7RIMC +

'CONVERT(char, '+ @Column Neme +, 2)'+)), 'TIULL7
ELSE

'COALESCE(LTRIM(RTRIMC +'CONVERT(dur,
+ @Colum i_Name +)'+)), 'NULL7

END +V+ '+'+'

SET @Column_List-@Column Lilt + (Column Neore+, '

SKIP LOOP.

IF @debug_mode -1
BEGIN

PRINT Y... e. START OF DEBUG INFORMATION��'
PRINT'Begimung of the INSERT statement: '
PRINT @Start_hnert
PRINT"
PRINT 1M column hrt. '
PRINT @Column_List
PRINT"
PRINT The SELECT statement executed to generate the INSERT! '
PRINT (Actual Velua
PRINT'
PRINT -----END OF DEBUG INFORMATION''"""P
PRINT"

END

PRINT'-INSERTS generated by "sp generate-inserts" stored procedure written by Vyu'
PRINT'-Build number. 22'
PRINT'-Problemu/Suggestions? Contact Vyas @ vyaskn hotnud eon'
PRINT'-bmplhyasim. tnpod corn'
PRINT"
PRINT 'SET NOCOUN[ON
PRINT"

IF (@IDN o')
BEGIN

PRINT 'SET mENTTCY_INSERT +
QUOTENAME(COALESCE(Qaowner, USER NAMEO)) ++
QUOTENAME(@table_neme) +' ON

PRINT GO'
PRINT'

END

IF @disable_construms I AND
(OBJECT_ID(QUOTENAME(COALESCE(@owner, USER NAMEO)) ++
@teble_neme, 'U) IS NOT NULL)

BEGIN
IF @owner IS NULL

BEGIN
SELECT 'ALTER TABLE +

QUOTENAME(COALESCE(r@tazget_table, @table name)) +' NOCHECK
CONSTRAINtALL'AS'-Code to disable constraints tempomnl9

END
ELSE

BEGIN
SELECT 'ALTER TABLE +

QUOTENAME(@oweer) + QUOTENAME(COALESCE(@taiget table,
(3a table_name)) +' NOCHECK CONSTRAINT ALL' AS '-Code to disable oemtrsoss
tempor n1y

END

PRINT GO'
END

PRINT
PRINT PRINT "lnxfhng values into +
RTRIM(COALESCE(@target table, @table name))+7+^

EXEC (@Aotual_Wum)

PRINT PR NT "Dov e°
PRINT

287

Appendix C: SQL Legacy System
IF @dieable construan I AND
(OBIECT_ID(QUOTENAME(COALESCE(@owner, USER NAMEQ)) ++
Qa table nane, 'U) IS NOT NULL)

BEGIN
IF @owner IS NULL

BEGIN
SELECT 'ALTER TABLE +

QUOTENAME(COALESCE(©tuget_table, Arable name)) +' CHECK CONSTRAINT
ALL' AS'-Code to enable the previously disabled constraints'

END
ELSE

BEGIN
SELECT 'ALTER TABLE +

QUOTENAME((owner) + '. ' + QUOTENAME(COALESCE(Qtarget table,
Qtable_name)) +' CHECK CONSTRAINT ALL' AS '--Code to enable the previously
disabled constraints'

END

PRINT GO'
END

PRINT"
IF (®IDN o'ý

BEGIN
PRINT 'SET IDENTI Y_INSERT +

QUOTENAME(COALESCE(Qowner, USER NAMED)) ++
QUOTENAME(@table_rmme) +' OFF

PRINT GO'
END

PRINT 'SET NOCOUNT OFF

SET NOCOUNT OFF
RETURN 0 -Success. We are done)
END

Go

PRINT'Cr ated the procedure
00

EXEC mssterdbo sp_MS upd sysobj category 2
GO

PRINT'Gnnnng EXECUTE permi lion on sp jenerate_inserts to all user'
GRANT EXEC ON sp jcnewtc_üuens TO public

SET NOCOUNT OFF
GO

PRINT'Doee'

288

Appendix D: List of Publications by Author

Appendix D: List of Publications by Author

[1] J. Pu, Z. Zhang, J. Kang, Y. Xu and H. Yang, "Using Aspect Orientation in
Understanding Legacy COBOL Code", In the Proceedings of IEEE International
Computer Software and Applications Conference (COMPSAC2007), pp 385-390,2007.

[2] J. Pu, Z. Zhang, Y. Xu and H. Yang, "Reusing Legacy COBOL Code with UML
Collaboration Diagrams via Wide Spectrum Language", In the Proceedings of the 2005

IEEE International Conference on Information Reuse and Integration (IRI'05), IEEE

Systems, pp. 78-83,2005.

[3] J. Pu, Z. Zhang, R. Millham, Y. Xu and H. Yang, "Modelling Web-Based System

with UML Sequence Diagrams", In the Proceedings of L4DIS Virtual Multi Conference

on Computer Science and Information Systems (MCCSIS'05), International Association

for Development of the Information Society, 2005.

[4] S. McRobb, R. Millham, J. Pu and H. Yang, "Visualising COBOL Legacy Systems

with UML: An Experimental Report", Book chapter in Advances in UML and XML based

Software Evolution, IDEA Group Publishing, 2005.

[5] R. Millham, J. Pu and H. Yang, "TAGDUR: A Tool for Producing UML Sequence,
Deployment, and Component Diagrams Through Reengineering of Legacy Systems", In

the Proceedings of the 8th LASTED International Conference on Software Engineering

and Applications (SEA), Innsbruck, Austria, 2004.

[6] J. Pu, R. Millham and H. Yang, "Acquiring Domain Knowledge in Reverse

Engineering Legacy Code into UML", In the Proceedings of the 7th LASTED

International Conference on Software Engineering and Applications (SEA), Marina del

Rey, USA, 2003.

[7] J. Pu, S. Li and H. Yang, "Modelling Legacy Code with UML Class Diagram", In the
Proceedings of the 9th Chinese Automation and Computing Society Conference in the UK,
Luton, England, 2003.

289

