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Abstract

In order to avoid misleading decision solutions in group decision making (GDM) processes, in addition to consensus, which is ob-
viously desirable to guarantee that the group of experts accept the final decision solution, consistency of information should also be
sought after. For experts’ preferences represented by reciprocal fuzzy preference relations, consistency is linked to the transitivity
property. In this study, we put forward a new consensus approach to solve GDM with reciprocal preference relations that imple-
ments rationality criteria of consistency based on the transitivity property with the following twofold aim prior to finding the final
decision solution: (A) to develop a consistency control module to provide personalized consistency feedback to inconsistent experts
in the GDM problem to guarantee the consistency of preferences; and (B) to design a consistent preference network clustering based
consensus measure based on an undirected weighted consistent preference similarity network structure with undirected complete
links, which using the concept of structural equivalence will allow one to (i) cluster the experts; and (ii) measure their consensus
status. Based on the uninorm characterization of consistency of reciprocal preferences relations and the geometric average, we
propose the implementation of the geo-uninorm operator to derive a consistent based preference relation from a given reciprocal
preference relation. This is subsequently used to measure the consistency level of a given preference relation as the cosine simi-
larity between the respective relations’ essential vectors of preference intensity. The proposed geo-uninorm consistency measure
will allow the building of a consistency control module based on a personalized feedback mechanism to be implemented when the
consistency level is insufficient. This consistency control module has two advantages: (1) it guarantees consistency by advising
inconsistent expert(s) to modify their preferences with minimum changes; and (2) it provides fair recommendations individually,
depending on the experts’ personal level of inconsistency. Once consistency of preferences is guaranteed, a structural equivalence
preference similarity network is constructed. For the purpose of representing structurally equivalent experts and measuring consen-
sus within the group of experts, we develop an agglomerative hierarchical clustering based consensus algorithm, which can be used
as a visualization tool in monitoring current state of experts’ group agreement and in controlling the decision making process. The
proposed model is validated with a comparative analysis with an existing literature study, from which conclusions are drawn and
explained.

Keywords: Consistency, Consensus, Geometric Mean Uninorm, Feedback Mechanism, Social Network Analysis, Agglomerative
Hierarchical Clustering.

1. Introduction

Consensus group decision making theory is concerned with
the description and analysis of the process by which experts’
individual preferences are considered appropriately and aggre-
gated into a decision of the group, as a whole, with sufficient
level of group agreement. This process can be represented by a
network of interactions between the individual experts involved
in the process. An emerging research trend in this area is the
development of consensus approaches within the theory of So-
cial Network Analysis (SNA), where relationships among ex-
perts are taken into account. Several network based consensus
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models have recently been developed by Shang [1], Liu et al.
[2], Wu et al. [3, 4], Dong et al. [5], and Capuano et al. [6],
while a brief, but informative, overview and discussion on con-
sensus and decision making in social networks can be found in
Herrera-Viedma et al. [7]. It is common to have a large num-
ber of experts in a network. However, there exists an issue of
how to achieve sufficient level of consensus with these complex
interactions involved. Some alternative proposals used cluster-
ing methodologies to resolve this situation, such as Kamis et
al. [8], Perony et al. [9], Garcia-Lapresta and Perez-Roman
[10–12], Abel et al. [13] and Li et al. [14].

In consensus group decision making models, the study and
analysis of consistency is purposely conducted by its appropri-
ate integration as a consensus criterion to avoid misleading so-
lutions, and also to estimate information when it is unknown or
missing [15–18]. When experts provide information reflecting
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their preferences over a set of feasible alternatives of a deci-
sion making problem, there are three hierarchical levels of ra-
tionality assumption:Level 1. Indifference – indifference when
comparing an alternative x and itself x; Level 2. Asymmetry – an
expert cannot prefer alternative x to alternative y and alternative
y to x simultaneously; Level 3. Transitivity – if an expert prefers
alternative x to alternative y, and prefers alternative y to alterna-
tive z then this expert should prefer alternative x to alternative z.
Levels 1 and 2 of rationality assumptions are verified by assum-
ing a reciprocity property in the pairwise comparison between
any two alternatives. This is seen by Saaty [19] as a ‘reason-
able assumption’ when making paired comparisons. Preference
relations are considered consistent when they satisfy the third
level of rationality, and a property that guarantees the transitiv-
ity in the pairwise comparison among any three alternatives is
called a consistency property.

A number of different ways of modelling transitivity of fuzzy
preference relations have been proposed in the literature: (i) min
transitivity; (ii) moderate stochastic transitivity; (iii) max tran-
sitivity; (iv) strong stochastic transitivity; (v) additive transitiv-
ity; (vi) multiplicative transitivity. Under the reciprocity prop-
erty, Chiclana et al. [20] observed that max transitivity is only
possible when all alternatives are equally preferred, while ad-
ditive transitivity is in conflict with the unit interval scale used
for measuring preference values, making them inappropriate to
model consistency of reciprocal preference relations. In fact,
when ‘consistency’ of preferences is considered as the ‘cardi-
nal consistency in the strength of preferences’, which was de-
scribed by Saaty in [19, page 7] as

“not merely the traditional requirement of the tran-
sitivity of preferences [. . . ], but the actual inten-
sity with which the preference is expressed transits
through the sequence of objects in comparison,”

Chiclana et al. argued in [20] that consistency of reciprocal
preference relations can be theoretically modeled via a func-
tional equation. Under the conditions of almost associativity,
continuity and monotonicity, this functional equation was proved
to have the set of representable uninorms [21] as its solution.
Under reciprocity property, multiplicative transitivity [22] co-
incides with the representable cross-ratio uninorm [23] and,
therefore, it is an appropriate property to model consistency of
reciprocal preference relations.

It is known that consistency needs to be integrated within
consensus models in order to avoid misleading solutions in the
decision making processes [24, 25]. Consensus between ex-
perts in group decision making (GDM) is obviously desirable
to guarantee that the group of experts accept the final decision
solution it arrives at. Consensus is often sought using the ba-
sic rationality principles that each expert presents. However, if
consensus is secured and consistency criteria to fix the rational-
ity of each expert is applied afterwards, then a divergence of
the previously agreed consensus position could result, and the
final solution might not be acceptable by the group of experts
as a consensus solution. Thus, consistency criteria should be
applied before experts’ agreement is obtained. In other words a

minimum level of rationality should be sought for each expert’s
preferences before securing consensus.

The proposed group decision making methodology dealing
with reciprocal preference relations consists of two consecutive
main stages: (1) achieving a minimum threshold level of con-
sistency of experts’ preferences; and (2) achieving a minimum
threshold level of consensus among the group of experts. Both
minimum threshold levels of consistency and consensus are to
be acceptable/agreed by the group of experts, respectively, and
as such are considered here to be fixed in advance. A first step
towards each of these two main decision stages will be the mea-
suring of consistency and consensus levels, so that meaningful
consistency and consensus measure functions are required.

Once experts’ preferences are provided, the consistency level
associated to each expert is measured. If an expert’s preferences
consistency level is not sufficient, i.e., it is below the group
agreed minimum threshold level of consistency, then it would
be desirable to know what changes to his/her preferences to im-
plement in order to guarantee reaching the minimum threshold
level of consistency. Thus, before proceeding to the consensus
stage of a GDM model, a consistency control module is acti-
vated and applied once to guarantee consistency [26, 27].

In this study, we put forward a new consensus approach
to solve GDM with reciprocal preference relations that imple-
ments rationality criteria of consistency based on the transitiv-
ity property of preferences. This approach will have two key
outputs: (A) to develop a consistency control module to pro-
vide personalized consistency feedback to inconsistent experts
in order to guarantee the consistency of preferences in finding
the solution to the GDM problem; and (B) to design a consis-
tent preference network clustering based consensus measure by
building an undirected weighted consistent preference similar-
ity network structure with undirected complete links. This is
exploited using the concept of structural equivalence to cluster
the experts and to measure their consensus status.

Based on the aforementioned uninorm characterization of
consistency of reciprocal preferences relations, we propose the
composition of the geometric mean operator and the cross ratio
uninorm operator, which we refer to as the geo-uninorm op-
erator. This is used to derive a consistency-based preference
relation from a given reciprocal preference relation, and subse-
quently used to measure the consistency level of a given pref-
erence relation as the cosine similarity between the respective
relations’ essential vectors of preference intensities. The pro-
posed geo-uninorm consistency measure will allow the building
of a consistency control module based on a personalized feed-
back mechanism to be implemented when the consistency level
is insufficient. This consistency control module has two ad-
vantages: (1) it guarantees consistency by advising inconsistent
expert(s) to modify their preferences with minimum changes;
and (2) it provides fair recommendations individually, depend-
ing on the experts’ personal levels of inconsistency.

Once consistency of preferences is guaranteed, the pref-
erence similarity network based on the structural equivalence
concept is developed and presented comprehensively using the
agglomerative hierarchical clustering algorithm. Both, internal
and external cohesions, cluster consensus, clustering level of
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maximum consensus and global cluster consensus degrees of
the group of experts are defined in the procedure of the pro-
posed clustering based consensus model. The agglomerative
hierarchical clustering based consensus algorithm can be used
as a visualization tool [28] in monitoring the current state of the
experts’ group agreement and in controlling the decision mak-
ing process.

The rest of the paper is set out as follows: Section 2 de-
scribes the proposed consistency control module. Section 3
demonstrates the consistent preference network clustering based
consensus procedure, while Section 4 presents the framework
of the proposed geo-uninorm consistency control module for
preference similarity network hierarchical clustering based con-
sensus model. For validation purposes, a comparative analysis
of the proposed approach with an existing literature study is
carried out in Section 5 and finally, conclusions are drawn in
Section 6.

2. Consistency Control Module

This section focuses on the description and introduction of
concepts and terminology regarding reciprocal fuzzy preference
relations: the essential vector of preference intensities, the in-
troduction of geo-uninorm consistent fuzzy preference relations,
the proposal of a new consistency measure based on cosine sim-
ilarity function and the design of a consistency feedback mech-
anism to guarantee the consistency of preferences.

2.1. Reciprocal Fuzzy Preference Relations and its Essential
Vector of Preference Intensity

We assume that a group of experts, E =
{
e1, e2, · · · , en

}
,

provide their opinions or preferences on a given a finite set of al-
ternatives, Y = {y1, y2, · · · , ym}, in the form of reciprocal fuzzy
preference relations.

Definition 1. A reciprocal fuzzy preference relation P =
(
pi j

)
over a finite set of alternatives Y is a binary relation on Y ×
Y, which is characterized by a membership function µP : Y ×
Y −→ [0, 1], where pi j represents the intensity of preference of
the alternative yi over the alternative y j. We have the following
interpretation:

• pi j = 0.5 when yi and y j are equally preferred (indiffer-
ence);

• pi j ∈ (0.5, 1] meaning yi is preferred to y j;

• pi j = 1 when yi is absolutely preferred to y j;

• pi j + p ji = 1, ∀ yi, y j ∈ Y.

Let Ph =
(
pi j

)
be the m×m reciprocal matrix representation

of preferences over a finite set of alternatives Y , given by an

expert h:

Ph =



ph
11 ph

12 . . . ph
1m

ph
21 ph

22 . . . ph
2m

...
...

. . .
...

ph
(m−1)1 ph

(m−1)2 . . . ph
(m−1)m

ph
m1 ph

m2 . . . ph
mm


;

0 ≤ ph
i j ≤ 1;

ph
i j + ph

ji = 1 ∀i, j ∈ {1, 2, . . . ,m} .

Let Pm×m be the set of reciprocal fuzzy preference relations ma-
trices Ph from all experts E. A reciprocal fuzzy preference re-
lation can be represented by its essential vector of preference
intensity [29], which is mathematically defined below.

Definition 2. The essential vector of preference intensity of
expert h associated to his/her reciprocal fuzzy preference re-
lation Ph =

(
pi j

)
m×m
∈ Pm×m is the vector of dimension m(m−1)

2 ,
VPh ∈ Rm(m−1)/2, form with the entries above the main diagonal
of Ph:

VPh =
(
p12, p13, . . . , p1m, p23, . . . , p2m, . . . , p(m−1)m

)
=

(
vp1, vp2, . . . , vpk, . . . , vpm(m−1)/2

)
.

We will denote by V (Y) the set of essential vectors of prefer-
ence intensity on the set of alternatives Y .

2.2. Geo-uninorm Consistent Fuzzy Preference Relations and
Consistency Measure

The assumption that experts are able to quantify their pref-
erences in [0, 1] instead of {0, 1}, carries an assumption that ex-
perts can select accurately from an infinite set of possible op-
tions. However, this has the positive outcome that the consis-
tency of reciprocal preference relations is amenable to be mod-
eled mathematically via a functional equation [20]. Under the
conditions of associativity, almost continuity and monotonic-
ity, via Aczél’s theorem [30, page 107], Chiclana et al. [20]
proved that the solution of the consistency functional equation
of reciprocal fuzzy preference relations is the set of self-dual
representable uninorms [21, 31]. From the properties proposed
in the research literature to model transitivity of fuzzy prefer-
ence relations, Tanino’s multiplicative transitivity property un-
der reciprocity becomes

U(x, y) =

 0, if (x, y) ∈ {(0, 1), (1, 0)},
xy

xy + (1 − x)(1 − y)
, otherwise. (1)

This is the cross ratio uninorm, which is a conjunctive self-dual
representable uninorm (with identity element 0.5), also known
as the symmetric sum [23]. Uninorms are associative, which
can be used to extend them to m arguments. The cross-ratio
uninorm becomes the three

∏
operator [21]:

U(x1, x2, . . . , xm) =


0, if ∃i, j : (xi, x j) ∈ {(0, 1), (1, 0)},

n∏
i=1

xi

m∏
i=1

xi +
m∏

i=1
(1 − xi)

, otherwise.
(2)
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A key element that differentiates uninorm operators from mean
operators is the property of reinforcement. An operator is a re-
inforcement type operator if, given a set of input values, the
output is above the maximum of the input values when all in-
put values are ‘high’ and below the minimum of the input val-
ues when all input values are ‘low’. Obviously, mean opera-
tors cannot be reinforcement type operators because they are
located between the minimum and maximum of their input val-
ues; while uninorm operators are reinforcement operators when
all input values are above or below their identity element. For
operators different to the minimum and maximum operators, as-
sociativity and idempotency are incompatible properties [32].
The reinforcement property was not considered essential by
Yager when the input values correspond to criteria measuring
the same property, and added [33]

“[. . . ] at a meta-level the use of mean type opera-
tors is appropriate in situations in which the values
being aggregated are essentially multiple manifes-
tations of the same variable. In this environment,
the mean operator is acting like a smoothing op-
erator to unify the different manifestations of the
same concept.”

Thus, associativity is not necessary in applications where mean
operators (simple or weighted averages) are required to fuse
individual information into a collective one, and in particular,
when the input values to aggregate measure the same property
[34].

In the following, we pursue the implementation of Yager’s
[33] concept of extended mean operator, and in particular of a
special class of extended mean operators that include the well-
known classical average operators. He terms these as classi-
cal mean operators, i.e., operators that verify the properties of
commutativity, idempotency, monotonicity and self identity. Be-
cause all of the input values of the cross-ratio uninorm refer to
the same property (preference modeling), we propose the appli-
cation of a classical average operator, in this case the geometric
mean operator, in conjunction with the cross-ratio uninorm op-
erator (consistency modeling). This is possible to achieve be-
cause the cross ratio uninorm is a particular type of the more
general class of operators [35, 36]

PI (x1, · · · , xm) =



0, if ∃i, j : (xi, x j) ∈ {(0, 1), (1, 0)},
m∏

i=1

M (xl)

m∏
i=1

M (xi) +

m∏
i=1

M (1 − xi)

, otherwise,

(3)
with non-negative and increasing generating function M. When
the generating function M (z) = z

1
m , we obtain the following

operator:

GU (x1, x2, · · · , xm) =



0, if ∃i, j : (xi, x j) ∈ {(0, 1), (1, 0)},
m∏

i=1

x
1
m
i

m∏
i=1

x
1
m
i +

m∏
i=1

(1 − xi)
1
m

, otherwise.

(4)
For obvious reasons, this operator will be referred to in this
paper as the geo-uninorm operator, which can be equivalently
expressed as

GU (x1, x2, · · · , xm) =


0, if ∃i, j : (xi, x j) ∈ {(0, 1), (1, 0)},

1

1 +

m∏
i=1

(
1
xi
− 1

) 1
m

, otherwise.

(5)
The geo-uninorm operator is a classical mean operator as the
following results prove.

Proposition 1. The geo-uninorm operator verifies the follow-
ing properties: (1) Commutativity (2) Idempotency (3) Mono-
tonicity (4) Self identity.

Proof. Let G (x1, x2, · · · , xm) =

m∏
i=1

x
1
m
i be the geometric mean

operator.

Commutativity. Because G satisfies commutativity it is clear
that GU does so also.

Idempotency. Because G satisfies idempotency, then for all
x ∈ [0, 1] G (x, · · · , x) = x, and G (1 − x, · · · , 1 − x) =

1 − x. Consequently GU (x, · · · , x) =
x

x + (1 − x)
= x.

Monotonicity. Let us assume we have (x1, · · · , xm) and (y1, · · · , ym)
such that: 0 < yi ≤ xi ≤ 1 ∀i. The case when some of the
yi are zero is evident because then

0 = GU (y1, · · · , ym) ≤ GU (x1, · · · , xm) .

In this case we have that

∀i : 1 ≤
1
xi
≤

1
yi
⇐⇒ 0 ≤

1
xi
− 1 ≤

1
yi
− 1 ⇐⇒

0 ≤
(

1
xi
− 1

) 1
m

≤

(
1
yi
− 1

) 1
m

.

This implies that

0 ≤
m∏

i=1

(
1
xi
− 1

) 1
m

≤

m∏
i=1

(
1
yi
− 1

) 1
m

⇐⇒

GU (y1, · · · , ym) ≤ GU (x1, · · · , xm) .

Self identity. We prove that

GU (x1, · · · , xm,GU (x1, · · · , xm)) = GU (x1, · · · , xm) .
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Again, if one of the xi is zero then the above is evident as
both left and right hand sides of the equation are zero. In
all other cases, we have by definition:

GU (x1, · · · , xm,GU (x1, · · · , xm)) =

1

1 +

(
1

GU (x1, · · · , xm)
− 1

) 1
m+1 m∏

i=1

(
1
xi
− 1

) 1
m+1

However,

GU (x1, x2, · · · , xm) =
1

1 +

m∏
i=1

(
1
xi
− 1

) 1
m

⇐⇒

1
GU (x1, · · · , xm)

− 1 =

m∏
i=1

(
1
xi
− 1

) 1
m

.

Therefore,

GU (x1, · · · , xm,GU (x1, · · · , xm)) =

1

1 +

m∏
i=1

(
1
xi
− 1

) 1
m(m+1) m∏

i=1

(
1
xi
− 1

) 1
m+1

=

1

1 +

m∏
i=1

(
1
xi
− 1

) 1
m+1 + 1

m(m+1)

.

Because
1

m + 1
+

1
m(m + 1)

=
m + 1

m(m + 1)
=

1
m

, we con-

clude that

GU (x1, · · · , xm,GU (x1, · · · , xm)) =
1

1 +

m∏
i=1

(
1
xi
− 1

) 1
m

= GU (x1, x2, · · · , xm) .

Because the geo-uninorm operator is a mean operator, it is
obvious that it does not satisfy the reinforcement property as
discussed above. However, it satisfies weaker reinforcement
properties that are desirable for transitivity of preferences. In-
deed, denoting by

x∗ = min{x1, x2, · · · , xm}

and
x∗ = max{x1, x2, · · · , xm},

monotonicity of GU implies that

GU (x∗, x∗, · · · , x∗) ≤ GU (x1, x2, · · · , xm) ≤ GU (x∗, x∗, · · · , x∗) .

Idempotency of GU results in

min{x1, x2, · · · , xm} ≤ GU (x1, x2, · · · , xm) ≤ max{x1, x2, · · · , xm}.

It is obvious then that the geo-uninorm operator verifies weak
stochastic transitivity, min-transitivity, and moderate stochastic
transitivity:

Proposition 2. The geo-uninorm operator satisfies:

• Weak stochastic transitivity:

xi ≥ 0.5 ∀i =⇒ GU (x1, x2, · · · , xm) ≥ 0.5;

• Min transitivity:

GU (x1, x2, · · · , xm) ≥ min{x1, x2, · · · , xm} ∀xi;

• Moderate stochastic transitivity:

xi ≥ 0.5 ∀i =⇒ GU (x1, x2, · · · , xm) ≥ min
i

xi.

Additionally, since the function f (x) = log
(

1
x
− 1

)
is concave

on [0.5, 1) ( f ′′(x) ≤ 0) and convex on (0, 0.5] ( f ′′(x) ≥ 0), the
following reinforcement properties were proved in [35]:

(a) When xi ∈ [0.5, 1) ∀i =⇒ f

 m∑
i=1

αixi

 ≥ m∑
i=1

αi f (xi)

subject to
∑m

i=1 αi = 1. Taking αi =
1
m

we have

log

 1
1
m

∑m
i=1 xi

− 1

 ≥
m∑

i=1

1
m

log
(

1
xi
− 1

)
= log

m∏
i=1

(
1
xi
− 1

) 1
m

.

Monotonicity of f implies that

1
1
m

∑m
i=1 xi

− 1 ≥
m∏

i=1

(
1
xi
− 1

) 1
m

=⇒

1
m

m∑
i=1

xi ≤ GU (x1, x2, · · · , xm) .

(b) The case when xi ∈ (0, 0.5] ∀i is derived similarly to the
above case by changing the inequality symbols.

Proposition 3. The geo-uninorm operator satisfies mean rein-
forcement properties:

• xi ≥ 0.5 ∀i =⇒ GU (x1, x2, · · · , xm) ≥
1
m

m∑
i=1

xi;

• xi ≤ 0.5 ∀i =⇒ GU (x1, x2, · · · , xm) ≤
1
m

m∑
i=1

xi.

Thus we see that the geo-uninorm operator inherits proper-
ties from both the geometric mean operator and the cross ratio
uninorm operator, which makes it an appropriate operator for
modeling transitivity and, therefore, consistency of fuzzy pref-
erences. In the following we introduce the geo-uninorm consis-
tency property of a reciprocal fuzzy preference relation.

Definition 3. A reciprocal fuzzy preference relation, P =
(
pi j

)
,

on a finite set of alternatives, Y = {y1, y2, · · · , yn} , is geo-uninorm
consistent when

pi j = GU

(
pik, pk j

)
∀i, j, k, such that

(
pik, pk j

)
< {(0, 1) , (1, 0)} .
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Following Chiclana et al.’s methodological approach to con-
struct uninorm-based consistent reciprocal fuzzy preference re-
lations [20], the geo-uninorm consistent fuzzy preference rela-
tion, C =

(
ci j

)
, based on the set of (m − 1) reciprocal fuzzy

preference relation values P = {pi(i+1); i = 1, . . . ,m − 1} is con-
structed as follows:

1. For (i, j) such that j > (i + 1):

ci j = GU

(
pi(i+1), p(i+1)(i+2), · · · , p( j−1) j

)
.

2. For (i, j) such that j < i: ci j = 1 − c ji.

This methodology can be exploited to define a measure of con-
sistency of a given fuzzy preference relation. First, we construct
its associated geo-uninorm consistent fuzzy preference relation.
Second, we measure how similar these two fuzzy preference re-
lations are. This similarity degree is defined as the level of con-
sistency of the given fuzzy preference relation. This is summa-
rized in the following definition, where the proposed measure of
similarity is the cosine similarity between the essential vectors
of preference intensity of the given fuzzy preference relation
and the associated geo-uninorm consistent fuzzy preference re-
lation.

Definition 4. The cosine-consistency degree of expert h, CCD
(
eh

)
,

is the similarity degree between the essential vector of prefer-
ence intensity, VPh =

(
vph

k

)
, and the essential vector of geo-

uninorm consistent preference intensity, VCh =
(
vch

k

)
,

CCD
(
eh

)
=

m(m−1)/2∑
k=1

(
vph

k · vch
k

)
√√

m(m−1)/2∑
k=1

(
vph

k

)2
·

√√
m(m−1)/2∑

k=1

(
vch

k

)2

. (6)

Example 1. In order to demonstrate our proposed procedure in
this sub-section, we use the example in Chu et al. [37], where
a committee of eight (8) experts, E =

{
e1, e2, . . . , e8

}
, give their

opinions over a set of six (6) alternatives, Y = {y1, y2, . . . , y6}

in terms of reciprocal fuzzy preference relations. Below we re-
produce the evaluation matrix P1 with the values of its essential
vector of preference intensity VP1 boldfaced:

P1 =



1 0.4 0.2 0.6 0.7 0.8
0.6 1 0.1 0.6 0.9 0.7
0.8 0.9 1 0.3 0.1 0.1
0.4 0.4 0.7 1 0.5 0.2
0.3 0.1 0.9 0.5 1 0.7
0.2 0.3 0.9 0.8 0.3 1


VP1 = (0.4, 0.2, 0.6, 0.7, 0.8, 0.1, 0.6, 0.9, 0.7, 0.3, 0.1, 0.1, 0.5, 0.2, 0.7).

The rest of the essential vectors of preference intensity are as

follows:

VP2 = (0.3, 0.3, 0.5, 0.6, 0.6, 0.4, 0.7, 0.2, 0.3, 0.5, 0.4, 0.2, 0.6, 0.7, 0.4);

VP3 = (0.6, 0.6, 0.6, 0.1, 0.4, 0.3, 0.6, 0.3, 0.6, 0.6, 0.1, 0.6, 0.7, 0.6, 0.2);

VP4 = (0.2, 0.1, 0.5, 0.8, 0.8, 0.2, 0.9, 0.2, 0.4, 0.8, 0.1, 0.1, 1.0, 0.8, 0.6);

VP5 = (0.6, 0.3, 0.6, 0.6, 0.7, 0.1, 0.7, 0.8, 0.4, 0.3, 0.3, 0.2, 0.5, 0.2, 0.7);

VP6 = (0.3, 0.1, 0.5, 0.7, 0.6, 0.4, 0.7, 0.2, 0.4, 0.5, 0.4, 0.2, 0.6, 0.7, 0.4);

VP7 = (0.7, 0.4, 0.6, 0.2, 0.6, 0.3, 0.7, 0.3, 0.8, 0.6, 0.1, 0.6, 0.7, 0.6, 0.2);

VP8 = (0.4, 0.3, 0.3, 0.6, 0.7, 0.2, 0.9, 0.2, 0.4, 0.8, 0.1, 0.1, 1.0, 0.8, 0.6).

Below, we compute the geo-uninorm consistent fuzzy prefer-
ence relation, C1, associated to P1, and the corresponding es-
sential vector of geo-uninorm consistent preference intensity.
Using the following preference values of P1 : {p12 = 0.4, p23 =
0.1, p34 = 0.3, p45 = 0.5, p56 = 0.7}, we obtain:

c15 =
(p12 · p23 · p34 · p45)

1
4

(p12 · p23 · p34 · p45)
1
4 +

[
(1 − p12) · (1 − p23) · (1 − p34) · (1 − p45)

] 1
4

= 0.2968.

Similarly, we obtain c16 = 0.3727; c24 = 0.1791; c36 = 0.5; c46 =

0.604. The remaining values are obtained using the reciprocity
property, resulting in:

C1 =



1 0.4 0.2139 0.2405 0.2968 0.3727
0.6 1 0.1 0.1791 0.266 0.366

0.7861 0.9 1 0.3 0.3956 0.5
0.7595 0.8209 0.7 1 0.5 0.6044
0.7032 0.734 0.6044 0.5 1 0.7
0.6273 0.634 0.5 0.3956 0.3 1


,

VC1 = (0.4, 0.2139, 0.2405, 0.2968, 0.3727, 0.1, 0.1791, 0.266, 0.366, 0.3, 0.3956, 0.5, 0.5, 0.6044, 0.7).

Similarly, we compute the rest of the experts’ essential vectors
of geo-uninorm consistent preference intensity:
VC2 = (0.3, 0.3483, 0.3971, 0.4472, 0.4377, 0.4, 0.4495, 0.5, 0.4747, 0.5, 0.5505, 0.5, 0.6, 0.5, 0.4);

VC3 = (0.6, 0.445, 0.497, 0.5505, 0.4713, 0.3, 0.445, 0.5337, 0.439, 0.6, 0.6517, 0.4889, 0.7, 0.433, 0.2);

VC4 = (0.2, 0.2, 0.3865, 1, 1, 0.2, 0.5, 1, 1, 0.8, 1, 1, 1, 1, 0.6);

VG5 = (0.6, 0.2899, 0.2932, 0.3408, 0.4114, 0.1, 0.1791, 0.266, 0.366, 0.3, 0.3956, 0.5, 0.5, 0.6044, 0.7);

VC6 = (0.3, 0.3483, 0.3971, 0.4472, 0.4377, 0.4, 0.4495, 0.5, 0.4747, 0.5, 0.5505, 0.5, 0.6, 0.5, 0.4);

VC7 = (0.7, 0.5, 0.5337, 0.5777, 0.4933, 0.3, 0.445, 0.5337, 0.439, 0.6, 0.6517, 0.4889, 0.7, 0.433, 0.2);

VC8 = (0.4, 0.2899, 0.4663, 1, 1, 0.2, 0.5, 1, 1, 0.8, 1, 1, 1, 1, 0.6).

As per Definition 4, the cosine-consistency degree for each ex-
pert is measured and listed below:

CCD
(
e1

)
= 0.8307; CCD

(
e2

)
= 0.9513;

CCD
(
e3

)
= 0.9182; CCD

(
e4

)
= 0.7462;

CCD
(
e5

)
= 0.8788; CCD

(
e6

)
= 0.9435;

CCD
(
e7

)
= 0.9109; CCD

(
e8

)
= 0.7212.
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2.3. Personalized Geo-uninorm Consistency Feedback Mecha-
nism

The consistency feedback mechanism is purposely carried
out for those cases when the consistency degree of the expert is
insufficient, which could impact on the quality of the decision
making solution. For those ‘inconsistent expert(s)’ who have
a consistency degrees lower than a consistency threshold, per-
sonalized consistency based changes to their preferences will be
generated to guarantee that the consistency threshold is achieved.

The following notation is used in the description of the per-
sonalized geo-uninorm consistency feedback mechanism algo-
rithm below:

• Essential vector of preference intensity of expert eh:

VPh =
{
vp1, vp2, · · · , vp(m−1)m/2

}
;

• Essential vector of geo-uninorm consistent preference in-
tensity of expert eh:

VCh =
{
vc1, vc2, · · · , vc(m−1)m/2

}
;

• Cosine-consistency degrees of all experts:

CCD =
{
CCD(e1),CCD(e2), · · · ,CCD(en)

}
;

• Personalized consistency parameter control: γ ∈ [0, 1];

• Consistency threshold: η.

Example 2 (Continuation of Example 1). Let the consistency
threshold η = 0.8; experts e4 and e8 are classed as inconsis-
tent. For simplicity, we use discrete values of γ from the set
{0.1, 0.2, . . . , 0.9, 1}. Table 1 presents the CCDγ for inconsis-
tent experts e4 and e8, with both requiring a γ value of 0.2 to
become consistent. In the continuous case, a lower value of
γ would have been required for both experts e4 and e8, with a
lower γ value for e4 than for e8. A different threshold value, like
η = 0.83, would have produced different discrete γ values for
experts e4 and e8, 0.2 and 0.3 respectively.

3. Consistent Preference Network Clustering Based Con-
sensus Measure

The information given by the experts in Section 2 is at this
stage considered ‘consistent’ for making the given decision.
The consistent essential vectors of preference intensity are uti-
lized to build an undirected weighted consistent preference sim-
ilarity network structure, consisting of undirected complete links,
L, connected to the vertices, representing the set of experts
E, with set of weights, S, attached to each of them reflecting
their similarity of preference. Because the similarity functions
are symmetric, which means that the preference similarity of
experts ec and ed coincides with the preference similarity of
vertices ed and ec, the similarity network is undirected with a
unique weight attached to a pair of its nodes. This undirected
weighted consistent preference similarity network, N, is defined
below (Fig. 1 shows an example).

Definition 5. Let E be a set of experts and C =
{
VC1,VC2, . . . ,VCm

}
the corresponding set of consistent essential vector of prefer-
ence intensity on a set of alternatives Y. Let S be an essen-
tial vectors of preference intensity similarity function, i.e., a
reflexive and symmetric function S : V (Y) × V (Y) → [0, 1].
Then, the set of experts, E, can be connected by a set of links,
L =

{
l12, . . . , l1m, l23, . . . , l2m, . . . , l(m−1)m

}
, with the following set

of consistent preference similarity weights attached, S = S (C×
C) =

{
S 1, S 2, . . . , S m(m−1)/2

}
. The resulting undirected weighted

consistent preference similarity network will be denoted by N =

〈E, L,S〉.

From the perspective of Social Network Analysis (SNA),
for the purpose of deriving the above preference similarity net-
work, the concept of structural equivalence [38] is applied. We
rely on the definition of structural equivalence: two experts are
structurally equivalent if they are connected to the same experts
(have the same neighbors), which is seen as evidence of them
have similar characteristics in their own social environments
[39]. In constructing our structural equivalence preference sim-
ilarity network, we compute the cosine similarity degree, CS cd

between the pair of consistent essential vectors of preference

intensity from expert ec, VCc =

{
vcc

1, . . . , vcc
k, . . . , vcc

m(m−1)
2

}
, and

ed, VCd =

{
vcd

1, . . . , vcd
k , . . . , vcd

m(m−1)
2

}
,

CS cd = CS
(
VCc,VCd

)
=

m(m−1)/2∑
k=1

(
vcc

k · vcd
k

)
√√

m(m−1)/2∑
k=1

(
vcc

k

)2
·

√√
m(m−1)/2∑

k=1

(
vcd

k

)2

.

The cosine similarity was chosen because it is one of the well-
known functions applied in representing structural equivalence
but also because, in contrast to Euclidean-based similarity, its
stability in measuring consensus regardless of the number of
experts involved has been proven [40].

In order to present the structural equivalence preference sim-
ilarity network comprehensively, an agglomerative hierarchi-
cal clustering method is implemented. This approach has the
ability to partition structural equivalent experts discretely into
clusters with an explicit algorithm and interpretation [41]. In
our case, a cluster will be interpreted as a collection of experts
which have similar preferences among them and have dissimilar
preferences to the experts from different clusters. The result-
ing dendogram is a convenient graphical visualization of the
hierarchical sequence of clustering solution (Fig. 2 shows an
example). The dendogram is horizontally cut at a certain α-
level (dendogram’s height) according to the chosen number of
clusters at the level of the consistent preference similarity ma-
trix, CS . After the clustering solution is obtained, we construct
a procedure of measuring consensus based on the concept of
clusters’ homogeneity. It seems reasonable to reach cohesive-
ness of preferences (consensus) because experts are clustered
according to their structural equivalence relation, where they
are expected to have strong connections within their cluster’s
members rather than with the outsider experts [8].
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personalized geo-uninorm consistency feedback mechanism

STEP 1: Identify inconsistent expert(s), elow:

elow =
{
eh

low | CCD
(
eh

)
< η

}
. (7)

STEP 2: Recommend that each inconsistent expert, eh
low, change his/her essential vector of preference intensity,

VPh, closer to the associated essential vector of geo-uninorm consistent preference intensity, VCh, ac-
cording to the following linear combination with personalized consistency parameter control, γ:

VPh
γ = (1 − γ) · VPh + γ · VCh. (8)

STEP 3: Compute the new cosine-consistency degree, CCDγ

(
eh

)
, between VPh

γ =

{
vph

γ1
, . . . , vph

γk
, . . . , vph

γ m(m−1)
2

}
and VCh

γ =

{
vch

1, . . . , vch
k , . . . , vch

m(m−1)
2

}
:

CCDγ(eh) =

m(m−1)/2∑
k=1

(
vph

γk · vch
k

)
√√

m(m−1)/2∑
k=1

(
vph

γk

)2
·

√√
m(m−1)/2∑

k=1

(
vch

k

)2

. (9)

Note that when γ = 0, we have VPh
0 = VPh and CCD0(eh) = CCD(eh), while when γ = 1, VPh

1 = VCh

and CCD1(eh) = 1. The larger the value of γ, the closer VPh
γ will be to VCh, and therefore the higher

CCDγ(eh) will be.
STEP 4: Choose the optimal control parameter, γ̂:

CCDγ̂(eh) = η.

The optimal control parameter corresponds to the gamma value that will optimize the change cost (dif-
ference between the original preference values and new personalized preference values) for an inconsis-
tent expert to be classed as consistent. Different inconsistent experts will have different optimal control
parameter values, making the feedback process common but at the same time personalized.

Table 1: Cosine-consistency degrees, CCDγ, for inconsistent experts e4 and e8.

γ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
CCDγ(e4) 0.7462 0.7927 0.8363 0.8757 0.9103 0.9393 0.9625 0.9798 0.9914 0.9980 1
CCDγ(e8) 0.7212 0.7726 0.8207 0.8643 0.9025 0.9344 0.9596 0.9784 0.9909 0.9979 1
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The agglomerative hierarchical clustering method has no
predetermined number of clusters. Instead it has a set of dis-
tinct α-levels in the agglomerative hierarchical clustering: L =

{αl : l = 2, . . . ,m − 1}. Level α1 represents the extreme case
of having a single cluster containing all experts, while level αm

is the initial partition of the agglomerative hierarchical cluster-
ing where each member belongs to its own cluster. In practice,
for these two extreme levels, no clustering technique effectively
applies.

Let Kl = {Klr : r = 1, . . . , l} be the set of clusters at level
αl. In order to measure consensus with capability of structural
equivalent relations, presented by the agglomerative hierarchi-
cal clustering, we define experts’ cluster homogeneity based
on their internal and external cohesions, and combine both el-
ements to obtained the collective group cluster consensus mea-
sure. Let ]Klr denotes the cardinality of Klr. The cluster inter-
nal cohesion degree, (δint), the cluster external cohesion degree,
(δext), and cluster-consensus degree, (δCC), are defined next.

Definition 6. The αl-level cluster internal cohesion degree of
cluster Klr is

δint (Klr) =

∑
i∈Klr

∑
j∈Klr

S i j

(
]Klr

)2 ,

where S i j is cosine similarity degree between expert i and j in
the cluster Klr.

Definition 7. The αl-level cluster external cohesion degree of
cluster Klr is

δext (Klr) =

∑
i∈Klr

∑
j<Klr

S i j

]Klr
(
n − ]Klr

) ,
where n = ]E is the total number of experts and S i j is cosine
similarity degree between expert i in the cluster Klr and the ex-
pert j outside the cluster Klr.

Definition 8. The αl-level cluster consensus degree of cluster
Klr,

δCC (Klr) =
]Klr (δint (Klr) − δext (Klr))

n
+ δext (Klr) .

Groups of experts are clustered based on their preference sim-
ilarities. Thus it is expected that δint (Klr) > δext (Klr) will be
satisfied in the proposed consensus framework. In this case, the
similarities between experts in a group are greater internally,
meaning that they are more closely attached within their group
members than with the outsider experts, and that they are a very
homogeneous group.

The group of experts’ consensus degree at each α-level clus-
ter, δLC (l), is then determined to represent the preference homo-
geneity between experts at that cluster level.

Definition 9. The αl-level cluster consensus degree of the group
of experts E is

δLC (l) =

l∑
r=1

δCC (Klr)

l
.

We are aiming at achieving consensus. Thus the maximum
of all the αl-level cluster consensus degrees of the group of ex-
perts E is chosen as the optimal level. The definition is given
below.

Definition 10. The optimal agglomerative hierarchical cluster-
ing level, αl̂-level, is the solution to the following optimization
problem

max
αl∈L

δLC (l) .

As the numbers of levels is finite, the above optimization
problem is solvable. However, the solution might not be unique,
with more than one αl-level with same maximum cluster con-
sensus degree. In this case, we use the αl-level cluster consen-
sus coefficient of variation, CCVLC (l), to discriminate between
αl-levels, with the one with lowest CCVLC (l) being the optimal
αl̂-level amongst all the αl-levels with maximum cluster con-
sensus degree.

Definition 11. The αl-level cluster consensus coefficient of vari-
ation is

CCVLC (l) =
CS DLC (l)
δLC (l)

where

CS DLC (l) =

√∑l
r=1 [δCC (Klr) − δLC (l)]2

l
.

In the case of having two or more αl-levels with same max-
imum cluster level consensus degree and cluster consensus co-
efficient of variation, then we select the lowest αl-level value
because it will involve the lowest number of clusters, which
will subsequently require a lower number of rounds in the feed-
back mechanism for the minimum threshold value of consensus
to be achieved.

Finally, the global cluster consensus degree of a group of
experts E, δLC

(
l̂
)
, is defined next.

Definition 12. The global cluster consensus degree of a group
of experts E is δLC

(
l̂
)
, with αl̂-level being the optimal clustering

level.

The clustering based consistent preference similarity net-
work consensus algorithm is presented in Algorithm 1.

Example 3. In order to measure structurally equivalence ex-
perts in the network, the consistent cosine similarity degrees
between all pairs of expert preferences are computed, result-
ing in the following symmetric consistent preference similarity
matrix:

CS =



1 0.833 0.762 0.863 0.973 0.844 0.810 0.855
0.833 1 0.873 0.963 0.871 0.991 0.886 0.965
0.762 0.873 1 0.837 0.805 0.844 0.984 0.880
0.863 0.963 0.837 1 0.864 0.971 0.868 0.989
0.973 0.871 0.805 0.864 1 0.866 0.835 0.873
0.844 0.991 0.844 0.971 0.866 1 0.876 0.962
0.810 0.886 0.984 0.868 0.835 0.876 1 0.901
0.855 0.965 0.880 0.989 0.873 0.962 0.901 1


.

The undirected weighted consistent preference similarity net-
work, N, is computed and demonstrated as in Figure 1. For
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Algorithm 1: The clustering based consistent preference similarity network consensus procedure

Data: A set of consistent essential vector of preference intensity, C =
{
VC1,VC2, . . . ,VCm

}
of a set of experts,

E = {e1, e2, . . . , em}, on a set of alternatives, Y = {y1, y2, . . . , yn}.
Result: A hierarchical sequence of clustering solution: Zm,Zm−1, . . . ,Z1.
begin

1 Begin the clustering with partition Zm = {K1,K2, . . . ,Km} where each cluster Kc has exactly one element ec:
Zm =

{{
e1

}
,
{
e2

}
, . . . , {em}

}
= {{K1} , {K2} , . . . , {Km}} ;

i←− m;
while i > 1 do

2 Determine clusters Kc and Kd in Zi = {K1,K2, . . . ,Ki} with maximal distance
(
Dcd

)
;

3 Merge clusters Kc and Kd into cluster Kr ;
4 Construct new partition Zi−1 by removing Kc and Kd and adding cluster Kr ;

i←− i − 1;
end while

end
Input: The consistent preference similarity matrix, CS and a dendogram with:

A set of experts: E =
{
e1, e2, . . . , en

}
;

A set of all distinct α-levels: L = {αl : l = 2, 3, . . . , n − 1};
A set of clusters at each αl-level: Kl = {Klr : r = 1, 2, . . . , l};
Consensus threshold value: = γ.

Output: A global cluster consensus degree of a group of experts: δLC

(
l̂
)
.

begin
5 Determine experts in each cluster of αl-level;
6 Calculate δint (Klr) and δext (Klr) for each cluster in Kl;
7 Determine δCC (Klr) by combining δint (Klr) and δext (Klr) for each cluster in Kl;
8 Compute δLC (l) for all αl-level in L;
9 Identify optimal agglomerative hierarchical clustering level: αl̂-level;

10 Identify the global cluster consensus degree of a group of experts: δLC

(
l̂
)
;

end
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simplicity only a few link weights are presented. As shown in
matrix CS , the similarity degree between pair of experts e1 and
e5, e2 and e6, e3 and e7, and e4 and e8 are among the highest,
thus they are closely attached with each other in the similarity
network N. Figure 2 shows the dendogram resulting from the
agglomerative hierarchical clustering procedure. It is useful to
visualize the clustering solution as it is utilized as one of the
input elements in measuring global cluster consensus degree.

Figure 1: The undirected weighted consistent preference similarity network, N

Figure 2: Dendogram generated from the agglomerative hierarchical clustering
procedure

Table 2 provides the internal and external cohesions for
each cluster, cluster consensus and global cluster consensus de-
gree for all α-levels. The maximum consensus degree, obtained
at the α4-level (optimal clustering level), is 0.901 and shows
that the global cluster consensus degree of a group of experts is
in line with network pattern in Figure 1.

If the consensus threshold was set at 0.9, then no consensus

feedback process would be required because the global cluster
consensus degree is above this number. However, if the global
cluster consensus degree was lower than the consensus thresh-
old, a feedback mechanism procedure has to be carried out with
the purpose of obtaining a high level of group agreement. This
is not part of the discussion in this paper.

4. Framework Overview of the Proposed Consensus Model

This section provides the framework of the proposed geo-
uninorm consistency control module for a preference similarity
network clustering-based consensus model. As shown in Fig-
ure 3, the model has two main phases: (A) a consistency control
module, which was discussed in Section 2; and (B) a consistent
preference similarity network clustering-based consensus mea-
sure, presented in Section 3 . Brief explanations on both phases
are presented below.

• Phase A: A group of experts give their evaluation con-
cerning a set of alternatives, by means of reciprocal fuzzy
preference relations, from which their essential vectors
of preference intensity are extracted. The geo-uninorm
operator is applied to check for consistency of prefer-
ences by means of the computation of consistent-based
fuzzy preference relations, that satisfy uninorm proper-
ties and transitivity properties as well. Experts’ consis-
tency is checked by measuring the similarity between the
constructed essential vectors of consistent preference in-
tensities and the provided ones. The consistency degree
based on the cosine similarity function is proposed. This
is compared to a threshold value, which is set in advance.
This comparison may or may not activate a novel person-
alized geo-uninorm consistency feedback system. This
consistency module control starts by identifying those ex-
pert(s) with consistency degree lower than the threshold.
Personalized changes are then provided to the identified
inconsistent experts. They then adjust their original pref-
erences to move closer to their constructed geo-uninorm
consistent preferences. The amount of change cost as
measured by the difference between the recommended
preference value and the original ones is optimized sub-
ject to achieving a consistency threshold value, which is
controlled by a personalized γ parameter. Different ex-
perts will receive different values of γ, and therefore will
be treated differently. The consistency feedback process
thus guarantees that consistency will reach the threshold
value if the recommendations of change are effectively
implemented by the inconsistent experts for use in the
next consensus measuring phase.

• Phase B: Once consistency of preferences has been achieved,
consensus is measured. To do this, the symmetric con-
sistent preference similarity matrix, CS , is constructed
by computing the cosine similarity degree between the
reciprocal fuzzy preference relations of all pairs of ex-
perts. This is subsequently exploited via the SNA struc-
tural equivalence concept. Thus, an undirected weighted
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Table 2: The cluster internal and external cohesions, cluster consensus and global cluster consensus degree at all α-levels

α K E δint δext δCC δLC

2 1 e2, e3, e4, e6, e7, e8 0.933 0.840 0.910 0.893
2 e1, e5 0.986 0.840 0.877

3 1 e2, e4, e6, e8 0.980 0.865 0.922 0.894
2 e3, e7 0.992 0.848 0.884
3 e1, e5 0.986 0.840 0.877

4 1 e2, e6 0.996 0.896 0.921 0.901
2 e4, e8 0.995 0.9 0.924
3 e3, e7 0.992 0.848 0.884
4 e1, e5 0.986 0.840 0.877

5 1 e2, e6 0.996 0.896 0.921 0.898
2 e4, e8 0.995 0.9 0.924
3 e3 1 0.855 0.873
4 e7 1 0.880 0.895
5 e1, e5 0.986 0.840 0.877

6 1 e2, e6 0.996 0.896 0.921 0.894
2 e4, e8 0.995 0.9 0.924
3 e3 1 0.855 0.873
4 e7 1 0.880 0.895
5 e1 1 0.848 0.867
6 e5 1 0.869 0.886

7 1 e2, e6 0.996 0.896 0.921 0.899
2 e4 1 0.908 0.919
3 e8 1 0.918 0.928
4 e3 1 0.855 0.873
5 e7 1 0.880 0.895
6 e1 1 0.848 0.867
7 e5 1 0.869 0.886

Figure 3: A framework of geo-uninorm consistency control system for preference similarity network clustering based consensus model
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consistent preference similarity network connecting all
experts using their similarity of preference degrees is con-
structed. Experts are classed into subsets of structurally
equivalent experts by using an agglomerative hierarchical
clustering algorithm. The dendogram of this clustering
is used as a visualization tool to find the optimal con-
sensus α-level clustering solution. This is achieved by
computing for each cluster, at each α-level, their inter-
nal and external cluster cohesions, which are combined
to determine the clusters’ consensus degrees and α-level
consensus degree. The α-level with maximum consen-
sus is identified as the optimal one reflecting the global
consensus of the group of experts at this stage.

5. Analysis of the Consistency Control Module and its Im-
pact on Consensus

In this validation section, we revisit the work of Chu et al.
[37], and compare our results related to the proposed consis-
tency control module. We remark on five comparison elements
of both models as depicted in Table 3 below:

Chu et al. in [37] studied reciprocity, additive consistency
and acceptable consistency properties for collective preference
relations. We have proposed the construction of consistent fuzzy
preference relations based on the geo-uninorm operator, which
is related to multiplicative consistency rather than additive con-
sistency. In computing consistency degree, Chu et al. compared
individual expert’s preferences with collective preferences, while
in the proposed approach in this paper, an expert’s preferences
are compared only with his own geo-uninorm consistent pref-
erences. These differences explain the slight differences in the
consistency degrees obtained by the two models. For a consis-
tency threshold of 0.8, both approaches identify the same num-
ber and the same inconsistent experts (e4 and e8). Notice that
if the threshold value had been set as 0.83, for example, both
methods would have produced quite different sets of inconsis-
tent experts in number. While our proposed method will only
identify the previous two identified experts as inconsistent, Chu
et al. would have added expert e5. More notable differences
between the approaches are apparent when the threshold value
is increased.

The consistency feedback mechanism applied by Chu et al.
was developed in Wu and Xu [24], with both experts receiv-
ing the same parameter value (γ = 0.6) controlling the prefer-
ence change recommendations to reach the consistency thresh-
old level. In the case of the proposed model in this paper, each
expert will receive a different parameter value of γ. For illus-
trative purposes, in the example used in this paper, we restrict
ourselves to the set of discrete values of γ: {0.1, 0.2, . . . , 0.9, 1}.
In this case, the proposed model returns both experts with the
same value of γ = 0.2. This is significantly lower than the 0.6
from the comparison model. The impact of these differences
on the recommended changes experts received via the proposed
model are twofold: (1) it provides fair recommendations in-
dividually, depending on the experts’ personal level of incon-
sistency; (2) it guarantees consistency by advising inconsistent
expert(s) to modify their preferences with minimum changes .

Thus, the proposed approach is promising because every incon-
sistent expert is reasonably treated, and will be more willing to
accept the recommendations because only minimal changes are
needed.

The new preference relations obtained, after the feedback
on preference changes are implemented, are different in the two
methods. The proposed method in this paper is based on a
uninorm-based construction of consistent preference relations
that makes use of (m − 1) original preference relation values.
These remain unchanged in the next stage of the proposed pro-
cess. This is not the case in the method implemented by Chu et
al., since inconsistent experts are advised to change all of their
preferences. Thus, the proposed model in this paper is less ex-
pensive, not only in terms of the magnitude of the change rec-
ommended, but also computationally because a lower number
of changes is required for an inconsistent expert to achieve the
consistency threshold.

Finally, for the purpose of analyzing the impact of the pro-
posed consistency control module in achieving consensus, Ta-
ble 4 shows the results on consensus when the preference simi-
larity network structural equivalence clustering based consen-
sus model is implemented with and without the consistency
control module.

The outcome clearly shows that consistency control module
positively contributes to achieving sufficient consensus level.
We can see that in the consensus process first round, the con-
sensus degree is above the threshold value when consistency
is checked and improved, meaning that experts’ consistency
also contributed to expert’s agreement. The consensus second
round, which involves the activation of a consensus feedback
process, was not needed when the consistency control module
was activated. On the other hand, without the consistency con-
trol module, the second round of consensus was needed. Thus,
consensus models with the consistency control module are ex-
pected to be computationally less expensive for achieving con-
sensus than those without.

6. Conclusion

In decision making, correctness of information, i.e infor-
mation that is consistent, is a necessary element to be taken
into account. The transitivity property has been suggested in
order to model consistency because of its hierarchy status with
other basic properties of pairwise comparisons, asymmetry and
indifference. In this paper a geo-uninorm operator has been pro-
posed and proved to satisfy desirable properties for modelling
consistency of preferences. This operator is a hybrid operator
that is obtained by combining the best of the geometric average,
a mean operator that assures that moderate stochastic transitiv-
ity is satisfied, and of the cross-ratio uninorm, which allows
for the mean reinforcement property. Approaches for deriv-
ing consistent-based fuzzy preference relations from a given
fuzzy preference relation, and for measuring its consistency
level are developed. These are subsequently exploited to de-
sign a personalized geo-uninorm consistency feedback mech-
anism, with personalized recommendations depending on the
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Table 3: Comparative results of consistency control module

Elements Chu et. al[37] Proposed model
Consistency
degrees

CCD
(
e1

)
= 0.9400, CCD

(
e2

)
= 0.8533, CCD

(
e1

)
= 0.8307, CCD

(
e2

)
= 0.9513,

CCD
(
e3

)
= 0.8311, CCD

(
e4

)
= 0.7089, CCD

(
e3

)
= 0.9182, CCD

(
e4

)
= 0.7462,

CCD
(
e5

)
= 0.8289, CCD

(
e6

)
= 0.8400, CCD

(
e5

)
= 0.8788, CCD

(
e6

)
= 0.9435,

CCD
(
e7

)
= 0.8422, CCD

(
e8

)
= 0.7511. CCD

(
e7

)
= 0.9109, CCD

(
e8

)
= 0.7212.

Inconsistent ex-
pert(s) (Thresh-
old 0.8)

e4, e8 e4, e8

Controlled pa-
rameter

γ = 0.6 for both e4, e8 Personalized: γ(e4) = 0.2, γ(e8) = 0.2

Feedback prefer-
ences

CP4 =



1 0.3133 0.24 0.4877 0.6733 0.6867
0.6867 1 0.3067 0.7333 0.32 0.4533
0.76 0.6933 1 0.6867 0.27 0.2867

0.5133 0.2667 0.3133 1 0.8067 0.7
0.3267 0.68 0.7267 0.1933 1 0.5733
0.3133 0.5467 0.7133 0.3 0.4267 1


CP4 =



1 0.2 0.12 0.4773 0.84 0.84
0.8 1 0.2 0.82 0.36 0.52
0.88 0.8 1 0.8 0.28 0.28

0.5227 0.18 0.2 1 1 0.84
0.16 0.64 0.72 0 1 0.6
0.16 0.48 0.72 0.16 0.4 1



CP8 =



1 0.44 0.3667 0.3467 0.5333 0.6133
0.56 1 0.3067 0.7067 0.2933 0.4333

0.6333 0.6933 1 0.66 0.2467 0.2667
0.6533 0.2933 0.34 1 0.8067 0.7067
0.4667 0.7067 0.7533 0.1933 1 0.58
0.3867 0.5667 0.7333 0.2933 0.42 1


CP8 =



1 0.4 0.298 0.3333 0.68 0.76
0.6 1 0.2 0.82 0.36 0.52

0.702 0.8 1 0.8 0.28 0.28
0.6667 0.18 0.2 1 1 0.84

0.32 0.64 0.72 0 1 0.6
0.24 0.48 0.72 0.16 0.4 1


Feedbacked con-
sistency indexes

newCCD
(
e4

)
= 0.8253, newCCD

(
e8

)
= 0.8507 newCCD

(
e1

)
= 0.8363, newCCD

(
e2

)
= 0.8207

Table 4: Comparison of results in analyzing the impact of consistency control module towards consensus

Elements With consistency module Without consistency module [8]
Consensus - 1st round
(Threshold = 0.9)

0.901 0.893

Feedback consensus
(2nd round)

Not required β Consensus Index Cluster Level

0 0.893 Level 4

0.1 0.907 Level 4

0.2 0.921 Level 4

0.3 0.934 Level 4

0.4 0.946 Level 4

0.5 0.956 Level 6

0.6 0.965 Level 4

0.7 0.972 Level 4

0.8 0.976 Level 7

0.9 0.978 Level 7

1 0.973 Level 2
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experts’ current individual level of inconsistency, that guaran-
tees the achievement of a desired consistency threshold value
with minimum cost.

Once consistency is considered acceptable by a group of
experts, a consistent-based preference similarity network clus-
tering based consensus model is developed. This is based on the
building of an undirected weighted consistent preference simi-
larity network structure between the experts, which is exploited
using the concept of structural equivalence. The experts are
partitioned into subsets of structurally equivalent experts by us-
ing an agglomerative hierarchical clustering algorithm, whose
dendogram is used as a visualization tool to find the optimal
consensus clustering solution. This is achieved by computing
for each cluster, at each hierarchical clustering level, their in-
ternal and external cluster cohesions, which are combined to
determine the clusters’ consensus degrees, the optimal cluster
level, and ultimately the consensus of the group of experts.

The proposed model is validated via comparison with the
existing study in [37]. This clearly showed that the proposed
consistency module is less expensive, not only on the magni-
tude of the change recommended, but also computationally be-
cause a smaller number of changes is required for an inconsis-
tent expert to achieve effectively the consistency threshold. Fi-
nally, the effect on measuring consensus has also been shown as
positive, as the preference similarity network structural equiva-
lence clustering-based consensus model, with consistency con-
trol, achieves consensus more rapidly than when consistency
control is not implemented.

In this work we utilized a symmetric similarity function
to measure experts’ preference similarities. Because of this,
the construction of the preference similarity network produced
undirected connections. In the future, asymmetric similarity
functions, such as the Tversky index can be used to handle di-
rected cases. Trust and influence networks, which are not sym-
metric, can also be considered. Furthermore, dynamic consen-
sus decision making is a relevant topic to be explored due to
the demand of current web technologies that require real-time
communications or time-varying individual relationships.
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