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Abstract

The automated Neural Network Autoregressive (NNAR) algorithm
from the forecast package in R generates sub-optimal forecasts when faced
with seasonal tourism demand data. We propose denoising as a means of
improving the accuracy of NNAR forecasts via an application into fore-
casting monthly tourism demand for ten European countries. Initially,
we fit NNAR models on both raw and denoised (with Singular Spec-
trum Analysis) tourism demand series, generate forecasts and compare
the results. Thereafter, the denoised NNAR forecasts are also compared
with parametric and nonparametric benchmark forecasting models. Con-
trary to the deseasonalising hypothesis, we find statistically significant
evidence which supports the denoising hypothesis for improving the ac-
curacy of NNAR forecasts. Thus, it is noise and not seasonality which
hinders NNAR forecasting capabilities.

Keywords: Neural Networks; Singular Spectrum Analysis; Denoising; Signal
extraction; Tourism demand; Europe.

1 Introduction

The prediction of tourism demand is one of the most interesting and impor-
tant areas of research in tourism studies. The existing literature on forecasting
tourism demand is wide, ranging in terms of the different countries considered,
the various statistical techniques applied and the different set of data employed.
A recent and comprehensive review of new developments in tourism demand
modelling and forecasting is included in the paper by Wu et al. (2017). The
paper considers various data measurement of tourism demand and their deter-
minants. It also discusses the methodological development of three types of
forecasting methods, classical times series techniques, artificial intelligence and
econometric methods. This article covers 171 studies published from 2007 to
2015 in the field of tourism and hotel demand modelling and forecasting.

As online consumer data through Google and Baidu search engines have
become increasingly available and with the fast development of internet and
computer science, many researchers have recently started to use big data to
improve their forecasts. Yang et al. (2015) used ARMA models to determine
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whether Google and Baidu search engine data improve tourism demand fore-
cast in China. Bagwayo-Skeete and Skeete (2015) seeks to determine whether
Google data can be an indicator for tourism forecasting. They compared Au-
toregressive Mixed-Data sampling models with Autoregressive models and Sea-
sonal ARIMA models and found that Google trends does in fact help forecast
tourism demand. Artola et al. (2015) also evaluated whether internet searches
can help predict tourism inflows into Spain. Likewise, Pan et al. (2012) also
employed data on five related Google search volume using ARMA with an ex-
ogenous model to predict demand for hotel rooms. Li et al. (2017) used the
search engine query volumes data to forecast tourism demand for Beijing, using
a composite search index. They found that the proposed method outperforms
the traditional time series model and a model with an index created by princi-
pal component analysis. Liu et al. (2018) applied Vector Autoregressive models
to investigate the Granger causality between weather temperature and the web
search queries of the destination. They found no significant correlation between
weather temperature of the tourism destination and actual arrivals or with its
web search queries. Using mixed frequency data, Hirashima et al. (2015) used
monthly indicators such as monthly tourist arrivals, monthly passenger counts,
and monthly airline passenger outlook to forecast quarterly tourist arrivals to
Hawaii. They examined a number of mixed frequency econometric techniques
that incorporate high frequency information in the forecasting process and
found improvement in forecasting, using high frequency indicator data. Those
interested in a recent and comprehensive survey on different types of big data
used in tourism research are referred to Li et al. (2018).

Forecasting seasonal variations in time series has been an important, yet dif-
ficult task for forecasters both historically (Zhang and Kline, 2007; Hamzacebi,
2008) and in the modern age. Given that seasonality and volatility drives sig-
nificant movements in monthly tourism demand (Hassani et al., 2015; Claveria
et al., 2015), various evaluations have been made using a variety of techniques
in the quest for improving tourism demand forecasts. To this end, the emer-
gence of Big Data and the associated interest in Data Mining techniques have
increased the importance and applications of Neural Networks (NN) as a fore-
casting technique.

As evidenced below, as a means of forecasting tourism demand, the NN
technique is no stranger to the tourism industry. In brief, the work by Uysal
and El Roubi (1999) explored and demonstrated that multiple regression could
be replaced with Artificial Neural Networks (ANN) in tourism demand studies
and concluded by highlighting the need for further applications and evaluations
of ANN in the context of tourism demand analysis. This lead to a surge
in research focusing on the application of NN models for forecasting tourism
demand (see for example, Law and Au (1999) and Law (2000)) with the trend
continuing into the present day.

In this paper, we seek to improve the accuracy of forecasts attainable via
NN for the highly seasonal and volatile tourism demand series for ten European
countries. The novelty of this paper stems from its proposal to develop a hybrid
Singular Spectrum Analysis (SSA) and NN model to improve the accuracy of
NN forecasts for seasonal time series. Unlike NN, the SSA technique is a
popular denoising and signal extraction approach (Sanei and Hassani, 2015)
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which has been successfully applied in a variety of fields. See for example,
Beneki et al. (2012), Ghodsi et al. (2015), and Hassani et al. (2017a), and
references therein.

Developing a hybrid model combining SSA’s denoising capabilities with the
forecasting power of NN can be productive and useful as both techniques are
nonparametric and therefore not restricted by the parametric assumptions of
normality, stationarity or linearity. To the best of our knowledge, this paper
marks the introductory and successful application of a hybrid model combin-
ing SSA and NN for tourism demand forecasting. Here, it is noteworthy that
our interest lies in improving the accuracy of Neural Network Autoregression
(NNAR) forecasts attainable via the automated nnetar algorithm made avail-
able through the forecast package in R (Hyndman and Athanasopoulos, 2018).

The undertaking of this research was motivated by several factors. First,
NN continue to be increasingly applied in tourism demand forecasting, see
for example Cang (2014), Claveria and Torra (2014), Claveria et al. (2015),
Olmedo (2016), Li and Cao (2018). As such, there is strong justification for
seeking to improve the accuracy of NN forecasts.

Secondly, we have previously evaluated forecasting tourism demand with a
variety of models, including the NNAR model. The findings which are re-
ported in Hassani et al. (2015) and Hassani et al., (2017b) all point towards
the sub-optimal and considerably poor performance of the NNAR algorithm
at modelling and forecasting tourist arrivals both in the U.S. and Europe, re-
spectively. Therefore, given the ongoing interest in NN within the industry, we
are motivated on a personal level to determine whether there is a possibility
of improving the accuracy of forecasts attainable via the automated NNAR
algorithm.

Thirdly, as Curry (2007) points out, the debate on the capacity of feed-
forward NN in dealing with seasonality without the need for pre-processing
continues. We find this interesting as the historical belief was that NN could
concurrently detect both seasonality and nonlinear trend in time series (Gorr,
1994). However, as Zhang and Qi (2005) asserts, forecasting seasonal data
with NN results in mixed conclusions as some authors argue that prior desea-
sonalization is not necessary because NN can model seasonality directly, whilst
others conclude the exact opposite.

For example, the analysis conducted by Farway and Chatfield (1995) showed
that NN struggle when directly forecasting seasonal time series. Moreover,
Nelson et al. (1999) showed that NN can produce significantly better forecasts if
trained on deseasonalized data when compared with forecasts from NN trained
on seasonally non-adjusted data. Cho (2003) forecasted Hong Kong’s tourist
arrivals from different countries using Elman’s Model of ANN, ARIMA and
Exponential Smoothing and found that ANN was best for forecasting tourism
demand when the series was without an obvious pattern. Following simulation
studies and applications to real data, Zhang and Qi (2005) found evidence to
support detrending or deseasonalizing for reducing NN forecasting errors. In
fact, this study showed that NN struggle to model and forecast when presented
with raw data which has strong seasonality and trends. More recent evidence by
Claveria et al. (2017) provides further support for deseasonalizing series when
forecasting with NN. Accordingly, it is clear that in contrast to our personal
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beliefs, many researchers argue in favour of deseasonalisation or detrending as
the more suitable approach for improving the accuracy of NN forecasts.

However, it is noteworthy that there have been some authors who reported
that NN can model the trend and seasonal effects in time series without the need
for denseasonaling (Hamzacebi, 2008). See for example, Frances and Draisma
(1997) and Alon et al. (2001). Tseng et al. (2002) sought to create a hybrid
model which combined NN back propagation (BP) with a seasonal ARIMA
(SARIMA) model and found this hybrid model could outperform two other
NN models and the univariate SARIMA model when faced with seasonal time
series. Hamzacebi (2008) proposed an ANN model with the Seasonal ARIMA
model’s seasonality parameter for direct forecasting of seasonal time series with
NN.

Nevertheless, in contrast to previous studies, our interest lies in evaluating
whether denoising (as opposed to deseaonalising or detrending) can result in
significant improvements in the accuracy of forecasts attainable via the auto-
mated feed-forward NNAR model when faced with seasonal time series. More-
over, this paper is also the first instance that such an evaluation is conducted
on tourism demand data to determine its applicability and validity within the
sector.

In the next section, the proposed hybrid model is presented and discussed,
followed by an introduction to the benchmark forecasting models. Thereafter,
we use Section 3 to introduce the data, forecasting exercise and the metrics used
to evaluate forecast accuracy. The main results from the forecasting exercise
are presented in Section 4 whilst a comparison of the proposed hybrid model
with benchmark forecasting models are considered in Section 5. The paper
concludes in Section 6 with some directions for future research and a discussion
of the limitations underlying the current study.

2 Methodology

We propose denoising the seasonal European tourist arrivals data with SSA
and reconstructing a less noisy series which captures the seasonal variation
and trend in tourist arrivals. Thereafter, we seek to generate out-of-sample
NNAR forecasts for European tourist arrivals using the reconstructed series
and compare our results with those obtained when forecasting the raw data
with the NNAR model.

2.1 Denoised Neural Networks Model (DNNAR)

2.1.1 Singular Spectrum Analysis (SSA)

In brief, the SSA technique comprises of two stages known as Decomposition
and Reconstruction, each with its own two steps referred to as Embedding and
Singular Value Decomposition (SVD), and Grouping and Diagonal Averaging,
respectively. The two SSA choices required to decompose and reconstruct a
given series are the Window Length L and the number of eigenvalues r (Sanei
and Hassani, 2015). In what follows, we present a detailed description of the
SSA process, and in doing so, we mainly follow Hassani et al. (2014).
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Stage I: Decomposition

Step I: Embedding
Consider a real-valued nonzero time series YN = (y1, . . . , yN ) of length N .
Embedding transfers a one-dimensional time series YN = (y1, . . . , yN ) into the
multi-dimensional series X1, . . . , XK with vectors Xi = (yi, . . . , yi+L−1)T ∈
RL, where L (2 ≤ L ≤ N/2) is the Window Length and K = N − L+ 1. The
result of this step is the following trajectory matrix

X = [X1, . . . , XK ] = (xij)
L,K
i,j=1 . (1)

Step II: SVD
Denote by λ1, . . . , λL the eigenvalues of XXT arranged in decreasing order
(λ1 ≥ . . . λL ≥ 0) and by U1, . . . , UL the corresponding eigenvectors. The SVD
of X can be written as X = X1 + · · · + XL, where Xi =

√
λiUiVi

T and
Vi = XTUi/

√
λi (if λi = 0 we set Xi = 0).

Stage II: Reconstruction

Step I: Grouping
The grouping step corresponds to splitting the elementary matrices Xi (i =
1, . . . , L) into several groups and summing the matrices within each group
for reconstruction purposes. Denote I = {i1, . . . , ip} as a group of indices
i1, . . . , ip. Then the matrix XI corresponding to the group I can be defined
as XI = Xi1 + · · · + Xip . The split of the set of indices J = 1, . . . , d into the
disjoint subsets I1, . . . , Im corresponds to the representation

X = XI1 + · · ·+ XIm . (2)

The procedure of choosing the sets I1, . . . , Im is called the eigentriple grouping.
For a given group I the contribution of the component XI into the expansion (1)

is measured by the share of the corresponding eigenvalues:
∑

i∈I λi/
∑d

i=1 λi.

Step II: Diagonal Averaging
The purpose of diagonal averaging is to transform a matrix to the form of a
Hankel matrix, which can be subsequently converted to a time series. A Hankel
matrix is a matrix where all the elements along the diagonal i + j = const are
equal. For example, suppose zij stands for an element of a matrix Z, then the
k -th term of the resulting series is obtained by averaging zij over all i, j such
that i+ j = k+2. This procedure is also known as Hankelization of the matrix
Z. The output of the Hankelization of a matrix Z is the Hankel matrix HZ,
which is the trajectory matrix corresponding to the series obtained as a result
of diagonal averaging. The Hankel matrix HZ uniquely defines the series by
relating the value in the diagonals to the values in the series. By applying the
Hankelization procedure to all matrix components of (2), we obtain another
expansion:

X = X̃I1 + . . .+ X̃Im , (3)
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where X̃I1 = HX. This is equivalent to the decomposition of the initial series
YN = (y1, . . . , yN ) into a sum of m series:

yn =

m∑
k=1

ỹ(k)n , (4)

where Ỹ
(k)
N = (ỹ

(k)
1 , . . . , ỹ

(k)
N ) corresponds to the matrix XIk .

Once a less noisy series is reconstructed, we use this less noisy series to
generate NNAR forecasts via the algorithm introduced in Section 2.1.2.

As this paper exploits SSA mainly for its denoising capabilities, we find it
pertinent to report the SSA choices used to decompose these series, plot the
signal extractions as an example (Figure 1), and comment on the separation of
signal and noise as achieved via SSA.

To this end, the weighted correlation (w-correlation) is a statistic which can
be used to present the appropriateness of the various decompositions achieved
by SSA. Table 1 reports the SSA choices used to decompose all tourist arrival
series and also the corresponding w-correlations (calculated for all SSA decom-
positions by comparing the two components of signal and noise). In Figure
1, as an example, we show the SSA signal extractions for tourism demand in
Germany.

As mentioned in Golyandina et al. (2001), the w-correlation is a statistic
which shows the dependence between two time series. It can be calculated as:

ρ
(w)
12 =

(
Y

(1)
N , Y

(2)
N

)
w

‖ Y (1)
N ‖w‖ Y

(2)
N ‖w,

where Y
(1)
N and Y

(2)
N are two time series, ‖ Y (i)

N ‖w =

√(
Y

(i)
N , Y

(i)
N

)
w
,
(
Y

(i)
N , Y

(j)
N

)
w

=∑N
k=1 wky

(i)
k y

(j)
k (i, j = 1, 2), wk=min{k, L,N − k} (here, assume L ≤ N/2).

The interpretation of the w-correlation suggests that if the value between
two reconstructed components are close to 0, then the corresponding time se-
ries are w-orthogonal and are well separable (Sanei and Hassani, 2015), and
thus confirms the noise is indeed random even though residual randomness is
not an explicit concern for nonparametric models. Here, we use as signal the
reconstructed series containing r components and select the remaining r (which
does not belong to the reconstruction) as noise. As evident, all w-correlations
are close to 0 and this confirms that SSA has successfully achieved a sound
separation between signal and noise.
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Table 1: SSA decompositions and w-correlations between signal and noise for
European tourist arrivals.

Country SSA w-cor

Germany SSA(60,13) 0.003
Greece SSA(72, 1-7:10-12) 0.008
Spain SSA(60,14) 0.005
Italy SSA(60,14) 0.004
Cyprus SSA(60,1-10:13-15) 0.003
Netherlands SSA(60,12) 0.008
Austria SSA(60,10) 0.006
Portugal SSA(60,15) 0.001
Sweden SSA(60,13) 0.002
UK SSA(48,7) 0.004

Note: SSA(L, r) - Window Length L and the Number of Eigenvalues r. w-correlation refers to the weighted

correlation between the signal and noise components, as determined via SSA. For Greece and Cyprus the

separation between signal and noise does not follow a binary approach, but instead follows the Colonial Theory

based decomposition approach in Hassani et al. (2016). For example, this means that for Greece, eigenvalues 1-7

and 10-12 are grouped together as signal whilst eigenvalues 8-9 and 13-72 are grouped as noisy components. This

is because the analysis of eigenfunctions and principal components indicated that a binary decomposition would

result in grouping noisy components within the signal and vice versa.

The signal extractions for Germany in Figure 1 gives the reader an indication
on the complexities underlying European tourism demand series. The varying
amplitudes within the seasonal fluctuations imply that forecasting models with
filtering and signal extraction capabilities could benefit.
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Figure 1: SSA decompositions for tourist arrivals in Germany.

2.1.2 Neural Network Autoregression (NNAR)

In this paper, in the first instance we consider lagged values of raw European
tourist arrivals as inputs to a NNAR model and in the second instance, consider
lagged values of reconstructed European tourist arrivals as inputs. The model
being developed is known as NNAR(p, P, k)m model (where p refers to lagged
inputs, P takes a default value of 1 for seasonal data, k refers to nodes in the
hidden layer, and m refers to a monthly frequency) as made available via the

7



Forecast Package in R. Those interested in a detailed description of the NNAR 
algorithm are referred to Hyndman and Athanasopoulos (2018). Below, we 
follow Hyndman and Athanasopoulos (2018) to present some brief and relevant 
details pertaining to the NNAR models used in this paper.

The nnetar algorithm automates and speeds up the process for obtaining 
NNAR forecasts via a feed-forward NN model with one hidden layer. A seasonal 
NNAR model has the notation NNAR(p, P, k)m, and inputs
(yt−1, yt−2, . . . , yt−p, yt−m, yt−2m, yt−Pm) with k neurons in the hidden layer. 
The algorithm automatically selects the values of p and P when they are left 
unspecified. For seasonal data, the default value for P is 1 and p is chosen from 
the optimal linear model fitted to the seasonally adjusted data. In contrast, for 
non-seasonal series, the default is set to be the optimal number of lags (based 
on the Akaike Information Criterion) for a linear AR(p) model. At the same 
time, if k is not specified, it is set to k = (p + P + 1)/2 (rounded to the nearest 
integer).

Then, the forecasting approach is recursive such that within each horizon, 
the NNAR model re-estimates parameters by re-modelling the historical data 
with each new observation that is introduced. This process continues until all 
required forecasts are computed.

2.2 Benchmark Forecasting Models

We compare the results from the DNNAR model with forecasts from two popu-
lar univarite parametric and nonparametric models which are introduced below.

2.2.1 Autoregressive Integrated Moving Average (ARIMA)

ARIMA has been recognized as one of the most established time series fore-
casting models evidenced by its prediction performance and overwhelming im-
plementations in a broad range of subjects. It aims to separate the signal and 
noise by adopting the past observations and taking into considerations of the 
degree of differencing, autoregressive and moving average components. Thus, 
the ARIMA model can be specified by three parameters (p, d, q), where p do-
nates the number of lags, d indicates the degree of differencing and q refers to the 
number of error terms to be included. To present the detailed formulations of 
ARIMA model, we mainly follow Hyndman and Khandakar (2008). The non-
seasonal ARIMA(p,d,q) model can then be written as:

(1 − σ1B − ... − σpBp)(1 − B)dyt = c + (1 + σ1B + ... + σqBq)et, (5)

or

(1 − σ1B − ... − σpBp)(1 − B)d(yt − µtd/d!) = c + (1 + σ1B + ... + σqBq)et, (6)

where µ is the mean of (1−B)dyt, c = µ(1−σ1 −...−σp) and B is the back shift 
operator. In what follows, we also provide a brief expansion of the seasonal 
ARIMA model by following Hyndman and Khandakar (2008). The seasonal 
ARIMA model can be expressed as:

Φ(Bm)φ(B)(1 − Bm)D(1 − B)dyt = c + Θ(Bm)θ(B)εt, (7)
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where Φ(z) and Θ(z) are the polynomials of orders P and Q, and εt is white noise. 
If, c 6= 0, there is an implied polynomial of order d + D in the forecast function.

We use an automated ARIMA model which is commonly known as ‘auto.arima’ 
and is accessible via the Forecast Package in R. It is of note that a more de-tailed 
description of this optimized algorithm and examples of application can be found 
in Hyndman and Khandakar (2008). In brief, the algorithm begins by repeating 
KPSS tests (Kwiatkowski et al., 1992) to determine the number of differences d. 
Then, the data is differenced d times to minimise the Akaike Information 
Criterion (AIC) and determine the values of p (number of au-toregressive terms) 
and q (number of lagged forecast errors in the forecasting equation). The efficiency 
of this algorithm is noteworthy as instead of consid-ering every possible 
combination of p and q, it opts to traverse the model space via a stepwise search. 
Also, ‘auto.arima’ relies on a corrected version of the AIC (AICc) as indicated 
below:

AIC = −2log(L) + 2(p + q + P + Q + k), (8)

AICc = AIC +
2(p+ q + k + 1)(p+ q + k + 2)

T − p− q − k − 2
. (9)

where k = 1 if c 6= 0 and 0 otherwise, L is the maximum likelihood of the data 
and the last term in parentheses is the number of parameters in the model (this 
includes σ2 which is the variance of the residuals).

Thereafter, the algorithm seeks to determine the ‘current model’ by search-ing 
for the following four ARIMA models: ARIMA(2,d,2), ARIMA(0,d,0), 
ARIMA(1,d,0) and ARIMA(0,d,1) for the one which minimises the AICc. If d = 
0 then the constant c is included; if d ≥ 1, then the constant c is set to zero. In 
addition, the model also evaluates variations on the current model by varying p 
and q by +/-1 and including/excluding c. The steps following on from the 
minimisation of the AIC are repeated until no lower AICc can be found.

2.2.2 Exponential Smoothing (ETS)

ETS was initially introduced in the 1950s and has been playing an important 
role in many established forecasting methods. The predictions are weighted 
averages based on the existing observations where the higher weight is assigned 
to the more recent record with overall exponentially decaying weights. To 
present the ETS model with more details, we mainly follow Hyndman and 
Athanasopoulos (2018).

There are many ETS methods differentiated by the approaches of handling 
smoothing parameters and different time series components. Consider a time 
series YT = (y1, y2, ..., yT ) of length T, ŷT indicates the forecast of yT given y1 to 
yT−1. We firstly start from the simple ETS for a one step ahead forecast of yT +1 
given YT :

ŷT +1|T = αyT + α(1 − α)yT−1 + α(1 − α)2yT−2 + ..., (10)
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where 0 6 α 6 is the smoothing parameter and it controls the exponentially 
weight distribution as observations are further away in the past.

Donate h as the number of steps ahead, lt is the smoothed value or level of the 
series at time t, bt refers to the trend component, and α, β, γ and δ are 
representing different smoothing parameters. The trend ETS method by Holt 
can then be summarized as:

ŷt+h|t = lt + hbt, (11)

(12)lt = αyt + (1 − α)(lt−1 + bt−1), 
bt = β(lt − lt−1) + (1 − β)bt−1, (13)

where bt indicates an estimate of the slop of the series at time t, α and β are the 
smoothing parameters for the level and trend, respectively.

Furthermore, the Holt-Winters seasonal method is developed to capture sea-
sonality as well. Donate st as the seasonal component, m indicates the number 
of seasons in a year, we get

(14)st = γ(1 − α)(yt − lt−1 − bt−1) + [1 − γ(1 − α)]st−m,

so this multiplicative method and its component form are:

ŷt+h|t = (lt + hbt)st+h−m(k+1), (15)

lt = α
yt

st−m
+ (1 − α)(lt−1 + bt−1), (16)

bt = β(lt − lt−1) + (1 − β)bt−1, (17)

st = γ
yt

(lt−1 + bt−1
+ (1 − γ)st−m, (18)

The ETS methods are further developed to more variations that consider 
different combinations of the time series components and its diversified re-
finements. A more detailed description of over 30 different ETS methods and 
examples of applications are available in Hyndman and Athanasopoulos (2018), 
which we do not reproduce here.

The Forecast Package in R also automates the nonparametric ETS model. 
In brief, the ETS model is automated to consider the error, trend and sea-
sonal components in choosing the best exponential smoothing model from 30 
possible options. This is achieved via the optimization of initial values and 
parameters using the Maximum Likelihood Estimator and selecting the best 
model based on the AIC. The algorithms that generate point forecasts for Eu-
ropean tourist arrivals1 and state space equations for each of the models in the 
ETS framework2 can be found in Hyndman and Athanasopoulos (2018).

3 Data

The data set used in this study relates to international tourism demand (Jan-
uary 2000 - January 2018) for ten European countries and was obtained via the

1https://www.otexts.org/sites/default/files/fpp/images/Table7-8.png
2https://www.otexts.org/sites/default/files/fpp/images/Table7-10.png

10



Eurostat database. This same data set (up until December 2013) was recently
used in Hassani et al. (2017) and Silva et al. (2017). However, prior to sum-
marising the data using descriptive statistics, we find it pertinent to further
justify the choice of countries considered in this paper.

In Table 2, we highlight some key statistics relating tourism to economic
growth in the selected countries. It is evident that tourism is an important
contributor to the economic activities of the selected countries and the World
Travel & Tourism Council’s Travel & Tourism Economic Impact 2018 reports
forecast all of these contributions to rise not only in 2018 but also considerably
by 2022. Also Seasonality is the dominant feature in all these time series data.
In fact Silva (2017) reported that seasonality accounts for more than 90% of
the variations in most of these series.

Table 2: Total contribution of travel and tourism to GDP and Employment in
2017.

GDP Employment
Germany 10.7% 13.8%
Greece 19.7% 24.8%
Spain 14.9% 15.1%
Italy 13.0% 14.7%
Cyprus 22.3% 22.7%
Netherlands 5.2% 8.9%
Austria 14.8% 16.1%
Portugal 17.3% 20.4%
Sweden 9.5% 11.1%
United Kingdom 10.5% 11.6%

Note: The data have been compiled via various Travel & Tourism Economic Impact 2018 reports

published by the World Travel & Tourism Council (https://www.wttc.org/). Percentages

reported under GDP should be interpreted in relation to total GDP in the respective country.

Percentages reported under employment should be interpreted in relation to total employment in

the respective country.

Table 3 reports some descriptive statistics for the data. The Shapiro-Wilk
(SW) test for normality indicates that none of the tourist arrivals data are nor-
mally distributed and therefore, those interested should consider the Median as
a measure of central tendency and the Interquartile Range (IQR) as a measure
of variation in this data. We also test the series for seasonal unit roots using the
OCSB (Osborn et al., 1988) test for seasonal unit roots. This indicates that all
series have seasonal unit roots. In comparison to the tourist arrivals for these
same countries which are summarised up until December 2013 in Hassani et
al. (2017b), we notice that the structure of the data has changed significantly
for two countries. Tourist arrivals in the Netherlands did not have a seasonal
unit root up until December 2013 (Hassani et al., 2017b), however the changes
in tourism demand post 2013 have created a seasonal unit root. On the other
hand, tourist arrivals in Austria which were normally distributed up until 2013
(Hassani et al., 2017b) are now skewed according to the latest tourism demand
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data. Furthermore, a comparison of Median tourism demand values in Hassani
et al. (2017b) against the Median values in Table 3 further justify the selection
of these countries in this study as all Median tourist arrivals have increased
over time.

Table 3: Descriptive statistics for European tourist arrivals (Jan. 2000 - Dec.
2013).

Mean Med. IQR SD SW (p) OCSB
Germany 2169425 2084257 1044178 774706 <0.01 1
Greece 874189 591676 1170788 845796 <0.01 1
Spain 3763340 3654786 2454851 1622601 <0.01 1
Italy 3685657 3603542 3025709 1893910 <0.01 1
Cyprus 162592 190296 162302 91185 <0.01 1
Netherlands 970665 946600 438000 322085 <0.01 1
Austria 1616651 1588805 742372 550774 <0.01 1
Portugal 629156 588378 431901 333551 <0.01 1
Sweden 413309 272223 297635 316492 <0.01 1
United Kingdom 2065921 1836995 1292000 1035709 <0.01 1
Note: 1 indicates there is a seasonal unit root based on the OCSB test at p=0.05.

3.1 Forecasting Exercise

For the forecasting exercise, the data set is separated into an initial in-sample
period traversing January 2000 - January 2012 (2/3rd of entire data set) and
an out-of-sample period of February 2012 - January 2018. This separation of
the period was in line with previous tourist arrivals forecasting studies, see
for example Hassani et al. (2015;2017b), Silva et al. (2017) and references
therein. Note that the in-sample period expands when producing out-of-sample
forecasts for various horizons as we consider a recursive estimation for the
NNAR, DNNAR, ARIMA and ETS models. Thus, with each new observation
being introduced, the NNAR model updates the data and re-estimates its model
parameters. The number of out-of-sample forecasts at each horizon can be
calculated using the formula n− h+ 1 observations where n = 72 and h is the
forecasting horizon.

3.2 Forecast Accuracy Evaluation Metrics

Root Mean Squared Error (RMSE)

In this paper, RMSE and Ratio of the RMSE (RRMSE) criteria are used as
the main metrics for evaluating forecast accuracy. These measures have been
successfully adopted as forecast evaluation metrics in many recent papers, see
for example Hassani et al. (2018; 2017) and Silva et al. (2018; 2017) and
references therein. An example of a RRMSE calculation used in this paper can
be defined as:

RRMSE =
DNNAR

NNAR
=

(∑N
i=1(ŷT+h,i − yT+h,i)

2
)1/2

(∑N
i=1(ỹT+h,i − yT+h,i)2

)1/2 ,
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where, ŷT+h - h-step ahead forecast from the DNNAR model, ỹT+h - h-step
ahead forecast from the NNAR model, and N - the number of forecasts. If
DNNAR
NNAR is less than 1, then the DNNAR forecast outperforms the NNAR

forecast by 1-DNNAR
NNAR percent and vice versa.

Mean Absolute Percentage Error (MAPE)

We also consider the MAPE criterion as it is a widely understood measure
for evaluating forecast accuracy (Hassani et al., 2015). In brief, the lower the
MAPE result, the better the forecast.

MAPE =
1

N

N∑
t=1

|100× yT+h − ŷT+h,i

yT+h
|,

where yT+h represents the actual data corresponding to the h step-ahead fore-
cast, and ŷT+h,i is the h step-ahead forecast obtained from a particular fore-
casting model.

It is noteworthy that the differentiations based on predictive accuracy are
further analysed through testing the forecast errors via the modified Diebold-
Mariano (DM) test (Harvey et al., 1997) and the Hassani-Silva (HS) test for
predictive accuracy (Hassani and Silva, 2015). In each case, we consider the
series appearing on the denominator of the RRMSE criterion as the benchmark
model.

4 Empirical Results

The findings from the out-of-sample forecasting exercise are reported below via
Table 4. We begin our analysis by taking a look at the results at a macro level.
Accordingly, based on the RMSE criterion, we can conclude that forecasts from
the DNNAR models outperform NNAR forecasts for European tourist arrivals
in all cases. The MAPE criterion too supports this conclusion as the DNNAR
forecast MAPE values are smaller than those for the NNAR forecasts for all
countries across all horizons.

Next, we consider a micro level analysis of the forecasting results by taking
into account the performance by country. Here, we test the out-of-sample
forecasts for statistically significant differences using both the modified DM
test and the HS test. For each country, we also plot the forecasts for the
horizon which corresponds to the largest accuracy gain (based on the RRMSE)
for the DNNAR model.

In terms of forecasting German tourist arrivals, we find that forecasts from
the DNNAR model outperforms NNAR forecasts across all horizons with sta-
tistically significant outcomes (based on both the RMSE and MAPE criteria).
The RRMSE criterion enables us to conclude that DNNAR forecasts are 45%,
40%, 43% and 43% better than the NNAR forecasts for German tourist ar-
rivals at h = 1, 3, 6 and 12 steps-ahead, respectively. In what follows, for each
country, we plot the out-of-sample forecasts for all horizons. However, as these
series are highly seasonal and show a similar structure, we only explain some
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interesting elements from the best performing DNNAR forecast. Accordingly,
Figure 2 shows the out-of-sample forecasts for German tourist arrivals. Here,
we analyse the forecasts at h = 1 step-ahead. A close inspection makes it clear
that the NNAR forecast based on the raw data over estimates the tourist ar-
rival peaks between 2016 and 2017 whilst the DNNAR forecast which is based
on the denoised tourist arrival series is visibly more accurate.
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Figure 2: Out-of-sample forecasts for tourist arrivals in Germany.

In terms of forecasting tourism demand for Greece, we find the DNNAR
forecasts are statistically significantly better than the NNAR forecasts across all
horizons based on both the RMSE and MAPE criteria. The RRMSE criterion
shows that DNNAR forecasts are 31%, 43%, 32%, and 52% better than forecasts
from the NNAR model at h = 1, 3, 6 and 12 steps-ahead, respectively. Once
again, we interpret the plot the out-of-sample forecast representing the largest
accuracy gain for tourism demand in Greece (Figure 3). In this case, the
DNNAR model’s capability at providing better forecasts for 4/5 peaks captured
in the out-of-sample period is clearly visible. However, it is notable that the
NNAR model provides a comparatively better estimate of a single peak which
occurs in 2016.
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Figure 3: Out-of-sample forecasts for tourist arrivals in Greece.

When it comes to forecasting tourist arrivals in Spain, the RMSE and MAPE
criteria show that the DNNAR model once again generates forecasts which are
statistically significantly better in relation to those from the NNAR model.
Whilst the gains here are comparatively lower, the RRMSE criterion shows that
the DNNAR forecasts are 17%, 18%, 22%, and 21% better than forecasts from
NNAR at h = 1, 3, 6 and 12 steps-ahead, respectively. As the RRMSE criterion
suggests the DNNAR model reports the largest accuracy gain at h = 6 steps-
ahead, and we interpret this plot (Figure 4). Interestingly, when forecasting
tourism demand for Spain, we notice that the NNAR model struggles not only
with peaks, but also with predicting the troughs. We can see that the NNAR
model over estimates the peaks in tourism demand in 2012 and 2017 (the
DNNAR model too struggles with estimating this particular peak) and also
the troughs from 2014-2017. The DNNAR model is comparatively better at
estimating the troughs.

For the case of Italian tourist arrivals, the DNNAR model produces forecasts
which are significantly better than those from the NNAR model across all
horizons (based on the RMSE and MAPE criteria). The RRMSE indicates
that the DNNAR forecasts are 36%, 35%, 31%, and 33% better than forecasts
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from the NNAR models at h = 1, 3, 6 and 12 steps-ahead. For Italy, we interpret
the plot for the out-of-sample forecasts at h = 1 step-ahead in Figure 5. In
this case, we notice both DNNAR and NNAR models struggling to estimate
the peak in tourism demand recorded in 2014. However, the DNNAR model
successfully picks up the peaks in demand in 2012 and 2015-2017 where the
NNAR model overestimates demand.
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Figure 4: Out-of-sample forecasts for tourist arrivals in Spain.

In terms of the forecasting tourist arrivals in Cyprus, we find the DNNAR
models outperforming forecasts from the NNAR models across all horizons
based on the RMSE and MAPE criteria. However, we only find evidence
of statistically significant differences between forecasts at h = 6 steps-ahead.
Nevertheless, the RRMSE criterion shows that forecasts from the DNNAR
models are 14% better than those from the NNAR models at h = 1 and 3
steps-ahead, and 33% and 27% better than forecasts from the NNAR models
at h = 6 and 12 steps-ahead, respectively. In this case, the forecast which is
significantly better is also the one which reports the largest accuracy gain as
per the RRMSE, and this plotted is interpreted from Figure 6. Here, we see
that the NNAR model struggles to accurately estimate all 6 peaks in tourism
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demand between 2012 and 2018. In fact, the NNAR model performance is
extremely poor at predicting the initial peak in 2012 and the final two peaks
within the out-of-sample period. In addition, the NNAR model also struggles
at predicting the troughs in 2013 (as is the case with the DNNAR forecast for
this point) and 2017. In contrast, the DNNAR model picks up the peaks in
2013 - 2015 more accurately and provides comparatively better forecasts for
the final two peaks in 2016 and 2017, though these forecasts are not extremely
accurate.
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Figure 5: Out-of-sample forecasts for tourist arrivals in Italy.

For tourist arrivals in the Netherlands, the DNNAR models report out-of-
sample forecasts which are significantly better than those from the NNAR
models across all horizons (as per the RMSE and MAPE criteria). Here, the
RRMSE criterion shows that DNNAR forecasts are 37%, 36%, 38%, and 39%
better than forecasts from NN at h = 1, 3, 6 and 12 steps-ahead. In this case,
we analyse tourism demand forecasts for the Netherlands at h = 12 steps-
ahead. As seen in Figure 7, the NNAR forecast clearly struggles when predict-
ing the seasonal fluctuations for tourism demand in the Netherlands, whereas
the DNNAR forecast is comparatively much better at predicting these trends.
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Figure 6: Out-of-sample forecasts for tourist arrivals in Cyprus.

In terms of forecasting tourism demand in Austria, we find that forecasts
from the DNNAR model once again outperforms NNAR forecasts with statis-
tically significant outcomes in both the short and long run horizons (as evident
via the RMSE and MAPE criteria). Also, the DNNAR forecasts are found
to be 31%, 33%, 28%, and 27% better than forecasts from NNAR models at
h = 1, 3, 6 and 12 steps-ahead, respectively. For Austria, the RRMSE suggests
that the largest forecast accuracy gain for the DNNAR model is at h = 3
steps-ahead, and this is plotted as part of Figure 8. In this case, we notice how
the DNNAR model is once again superior at estimating the peaks in tourism
demand comparatively better than the NNAR model right across the out-of-
sample period with the exception of the smaller peak in 2013 where both models
appear to struggle.

For Portuguese tourist arrivals, we find the DNNAR model outperforming
forecasts from the NNAR model across all horizons based on the RMSE and
MAPE criteria, but at h = 1 step-ahead the reported relative accuracy gain
of 8% is not found to be statistically significant. Nevertheless, the DNNAR
model is seen generating forecasts which are 31%, 48%, and 43% better than
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forecasts from the NNAR models at h = 3, 6 and 12 steps-ahead with statisti-
cally significant differences.
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Figure 7: Out-of-sample forecasts for tourist arrivals in Netherlands.

The h = 12 steps-ahead plot in Figure 9 shows the DNNAR out-of-sample
forecasts at this horizon are once again superior. However, we can also see
that when the forecasting horizon increases to h = 12 steps-ahead, the NNAR
model appears to find it extremely difficult to accurately predict the final peak
in tourism demand for Portugal in 2017. In comparison, the DNNAR model is
able to provide a better forecast though it still appears to consistently over or
underestimate the peaks in tourism demand.

In terms of forecasting Swedish tourist arrivals, the findings from the RMSE
and MAPE criteria show the DNNAR model generating statistically signifi-
cantly better forecasts than the NNAR model across all horizons, with the
DNNAR forecasts being 54%, 55%, 73%, and 61% better than forecasts from
the NNAR model at h = 1, 3, 6 and 12 steps-ahead, respectively. Here, we in-
terpret the out-of-sample forecasts at h = 6 steps-ahead (Figure 10). Forecasts
from the DNNAR model are seen overestimating the peak in 2013, however, it
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is comparatively more accurate at forecasting the remaining peaks in relation
to the NNAR model.
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Figure 8: Out-of-sample forecasts for tourist arrivals in Austria.

Finally, in terms of forecasting UK tourist arrivals, the DNNAR model out-
performs NN forecasts across all horizons based on the RMSE and MAPE
criteria. However, none of the differences between forecasting results are found
to be statistically significant. Nevertheless, based on the RRMSE criterion,
the DNNAR forecasts are 45%, 44%, 39%, and 28% better than the NNAR
forecasts at h = 1, 2, 3 and 12 steps-ahead respectively. As with the previous
countries analysed here, we interpret the plot for the out-of-sample forecasts
for UK tourism demand at h = 6 steps-ahead (Figure 11). In this case, its
very easy to distinguish between the DNNAR and NNAR forecast accuracy.
In fact, the NNAR model is seen predicting a major peak in tourism demand
when the UK market is experiencing a trough. The DNNAR model too fails
to predict the 2014 peak in UK tourist arrivals but is quick to adjust and pick
up the trough in 2015.
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Figure 9: Out-of-sample forecasts for tourist arrivals in Portugal.

Overall, these results uncover several key points. First and foremost, that
denoising seasonal tourism demand series with SSA and then fitting a NNAR
model on the reconstructed series can enable the generation of superior NNAR
forecasts than when a NNAR model is fitted on raw seasonal data for forecast-
ing purposes. Secondly, we find evidence which supports the historical view
of Gorr (1994) which suggests that NN models can detect both seasonality
and nonlinear trend in time series, in contrast to the findings of Farway and
Chatfield (1995), Nelson et al. (1999), Zhang and Qi (2005), and Curry (2007).
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Figure 10: Out-of-sample forecasts for tourist arrivals in Sweden.

Whilst these findings are significant and very promising for those interested
in NN models, forecasters and researchers alike would be equally interested in
finding out how the newly proposed DNNAR model performs in comparison
to other benchmarks. As such, we use the discussion which follows to address
this issue by comparing the performance of the DNNAR model with popular
time series analysis and forecasting benchmarks.
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Figure 11: Out-of-sample forecasts for tourist arrivals in UK.
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Table 4: Forecasting results for European tourist arrivals from NNAR and
DNNAR models.

RMSE(MAPE) RMSE(MAPE) RRMSE

Country h NNAR DNNAR DNNAR
NNAR

Germany 1 114225(2.64%) 62542(1.72%) 0.55∗∗,‡

3 108092(2.64%) 64343(1.74%) 0.60∗

6 108944(2.59%) 61693(1.63%) 0.57∗,‡

12 112084(2.61%) 64081(1.74%) 0.57∗∗

Greece 1 128576(11.74%) 101406(11.12%) 0.79∗

3 187311(12.74%) 106148(11.17%) 0.57∗∗,‡

6 163306(10.99%) 111385(10.58%) 0.68∗

12 194482(11.15%) 93876(9.62%) 0.48∗∗∗,‡

Spain 1 245826(4.68%) 203676(4.20%) 0.83∗∗∗

3 281799(5.40%) 230396(4.50%) 0.82∗∗∗

6 288385(5.70%) 224654(4.53%) 0.78∗∗∗,[

12 301279(5.77%) 239078(5.06%) 0.79∗∗∗

Italy 1 330012(5.09%) 211462(3.53%) 0.64∗∗∗

3 340517(5.25%) 220984(3.81%) 0.65∗∗∗

6 324428(4.92%) 223237(3.80%) 0.69∗∗∗

12 341156(5.31%) 227447(3.96%) 0.67∗∗∗

Cyprus 1 17093(9.57%) 14776(7.76%) 0.86
3 21201(11.55%) 18293(10.33%) 0.86
6 29330(12.76%) 19437(11.59%) 0.67∗

12 29143(15.45%) 21340(12.57%) 0.73

Netherlands 1 119099(6.71%) 75385(4.57%) 0.63∗∗∗,‡

3 125174(7.23%) 80267(4.91%) 0.64∗∗∗,‡

6 138548(8.24%) 85540(5.21%) 0.62∗∗∗,‡

12 140701(7.97%) 85505(5.43%) 0.61∗∗∗,[

Austria 1 146758(5.70%) 101585(4.13%) 0.69∗∗∗,[

3 154106(6.27%) 102824(4.21%) 0.67∗∗∗,‡

6 145152(5.83%) 104908(4.26%) 0.72∗∗∗

12 149190(6.42%) 108879(4.52%) 0.73∗∗

Portugal 1 89075(8.15%) 68563(6.73%) 0.77∗∗

3 101262(9.06%) 81368(7.88%) 0.80∗∗

6 116003(10.26%) 84509(7.99%) 0.73∗∗

12 135755(12.04%) 90762(9.38%) 0.67∗∗,‡

Sweden 1 56347(5.95%) 43555(4.88%) 0.77∗

3 59288(6.46%) 43863(5.91%) 0.74∗

6 59809(6.77%) 40325(5.60%) 0.67∗∗∗

12 72098(8.12%) 47703(7.16%) 0.66∗∗∗

UK 1 839403(15.31%) 460113(11.30%) 0.55
3 1243092(22.99%) 693622(17.63%) 0.56
6 1459881(24.97%) 889587(22.48%) 0.61
12 1182159(23.33%) 855771(22.92%) 0.72

Note: [ - a statistically significant difference between the distribution of forecasts based on the two-sided HS test

at p = 0.10, ‡ p = 0.05, or † p = 0.01. * - a statistically significant difference between the DNNAR forecast and

the NNAR forecast based on the modified DM test at p = 0.10, ** p = 0.05, or *** p = 0.01
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5 Discussion

As in Cho (2003), we consider ARIMA and ETS models as benchmarks to
further compare and evaluate the performance of the DNNAR model. However,
it is noteworthy that unlike in Cho (2003), we use automated and optimized
versions of ARIMA and ETS models as introduced to the reader in Section 2.2.

Table 5 below reports the out-of-sample forecasting results. We also com-
pare our results with the findings in Hassani et al. (2017b) where the authors
considered the same data set (up until December 2013) and generated forecasts
from NNAR, ARIMA and ETS (amongst other models). Unlike in the previous
section, where we found the DNNAR model outperforming the NNAR model
for all countries across all horizons, here we find varying outcomes. However,
the DNNAR model continues to outperform the benchmark models for major-
ity of the countries and horizons considered in this study (see Table 6). At the
outset, it is noteworthy that in Hassani et al. (2017b) there was not a single
instance when forecasts from the NNAR model outperformed ARIMA or ETS
forecasts.

In the case of German tourist arrivals, we find the DNNAR forecasts out-
perform both ARIMA and ETS forecasts across all horizons with statistically
significant results, in contrast to the findings in Hassani et al. (2017b). More-
over, the DNNAR forecasts are found to be 19% and 12% better than ARIMA
and ETS forecasts respectively at h = 1 step-ahead, 32% and 25% better at
h = 3 steps-ahead, 44% and 36% better at h = 6 steps-ahead, and finally 37%
and 51% better than ARIMA and ETS forecasts at h = 12 steps-ahead. It is in-
teresting that the ARIMA model outperformed 8 competing models in Hassani
et al. (2017b) as it reported the best out-of-sample forecast for German tourist
arrivals at h = 1 step-ahead, but the improved DNNAR model has succeeded
in outperforming ARIMA significantly in this latest study.

However, the DNNAR model is only found to be superior above both bench-
mark models at a particular horizon at h = 3, 6 and 12 steps-ahead when
forecasting tourist arrivals in Greece. All differences between forecasts, except
between ARIMA and DNNAR models at h = 1 step-ahead, are found to be
statistically significant. Here, the ARIMA forecast is found to be 18% better
than the DNNAR forecast at h = 1 step-ahead whilst the DNNAR forecast
outperform the ETS forecast by 24% at this horizon. At h = 3 steps-ahead,
the DNNAR forecasts are 26% and 65% better than forecasts from ARIMA
and ETS models, 29% and 70% better at h = 6 steps-ahead, and 41% and 55%
better at h = 12 steps-ahead. In comparison to the findings in Hassani et al.
(2017b), the DNNAR model forecasts are now far better than the ARIMA and
ETS forecasts across horizons, with the exception of ARIMA which continues
to remain superior above ETS and NNAR forecasts for Greece tourist arrivals
at h = 1 step-ahead.

For Spain, the findings are similar to that of Greece in terms of the DNNAR
models superiority above both benchmark models at a particular horizon. In
contrast to the findings in Hassani et al. (2017b), the ARIMA model is seen
providing better forecasts than ETS at h = 1 step-ahead (in addition to out-
performing the accuracy of DNNAR forecasts by 10% at this horizon). The
DNNAR forecast is 4% better than the ETS forecast at h = 1 step-ahead,
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5% better than ARIMA and 16% better than ETS at h = 3 steps-ahead
(though these results are not statistically significant). At h = 6 steps-ahead,
the DNNAR forecasts are 31% and 40% better than ARIMA and ETS re-
spectively, with statistically significant results. Moreover, in the long run, the
DNNAR forecast is 22% better than ARIMA (not statistically significant) and
significantly better than the ETS forecast for tourist arrivals in Spain by 29%.

In terms of forecasting tourist arrivals in Italy, forecasts from the DNNAR
model outperforms both ARIMA and ETS across all horizons, and reports sta-
tistically significant differences in forecasts (except when it outperforms the
ARIMA forecast at h = 12 steps-ahead). In terms of the accuracy gains, fore-
casts from the DNNAR model are 25% and 32% better than forecasts from
ARIMA and ETS at h = 1 step-ahead, 34% and 36% better at h = 3 steps-
ahead, 33% and 35% better at h = 6 steps-ahead, and 33% and 39% better
at h = 12 steps-ahead. Interestingly, in Hassani et al. (2017b), the ARIMA
forecast for Italian tourist arrivals was the best at h = 6 steps-ahead in com-
parison to 8 competing models based on the lowest RMSE. In contrast, we find
the DNNAR model is significantly better than ARIMA at h = 6 steps-ahead.

The forecast evaluation for tourist arrivals in Cyprus indicates that the
DNNAR forecasts outperform ARIMA and ETS forecasts across all horizons
(based on the RMSE) with statistically significant results in majority of the
horizons considered here. The RRMSE criterion shows that the DNNAR fore-
casts are 7% better than ARIMA (not statistically significant) and 28% better
than ETS at h = 1 step-ahead. At h = 3 steps-ahead, the DNNAR forecasts are
23% and 48% better than ARIMA and ETS respectively, whilst at h = 6 steps-
ahead, the DNNAR forecasts are 25% and 54% better than ARIMA and ETS
forecasts. At h = 12 steps-ahead, the DNNAR forecasts continue to remain
19% and 4% more accurate than ARIMA and ETS forecasts, but these differ-
ences are not statistically significant. In comparison to the findings in Hassani
et al. (2017b) for tourism demand in Cyprus, unlike the NNAR model, the
new DNNAR model is a serious contender for the generation of forecasts for
tourist arrivals in Cyprus.

When forecasting tourism demand in the Netherlands, forecasts from the
DNNAR model is seen outperforming those from ARIMA and ETS models with
statistically significant results across all horizons (except for the differences in
forecasts between ARIMA and DNNAR models at h = 12 steps-ahead). In
fact, at h = 1 step-ahead, the DNNAR model is 18% and 15% more accurate
than forecasts from ARIMA and ETS respectively, 31% and 18% more accurate
at h = 3 steps-ahead, 34% and 24% more accurate at h = 6 steps-ahead, and
34% and 40% more accurate at h = 12 steps-ahead. Once again, these findings
from the new DNNAR model represent a significant change in terms of the
findings in Hassani et al. (2017b) where the NNAR model failed to outperform
ARIMA or ETS forecasts across any of the horizons considered there.

In the case of Austria, we find the new DDNAR forecasts are significantly
better than the ARIMA and ETS forecasts across all horizons. The RRMSE
criterion enables us to conclude that the DNNAR forecasts are 20% and 19%
better than forecasts from ARIMA and ETS at h = 1 step-ahead, 19% and
18% better at h = 3 steps-ahead, 18% and 14% better at h = 6 steps-ahead,
19% and 21% better at h = 12 steps-ahead. The NNAR model in Hassani et
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al. (2017b) provided very poor forecasts for Austria in relation to ARIMA and
ETS. However, we find the improved DNNAR model overturns those findings.

In the case of Portugal, we find forecasts from the ARIMA model are signif-
icantly better than those from the DNNAR model by 19% at h = 1 step-ahead
whilst the ETS model forecasts are 17% better than DNNAR forecasts at this
same horizon. At h = 3 steps-ahead, the DNNAR forecast is 10% better than
the ARIMA forecast (not statistically significant) whilst the ETS forecast is 5%
better than the DNNAR forecast. However, at h = 3 and h = 6 steps-ahead,
we find the DNNAR model forecasts outperforming both ARIMA and ETS
forecasts with statistically significant results. In fact, the DNNAR forecasts
are 22% and 21% better than ARIMA and ETS forecasts at h = 6 steps-ahead,
and 13% and 38% better at h = 12 steps-ahead. It is noteworthy that the
Hassani et al. (2017b) study found ARIMA to provide the best forecast for
Portugal tourist arrivals at h = 1 step-ahead in comparison to 8 other models,
and our study finds similar evidence for ARIMA at h = 1 step-ahead, as it pro-
vides significantly better forecasts than the DNNAR model and outperforms
the ETS forecast as well. However, unlike forecasts from the NNAR model in
Hassani et al. (2017b) at h = 6 and h = 12 steps-ahead, we find our DNNAR
model provides significantly better forecasts than ARIMA and ETS at these
horizons.

For Sweden, the ARIMA forecast is 32% better than the DNNAR forecast
at h = 1 step-ahead (but this result is not statistically significant), whilst the
DNNAR forecast is 37% significantly better than the ETS forecast at h = 1
step-ahead. At h = 3 steps-ahead the ARIMA forecast is 4% better than the
DNNAR forecast (not statistically significant) whilst the DNNAR forecast is
significantly better than 77% more accurate than the ETS forecast. At h = 6
steps-ahead, the DNNAR forecast is 9% better than the ARIMA forecast (not
statistically significant) and 50% more accurate and significantly better than
the ETS forecast. However, at h = 12 steps-ahead, the DNNAR forecast is only
1% better than the ARIMA forecast whilst the ETS forecast for tourist arrivals
in Sweden is 21% more accurate and significantly better than the DNNAR
forecast. In comparison to the findings in Hassani et al. (2017b), where the
ARIMA forecast was the best forecast at h = 1 and h = 6 steps-ahead, and
more accurate than ETS at h = 3 steps-ahead, our conclusions are similar at
h = 1 and h = 3 steps-ahead where ARIMA outperforms both DNNAR and
ETS forecasts based on the RMSE. However, at h = 6 steps-ahead the DNNAR
forecast performs better than ARIMA. Our findings at h = 12 steps-ahead are
consistent with that of Hassani et al. (2017b) where the ETS forecasts were
better than ARIMA and NNAR forecasts.

Finally, in the case of UK tourist arrivals, we do not find any instances where
the DNNAR forecasts can outperform either ARIMA or ETS forecasts. In
fact, at h = 1 step-ahead, the ARIMA forecast is 7% better than the DNNAR
forecast whilst the ETS forecast is 12% better than the DNNAR forecast (even
though the results are not statistically significant). At h = 3 steps-ahead, the
ARIMA forecast is 31% better than the DNNAR forecast and the ETS forecast
is 33% more accurate and significantly better than the DNNAR forecast. At
h = 6 steps-ahead, both findings are statistically significant and both ARIMA
and ETS forecasts are found to be 28% better than the DNNAR forecast.
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At h = 12 steps-ahead, the gains are comparatively lower, but the ARIMA
forecast continues to outperform the DNNAR forecast by 1% whilst the ETS
forecast outperforms the DNNAR forecast significantly by 11%. In contrast
to the findings in Hassani et al. (2017b), our results indicate that ETS can
provide a more accurate forecast than ARIMA across all horizons for UK.

Table 5: Forecasting results for European tourist arrivals from ARIMA, ETS
and DNNAR models.

RMSE(MAPE) RMSE(MAPE) RMSE(MAPE) RRMSE RRMSE

Country h ARIMA ETS DNNAR DNNAR
ARIMA

DNNAR
ETS

Germany 1 77141(2.27%) 70475(1.97%) 62542(1.72%) 0.81∗∗∗ 0.88

3 94787(2.93%) 85661(2.39%) 64343(1.74%) 0.68∗∗∗,† 0.75∗∗∗

6 109998(3.30%) 96208(2.61%) 61693(1.63%) 0.56∗∗∗,† 0.64∗∗,‡

12 101903(2.53%) 131853(3.73%) 64081(1.74%) 0.63 0.49∗∗,†

Greece 1 85641(10.81%) 132901(7.92%) 101406(11.12%) 1.18 0.76∗

3 142993(23.45%) 300093(14.41%) 106148(11.17%) 0.74∗,ddag 0.35∗,‡

6 157201(27.34%) 369571(17.34%) 111385(10.58%) 0.71∗∗∗,† 0.30∗

12 159580(16.37%) 170626(10.57%) 93876(9.62%) 0.59∗∗∗,[ 0.55∗∗,†
Spain 1 184420(3.38%) 211231(3.45%) 203676(4.20%) 1.10 0.96

3 243188(4.99%) 275151(4.28%) 230396(4.50%) 0.95 0.84

6 323815(6.31%) 374300(5.83%) 224654(4.53%) 0.69∗∗∗,† 0.60∗∗∗,‡
12 305390(5.08%) 337033(5.82%) 239078(5.06%) 0.78 0.71∗, [

Italy 1 282950(5.05%) 311960(4.64%) 211462(3.53%) 0.75∗∗∗ 0.68∗∗∗
3 334954(5.73%) 344108(4.79%) 220984(3.81%) 0.66∗∗∗ 0.64∗∗
6 332345(5.15%) 345950(5.26%) 223237(3.80%) 0.67∗∗∗ 0.65∗∗∗
12 340124(5.10%) 373507(5.67%) 227447(3.96%) 0.67 0.61∗∗∗

Cyprus 1 15944(10.88%) 20411(10.75%) 14776(7.76%) 0.93 0.72∗∗∗,‡
3 23692(16.90%) 35178(26.02%) 18293(10.33%) 0.77∗ 0.52∗∗∗

6 26065(16.60%) 42444(38.45%) 19437(11.59%) 0.75‡ 0.46∗∗∗,†
12 26502(18.76%) 22264(11.52%) 21340(12.57%) 0.81 0.96

Netherlands 1 91104(5.24%) 88614(5.39%) 75385(4.57%) 0.82∗ 0.85∗

3 116460(6.49%) 97892(6.49%) 80267(4.91%) 0.69∗∗ 0.82∗∗,[

6 129567(7.45%) 112914(7.21%) 85540(5.21%) 0.66∗,‡ 0.76∗∗∗,‡

12 129583(7.56%) 143001(9.19%) 85505(5.43%) 0.66 0.60∗∗∗,†

Austria 1 127446(5.15%) 125017(5.50%) 101585(4.13%) 0.80∗∗,‡ 0.81∗∗,‡

3 127452(5.24%) 125214(5.71%) 102824(4.21%) 0.81∗∗,[ 0.82∗∗,‡
6 128478(5.25%) 122117(5.61%) 104908(4.26%) 0.82∗∗ 0.86∗∗∗

12 134891(5.33%) 137317(5.99%) 108879(4.52%) 0.81∗∗∗,‡ 0.79∗∗‡

Portugal 1 57429(6.16%) 58700(5.50%) 68563(6.73%) 1.19∗∗ 1.17
3 90778(10.32%) 77508(7.31%) 81368(7.88%) 0.90 1.05

6 107912(11.04%) 106617(9.49%) 84509(7.99%) 0.78∗,‡ 0.79‡

12 103939(9.24%) 146690(12.72%) 90762(9.38%) 0.87† 0.62∗∗,†

Sweden 1 32922(4.86%) 69316(6.31%) 43555(4.88%) 1.32 0.63∗∗

3 42180(4.90%) 131078(11.22%) 43863(5.91%) 1.04 0.33∗∗,[

6 44240(5.36%) 80853(10.61%) 40325(5.60%) 0.91 0.50∗∗,†

12 48178(5.79%) 39497(4.43%) 47703(7.17%) 0.99 1.21‡
UK 1 431788(9.71%) 409854(9.56%) 460113(11.30%) 1.07 1.12

3 529319(13.97%) 521734(12.88%) 693622(17.63%) 1.31 1.33∗∗,‡
6 693950(17.98%) 693877(16.30%) 889587(22.48%) 1.28∗ 1.28∗

12 848969(21.25%) 769017(17.63%) 855771(22.92%) 1.01 1.11‡

Note: [ - a statistically significant difference between the distribution of forecasts based on the two-sided HS test

at p = 0.10, ‡ p = 0.05, or † p = 0.01. * - a statistically significant difference between the DNNAR forecast and

the competing univariate forecast based on the modified DM test at p = 0.10, ** p = 0.05, or *** p = 0.01
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Table 6: Best forecasting model based on lowest RMSE following comparison
with benchmark models.

Country h = 1 h = 3 h = 6 h = 12

Germany DNNAR DNNAR DNNAR DNNAR
(ARIMA) (ARIMA) (ARIMA) (ARIMA)

Greece ARIMA DNNAR DNNAR DNNAR
(ARIMA) (ARIMA) (ARIMA) (ETS)

Spain ARIMA DNNAR DNNAR DNNAR
(ETS) (ARIMA) (ARIMA) (ETS)

Italy DNNAR DNNAR DNNAR DNNAR
(ARIMA) (ARIMA) (ARIMA) (ARIMA)

Cyprus DNNAR DNNAR DNNAR DNNAR
(ARIMA) (ARIMA) (ARIMA) (ETS)

Netherlands DNNAR DNNAR DNNAR DNNAR
(ETS) (ETS) (ETS) (ETS)

Austria DNNAR DNNAR DNNAR DNNAR
(ETS) (ETS) (ETS) (ETS)

Portugal ARIMA ETS DNNAR DNNAR
(ARIMA) (ARIMA) (ARIMA) (ETS)

Sweden ARIMA ARIMA DNNAR ETS
(ARIMA) (ARIMA) (ARIMA) (ETS)

UK ETS ETS ETS ETS
(ARIMA) (ARIMA) (ARIMA) (ARIMA)

Note: Shown within brackets is the best model for forecasting tourist arrivals in a particular country at a given

horizon, as per the findings in Hassani et al. (2017b) if one compared the ARIMA, ETS and NNAR forecasting

RMSE values in that study. Shown in bold is the best forecasting model as per the forecast evaluation within the

current study.

6 Conclusion

This paper begins with the aim of improving NNAR forecasts for tourism de-
mand. In particular, our interest lies in the NNAR forecasts attainable via
the nnetar algorithm which was considered in Hassani et al., (2015;2017b) as
a method for forecasting tourist arrivals. In the aforementioned papers, the
results indicated the algorithm performed very poorly when faced with fore-
casting the highly seasonal tourism demand series. In hope of improving the
performance of this NNAR algorithm, we propose the use of SSA for denois-
ing European tourism demand for 10 selected countries and forecasting the
reconstructed series with the NNAR model. The results are compared with
NNAR forecasts on the raw European tourism demand series and with two
other parametric and nonparametric benchmark models.

Our findings present several contributions. Firstly, we find statistically sig-
nificant evidence which points towards the effectiveness of denoising with SSA
prior to fitting a NNAR model when seeking to forecast tourism demand series.
In fact the results show considerable gains in accuracy levels when considering
a denoised series. Accordingly, the proposed approach has the potential to alter
the findings in Hassani et al. (2015; 2017b) and improve upon the accuracy of
the NNAR forecasts reported there. Therefore, future forecasting evaluations
of tourism demand are strongly advised to consider the DNNAR model intro-
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duced in this paper in order to obtain a better forecast from a NNAR model.
Secondly, our findings show that the accuracy of forecasts for seasonal time
series attainable via Hyndman and Athanasopoulos’ (2018) nnetar algorithm
can be significantly improved by denoising with SSA. Thirdly, our findings
show different outcomes to the conclusions in Farway and Chatfield (1995),
Nelson et al., (1999), Cho (2003), and Zhang and Qi (2005) where the authors
concluded that NN models struggle to generate accurate forecasts when faced
with seasonal time series. More importantly, recent evidence in Claveria et al.
(2017) also points towards the importance of deseasonalizing when seeking to
forecast with NN. In contrast, we clearly demonstrate that denoising is suf-
ficient to significantly improve the accuracy of NNAR forecasts and that NN
can handle less noisy seasonal data. Thirdly, the comparison between bench-
mark forecasting models further evidence the power of the DNNAR model at
generating superior forecasts. In fact, when we compare the conclusions from
the Hassani et al. (2017b) paper with those from this current study in Table 6,
we find strong evidence which shows that the DNNAR model alters previous
European tourist arrivals forecasting conclusions.

Nevertheless, this study is not without its limitations. Firstly, as we opt for
a recursive forecasting approach, we are not able to comment on the impact
of denoising on the NNAR architectures. Secondly, our findings relate only to
the NNAR model from the Forecast Package in R which is effectively a feed-
forward NN model with one hidden layer. It is possible that more complex NN
models might perform differently.

Future research should consider a more varied comparison between DNNAR
forecasts and those generated via other univariate time series analysis and
forecasting approaches in order to determine to what extent these forecasting
gains are useful in relation to alternative benchmarks. Moreover, a simulation
study which considers the sensitivity of NNAR parameters when forecasting
with denoised data could uncover more useful insights into the performance of
NNAR models.
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