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Highlights 

 Clustered wireless sensor networks are more energy efficient than direct transmission 

 Swarm Intelligence helps Mobile sensor nodes to move in a swarm bases 

 Particle Swarm Optimization is a powerful technique to control the autonomous 

movements of energy efficient sensor networks 

*Highlights
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ENERGY EFFICIENT ALGORITHM FOR SWARMED
SENSORS NETWORKS

Mohaned Al. Obaidy 1 and Aladdin Ayesh 2

Abstract. In this work we are presenting the design of an intel-
ligent hybrid optimization algorithm which is based on Evolution-
ary Computation and Swarm Intelligence to increase the life time
of mobile wireless sensor networks (WSNs). It is composed of two
phases; Phase-1 is designed to divide the sensor nodes into indepen-
dent clusters by using Genetic Algorithms (GAs) to minimise the
overall communication distance between the sensor-nodes and the
sink-point. This will decrease the energy consumption for the entire
network. Phase-2 which is based on Particle Swarm Optimization
(PSO) is designed to keep the optimum distribution of sensors while
the mobile sensor network is directed as a swarm to achieve a given
goal. One of the main strengths in the presented algorithm is that the
number of clusters within the sensor network is not predefined, this
gives more flexibility for the nodes’ deployment in the sensor net-
work. Another strength is that sensors’ density is not necessary to be
uniformly distributed among the clusters, since in some applications
constraints, the sensors need to be deployed in different densities de-
pending on the nature of the application domain. Although tradition-
ally Wireless Sensor Network have been regarded as static sensor
arrays used mainly for environmental monitoring, recently, its appli-
cations have undergone a paradigm shift from static to more dynamic
environments, where nodes are attached to moving objects, people or
animals. Applications that use WSNs in motion are broad, ranging
from transport and logistics to animal monitoring, health care and
military. These application domains have a number of characteristics
that challenge the algorithmic design of WSNs.

1 INTRODUCTION
Recent advances in micro-electro-mechanical systems, digital elec-
tronics, and wireless communications have led to the emergence of
wireless sensor networks (WSNs), which consist of a large number of
sensing devices each capable of detecting, processing and transmit-
ting environmental information. A single sensor node may only be
equipped with limited computation and communication capabilities;
however, nodes in a WSN, when properly configured, can collabo-
ratively perform signal processing tasks to obtain information per-
taining to remote and potentially dangerous areas in an untended and
robust way. Applications for wireless sensors networks include bat-
tlefield surveillance, environmental monitoring, biological detection,
smart spaces, industrial diagnostics, etc. [10]. Any WSN is deeply in-
volved in and related to the monitored environment, and any change
occurring to the surroundings will significantly influence its perfor-
mance; nevertheless, the network must be able to tolerate and ’sur-
vive’any change by implementing proper reactions and adaptation

1 Gulf College, OMAN, email: mohaned@gulfcollegeoman.com
2 De Montfort University, UK, email: Aayesh@dmu.ac.uk

mechanisms sustaining communications for both sensed data and
commands [39].
Energy efficiency has been deemed to be the main challenge for
Wireless Sensor Networks. Generally, the power supply of a single
sensor node relies on a battery with limited energy (e.g., an AAA
battery). Changing or recharging a nodes’ battery is very difficult, if
not impossible, after sensor nodes have been deployed. Therefore;
it is desirable to design energy efficient protocols to run on individ-
ual nodes, to ensure that the operation time of the deployed WSN is
as long as possible. However, some classical information processing
approaches do not consider the energy efficiency issue and require
re-examination when applied in resource constrained WSNs. Geo-
graphically distributed nodes in a WSN may have different views of
the physical phenomenon in the sensor field and thus their measure-
ments may have some points of correlation. A well designed algo-
rithm should also exploit this to accomplish the information process-
ing task via collaboration between nodes. In this work we propose to
design an algorithm for a large scale mobile sensors network. This
algorithm should provide a robust and energy-efficient communica-
tion mechanism which enables the swarms of sensors to move while
keeping optimum distances between the sensor nodes.
The rest of this paper will be structured into the follwing sections;
Section 2 describes the background and motivation for our work. In
section 3, we are explaining the first phase of our proposed algo-
rithm by using GAs to cluster the Sensors Network into independent
groups. Section 4 shows the second phase of the proposed algorithm
where we use the PSO technique to enable the clusters which are
produced in phase-1 to move as Swarms while keeping the optimum
distances. In section 5 the implementation of the proposed algorithm
is explained by showing some snapshots of the simulation program.
Section 6 shows the results discussion as well as comments for the
output graphs are presented here including a critical review. Finally
in section 7 we concluded our work and its objectives with possible
future development and enhancments.

2 BACKGROUND AND MOTIVATION
As the Internet has revolutionized our life by the uncomplicated ex-
change of various forms of information among a large number of
users, Wireless Sensor Networks (WSNs) may, in the near future,
be equally significant in providing information regarding physical
phenomena of interest; ultimately leading to detection and control,
and where relevant enabling us to construct more accurate models
of the physical world. WSNs have gained tremendous importance in
recent years because of its potential use in a wide variety of applica-
tions. This, along with the unique characteristics of these networks,
has spurred a significant amount of research for coming with net-
work protocols specifically tailored for sensor networks [1]. Wireless
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sensor networks are developing quickly and have been widely used
in both military and civilian applications such as; target tracking,
surveillance, and security management. It can be also used for moni-
toring of microclimates and wildlife habitats, the structural integrity
of bridges and buildings, building security, location of valuable assets
(via sensors placed on these valuable assets), traffic control, and so
on. However, realizing the full potential of wireless sensor networks
poses myriad research challenges ranging from hardware and archi-
tectural issues, to programming languages and operating systems for
sensor networks, to security concerns, to algorithms for sensor net-
work deployment, operation and management.
Since a sensor is a small, lightweight, un-tethered, battery-powered
device, it has limited energy [27]. Therefore, energy consumption is
a critical issue in sensor networks. We are interested in sensor net-
works in which a large number of sensors are deployed to achieve a
given goal. All data obtained by member sensors must be transmit-
ted to a sink or data collector. The longer the communication dis-
tance, the more energy will be consumed during transmission [14].
Direct transmission networks are very straightforward to design but
can be very power-consuming due to the long distances from sensors
to the sink. Alternative designs that shorten or minimize the commu-
nication distances can extend network lifetimes. The use of clusters
for transmitting data to a base station leverages the advantages of
small transmit distances for most nodes, requiring only a few nodes
to transmit far distances to the base station. Clustering means to par-
tition the network into a number of independent clusters, each of
which has a cluster-head that collects data from all nodes within its
cluster [17, 20]. These cluster-heads then compress the data and send
it directly to the sink. The output of GA clustering will be assumed
to be the initial population for the Swarms which will represent the
dynamic WSN at the later stage of the proposed algorithm. Deploy-
ment of mobile swarms can enhance the sensor network in many
ways. Firstly, the swarm nodes have much higher hardware capabili-
ties than the sensor nodes. They can provide detailed information of
the intended area (e.g. the hot spot). Secondly, the wireless radios of
the swarm nodes usually have much longer range and higher channel
bandwidth, which can support high quality and delay sensitive mul-
timedia streams. Thirdly, the swarms are mobile [18]. They can be
easily directed to the hot spots. A limited number of mobile swarms
can easily cover a large scale sensor network. The sensor network
can be deployed to cover a very large field due to the low cost of
sensor nodes.

2.1 Energy-Aware Wireless Sensor Networks

Nodes in a WSN are usually highly energy-constrained and expected
to operate for long periods from limited on-board energy reserves.
To permit this, nodes and the embedded software that they execute
must have energy-aware operation. Energy efficiency has been of sig-
nificant importance since WSNs were first conceived but, as certain
applications have emerged and evolved [23], a real need for ultra-
miniaturized long-life devices has re-emerged as a dominant require-
ment. Because of this, continued developments in energy-efficient
operation are paramount, requiring major advances to be made in
energy hardware, power management circuitry and energy-aware al-
gorithms and protocols.

The energy components of a typical wireless sensor node are
shown in Figure 1. Energy is provided to the node from an energy
source, whether this is a form of energy harvesting from sources such
as solar, vibration or wind, or a resource such as the mains supply or
the manual provision and replacement of primary batteries. Energy

obtained from the energy source is buffered in an energy store; this
is usually a battery or super capacitor. Finally, energy is used by the
node’s energy consumers; these are hardware components such as;
the microcontroller, radio transceiver, sensors and peripherals.

Figure 1. Energy components of a typical sensor node

With the increased usage of energy sources in nodes [50, 41], the
need for energy stores other than batteries (many of which suffer
from only offering a limited number of charging cycles) is increased.
This can be seen in the researches that are now utilizing super capac-
itors (devices that are similar to standard electrolytic capacitors, but
with capacities of many Farads) to store the node’s energy [41, 22].

To be energy-aware, the embedded software executing on the node
must be aware of the state of its energy components. This may be as
advanced as monitoring the energy harvested from each source [44],
inspecting the rate of consumption by different consumers [37], di-
recting the flow of energy from and to different stores and manag-
ing the charging of rechargeable stores [22]. Alternatively, this may
equate to simply being able to inspect the residual energy in a single
store. Therefore, the embedded software must not only be capable of
interfacing with energy hardware (this is generally a requirement of
power management circuitry), but also interpreting the data that are
obtained usually in the form of a sampled voltage into a remaining
lifetime, power or energy. Based upon these values, the operation of
the node is adjusted accordingly, usually to maximize the lifetime of
the network.

2.2 GA Approach to Distance Optimization

In the past few decades, Genetic Algorithms have been used in sci-
ence to derive solutions for many types of problems, from construc-
tion of wind turbines [3] to pattern-recognition systems [1]. Genetic
Algorithm is an efficient search algorithm that simulates the adaptive
evolution process of natural systems. It has been successfully applied
to different problems such as multi-processor task scheduling, opti-
mization, and traveling salesman problems [36].

Each individual in the GA population represents a possible solu-
tion to the problem. Finding individuals which are the best sugges-
tions to our problem and combine these individuals into new indi-
viduals is an important stage of the evolutionary process. Using this
method repeatedly, the population will hopefully evolve good solu-
tions. Specifically, the elements of a GA are: selection (according to
some measure of fitness), crossover (a method of reproduction, ”mat-
ing” the individuals into new individuals), and mutation (adding a bit
of random noise to the off-spring, changing their ”genes”).

Crossover and mutation provide exploration, compared with the
exploitation provided by selection. The effectiveness of GA depends
on the trade-off between exploitation and exploration. [36]
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Crossover: The crossover operation takes place between two
consecutive individuals with probability specified by crossover rate.
These two individuals exchange portions that are separated by the
crossover point. In this research we are using one-point crossover.
The following is an example of crossover:

Indv1: 1 1 1 0 0 1 0 1
Indv2: 1 0 1 1 1 1 1 0

⇑
Cross over point

After crossover, two offspring are created as shown below:

Child1: 1 1 1 0 1 1 1 0
Child2: 1 0 1 1 0 1 0 1

If a regular node becomes a cluster-head after crossover, all other
regular nodes should check if they are nearer to this new cluster-
head. If so, they switch their membership to this new head. This new
head is detached from its previous head. If a cluster-head becomes a
regular node, all of its members must find new cluster-heads. Every
node is either a cluster-head or a member of a cluster-head in the
network.

Mutation: The mutation operator is applied to each bit of an
individual with a probability of mutation rate. When applied, a bit
whose value is 0 is mutated into 1 and vice versa. An example of
mutation is shown below:

Indv: 1 1 1 1 1 1 0
⇓ ⇓

Indv: 1 1 1 0 1 1 1

In our research we are using GA algorithms to optimize the
number of clusters and sensor connections for an arbitrary network.
Algorithm (1) illustrate the basic process in GAs.

Initialization: Generate random population of n chromosomes
while the stop condition is not satisfied do

Evaluate the fitness g(x) of each chromosome x in the
population;
while the new population is not complete do

Selection: Select two parent chromosomes from a
population according to their fitness;
Crossover: With a crossover probability, crossover the
parents to form a new offspring (children);
Mutation: With a mutation probability mutate new
offspring;
Accepting: Place new offspring in a new population;

end
Replace: Use new generated population for further runs;

end
Return: the best solution of the current population;

Algorithm 1: Basic Process in Genetic Algorithms

2.3 Swarm Intelligence
Swarm Intelligence (SI) indicates a recent computational and be-
havioural metaphor for solving distributed problems that originally
took its inspiration from the biological examples provided by social

insects (ants, termites, bees, wasps) and by swarming, flocking, herd-
ing behaviours in vertebrates [24, 15]. It is an attempt to design al-
gorithms or distributed problem-solving devices inspired by the col-
lective behaviour of social insects and other animal societies. The
common behaviours in all kinds of swarms are [24, 6, 13];

• Control is fully distributed among a number of individuals;
• Communications among the individuals happen in a localised

way;
• System-level behaviours appear to transcend the behavioural

repertoire of the single individual; and
• The overall response of the system is quite robust and adaptive

with respect to changes in the environment.

Swarm intelligence (SI) as defined by Bonabeau, Dorigo and Ther-
aulaz is ”any attempt to design algorithms or distributed problem-
solving devices inspired by the collective behaviour of social insect
colonies and other animal societies” [6]. The term ”swarm” is used
in a general sense to refer to any such loosely structured collection
of interacting agents. The classic example of a swarm is a swarm
of bees, but the metaphor of a swarm can be extended to other sys-
tems with a similar architecture. An ant colony can be thought of as
a swarm whose individual agents are ants, a flock of birds is a swarm
whose agents are birds, traffic is a swarm of cars, a crowd is a swarm
of people, an immune system is a swarm of cells and molecules, and
an economy is a swarm of economic agents. Although the notion of
a swarm suggests an aspect of collective motion in space, as in the
swarm of a flock of birds, all types of collective behaviour are con-
sidered here, not just spatial motion.

3 RELATED WORK
The use of Wireless Sensor Networks in the context of sustainable
development and developing countries has been studied in many re-
searches during the last decade [12]. Water quality is for example,
a topic of interest for such technologies: system to monitor nitrate
propagation through soils and ground water has been installed in
California. Moving sensors using infrastructure-based robotics have
already been implemented in order to collect data in relevant posi-
tion of dynamical landscape [31]. Another use of sensor networks
is search and rescue operations [16]. In such systems, the collective
work of swarm robots can provide sensing coverage and deliver re-
sponse action. Search and rescue systems impose particular require-
ments [11] that set at the heart of the justification in using swarm-
ing robots and swarm intelligence based control. These requirements
centre on the need for robustness of the system against the loss of
components. As robots search their way through damaged buildings
or in fighting fire, they are likely to be damaged, lost in the rubble,
or become inoperative for number of reasons. Also recently the sen-
sors are increasingly introduced for intelligent homes use [8]. With
the expansion in the availability of high-speed networks the idea of
bringing home devices online is an active area.
Different approaches to combine PSO with the other evolutionary
algorithms have been reported. Robinson et al. in [34] obtained bet-
ter results by applying PSO first followed by applying GA in their
profiled corrugated horn antenna optimization problem. In [25], ei-
ther particle swarm optimization algorithm, genetic algorithm, or
hill climbing search algorithm can be applied to a different sub-
population of individuals which each individual is dynamically as-
signed to according to some predesigned rules. In [21], ant colony
optimization is combined with PSO. A list of best positions found
so far is recorded and the neighborhood best is randomly selected



Page 5 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

from the list instead of the current neighborhood best. Also, non-
evolutionary techniques have been incorporated into PSO. In [4], a
Cooperative Particle Swarm Optimizer (CPSO) is implemented. The
CPSO employs cooperative behavior to significantly improve the
performance of the original PSO algorithm through using multiple
swarms to optimize different components of the solution vector co-
operatively. In the self-organization of the WSN, two directions have
been paid much attention. The former kind is the coverage-based
method [40, 30], which concerns on ensuring the complete sensing
coverage with node number as small as possible. Only when one or
more operated nodes happen to fail, does the network organization
implement once more. It is actually a static method without consid-
ering the dynamics of target state. The latter is the distributed col-
laborative sensing method [26, 45, 46, 47, 51], which constructs an
integrated performance index of tracking accuracy and communica-
tion cost. By optimizing the performance index online, it achieves a
tradeoff between the energy cost and sensing performance. However
it usually requires a cluster head and some cluster members to form
a centralized construction. Moreover, such centralized optimization
may not be practical because each node has very limited computation
ability. Besides this, the priori location information of each node is
needed beforehand.

4 PHASE-1: GA BASED CLUSTERS
INITIALIZATION

Genetic Algorithms are used in phase-1 to generate the optimum
clusters distribution for the sensor nodes before moving. In this stage
the cluster-heads and its relative members are identified.
Once cluster-heads are selected, each regular node connects to its
nearest cluster-head. Any node in a network is either a cluster-head
or a ”member” related to a cluster-head. Member-node can only be-
long to one cluster-head. Cluster-heads collects data from all sensors
within its cluster and each head directly sends the collected data to
the sink-point. Figure 2 shows an example of clustering.

Figure 2. Clustered Sensors Network

4.1 Chromosome Representation of Distance-Head
Problem

In order to find appropriate cluster-heads is critically important to
minimizing the distance. We use binary representation in which each
bit corresponds to one sensor. A ”1” means that corresponding sensor
is a cluster-head; otherwise, it is a regular node. In the following
example:

s1 s2 s3 s4 s5 s6 s7 s8
1 0 0 1 0 1 0 0

Individual nodes s1, s4 and s6 are cluster-heads. The remain-
ing nodes are regular sensors. The initial population consists of
randomly generated individuals. GA is used to select cluster-heads.
Each regular node uses a deterministic method to find its nearest
cluster-head.

4.2 Modified GA Algorithm
In this research we have developed the basic GA in a way that in case
of any cluster-head remain unconnected with any regular sensor then
its state should be changed to be a regular node and linked to the
nearest cluster-head available in the field. This process will elimi-
nate inefficient clusters to survive. Decreasing the number of clusters
will enhance the overall distance optimization of the sensors network
[33]. As a result the optimization process will produce more energy
efficient topology for the sensor network. The proposed algorithm is
shown in Algorithm (2).

Initialization: Generate random population of n chromosomes
while the stop condition is not satisfied do

if cluster-head not connected to any sensor-node then
change cluster-head state into regular sensor;
find the nearest cluster-head to be connected with;

end
Evaluate the fitness g(x) of each chromosome x in the
population;
while the new population is not complete do

Selection: Select two parent chromosomes from a
population according to their fitness;
Crossover: With a crossover probability, crossover the
parents to form a new offspring (children);
Mutation: With a mutation probability mutate new
offspring;
Accepting: Place new offspring in a new population;

end
Replace: Use new generated population for further runs;

end
Return: the best solution of the current population;

Algorithm 2: Modified GA Algorithms

4.3 Fitness Function: Distance-Number of Heads
Rule

The total transmission distance is the main factor we need to min-
imize. In addition, the number of cluster heads can factor into the
function. Given the same distance, fewer cluster heads result in
greater energy efficiency as cluster heads drain more power than non-
cluster-heads. Thus, each individual is evaluated by the following
combined fitness components:

Fitness = w ∗ (D − distancei) + (1− w) ∗ (N −Hi) (1)

where D is the total distance of all nodes to the sink, distancei is the
sum of the distances from regular nodes to cluster-heads plus the sum
of the distances from all cluster-heads to the sink; Hi is the number
of cluster-heads; N is the total number of nodes; and w is a predefined
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weight. Except for distancei and Hi, all other parameters are fixed
values in a given topology. The shorter the distance, or the lower the
number of cluster-heads, the higher the fitness value of an individual
is. Our GA tries to maximize the fitness value to find a good solution.
The value of w is between 0 and 1, and it is application-dependent. It
indicates which factor is more important to be considered: distance
or the cost incurred by cluster-heads. At one extreme, if w = 1, we
optimize the network only based on the communication distance. If
w = 0, only the number of cluster heads is considered.

5 PHASE-2: PSO BASED MOVABLE CLUSTERS
The second part of our algorithm is designed to provide the distance
management by using Particle Swarm Optimization (PSO) which
makes the wireless sensor network self organised while the sensors
are moving on a swarm bases. In PSO, the potential solutions are
called particles, fly through the problem space by following the cur-
rent optimum particles. The particles are initialised randomly [5].
Each particle will have a fitness value, which will be evaluated by
the fitness function to be optimised in each generation. Each parti-
cle knows its best position pbest and the best position so far among
the entire group of particles gbest. The particle will have velocities,
which direct the flying of the particle. In each generation the velocity
and the position of the particle will be updated. The velocity and the
position update equations are given below as (2) and (3) respectively.

vk+1
i = wvk

i +c1rand1∗(pbesti−sk
i )+c2rand2∗(gbest−sk

i ) (2)

xk+1
i = xk

i + vk+1
i (3)

The parameters used in equations 2 and 3 are described in Table 1.

Table 1. The parameters for PSO velocity and position update

Parameter Description

vk
i velocity of particle i at iteration k

w inertia weight
vk+1

i velocity of particle i at iteration k + 1
cj acceleration coefficients j=1,2
randi random number between 0 and 1 i=1,2
sk
i current position of particle i at iteration k

pbesti pbest of particle i
gbest gbest of the group
xk+1

i position of the particle i at iteration k + 1

The pseudo code for phase-2 of our proposed algorithm is shown in
Algorithm (3).

PSO Initialization: Assume the initial population is the best
solution generated by the previous stage of GAs;
while the stop condition is not satisfied do

Evaluate the fitness value for each particle’s position in the
swarm;
if fitness(p) better than fitness(pbest) then

pbest = p;
Set best of pbest as gbest;

end
Update the particles’ velocity vk+1

i ;
Update the particles’ position xk+1

i ;
end

Algorithm 3: Phase-2 PSO part of the Algorithm

In recent times, there has been a number of improvements to the
original PSO [32]. In this paper we have explored two versions of
PSO algorithms which are extension to the original PSO algorithm.
These are discussed in the following sections.

5.1 PSO - Time Varying Inertia Weight (TVIW)
PSO-TVIW model is the same basic PSO algorithm with inertia
weight parameter is varying with time from 0.9 to 0.4 and the ac-
celeration coefficient is set to 2. This model is proposed by [35]. The
time varying inertia weight is mathematically represented as follows:

w = (weight− 0.4) ∗ (MAXITER− iter)

MAXITER
+ 0.4 (4)

Where, MAXITER is the maximum iteration allowed, iter is the cur-
rent iteration number and weight is a constant set to 0.9.

5.2 Particle Swarm Optimisation with
Supervisor-Student Model (PSO-SSM)

The PSO-SSM model presented to achieve low computational costs
as compared with the standard PSO algorithm. The algorithm intro-
duces a new parameter called momentum factor (mc) to update the
positions of particles as well as different velocity updating mecha-
nism is presented [28]. In PSO-SSM model, velocity is updated only
if each particle’s fitness at the current iteration is not better than that
of previous iteration. The velocity serves as a navigator (supervisor)
by getting the right direction, while the position (student) gets a right
step size along the direction. The velocity and the position are modi-
fied using the following equations:

vk+1
i = vk

i +c1rand1∗(pbesti−sk
i )+c2rand2∗(gbest−sk

i ) (5)

xk+1
i = (1−mc) ∗ xk

i + mc ∗ vk+1
i (6)

6 IMPLEMENTATION AND
EXPERIMENTATION

6.1 Energy Model for Optimisation
We are studying the impact of the transmission range of sensor nodes
and positioning of the sink in minimising the communication energy
in a sensor network. The important components of each sensor are
the data and control processing unit and the radio for communica-
tion. The microprocessor used in the processing unit should be en-
ergy efficient with less energy consumption. The energy dissipation
in the radio depends on the different characteristics of the radio. The
energy model used in this work is adopted from [20, 19, 42] and
summarised here. The energy dissipation for transmitting b bits to d
distance is shown in Equation 7.

Etx(b, d) = Eelec × b + Eamp × b× d2 (7)

Energy dissipation in a node to receive b bits of data is shown in
Equation 8.

Erx(b) = Eelec × b (8)

Where Eelec is the radio energy dissipation and Eamp is the trans-
mition amplifier energy energy disipation. Energy consumption of a
wireless sensor node transmitting and receiving data from another
node at a distance d can be divided into two main components:
Energy used to transmit, receive and amplify data and energy used
for processing the data, mainly by the microcontroller. Leakage
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current can be as large as a few mA for the microcontroller, and the
effect of leakage current can be neglected for higher frequencies and
lower supply voltage. Assuming the leakage current as negligible,
the total energy loss for the sensor system due to the distance Edd

can be calculated according to Figure 3 using the following equation:

Edd =

(
k∑

j=1

nj∑
i=1

(d2
ij +

D2
j

nj
)

)
(9)

For more details about the derivation and proof refer to [19].

Figure 3. Energy Model for distance based Sensor Network

6.2 Experiments and Simulation
In this section, we explore the use of GAs and PSO to solve the
distance minimization problem for dynamic sensor networks.

Phase-1:
To implement our algorithm, we have used Java-Applet as a
programming environment to simulate an experiment with 100
generated random nodes in a simulated 2-D environment with two
different sink positions located at (0,0) and (100,100). As a tuning
parameters for GAs, we used the parameters given in Table 2.

Table 2. The GA parameters settings

Parameter Value
Population size 100
Selection type Proportional
Crossover rate 0.7
Crossover type one point
Mutation rate 0.005
Generation size 1000

We explored two case studies. They are:

• case 1: when the sink point is located at (0,0) (i.e. the upper left
corner) and w is set 1.0, Figure 4. This network distribution is suit-
able when the application environment is inhospitable, which will

be not safe to allocate the sink-point (i.e. data collector) within the
field area like some military applications or earthquake observa-
tions, etc.

Figure 4. Clustered network when sink point at (0,0)

• case 2: when the sink point is located at (100,100) and w set to
0.8, Figure 5. This network distribution is more suitable when the
sensor nodes are distributed around a centralized safe area where
the sink-point can receive the data in a wider circular range and
from different directions. For example the Mobile networks.

Phase-2:
The second phase of the algorithm enabling the sensors to move as
a swarm using PSO while keeping the optimum distances between
the sensor-nodes and their related cluster-head, avoiding any un-
necessary movements. Refering to Equation (9), we can conclude
that by reducing the distance from a node to the cluster-head and
the cluster-head to the sink we can minimise the energy dissipation
in a sensor network. In our simulation, we cluster the nodes taking
into consideration that each node can transmit or receive data from
all other nodes. Thus, nodes considered in this network do not have
transmission range constraint. The fitness function used in this phase
of our algorithm is based on Equation (9) described in the previous
section. Using this fitness function, the sensors will be grouped on
entirely distance base as shown in Equation (10) below:

Fitness = min

(
k∑

j=1

nj∑
i=1

(d2
ij +

D2
j

nj
)

)
(10)

where, ∑k

j=1
(nj + k) = N

N is the number of nodes in a network. For our simulations,
we used 100-node networks that are uniformly distributed in a
2-Dimensional problem space [0:100,0:100]. We have studied the
impact of sink location on the fitness value of the PSO algorithms.
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Figure 5. Clustered network when sink point at (100,100)

In one set of simulations we considered the sink-point to be located
at the center of the network (50,50). In another set of simulations
we considered the sink-point to be located remotely at (50,180).
For both simulations we use the same set of nodes. The maximum
number of generations we were running was 1000. The parameters
used in the simulations are tabulated in Table 3. Snapshots for the

Table 3. Initialisation and Parameters Range

Parameter Range
Population size 100
MAXITER 1000
vmax 100
xmax 100
v range 0-100
x range 0-100

mobile swarmed sensor-nodes are shown in Figure 6. Figure 6-a
shows the initial distribution for sensor-nodes which is produced by
GAs from the previous phase of our algorithm. It can be observed
from this distribution that the WSN is clustered into 4-clusters, each
one represents a swarm to be directed and controlled by the PSO
when it will start running in the second phase of the algorithm.
During PSO phase, clusters will be self-organised while they are
moving within the experimentation boundaries. This will avoid the
mobile sensors to make any unnecessary movements to reserve
energy and enlarge the lifetime for each sensor. It is clear from the
screen shots shown in Figure 6 - b, c, d, e and f respectively, that the
mobile sensors in each cluster keep adjusting their positions during
the movements to keep the distances between the sensor-nodes as
much as possible the same as it was in the initial distribution.

Figure 6. Snapshots of swarmed WSN with 4 clusters crossing the
problem space

7 CRITICAL REVIEW AND RESULTS

Our proposed approach was able to find quickly the optimal solu-
tions. For a 100-node problem, a good solution can be achieved after
around 130 generations as shown in Figure 7 which is relatively a
small number of generations in such applicatons. The fitness value

Figure 7. Fitness values over generations using modified GAs

is greatly enhanced after 100 generations due to the selection of the
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best fitness chromosomes to be used in the next generation. In Fig-
ure 8, number of cluster heads decreases over generations to reach
around 25% from the overall number of nodes in the network. This
verifies the effectiveness of our algorithm because, as expected, the
total distance will be minimized as the number of heads decreases.
Experiments indicate that the scaling window plays an important role

Figure 8. Number of Cluster heads over generations using GAs

in the quality of the solution found. When a single node is near to the
sink, that node itself becomes a cluster-head and sends data directly
to the sink. Experiments also show that nodes near to the sink are
more likely become cluster-heads than those far away. More cluster-
heads are needed when a sink is close to the center of a network
than when it is located at a network corner. This observation is ex-
pected because when the sink is at the center, all regular nodes are
located around the sink. As a result, cluster-heads tend to be dis-
tributed around the sink.
In this work we observed the performance in terms of quality of
the average optimum value for 10 trials to the PSO-SSM and PSO-
TVIW models which are described earlier. We chose these two meth-
ods for the following reasones; the PSO-SSM model is the only
model which has the ability to stop particles from moving beyond
the boundary of the problem space, that is under the influence of mc
parameter in it. The PSO-TVIW model is almost similar to the basic
PSO algorithm with just the inertia weight varying with time from
0.9 to 0.4. From the graph shown in Figure 9 we can conclude that
PS-TVIW convergence is slower as compared to the PSO-SSM al-
gorithm. This was due to constant acceleration co-efficients used in
this model which affects the rate of convergence.

Table 4 shows a comparison of different clustering algorithms in
terms of the purpose, decision neighbourhood rang, mobility, and fi-
nally whether the clusters are disjoint or not. By analysing this table,
we can observe that most of the existing clustering algorithms are
less suitable for mobile environment. The reasons for that are: Firstly,
electing the cluster-heads based on information from nodes which
are multiple hopes away leads to high overhead and slow reaction to
topology changes. Secondly, maintaining complete intra-cluster in-
formation is an expensive task which results in a high traffic. Thirdly,
the complexity of the multi-layer clustering algorithms leads to a lot

Figure 9. Convergence for the PSO-SSM and PSO-TVIW Models

of efforts in building and maintaining the desired structure.
Simulation results of our algorithm showed that our approach is an
efficient and effective method with respect to distance minimization
in mobile WSNs. For a scalable sensors network the average value of
the communication distance is reduced by 84% using our approach
as compared with the distance when direct transmission method is
used.

Table 4. A Comparison of Clustering Algorithms

Algorithm Purpose Decision
neighbour-
hood range

Mobility Disjoint
Clusters

WCA [9] MAC Network
wide

Mobile Yes

LEACH [20] Data collec-
tion

1-hop Static Yes

HEED [48] Routing 1-hop Quasi static Yes
MOCA [49] Data collec-

tion
k-hops Static No

Coyle et al. [2] Data collec-
tion

k-hops Static Yes

EEMC [23] Data collec-
tion

1-hop Static Yes

Bouhafs et al. [7] Data collec-
tion

Network
wide

Static No

Tandem [29] Collaborative
processing

1-hop Mobile Yes

Smart clustering
[38]

Routing 1-hop Quasi static Yes

Wang et al. [43] Information
decimation

Network
wide

Quasi static Yes

8 CONCLUSIONS AND FUTURE WORK
In this paper, we propose the use of GAs to minimize the commu-
nication distance in a sensor network by dividing it into clusters and
the use of PSO to make this network moves as a Swarm keeping
the optimum distances between the sensors while they are moving.
Our proposed approach starts by taking random selecting nodes in a
network to be used as a cluster-heads. The algorithm then starts to
find an appropriate number of cluster-heads and their locations by



Page 10 of 11

Acc
ep

te
d 

M
an

us
cr

ip
t

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

adjusting cluster-heads based on fitness function. We also explored
the results of the performance evaluation of four extensions to the
standard Particle Swarm Optimization algorithm in order to reduce
the energy consumption in Wireless Sensor Networks. Communica-
tion distance is an important factor to be reduced in sensor networks.
We have simulated two models; the Supervisor-Student Model (PSO-
SSM) and the time varying Inertia Weight (PSO-TVIW) model. In
the (PSO-SSM) model the new parameter introduced called the mo-
mentum factor mc to update the position of particles. Also here the
velocity is updated only if each particle’s fitness at the current itera-
tion is not better than that of previous iteration. Hence the computa-
tional costs for this algorithm will be decreased. An important modi-
fication proposed is to use boundary checking for re-initialization of
particle which moves outside the set boundary. We can also conclude
that (PSO-TVIW) convergence is slower as compared to other algo-
rithm. As a future work, our program can be upgraded to cover the
two other models described in this paper, then a comprehensive com-
parison could be done to analyze the behavior of the particles within
each case.
We plan to extend the problem on hand by considering a hierarchical
structure where a cluster-head can have a super cluster-head which
sends data directly to the sink.
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