
Run Time verification of Hybrid
Systems

Ph.D Thesis

Bader Alouffi

This thesis is submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Software Technology Research Laboratory

De Montfort University

Leicester - United Kingdom

May 2016

Dedication

This thesis is dedicated to my late mother Dleel alharbi who was supporting me

on a daily basis since the day that i was born, and gave me all of the emotional

support that I needed as well as her prayers. I will be ever grateful for all what she

had done for me, and i am really sorry that she has not lived to see me graduate.

It was her dream. And, only because of her, it became true.

A special dedication to my father Mohammad alouffi for all his prayers, sac-

rifices, and endless support without which I could not have accomplished my thesis.

To my wife Samah Alquhtani for her endless love and support, but most of

all for her patience and dedication to the family and the home which allowed me to

complete this thesis, and finally, a loving dedication to my son Alwaleed .

To my Brothers Saleh, Suliman and Majed and to my Sisters Modi, Maha,

Khlood and Kholah for all the help and motivtion.

I

Abstract

The growing use of computers in modern control systems has led to the develop-

ment of complex dynamic systems known as hybrid systems, which integrates both

discrete and continuous systems. Given that hybrid systems are systems that

operates in real time allowing for changes in continuous state over time periods, and

discrete state changes across zero time, their modelling, analysis and verification

becomes very difficult.

The formal verifications of such systems based on specifications that can guar-

antee their behaviour is very important especially as it pertains to safety critical

applications. Accordingly, addressing such verifications issues are important and is

the focus of this thesis. In this thesis, in order to actualise the specification and

verification of hybrid systems, Interval Temporal Logic(ITL) was adopted as the

underlying formalism given its inherent characteristics of providing methods that

are flexible for both propositional and first-order reasoning regarding periods found

in hardware and software system’s descriptions.

Given that an interval specifies the behaviour of a system, specifications of such

systems are therefore represented as a set of intervals that can be used to gain an

understanding of the possible behaviour of the system in terms of its composition

whether in sequential or parallel form. ITL is a powerful tool that can handle both

forms of composition given that it offers very strong and extensive proof and specifi-

cation techniques to decipher essential system properties including safety, liveliness

II

and time projections.However, a limitation of ITL is that the intervals within its

framework are considered to be a sequence of discrete states. Against this back-

drop, the current research provides an extension to ITL with the view to deal with

verification and other related issues that centres around hybrid systems.

The novelty within this new proposition is new logic termed SPLINE Interval

Temporal Logic (SPITL) in which not only a discrete behaviour can be expressed,

but also a continuous behaviour can be represented in the form of a spline i.e. the

interval is considered to be a sequence of continuous phases instead of a sequence

of discrete states. The syntax and semantics of the newly developed SPITL are

provided in this thesis and the new extension of the interval temporal logic using a

hybrid system as a case study. The overall framework adopted for the overall struc-

ture of SPITL is based on three fundamental steps namely the formal specification

of hybrid systems is expressed in SPLINE Interval Temporal Logic, followed by the

executable subset of ITL, called Tempura, which is used to develop and test a hybrid

system specification that is written in SPITL and finally a runtime verification tool

for ITL called AnaTempura which is linked with Matlab in order to use them as an

integrated tool for the verification of hybrid systems specification.

Overall, the current work contributes to the growing body of knowledge in hybrid

systems based on the following three major milestones namely:

i the proposition of a new logic termed SPITL;

ii executable subset, Tempura, integrated with SPITL specification for hybrid

systems; and

iii the development of a tool termed AnaTempura which is integrated with Matlab

to ensure accurate runtime verification of results.

III

Declaration

I declare that the work described in this thesis is original work undertaken by me for

the degree of Doctor of Philosophy at the Software Technology Research Laboratory

(STRL), at De Montfort University, United Kingdom.

No part of the material described in this thesis has been submitted for any award

of any other degree or qualification in this or any other university or college of ad-

vanced education.

This thesis is written by me and produced using LATEX.

Bader Alouffi

IV

Acknowledgments

First and foremost, my truthful thankfulness goes to the most merciful ALLAH for

all the things he blessed me with throughout my whole life, without those blessings,

I would not be here standing in this position at all. After studying for three degrees

(including this one), at three universities, in three different countries, I have learned

one important thing - I could never have done any of this, particularly the research

and writing that went into this thesis, without the love, support and encouragement

of a lot of people.

Most importantly, I would like to thank my supervisor, Dr. Francois Seiwe,

whom without his support, encouragement and guidance this thesis would not have

been possible to achieve. I am so happy that I was able to finish my Ph.D under

his supervision. The love and care he offered to his students, including me, has

affected this work in so many good ways. Also, many thanks and gratitude goes

to my previous supervisor Dr. Antonio Cau, the one behind this project. For

his critical comments, technical suggestions and professional guidance have always

improved this thesis since day one.

I want to express my deepest thanks to The Graduate School Office (GSO)

, for all the help and support.

Last but not least, I would like to thank every member of the Software Tech-

nology Research Laboratory (STRL) for providing the academic and home-like

environment and the support whenever needed.

V

Contents

Dedication I

Abstract II

Declaration IV

Acknowledgments V

Table of Contents XI

List of Figures XIII

List of Tables XIV

Bibliography XIV

List of Abbreviations XV

Listings XV

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 5

1.3 Research Objectives . 5

1.4 Research Question . 6

VI

CONTENTS

1.5 Scope of the Research . 7

1.6 Research Methodology . 7

1.7 Success Criteria . 9

1.8 Thesis Structure . 9

2 Literature review 12

2.1 Introduction . 13

2.2 Hybrid System . 13

2.2.1 Systems definition . 13

2.2.2 Systems specification . 15

2.2.3 Formal modelling . 15

2.2.4 Formalism of Hybrid Systems 16

2.2.5 Discrete and Continuous systems formalism 16

2.2.6 Hybrid Systems control . 18

2.2.7 Hybrid Systems specification 20

2.2.8 Hybrid Linear automata . 22

2.3 Formal Methods . 23

2.3.1 Formal methods specification 24

2.3.2 Classification of formal methods 25

2.3.3 Temporal Logic (TL) . 28

2.3.3.1 Time in temporal logic 29

2.3.3.2 Temporal Logic classification 30

2.3.3.3 Propositional versus First order 31

2.3.3.4 Computational versus Linear Time 32

2.3.3.5 Time points versus Intervals 36

2.3.3.6 Duration Calculus 39

2.3.3.7 Discrete or Continuous 40

VII

CONTENTS

2.4 Runtime verification . 41

2.4.1 Contemporary Runtime verification Methods 41

2.4.2 A conceptual view of Runtime verification 43

2.4.2.1 Temporal Logic-based monitoring methods 43

2.4.3 Runtime verification versus Model Checking 45

2.4.4 Runtime verification versus Testing 46

2.4.5 Runtime verification Applications 47

2.4.6 Matlab and Simulink . 47

2.5 Summary . 48

3 Preliminaries 50

3.1 Introduction . 51

3.2 Interval Temporal Logic . 51

3.2.1 Syntax of ITL . 52

3.2.1.1 Expressions . 53

3.2.1.2 Formulae . 54

3.2.2 Semantics . 55

3.2.3 Derived formulae . 59

3.2.3.1 Derived constructs 61

3.2.3.2 Derived constructs related to expressions 61

3.3 An Executable subset of ITL (Tempura) 62

3.3.1 The Language: Tempura . 63

3.3.2 The Tool: AnaTempura . 64

3.3.3 AnaTempura mechanism . 66

3.4 Summary . 68

4 SPline Interval Temporal logic(SPITL) 69

4.1 Introduction . 70

VIII

CONTENTS

4.2 Spline background . 70

4.2.1 Spline types . 72

4.2.1.1 Linear Spline . 72

4.2.1.2 Quadratic Spline . 73

4.2.1.3 cubic Spline . 74

4.3 Spline Interval Temporal logic(SPITL) 77

4.3.1 Discrete changes in SPITL . 78

4.3.2 Continuous changes in SPITL 79

4.3.3 Syntax of SPITL . 80

4.3.4 Phase definition In (SPITL) 81

4.3.5 Timed expressions definition In (SPITL) 81

4.3.6 Semantics of SPITL Expressions 82

4.3.7 Semantics of SPITL formulae 83

4.3.8 Derived formulae . 84

4.3.8.1 Derived constructs 85

4.3.8.2 Expressions derived constructs 85

4.3.9 Discrete and Continuous changes Examples 86

4.3.9.1 Discrete Examples 86

4.3.9.2 Continuous Examples 87

4.4 Spline example . 88

4.5 Summary . 89

5 Runtime verivcation of hybrid system Framework 90

5.1 Introduction . 91

5.2 General overview of the framework 94

5.3 System specifications (SPITL) . 94

5.4 Modelling specifications in Tempura 96

IX

CONTENTS

5.5 Matlab/Simulink (s-function) . 96

5.6 An Automatic function to Inject assertion points using AnaTempura 99

5.7 Chapter summary . 102

6 Design and Implementation 103

6.1 Overview . 104

6.2 Simulink and Model based Implementation 104

6.3 AnaTempura . 105

6.4 Steps to compiling the Design . 105

6.5 AnaTempura and Assertion point . 106

6.6 Matlab Engine . 108

6.7 S Function . 108

6.8 FIFO Pipe . 109

6.9 Simulink Model . 110

6.10 Summary . 112

7 Case study and Evaluation 113

7.1 Overview . 114

7.2 Mine pump system (the case study) 114

7.2.1 Case Study Description . 114

7.2.2 Specification of mine pump system in SPITL 117

7.2.2.1 Functional requirement 118

7.2.2.2 Timing requirement 119

7.2.3 Writing the requirement in Tempura 119

7.2.4 C-Mex Code and S-function 125

7.2.5 Simulink model . 128

7.2.6 Case study results . 129

7.3 Summary . 132

X

CONTENTS

8 Conclusion and Future Work 133

8.1 Introduction . 134

8.2 Summary of Thesis . 134

8.3 Research Question revisited . 136

8.4 Criteria for Success and Analysis . 138

8.4.1 Extended ITL formalism to reason about hybrid systems . . . 138

8.4.2 Extended AnaTempura . 139

8.5 Future Directions . 140

9 Appendix A 141

9.1 Mine Pump Controller wrapper . 141

9.2 Mine Pump Controller . 144

9.3 Matlab Engine code . 159

9.4 Fifo Pipe . 161

10 Appendix B 163

10.1 Assertion points . 163

10.2 Tempura Code . 165

XI

List of Figures

2.1 Hybrid System fundmetal framework 18

2.2 Temporal Logic classification [24] . 31

2.3 LTL path [16] . 33

2.4 CTL path [27] . 35

2.5 Points based . 37

2.6 Interval based . 37

2.7 Discrete time [22] . 40

2.8 Continuous time . 41

3.1 Chop of finite interval . 58

3.2 Chop of infinite interval . 58

3.3 Chopstar of finite interval . 58

3.4 Chopstar of finite interval final infinite 59

3.5 Chopstar of infinite interval . 59

3.6 Tempura example . 64

3.7 The Analysis Process . 65

3.8 General System Architecture of AnaTempura[177] 68

4.1 control points . 71

4.2 Linear spline . 72

4.3 Quadratic spline . 73

4.4 Cubic spline . 76

XII

LIST OF FIGURES

4.5 discrete changes . 78

4.6 continuous changes . 79

4.7 Discrete changes Example . 86

4.8 Continuous changes Example . 87

4.9 Leaking gas burner example . 88

5.1 General framework . 95

5.2 The integration of ITL/Tempura within MATLAB/Simulink using

C-MEX S-function . 97

5.3 Illustration of how S-function is integrated with ITL/Tempura frame-

work. 98

5.4 Illustration of assertion points (Adapted from kun thesis) 100

5.5 Illustration of runtime verfificationn based on AnaTempura 101

7.1 Mine Pump System modified from [120] 115

7.2 Matlab engine Code starting connection in AnaTempura 120

7.3 Variable update on the Ana tempura external console 121

7.4 Flow of S-Function [113] . 125

7.5 The Simulink Block . 129

7.6 the Simulink model scope plot . 130

7.7 Mine pump test cases results in AnaTempura 131

XIII

List of Tables

3.1 Syntax of ITL . 53

3.2 Semantics of ITL . 57

3.3 Derived formulae . 60

3.4 Frequently used concrete derived constructs 61

3.5 Frequently used derived constructs related to expressions 61

3.6 Operations in Tempura . 63

4.1 Syntax of SPITL . 80

4.2 Semantics of SPITL . 82

4.3 Semantics of SPITL formulae . 83

4.4 Derived formulae . 84

4.5 Frequently concrete derived constructs 85

4.6 Frequently derived constructs related to expressions 85

XIV

List of Abbreviations

HS Hybrid System

TL Temporal logic

ITL Interval Temporal Logic

LTL Linear temporal logic

CTL Computation Three Logic

DC Duration Calculus

SPITL Spline Interval Temporal logic

FIPA first-in, first-out pipe in C

CENG MATLAB Engine API for C

CMEX cxecutable files for standalone MATLAB for C

S-FUNCTION A computer language description of a Simulink block written in c

TL Temporal logic

RVHSF Run Time Verification of Hybrid system Framework

API Application Program Interface

XV

Chapter 1

Introduction

Objectives:

• To present an introduction and research scope.

• To identify the research problem statement and the motivation.

• To highlight the research objectives and the success criteria.

• To provide the adopted research methodology.

• To provide thesis’s outline.

1

CHAPTER 1. INTRODUCTION

1.1 Motivation

Essentially, any form of systems that is a mixture of continuous or real time dynamics

and discrete events are collectively known as hybrid systems. These discrete and

continuous dynamics coexist and interact producing changes in response to both

discrete and dynamic events as described by a difference equation in time. They

are a form of mathematical model for a part of the real world where discrete and

continuous parts interact with each other. Such systems can model all kinds of

situations, from biological systems [4] to a controller interacting with its environment

[6], from electronic circuits [5] to mechanical systems [7]. In the context of the

computer science community, a hybrid system is regarded primarily as a discrete

(computer) program that interacts with an analogue environment. In computer

science parlance, one of the key objectives in hybrid systems is to extend standard

program analysis techniques to systems which encompasses some kind of continuous

dynamics with much emphasis on the discrete event dynamics. In such systems,

the main issue of concern to computer scientist is verification. One of the most

important attributes of a hybrid system is to ascertain and specify its behaviour.

Due to the vast number of applications which can be modelled as hybrid systems,

having efficient ways of analysing their behaviour enables us to learn useful infor-

mation about the parts of the real world they model. Such analysis tells us about

what happens as time evolves in a system, and we can then decide whether we are

comfortable with the behaviour we see. When the behaviour of a dynamic system

is analysed, it is important to ensure that two kinds of properties are satisfied:

1. The first property is to ensure that the hybrid system yields accurate informa-

tion or output whether now or in the future. If the behaviour of such systems

is determined to be accurate then one can be contended to leave the system

to operate within the overall device that encapsulates it.

2

CHAPTER 1. INTRODUCTION

2. The second property is to be able to ascertain when the system provides infor-

mation that are not accurate or complete from which the system can then be

remodelled to accomplish what we desire and considered extremely important.

These types of properties have long been considered in the field of hybrid systems

theory, with stability and captivate being key concepts that are of paramount im-

portance. Stability is the idea that, if a system trajectory starts close to a point in

space, then it will always remain close to that point in space. This is a property

of the first type, where going far away from the point in space is a ‘bad thing’ or

inaccurate output. On the other hand, captivate encompasses the idea that a system

trajectory will keep getting closer and closer to a desired point in space, which is

a property of the second type, where getting close to the desired point is a ‘good

thing’ or an accurate output.

Stability and captivate capture the intuition that we have about good behaviour

of a hybrid system, but are not easy to establish automatically. However, it is

desirable to use automatic methods of analysis on hybrid systems to get a lot of

information about a system within time, cost, resources and technical performance

objectives.

Performing automatic analysis on a system allows us to think about it in a

way which makes the best use of our intelligence, intuition, and time. The main

challenge applying these constructs to hybrid systems is that a programmer must

consider both the discrete and the continuous time behaviour to understand when

and where a program execution must be suspended, by drawing inference from

program properties that must be checked during runtime. The combinatorial state

space explosion of hybrid systems complicates this task. Yet, a more fundamental

limitation is the lack of a mechanism for controlling thread schedules that would

enable a programmer to enforce his or her choices.

Verification hybrid systems is considerably hard given the unpredictability of

3

CHAPTER 1. INTRODUCTION

their execution which has the tendency of generating a new sets of program bugs.

Moreover, standard tools for carrying out verification activities are ineffective despite

a wide array of tools that have been constructed to assist programmers in verification

hybrid systems. Under normal circumstances, such verification tools are expected

to provide the programmer with maximum verification power with with little efforts

of programming exerted, however in practice there always seem to be a trade off

between the efforts of the programmer in using such tools and specificity which

entails minimisation of false or inaccurate results.

In fact, popular bugs identified within the general properties of hybrid systems

such as violations of atomicity and data races can sometimes prove difficult to trace

and debug given the low specificity of such tools. Although such tools are proficient

at verification some forms of bugs, they do not leverage on the knowledge of a

programmer regarding their code, as such, properties that are implicitly specified

may not correlate with real bugs. This is important given that not all forms of

bugs are attributed to violations of atomicity or data races because it is possible

that a program can be race free whilst still generating inaccurate results or make

data corrupt depending on the application. Similarly, not all data races are bugs as

research suggests that roughly 2-10% of reported data races incidence are harmful[1].

Implicit specifications has a competitive edge in that it is not required by a

programmer to identify the exact properties to be checked for but also possess the

disadvantage that the programmer may lack the requisite knowledge of the exact

properties that are being checked. In fact, within the verification protocol com-

munity, there is a general lack of consensus regarding what data-race freedom and

atomicity entails given that both terms have multiple definitions that are inconsis-

tent.

In the light of the above, an important question that comes to mind is ”what

are the implications of this for the current study?” The answer to this important

4

CHAPTER 1. INTRODUCTION

question is presented in the problem statement as highlighted in Section 1.2.

1.2 Problem Statement

In the world of computing especially as it pertains to hybrid systems, the verifica-

tions of the level of correctness of computer programs that interacts with continuous

environments is one of the key issues that computer scientists have tried to resolve.

Detecting bugs in complex computer software systems is a challenging task and given

the rate at which the software industry is growing, there is a massive interest to-

wards the development of automated tools that can assist in the verification process.

Accordingly, a number of formal verification tools which provides high specificity at

the expense of a considerably high effort has been developed. Although such tools

are a very powerful but they are equally very complex given that they require a

great deal of skills to put them into correct use, thereby limiting their usefulness to

ordinary programmers, small programs or abstractions of large programs. There is

therefore the need to develop a robust yet simple framework that can be used for

verification and simulation of the behaviour of a system in terms of its properties

such as liveliness and safety.

1.3 Research Objectives

The central aim of this research is to develop a framework that can be used to

verify and simulate a computer system’s behaviour in terms of safety and liveness

properties, using executable subset of Interval Temporal Logic (ITL) and its ex-

tension for the development of a hybrid system termed Spline Interval Temporal

Logic (SPITL). This entails the use of Tempura with subsequent integration with

AnaTempura and Matlab in order to verify such a hybrid system model done within

5

CHAPTER 1. INTRODUCTION

Simulink. The intended outcome is to improve the interpreter Tempura by merging

multiple assertion points thereby making them to receive the points.

1.4 Research Question

How can Interval Temporal logic be extended in order to specify hy-

brid systems, which integrates both discrete and continuous systems.

In order to provide properties that capture the dynamic behaviour of

hybrid systems and how can these properties be formally verified at

runtime and how can this verification can be inserted in to the hybrid

system model in matlab simulink?

We propose to address the overall research question,a set of research questions that

tackle each of the underlying issues.

RQ 1. What is the appropriate formalism technique that is required for the spec-

ification and verification of hybrid systems?

RQ 2. What properties of a hybrid systems can be expressed in SPITL?

RQ 3. Does the formalism have adequate tool support in order to simulate and

verify hybrid systems?

RQ 4. How can we describe the behaviour of hybrid systems using Interval Tem-

poral Logic?

RQ 5. How can we characterise the whole time interval instate of characterising

fixed points on the interval?

RQ 6. Can we have new operators in ITL that can deal with states durations?

6

CHAPTER 1. INTRODUCTION

RQ 7. Can the proposed extension of ITL be used to reason about hybrid systems?

RQ 8. How do we verify at runtime the behaviour of hybrid system under inves-

tigation using our framework?

1.5 Scope of the Research

In order to propose solutions to the problems and research questions outlined in

the preceding section, the aim of this thesis is to present a formal approach for the

specification of hybrid systems using an extended formalism from the well-known

logic ITL, called Spline Interval Temporal logic. Subsequently, an integrated frame-

work for the specification and runtime verification of hybrid systems is provided.

Development of such a framework requires the following components:

• Defining the system behaviours.

• Specifying the properties using SPITL.

• Modelling the system behaviour in Tempura.

• Communicating the Run time verification tool AnaTempura with the external

hybrid system simulation platform, Matlab Simulink.

• Verifying the systems in order to prove if the system satisfies its properties.

1.6 Research Methodology

The research methodology adopted in this research is based on constructive research

approach whereby a contribution to knowledge is based on the development of a new

solution to an identified problem. Accordingly formal framework is developed for

known problem which pertains to the inability of the run time verifier, AnaTempura,

7

CHAPTER 1. INTRODUCTION

to verify hybrid systems using assertion points approach. This was achieved by

improving the interpreter Tempura by refineing the assertion point feature enabling

it to merge multiple assertion points in real time. The overall methodology involves

four distinct steps as follows:

• Step 1: Overview and background

This step highlights the basic concepts of the runtime verification used in hy-

brid systems. It shows the deferences and features of the hybrid systems in

general. Then, it shows the hybrid systems properties of interest and associ-

ated issues. Additionally, it lays the foundation to the understanding of all

approaches upon which the current research problem is based which is derived

as a gap required to be filled from previous studies. Accordingly, a detailed

studying and understanding of past work within the same can assist in the

recognition of their weakness and boundaries from which the basis of the cur-

rent work is established.

• Step 2: Architecture

This step introduces the proposed framework. It defines the general concep-

tual framework and the main components as it relates to the overall research

problem. It explains how individual entities of the research interact with each

other with the view to achieve the expected aim of the research. Additionally,

it shows the logical background of the framework and the techniques to be

adopted.

• Step 3: Implementation

This step presents the implementation of the overall framework. The im-

plementation includes hybrid systems properties of interest and the expected

behaviour of the system during the runtime. It entails formal specification

of hybrid systems expressed using Interval Temporal Logic (ITL) and its ex-

8

CHAPTER 1. INTRODUCTION

tension SPITL, and a formal model and verification of hybrid systems using

AnaTempura and Matlab.

• Step 4: Evaluation

This step pertains to how the capability of the proposed framework can be

ascertained and how its associated components can be validated and verified

within the hybrid systems

1.7 Success Criteria

The success of this research will be measured based on how the aforementioned

research objectives are accomplished.

Thus, the accomplishment criteria of the objectives as following:

• Extending the Interval temporal logic in order to specify the hybrid system

which can express both discrete and continuous behaviour of a hybrid system

model.

• Improving the interpreter Tempura by refining the assertion point feature and

make it able to merge multiple assertion points in runtime.

• Improving the interpreter Tempura by refinging the assertion point feature

and make it able to merge multiple assertion points in runtime.

• Linking AnaTempura and Matlab to establish communication between them

whilst ensuring that sending and receiving inputs are guaranteed.

1.8 Thesis Structure

This thesis report is organised into 8 chapters as follows:

9

CHAPTER 1. INTRODUCTION

• In this chapter a brief overview and outlines of the motivations, research ob-

jectives and methodology, success criteria and overall structure of the thesis

are presented.

• Chapter 2 presents a comprehensive and underlying description of the most

relevant aspects of temporal logic and hybrid systems. The chapter starts with

a brief overview of temporal logic, types and tools. Then, hybrid system back-

ground are presented in the following subsections. Finally, hybrid system

related works are discussed.

• Chapter 3 provides an overview of temporal logic in general and ITL in par-

ticular, showing its syntax and semantics and presents a justification of our

selection of ITL. Tempura the executable subset of ITL are discussed using

examples. In addition, a review of the Anatempura tool is presented, followed

by a discussion of its features and architecture and its use in our framework.

• Chapter 4 shows the proposed extension to Interval Temporal called, SPline

Interval Temporal Logic (SPITL), in which not only a discrete behaviour can

be expressed, but also a continuous behaviour can be represented by a form of

a spline. The syntax and semantics of the SPITL are presented in this chapter.

• In chapter 5, detailed description of the proposed framework and architecture

as well as its components are presented. Each component and their interaction

with each other are described in detail.

• Chapter 6 presents the implementation of the proposed framework and for-

malises different properties of hybrid systems. In this chapter, testing is illus-

trated using AnaTempura and Matlab. Similarly, correctness verification for

the abstract model is illustrated.

10

CHAPTER 1. INTRODUCTION

• Chapter 7 provides the evaluation criteria and the results of implementing the

framework components. The results will be used to measure the effectiveness

of the proposed framework. This chapter compares our extended framework

with other existing frameworks that tackle similar problem.

• Chapter 8 presents the main conclusions that stems from this research and

identify key areas and new directions for further work.

11

Chapter 2

Literature review

Objectives:

• To describe the concept of Hybrid systems.

• To explain the formal specification.

• To introduce Temporal logic and its types.

• To review the runtime verification methods.

• To investigate the related work

12

CHAPTER 2. LITERATURE REVIEW

2.1 Introduction

In this chapter, a detailed review of extant literature related to the current work

including the background to temporal logic and its applications are presented. It

discusses the specification and its uses and the most relevant terms related to speci-

fication, such as formal specification and formal specification approaches. Addition-

ally, temporal logic history, and how we can classify temporal logic, as well as the

temporal logic applications, is discussed. The chapter concludes with a review of

runtime verification methods.

2.2 Hybrid System

A hybrid System is a system consisting of a collection of a continuous-valued and dis-

crete variables. Hybrid systems arise in embedded control when digital controllers,

computers, and subsystems modelled as finite state machines are coupled with con-

trollers and plants modelled by partial or ordinary deferential equations or difference

equations. Hybrid systems model exist in many important applications such as air

traffic management systems [6,7], highway systems [7,8], and manufacturing [10]. In

the sub-section that follows, the classification of hybrid systems detailing important

background issues are presented.

2.2.1 Systems definition

Definition : In the IEEE Standard Dictionary of Electrical and Electronic Terms a

system was defined as “a combination of components that act together to perform a

function not possible with any of the individual parts” . It is a set of components or

interdependent components that interact with each other to become a single entity

or an integrated whole. It then follows that one component depend on the other for

13

CHAPTER 2. LITERATURE REVIEW

functionalities within the overall system [1,2]. The general properties of systems are

studied in a number of fields including computer science, control theory, dynamical

systems, mathematical programming, discrete systems, hybrid system, system engi-

neering and simulation languages. In such fields, abstract properties of a system are

investigated with the view to gain an understanding of the principles and concepts

that are independent of domain, temporal scale or types [1,2] fundamentally, every

system has a structure which contains its components or associated parts that are

interlinked with each other either directly or indirectly; behaviour which entails pro-

cesses that transmogrify inputs into outputs; interconnectivity whereby every parts

or processes within the system are interlinked based on structural and behavioural

relationships. Accordingly, the structure or behavioural pattern of a system can be

disaggregated into subsystems or sub-processes [1,2]. Some systems share common

characteristics, including: [2]

• A system has structure, it contains parts (or components) that are directly or

indirectly related to each other.

• A system has behaviour, it contains processes that transform inputs into out-

puts.

• A system has interconnecting: the parts and processes are connected by struc-

tural and/or behavioural relationships.

• A system’s structure and behaviour may be decomposed via subsystems and

sub-processes to elementary parts and process steps.

The term system may also refer to a set of rules that governs structure and/or

behavior. Alternatively, and usually in the context of complex systems, the term

institution is used to describe the set of rules that govern structure and/or behavior.

[2]

14

CHAPTER 2. LITERATURE REVIEW

2.2.2 Systems specification

In systems theory, there is a fine distinction between system structure and system

[2] The external behaviour of a system pertains to the connection between its input

and output.The

input/output of the system’s behaviour is made up of input time segments

matched with out-

put time segments derived from a real model or system . In terms of the un-

derlying structures, a system is made up of its state and transition mechanism

(illustrating how inputs

are transformed from a current state into other states). A deep knowledge of

the system structure enhances the ability to specify, analyse, simulate and verify its

behaviour[2,3].

2.2.3 Formal modelling

Definition: A model is generally defined as a description of a system or subsystem

using formal terms that covers a given set of knowledge or information [4]. Therefore,

among the characteristics of a system is that it should be formal and should contain

information in a way that is consistent and unambiguous. Additionally, a model

must possess some level of abstraction that can be represented only by selected

information. This is important given that the choice of right model is a complex

activity when it comes to abstracting information as it is mainly driven by the

perspective of the modellers and his/her overall objectives to be realized [4].

The systems or subsystems formal specification within models is an imperative

for most of the activities, such as:

• Checking the system properties.

15

CHAPTER 2. LITERATURE REVIEW

• Simulation so as to be able to check the behaviour of the system.

• Mathematical proof techniques for verification of the behaviour of a system.

2.2.4 Formalism of Hybrid Systems

Essentially, any form of systems that is a mixture of continuous or real time dynamics

and discrete events are collectively known as hybrid systems.However, Before

discussing hybrid systems it is important to have an understanding of some terms

relating to it such as continuous and discrete dynamics (will be disscued in next

section below). A dynamical system has its roots from the mathematical science

which is time-dependent.

In other words, the system has various states and processes depending on what

time it is operating. Some examples include water flow in a pipe, the pendulum of

the clock. On the other hand discrete dynamics depend on fixed points, and can be

integrated with the continuous dynamic.

The hybrid system as illustrated in figure 2.1 contains both the continuous and

discrete dynamics, which can give it a great deal of flexibility, and hence can be used

for applications especially nowadays, with the weal of dynamic applications. Finally,

the term hybrid automaton, consists of discrete state transitions and continuous

evolution, which will be discussed later.

2.2.5 Discrete and Continuous systems formalism

The general differential equation systems, that have continuous states and contin-

uous time, were derived as the class of continuous Time Systems (CS). Also, au-

tomata, for example, and other systems that operated on a discrete time base were

derived as the class of (DS).The next major advancement in systems formalisms

was the combination of discrete systems and continuous systems formalisms into

16

CHAPTER 2. LITERATURE REVIEW

one consistent hybrid systems [HS] [1, 2]. In the sections that follows a background

description of these formalisms, discrete systems, continuous systems and Hybrid

systems are presented. Given that hybrid system is the main focus of the current

research, a greater deal of attention is given to their specification, simulation, and

verification. A more fundamental choice is that between Discrete or Continuous of a

flow of time. It implies that it would be composed of a sequence of instances where

each non-final point is followed by another immediate point. We can therefore say

that a property is correct in the following moment and also correct all time or at

some future time. This can be formulated in first-order logic:

∀ x, y(x < y → ∃ z(x < z ∧ z ≤ y ∧ ∀ w(x < w ∧ w ≤ y → z ≤ w)))

Temporal logics mostly used for program reasoning consider time as discrete where

the present instant matches to the program’s present state and by the finite model

property. Hence the temporal structure which matches with a series of states of a

program execution is the non negative integers. continuous refers to a linear ordering

in which we can find another different point between any two distinct points. This

can be mathematically represented as

∀ x, y(x < y → ∃ z(x < z < y))

The idea of the flow of time can be modeled using rational or the real numbers, which

can represent the flow of continuous time [22, 23]. Philosophers have been studying

tense logics interpreted over a continuous time structure. Cau in [21], proposed the

application of dense time temporal logics to reasoning about concurrent programs.

Dense time temporal logics can also be used in real time programs where strict,

quantitative performance requirements are placed on programs [30].

17

CHAPTER 2. LITERATURE REVIEW

2.2.6 Hybrid Systems control

a system that has processes of distinct traits that will lead to the desired result, more

specially, interacting continuous and discrete dynamics as shown in Figure 2.1. The

main characteristic of of Hybrid systems is that they generate mixed signals that

include a combination of discrete-valued and continuous signals. In essence, some of

these signals are values derived from a continuous set of real numbers, for example,

while other values are derived from a discrete finite set of symbols denoted by a,b,c.

Figure 2.1: Hybrid System fundmetal framework

In manufacturing, for instance, different components may be produced or pro-

cessed in specific machines. However,only the sequence or arrival of a component

would trigger the process. In essence, manufacturing process comprises the events

18

CHAPTER 2. LITERATURE REVIEW

that are driven by the dynamics of processes involved and the moving parts of

the machines. The time-driven dynamics were often studied in isolation from the

event-driven dynamics. While time-driven dynamics made use of Petri net models

or automata or even PLC, logic expressions, event-driven dynamics were studied

through the based on knowledge derived from differential equations.

To meet the high performance specification, and to understand the system’s

behaviour, we need to model all dynamics as well as their interlinkages and inter-

actions. Optimisation of the entire process of manufacturing must be tackled in a

meaningful and consistent way. In instances whereby event and dynamics driven

by time are not coupled in a tight fashion or the system performance requirements

are difficult to actualise, simpler models that are constructed separately for separate

phenomena can be adequate.

However, the best response can be derived from hybrid systems when they are

applied in instances where the interaction between the discrete and continuous parts

are noticeable and when they are expected to deliver on specifications whose per-

formance are expected to be high.

Hybrid models may be deployed to greater advantages especially in areas like

control of automotive engine where control algorithms with specific and tailored

properties are implemented based on embedded controllers, capable of reducing gas

consumption, and emissions consumption without compromising the performance of

the car.

To fulfil the highly challenging design requirements in control systems designs

for issues such as idle speed control or cut off frequency of an engine [11], hybrid

models that are capable of representing behaviours that are based on events and

time can come really handy and must be deployed accordingly. Also some processes

or systems, that requires accuracy, and demand high performance such as, the chem-

ical related processes, manufacturing of robotic systems, air traffic control systems

19

CHAPTER 2. LITERATURE REVIEW

as well as transportation systems, , would greatly benefit from the hybrid system

models [12, 13, 14, 15, 16].

Hybrid systems emerge from the interlinkage between algorithms for discrete

planning and those for continuous processes, thereby providing the basic method-

ology and framework for the synthesis and analysis of intelligent and autonomous

systems [17]. Essentially, hybrid systems are important in designing supervisory con-

trollers for continuous systems, and also key in designing intelligent control systems

with a high degree of independence.

The hierarchical organization of complex systems is another important way hy-

brid systems emerge in which a hierarchical structure assists in managing complexity

given that higher levels in the hierarchical structure require models that are less de-

tailed (e.g. discrete abstraction) regarding the functioning of the lower levels thereby

prompting the interlinkage between continous and discrete components [18].

2.2.7 Hybrid Systems specification

The approaches of hybrid systems are different depending on the level of complexity

of the discrete or continuous dynamics as to whether it stress the importance of the

synthesis and analysis of results or consider results only or simulations only. Some

hybrid systems are an extension of theoretical idea of a system that are developed

based on ordinary differential equations which include discrete time and variables

that are applicable to systems with switching mechanism.

There are additional approaches , in which “intelligence” derived from continuous

control systems based on linear and non-linear differential equations are combined

with supervisory control of DESs that are based on finite automata and Petri nets

to derive, with disparaging success, in terms of synthesis and analysis of results.

The availability of efficient simulation and analysis software tools for the design

of hybrid systems, is important because of the complex nature of hybrid systems – a

20

CHAPTER 2. LITERATURE REVIEW

fact that is well-recognized by the research community of hybrid systems developers

and a lot of software program have been developed to tackle their complexity

Few of the available software used for such purposes will be discussed here but

it is important to state here that the pool of software applications changes with

time as progress and advancement is attained in hybrid system research. As such,

simulation and modelling tools are expected to be developed with robust algorithms

so that they can address so that problems that arise due to the interfacing of discrete

and continuous dynamics can be addressed swiftly [10, 11, and 12].

Matlab, Simulink, and Stateflow software [13] are software tools that can be

adopted for visual modelling and simulation of hybrid systems that are based on

discrete-time, continuous-time and dynamics that are driven by events and can

make the use of hybrid systems in terms of testing, implementing, and debugging

much more easier.

Ptolemy II [14] is a set of software tool that supports concurrent and heteroge-

neous modelling and hybrid system design. It supports many computational models

such as finite state machines, continuous-time systems, discrete event systems as

well as the suitable interfaces that facilitates the modelling and simulation of hybrid

system through the efficient coordination of the interaction of these interfaces.

Modelica [16]-an object oriented language which was developed for paradigms

and physics modelling of hybrid systems. Simulation software and tools including

MathModelica and Dymola which are compatible with Modelica can also be applied

to conduct simulation of physical systems that shows the characteristics of hybrid

systems[17,18].

HCC [19] is also an object oriented language that supports the modelling of the

dynamics of hybrid systems. Another programming language known as Shift was

also developed for the description of the dynamic networks of hybrid automata. Its

development was motivated due to the need for the high level specification require-

21

CHAPTER 2. LITERATURE REVIEW

ments and analysis of applications in the automotive industry.

Shift has been adopted in various domains of application. OmSim is a software

tool for modelling and simulation activities based on Omola, which is equally an ob-

ject oriented language used for the representation of discrete-event and continuous-

time dynamical systems [20,21].

Charon is a coding language for modelling hierarchical structures in hybrid sys-

tem. Similarly, HyTech has been used in hybrid systems for verification purposes

[22,23]. Kronos [24] and UPPAAL [25] are real-time systems modelled by timed

automata for the sole aim of verifying hybrid systems. software tools have also been

developed and applied for various purposes in the chemical industry [3].

2.2.8 Hybrid Linear automata

Hybrid automata were introduced originally in the early 1990s [27] and they provide

a modelling formalism which can be used as a basis for algorithmic analysis and

specification of hybrid systems. They are adopted to construct dynamical systems

that comprises of analogue and discrete components which come into play when an

interaction is established between and the physical world in real time.

Many of the proposed systems got a good attraction because of their simplicity,

but as application’s requirements increase, and as the complexity increases, these

systems are not satisfactory for the up to date applications. A great a example

of Hybrid Linear automata, the Hybrid Automata (HA) [40] is a FSM where each

state is characterized by a set of continuous variables and equations to express the

system when in that state. Movements from one transition to another is triggered

either by external actions or when a certain condition is satisfied. Each transition is

labelled with a guarded command to be executed when the transition takes place, all

of the above frameworks were developed having in mind systems where the discrete

component is dominant and the continuous one is relatively simple. Therefore, their

22

CHAPTER 2. LITERATURE REVIEW

application to chemical processing systems becomes problematic, when faced with a

substantially more complex continuous element and tight interactions between the

discrete and continuous parts. Pantelides proposes ageneral framework for discrete

and continuous processing systems operating in the continuous time Domain (1995).

2.3 Formal Methods

Formal methods entails methods that have very strong mathematical basis in their

constructs. They are distinct from structured methods whose constructs are defined

properly but lack high level mathematical basis for the description of the function-

alities of hybrid systems [17]. Formal methods allow for the precise specification of

system functionalities while structured methods allows for the accuracy of a system

structures specification. Formal method consists of some vital components including

a semantic model, a notation which act as the language for specification, a verifi-

cation system and refinement calculus, guidelines for development and supporting

tools[42]:

• The semantic model is a logical structure or sound mathematical framework

where all terms, formulae, and rules used have meanings that are concise

and precise The semantic model should have a reflection of the fundamental

computational model of the application under consideration.

• The language of specification is a set of notations that are employed for the

description of the behavioural pattern of the system under consideration and

it must possess adequate semantics within the semantic model.

• verification system and refinement calculi are complete rules that ensures that

properties and specifications are verified and refined.

• Development guidelines are steps that depicts how the methods are employed.

23

CHAPTER 2. LITERATURE REVIEW

• Supporting tools include extensions like proof assistant, a syntax, an animator,

and type checker, and a prototyper.

2.3.1 Formal methods specification

In the past, specification may have been written in natural language or informal

language. Because of that, producing formal specification was not part of common

software engineering practice [22]. Software developers were not usually familiar with

using formal specification languages, and training in using these languages was both

time consuming and expensive [23]. However, today the specification are written in

formal specification languages such as temporal logic, so we are translating a non

mathematical description, such as English and diagrams, into formal specification

language [24].

What is more, the formal specification, which uses mathematical notation, is

used precisely to describes the functionality, structure and interfaces of software

systems. This process does not include the programming languages details needed

to produce an implementation [23].

The reason behind this is that the system developer works at a higher level of

abstraction than the programmer, so, they have the chance to define system func-

tionality concisely without worrying about other aspects of implementation that

they have nothing to do with, such as the functional behaviour of the system, algo-

rithms, efficiency and memory management[25].

This abstraction decreases the specification error rate and removes the confusion

that such details bring to the specification reader, and allows him to recognize the

defined functionality. This permits the verification of implementation [26].

A formal specification provides a dependable point of reference for researchers

who want to study the customers needs, those who execute the programs in order

to ensure that the needs are met, those who evaluate the outcome of the execution,

24

CHAPTER 2. LITERATURE REVIEW

and those who write instruction manuals for the system.

Formal specification of a system can be concluded in the early stages of pro-

gram development, since it is not dependent on the program code. This formal

specification has to be modified as the design progresses and the designers better

understand the customers needs. But it is a powerful tool creating a mutual under-

standing among all parties involved in the system.

According to Gehani [27], formal specification are used for several reasons which

are:

• Uncertainties, oversights and inconsistencies can be detected in the formulation

of informal problems informal in the entire process leading to formalisation.

• The correctness of the model based on formal framework can be ascertained

by mathematical means.

• Analysis can be conducted on a system that is specified in a formal way to

possess or not to possess wanted properties.

• A formal specified system can be integrated within a larger system with addi-

tional level of certainty.

• The formal model (partly) forms the basis of automated development methods

and tools like simulations.

• For systems designs that are specified based on formal protocols , comparison

between components can be achieved can be easily compared with each other.

2.3.2 Classification of formal methods

To write detailed formal specification for any software systems, five basic approaches

have been used, these are:

25

CHAPTER 2. LITERATURE REVIEW

• Algebraic approach: This approach emerged in the mid 70s as a technique

to deal with data structures in an implementation-independent manner. In this

approach, implicit definition of operations are given by linking the behaviour

of different processes without defining state. An example of this approach is

OBJ language[41] and PLUSS. In this sense, equational logic [42], a branch of

first order logic, constitutes that part which deals exclusively with sentences

in the form of identities chosen as the specification formalism and universal

algebra and category theory provided the underlying semantical techniques

[43].

• Model-based approach: In this approach, we build the system model us-

ing familiar mathematical constructs such as sets and sequences. The system

operations have been defined as modification of the system state[44]. Unlike

algebraic specification, the state of the system is not hidden and the state

changes are straightforward to define, but again there is no explicit represen-

tation of concurrency; this is the approach most widely used by Z notation[45]

and Vienna development Method (VDM)[46].

• Process Algebraic approach: This approach is an explicit model of con-

current processes which represents behavioural pattern through constraints on

the communication between the processes that are allowed to be observed (e.g

π-Calculus[47] and calculus of communication systems (CCS) [50]).

• Logic-based approach: Here, properties of systems, such as specification

of program behaviour at a low-level and specification of behaviour in terms

of system timing. An example of this approach is Temporal and Interval

Temporal logic (e.g. the method that we are considered on our work)[51]. will

be discussed on more details later on this chapter and chapter 3.

• Net-based approach: In this approach, an implicit synchronized model of

26

CHAPTER 2. LITERATURE REVIEW

the system based on (causal) data flow via a network, such as the representa-

tion of situations under which data can flow between two nodes of a network.

An example of this approach is Petri nets, and predicate transition networks

[52].

Methods and their associated tools which supports the verification and analysis

of Hybrid system are available. For example, HyTech by Dr. T.A. Henzinger [5]

“ is a symbolic model checker for linear hybrid automata ”, which is the one that

is mostly related to the our study [4], and has a subclass of hybrid automata that

can be automatically analysed through the computation of polyhedral state sets.

A distinguishing characteristics of HyTech is its inherent capability to carry out

parametric analysis, i.e. to identify the values of the parameters for the design of

a linear hybrid automaton system to ascertain whether it satisfies a requirement

based on temporal-logic. HyTech is regarded as the most successful in terms of

application to systems that entails a complex interplay between continuous and

discrete dynamics.

[60] and [61] developed a framework based on a logic for real-time systems (Real

Time Logic (RTL)) and a language for system specification known as Modechart.

RTL was first developed by [62], and was derived from the work of Harel [63]. A

methodological framework for the verifications of systems properties identified in

modechart was detailed in [65]. A limitation of both Modechart and HyTech is

that they are only appropriate during the development phase of hybrid systems

requiring formal verification. They lack the ability to process code-level analysis

from source using certain properties as benchmark. Furthermore, both formalisms

are not compositional, rendering them potentially useless for evolution of large scale

systems. A new study on the monitoring of real-time constraints using RTL[70] and

interval model checking is based on Linear Time Logic (LTL). Although the analysis

and the underlying logic presented in the study are suitable for the expression of

27

CHAPTER 2. LITERATURE REVIEW

real-time properties, they both lack compositional attributes and also lack the ability

to handle analysis of source code. However, the current work seeks to address this

limitations as it will be shown later.

Temporal Rover [72] is a tool used for specifying and verifying and/or validat-

ing systems protocols and systems that are reactive. With the tool, verification of

real-time events and temporal properties that are relative can be automated. The

formal specification is developed by integrating Temporal Logic [13] and a program-

ming language such as C, C++ and Java. Temporal-logic assertions are enclosed as

part of codes that are executable in combination with formal specifications and can

be simulated using the Temporal Rover simulator but suffers a limitation in that

its verification ability is based on simulations and is not compositional methods.

Furthermore the pre and post conditions analysis it provides are not sufficient for

tackling complex parallelism.

2.3.3 Temporal Logic (TL)

Temporal logic has become one of the most important formalisms for specifying,

verifying and reasoning about systems that interact with their environment [13]. The

formal language with its proof theory, decision algorithms and associated method of

practical application, has found many uses in dealing with programs [14].

Temporal logic is considered to be a very suitable formal method for specifying

and verifying concurrent and reactive systems [17]. By ‘ temporal logic ’ we mean

“ a family of logics and logical techniques which can be applied to a wide array of

problems, both abstract and concrete ” [18].

Temporal logic formulas can describe sequences of state changes and properties

of behaviours, and, hence, can span a wide range of problems in various fields with

a richer notation [19].

As temporal languages are increasingly employed to cover a variety of uses, as

28

CHAPTER 2. LITERATURE REVIEW

mentioned above, there is growing interest to include the use of past operators to

the temporal logic languages [27].

In the next sections, we will give an overview of temporal logic starting from the

models of time.

2.3.3.1 Time in temporal logic

Time has been studied in disciplines such as physics, philosophy and computer sci-

ence. It has been one of the most paradoxical concepts of philosophy throughout

history [14,17]. The concept of time has been studied in order to introduce a satis-

factory definition of time since there is no common understanding of time that has

been given till now. The main reason is that each definition has covered some as-

pects of time whilst excluding others. The time concept has been studied in various

disciplines in order to introduce a common language for time.

In many science applications such as physics, mathematics and first order predi-

cate calculus, which is used to reason about expressions containing the time variable,

time has been represented as another variable. Therefore, there is apparently no need

for a special temporal logic [12,14].

In philosophy, temporal logic has been an important subject, as some of the

ancient philosophers used some form of temporal logic to analyse the structure of

time. Plato[23] defined it as the ‘ moving image of eternity ’ while Aristotle de-

scribed it as ‘ the number of motion with respect to earlier and later ’. Philosophers

found it useful to introduce special temporal operators for the analysis of temporal

connectives in languages. The verbs ‘ incipit ’ (it begins) and ‘ desinit ’ (it ends)

are found in Aristotle’s Physics books [21,22]. These new operators were soon seen

as potentially valuable in analysing the structure of time [25].

Classical logic deals with timeless propositions, so logic formulas can characterize

only static states and properties. Temporal propositions typically contain some

29

CHAPTER 2. LITERATURE REVIEW

reference to time conditions, so temporal logic formulas can be used to describe

sequences of state changes and properties of behaviours. Therefore, temporal logic

can cover a wide range of problems in different fields and areas with richer notations

[15].

The various temporal logics can be adopted in conjunction with qualitative tem-

poral properties:

• Safety: nothing bad happens to the system.

• Liveness: something good eventually happens to the system.

• Fairness: something good happens fairly.

Depending on the view of time (whether time is linear or branching, or whether

time is discrete or continuous) and the types of temporal semantics (interval se-

mantics, point semantics, linear semantics, branching semantics and partial order

semantics), we can classify temporal logic. In the next section, we will discuss the

classification of temporal logic systems in details.

For an appropriate definition of any temporal logic, the following are necessary:

• Syntax: the language for describing the time or temporal systems;

• Semantics: the model of time to derive the meaning of a logic formula.

The main question we need to ask is what is the system structure of time that

should be used? (model of time)[12].

2.3.3.2 Temporal Logic classification

Most temporal logic can be classified along a number of axes. We will list the most

popular axes that can be used to classify temporal logic systems which are:

• Propositional versus first order.

30

CHAPTER 2. LITERATURE REVIEW

• Linear versus branching.

• Points (instances) versus intervals.

• Discrete versus continuous.

• Past versus future tense.

as are shown in the next Figure 2.2.

Figure 2.2: Temporal Logic classification [24]

Next, the most common criteria to distinguish between temporal logic systems

is described [12,13,14].

2.3.3.3 Propositional versus First order

Propositional temporal logic is similar to the classical propositional logic. In propo-

sitional temporal logic, problems are expressed in generic language such as the set

of propositional letters, the classical propositional connectives ¬,∨ and ∧ and a set

of temporal operators [55,56]. When creating a program from formal specification

it is crucial to use propositional temporal logics since they have the finite model

property. The created model is similar to a finite state machine; but, the model

accepts infinite strings.

31

CHAPTER 2. LITERATURE REVIEW

First order temporal logic (FOTL) is similar to predicate logic. Different kinds

of FOTL have been suggested[14]; however the generic language consists of predi-

cate symbols, variables, constants, boolean connectives and temporal operators[18].

A difference can also arise as a result of enabling or disabling restrictions on the

interaction of quantifiers and temporal operators.

Lack of restrictions or freedom in some cases might lead to logics that cannot

be decided. For instance, enabling modal operators within the freedom of quan-

tifiers can cause a serious problem. On the other hand, one can have a restricted

FOTL composed of propositional temporal logic together with a first order language

for defining the atomic propositions by disabling such quantification over temporal

operators[56].

2.3.3.4 Computational versus Linear Time

There are two main contrasting views that have tried to explain the structure of

time. One view is that the course of time is linear because time flows in only one

direction and the other view is that time has a branching tree like nature.

According to the theory of linear time, at any instant there is only one possible

future moment [26]. According to the branching theory of time, at each moment

of time, time can split into alternate courses portraying different possible futures,

which mean that at any moment, time has many futures but only one linear past[14].

So, if linear temporal logic has the linear structure of time we call it linear time

logic (LTL); however we call it branching (computational) time logic if it has the

branching time structure [14,22,23,24].

Depending on the two views stated above, we can classify a system of temporal

logic as either a linear time logic or a system of branching time logic. The nature of

time assumed in the semantics is normally reflected in the temporal modalities of a

temporal logic system [23].

32

CHAPTER 2. LITERATURE REVIEW

When it comes to a linear time logic, the flow of events can be explained along

a single time line in temporal modalities. On the other hand, in branching time

logic systems, modalities enable quantification over possible futures. We can get

different logics by changing the structure of the language of the logic in both linear

and branching time temporal logic systems [14,15].

Linear Temporal Logic (LTL): This is a widely accepted type of formalism which

is useful for the specifying and verifying systems that are concurrent and reactive

[16]. Within ITL, time is modelled as a sequence of states which is sometimes known

as computation path. In general, the future is not determined, so several paths are

considered, representing different possible futures, from which any path can happen

to be the main path that is achieved as shown in Figure 2.3

Figure 2.3: LTL path [16]

-Formula of LTL: The formula in LTL is defined inductively as follows:

• > and ⊥ are formulas.

• All atomic propositions p ∈ FP are linear temporal logic formulas.

• If F is a formula, then ¬F is a formula.

• If F1, ..., Fn are formulas, where n ≥ 2, then (F1 ∧ ... ∧ Fn) and (F1 ∨ ... ∨ Fn)

are formulas.

• If F and G are formulas, then (F → G) and (F ↔ G) are formulas.

• If F is a formula, then ©F , 3F , and 2F are formulas.

33

CHAPTER 2. LITERATURE REVIEW

• If F and G are formulas, then F U G and F R G are formulas.

The symbols ©,3,2,U ,R are called temporal operators.

Now we explain their meaning informally. The formulas of LTL are true or false

on computation paths, that is sequences of states s0, s1, The formula 2F means

that F is true at all states along the path. The formula 3F means that F is true

at some state on the path. The formula ©F means that F is true at the next state

after the initial one, that is, at s1.

The formulas F U G and F R G will be formally defined below because they are

a bit more complex [14,15,16]. Any two formula F and G called equivalent (F ≡ G)

if for every path σ we have σ � F if and only if σ � G.

Examples of linear time temporal logic formula:

• Liveness: Every request is followed by a grant. 2(request→ ©Grant)

• Safety: p never happens. 2¬p

• Fairness: p happens infinitely often. (2©p)→ f

• Another natural example, we may want to express that a professor and a stu-

dent cannot be borrowers from the library at the same time: 2¬(borrower student∧

borrower prof)

• 2 (S → 3T)

The informal meaning of this formula is: Whenever S holds, in the future T

is bound to hold [18].

Computational Temporal Logic (CTL): Computational Temporal Logic

(CTL): Computational Temporal Logic, is a branching time logic, which means

that its structure model of time is tree like and has many branches (paths), any one

of which might be the actual computation path. In this model of time we should

specify the path before any computation as shown in Figure 2.4 [25,26,27].

34

CHAPTER 2. LITERATURE REVIEW

Figure 2.4: CTL path [27]

-Formula of CTL: The formula in CTL is defined in pairs inductively as follows:

Firstly Path part:

• A: means ∀ paths(inevitably)

• E : means ∃ some paths(possibly)

The formula in CTL has the tree like (branches), if the branch is computed then

inside the branch it has the same syntax of LTL formula, and it is defined inductively

as follows

• > and ⊥ are formulas.

• All atomic propositions p ∈ FP are linear temporal logic formulas.

• If F is a formula, then ¬F is a formula.

• If F1, ..., Fn are formulas, where n ≥ 2, then (F1 ∧ ... ∧ Fn) and (F1 ∨ ... ∨ Fn)

are formulas.

• If F and G are formulas, then (F → G) and (F ↔ G) are formulas.

• If F is a formula, then ©F , 3F , and 2F are formulas.

35

CHAPTER 2. LITERATURE REVIEW

• If F and G are formulas, then F U G and F R G are formulas.

The symbols ©,3,2,U ,R are called temporal operators. Now we explain their

meaning informally. The formulas of CTL are true or false on computation paths,

that is sequences of states s0, s1, The formula 2F means that F is true at all

states along the path. The formula 3F means that F is true at some state on the

path. The formula ©F means that F is true at the next state after the initial one,

that is, at s1. The formulas F U G and F R G explained in LTL section [28,29,30].

Some examples of branching time temporal logic formula: Safety: bad thing

never happens: A2(¬bad thing) Fairness: p happens infinitely often. E(2©p)→ f

E3(P ∧ ¬ q) Which means: There exists a state where p holds but q does not hold.

A2(p → A3 q) Which means: Whenever p holds, eventually q holds. A2(E3 q)

Which informally means: That at all the paths q holds after some time.

2.3.3.5 Time points versus Intervals

The choice between time instants and time intervals has been a centre of focus in

philosophy when using temporal logic. Temporal logics normally represent time

either as point based or intervals. Until the last decade, logic scholars were greatly

interested in point based temporal logics.

Prior and Pnueli considered time as a discrete sequence of points in their model

of temporal logic and used it in system specification and verification [14]. Modelling

the refinement of a system specification is a widely recognized problem when using

a point-based temporal logic [17]. However, the interval based approach is more

efficient than the point based approach since it can provide efficient representation

of temporal facts. For example, the interval notion is necessary to show continuous

processes and to make temporal statements in AI applications; because of this,

temporal statements are based on intervals [14].

36

CHAPTER 2. LITERATURE REVIEW

In a point based temporal logic model, the formula evaluated as true or false of

points in time is as shown in figure 2.5.

• • • • · · · •

σ0 σ1 σ2 σ3 σn

Figure 2.5: Points based

However, in interval based temporal logic the formula is evaluated over intervals

of time as shown in Figure 2.6.

| < —f1— > | < —f2— > | < —f3— > |

σ0 σj σk σl

• · · · • · · · • · · · •

Figure 2.6: Interval based

The claim is that use of intervals greatly simplifies the formulation of certain

correctness properties [24]. There are many scientists who proposed use of the

interval in many areas; however when it comes to philosophical logic, Simons and

Galton suggested the need for intervals with regard to conceptual structures in

natural language [29,30,31].

Formal tools for reasoning in artificial intelligence have sprung up from Interval

based temporal logics. Major contributions in this area were carried out by Allen

[38]. Allen proposed thirteen relations between intervals, called Allen’s relations.

He provided an axiomatization and representation result of interval structures, and

interval-based theory of actions and events.

37

CHAPTER 2. LITERATURE REVIEW

Interval based logics have been used in other areas of computer science. One

of the first applications of interval temporal logic (ITL) in computing for design of

hardware components was developed by Moszkowski [10] which we will use on our

study. ITL “ is a linear temporal logic over (in)finite time ”. It has been widely

adopted to address various problems ranging across specification and verification

of hardware devices[23,24,25,34] and temporal logic programming[13,27] to multi-

media documents specification [36] and interaction between human and computer

[37]. Expressiveness and natural notation were the basis of ITL . Accordingly oper-

ators including loops, conditional statements and assignments that are considered

imperative and high level operators are easily defined in ITL, making it execution

seamless [38]. This intriguing features of ITL renders it an improved alternative to

tackling problems that stems from conventional point-based temporal logics.

According to Pnueli and Vardi[14,12], programming languages for specification

purposes requires the full power of consistent expressions which is the term used

to describe a codified method of searching, defined by Stephen Kleene in 1956 [13].

It is a well-established fact that chop and chopstar offers the power of expressive

ability to ITL [10].

Additionally, there is a growing industrial interest in ITL; for instance, veracity

have adopted ITL concepts in their temporal language [10] and a temporal logic

called Sugar has been introduced by IBM containing ITL (like) operators and these

works targets are making the logic more usable for industrial design engineers[11].

The nature of interval temporal logic can be viewed from two distinct perspec-

tives, according to philosophy. Intervals can be viewed as points, which are the only

primitive objects, or they are primitive objects in the logic. The majority of interval

based logics construct intervals out of points, for example [10,11]. The following is

38

CHAPTER 2. LITERATURE REVIEW

an example of instant (points) time temporal logic formula:

(σ, 6) � 3(p)

. This formula can be defined informally as: there exists a point where p holds. The

following is an illustration of interval time temporal logic formula:

A ; B

The above formula can be defined as: The interval decomposed (chopped) into a

prefix interval and suffix interval, such that A holds over the prefix interval and B

over the suffix interval, or A holds for that interval if it is infinite. The issue below

is linked to the underlying structure of time.

2.3.3.6 Duration Calculus

Duration Calculus (DC) is an extension of the Interval Temporal Logic (ITL) based

on the work of Halpern, Manna, and Moszkowski [23, 46], which was originally

introduced by Zhou et al. [72] in 1991. DC was applied successfully in case studies

of software embedded systems, including gas burner [12] and a railway crossing [13].

It has also been employed for the definition real time semantics of other languages.

The difference between ITL (i.e. underlying logic adopted in this thesis) and

DC is that whereas DC is based on intervals of real numbers, ITL is based on a

discrete-time domain. The reason for DC operating on a continuous-time domain is

that many of the applications it can handle are based on the area of hybrid systems

where a discrete computer component interacts with a continuous environment based

on sensors and actuators. Accordingly, in this thesis, it was established that the ITL

extension known as SPITL in this research can serve as a potential alternative to

DC especially as it pertains to specificity of hybrid systems offering competitive edge

39

CHAPTER 2. LITERATURE REVIEW

based on its executable subset known as Tempura and the tool and the assertion

tool termed AnaTempura.

2.3.3.7 Discrete or Continuous

A more fundamental choice is that between Discrete or Continuous of a flow of time.

It implies that it would be composed of a sequence of instances where each non-final

point is followed by another immediate point. We can therefore say that a property

is correct in the following moment and also correct all time or at some future time.

This can be formulated in first order logic as:

Temporal logics mostly used for program reasoning consider time as discrete

where the present instant matches to the present state and by the finite model

property. Hence the temporal structure which matches with a series of states of a

program execution is the non negative integers as it is shown in Figure 2.7.

Figure 2.7: Discrete time [22]

Here, each of the black circles represents a classical propositional state, and the

arrows represent the accessibility relation, in our case the ‘ step ’ to the next moment

in time. Note that we also have one state identified as the ‘ start of time ’. Dense

refers to a linear ordering in which we can find another different point between any

two distinct points. This can be mathematically represented as:

The idea of the flow of time can be modelled using rational or real numbers,

which can represent the flow of dense time [33] as is shown in Figure 2.8.

40

CHAPTER 2. LITERATURE REVIEW

• • • • • • • • • • ••

σ0 σn

Figure 2.8: Continuous time

Philosophers have been studying tense logics interpreted over a dense time struc-

ture. Cau [8] proposed the application of dense time temporal logics to reasoning

about concurrent programs. Dense time temporal logics can also be used in real

time programs where strict, quantitative performance requirements are placed on

programs [9].

2.4 Runtime verification

In this section, we classify and evaluate existing runtime verification methods used

for safety critical hybrid systems i.e. This section has two goals. The first is to give

the reader important background information on existing verification methods for

safety critical hybrid systems.

The second is to help the reader to understand the rationale behind the research

direction of this thesis by examining previous and contemporary theories of run-

time verification. This examination is necessary because we intend to suggest in

subsequent chapters that many different runtime verification scheme have a distinct

underlying formal model and theory.

2.4.1 Contemporary Runtime verification Methods

Runtime verification presents useful approaches that is capable of checking that

software is correct by measuring it against certain performance indicators that are

41

CHAPTER 2. LITERATURE REVIEW

already defined. It can be used to conduct a safety measure in online applications

or as a tool for detecting computer bugs. An advantage is that the approaches have

a strong formal basis. However, given the problems faced during program execution

monitoring, verification tools for runtime events will require further refinements and

adjustments for them to be applicable in real-time and embedded systems[52].

Although monitoring activities to mainly through the use hardware probes can be

beneficial regarding non-intrusion systems where there are no alternative options[53].

Nowadays, the extent of improving the complexity of hardware platforms whilst

leveraging on monitors based on hardware can lead to problems pertaining to the

anticipated visibility of the program that is targeted for execution. Conversely, the

desire for observation of the targets that are non-intrusive may become difficult to

handle by relying entirely on extra layer of software[54].

Nevertheless, a number of past works in the hybrid system verification commu-

nity depends mainly on the inclusion of extra software for the target application at

hand. At the minimum, these methods require a deep knowledge of instrumenta-

tion which puts additional layer of complexity on the behaviour of system software

within an embedded system. Given the modular nature of some tools for conduct-

ing runtime verification, there exist definite potential for the optimisation of extra

hardware that can allow for the required processing of observations that requires

verification[55,56,57].

Peterson and Savaria [60] in their work, presented the integration of verifica-

tion protocols based on assertion with an on-chip monitor and submitted that if

a scheme that is minimally invasive is used for the investigation of an embedded

system, it can be organised by integrating on-chip and hybrid monitoring with the

resultant effect of generating the necessary observations required for the verification

approaches of other runtime functions. However there are still room for plenty areas

of investigation. For instance, the integration of on-chip hardware platform for the

42

CHAPTER 2. LITERATURE REVIEW

observation of how behavioural pattern of hybrid systems are executed and the use

of currently available chip interfaces to allow the observations of events such as mon-

itoring via remote systems as runtime verification protocols are research activities

that are currently ongoing.

2.4.2 A conceptual view of Runtime verification

All Runtime verification schemes make use of a a facility that monitors the behaviour

of a controller that is based on a predefined set of rules that constitute behaviour

that are deemed acceptable[64]. For instance if the behaviour at hand is safety

related, then certain conditions to ascertain the safety of the system must have

been defined using well established algorithm that ensures the safety of the entire

system[68].

The use of feedback controllers allows for the easy monitoring of such events by

supplying the necessary information that is used as a form of identification parameter

to ensure that the defined safety tests and threshold has been passed. With the right

type of information executed within the controller, safety limits can be set and used

as a basis or threshold for ascertaining the safety of a system[70].

There are many different architectures and technical approaches used for runtime

verification methods for real time systems such as hybrid system. Some of them are

defined in the subsections that follows[73,74,75].

2.4.2.1 Temporal Logic-based monitoring methods

This method has gained momentum in the past 5 years with advent of efficient run-

time dynamic checking algorithms that can check the safety properties of programs

at run time[24]. These dynamic checking algorithms are variants of the powerful

model checking algorithms found in most model checking tools. Temporal logic

based methods were developed mainly by the computer science and the autonomous

43

CHAPTER 2. LITERATURE REVIEW

space systems community [30,31,32,33].

There are two basic concepts behind the use temporal logic based methods.

First, the expression of a monitorable safety property is expressed in some form

of temporal logic like linear time logic (LTL), past-time linear time logic (PTLTL)

[36,32,33]. These logics are used to describe a safety verification case, which defines

what events or conditions need to be monitored to ensure the safeness of a current

execution with respect to a safety specification.

The system safety specification is derived from the system requirements. From

the system safety specification, executable versions of the temporal logic expressions

are generated. These executable versions of the temporal formulas are loaded onto

the safety monitor[38].

The second important aspect is the evaluation of the execution sequence by the

safety monitor. The processor must know what relevant information to send the

checker. A monitor script expresses what events and conditions are to be automati-

cally extracted from the running program, and then forwarded to the safety monitor

for evaluation. The event recognizer (which runs on the processor) is responsible for

detecting when events and conditions are to be extracted, such as state changes, or

time event changes[39].

The event recognizer forwards an execution trace consisting of extracted events

and conditions from the running program to the safety monitor. The monitor then

executes a run-time checking algorithm that tests the execution trace against the

executable safety specification (i.e.executable versions of temporal logic formulas).

Several excellent examples of temporal logic based runtime verification have been

reported in the literature. Most notably is the Temporal Rover system built by

Time Rover[34], The temporal Rover allows the user to specify LTL and MTL

formulae as comments in a program that is written in C, C++, Java, or VHDL.

These formulae express the safety conditions of the executing system. The formulae

44

CHAPTER 2. LITERATURE REVIEW

are then transformed into executable code at compile time and linked with the

application program. During execution of the application program, the generated

code from the LTL or MTL formulae verify the behaviour of the program against

the formal temporal specification (e.g. LTL and MTL formulae).

Other examples of temporal logic based runtime verification tools are the Java

Path finder developed by NASA Ames [31], and the MAC (Monitor and Checking)

toolset developed by Lee and Kim at University of Pennsylvania, computer science

department [37]. Finally, the Error Confirment Wrapping System (ECWS) devel-

oped by LASS national laboratories of France is noteworthy because the researchers

developed an efficient wrapping language and tool-set to expedite the creation and

loading of temporal logic formulas for the run-time checker [37,38]. In addition, ex-

perimental fault-injection results on the effectiveness of this approach were reported

in [38] which showed the approach is robust in detecting both SW and HW induced

errors.

2.4.3 Runtime verification versus Model Checking

A model checking is a model with a combination of a specific model and a group of

scenarios or computation which ensures that specific models meet their requirements

based on a predefined criteria or the level of correctness of the property under

consideration. On the other hand, runtime verification has its roots derived from

the model checking, but a number of differences still exist. First, in model checking

all the scenarios are considered on a true or false basis depending on the correctness

property. However, the runtime verification entails a further check to ascertain if the

current execution is an element of a group of correctness properties. Second, runtime

verification deals with executions that are finite in nature but model checking deals

executions with infinite boundaries. Third, model checking deals with a predefined

model to check the computations, but runtime verification may consider a finite

45

CHAPTER 2. LITERATURE REVIEW

executions on an incremental basis.

There exist an additional feature that differentiates runtime verification from

model checking based on the fact that runtime verification deals with black box

systems, given that it has no foreknowledge of what the scenario is likely to be.

On the other hand, model checking is based on the construction of models that

are predefined and tailored for a specific system. Aside from the traditional model

checking technique, there exist an advanced model checking that describes a precise

model of the underlying system, which is called bounded-model checking techniques

[7].

Model checking technique suffer many problems among which is problem per-

taining to state explosion whereby the system has to deal with each possible state,

which is usually huge. As for runtime verification based on single runtime there are

no such problems like state explosion.

2.4.4 Runtime verification versus Testing

One property shared by testing and runtime verification is one that pertains to finite

set of executions which both of them possess, although testing is less sophisticated

in terms of its underlying technique. In testing, inputs are fed into the system in

a sequential manner followed by an observation of its required output whether it

meets the desired criteria or not. Oracle [80] test is another form of testing that

shares similarities with runtime verifications whereby a test design is embedded with

the system under consideration at during runtime.

Despite this resemblance in mode of operation, differences still exist. For in-

stance, testing does not require high level specification and it uses a sequence of

input for testing purposes unlike runtime verification where such tests are rarely

used.

46

CHAPTER 2. LITERATURE REVIEW

2.4.5 Runtime verification Applications

• Runtime verification can be adopted to play a complementary role in proving

theorem and checking of models given the level of difficulty in understanding

other methods apart from runtime verification.

• In instances where only few information about the system under consideration

is known, runtime verification offers better services compared to both theorem

proving and model checking.

• In situations whereby an application highly depend on a given environment

and there is little or no information regarding this environment, runtime ver-

ifications has been established to outperform other methods.

• For scenarios or instances where security is a major concern in the system

thereby requiring additional layer of checking, runtime verifications offers a

competitive edge compared to model checking.

In general, the runtime method excels in the applications that are dynamic and in

which predictions of results is hard. These dynamic systems are increasing every

day, hence the urgency regarding the desire to improve on the overall mechanism of

runtime verification to ascertain required output within time. Runtime verifications

readily finds application in self-organizing, self-healing and adaptive systems.

2.4.6 Matlab and Simulink

The use of Matlab [40], a tool for mathematical programming, is actually increasing

in a large number of fields. Together with its dynamic simulation toolbox Simulink

[41], originally developed for control and automation applications, it has become

a powerful tool that is suitable for a large number of applications. In the field of

47

CHAPTER 2. LITERATURE REVIEW

runtime verification and hybrid systems, the number of users of Matlab/Simulink

has also been increasing rapidly in the last years. The tool is suitable for many

applications in this field as for example the study of energy consumption, control

strategies, hydraulic and air flow studies, IAQ, comfort, sizing problems. More and

more studies are being published using Matlab/Simulink environment for develop-

ment of specific tools and for simulations of buildings and technical building services.

In this thesis, a synthesis on the use of Matlab/Simulink for the verifying and sim-

ulating hybrid systems. This work uses the tool AnaTempura in order to be linked

to Matlab/ Simulink to get accurate runtime verification results for hybrid systems.

2.5 Summary

In this work we propose the use of Runtime verification concepts for checking tem-

poral properties in hybrid systems. As the name implies, Runtime verification is

a phenomenon which entails verification of design at runtime through additional

hardware and software monitoring as well as some form of recovery mechanism.

However, most Runtime verification approaches suffers from the well-known prob-

lems that pertains to state space explosion. In practice, additional techniques in-

cluding design abstraction and/or compositional reasoning are employed to address

problems pertaining to state space explosion [4]. Overall, the current work adopts

Tempura within a Matlab/Simulink simulation framework to guarantee much more

robust and accurate verification methods for hybrid systems.

It is common to utilize additional techniques such as design abstraction and/or

compositional reasoning [4] to cope with state space explosion. On our study we suc-

cess to resolve the state space explosion by using Tempura which will be discussed in

more details later. As well as coming this technique to work with a Matlab/Simulink

as a simulation methods for more accurate verification methods for hybrid systems.

48

CHAPTER 2. LITERATURE REVIEW

The Tool AnaTempura is designed to support the step-by-step methodology of

handling verification of hybrid systems. This tool helps engineers in handling veri-

fication of hybrid systems in a comprehensive way. AnaTempura helps the user by

performing its functions in an intelligent way. AnaTempura automatically monitors

hybrid systems execution and analyses the system’s run-time behaviours.

AnaTempura successfully linked with Matlab techniques. Therefore, the tool

has become more effective and powerful as well as more friendly user interface.

Both AnTempura and MATLAP are helpful in the analysis of the behaviours of the

system and reveal the evolutionary development process of the system. AnaTempura

considers possible error cases comprehensively. It is tolerant to many user errors.

The tool checks for the errors, corrects the errors whenever possible, and gives

relevant prompt information

This chapter has examined the background details and information drawn from

the literature which form the basis of the current work. It discussed Temporal Logic

(TL) by presenting an overview of its modus operandi after which it’s a description

of the behavioural pattern of hybrid systems are presented.

Additionally, the chapter touched on specific system issues by classifying them

into two distinct aspects namely : general hybrid systems and then those whose run

time are based on verification methods. The implications of these summaries for

the research questions and problem statement highlighted for the current work are

discussed in the chapter that follows.

49

Chapter 3

Preliminaries

Objectives:

• Present Overview of ITL.

• Describe the syntax and semantics of ITL.

• Present the language Tempura and its tool AnaTempura.

50

CHAPTER 3. PRELIMINARIES

3.1 Introduction

A hybrid system will pass through several steps in order for its behaviour to be

verified. As such, the steps that represent the behaviour of such systems need to

be classified and expressed. Interval Temporal Logic (ITL) can be used to establish

all forms of behavioural properties that is desired within a system. For instance, it

can be used to understand the behaviour of computer virus in a model. Therefore,

ITL has been chosen to be the formal language that will be used in the present

research to focus on the verification of a hybrid model. The existence of Tempura

which is the executable subset of ITL makes it a very suitable language to be used in

the present research. In addition, Tempura offers framework that is executable for

developing and experimenting with suitable ITL specification. Therefore, Tempura

will be used in this research to ascertain if a good or bad behaviour occurs in a

system using ITL description and system traces as the underlying tool.

This chapter provides a contextual understanding about temporal logics and

then provide elaboration of temporal logics with the help of some examples. Also,

comparison of temporal logic in terms of the ITL language is also presented. Further-

more, the following are explained in detail i.e. ITL syntax and informal semantics,

also its executable form Tempura and its syntax and then further its semi-automatic

tool Anatempura. This chapter will also present the reasoning behind the choice of

ITL for this research.. In the last a critical review of similar and existing research

on the use of formal verification is presented.

3.2 Interval Temporal Logic

As noted in Chapter 1, Tempura, an executable subset of ITL (i.e. a programming

language derived from ITL [13]) is adopted for the current work. In addition, ITL

51

CHAPTER 3. PRELIMINARIES

is very useful for the description system traces. ITL is an essential temporal logic

for applicable for both propositional and reasoning based on first order logic on

intervals of time. It is very useful in the formal depiction discrete systems that are

linear in nature for many reasons. ITL is distinct from other temporal logics given

its capability to tackle sequential as well as parallel composition. Also, ITL offers a

very strong and extensible specification structure for reasoning purposes regarding

properties involving liveness, safety and projected time. Additionally, Tempura

and AnaTempura presents framework that are easily executable with animation

techniques that can be used for experimentation and specifications based on ITL

[13, 14, 18, 21, 27].

3.2.1 Syntax of ITL

The key characteristic of ITL is an interval. An interval σ is considered to be a

(in)finite sequence of states σ0, σ1 . . ., where a state σi is a mapping from the set

of variables Var to the set of values V al. The length |σ| of an interval σ0 . . . σn is

equal to n (one less than the number of states in the interval (this has always been

a convention in ITL), i.e., a one state interval has length 0).

The syntax of ITL is defined in Table 3.1 where

z is an integer value,

a is a static integer variable (does not change within an interval),

A is a state integer variable (can change within an interval),

v a static or state integer variable,

g is a integer function symbol,

q is a static Boolean variable (does not change within an interval),

Q is a state Boolean variable (can change within an interval),

p is a predicate symbol.

52

CHAPTER 3. PRELIMINARIES

Expressions e ::= z | a | A | g(e1, . . . , en)| ©A | fin A

Formulae f ::= true| q | Q | p(e1, . . . , en)| ¬f | f1 ∧ f2| ∀v.f | skip| f1 ; f2| f∗

Table 3.1: Syntax of ITL

3.2.1.1 Expressions

The syntax is explained with some examples below:

Expressions are built inductively as follows:

• Constants (z):

We denote Constants by letters of the form z for examples: z0, z1 to denote

values like 0,4,9 and so on.

• Individual variables:

- By convention, capital letters are used to denote state variables which are

variables whose values can change within an interval for example A,B,C,

- Small letters to denote static variables which are variables whose values does

not change within an interval for example a, b, c,

- Letters of the form v are used to denote a variable which can either be a

static or a state variable.

• Functions :

-g(e0, e1, e2, .., ek) where k ≥ 0 and e0, e1, e2, ..., ek are expressions.

-+ and mod are among common functions used.

-Constants (such as 0,1 etc.) are treated as zero place functions.

- Next: ©e, where e is an expression.

- Fin: fin e, where e is an expression.

53

CHAPTER 3. PRELIMINARIES

Examples include: A+B, a− b, A+ a, v mod C and so on.

Some examples of syntactically legal expressions are given below:

I + (©J + 2)

This expression adds the value of I in the current state, the value of J in the next

state and the constant 2.

I + (©J)− (©I)

This expression adds the value of I in the current state to the value of J in the next

state and subtracts the value of I in the next state from the result [?, ?].

3.2.1.2 Formulae

Formulas are built inductively as follows:

• Predicates p(e0, e1, e2, .., ek) where k ≥ 0 and e0, e1, e2, ..., ek are expressions. Pred-

icates include ≤ and other basic relations.

• Equality: e1 = e2; where e1 and e2 are expressions.

• Logical connectives:¬f and f1 ∧ f2, where f , f1 and f2 are formulas.

• Universal Quantifier : ∀v.f where f is formulae.

• Skip: skip is true on an interval σ iff σ has length 1 (unit interval).

• Chop: f1 ; f2, where f1 and f2 are a formulas.

• Chopstar: f ∗, where f is a formulae.

Some examples of syntactically legal formulas are given below:

-(J = 2) ∧ (K = 4)

This formulae states that the value of J is 2 in the current state and the value of K

is 4 in the current state.

-(I = 2) ∧ (©J = I + 2)

54

CHAPTER 3. PRELIMINARIES

This formulae states that the formulae is true if I equal to 2 in the current and the

value of J in the next state would be I+2.

Note that the operator © can be used both for expressions (e.g.,©I) and for formu-

las, e.g., ©(I = 5) [12, 13].

3.2.2 Semantics

The informal semantics of the most interesting constructs are as follows:

• ©A: if interval is non-empty then the value of A in the next state of that

interval else an arbitrary value.

• fin A: if interval is finite then the value of A in the last state of that interval

else an arbitrary value.

• ¬f : f does not holds for that interval.

• f1 ∧ f2: f1 holds for that interval and f2 holds for that interval.

• skip unit interval (length 1).

• f1 ; f2 holds if the interval can be decomposed (“chopped”) into a prefix and

suffix interval, such that f1 holds over the prefix and f2 over the suffix, or if

the interval is infinite and f1 holds for that interval.

• f ∗ holds if the interval is decomposable into a finite number of intervals such

that for each of them f holds, or the interval is infinite and can be decomposed

into an infinite number of finite intervals for which f holds.

To define the formal semantics, we introduce the following notations:

• Σ denotes the set of sequences of states.

55

CHAPTER 3. PRELIMINARIES

• Σω denotes the set of infinite sequences of states.

• Σ+ denotes the set of non-empty finite sequences of states.

• σi→j for 0 ≤ i ≤ j ≤ |σ| denotes a subinterval σiσi+1 · · ·σj.

Let EσJ. . .K be the “meaning” (semantic) function from (Σ+∪Σω)×Expressions

to V al and let Mσ[[. . .]] be the “meaning” function from (Σ+ ∪ Σω) × Formulae

to Bool (set of Boolean values, {tt,ff}) and let σ = σ0σ1 . . . be an interval from

(Σ+ ∪Σω). We write σ ∼v σ′ if the intervals σ and σ′ are identical with the possible

exception of their mappings for the variable v.

The formal semantics of ITL, except the chop and chopstar operators, is listed in

Table 3.2.

56

CHAPTER 3. PRELIMINARIES

EσJzK = z

EσJaK = σ0(a) and for all 0 < i ≤ |σ|, σi(a) = σ0(a)

EσJAK = σ0(A)

EσJg(e1, . . . , en)K = g(EσJe1K, . . . , EσJenK)

EσJ©AK =

 σ1(A) if |σ| > 0

choose-any-from(V al) otherwise

EσJfin AK =

 σ|σ|(A) if σ is finite

choose-any-from(V al) otherwise

Mσ[[true]] = tt

Mσ[[q]] = σ0(q) and for all 0 < i ≤ |σ|, σi(q) = σ0(q)

Mσ[[Q]] = σ0(Q)

Mσ[[p(e1, . . . , en)]] = tt iff p(EσJe1K, . . . , EσJenK)

Mσ[[¬f]] = tt iff not (Mσ[[f]] = tt)

Mσ[[f1 ∧ f2]] = tt iff (Mσ[[f1]] = tt) and (Mσ[[f2]] = tt)

Mσ[[skip]] = tt iff |σ| = 1

Mσ[[∀v q f]] = tt iff (for all σ′ s.t. σ ∼v σ′,Mσ[[f]] = tt)

Table 3.2: Semantics of ITL

The semantics of chop (;) is as follows:

Mσ[[f1 ; f2]] = tt iff

exists k, such that 0 ≤ k ≤ |σ|, and if Mσ0→σk [[f1]] = tt and Mσk→σ|σ| [[f2]] = tt

57

CHAPTER 3. PRELIMINARIES

| < —f1— > | < —f2— > |

σ0 σk σ|σ|

• • •

Figure 3.1: Chop of finite interval

or the interval is infinite and Mσ[[f1]] = tt)

| < —f1— >

σ0

• · · · · · ·

Figure 3.2: Chop of infinite interval

The semantics of chopstar (f ∗) is as follows:

Mσ[[f ∗]] = tt iff

if σ is finite then (exists l0,....ln, such that l0 = 0 and ln = |σ|

and for all 0 ≤ i <n, li≤ li+1 and Mσli→σli+1
[[f]] = tt)

| < —f— > | · · · | < —f— > | · · · | < —f— > |

σl0 σl1 σli σli+1
σln−1 σln

• • · · · • • · · · • •

Figure 3.3: Chopstar of finite interval

58

CHAPTER 3. PRELIMINARIES

Else (exists l0,....ln, such that l0 = 0 and Mσln→σ|σ|
[[f]] = tt

and for all 0 ≤ i <n, li≤ li+1 and Mσli→σli+1
[[f]] = tt)

| < —f— > | · · · | < —f— > | < —f— >

σl0 σl1 σln−1 σln

• • · · · • • •

Figure 3.4: Chopstar of finite interval final infinite

or

(exist an infinite number of li such that l0 = 0 and for all 0 ≤ i ,li≤ li+1 and

Mσli→σli+1
[[f]] = tt)

| < —f— > | < · · · · · · > | < —f— > | < · · · · · · >

σl0 σl1 σli σli+1

• · · · • · · · • · · · • · · ·

Figure 3.5: Chopstar of infinite interval

3.2.3 Derived formulae

Now, we are using the basic operators such as ; and skip and true to derive and

define a new formulae, in order to help us in formulating and constructing a logical

argument or proof.

59

CHAPTER 3. PRELIMINARIES

The common derived formulae listed in Table 4.4 as follow:

false =̂ ¬true false value

©f =̂ skip ; f next

©w f =̂ ¬©¬f weak next

more =̂ ©true interval with ≥ 2 states

empty =̂ ¬more one state interval

inf =̂ true ; false infinite interval

finite =̂ ¬inf finite interval

3f =̂ finite ; f sometimes in the

2f =̂ ¬3¬f always in the

3i f =̂ f ; true some initial subinterval

2i f =̂ ¬(3i ¬f) all initial subintervals

3a f =̂ finite ; f ; true some subinterval

2a f =̂ ¬(3a ¬f) all subintervals

Table 3.3: Derived formulae

60

CHAPTER 3. PRELIMINARIES

3.2.3.1 Derived constructs

In this part, the concrete derived constructs are introduced in Table 4.5 as follow:

if f0 then f1 else f2 =̂ (f0 ∧ f1) ∨ (¬f0 ∧ f2) if then else

if f0 then f1 =̂ if f0 then f1 else true if then

fin f =̂ 2(empty ⊃ f) final state

halt f =̂ 2(empty ≡ f) terminate interval when

keep f =̂ 2a (skip ⊃ f) all unit subintervals

while f0 do f1 =̂ (f0 ∧ f1)∗ ∧ fin ¬f0 while loop

repeat f0 until f1 =̂ f0 ; (while ¬f1 do f0) repeat loop

Table 3.4: Frequently used concrete derived constructs

3.2.3.2 Derived constructs related to expressions

In this part, the derived constructs related to expressions are introduced in Table

4.6 as follow:

A := exp =̂ ©A = exp assignment

A ≈ exp =̂ 2(A = exp) equal in interval

A← exp =̂ finite ∧ (fin A) = exp temporal assignment

A gets exp =̂ keep (A← exp) gets

stable A =̂ A gets A stability

len(exp) =̂ ∃I q (I = 0) ∧ (I gets I + 1) ∧ (I ← exp) interval length

Table 3.5: Frequently used derived constructs related to expressions

61

CHAPTER 3. PRELIMINARIES

3.3 An Executable subset of ITL (Tempura)

We are interested in the compositional specification and verification of hybrid sys-

tems. The formalism that we require for this purpose has to be dual in the sense

that it allows reasoning about behaviours of systems (compositional specification

aspect) as well a framework to execute and simulate them (verification aspect). An

important motivating factor for choosing ITL as our underlying formal framework

is the existence of subset known as Tempura which is executable an executable

and supported by an interpreter. Originally proposed by Ben Moszkowski [10, 13],

Tempura is a strict, executable subset of ITL.

A Tempura program is deterministic i.e. no arbitrary choice (either of computa-

tion length or variable assignment) can be made during execution. For e.g. neither

the formula skip nor the formula (I = 0 ∨ I =) is executable, as both are non-

deterministic. The syntax of Tempura is restricted to exclude formula such a ¬ and

∨ V. Data types in Tempura are integers, booleans and lists, out of which more

complex ones can be built. Tempura operations is listed in table 3.6.

Tempura is derived from functional programming, imperative programming and

logic programming methods and provides an avenue for the rapid development and

analysis of specifications that are consistent with ITL framework. The adoption of

ITL and Tempura provides the twin advantages of the traditional methods based

on proofing blended with appropriate speed and ease of computer-based analysis

through execution and simulation. We enumerate some benefits of using Tempura

to validate compositional specification.

• Modular and reusable tempura test suites can be built.

• Several specification can be compared over a range of test data.

• In contrast to model checking, execution can be used to check theorems that

62

CHAPTER 3. PRELIMINARIES

are not decidable

• Tempura can be expanded upon to contain very important programming con-

structs, whilst retaining its distinct temporal feel.

• Interval Temporal Logic serves as the single unifying logical and computational

formalisation at all stages of analysis.

operator Usage
Local variables exists v : f

Next next f
sequential composition f1 ; f2
Parallel composition f1 and f2

conditional if b then f1 else f2
Iteration f chopstar
Equality exp1 = exp2

assignment X := e
Always always f

Sometimes sometimes f
lenght of an interval Len(υ)

Table 3.6: Operations in Tempura

3.3.1 The Language: Tempura

Tempura is a subset of ITL that is executable and the syntax of Tempura reflects

the relationship. Tempura has state and static variables defined over primitive types

such as integers and booleans and over derived entities like lists. Lists in Tempura

range over the primitive types and over lists themselves. Lists are analogous to Ar-

rays or Vectors in imperative programming languages. Tempura provides standard

operations over expressions such as +, -, *, div, mod, =, or, and.

Many interesting operators can be further defined over the syntactical constructs

[34]. Tempura communicates with external entities using the parametrised input

and output functions. Inputs could be read from the keyboard ordinary or from

63

CHAPTER 3. PRELIMINARIES

an external program. Outputs are produced on the terminal, written to a file or

streamed to an external program. The following is a simple example to demonstrate

the use of lists in Tempura.

Figure 3.6: Tempura example

3.3.2 The Tool: AnaTempura

An integral part of the executable framework for ITL is a semi-automatic tool, called

AnaTempura[13]. It presents an integrated platform for the verification of runtime

of systems based on ITL and its subset Tempura, which is executable. AnaTempura

has the following support characteristics:

• Support the specification.

• Support for verification and validation such as runtime testing and simulation

combined with formal specification.

64

CHAPTER 3. PRELIMINARIES

AnaTempura is built upon the C-Tempura interpreter, originally developed by

Roger Hale [83, 82] and is currently under the custody of Antonio Cau and Ben

Moszkwoski. The first Tempura interpreter was programmed by Ben Moszkwoski

[142] in Prolog and became operational at its fullest scale sometime in December ,

1983. Later, he reprogrammed the interpreter in Lisp (mid March,1984). The C-

Tempura interpreter was developed at Cambridge University in early 1985 by Roger

Hale[83] . A brief description of the run-time analysis process in AnaTempura is

depicted in Figure 3.7. AnaTempura operates on the basis of open architecture that

avails the integration of new tool components . It monitors and analyses reactive

and time critical systems. It has also been used to analyse the effect of change in the

evolution of Legacy system [231, 232]. AnaTempura supports the idea of runtime

validation of systems. A possible runtime behaviour of a system can be checked

against a property for satsifiability. Given that an ITL property is equivalent to a

an array of sequences of states or intervals, runtime validation is assessing whether

the sequence generated by the system is on the set of sequences corresponding to

the property we are investigating[30].

Figure 3.7: The Analysis Process

A formula in Tempura is executable through AnaTempura if:

• It is deterministic.

• The corresponding interval’s length is established.

65

CHAPTER 3. PRELIMINARIES

• The values of the variables are identified throughout the corresponding inter-

val.

3.3.3 AnaTempura mechanism

The general framework for analysing system in Anatempura can be described as

follows:

• Formulate all properties that are desirable regarding the system of

interest in tempura

The starting point is formulating all desired properties of interest (also referred

to as assertions) for the system in Tempura. Establishing properties of systems

can be a arduous task. An initial guideline for choosing properties could be

formulating safety, liveness, timing and security properties for the system.

Properties formulated in Tempura are stored in files and loaded at runtime.

• Identify places in the code that are suitable and insert assertion

points

The runtime validation procedure adopts assertion points to check whether

a system satisfies the desired properties/assertions. The assertion points [30]

are injected into the source code of the system and will produce a sequence of

data or system states, like values and timestamps of variables and value change

respectively, while the system is running. Identifying the location of assertion

points can be challenging and depends largely on the kind of assertions that

are modelled. Assertions can be pre/post condition properties in which case

the assertion points are inserted at the entry and exit points of the program.

Assertions can also be invariants in which case assertion points are all possible

states defined for the program[10,30].

• By the use of Tempura, check that the behaviour satisfies the ex-

66

CHAPTER 3. PRELIMINARIES

pected properties

AnaTempura produces an analysis of the system characteristics on a state by

state basis as the computational procedures advances. At different states of

execution, for which assertion points are stated, values for variables of inter-

est are sent from the system to AnaTempura. The Tempura properties are

cross checked with respect to the values received. If the properties are not

met AnaTempura will flag the errors by showing the expected output and

what the system under current consideration actually supplies. Therefore the

method is not merely a keep tracking approach i.e. providing the running re-

sults of some properties of the system. It does not just capture the execution

results but also compare them with formal properties, AnaTempura performs

the validation[13].

Figure 3.8 below shows an overview of the AnaTempura Architecture. Inputs to the

system are the source code augmented with assertions points or an ITL specification

and the properties of interest. The output is a result stating the satsifiability of

that property for the system. For a more visually appealing result, the process of

validation can be animated. The tool can analyse programs written in C, Verilog

and Java. AnaTempura can be downloaded from [36] and several examples of the

tool in action can be found at [142, 34].

67

CHAPTER 3. PRELIMINARIES

Figure 3.8: General System Architecture of AnaTempura[177]

3.4 Summary

Specification of hybrid systems requires representation of properties that are tem-

poral in nature. Interval Temporal Logic (ITL) provides a sound formalism for

reasoning about behaviour of systems over periods of time. Its executable subset

Tempura and runtime validation engine AnaTempura provide the machinery for

prototyping, simulating and debugging temporal behaviour of systems.

68

Chapter 4

SPline Interval Temporal

logic(SPITL)

Objectives:

• Define a SPline Interval Temporal formalism.

– modelling in SPITL

– syntax of SPITL

– semantics of SPITL

• Show examples that can be specified in SPITL

69

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

4.1 Introduction

This chapter presents a formalism for describing hybrid system in form of splines,

based on Interval Temporal Logic (ITL)., called Spline Interval Temporal (SPITL)

formalism is introduced with the view to specify hybrid systems and highlight its

specifications. This extends ITL with new features in order to mix between continu-

ous and discrete specification of behaviours. The syntax and semantics of SPITL as

well as the derived constructs are introduced. This chapter is therefore structured

as follows. Section 2 discuss the definition of Spline and its types will be illustrated.

In section 4 we first provide the SPITL formalism to reason about hybrid systems.

Then we present the syntax and semantics of SPITL with some examples for the

discrete and continuous SPITL. Finally we conclude this chapter in section 6.

4.2 Spline background

A spline is a piece-wise polynomial function that is smoothly connected at the control

points as shown in Figure 4.1. The control points are known as knots. Splines were

first employed in numerical analysis for interpolation. Spline interpolation may be

preferred to polynomial approximation due to their ability to avoid similar results

whilst avoiding oscillation between data points in instances where polynomials of

high degrees are used in the approximation. Other useful properties of splines have

also been reported one of which include the stability of evaluation and capacity to

approximate curves with complex structures. For a comprehensive study of splines,

readers are referred to See de Boor [80].

Splines are mathematical model that possess the ability to associate a continuous

representation of a curve with a discrete set of points in a given space [84]. Spline

fitting is an extremely popular form of piecewise approximation which adopts many

70

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

Figure 4.1: control points

forms of polynomials on an interval in which they are fitted to the function at

specified points, referred to as control points as highlighted above. The polynomial

used can change, but the derivatives of the polynomials are required to meet related

interpolator conditions[83].

Boundary conditions are also imposed on the end points of the intervals. Un-

doubtedly, ta critical deciding question is whether the spline is required to approxi-

mate or interpolate the control points. In the sections that follows, a brief description

of types of spline is provided. Also presented is a discussion on how to adjust the

control points of spline curve in order to present the continuous model of our hybrid

system.

71

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

4.2.1 Spline types

4.2.1.1 Linear Spline

Given (x0, y0), (x1, y1), . . . , (xn−1, yn−1), (xn, yn), fit linear splines to the data as shown

in Figure 4.2. This simply involves forming the consecutive data through straight

lines. So if the above data is given in an ascending order, the linear splines are given

by yi = f(xi).

Figure 4.2: Linear spline

f(x) = f(x0) +
f(x1)− f(x0)

x1 − x0
(x− x0), wherex0 ≤ x ≤ x1

= f(x1) +
f(x2)− f(x1)

x2 − x1
(x− x1), wherex1 ≤ x ≤ x2

.

.

.

72

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

= f(xn−1) +
f(xn)− f(xn−1)

xn − xn−1
(x− xn−1), wherexn−1 ≤ x ≤ xn

be aware that:

f(xi)− f(xi−1)

xi − xi−1
is a slope between xi and xi−1.

4.2.1.2 Quadratic Spline

Quadratic, uniquely defined by three points.

Figure 4.3: Quadratic spline

A quadratic spline has a quadratic function for each interval fi(t) = ait
2+bit+ci

where t∈ [ti, ti+1]and1 = 1, 2,, n− 1

so, there are 3n unknowns a,b,c, we need to setup 3n equations and then solve them.

Therefore, to find the 3n equation, we will do as follows.

• each quadratic spline goes through two consecutive control points

f(t0) = a1t
2
0 + b1t0 + c1

f(t1) = a1t
2
1 + b1t1 + c1

.

.

.

73

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

f(ti−1) = ait
2
i−1 + biti−1 + ci

f(ti) = ait
2
i + biti + ci

.

.

.

f(tn−1) = ant
2
n−1 + bntn−1 + cn

f(tn) = ant
2
n + bitn + cn

So, As the quadratic spline goes through two consecutive control points, this

gives us 2n equations.

• due to the fact that the first derivatives of two quadratic splines are continuous

at the interior control point. For instance, the derivative of first spline a1t
2
0 +

b1t0 + c1is2a1t+ b1

and the derivative of the second spline is a2t
2
0 + b2t0 + c2is2a2t+ b2

Therefore,

the tow are equal at t = t1 and that will give us :

2a1t1 + b1 = 2a2t1 + b2 ⇒ 2a1t1 + b1 − 2a2t1 − b2 = 0

And so on ..

• We will assume that the first spline is linear, i.e, a1 = 0.

This gives us 3n equations and 3n unknowns. Thus, we can solve quadratic

splines using these equations. See figure 4.3.

4.2.1.3 cubic Spline

In these splines, a cubic spline is defended by four points. A cubic spline has a cubic

function for each interval. fi(t) = ait
3 + bit

2 + cit + d1 where t∈ [ti, ti+1]and1 =

1, 2,, n− 1

so, there are 4n unknowns a,b,c,d we need to setup 4n equations and then solve

74

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

them. Therefore, to find the 4n equation, we will do as follows.

• each cubic spline goes through two consecutive control points

f(t0) = a1t
3
0 + b1tt

2
0 + c1t0 + d1 (1)

f(t1) = a1t
3
1 + b1tt

2
1 + c1t1 + d1 (2)

.

.

.

f(ti−1) = ait
3
i−1 + bitt

2
i−1 + citi−1 + di (3)

f(ti) = ait
3
i + bitt

2
i + citi + di (4)

.

.

.

f(tn−1) = ant
3
n−1 + bntt

2
n−1 + cntn−1 + dn (5)

f(tn) = ant
3
n + bntt

2
n + cntn + dn (6)

So, As the cubic spline goes through two consecutive control points, this gives

us 2n equations.

• due to the fact that the first derivatives of two cubic splines are continuous at

the interior control point(i.e, are equal to each other). For instance, the first

derivative of first spline a1t
3
0 + b1tt

2
0 + c1t0 + d1is3a1t

2 + 2b1t+ c1 (7)

and the first derivative of the second spline is a1t
3
1 + b1tt

2
1 + c1t1 +d1is3a2t

2 +

2b2t+ c2 (8)

Therefore,

the tow are equal at t = t1 and that will give us :

75

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

3a1t
2
1+2b1t1+c1 = 3a2t

2
1+2b2t1+c2⇒ 3a1t

2
1+2b1t1+c1+3a2t

2
1+2b2t1−c2 = 0

(9).

And so on ..

• Also, in cubic splines, the second derivatives of two cubic splines are continuous

at the interior control point(i.e, are equal to each other). For instance, the

second derivative of first spline a1t
3
0 + b1tt

2
0 + c1t0 + d1is6a1t+ 2b1 (10)

and the second derivative of the second spline is a1t
3
1+b1tt

2
1+c1t1+d1is6a2t+

2b (11)

Therefore,

the tow are equal at t = t1 and that will give us :

6a1t+ 2b1 + 6a2t+ 2b ⇒ 6a1t+ 2b1 − 6a2t− 2b = 0 (12).

And so on ..

• We will assume that the first spline is linear, i.e, a1=0.Thus, we can solve

cubic splines using these equations. Figure 4.4 illustrates the cubic spline .

Figure 4.4: Cubic spline

Accordingly, it is possible to model a sequence of phases which represents successive

intervals of time given that adjoining phases do not share a time point. Against this

76

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

backdrop, the current work only considers spline interpolation using linear splines

(splines of degree 1), quadratic splines (splines of degree 2), and cubic splines (splines

of degree 3) as discussed above. Generalization to splines of general order is relatively

straightforward.

4.3 Spline Interval Temporal logic(SPITL)

SPline Interval Temporal logic(SPITL) is a flexible notation that extends ITL to

model continuous changes over time in form of splines. SPITL, is presented in order

to mix between continuous and discrete specification of hybrid systems behaviours.

SPITL has temporal operators to model the behavioural aspects, i.e. it has op-

erators that can put phases in sequence to describe behaviour of hybrid systems.

Furthermore, the main differences between ITL and SPITL is that in ITL, interval is

considered to be a sequence of states, and in SPITL the interval is considered to be a

sequence of phases. A phase replaces a sequence of discrete states with a continuous

behaviour represented by a spline. Note that the spline should satisfy the condition

that they are continuous from the right in every time point and phases length is

greater than zero,i.e. to ensure that there will be a finite number of changes within

a finite time interval. Phases in SPITL have duration within a phase. Variables in

SPITL change in a continuous fashion where in each phase variables change accord-

ing to a spline[6]. SPITL can also model discrete change in value.i.e. discrete value

remain stable and there are no gaps between phases whiles time is still continuous.

77

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

Figure 4.5: discrete changes

4.3.1 Discrete changes in SPITL

As mentioned on the previous section that SPITL can model discrete changes as

well as the continuous changes. Furthermore, for the discrete behaviour, we have

that ’states’ within a phase which is remain constant,i.e. non-continuous change in

value, see figure 4.5 for discrete changes. The discrete changes model the discrete

events of the hybrid system operation as sequence discrete states in time interval.

Each event occurs at a particular instant in time interval and impact on the hybrid

system behaviour. Between each state, no changes in the system states are assumed

to occur; thus the system can directly chop in time from one state to the another.

78

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

Figure 4.6: continuous changes

4.3.2 Continuous changes in SPITL

The reason why this approach is extending ITL using the form of spline is because

we need to describe continuous changes as well as the discrete changes (which ITL

already do)in order to specify and model hybrid systems. hence, this approach will

concentrate the on continuous time type behaviours.Furturemore, the interval in

SPITL is a sequence of phases as mentioned before. Phases in SPITL have duration

within a phase as illustrated in figure 4.6. Therefore, phases enable us to give

semantics to variable with respect to time. For example [0 : 10, 1 : 20 >, a phase

such that values changes in a continence fashion from 10 to 20 according to spline.

Next sections will discuss the syntax and semantics of SPITL.

79

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

Table 4.1: Syntax of SPITL

Expressions
e ::= k | A | g(e1, . . . , en) | ©A | [r0 : k0, . . . , rn : kn >

Formulae
f ::= ` : empty | empty | p(e1, . . . , en) | ¬f | f1 ∧ f2 | f1 ; f2 | f∗

4.3.3 Syntax of SPITL

The syntax of SPITL is defined in Table 4.1 where:

In the syntax of expressions:

• k denotes a constant value.

• A denotes the value of variable A in the current phase

• g(e0, . . . , em) denotes a function on expression where g is a function symbol.

• ©A denotes the value of variable A in the next phase, if there is no next phase

then it is an arbitrary value from Val.

In the syntax of formulae:

• ` : empty denotes a single phase with duration `.

• empty denotes exactly one phase with finite duration.

• p(e1, . . . , en) denotes a predicate on expressions p where p is a predicate sym-

bol.

• ¬f denotes a boolean negation of a formulae.

• f1 ∧ f2denotes the boolean conjunction of two formulaes.

80

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

• f1 ; f2 holds if the interval can be decomposed (“chopped”) into a prefix and

suffix interval, such that f1 holds over the prefix and f2 over the suffix, I.e, the

last phase of the interval over which f1 holds is the same as the first phase of

the interval over which f2 holds.

• f ∗ holds if the interval is decomposable into a finite number of intervals such

that for each of them f holds.

to introduce the formal semantics, we must before introduce the following subsection:

4.3.4 Phase definition In (SPITL)

Let duration ` be an element of <>0. A `-phase δ` is a continuous mapping from

the set of variables V ar and [0, l) to the set of values V al.

δ` : V ar × [0, `)
c7→ V al

let δ`,δ`0,δ
`
1,δ

`
2,.... denote `-phase.

∆` denote the set of all possible `-phases.

The set of all phases is denote by ∆ and is defined as ∆ =̂ ∪`∆`.

Let δ,δ0,δ1,δ2,.... denote phases.

Since a phase is a state with time component, Next section will defines Timed

expressions that used to model changes over time within a phase.

4.3.5 Timed expressions definition In (SPITL)

The syntax of Timed expressions is as follows:

e ::= K|A|g(e0,, em)|©A|[r0 : k0,, rn : kn >

where:

• As mentioned before on the syntax of SPITL, K,A, g(e0,, em),© A are

respectfully constants, variables, functions, next variables.

81

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

• [r0 : k0,, rn : kn > denotes a change in the form of a spline defined by n+ 1

control points(ri ∗ `, ki)(0 ≤ i ≤ n, n ≥ 0) where ` ∈ <> 0 denotes the length

of a phase,

(0 ≤ r0 < r1... < rn ≤ 1) and ki(0 ≤ i ≤ n, n ≥ 0) are constants.

4.3.6 Semantics of SPITL Expressions

Let J. . .K be the “meaning” (semantic) function from Timed Expressions×∆∗to([0, `0)
c7→

V al) and let σ be a sequences of phases δ0, δ1, ..., δn and let `0 be the duration of

the first phase δ0 and `1 be the duration of the second phase δ1 then denotational

semantics is as follows:

JkKσ =̂ (λt ∈ [0, `0).k)

JAKσ =̂ (λt ∈ [0, `0).δ0(A)(t))

Jg(e0, . . . , em)Kσ =̂ (λt ∈ [0, `0).g((Je0Kσ)(t), . . . , JemKσ)(t))

J©AKσ =̂ (λt ∈ [0, `0). δ1(A)(`1 ∗ t/`0) if |σ| > 0

choose(V al) if |σ| = 0

)

J[r0 : k0, . . . , rn : kn >Kσ =̂ spline < (r0 ∗ `0, k0), . . . , (rn ∗ `0, kn) >

Table 4.2: Semantics of SPITL

Notice that, the time interval of the first and second phases need to be synchro-

nised in the semantic definition of ©A, i.e.,©A takes values from the second phase

with t1 such that 0 ≤ t1 < `1 but the actual time is from the first phase with time

0 ≤ t0 < `0

This function sync(t) =̂ `1 ∗ t/`0 ensures that if 0 6 t < `0 then 0 6 sync(t) < `1

82

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

4.3.7 Semantics of SPITL formulae

Let J. . .K be the “meaning” (semantic) function from SPITL formulae to p(∆∗). Let

tei(1 ≤ i ≤ n) be timed expressions,then denotational Semantics of SPITL formulae

is as follows:

JemptyK =̂ ∆

J` : emptyK =̂ ∆`

Jp(e1, . . . , en)K =̂ {σ ∈ ∆∗|p̂(Je0Kσ, . . . , JenKσ)}

J¬fK = tt iff not JfK = tt

Jf1 ∧ f2K = tt iff Jf1K = tt and Jf2K = tt

Jf1 ; f2K = tt iff exists k, such that 0 ≤

k ≤ |σ|, and if

Jf1K0 → σk = tt and Jf2Kk → σ|σ| = tt

Jf∗K = tt iff if σ is finite then

exists l0,....ln, such that

l0 = 0 and ln =

|σ| and for all 0

≤ i < n, li ≤ li+1

and JfKli → σli+1
= tt

Else exists l0,....ln, such that

l0 = 0

and JfKln→σ|σ| = tt

and for all 0 ≤ i

<n, li≤ li+1 and

JfKli → σli+1
= tt

Table 4.3: Semantics of SPITL formulae

83

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

4.3.8 Derived formulae

in this section, the derived formulae for SPITL will be introduced and listed in

Table 4.4 In order to help us in formulating and constructing a logical argument or

proof.

The common derived formulae listed as follow:

false =̂ ¬true false value

©f =̂ skip ; f next

©w f =̂ ¬©¬f weak next

more =̂ ©true interval with ≥ 2 phases

empty =̂ ¬more one phase interval

3f =̂ true ; f sometimes

2f =̂ ¬3¬f always

3i f =̂ f ; true some initial subinterval

2i f =̂ ¬(3i ¬f) all initial subintervals

3a f =̂ true ; f ; true some subinterval

2a f =̂ ¬(3a ¬f) all subintervals

Table 4.4: Derived formulae

84

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

4.3.8.1 Derived constructs

In this part, the concrete derived constructs are introduced in Table 4.5 as follow:

if f0 then f1 else f2 =̂ (f0 ∧ f1) ∨ (¬f0 ∧ f2) if then else

if f0 then f1 =̂ if f0 then f1 else true if then

fin f =̂ 2(empty ⊃ f) final phase

halt f =̂ 2(empty ≡ f) terminate interval when

keep f =̂ 2a (skip ⊃ f) all unit subintervals

while f0 do f1 =̂ (f0 ∧ f1)∗ ∧ fin ¬f0 while loop

repeat f0 until f1 =̂ f0 ; (while ¬f1 do f0) repeat loop

Table 4.5: Frequently concrete derived constructs

4.3.8.2 Expressions derived constructs

In this part, the derived constructs related to expressions are introduced in Table

4.6 as follow:

A := exp =̂ ©A = exp assignment

A ≈ exp =̂ 2(A = exp) equal in interval

A← exp =̂ (fin A) = exp temporal assignment

A gets exp =̂ keep (A← exp) gets

stable A =̂ A gets A stability

len(exp) =̂ ∃I q (I = 0) ∧ (I gets I + 1) ∧ (I ← exp) interval length

Table 4.6: Frequently derived constructs related to expressions

85

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

Figure 4.7: Discrete changes Example

4.3.9 Discrete and Continuous changes Examples

In order to explain the Discrete and Continuous changes, we will use these simple

examples to do that:

4.3.9.1 Discrete Examples

the value of the variable X has the value 5 on the first and last phases and 6 on the

second phase as illustrated in 4.7.: (t1 : empty ∧ X = [0 : 5, 1 : 5 >); skip;

(t2 : empty ∧ X = [0 : 6, 1 : 6 >); skip;

(t3 : empty ∧ X = [0 : 5, 1 : 5 >).

86

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

Figure 4.8: Continuous changes Example

4.3.9.2 Continuous Examples

(4 : empty ∧ Temperature = [0 : 10, 1 : 20 >) ; skip ; (4 : empty ∧ Temperature =

[0 : 15, 1 : 25 >)

specifies two phases where the first phase has duration 4 and in which the value of

the Temperature changes linearly from 10 to 20 and the second phase has duration

4 and in which the value of the Temperature changes linearly from 15 to 25 as

illustrated in 4.8.

87

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

4.4 Spline example

In this section we will illustrates the use of SPITL to specify and reason about hybrid

system properties. This illustration is based on a well known Gas burner example

from [90]. we will consider a simple version of the Gas burner example, with only a

gas valve and a flame sensor. It will be expressed by a timing constraints and three

different phases:

Figure 4.9: Leaking gas burner example

• Burning phase:

both the flame and the gas are off.

• Idle phase:

both the flame and the gas are on.

• Leaking phase:

The Digram 4.9 below shows:

– Case 1 (leaking):

two leak periods (leak = Gas ∧ ¬Flame) from t1 to t2 as well as from t3

to t4.

– Case 2 (No leaking):

there is no leak period from t2 to 23.

88

CHAPTER 4. SPLINE INTERVAL TEMPORAL LOGIC(SPITL)

– Case 3 (No leaking):

non-leaking period must be long enough in order to minimize the dan-

gerous level of unburned gas.

Therefore, this can be expressed in SPITL as follow:

– Case 1 (leaking):

(t2− 21 : empty ∧ ¬Flame ∧ Gas) ; skip(t4− t3 : empty ∧¬Flam∧Gas).

– Case 2 (No leaking):

(t1 : empty ∧ Flame ∧ Gas) ; skip(t4 : empty ∧ Flame ∧ Gas).

– Case 3 (No leaking):

(t3 − t2 : empty ∧ ¬Flame ∧ Gas).

4.5 Summary

In order to provide executable hybrid systems, ITL has been extended to describe

behaviours of hybrid system using Spline. This chapter presented the language

which will be used to describe behaviours of hybrid system. First, brief introduction

about Interval Temporal Logic was explained alongside with its syntax. After that,

the choice of Splines was justified. Spline Interval Temporal Logic was explained in

detail alongside with its syntax, formal semantics. There is a need for this extension

in order to extend the executable subset Tempura. Tempura should allow us provide

an executable hybrid systems model. lso, The automatic function to Inject assertion

points using AnaTempura considerd to be one of the main major contributions.

moreover, using s-function Anatempura became more powerful as now there is no

need to insert the assertion manually.

89

Chapter 5

Runtime verivcation of hybrid

system Framework

Objectives:

• To provide an overview of the proposed framework

• To Describe the proposed framework architecture

• To discuss how the framework components interact

90

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

5.1 Introduction

Today, whether it is computer hardware, auto mobile systems, air planes, washing

and even small devices like a temperature control system, the importance of ver-

ification as an integral part of flow design in systems cannot be overemphasized.

For instance, a temperature control system comprises of the heating element and a

thermostat, so that the variables that will be included to model such a system are

the room temperature and the mode of operation of the heater as to whether it is

on or off.

For the temperature control system to be effective, a coupling between the con-

tinuous and discrete variables must be established so that, for example, the mode

of operation of the system will be switched to ON if the temperature of the room

decreases below a certain value. However, most of the dynamical systems such as

computers, cars, airplanes, and washing machines etc. can be considered as hybrid

systems. Despite the advent of these hybrid systems, extant literature suggests that

dynamic modelling are conducted either completely continuous or completely dis-

crete. Recent developments has called for the development of hybrid systems which

integrates both discrete and continuous dynamic systems for verification of tasks in

a number of mission-critical applications, given that the interaction between contin-

uous and discrete systems in technological problems of today have become greatly

important.

For example, the loss of the Ariane 5 launcher on the 4th of June, 1996, that

plunged into self-destruction mode just thirty seven (37) seconds after takeoff was

blame on software error by investigators. However, in actual sense, what changed

was the continuous dynamical system upon which the system operates which was

integrated into the physical structure of the new launcher whose size has been in-

creased considerably in comparison to its predecessor. Due to this change in physical

91

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

environment, the existing code led into a disaster.

In the light of the above, the development of hybrid systems that can adapt to

various situation by relying on adequate verification protocols have become increas-

ingly important given the increasing role of computers in the control of physical

processes. Assuring the correctness of systems, is a difficult task due to the com-

plexity and size of the system under consideration as well as the various degrees of

requirements to be satisfied. Accordingly, the verification of the level of correctness

of a given set of codes that interact with continuous environment has become vital.

The development of a hybrid system for verification purposes is complex and

every systems has its own unique nature and characteristics. Despite these com-

plexity, research efforts is currently being geared towards the development of hybrid

system for verification tasks through modelling of processes of diverse complexity

occurring within the system, as precisely as possible. But given that hybrid systems

undergo changes including alterations and extensions due to their dynamic nature,

it is difficult modelling them for verification purposes with impeccable precision.

The quest to find a way around these complexities prompts the embrace of ap-

proximate representations of observed events in hybrid systems. These approximate

representations assist in providing insight, even if not completely adequate, to gain

appreciable understanding of the underlying law(s) leading to the observed events.

The first attempt at most approximations of any physical system is an illustrative

description and understanding of the system being studied. Consequently, this helps

in establishing the phenomena of logical assumptions necessary to limit the boundary

of complexity of the system under consideration. With the assumptions in mind,

inferences regarding the relationships between the system under observation and

certain parameters as well as factors of interest, can be drawn. The goal of initial

observations of the system and identification of appropriate assumptions is to provide

the foundation and principles for the mathematical and computational frameworks

92

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

of the underlying phenomena being investigated. Consequently, these frameworks

impose what can be described as a vast array of input-output relationships on certain

variables in relation to others.

In Chapter two, the limitations of the existing research efforts relating to the

development of hybrid system were discussed. The pathway which the current re-

search adopted was also presented. Specifically, it was highlighted, that new ver-

ification protocols and techniques are required to improve the overall quality of a

verification endeavor. The formal verifications of such systems based on specifica-

tions that can guarantee their behaviour is very important especially as it pertains to

safety-crtitical applications as highlighted above. Accordingly, this chapter therefore

presents a detailed description of the framework denoted as Runtime Verification of

Hybrid Systems framework (RVHSF) in terms of its underlying principles and hard-

ware components, including system architecture and structure, system requirements

and system outputs. Also provided in chapter is information on how each compo-

nent of the proposed framework interacts with each other within the overall model

of the hybrid system.

The overall goal is to generate executable models for hybrid systems using In-

terval Temporal logic (ITL). Whereas other formal approaches adopts hybrid au-

tomata, (i.e. HTL), the current work adopts ITL by leveraging on its executable

subset known as Tempura which has the competitive edge of being able to define

more complex temporal features to describe complex systems such as a hybrid sys-

tem. In the subsections that follows, a full description of the individual components

of the overall framework is presented.

93

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

5.2 General overview of the framework

Figure 5.1 shows a pictorial representation of the overall framework upon which the

verification protocol. As stated earlier, hybrid systems are a crossbreed of continuous

(real-time) dynamics and discrete events that not only coexist but interact with each

other with changes occurring both in response to discrete instantaneous events as

well as in response to dynamics as described by the difference equation in time.

Given the non-restrictive definition of the term hybrid systems, they are better

described using a specific and unique framework to indicate the key issues which

the system seeks to address. In the current work, the overall goal is the extension

of standard program analysis techniques for systems with the view to verify the

correctness of their input versus output parameters.

5.3 System specifications (SPITL)

As indicated in Figure 5.1, the first most important step in the overall framework is

the specification protocol which is developed based on a new logic termed SPLINE

Interval Temporal Logic (SPITL), an extension of Interval Temporal Logic (ITL),

which is the hallmark of the current work. SPITL was adopted for the specification

of hybrid system in this research because it is particularly suited for modeling change

over time in the form of splines that interpolate the discrete time points to describe

changes in perception [9]. Additionally, SPITL is endowed with temporal operators

that can model behavioral pattern induced by changes in observations over time in

the form of splines. However, a fundamental setback of the SPITL sub-framework

is that it is not executable, as such it has to be made executable using appropriate

means within the overall framework.

94

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

Figure 5.1: General framework

95

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

5.4 Modelling specifications in Tempura

In the light of the setback highlighted in section 5.3, Tempura - a temporal logic

programming language which is an executable subset of ITL was used to carry out

the execution procedures for the purpose of specification and verification of system

under consideration. Given that one of the key demerits in the field of verification

is that different programming languages have been adopted for the development of

program codes, their associated properties and other attributes, it is important to

incorporate a programming technique that can interface between different program-

ming languages because it will be difficult to adopt the same language in each case.

Tempura therefore assist in actualizing this within the context of our framework.

Tempura offers an approach to directly execute temporal logic specifications that

are suitable for the hybrid system. Given that every statement within Tempura

programming language is a temporal formula, it is possible to adopt the whole tem-

poral logic formalism as assertion language and semantics (Moszkowski, 1986). This

will be explained as part of the overall description of the framework in subsequent

sections.

5.5 Matlab/Simulink (s-function)

To improve the efficiency of designs and verification framework for the hybrid sys-

tem under consideration after execution within ITL/Tempura, it is important to

simulate the entire system in terms of its underlying software and hardware plat-

form using appropriate simulation tools for validation. This was achieved as part

of the overall framework in this work using Simulink - a graphical or visual pro-

gramming environment within Matlab programming tool, developed by MathWorks

for the modeling, simulation and analysis of dynamic systems in a multi-domain

96

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

environment. With its primary interface as a graphical block diagramming tool

and customizable set of libraries, Simulink can be adapted for the verification of

hybrid systems. Essentially, the use of ITL and its executable subset (i.e. Tempura)

linked with Matlab/Simulink provides a formal approach for specifying and model-

ing hybrid systems and for the acceleration of test-bench procedures. In particular,

the ability of Simulink/Matlab to integrate with other programming languages and

third-party applications makes it stand out. Accordingly, Simulink/Matlab within

the framework adopted in this research was used for data generation and analysis.

To achieve this, the use of S-function was introduced within Matlab/Simulink.

Figure 5.2: The integration of ITL/Tempura within MATLAB/Simulink using C-
MEX S-function

The S-functions is generally considered as the computer language description of

the Simulink block which provide a convenient mechanism for the implementation

of custom control blocks that has the capability to interchange run-time data with

equation solvers within Simulink. It allows for the development of codes that al-

lows a C function to be called from Matlab. In this framework, the S-function is

developed in C programming language and it is rightly tagged C- MEX S-function,

allowing for the creation of custom blocks within multiple input and output ports

with the capability of handling any form of signal generated within the Simulink

model. The use of S-function during the design and development phase of the hy-

brid system under consideration hugely facilitates the simulation speed and accuracy

97

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

of the results. Accordingly, the developed C-Mex allows for direct interchange of

data between different optimization routines whilst avoiding the use of the Matlab

programming environment.

The implementation of verification protocols within a hybrid system can be time-

consuming when standard or conventional development tools are adopted. In this

work, such tasks was implemented based on ITL/Tempura framework, which pro-

vides some layers of abstraction for the description of underlying hardware within

the hybrid system. A pipe was efficiently designed in C –programming language to

establish communication between strategic interfaces within the hybrid system. The

pipe connects one interface between Matlab/Simulink (S-function) through C-MEX

routine to Matlab engine and connects the other interface to AnaTempura (dis-

cussed in the section that follows) through the injection of assertion points. Figure

5.3 illustrates how S-function is integrated with ITL/Tempura framework.

Figure 5.3: Illustration of how S-function is integrated with ITL/Tempura frame-
work.

98

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

A setback with the use of AnaTempura is that it is not compatible with Mat-

lab, as such a pipe is needed to establish link between AnaTempura and Matlab

using C-programming language given its bi-directional compatibility with both lan-

guages. Also, given that Simulink is a simulation tool within Matlab, a C-MEX

within Matlab is required to aid the simulation of the model under consideration.

This then allow for the injection of assertion points within a Simulink simulation

environment. Accordingly, AnaTempura can read and write as well as receive data

from the C- MEX which is compatible with Simulink. After establishing linkages

and communications using the C-pipe developed, results can then be obtained from

each AnaTempura and Simulink from which expected results can be checked for val-

idation in terms of whether the simulated results is in agreement with the defined

reference model output. This is achieved using a subroutine developed in C as part

of the overall model.

5.6 An Automatic function to Inject assertion points

using AnaTempura

As highlighted above, in order to ascertain that the model developed within Simulink

is functional or not, a runtime verification tool of ITL is employed within the frame-

work to establish all the desirable properties of the system under test including

functionalities, timing and allocation of computing resources. They are equally

used for the insertion of assertion points at suitable places in the source code within

the overall code of the hybrid system model. Assertion points are employed as a

way of managing changes within a hybrid system and they developed at source code

level. Figure 5.4 illustrates the mechanism of assertion points within the framework

99

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

Figure 5.4: Illustration of assertion points (Adapted from kun thesis)

AnaTempura is the programming concept used to ascertain whether the behav-

ior generated or observed satisfies the desired properties. The location of assertion

points within the overall code is an important step that is determined by the vari-

ables used in defining the property of interest. This is achieved through simple

search within the source code so as to locate all places where the defined variables

are changing. Those identified places of change therefore represents the assertion

points and will ensure that the observed behavior during the runtime of the system

is deemed the desired and correct behavior. For instance, as depicted Figure Figure

5.4, for a given property (i.e. desired property) of the hybrid system that is to be

validated, the assertion points embedded within code is used to ensure such vali-

dation of the desired property during execution time. Such desired properties are

formulated and expressed based on Tempura code. Generally speaking, assertion

points are added based on the property of interest at an instance of time and they

comprise of two components, one for the generation of information and the other

100

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

is the mechanism for the processing of the information. This mechanism captures

as well as interprets information generated by assertion points but also ensure the

validation of such properties which is tagged validator as indicated in Figure 5.4.

Within the hybrid system’s overall framework, the inclusion of asssertion points

occurs in the transformation process based on Tempura code to executable code (e.g.

C). Given that assertion points are based on information such as variable, value

and time stamp, they are programmed as a function or a subroutine to capture

the variable under consideration with the appropriate value under the right time

stamp. Figure 5.5 depicts how AnaTempura is adopted for runtime verification.

The verification procedure can be summarised as follows:

1. Establishment of all the desired systems properties including functional, timing

and resource attributes.

2. Insertion at appropritae places within the source code of the system assertion

points.

3. The use of AnaTempura to ascertain whether the generated behaviour meets

the criteria defined for the desired properties.

Figure 5.5: Illustration of runtime verfificationn based on AnaTempura

101

CHAPTER 5. RUNTIME VERIVCATION OF HYBRID SYSTEM
FRAMEWORK

5.7 Chapter summary

In Chapter four, the SPITL and its extension were extensively introduced for the

rationale and specification of hybrid systems based on SPITL. This chapter presents

the detailed description of the building blocks of the underlying framework of the

hybrid system modelled in this thesis. It describes all components of the framework,

identifying how they interlink with each other. In the chapter that follows, detailed

description of the implememtation of the hybrid system is provided. Also, The

automatic function to Inject assertion points using AnaTempura considerd to be one

of the main major contributions. moreover, using s-function Anatempura became

more powerful as now there is no need to insert the assertion manually. Next chapter

will discuss how we can implement this framework.

102

Chapter 6

Design and Implementation

Objectives:

• Provide the reasons of selection of tools for the implementation.

• Provide the architecture of selected components.

• Present the implementation of each component.

103

CHAPTER 6. DESIGN AND IMPLEMENTATION

6.1 Overview

This chapter presents the implementation of the proposed Hybrid System verifica-

tion system which forms the basis of the current work.The verification components

of the system include AnaTempura,Assertion point,Matlab Engine,S Function rou-

tine,FIFO Pipe and the Simulink Model. Also presented is an explanation of the

functioning of the Simulink and Model implementation in terms of how it operates

within the Simulink and AnaTempura verification System.

The chapter introduces the main components of the Simulink and Model based

Implementation, providing insight into the system design using class and sequence

diagrams which illustrate the system structure and processes respectively. The chap-

ter concludes with an explanation of the mapping between AnaTempura and Matlab,

as well as an explanation of the implementation of the framework of the system.

6.2 Simulink and Model based Implementation

Simulink[140] is the model simulation engine developed by mathworks; it works by

simulating a model presented by a system of differential equations in continuous

time or difference equations in discrete time. The way systems of equations are

presented is not necessarily explicit; Simulink provides a graphical user interface

with a library of blocks and a canvas to instantiate the blocks and connect them

together. The composition of blocks describes the time differential of the system

with state variables created as necessary as indicated by blocks.

The focus of this research is hybrid systems, which is a combination of continuous

and discrete time. Therefore these systems can be defined by combination of differ-

ential and difference equations [120]. The state of a hybrid system either changes

with a flow (continuous) or in discrete steps, therefore this interaction of discrete

104

CHAPTER 6. DESIGN AND IMPLEMENTATION

and continuous change make the hybrid systems interesting and challenging to per-

form formal analysis. The study based on mathematical modelling is long present

for the individual discrete and continuous system; however the formal analysis of

hybrid systems is fairly new and can be traced to Maler et.al [122] in the filed of

computer science.

A good example of a hybrid system is a Digital controller, now let suppose a

computer scientist is given a design, how are they going to ensure that the design

meets the specification. The first task is to have a method to define formal specifi-

cation requirements of the system. Since Interval Temporal language does support

discrete timed logic but lacked support for the hybrid systems, therefore this work

is meant to extend the capability of the ITL to support the hybrid systems.

6.3 AnaTempura

Since AnaTempura is the key formal verification tool used here, this was a require-

ment to produce a model of a hybrid system, and then can have an online transaction

between the model and the formal verification engine such as AnaTempura. Since,

Simulink is a powerful modelling tool and have required blocks and libraries to model

a complex hybrid system, therefore this was chosen as a modelling tool. Since this

sort of modeling and verification needs interaction between two different applica-

tions therefore an inter process communication such as pipes. The details of this

implementation is discussed in detail in this chapter in the following sections

6.4 Steps to compiling the Design

One of the implementation challenges for modeling the Hybrid system is to maintain

the information flow between the two applications i.e. the Simulink model and

105

CHAPTER 6. DESIGN AND IMPLEMENTATION

the Anatempura runtime environment. Other than the Anatempura, Matlab and

Simulink engines are used and the whole process flow is divided into four major

steps, which are then explained further. The case study is based on the modeling

of a mine pump digital controller.

• Firstly, we need to generate the Tempura code that is run by tempura in-

terpreter(AnaTempura), and is used to validate the mine pump controller

outputs.

• Secondly, the EXE file compiled from C source which is called from AnaTem-

pura and which in turn calls the Matlab engine.

• The Simulink is running the hybrid system model that simulates the environ-

ment, controller and the sensors. An S-function which provides the interlink

between the Simulink model and the Mex compiled C code.

• the MEX file compiled from C source which is called by our and provide the

link to the Anatempura run time environment.

All four components have different runtime environments in terms of access to

console and standard C library; including both C based executables such that MEX

environment does not provide access to all API functions as limited by Matlab’s

own C compiler.

6.5 AnaTempura and Assertion point

The first step in interaction between the AnaTempura which validates the model is

the insertion of the assertion points. The assertion points are used in the code to

check the validity of a certain property at run time. For evaluating the behaviour

of the Digital controller of the hybrid system modelled in simulimk. Anatempura

106

CHAPTER 6. DESIGN AND IMPLEMENTATION

code is used to validate the different properties, while the assertion points in the

code are used to pass the parameters to and from the C-Mex files generated from

the Simulink model. The assertion points are basically used to serve two purposes,

firstly to generate information and secondly to process the information received.

The processing step is the part where the properties of the system are validated.

The assertion points gathers and emit data from the binary level.

The location of the assertion points are chosen carefully, for e.g. to find the cur-

rent state of the variables, which are changing in the background Simulink process,

an assertion point is used to read a variable. Now when this is received and based

on the properties and condition of the received value this is processed accordingly,

and then a result is generated, which connects to an actuator in the Simulink model

in form of a variable.

a s s e r t i o n (” MethanePresent ” , MethanePresent [0] ? 1 : 0) ;

a s s e r t i o n (”WaterLow” ,WaterLow [0] ? 1 : 0) ;

a s s e r t i o n (” WaterHigh ” , WaterHigh [0] ? 1 : 0) ;

i f (MethanePresent [0]) {

XD[0] = f a l s e ; a s s e r t i o n (”XD” , 0) ;

} e l s e {

i f (WaterLow [0]) {XD[0] = f a l s e ; a s s e r t i o n (”XD” , 0) ;}

i f (WaterHigh [0]) {XD[0] = true ; a s s e r t i o n (”XD” , 1) ;

}

}

This code first assert to read the status of different variables from the Simulink

model for example “MethanePresent”. Based on the outcome of this variable, the

tempura code make a decision about the motor turn on or off and this value is

again passed to the Matlab engine the S-function using the assertion command.

The output provided is a binary output either true or false.

107

CHAPTER 6. DESIGN AND IMPLEMENTATION

6.6 Matlab Engine

Engine applications are standalone C/C++ that allow to call MATLAB from inside

the user defined C/C++ program, and can utilize MATLAB as a computational

environment. To run a Matlab Engine, a MATLAB installation is required on the

machine and it will not work with the run time Matlab compiler. The Matlab

engine can be called by creating an Engine object with the handle “Engine” and all

its prototypes are available in the “engine.h” Matlab files.

(Engineopen) function is used to open the Matlab engine, the function must

have a NULL parameter if operated in Windows. The (EngineEval) String function

is used to evaluate the string present in the function for the Matlab Engine for

example:

” engEvalStr ing (eng , ”mex −c minePumpcontrol ler . c

minePumpcontol ler wrapper . c ”) ; ”

This instruction code will execute the “C” files using the mex compiler. Similar

Strings can be evaluated and executed using the (evalstring) function.

6.7 S Function

S-functions [190] also known as system function offers a powerful and useful mech-

anism for the extension of the functional capabilities of the Simulink environment.

An S-function is a form of a programming language that offers the description of a

Simulink block and is written in many programming languages including C,C++,

Matlab or even Fortran. Within an S-function, C, C++ and Fortran are compiled

as MEX files using mex utility (see for instance the Build MEX-File).

In accordance to other MEX files, S-functions are regarded as a subroutine that

are dynamically linked with Matlab so that the Matlab interpreter can be loaded or

108

CHAPTER 6. DESIGN AND IMPLEMENTATION

executed in an automatic fashion. S-functions adopt a special calling syntax known

as the S-function API which allows the programmer to interact with the Simulink

engine.

This interaction is is almost the same with the interaction occurs between the

engine and built-in Simulink blocks. As such,S-functions follow a general form and

can work perfectly well for continuous, discrete and hybrid systems. In this work,

the S-function is linked with the (minepumpcontroller C file).

The S-function uses a standard template from the sfuntmpl doc c, the user

needs to customize it for its particular usage. This files provide code template

for initialization, defining the size and number of input and output ports, i.e. the

number of S-function parameters. Also the Sampling times are setup to determine

the number of times the S-function needs interaction between the host program and

the Simulink model.

The S-function has standard Simulink out and in ports which provides the input

and the output to the remaining model. The in port provides the input variables

from the Simulink model and is read through the C mex executable and through the

assertion points to the AnaTempura environment which are then used to validate

and generate a corresponding output to be given back to the Simulink model to

control any actuators in the model.

6.8 FIFO Pipe

Now the big question is that how the data is being passed between the Simulink

model to the C Mex environment and to the AnaTempura executable environment.

In this case a Fifo pipe is used to read data to the AnaTempura. A pipe is an OS

based mechanism to communicate between different running processes. One of the

processes writes to the pipe and the other process may read through it. There are

109

CHAPTER 6. DESIGN AND IMPLEMENTATION

several ways of implementing pipes, in this case study a Fifo pipe is used. A FIFO

pipe is a first in and first out mechanism, thus the data written first is first read

by the other processes. This data is picked up by the EXE file after the call chain

returns.

The process to read and write follows:

• A C executable is used to, create a named pipe using the ”mkfifo” command,

command, for example: ”mkfifo” MYP IPE. Normally in Windows or OS

environments this can be created by a C executable.

• In the directory where this was done a new file named MYP IPE appears.

• Redirect the output of C Mex process to that pipe.

• Inside Matlab, a file open and reading function can be used from the pipe

exactly like reading from an ordinary file

6.9 Simulink Model

The actual mine pump model (our hybrid system case study) is implemented using

the Simulink library and the functions. A mine pump problem can be defined as

water infiltrating a mine and the water is collected in a sump with the view to be

flushed out of the mine, see Figure ??.

This is a classical hybrid system where the water discharge rate and the methane

level can be modelled using a continuous differential function, while on the other

hand the water low and high level are discrete quantities.

Readings from all sensors, and a record of the operation of the pump, must be

logged for later analysis. In the Simulink model the Low and high water levels

are monitored by the relational operators and also the methane and air flow is

simulated by a sinusoidal function. These low and high water level and the methane

110

CHAPTER 6. DESIGN AND IMPLEMENTATION

level is passed as a binary input to the S-function, these values are passed to the

Anatempura executable through the C mex named pipe. The Ana tempura verify

the behaviour and take the appropriate decision and send the result as a binary

output to enable or disable the motor, which controls the water pump, to extract

additional water.

Sensors D and E are sensors that monitors water levels and have actuators that

can detect when the water level rises above or below a defined threshold. A pump

controller activates the pump when the water level reaches a high and deactivates it

when it goes below the defined threshold. In the case of a failure in the pump such

that water can no longer be pumped out, then the mine must be evacuated within

one hour. The mine has other sensors (A,B,C) that are configured to monitor other

measurements such as airflow, carbon monoxide and methane levels.

Within the overall setup, the system is configured such that an alarm is activated

to alert the operator as quickly as possible about the criticality of the measurements

under observation within the system so that appropriate and timely evacuation

procedure of the mine is commenced within the shortest period of time of roughly

one hour.

To prevent explosion risks, the operation of the pump must be embarked upon

only when the level of methane is below a critically defined level. The operation

of the pump can be influenced by human factors but it must be within certain

defined limits. The pump can be switched on or off by an operator the water level is

between the low and high thresholds that are already defined. A special operator, or

possibly the supervisor, can activate or deactivate the pump when necessary without

this restriction. In every case, it must be ensured that the methane level is always

below the defined threshold whenever the pump is to be operated.

The description highlighted above is a classical hybrid system where the water

discharge rate and the methane level can be modelled using a continuous differential

111

CHAPTER 6. DESIGN AND IMPLEMENTATION

function, with level of water either low or high representing discrete quantities.

Within such systems, measurements from all sensors, and the details of the operation

of the pump, must be logged for later analysis.

In the Simulink model, the Low and high water levels are monitored by the

relational operators and also the methane and air flow is simulated by a sinusoidal

function. These low and high water levels as well as the level of the methane is

passed as a binary input to the S-function, which are then passed to the Anatempura

executable through the C mex named pipe. The AnaTempura verify the behaviour

and take the appropriate decision and send the result as a binary output to enable

or disable the motor, which controls the water pump, to extract additional water.

6.10 Summary

This chapter describes the case study adopted in this thesis and gives an overview of

its overall implementation detailing the interaction between the hybrid system being

modelled in the Simulink, and the S-function that is used to pass the variables from

the model through a named pipe to the AnaTempura, which has the classic model

of the system and can be adopted in run time to verify the behaviour of the hybrid

system and validate the values generated. In the chapter that follows a further

detailed discussion of the model in terms of evaluation and implementation of the

framework is presented.

112

Chapter 7

Case study and Evaluation

Objectives:

• Overview

• case study Design

• Running the case study

• case study Evaluation

113

CHAPTER 7. CASE STUDY AND EVALUATION

7.1 Overview

A number of investigations have been carried out to examine the theory of this

research. Substantial progress has been made over the past years in the field of

real-time control system development. However, the modern development meth-

ods, languages, and tools are still not mature enough to solve essential problems

in this area. A real-time control system should be described as a reactive system

with predictable behaviour, including the timing domain. There is, for instance,

no development language, method, or tool, which supports the specification, the

correctness analysis, and the simple development and maintenance of systems with

timing constraints.

7.2 Mine pump system (the case study)

The Case study chosen in this work is a control of a simple mine pump control system

to control excess water flow in a mine. It controls the water pump to discharge any

excess water considering water levels, methane level and the air flow in the mine.

Figure 7.1 illustrates the Mine pump system.

7.2.1 Case Study Description

The mine pump has basically four sensors, in our study only three has been con-

sidered. The air flow sensor has been ignored, while water low, high and methane

sensors are used. These sensors provide continuous input to the mine pump con-

troller, which continuously monitor these levels. The system also needs to monitor

the state of the pump, which is either turned off or on. The purpose of the pump

is to control the flow of the water. When pump is on this means its discharging the

excess water out of the mine. However in dangerous condition or when water levels

114

CHAPTER 7. CASE STUDY AND EVALUATION

Figure 7.1: Mine Pump System modified from [120]

or in normal or low levels the pump need to be stored.

This problem has been a classical case study for hybrid systems and computer

scientists have used this as baseline to test tools, verification processes etc.. The

main goal is to somehow verify the model behaviour implemented in an environment

of choice, using the ITL constructs, specially using its executable form Ana tempura.

The implementation details of this model have already been discussed in a previous

chapter, the focus here is to get a more in-depth understanding of the model and

its verification process.

A mechanism for managing change in a legacy system should be practical, sys-

tematic and compositional. A fundamental issue in our approach is the ability to

115

CHAPTER 7. CASE STUDY AND EVALUATION

capture the behaviour of (sub) system. Once the behaviour is captured then we can

assert if such behaviour satisfies a given property. And as a property is a set of

behaviours, satisfaction is achieved by checking if the captured system’s behaviour

is an element of this set. We are not dealing here with the formal verification of

properties which requires that all possible behaviours of a system satisfy the prop-

erties. The formal verification of these properties may also be performed using an

ITL verifier.

We are only concerned with validating properties which requires that only inter-

esting behaviours satisfy the properties. The states of a (sub) system to be changed

are captured by inserting assertion points at suitably chosen places. These divide

the system into several code-chunks. Properties of interests are then validated over

this behaviour. A mechanism for managing change in a legacy system should be

practical, systematic and compositional. A fundamental issue in our approach is

the ability to capture the behaviour of (sub) system.

Once the behaviour is captured then we can assert if such behaviour satisfies a

given property. And as a property is a set of behaviours, satisfaction is achieved

by checking if the captured system’s behaviour is an element of this set. We are

not dealing here with the formal verification of properties which requires that all

possible behaviours of a system satisfy the properties. The formal verification of

these properties may also be performed using an ITL verifier. We are only concerned

with validating properties which requires that only interesting behaviours satisfy the

properties.

The starting point is formulating all behavioural properties of interest, such as

safety and timeliness. These are stored in a Tempura file. An information gener-

ating mechanism, namely, Assertion points are stored in a C file. These Assertion

Points will generate run-time information (assertion data), such as state values, time

stamps, during the execution of the program. The sequence of assertion data will

116

CHAPTER 7. CASE STUDY AND EVALUATION

be a possible behaviour of the system and for which we check the satisfaction of our

property. This chapter will cover initially the functional and temporal requirements

of the hybrid model. We will look into finding out the different operational condi-

tions and its related outcomes in terms of real-time constraints. Further, use the

ITL to put these real-time constraints in for validation purpose.

7.2.2 Specification of mine pump system in SPITL

Spline Interval Temporal Logic (SPITL) is a flexible notation for both propositional

and first order reasoning about periods of time found in descriptions of hardware and

software systems. It can handle both sequential and parallel composition unlike most

temporal logics. It offers powerful and extensible specification and proof techniques

for reasoning about properties involving safety, liveness and timeliness. Choice of

ITL in this work is based on the availability of an executable subset of the logic.

This offers a flexible and rapid prototyping system, known as Tempura. Its syntax

resembles that of SPITL. It has as data structures integers and Booleans and the

list construct to build more complex ones.

The verification model and boundaries are defined in AnaTempura using the

SPITL syntaxes. The AnaTempura executable will be in continuous communica-

tion with the real-time model running in Simulink. The communication between

the AnaTempura executable and the Simulink model is performed using the Mat-

lab C-Mex and S-function using FIFO pipes between the different processes. This

process is defined later in this chapter and a briefing on it is also available in the

Implementation chapter three. Before putting the model specification for validating

the model, this is necessary to understand the functional and timing requirements

of the mine pump problem.

117

CHAPTER 7. CASE STUDY AND EVALUATION

7.2.2.1 Functional requirement

The functional behaviour of the pump can be defined in terms of its two operating

conditions i.e. when it’s running and when it’s off.

Therefore, the pump is running or turned on when

• The water level is higher than the water high mark and the pump is off and

the methane level is lower than the critical value.

• This can also be turned on by an operator if the water level is above the low

water level and the methane levels are within bounds of the critical values.

• This can also be turned on by a supervisor only in case if the methane levels

are less than critical.

For this requirements this make the methane levels as the most critical functional

requirement to operate the pump, hence the continuous monitoring of this is the

most time critical and safety critical event. The water level monitoring is quiet

important however the methane levels need to be checked before any pump switching

on operation can take place.

Now, the next thing is to check for the conditions of switching off the pump

• When the Water level is less than or equal to the lower limit of water level to

be maintained.

• Or in case when the methane levels go above critical and pump is on then it

immediately needs to be shut down.

• The pump can also turn off by an operator or supervisor when the water level

is less than the high water level.

The turning off is again a critical function of the level of water plus of methane as

it is an explicit requirement to turn off the pump even if methane levels are above

118

CHAPTER 7. CASE STUDY AND EVALUATION

critical levels and water levels are reaching or going above the high water level, then

an immediate evacuation must be triggered on.

7.2.2.2 Timing requirement

The other major requirement of the model checking is to monitor the timing of the

processes which are taking place and as per safety requirements a late action is no

action and is considered a failure. Therefore, the main timing requirements which

need to be looked into to verify the mine pump model.

• Frequency or periods of monitoring the sensors i.e. the two water levels and

the methane level. Now this can be a bit complex as the monitoring rates

must comply to the possible flow rates of the water, pump operations (rate of

water pumped out) and the worst case me-thane flow levels. The values are

discussed in the Simulink model which is assumed in this study.

• The other important time line is the evacuation or shut down deadline. The

pump needs to be switched once the methane levels increases a certain level

to avoid people trapped in and there is a blast. The shutting down of the

pump is related to the methane sampling frequency and is directly related to

increasing rate of the methane. This relates to the deadline, hence the safety

margin needs to be in correspondence with the combination of the period and

deadline times the rate of methane flow.

7.2.3 Writing the requirement in Tempura

The main Tempura file which is executed implicates the conditions is shown below.

In this test basically the three inputs X, Y, Z are checked for 8 possible cases and

verified the behaviour of the Simulink model running in real-time.

• The code first load the Ana tempura library files conversion and exprog.

119

CHAPTER 7. CASE STUDY AND EVALUATION

• Enginecode, which is the C executable which calls the Matlab engine and in-

teracts with the Simulink model. The message is displayed as, when the engine

code starts as shown on the figure below:

Figure 7.2: Matlab engine Code starting connection in AnaTempura

• Then the program defines the critical levels to which the program shall monitor

to take decisions, for example the methane critical level is set as 15, water high

level is 30 and low as 10.

• A get function is used to retrieve the variables through the FIFO pipe and then

compared for different conditions to make the decisions. The status of all the

variables are retrieved and updated on the output as shown on the figure below:

120

CHAPTER 7. CASE STUDY AND EVALUATION

Figure 7.3: Variable update on the Ana tempura external console

• The two main decision structures are based on the current state of the pump

switch status. Lets first analyse the situation when the pump is on

– If the Methane critical level is less than critical and pump is on means

the supervisor has turned it on.

– If both the Methane level is less than critical and water level above the

low level of water then the operator is allowed to turn the pump on, this

is level of precedence that only the supervisor is able to turn on the pump

at any levels of water if and only if the methane level is less than critical.

– In case when the Methane level is less than critical and water level is

above high level then the system shall intervene and turn on the pump.

• The other structure to look is to turn of the pump in the following conditions.

121

CHAPTER 7. CASE STUDY AND EVALUATION

– If the methane levels are above critical, this shall immediately trigger the

pump off operation.

– Also, when the water level reaches below or equal to the lower limit then

it shall trig-ger the pump to turn off to stop any further drain out of

water to keep it in required limits.

– And, if the water is above lower limit and less than the high then the

operator can turn off the pump as required.

• The supervisor can turn off pump at any time and override any other condi-

tions.

below is the AnaTempura code that check mine pump system:

load ” conver s i on ” .

load ” exprog ” .

/∗ prog enginecode 0 ∗/

s e t p r i n t s t a t e s = f a l s e .

d e f i n e c r i t i c a l =15.

d e f i n e h igh water =30.

d e f i n e low water =10.

d e f i n e pump on=1.

d e f i n e pump off =0.

d e f i n e ge t va r (X,Y) =

{

e x i s t s T : {

get2 (T) and /∗ output (atime (T)) and∗/

i f avar (T)=X then {Y=s t r i n t (ava l (T))}

}

} .

122

CHAPTER 7. CASE STUDY AND EVALUATION

d e f i n e water swi tch on (X,Y, Z) = {

i f Y < c r i t i c a l then {

format (”CASE 3 : : the pump i s switched on by the s u p e r v i s o r !\n”)

and

i f X > low water then

format (”CASE 2 : : the pump i s switched on by the operator !\n”)

e l s e i f X > high water then

format (”CASE 1 : : the pump i s switched on !\n”)

}

e l s e

format (”CASE 8 : : pump cannot be switched on :\n”)

} .

d e f i n e w a t e r s w i t c h o f f (X,Y, Z) = {

i f Y > c r i t i c a l then {

format (”CASE 5 : : the pump i s switched o f f because the methane l e v e l

i s becomes c r i t i c a l l y high \n”)

}

e l s e i f X <=low water then {

format (”CASE 4 : : the pump i s switched o f f because the water

l e v e l f a l l s below the low water mark\n”)

}

e l s e i f X < high water then{

format (”CASE 6 : : the pump i s switched o f f by the operator !\n”)

}

e l s e

123

CHAPTER 7. CASE STUDY AND EVALUATION

format (”CASE 7 : : the pump i s switched o f f by the s u p e r v i s o r !\n”)

} .

/∗ run ∗/ d e f i n e t e s t () = {

e x i s t s WATER LEVEL,METHAN LEVEL,PUMP STATE: {

f o r counter<50 do {{ sk ip and ge t va r (”WATER LEVEL” ,WATER LEVEL)

and ge t va r (”METHAN LEVEL” ,METHAN LEVEL) and

ge t va r (”PUMP STATE” ,PUMP STATE)} and

i f PUMP STATE =pump off then {

water swi tch on (WATER LEVEL,METHAN LEVEL,PUMP STATE)

}

e l s e i f PUMP STATE =pump on then {

w a t e r s w i t c h o f f (WATER LEVEL,METHAN LEVEL,PUMP STATE)

}

e l s e

format (” the Pump i s a l r eady o f f as supposed and no need

to do ac t i on at t h i s moment\n”)

}

}

} .

124

CHAPTER 7. CASE STUDY AND EVALUATION

7.2.4 C-Mex Code and S-function

The source code level checking the mine pump system is the C-Mex file which makes

a pipe between the Matlab Simulink and the AnaTempura executable.

S-functions (system-functions) provide a powerful mechanism for extending the ca-

pabilities of the Simulink environment. An S-function is a computer language de-

scription of a Simulink block writ-ten in MATLAB, C, C++, or Fortran. C, C++,

and Fortran S-functions are compiled as MEX files using the Mex utility (see Build

MEX-File). As with other MEX files, S-functions are dynamically linked subrou-

tines that the MATLAB interpreter can automatically load and execute.

S-functions use a special calling syntax called the S-function API that enables you to

interact with the Simulink engine. This interaction is very similar to the interaction

that takes place between the engine and built-in Simulink blocks.

Figure 7.4: Flow of S-Function [113]

S-functions follow as shown in the figure above is a general form and can ac-

commodate continuous, discrete and hybrid systems. In this project the S-function

is linked with the mine pump controller (C) file. The S-function uses a standard

125

CHAPTER 7. CASE STUDY AND EVALUATION

template from the (sfuntmpldoc.c), the user needs to customize it for its particular

usage. This file provide code template for initialization, defining the size and num-

ber of input and output ports, i.e. the number of S-function parameters. Also the

Sampling times are setup to determine the number of times the S-function needs

interaction between the host program and the Simulink model.

The S-function has standard Simulink out and in ports which provides the input

and the output to the remaining model. The in port provides the input variables

from the Simulink model and is read through the C Mex executable and through the

assertion points to the AnaTempura environment which are then used to validate

and generate a corresponding output to be given back to the Simulink model to

control any actuators in the model.

To us the C-Mex and the S-function, a custom setting is done with an update con-

troller wrapper, which updates the variables from the Simulink model at sampling

interval as defined in the model initialization function. The Sampling size is also

defined in the model initialization function.

• Initially the Input and output port names are defined and the size of the

variables and their dimension. The name of the input and output port must

match that as defined in the Simulink model, as well the order in which they

are connected to the S-function.

• The sampling time can be defined in the model initialization or can be taken

from the Simulink model and in this case it is the sampling time as defined in

the model with a parameter (IN −HERITEDSAMPLET IME).

• Once the input, out ports and the Sampling time is initialized a continuous

loop will run to update the inputs and output values to and from the Simulink

model, the function as de-fined in the Flow diagram is the model output

function.

126

CHAPTER 7. CASE STUDY AND EVALUATION

• A Wrapper function is written to define these inputs and output in this case,

the assertion function is used for the communication. The assertion only ex-

ecutes only if the assertion holds and returns a true value. The C function

given below provides the assertions, it first generates the water level, methane

level and pumps status as random quantities and then passes these values to

the model, and these are also checked by the AnaTempura executable and

validate the output generated by the Simulink model

The s-function routine is illustrated in the listing code below:

void minePumpController Update wrapper

(const boolean T ∗methanePresent ,

const boolean T ∗waterLow ,

const boolean T ∗waterHigh ,

const boolean T ∗motorEnable ,

r ea l T ∗xD)

{

i n t i , WATER LEVEL,METHAN LEVEL,PUMP STATE;

f o r (i = 0 ; i < 50 ; i++)

{

//hw = GetRand (0 , 5 0) ;

// lw= GetRand (0 , 5 0) ;

WATER LEVEL= GetRand (0 , 5 0) ;

METHAN LEVEL= GetRand (0 , 5 0) ;

PUMP STATE = rand () % 2 ;

// i n t h igh water =30;

// i n t low water =5;

// i n t c r t i c a l methan =10;

127

CHAPTER 7. CASE STUDY AND EVALUATION

// b r e a k l i n e(”===================”);

a s s e r t i o n (”WATER LEVEL” ,WATER LEVEL) ;

t ex t out2 (”WATER LEVEL i s ” ,WATER LEVEL) ;

a s s e r t i o n (”METHAN LEVEL” ,METHAN LEVEL) ;

t ex t out2 (”METHAN LEVEL i s ” ,METHAN LEVEL) ;

a s s e r t i o n (”PUMP STATE” ,PUMP STATE) ;

t ex t out2 (”PUMP s t a t u e s i s ” ,PUMP STATE) ;

b r e a k l i n e(”=================”);

// a s s e r t i o n (” waterHigh ” ,hw) ;

}

7.2.5 Simulink model

As discussed before the mine pump model is implemented by use of a Simulink

model, as it has its own certain advantages. It has mathematical and interface

blocks to implement the mine environ-ment and case study easily, it provides in

form of S-blocks and C-Mex executables to communicate with other processes such

as the AnaTempura environment which is running the model checking and using the

assertion method can interact with the Simulink model.

The main three inputs to the system and interconnections are as follows:

• The rate of water flow is governed by a first differential of the difference of

the pump discharge rate and a water leak constant (0.1); this will simulate a

right behaviour of water accumulating to the discharge rate. Once the pump

is off this means the water leakage constant will push the water levels high as

because of the accumulating integral 1/s block on the Simulink model.

• Then the water level is compared with a relational block to monitor the high

and the low level mark which are defined by the two constant blocks.

128

CHAPTER 7. CASE STUDY AND EVALUATION

• The Level of methane in this case is simulated by a sinusoidal function to

provide a good time line check to verify the model behavior. This will keep

the model in check with pump on conditions as methane levels are fluctuating

and accumulating may need to trigger off the pumps.

The figure below show the simulink model block of the mine pump.

Figure 7.5: The Simulink Block

7.2.6 Case study results

The major requirement is to verify a hybrid system (mine pump controller) model in

run time. The verification consists of both functional and temporal. For this purpose

ITL has been used to verify the system. Before this work ITL was only able to

verify the behaviour of the discrete systems and this is by articulating the system at

discreet interval. Since for the hybrid system, to verify the continuous element, there

is a requirement that the ITL shall be able to execute real-time transaction between

the modelled system and the verification system (AnaTempura in this case). A new

component SPITL has been introduced which uses the concept of spline to model a

129

CHAPTER 7. CASE STUDY AND EVALUATION

continuous system. The major challenge in the mine pump system is to monitor the

water and methane levels in real-time and verify that the system behaviour meets

the operating specifications. Failures in the model behaviour must be detected in

real-time constraint and then reported, with evasive actions to evacuate the mine in

case of the system anomaly.

After running the mine pump on both Anatempura and mnatlab simulink we got

results that approved the underling formalism and technique used in this study are

successfully worked. The figure below shows the scope plot of the simulink model it

can be seen on the graph that the water and methane level satisfied the case study

requirements.

Figure 7.6: the Simulink model scope plot

• The yellow line is the methane level fluctuating (modelled as a sine wave)

between 0 and 2

• The purple line is the methane sensor output which is 1 (True) if the methane

130

CHAPTER 7. CASE STUDY AND EVALUATION

level is above 1.99 and 0 (False) if methane level is below 1.99

• The cyan line is the accumulated water level, this is modelled that the water

leak as constant and the water level as the integration of (leaked water - water

pumped out)

• The red line is the pump motor enable signal from the controller; when the

motor is enabled (red line=1) total water level decrease, as the pump discharge

water at a constant rate which is faster than water leaking

Therefore, as can be seen from the AnaTempura output results shown the figure

below that the assertion points collected the data from the simulink and checked

them against the AnaTemoura properties test cases and its satisfied as well.

Figure 7.7: Mine pump test cases results in AnaTempura

131

CHAPTER 7. CASE STUDY AND EVALUATION

7.3 Summary

In summary,hybrid systems are the focus of this research and deals with the verifi-

cation of such a system using the ITL syntax and the use of its executable AnaTem-

pura. This chapter dealt with a case study on a hybrid system i.e. a min pump

control system. The logical architecture of the mine system is explained and all

its functional and timing requirements are provided. These requirements are then

translated in terms of ITL syntax.

The validation facility provided by the ITL is used to check a mine pump model be-

ing simulated using the Matlab Simulink model. An s function based in the Simulink

model is used to communicate using an inter-process FIFO to the Ana tempura ex-

ecutable. A C executable is used to initiate the Matlab model and provide variables

to the Simulink model and the AnaTempura executable environment using the as-

sertion method.

Eight different cases are generated based on the different functional requirements

and the behaviour of the model is validated using the status of the Water Levels and

the Methane level. The Output of the Simulink model and the states are validated,

both the expected output and the actual model output is displayed to show the

working of the model and validates its behaviour.

132

Chapter 8

Conclusion and Future Work

Objectives:

• Summary of Research.

• Contributions.

• Success Criteria.

• Limitations.

• Future work.

133

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.1 Introduction

The goal of this section is to describe how the research aims and objectives listed

in Section 1.3 are achieved. To reiterate, the main aim of the current research is to

develop a framework that can be used to verify and simulate a computer system’s

behaviour in terms of safety and liveness properties, using executable subset of

Interval Temporal Logic (ITL) and its extension for the development of a hybrid

system termed Spline Interval Temporal Logic (SPITL). This entails the use of

Tempura with subsequent integration with AnaTempura and Matlab with the view

to verify such a hybrid system model done within Simulink. The intended outcome

is to improve the interpreter Tempura by merging multiple assertion points thereby

making them to receive the points. Against this backdrop, the realization of the

research aim could be said to have been achieved due to a number of research

procedures and modelling that have been carried out as discussed in the section

that follows.

8.2 Summary of Thesis

This thesis describes a study of the problems concerning the handling evolutionary

verification of hybrid systems. A systematic research approach has been optimized

to engineer hybrid systems and a tool has been developed and implemented based on

this approach. The research commenced by addressing the overall process of hybrid

systems engineering. Hybrid systems nowadays plays an important role within the

broad area of software engineering.Enormous problems of engineering hybrid systems

requires solutions, especially as it pertains to problems associated with the handling

of verification of hybrid systems.

The current work also shows that there exists little systematic research on en-

134

CHAPTER 8. CONCLUSION AND FUTURE WORK

gineering hybrid systems. It is well-known that the use of formal methods is fun-

damental for ensuring the correctness of hybrid systems. However, gap still exist

between formal development and run-time evaluation. Therefore, an approach to

engineer the evolving hybrid systems in a systematic fashion is addressed in this

thesis.

The approach proposed and developed in this thesis is used to tackle the veri-

fication of hybrid systems rapidly, efficiently, and above all correctly. The central

aim is to develop an integrated framework to deal with verification of hybrid sys-

tems. This framework integrates conventional approaches and formal technologies

for engineering hybrid systems.

The basic components verification of hybrid systems have been identified and

defined in this thesis, providing technical basis for a repeatable, well defined, and

managed development process. It first addresses a general architectural methodology

of handling verification of hybrid systems. This involves crossing levels of abstraction

of time-critical systems, from specification in ITL and its extension in SPITL to

source code in c-mex file that enable AnaTempura interfere with Matlab and its

modeling tool, Simulink, using s-function routine as pipe.

Hybrid systems behaviours of interest can be analysed and validated in any stage

of evolutionary development. The validation and analysis are performed within a

single logical framework. The assertion points technique was adopted in the current

work to generate run-time data, which fully reflects run-time behaviours of the

time-critical systems. The run-time data were then captured and used to validate

behaviours of interest with respect to the formal specification of the system. Errors

are reported during the system run, i.e., the run-time analysis does not only report

an error but also indicate the location of the error.

A set of extendable compositional rules have been adopted as the main guideline

for a repeatable and well-managed approach to handle verification of hybrid systems.

135

CHAPTER 8. CONCLUSION AND FUTURE WORK

A prototype tool has been developed to support the proposed approach. The tool

is also used to implement the developed guidelines for guided evolution. A case

study was used for experiments with the approach and the prototype system to

demonstrate the success and effectiveness of the proposed approach.

8.3 Research Question revisited

How can Interval Temporal logic be extended in order to specify hy-

brid systems, which integrates both discrete and continuous systems.

In order to provide properties that capture the dynamic behaviour of

hybrid systems and how can these properties be formally verified at

runtime and how can this verification can be inserted in to the hybrid

system model in matlab simulink?

We propose to address the overall research question,a set of research questions that

tackle each of the underlying issues.

RQ 1. What is the appropriate formalism technique that is required for

the specification and verification of hybrid systems?

In order to gain an appreciable knowledge of the hybrid systems under con-

sideration and its associated behaviour/ properties, temporal logics was the

choice of formalism upon which the current research draws knowledge from.

Our choice was justified by the wide applicability of temporal logic to hybrid

systems as shown in extant literature. Amongst various flavours of temporal

logics, ITL was selected given its numerous advantages (see details in Chapter

three) for the various advantages (Chapter 3) especially it compositional at-

tributes which provides the necessary resources and tool support for runtime

verification.

136

CHAPTER 8. CONCLUSION AND FUTURE WORK

RQ 2. What are the kind of properties of a hybrid system behaviour

that such a formalism can express?

SPITL inherited its original logic based on ITL. Therefore, safety, liveness and

timing properties can be powerfully expressed in SPITL. In thesis evolution

(see Chapter 7) such properties were specified in a case study with the view

to study and understand those properties.

RQ 3. Does the formalism have adequate tool support in order to sim-

ulate and verify hybrid systems?

In this thesis it has been established through a case study (see Chapters 6 and

7) that by linking AnaTempura with Matlab/Simulink, hybrid systems can be

simulated and verified in an efficient manner.

RQ 4. How can we describe the behaviour of hybrid systems using

Interval Temporal Logic?

The novelty of the current work lies in the extension of ITL into what is now

known as Spline Interval Temporal logic (SPITL), in which not only discrete

time behaviour can be expressed, but can also consider the continuous time

behaviour over time in form of spline.

RQ 5. How can we characterise the whole time interval instate of char-

acterising fixed points on the interval?

In SPITL, a behaviour is a sequence of phases (i.e. states have duration).

Furthermore, a phase replaces a sequences of discrete states with a continuous

behaviour represented by a spline.

RQ 6. Can we have new operators in ITL that can deal with states

durations?

We have introduced a semantic model where phases have duration and within

a phase (chapter 4).

137

CHAPTER 8. CONCLUSION AND FUTURE WORK

RQ 7. Can the proposed extension of ITL be used to reason about

hybrid systems?

It has been established that SPITL can deal with both discrete and continuous

systems. Therefore, SPITL has been effectively used to gain some level of

reasoning and understanding about hybrid system.

RQ 8. How do we verify at runtime the behaviour of hybrid system

under investigation using our framework?

There is a growing cognizance that most specification and verification meth-

ods are beginning to attain their limits. Model-checking is limited to check-

ing systems of finite size and deductive methods and can handle only systems

whose complexity are minimal due to the heavy user interaction required [146].

In contrast to formal verification, practical verification techniques provide a

mechanism to verify only properties of interest. In the current work, a frame-

work based on runtime verification technique, using a Tempura interpreter

called, AnaTempura is proposed. It was established that proof obligations can

be encoded in tempura and then verified against the hybrid system behaviour.

The verification can be performed through the injection of assertion points

into source code (Chapter 5).

8.4 Criteria for Success and Analysis

8.4.1 Extended ITL formalism to reason about hybrid sys-

tems

Although the extended propositional ITL is based on the original ITL, the semantics

of SPITL is much different from ITL. First, the extension to include continuous time

behaviour as sequence of phases that integrates both discrete and continuous time

138

CHAPTER 8. CONCLUSION AND FUTURE WORK

logic.

Second, the extension uses Spline form to model the logic formalism that can

make the logic dynamic and use first and second derivative to make ITL more

expressive.

8.4.2 Extended AnaTempura

In the thesis, we extended Tempura in several ways. However, the input, output

statements, data types declaration statements and pointers are excluded given that

there is currently no straight forward way to include these statements in Tempura

under the SPITL notation. Accordingly, further research is therefore required to

solve these problems.

In this thesis , the temporal semantics of programs within the extended Tempura

is investigated under the model theory. Operational and axiomatic semantics of

programs still requires further research.

Another very active research filed is real time programming. Currently, the

extended Tempura is concerned with a sequence of states without absolute time. We

could find a way to extend Tempura to use time explicitly so that hybrid systems

systems can be handled by Tempura.

The Tool AnaTempura is designed to support the step-by-step methodology of

handling verification of hybrid systems. This tool helps engineers in handling veri-

fication of hybrid systems in a comprehensive way. AnaTempura helps the user by

performing its functions in an intelligent way. AnaTempura automatically monitors

hybrid systems execution and analyses the system’s run-time behaviours.

AnaTempura successfully linked with Matlab techniques. Therefore, the tool

has become more effective and powerful as well as more friendly user interface.

Both AnTempura and MATLAP are helpful in the analysis of the behaviours of the

system and reveal the evolutionary development process of the system. AnaTempura

139

CHAPTER 8. CONCLUSION AND FUTURE WORK

considers possible error cases comprehensively. It is tolerant to many user errors.

The tool checks for the errors, corrects the errors whenever possible, and gives

relevant prompt information.

8.5 Future Directions

Based on the discussions in former sections, we concluded that the approach has

novel ideas and is useful in handling verification of hybrid systems. The resulting

tool scales up the approach. In addition, our approach can be easily adapted with

hybrid system model tools like simulink or modelica. However, SPITL need to be

studied to guarantee a complete proof refinement.

Also, Tempura need to be studied extensively as part of further research with

the view to solve some of the timing problems and generate a complete semantic to

enhance the AnaTempura to work effectively with external hybrid systems model

tools.

140

Chapter 9

Appendix A

This appendix is present Matlab Simulinl code. Aw well as the Matlab Engine Code.

9.1 Mine Pump Controller wrapper

#i f de f ined (MATLAB MEX FILE)

#inc lude ”tmwtypes . h”

#inc lude ” s ims t ruc type s . h”

#e l s e

#inc lude ” rtwtypes . h”

#e n d i f

/∗ %%%−SFUNWIZ wrapper includes

Changes BEGIN −−−

EDIT HERE TO END ∗/

#inc lude <math . h>

#inc lude ” a s s e r t i o n . h”

/∗ %%%−SFUNWIZ wrapper

141

CHAPTER 9. APPENDIX A

includes Changes END −−−

EDIT HERE TO BEGIN ∗/

#d e f i n e u width 1

#d e f i n e y width 1

/∗

∗ Create e x t e r n a l r e f e r e n c e s here .

∗

∗/

/∗ %%%−SFUNWIZ wrapper

externs Changes BEGIN −−− EDIT HERE TO END ∗/

/∗ %%%−SFUNWIZ wrapper

externs Changes END −−− EDIT HERE TO BEGIN ∗/

/∗

∗ Output f u n c t i o n s

∗

∗/

void minePumpController Outputs wrappe

r (const boolean T ∗MethanePresent ,

const boolean T ∗WaterLow ,

const boolean T ∗WaterHigh ,

boolean T ∗MotorEnable ,

const r ea l T ∗XD)

{

/∗ %%%−SFUNWIZ wrapper Outputs

Changes BEGIN −−− EDIT HERE TO END ∗/

142

CHAPTER 9. APPENDIX A

MotorEnable [0] = XD[0] ; // a s s e r t i o n (” MotorEnable ” ,XD[0]==0?0 :1) ;

/∗ %%%−SFUNWIZ wrapper Outputs

Changes END −−− EDIT HERE TO BEGIN ∗/

}

/∗

∗ Updates func t i on

∗

∗/

void minePumpController

Update wrapper (const boolean T

∗MethanePresent ,

const boolean T ∗WaterLow ,

const boolean T ∗WaterHigh ,

const boolean T ∗MotorEnable ,

r ea l T ∗XD)

{

/∗ %%%−SFUNWIZ wrapper Update

Changes BEGIN −−− EDIT HERE TO END ∗/

// t ex t ou t (” MethanePresent ”) ;

a s s e r t i o n (” MethanePresent ” ,

MethanePresent [0] ? 1 : 0) ;

a s s e r t i o n (”WaterLow” ,WaterLow [0] ? 1 : 0) ;

a s s e r t i o n (” WaterHigh ” , WaterHigh [0] ? 1 : 0) ;

i f (MethanePresent [0]) {

XD[0] = f a l s e ; a s s e r t i o n (”XD” , 0) ;

143

CHAPTER 9. APPENDIX A

} e l s e {

i f (WaterLow [0]) {XD[0] = f a l s e ; a s s e r t i o n (”XD” , 0) ;}

i f (WaterHigh [0]) {XD[0] = true ; a s s e r t i o n (”XD” , 1) ;

}

}

/∗ %%%−SFUNWIZ wrapper

Update Changes END −−− EDIT HERE TO BEGIN ∗/

}

9.2 Mine Pump Controller

#d e f i n e S FUNCTION LEVEL 2

#d e f i n e S FUNCTION NAME minePumpController

/∗<<<<<<<<<<<<<<<<<<<<<<<

<<<<<<<<<<<<<<<<<<<<<

<<<<<<<<<<<<<<<<<<<<<∗/

/∗ %%%−SFUNWIZ defines C

hanges BEGIN −−− EDIT HERE TO END ∗/

#d e f i n e NUM INPUTS 3

/∗ Input Port 0 ∗/

#d e f i n e IN PORT 0 NAME MethanePresent

#d e f i n e INPUT 0 WIDTH 1

#d e f i n e INPUT DIMS 0 COL 1

#d e f i n e INPUT 0 DTYPE boolean T

#d e f i n e INPUT 0 COMPLEX COMPLEX NO

#d e f i n e IN 0 FRAME BASED FRAME NO

#d e f i n e IN 0 BUS BASED 0

144

CHAPTER 9. APPENDIX A

#d e f i n e IN 0 BUS NAME

#d e f i n e IN 0 DIMS 1−D

#d e f i n e INPUT 0 FEEDTHROUGH 1

#d e f i n e IN 0 ISSIGNED 0

#d e f i n e IN 0 WORDLENGTH 8

#d e f i n e IN 0 FIXPOINTSCALING 1

#d e f i n e IN 0 FRACTIONLENGTH 9

#d e f i n e IN 0 BIAS 0

#d e f i n e IN 0 SLOPE 0.125

/∗ Input Port 1 ∗/

#d e f i n e IN PORT 1 NAME WaterLow

#d e f i n e INPUT 1 WIDTH 1

#d e f i n e INPUT DIMS 1 COL 1

#d e f i n e INPUT 1 DTYPE boolean T

#d e f i n e INPUT 1 COMPLEX COMPLEX NO

#d e f i n e IN 1 FRAME BASED FRAME NO

#d e f i n e IN 1 BUS BASED 0

#d e f i n e IN 1 BUS NAME

#d e f i n e IN 1 DIMS 1−D

#d e f i n e INPUT 1 FEEDTHROUGH 1

#d e f i n e IN 1 ISSIGNED 0

#d e f i n e IN 1 WORDLENGTH 8

#d e f i n e IN 1 FIXPOINTSCALING 1

#d e f i n e IN 1 FRACTIONLENGTH 9

#d e f i n e IN 1 BIAS 0

#d e f i n e IN 1 SLOPE 0.125

/∗ Input Port 2 ∗/

145

CHAPTER 9. APPENDIX A

#d e f i n e IN PORT 2 NAME WaterHigh

#d e f i n e INPUT 2 WIDTH 1

#d e f i n e INPUT DIMS 2 COL 1

#d e f i n e INPUT 2 DTYPE boolean T

#d e f i n e INPUT 2 COMPLEX COMPLEX NO

#d e f i n e IN 2 FRAME BASED FRAME NO

#d e f i n e IN 2 BUS BASED 0

#d e f i n e IN 2 BUS NAME

#d e f i n e IN 2 DIMS 1−D

#d e f i n e INPUT 2 FEEDTHROUGH 1

#d e f i n e IN 2 ISSIGNED 0

#d e f i n e IN 2 WORDLENGTH 8

#d e f i n e IN 2 FIXPOINTSCALING 1

#d e f i n e IN 2 FRACTIONLENGTH 9

#d e f i n e IN 2 BIAS 0

#d e f i n e IN 2 SLOPE 0.125

#d e f i n e NUM OUTPUTS 1

/∗ Output Port 0 ∗/

#d e f i n e OUT PORT 0 NAME MotorEnable

#d e f i n e OUTPUT 0 WIDTH 1

#d e f i n e OUTPUT DIMS 0 COL 1

#d e f i n e OUTPUT 0 DTYPE boolean T

#d e f i n e OUTPUT 0 COMPLEX COMPLEX NO

#d e f i n e OUT 0 FRAME BASED FRAME NO

#d e f i n e OUT 0 BUS BASED 0

#d e f i n e OUT 0 BUS NAME

146

CHAPTER 9. APPENDIX A

#d e f i n e OUT 0 DIMS 1−D

#d e f i n e OUT 0 ISSIGNED 1

#d e f i n e OUT 0 WORDLENGTH 8

#d e f i n e OUT 0 FIXPOINTSCALING 1

#d e f i n e OUT 0 FRACTIONLENGTH 3

#d e f i n e OUT 0 BIAS 0

#d e f i n e OUT 0 SLOPE 0.125

#d e f i n e NPARAMS 0

#d e f i n e SAMPLE TIME 0 INHERITED SAMPLE TIME

#d e f i n e NUM DISC STATES 1

#d e f i n e DISC STATES IC [0]

#d e f i n e NUM CONT STATES 0

#d e f i n e CONT STATES IC [0]

#d e f i n e SFUNWIZ GENERATE TLC 1

#d e f i n e SOURCEFILES ” SFB ”

#d e f i n e PANELINDEX 6

#d e f i n e USE SIMSTRUCT 0

#d e f i n e SHOW COMPILE STEPS 1

#d e f i n e CREATE DEBUG MEXFILE 0

#d e f i n e SAVE CODE ONLY 0

#d e f i n e SFUNWIZ REVISION 3 .0

/∗ %%%−SFUNWIZ defines C

hanges END −−− EDIT HERE TO BEGIN ∗/

/∗<<<<<<<<<<<<<<<<<<<<<<<

147

CHAPTER 9. APPENDIX A

<<<<<<<<<<<<<<<<<<<<<<<<

<<<<<<<<<<<<<<<<<<∗/

#inc lude ” s imstruc . h”

extern void minePumpController

Outputs wrapper (const boolean T

∗MethanePresent ,

const boolean T ∗WaterLow ,

const boolean T ∗WaterHigh ,

boolean T ∗MotorEnable ,

const r ea l T ∗XD) ;

extern void minePumpController

Update wrapper (const boolean T

∗MethanePresent ,

const boolean T ∗WaterLow ,

const boolean T ∗WaterHigh ,

const boolean T ∗MotorEnable ,

r ea l T ∗XD) ;

/∗====================∗

∗ S−f unc t i on methods ∗

∗====================∗/

/∗ Function : m d l I n i t i a l i z e S i z e s =========================

======================

∗ Abstract :

∗ Setup s i z e s

o f the var i ous ve c t o r s .

148

CHAPTER 9. APPENDIX A

∗/

s t a t i c

void m d l I n i t i a l i z e S i z e s (SimStruct ∗S)

{

DECL AND INIT DIMSINFO

(inputDimsInfo) ;

DECL AND INIT DIMSINFO

(outputDimsInfo) ;

ssSetNumSFcnParams (S , NPARAMS) ;

i f (ssGetNumSFcnParams (S) != ssGetSFcnParamsCount (S)) {

r e turn ; /∗ Parameter

mismatch w i l l be

repor ted by Simulink ∗/

}

ssSetNumContStates (

S , NUM CONT STATES) ;

ssSetNumDiscStates

(S , NUM DISC STATES) ;

i f (! ssSetNumInputPorts

(S , NUM INPUTS)) re turn ;

/∗ Input Port 0 ∗/

ssSetInputPortWidth

(S , 0 , INPUT 0 WIDTH) ; /∗ ∗/

ssSetInputPortDataType

(S , 0 , SS BOOLEAN) ;

149

CHAPTER 9. APPENDIX A

ssSetInputPortComplexSignal (S , 0 , INPUT 0 COMPLEX) ;

ssSetInputPortDirectFeedThrough (S , 0 , INPUT 0 FEEDTHROUGH) ;

ssSetInputPortRequiredCont iguous

(S , 0 , 1) ; /∗ d i r e c t input s i g n a l a c c e s s ∗/

/∗ Input Port 1 ∗/

ssSetInputPortWidth

(S , 1 , INPUT 1 WIDTH) ; /∗ ∗/

ssSetInputPortDataType

(S , 1 , SS BOOLEAN) ;

ssSetInputPortComplexSignal (S , 1 , INPUT 1 COMPLEX) ;

ssSetInputPortDirectFeedThrough (S , 1 , INPUT 1 FEEDTHROUGH) ;

ssSetInputPortRequiredCont iguous

(S , 1 , 1) ; /∗ d i r e c t input s i g n a l a c c e s s ∗/

/∗ Input Port 2 ∗/

ssSetInputPortWidth

(S , 2 , INPUT 2 WIDTH) ;

/∗ ∗/

ssSetInputPortDataType

(S , 2 , SS BOOLEAN) ;

ssSetInputPortComplexSignal (S , 2 , INPUT 2 COMPLEX) ;

ssSetInputPortDirectFeedThrough (S , 2 , INPUT 2 FEEDTHROUGH) ;

ssSetInputPortRequiredCont iguous

(S , 2 , 1) ;

/∗ d i r e c t input s i g n a l a c c e s s ∗/

150

CHAPTER 9. APPENDIX A

i f (! ssSetNumOutputPorts

(S , NUM OUTPUTS)) re turn ;

ssSetOutputPortWidth

(S , 0 , OUTPUT 0 WIDTH) ;

ssSetOutputPortDataType

(S , 0 , SS BOOLEAN) ;

ssSetOutputPortComplexSignal (S , 0 , OUTPUT 0 COMPLEX) ;

ssSetNumSampleTimes (S , 1) ;

ssSetNumRWork(S , 0) ;

ssSetNumIWork (S , 0) ;

ssSetNumPWork(S , 0) ;

ssSetNumModes (S , 0) ;

ssSetNumNonsampledZCs (S , 0) ;

/∗ Take care when

s p e c i f y i n g except ion

f r e e code −

s e e s funtmpl doc . c ∗/

ssSetOpt ions

(S ,

(SS OPTION EXCEPTION

FREE CODE |

SS OPTION USE TLC WITH

ACCELERATOR

SS OPTION WORKS

WITH CODE REUSE)) ;

151

CHAPTER 9. APPENDIX A

}

d e f i n e

MDL SET INPUT PORT

FRAME DATA

s t a t i c void

mdlSetInputPortFrameData

(SimStruct ∗S ,

int T port ,

Frame T frameData)

{

ssSetInputPortFrameData

(S , port , frameData) ;

}

/∗ Function :

mdl In i t ia l i z eSampleTimes ====

=========

=================

===========

∗ Abstract :

∗ S p e c i f i y

the sample time .

∗/

s t a t i c void

mdl In i t ia l i z eSampleTimes

(SimStruct ∗S)

{

152

CHAPTER 9. APPENDIX A

ssSetSampleTime

(S , 0 , SAMPLE TIME 0) ;

s sSetOf f setTime

(S , 0 , 0 . 0) ;

}

#d e f i n e

MDL INITIALIZE

CONDITIONS

/∗ Function :

m d l I n i t i a l i z e

Condit ions ====

=========

============

===============

∗ Abstract :

∗ I n i t i a l i z e

the s t a t e s

∗/

s t a t i c

void

m d l I n i t i a l i z e C o n d i t i o n s

(SimStruct ∗S)

{

r ea l T ∗XD

= ssGetRea lDi scStates

(S) ;

153

CHAPTER 9. APPENDIX A

XD[0] = 0 ;

}

#d e f i n e

MDL SET I

NPUT PORT DATA TYPE

s t a t i c

void mdlSetInput

PortDataType

(SimStruct ∗S ,

i n t port , DTypeId dType)

{

ssSetInputPortDataType

(S , 0 , dType) ;

}

#d e f i n e

MDL SET OUTPUT PORT DATA TYPE

s t a t i c

void

mdlSetOutputPortDataType

(SimStruct ∗S , i n t port ,

DTypeId dType)

{

ssSetOutputPortDataType

(S , 0 , dType) ;

154

CHAPTER 9. APPENDIX A

}

#d e f i n e

MDL SET

DEFAULT PORT DATA TYPES

s t a t i c

void

mdlSetDefaultPortDataTypes

(SimStruct ∗S)

{

ssSetInputPortDataType

(S , 0 , SS DOUBLE) ;

ssSetOutputPortDataType

(S , 0 , SS DOUBLE) ;

}

/∗ Function : mdlOutputs =======

====================

============================

∗

∗/

s t a t i c void mdlOutputs

(SimStruct ∗S , int T t i d)

{

const boolean T

∗MethanePresent

= (const boolean T ∗)

s sGetInputPortS igna l (S , 0) ;

155

CHAPTER 9. APPENDIX A

const boolean T

∗WaterLow = (const boolean T ∗) s sGetInputPortS igna l (S , 1) ;

const boolean T ∗WaterHigh

= (const boolean T ∗)

s sGetInputPortS igna l (S , 2) ;

boolean T

∗MotorEnable = (boolean T ∗) ssGetOutputPortRealSignal (S , 0) ;

const r ea l T ∗XD = ssGetDi scState s (S) ;

minePump

Contro l l e r Outputs wrapper

(MethanePresent , WaterLow ,

WaterHigh , MotorEnable , XD) ;

}

#d e f i n e MDL UPDATE /∗

Change to #undef to remove func t i on ∗/

/∗ Function : mdlUpdate ====

==================

================================

∗ Abstract :

∗ This func t i on i s c a l l e d

once f o r every major

i n t e g r a t i o n time step .

∗ Di s c r e t e s t a t e s ar

e t y p i c a l l y updated here , but t h i s

func t i on i s u s e f u l

∗ f o r per forming any ta sk s

156

CHAPTER 9. APPENDIX A

that should only take p lace once per

∗ i n t e g r a t i o n step .

∗/

s t a t i c void mdlUpdate (

SimStruct ∗S , int T t i d)

{

r ea l T ∗XD

= ssGetDi scState s (S) ;

const boolean T

∗MethanePresent = (const boolean T ∗) s sGetInputPortS igna l (S , 0) ;

const boolean T ∗WaterLow

= (const boolean T ∗)

s sGetInputPortS igna l (S , 1) ;

const boolean T ∗WaterHigh

= (const boolean T ∗)

s sGetInputPortS igna l (S , 2) ;

boolean T ∗MotorEnable

= (boolean T ∗) ssGetOutputPortRealSignal

(S , 0) ;

minePumpController Update wrapper

(MethanePresent , WaterLow , WaterHigh ,

MotorEnable , XD) ;

}

157

CHAPTER 9. APPENDIX A

/∗ Function : mdlTerminate ======

============

==================

=================

∗ Abstract :

∗ In t h i s funct ion , you

should perform any

a c t i o n s that are nece s sa ry

∗ at the terminat ion

o f a s imu la t i on .

For example , i f memory was

∗ a l l o c a t e d in mdlStart ,

t h i s i s the p lace to f r e e i t .

∗/

s t a t i c void mdlTerminate (SimStruct ∗S)

{

}

#i f d e f MATLAB MEX FILE

/∗ I s t h i s f i l e be ing

compiled as a MEX− f i l e ?

∗/

#inc lude ” s imul ink . c”

/∗ MEX− f i l e

i n t e r f a c e mechanism

∗/

#e l s e

#inc lude ” cg s fun . h”

158

CHAPTER 9. APPENDIX A

/∗ Code gene ra t i on

r e g i s t r a t i o n func t i on ∗/

#e n d i f

9.3 Matlab Engine code

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

#inc lude <uni s td . h>

#inc lude <sys / types . h>

#inc lude <sys / s t a t . h>

#inc lude < f c n t l . h>

#d e f i n e MAX BUF 1024

#inc lude <s t r i n g . h>

#inc lude ” engine . h”

#inc lude < l i m i t s . h>

#d e f i n e BUFSIZE 256

#d e f i n e FIFO NAME ” my f i f o ”

#d e f i n e BUFFER SIZE PIPE BUF

i n t main (i n t argc , char ∗argv [])

{

Engine ∗eng ;

// i n t r e s ;

char b u f f e r [BUFFER SIZE + 1] ;

p r i n t f (” S ta r t i ng matlab engine \n ”) ;

159

CHAPTER 9. APPENDIX A

i f (! (eng = engOpen (NULL))) {

p r i n t f (”Can ’ t s t a r t MATLAB engine \n ”) ;

r e turn 0 ;

}

p r i n t f (” runing s imul ink \n ”) ;

engEvalStr ing (eng , ”mex −c

minePumpController . c minePumpController wrapper . c ”) ;

engEvalStr ing (eng , ”mex

minePumpController . c minePumpController wrapper . c ”) ;

engEvalStr ing (eng , ”

sim (’ minePumpModel ’) ”) ;

engEvalStr ing (eng , ”

open system (’ minePumpModel/Scope ’) ”) ;

FILE ∗ fd ;

char l i n e [BUFSIZE] ;

fd = fopen (” myf i fo ” ,” r ”) ;

f o r (i n t i =20; i>1 ; i−−)

{

whi le (f g e t s (l i n e , 256 , fd)!=NULL) p r i n t f (”%s ” , l i n e) ;

}

f c l o s e (fd) ;

p r i n t f (” Clos ing matlab engine \n ”) ;

160

CHAPTER 9. APPENDIX A

engClose (eng) ;

p r i n t f (” Matlab AnaTempura

i n t e r f a c e i s c l o s e d \n ”) ;

r e turn (0) ;

// e x i t (EXIT SUCCESS) ;

}

9.4 Fifo Pipe

/∗ f i f o 2 . c ∗/

/∗ This f i l e w i l l wr i t e

to the f i f o a s t r i n g .∗/ #inc lude <uni s td . h>

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

#inc lude < f c n t l . h>

#inc lude <sys / types . h>

#inc lude <sys / s t a t . h>

#inc lude < l i m i t s . h>

#d e f i n e FIFO NAME ” my f i f o ”

#d e f i n e BUFFER SIZE PIPE BUF

i n t main ()

{

i n t r e s ;

char b u f f e r [BUFFER SIZE + 1] ;

i f (a c c e s s (FIFO NAME, F OK) == −1) {

r e s = mkf i fo (FIFO NAME, 0777) ; i f (r e s != 0) {

161

CHAPTER 9. APPENDIX A

/∗ the f i f o name ∗/

/∗ check i f f i f o a l r eady i f

not then , c r e a t e the f i f o ∗/

f p r i n t f (s tde r r ,

”Could not c r e a t e f i f o %s\n” , FIFO NAME) ;

e x i t (EXIT FAILURE) ; }

}

p r i n t f (” Process %d opening FIFO\n” ,

getp id ()) ; r e s = open (FIFO NAME, OWRONLY) ;

s p r i n t f (bu f f e r , ” h e l l o ”) ;

wr i t e (res , bu f f e r , BUFFER SIZE) ;

p r i n t f (” Process %d r e s u l t %d\n” ,

getp id () , r e s) ; s l e e p (5) ;

i f (r e s != −1) (void) c l o s e (r e s) ;

p r i n t f (” Process %d f i n i s h e d \n” , ge tp id ()) ;

e x i t (EXIT SUCCESS) ;

}

162

Chapter 10

Appendix B

This appendix is to list the tempura code.

10.1 Assertion points

#inc lude <s t d i o . h>

#inc lude <time . h>

#inc lude <sys / time . h>

#inc lude < f c n t l . h>

#inc lude <sys / s t a t . h>

#inc lude <sys / types . h>

#inc lude <uni s td . h>

#inc lude <s t d l i b . h>

#inc lude <s t r i n g . h>

#inc lude <errno . h>

#d e f i n e FIFO NAME ” my f i f o ”

#d e f i n e BUFFER SIZE PIPE BUF

163

CHAPTER 10. APPENDIX B

i n t myclock ()

{

s t r u c t t imeva l stop , s t a r t ;

gett imeofday(& sta r t , NULL) ;

gett imeofday(&stop , NULL) ;

r e turn stop . tv u s e c − s t a r t . t v u s e c ;

}

bool i n i t i a l i z e d = f a l s e ;

char ∗ myf i fo = ”/tmp/ fooPipe ” ;

void i n i t i a l i z e (void)

{

i n i t i a l i z e d=true ;

FILE ∗ fd = fopen (myfi fo , ”w”) ;

f c l o s e (fd) ;

}

void t ex t ou t (char ∗ txt)

{

f p r i n t f (myfi fo ,”%d : : %s\n” , myclock () , txt) ; f f l u s h (stdout) ;

}

164

CHAPTER 10. APPENDIX B

void s can s en so r (char ∗ txt , i n t ∗temp)

{

t ex t ou t (txt) ;

s can f (”%d” , temp) ;

}

extern void a s s e r t i o n (char ∗aname ,

i n t va l)

{

i f (! i n i t i a l i z e d) i n i t i a l i z e () ;

f p r i n t f (myfi fo , ” !PROG: a s s e r t

%s :%d:%d : ! \ n” ,aname , val , myclock ()) ; f f l u s h (stdout) ;

}

void a s s e r t i o n 1 (char ∗aname , i n t va l)

{

i f (! i n i t i a l i z e d) i n i t i a l i z e () ;

f p r i n t f (myfi fo , ” !PROG: a s s e r t

%s :%d:%d:%d:%d : ! \ n” ,aname , val , 1 ,2 , myclock ()) ; f f l u s h (stdout) ;

}

10.2 Tempura Code

load ” conver s i on ” .

load ” exprog ” .

165

CHAPTER 10. APPENDIX B

load ” t c l ” .

/∗ prog enginecode 0 ∗/

s e t p r i n t s t a t e s = true .

d e f i n e ge t va r (X,Y) =

{

e x i s t s T : {

get2 (T) and /

∗output (atime (X)) and∗/

i f avar (T)=X then

{Y=s t r i n t (ava l (T))}

}

} .

/∗ run ∗/ d e f i n e t e s t () = {

e x i s t s MotorEnable , MethanePresent ,

MaterLow , WaterHigh , XD, counter : {

f o r counter <20 do { sk ip and

ge t va r (” MotorEnable ” ,

MotorEnable) and

output (MotorEnable) and

166

CHAPTER 10. APPENDIX B

ge t va r (” MethanePresent ” ,

MethanePresent)

and output (MethanePresent) and

ge t va r (”WaterLow” ,WaterLow)

and output (WaterLow) and

ge t va r (” WaterHigh ” , WaterHigh) and output (WaterHigh) and

ge t va r (”XD” ,XD) and output (XD)}

}

} .

167

Bibliography

[1] Verification of digital and hybrid systems. 2(Lics 96):278–292, 2000.

[2] J. A. Abraham. Introduction to Temporal Logics. Computer, pages 1–10,

2010.

[3] P. E. Ábrahám. Modeling and Analysis of Hybrid Systems Lecture Notes.

2012.

[4] L. D. Alfaro and Z. Manna. Veri cation in Continuous Time by Discrete.

[5] T. M. Alghamdi. Policy-based Runtime Tracking for E-learning Environments

PhD Thesis. 1988.

[6] J. F. Allen and G. Ferguson. Actions and Eventis in Interval Temporal Logic.

Journal of Logic and Computation, 1994.

[7] A. Z. Almutairi. Context-Aware and Adaptive Usage Control Model. (Septem-

ber), 2013.

[8] S. Also and S. Also. 9 Temporal Expressions. pages 321–360.

[9] R. Alur. Formal verification of hybrid systems. Proceedings of the ninth ACM

international conference on Embedded software - EMSOFT ’11, (January):273,

2011.

168

BIBLIOGRAPHY

[10] R. Alur and D. Dill. A theory of timed automata. Theoretical computer

science, 126(2):183–235, 1994.

[11] R. Alur, J. Esposito, M. Kim, V. Kumar, and I. Lee. Formal modeling and

analysis of hybrid systems : A case study in multi-robot coordination. Me-

chanical Engineering, 1998.

[12] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstrac-

tions of hybrid systems. Proceedings of the IEEE, 88(7):971–984, 2000.

[13] J. Anderson, R. N. M. Watson, D. Chisnall, K. Gudka, I. Marinos, and

B. Davis. TESLA: Temporally Enhanced Security Logic Assertions. Pro-

ceedings of the Ninth European Conference on Computer Systems - EuroSys

’14, pages 1–14, 2014.

[14] K. Androutsopoulos. Specification and verification of reactive systems with

rsds. (June 2004), 2004.

[15] P. J. Antsaklis and N. Dame. Hybrid Systems : Review and Recent Progress.

2003.

[16] P. J. Antsaklis, X. Koutsoukos, and J. Zaytoon. On hybrid control of complex

systems: A survey. IEEE Trans. Autom. Control, vol:32no9—-10pp1023—-

1045, 1998.

[17] S. Arun-Kumar. Introduction to Logic for Computer Science. page 97, 2002.

[18] G. Audemard, M. Bozzano, A. Cimatti, and R. Sebastiani. Verifying industrial

hybrid systems with MathSAT. Electronic Notes in Theoretical Computer

Science, 119(2):17–32, 2005.

[19] F. Bacchus, J. Tenenberg, and J. A. Koomen. A Non-Rei ed Temporal Logic

1 Introduction 2 A Non-Rei ed Temporal Logic. (Focs 1989):1–19.

169

BIBLIOGRAPHY

[20] R. J. R. Back. Atomicity Refinement in a Refinement Calculus Framework.

Computer, pages 1–43, 1993.

[21] H. Barringer, M. Fisher, D. Gabbay, G. Gough, and R. Owens. MetateM : A

Framework for Programming in Temporal Logic. Proceedings of REX Work-

shop on Stepwise Refinement of Distributed Systems: Models, Formalisms,

Correctness, 3096:94–129, 1990.

[22] A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and

TLTL. ACM Transactions on Software Engineering and Methodology, 20(4):1–

64, 2011.

[23] A. A. Bayazit and S. Malik. Complementary use of runtime validation and

model checking. IEEE/ACM International Conference on Computer-Aided

Design, Digest of Technical Papers, ICCAD, 2005:1049–1056, 2005.

[24] P. Bellini, R. Mattolini, and P. Nesi. Temporal logics for real-time system

specification. ACM Computing Surveys, 32(1):12–42, 2000.

[25] J. A. Bergstra and C. A. Middelburg. Process algebra for hybrid systems.

Theoretical Computer Science, 335(2-3):215–280, 2005.

[26] J. A. Bergstra and C. A. Middelburg. Continuity controlled hybrid automata.

Journal of Logic and Algebraic Programming, 68(1-2):5–53, 2006.

[27] S. Bisanz, U. Hannemann, and J. Peleska. Executable Semantics for Hybrid

Systems - The Hybrid Low-Level Framework. 2008 32nd Annual IEEE Inter-

national Computer Software and Applications Conference, pages 64–67, 2008.

[28] H. Bowman, H. Cameron, P. King, and S. Thompson. Mexitl: Multimedia in

executable interval temporal logic. Formal Methods in System Design, 22(1):5–

38, 2003.

170

BIBLIOGRAPHY

[29] H. Brandl, M. Weiglhofer, and B. K. Aichernig. Automated conformance ver-

ification of hybrid systems. Proceedings - International Conference on Quality

Software, pages 3–12, 2010.

[30] M. S. Branicky and M. S. Branicky. Studies in Hybrid Systems : Modeling ,

Analysis , and Control by by. 1995.

[31] M. S. Branicky and M. S. Branicky. Studies in Hybrid Systems: Modeling,

Analysis, and Control. Electrical Engineering, 1995.

[32] C. Brzoska. Programming in metric temporal logic. Theoretical computer

science, 202(1-2):55–125, 1998.

[33] T. Bultan. CMPSC 267 Class Notes Introduction to Temporal Logic and

Model Checking Chapter 1 Introduction.

[34] L. P. Carloni, R. Passerone, A. Pinto, and A. L. Angiovanni-Vincentelli. Lan-

guages and Tools for Hybrid Systems Design. Foundations and Trends R© in

Electronic Design Automation, 1(1/2):1–193, 2006.

[35] R. Carter. Verification of Liveness Properties on Hybrid Dynamical Systems.

2013.

[36] A. Cau. Interval Temporal Logic A not so short introduction. 2009, 2009.

[37] A. Cau. Interval Temporal Logic A not so short introduction Features of ITL

Features of ITL ITL ’ s Influence ITL ’ s Influence Part I : Propositional Logic

Part II : Propositional ITL. (2), 2009.

[38] A. Cau, C. Czarnecki, and H. Zedan. Designing a provably correct robt control

system using a ‘lean’ formal method. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 1486:123–132, 1998.

171

BIBLIOGRAPHY

[39] A. Cau, H. Janicke, and B. Moszkowski. Verification and enforcement of access

control policies. Formal Methods in System Design, 43(3):450–492, 2013.

[40] A. Cau and B. Moszkowski. Interval Temporal Logic Proof Checker 1. 1997.

[41] A. Cau, B. Moszkowski, and H. Zedan. Interval temporal logic. URL:

http://www. cms. dmu. ac. uk/ . . . , pages 1–27, 2006.

[42] A. Cau and H. Zedan. Refining interval temporal logic specifications. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 1231:79–94, 1997.

[43] A. Cau, H. Zedan, N. Coleman, and B. Moszkowski. Using ITL and Tempura

for large-scale specification and simulation. Pdp, 1996.

[44] Y. F. Chen and Z. M. Liu. Integrating temporal logics. Integrated Formal

Methods, Proceedings, 2999(Dc):402–420, 2004.

[45] Z. Chen, A. Cau, H. Zedan, X. Liu, and H. Yang. A Refinement Calculus

for the Development of Real-Time Systems. Proceedings 1998 Asia Pacific

Software Engineering Conference (Cat. No.98EX240), 1998.

[46] S. Colin and L. Mariani. Runtime Verification. Lecture Notes in Computer

Science, 55:525–555, 2005.

[47] W. Damm, H. Dierks, S. Disch, W. Hagemann, F. Pigorsch, C. Scholl,

U. Waldmann, and B. Wirtz. Exact and fully symbolic verification of lin-

ear hybrid automata with large discrete state spaces. Science of Computer

Programming, 77(10-11):1122–1150, 2012.

[48] J. M. Davoren and A. Nerode. Logics for hybrid systems. Proceedings of the

IEEE, 88(7):985–1010, 2000.

172

BIBLIOGRAPHY

[49] C. De Boor, C. De Boor, C. De Boor, and C. De Boor. A practical guide to

splines, volume 27. Springer-Verlag New York, 1978.

[50] V. D. Dimitriadis. Modelling , Safety Verification and Design Continuous

Discrete / Processing Systems of. (April), 1997.

[51] a. Donzé. Trajectory-Based Verification and Controller Synthesis for Contin-

uous and Hybrid Systems. Analysis, 2007.

[52] J. Dorsey. Continuous and Discrete Control Systems. 85782895(M), 2002.

[53] D. Dranidis, E. Ramollari, and D. Kourtesis. Run-time verification of be-

havioural conformance for conversational web services. ECOWS’09 - 7th IEEE

European Conference on Web Services, pages 139–147, 2009.

[54] Z. Duan and N. Zhang. A Complete Axiomatization of Propositional Pro-

jection Temporal Logic. 2008 2nd IFIP/IEEE International Symposium on

Theoretical Aspects of Software Engineering, pages 271–278, 2008.

[55] A. M. El-kustaban. Studying and Analysing Transactional Memory Using

Interval Temporal Logic and AnaTempura. 1988.

[56] K. D. Emanuele and G. Pace. Runtime Validation Using Interval Temporal

Logic.

[57] E. A. Emerson and J. Y. Halpern. “sometimes” and “not never” revisited: on

branching versus linear time temporal logic. Journal of the ACM, 33(1):151–

178, 1986.

[58] A. Estrin and M. Kaminski. The expressive power of Temporal Logic of Ac-

tions. Journal of Logic and Computation, 12(5):839–859, 2002.

173

BIBLIOGRAPHY

[59] G. E. Fainekos and G. J. Pappas. Robustness of temporal logic specifications

for continuous time signals. Theoretical Computer Science, 410(42):4262–4291,

2009.

[60] D. T. Fakultat and A. Cau. COMPOSITIONAL VERIFICATION AND

SPECIFICATION OF REFINEMENT FOR REACTIVE SYSTEMS IN A

DENSE TIME Dissertation Antonio Cau Zum Druck genehmigt :. (August),

1995.

[61] C. D. Fensel and F. Fischer. Propositional Logic c©. pages 1–73, 2010.

[62] M. Finger and D. Gabbay. Combining Temporal Logic Systems. Notre Dame

Journal of Formal Logic, 37(2):204–232, 1996.

[63] T. Finin. Introduction to Logic Programming and Prolog. Most.

[64] M. Fisher. A Survey of Concurrent M ETATE M — The Language and its

Applications.

[65] M. Fisher. A Resolution Method for Temporal Logic. Ijcai, 91:99–104, 1991.

[66] M. Fisher. An introduction to executable temporal logics. Knowledge Engi-

neering Review, 11(01):43, 1996.

[67] M. Fisher. Implementing temporal logics: Tools for execution and proof. Lec-

ture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 3900 LNAI:129–142, 2006.

[68] M. Fisher. An Introduction to Practical Formal Methods Using Temporal Logic.

2011.

[69] M. Fr and M. R. Hansen. A Robust Interpretation of Duration Calculus.

Symposium A Quarterly Journal In Modern Foreign Literatures.

174

BIBLIOGRAPHY

[70] P. Fritzson and A. Pop. Meta-Programming and Language Modeling with.

2011.

[71] P. Fulfillment. A Theory of Run-time Verification for Safety Critical Reactive

Systems. (May), 2005.

[72] C. Furia and M. Rossi. Integrating discrete-and continuous-time metric tempo-

ral logics through sampling. Formal Modeling and Analysis of Timed Systems,

pages 215–229, 2006.

[73] C. A. Furia and M. Rossi. A theory of sampling for continuous-time metric

temporal logic. ACM Transactions on Computational Logic, 12(1):1–40, 2010.

[74] A. Galton. Temporal Logic. 2004, 2003.

[75] V. Goranko, A. Montanari, P. Committee, E. Franconi, and P. H. Groningen.

Interval temporal logics. Theoretical Computer Science.

[76] M. Gordon. From LCF to HOL: a short history. Proof, Language, and Inter-

action, pages 1–16, 2000.

[77] D. P. Guelev. Probabilistic Interval Temporal Logic. (144), 1998.

[78] R. Hale. Using Temporal Logic for Prototyping: The Design of a Lift Con-

troller. Temporal Logic in Specification, 398:374–408, 1987.

[79] R. Hale and B. Moszkowski. Parallel Programming in T e m p o r a l Logic.

[80] S. Hanneke, W. Fu, and E. Xing. Discrete Temporal Models of Social Net-

works. Electronic Journal of Statistics, 4:585–605, 2010.

[81] M. R. D. o. I. T. T. U. o. D. Hansen and Z. I. I. f. S. T. N. U. Chaochen.

Duration Calculus : Logical Foundations. Formal Aspects of Computing -

Springer, 9(3):283–330, 1997.

175

BIBLIOGRAPHY

[82] I. A. N. Hayes, R. Colvin, D. Hemer, and P. Strooper. A Refinement Calculus

for Logic Programs arXiv : cs / 0202002v1 [cs . SE] 4 Feb 2002.

[83] W. Heise. An efficient model checker for Duration Calculus. Mathematical

Modelling, 2010.

[84] T. a. Henzinger, P.-h. Ho, and H. Wong-toi. HYTECH: a model checker for

hybrid systems. 1(1997):110–122, 2001.

[85] T. a. Henzinger and P. W. Kopke. Discrete-time control for rectangular hybrid

automata. Theoretical Computer Science, 221(1-2):369–392, 1999.

[86] T. a. Henzinger and H. Wong-toi. from the HYTECH. Analysis, (December),

2001.

[87] P. Hespanha. Discrete Event , Hybrid Systems. Science.

[88] Y. Hirshfeld and A. Rabinovich. An expressive temporal logic for real time.

Mathematical Foundations of Computer . . . , pages 492–504, 2006.

[89] Y.-c. Ho. CS780 Discrete-State Models. 77(1):3–6, 1989.

[90] B. E. Hons, M. Eng, and D. Heffernan. A Monitoring Approach to Facili-

tate Run-time Verification of Software in Deeply Embedded Systems Author.

Methods, (March), 2010.

[91] D. V. Hung. From Continuous Specification to Discrete Design. Sensors And

Actuators, 2002.

[92] D. V. Hung and Z. Chaochen. Probabilistic Duration Calculus for Continuous

Time. Formal Aspects of Computing, 11:21–44, 1999.

[93] D. V. Hung, H. Zedan, and A. Cau. A Formal Design Technique for Real-Time

Embedded Systems Development using Duration Calculus.

176

BIBLIOGRAPHY

[94] M. R. A. Huth and M. D. Ryan. Modelling and reasoning about systems. 2000.

[95] L. Imsland, P. Kittilsen, and T. S. Schei. Model-based optimizing control

and estimation using Modelica models. Modeling, Identification and Control,

31(3):107–121, 2010.

[96] A. Informatica. Parallel composition of assumption-commitment specifications

Semantic analysis. 176:1–24, 1996.

[97] H. Janicke. ITLTracer: Runtime Verification of Properties expressed in ITL.

356, 2010.

[98] H. Janicke, F. Siewe, K. Jones, A. Cau, and H. Zedan. Analysis and Run-time

Verification of Dynamic Security Policies. Defence Applications of Multi-Agent

Systems, 3890:92–103, 2006.

[99] S. Jiang and R. Kumar. Failure diagnosis of discrete event systems with linear-

time temporal logic specifications. pages 1–26.

[100] K. Johannisson. Thesis for the Degree of Doctor of Philosophy Formal and

Informal Software Specifications. 2005.

[101] A. A. Julius. On Interconnection and Equivalence of Continuous and Discrete

Systems A Behavioral Perspective. 2005.

[102] T. Kaye, S. Kholgade, J. Knutz, D. Lannoye, and J. Sartori. Applying Software

Engineering Principles in Developing Safety-Critical Software Systems : A

Class Project.

[103] R. V. Kharche. MATLAB Automatic Differentiation using Source Transfor-

mation. (August 2011), 2012.

[104] D. Kincaid and W. Cheney. Numerical Analysis, Brooks, 1991.

177

BIBLIOGRAPHY

[105] D. Kortenkamp, R. Simmons, T. Milam, and J. L. Fernández. A Suite of Tools

for Debugging Distributed Autonomous Systems. Formal Methods in System

Design, 24(2):157–188, 2004.

[106] B. Krogh. Recent advances in discrete analysis and control of hybrid systems.

Sixth International Workshop on Discrete Event Systems, 2002. Proceedings.,

pages 2–5, 2002.

[107] Y. Kwon and G. Agha. LTLC: Linear temporal logic for control. Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics), 4981 LNCS:316–329, 2008.

[108] L. Lamport. What Good is Temporal Logic?, 1983.

[109] L. Lamport. The temporal logic of actions. ACM Transactions on Program-

ming Languages and Systems, 16(3):872–923, 1994.

[110] J. A. Larsen, R. Wísniewski, and J. D. Grunnet. Combinatorial hybrid systems.

2008.

[111] E. a. Lee and H. Zheng. Operational semantics of hybrid systems. Hybrid

Systems: Computation and Control (HSCC), volume LNCS 3414, pages 25–

53, 2005.

[112] M. Leucker. Teaching runtime verification. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 7186 LNCS:34–48, 2012.

[113] X. Li. Speci cation and Simulation of a Concurrent Real-time System.

[114] F. Lin. Analysis and synthesis of discrete event systems using temporal\nlogic.

Proceedings of the 1991 IEEE International Symposium on Intelligent Control,

(August):140–145, 1991.

178

BIBLIOGRAPHY

[115] X. Liu, Z. Chen, H. Yang, H. Zedan, and W. Chu. A Design Framework

for System Re-engineering. Proceedings of Joint 4th International Computer

Science Conference and 4th Asia Pacific Software Engineering Conference,

pages 342–352, 1997.

[116] G. Lowe and H. Zedan. Re nement of Complex Systems : A Case Study 1

Introduction 2 The Temporal Agent Model. 1995.

[117] F. M. An Introduction to Pratical formal Methods Using Temporal Logic. 2011.

[118] Y. Ma, Z. Duan, X. Wang, and X. Yang. An interpreter for framed tempura

and its application. 2007.

[119] M. Mäkelä. T-79 . 231 Parallel and Distributed Digital Systems Temporal

Logic Temporal logic. 2003.

[120] O. Maler, D. Nickovic, and A. Pnueli. Checking temporal properties of dis-

crete, timed and continuous behaviors. Lecture Notes in Computer Science

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes

in Bioinformatics), 4800 LNCS:475–505, 2008.

[121] Z. Manna and A. Pnueli. Verifying hybrid systems. Lecture Notes In Computer

Science, 736:4–35, 1993.

[122] N. Markey, I. Course, and C. Section. Expressiveness of temporal logics.

Computer, 2006.

[123] J. Melorose, R. Perroy, and S. Careas. No Title No Title. Statewide Agricul-

tural Land Use Baseline 2015, 1(2001), 2015.

[124] M. Mergency. a Framework for. 22(8):1–23, 2011.

179

BIBLIOGRAPHY

[125] C. A. Middelburg. Truth of Duration Calculus Formulae in Timed Frames.

(82), 1996.

[126] S. Mitra. TECHNOLOGY A Verification Framework for Hybrid Systems.

(September), 2007.

[127] A. Mok and D. Stuart. Simulation vs. verification: getting the best of both

worlds. Proceedings of 11th Annual Conference on Computer Assurance.

COMPASS ’96, pages 12–22, 1996.

[128] B. Moszkowski. Executing temporal logic programs. Seminar on Concurrency,

(February 2000), 1986.

[129] B. Moszkowski. A hierarchical analysis of propositional temporal logic based

on intervals. arXiv preprint cs/0601008, 2:1–45, 2006.

[130] B. Moszkowski. Using Temporal Logic to Analyse Temporal Logic: A Hi-

erarchical Approach Based on Intervals. Journal of Logic and Computation,

17(2):333–409, 2007.

[131] B. Moszkowski. for specification of concurrent systems. 2010.

[132] B. Moszkowski. Interconnections between classes of sequentially compositional

temporal formulas. Information Processing Letters, 113(9):350–353, 2013.

[133] B. Moszkowski. Compositional reasoning using intervals and time reversal.

Annals of Mathematics and Artificial Intelligence, 71(1-3):175–250, 2014.

[134] B. Moszkowski, D. Guelev, and M. Leucker. Guest editors’ preface to spe-

cial issue on interval temporal logics. Annals of Mathematics and Artificial

Intelligence, 71(1-3):1–9, 2014.

180

BIBLIOGRAPHY

[135] B. C. Moszkowski. An Automata-Theoretic Completeness Proof for Interval

Temporal Logic (Extended Abstract). 1853(Icalp):223–234, 2000.

[136] P. Naldurg, K. Sen, and P. Thati. A temporal logic based framework for

intrusion detection. Formal Techniques for Networked and . . . , 2004.

[137] S. Nidhra and J. Dondeti. How to Write a L iterature R eview. 2(2):29–50,

2012.

[138] M. Orgun and W. Ma. An Overview of Temporal and Modal Logic Program-

ming. Proceedings of the 1st International Conference on Temporal Logic -

Lecture Notes in Artificial Intelligence, pages 445–479, 1994.

[139] G. Ossimitz and M. Mrotzek. The basics of system dynamics: Discrete vs.

continuous modelling of time. . . . the System Dynamics Society], System . . . ,

pages 1–8, 2008.

[140] O. Özgün and Y. Barlas. Discrete vs . Continuous Simulation : When Does

It Matter ? 27th International Conference of The System Dynamics Society,

(06):1–22, 2009.

[141] D. K. Pace. Modeling and simulation verification and validation challenges.

Johns Hopkins APL Technical Digest (Applied Physics Laboratory), 25(2):163–

172, 2004.

[142] P. K. Pandya. Interval duration logic: Expressiveness and decidability. Elec-

tronic Notes in Theoretical Computer Science, 65(6):241–259, 2002.

[143] H. Peter and M. Bernhard. Towards an Algebra of Hybrid Systems. pages

121–133, 2006.

181

BIBLIOGRAPHY

[144] Q. C. Pham. Analysis of discrete and hybrid stochastic systems by nonlinear

contraction theory. 2008 10th International Conference on Control, Automa-

tion, Robotics and Vision, ICARCV 2008, (December):1054–1059, 2008.

[145] A. Pnueli, C. Science, L. Zuck, and N. Haven. In and Out of Temporal Logic.

1993.

[146] A. Rabinovich. Automata over continuous time. Theoretical Computer Sci-

ence, 300(1-3):331–363, 2003.

[147] A. Rabinovich and B. A. Trakhtenbrot. From Finite Automata toward Hybrid

Systems (Extended Abstract). (5).

[148] A. Rao, A. Cau, and H. Zedan. Visualization of interval temporal logic. Proc.

5th Joint Conference on Information Sciences, pages 687–690, 2000.

[149] S. Reengineering. Software Reengineering for Evolution 3.1. pages 23–52.

[150] T. Reinbacher, J. Geist, P. Moosbrugger, M. Horauer, and A. Steininger. Par-

allel runtime verification of temporal properties for embedded software. Pro-

ceedings of 2012 8th IEEE/ASME International Conference on Mechatronic

and Embedded Systems and Applications, MESA 2012, pages 224–231, 2012.

[151] C. H. Reinsch. Smoothing by spline functions. Numerische mathematik,

10(3):177–183, 1967.

[152] G. Rosu. Temporal Logic.

[153] P. Schnoebelen. The Complexity of Temporal Logic Model Checking. World,

4:1–44, 2002.

[154] E. Shafie. Runtime Detection and Prevention for Structure Query Language

Injection Attacks. 2013.

182

BIBLIOGRAPHY

[155] F. Siewe, A. Cau, and H. Zedan. A compositional framework for access con-

trol policies enforcement. Proceedings of the 2003 ACM Workshop on Formal

Methods in Security Engineering, FMSE’03, Oct 30 2003, pages 32–42, 2003.

[156] F. Siewe and D. V. Hung. Deriving real-time programs from duration calculus

specifications. (222):92–97, 2000.

[157] F. Siewe, H. Janicke, and K. Jones. Dynamic access control policies and web-

service composition. 93, 2005.

[158] F. Siewe. A Compositional Framework for the Development of Secure Access

Control. page 225, 2005.

[159] B. I. Silva, K. Richeson, B. Krogh, and A. Chutinan. Modeling and verifying

hybrid dynamic systems using CheckMate. Proceedings of 4th International

Conference on Automation of Mixed Processes, pages 323–328, 2000.

[160] M. Solanki. A compositional framework for the specification, verification and

runtime validation of reactive web services. Framework, 2005.

[161] M. Solanki. Tesco-s: A framework for defining temporal semantics in owl

enabled services. . . . on Frameworks for Semantics in Web Services, pages

1–6, 2005.

[162] M. Solanki, A. Cau, and H. Zedan. Introducing Compositionality in Webser-

vice Descriptions.

[163] B. A. Trakhtenbrot. Automata, circuits and hybrids: Facets of continuous

time (Invited Talk). pages 754–755, 2001.

[164] S. Troncale and J.-p. Comet. A Temporal Logic with Event Clock Automata

for Timed Hybrid Petri Nets. Event (London), (April), 2007.

183

BIBLIOGRAPHY

[165] G. Tsai and B. Mcmillin. ENSURING THE SATISFACTION OF A TEM-

PORAL SPECIFICATION AT RUN-TIME. 1995.

[166] A. Tuzhilin. Programming reactive systems in temporal logic. 1990.

[167] P.-b. R. Verification. Mohamed Khalefa Sarrab. (March), 2011.

[168] V. Vishal, S. Gugwad, and S. Singh. Modeling and Verification of Agent Based

Adaptive Traffic Signal using Symbolic Model Verifier. 53(3), 2012.

[169] B. Wadge. A hybrid predicate calculus.

[170] F. Wagner, R. Schmuki, T. Wagner, and P. Wolstenholme. Modeling Software

with Finite State Machines A Practical Approach. 2006.

[171] T. Wilke. Specifying Timed State Sequences in Powerful Decidable Logics and

Timed Automata. Notes, 863:694–715, 1994.

[172] Q. Xu, A. Cau, and P. Collette. On unifying assumption-commitment style

proof rules for concurrency. CONCUR’94: Concurrency Theory, pages 267–

282, 1994.

[173] H. Yang, X. Liu, and H. Zedan. Tackling the Abstraction Problem for Reverse

Engineering in A System Re-engineering Approach. International Conference

on Software Maintenance (Cat. No. 98CB36272), (November 1998):284–293,

1998.

[174] A. C. Zedan. The Systematic Construction of Information Systems. Systems

Engineering for Business Process Change, NA:1–16, 2000.

[175] H. Zedan, A. Cau, and B. Moszkowski. Compositional Modelling :. Syntax

And Semantics, pages 19–44.

184

BIBLIOGRAPHY

[176] J. Zhang and B. H. C. Cheng. Using temporal logic to specify adaptive pro-

gram semantics. Journal of Systems and Software, 79(10):1361–1369, 2006.

[177] S. Zhou, A. Cau, H. Zedan, and A. Cau. Run-time Analysis of Time-critical

Systems. Journal of System Architecture, 51(5):331—-345, 2005.

[178] S. Zhou, H. Zedan, and A. Cau. A framework for analysing the effect of

’change’ in legacy code. Proceedings IEEE International Conference on Soft-

ware Maintenance - 1999 (ICSM’99). ’Software Maintenance for Business

Change’ (Cat. No.99CB36360), pages 411–420, 1999.

185

	Dedication
	Abstract
	Declaration
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Bibliography
	Listings
	List of Abbreviations
	Introduction
	Motivation
	Problem Statement
	Research Objectives
	Research Question
	Scope of the Research
	Research Methodology
	Success Criteria
	Thesis Structure

	Literature review
	Introduction
	Hybrid System
	Systems definition
	Systems specification
	Formal modelling
	Formalism of Hybrid Systems
	Discrete and Continuous systems formalism
	Hybrid Systems control
	Hybrid Systems specification
	Hybrid Linear automata

	Formal Methods
	Formal methods specification
	Classification of formal methods
	Temporal Logic (TL)
	Time in temporal logic
	Temporal Logic classification
	Propositional versus First order
	Computational versus Linear Time
	Time points versus Intervals
	Duration Calculus
	Discrete or Continuous

	Runtime verification
	Contemporary Runtime verification Methods
	A conceptual view of Runtime verification
	Temporal Logic-based monitoring methods

	Runtime verification versus Model Checking
	Runtime verification versus Testing
	Runtime verification Applications
	Matlab and Simulink

	Summary

	Preliminaries
	Introduction
	Interval Temporal Logic
	Syntax of ITL
	Expressions
	Formulae

	Semantics
	Derived formulae
	Derived constructs
	Derived constructs related to expressions

	An Executable subset of ITL (Tempura)
	The Language: Tempura
	The Tool: AnaTempura
	AnaTempura mechanism

	Summary

	SPline Interval Temporal logic(SPITL)
	Introduction
	Spline background
	Spline types
	Linear Spline
	Quadratic Spline
	cubic Spline

	Spline Interval Temporal logic(SPITL)
	Discrete changes in SPITL
	Continuous changes in SPITL
	Syntax of SPITL
	Phase definition In (SPITL)
	Timed expressions definition In (SPITL)
	Semantics of SPITL Expressions
	Semantics of SPITL formulae
	Derived formulae
	Derived constructs
	Expressions derived constructs

	Discrete and Continuous changes Examples
	Discrete Examples
	Continuous Examples

	Spline example
	Summary

	Runtime verivcation of hybrid system Framework
	Introduction
	General overview of the framework
	System specifications (SPITL)
	Modelling specifications in Tempura
	Matlab/Simulink (s-function)
	An Automatic function to Inject assertion points using AnaTempura
	Chapter summary

	Design and Implementation
	Overview
	Simulink and Model based Implementation
	AnaTempura
	Steps to compiling the Design
	AnaTempura and Assertion point
	Matlab Engine
	S Function
	FIFO Pipe
	Simulink Model
	Summary

	Case study and Evaluation
	Overview
	Mine pump system (the case study)
	Case Study Description
	Specification of mine pump system in SPITL
	Functional requirement
	Timing requirement

	Writing the requirement in Tempura
	C-Mex Code and S-function
	Simulink model
	Case study results

	Summary

	Conclusion and Future Work
	Introduction
	Summary of Thesis
	Research Question revisited
	Criteria for Success and Analysis
	Extended ITL formalism to reason about hybrid systems
	Extended AnaTempura

	Future Directions

	Appendix A
	Mine Pump Controller wrapper
	Mine Pump Controller
	Matlab Engine code
	Fifo Pipe

	Appendix B
	Assertion points
	Tempura Code

