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Abstract ii 

Design of sensory multi-session trials with preparation constraints 

Designs for sensory studies must satisfy several requirements. Usually a given num- 

ber of products are to be evaluated and there is an upper limit to the number of 

assessors available. Due to variation in sensory perception, inter-assessor product 

comparisons are preferred. For large product numbers, trials are split into sessions 

to avoid sensory fatigue and the sequential presentation of products can cause or- 

der and carry-over effects. Thus, resolvable row-column or cross-over designs are 

required, which ensure that each assessor tastes all products the same number of 

times. 

In this thesis a three-step procedure is proposed to generate designs for trials where 

the number of products prepared for or served in each session is limited. First, an 

incomplete block design with a special column structure, the preparation design, is 

created, assigning products to sessions. Secondly, a cross-over design is constructed, 

assigning the columns of the preparation design to assessors. In the third step 

the two designs are combined by identifying the column-order of the preparation 

design that results in the highest average efficiency of the complete cross-over de- 

sign. Search algorithms for incomplete block and cross-over designs are modified to 

produce preparation and panel designs with a special structure to guarantee resolv- 

ability of the complete sensory design. 

This procedure has been enhanced to produce designs for trials involving a control 

and several test products, in which control-test comparisons are estimated with 

higher precision than test-test comparisons. Two distinct construction methods 

have been developed for this case. By using factorial preparation designs the three- 

step procedure can also be adapted for creating factorial multi-session designs with 

or without a control product. 
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Chapter 1 

Introduction 

Sensory science is defined as the study of sensory responses of humans or animals 

to products or services (Chambers & Wolf, eds, 1996). Its scientific aim is to under- 

stand the basic chemical and physical characteristics that cause our perception of 

quality. Food producers use sensory methods to develop and maintain products of 

high quality. The statistical analysis related to food studies is called sensometrics 

and its main task is to provide analytical models to extract relevant information from 

multi-dimensional data collected in sensory studies (Martens and Martens, 1989). 

This thesis is concerned with finding efficient designs, so that the maximum amount 

of information can be obtained from a sensory trial with the resources available. 

Using efficient designs means that a panel can be run at minimum cost, which can 

accumulate substantial savings over time. 

Sensory methods to analyse food products can be divided into analytical and af- 
fective methods. At the analytical stage the interest is in detecting differences and 

specifying their size. This analysis is conducted by a trained panel of assessors. Af- 

fective methods, on the other hand, are carried out by a random sample of expected 
future customers, whose preference and acceptance of a new product is explored. 

In analytical experiments difference tests are used to detect or confirm suspected 

1 



Introduction 2 

small differences in product characteristics or product quality, if differences between 

products are small. If the differences between products can be detected more easily 

and an estimate of the size of the differences is also of interest, ranking and scoring 

procedures can be used. The main part of this thesis is concerned with designs 

for sensory profiling trials, i. e. scoring procedures, but may also be useful for small 

consumer trials, difference testing and ranking procedures. 

Sensory profiling is used to measure the type and intensity of characteristic attributes 

of a product. While there are specific methods used for profiling, for example, the 

Flavour Profile Method or Quantitative Descriptive Analysis, many sensory labora- 

tories have their own sensory profiling techniques and their own statistical models 

to analyse the data. In the usual form of sensory profiling experiments assessors 

are presented sequentially with the products to be compared and rate them on the 

attributes of the vocabulary for this set of products. Profiling experiments are too 

complex for consumers, who are not familiar with the sensory language used in these 

experiments. 

The data obtained in sensory profiling is highly multi-dimensional. Assessors rate 

several products repeatedly on a large number of attributes. Consequently both 

univariate and multivariate methods are used to describe the differences between 

products. Univariate procedures are mainly used for describing the size of the dif- 

ferences between products on an attribute, while multivariate procedures highlight 

more complex relationships between products and attributes. Both methods com- 

plement each other. Before adequate designs for a study can be constructed, it is 

important to know how the data will be analysed. Design plans are only optimal 

for the specific analysis model they are created for. Thus, in Chapter 2 univariate 

models for sensory profiling data are presented. 

Due to large assessor differences, product comparisons made by the same assessor 

are more similar than scores from different assessors. Thus, usually repeated mea- 
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surement designs are used for profiling experiments. Due to the sequential serving of 

the food products two other factors need to be accounted for in adequate designs and 

analysis models. These are order and carry-over effects. Order effects are present 

when the perceived intensity of a product varies with the position it is served in. 

Carry-over effects refer to the effects a product of the previous serving position has 

on the perceived intensity in the following serving position. 

The function of the sensory design is to allocate product samples to assessors and to 

determine the serving order for every assessor. In the simplest setting all products 

can be assessed by an assessor in a single session. An overview of complete block 

designs, which are the relevant designs for this setting, is given in Chapter 3. 

Often there are too many products to be tasted successively without the onset of 

sensory fatigue. If many products are consumed, the palate becomes less sensitive 

to the stimuli of the products. Then the trial has to be split into sessions, in which 

a subset of the products is tested. Over all sessions each assessor still tastes all the 

products. Chapter 4 discusses resolvable designs, which can be used for multi-session 

trials, and gives an overview of construction methods for such designs. 

If the products to be compared involve extensive preparation before serving, it is 

often not possible to have every product available for every session. Even if all 

products could be available, it is sometimes advantageous to reduce the number of 

products available in one session. This way mistakes in the preparation process and 

with allocating products to assessors are more likely to be avoided. On the other 

hand, as many products as possible should be assessed in each session to minimise 

context effects. Context effect is a general term that describes the dependence of 

the attribute scores of a product on the other products assessed along with it. A 

product might be assessed differently, if it is tasted alongside very similar or very 

different products. For multi-session trials with preparation constraints, the designs 

introduced in Chapter 4 cannot be used. Thus, in Chapter 5a new procedure is 
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proposed that takes the preparation constraint into consideration. It consists of 

three steps. In the first step, a preparation design is constructed that assigns the 

product subsets to sessions. In a second step, a panel design is constructed which 

assigns the columns of the preparation design to assessors. In the third step, the two 

designs are combined, while optimising the column order of the preparation design. 

For the procedure to work both, the preparation and the panel design, require a 

special structure, which is not catered for by existing design algorithms. Different 

construction techniques for preparation designs (incomplete block designs with a 

special structure) and panel designs (cross-over designs with a special structure) are 

discussed and compared, and the influence of the preparation constraint is explored. 

Sometimes designs are necessary, in which a control product is assessed alongside 

with other test products. In such a trial comparisons between the test products and 

the control are of primary importance and comparisons not involving the control 

product are of secondary or no interest. A control has a special status within all 

test products. It can be the leading product on the market, the cheapest product 

or any other special competitor product or a standard product always included in 

studies concerning the product category at hand. Designs that reflect the prior- 

ity of control-test comparisons, so called treatment-control designs, are discussed 

in Chapter 6. A review is given about the relevant theory on treatment-control 

designs and a derivation of the three-step procedure for such designs is developed. 

This procedure can be used to construct treatment-control designs for multi-session 

trials for a chosen control replication. The two methods introduced can be used 

for treatment-control designs with different control replication. The first method 

creates designs with a control in every block and the second method creates designs 

with fewer control replications. 

The products in sensory trials often have a factorial structure, for example, in ex- 

periments in which a product is changed systematically to find a cheaper, healthier 

or otherwise more attractive formula for the product. In such studies, the interest 
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is not in finding differences between products, but between factors. Thus, designs 

are required that are optimised for the specific contrasts of interest rather than for 

all pairwise comparisons. In Chapter 7 it is shown how the three-step procedure 

can be modified to create factorial designs for multi-session trials with preparation 

constraints. 



Chapter 2 

Univariate models for sensory 

profiling experiments 

In the analysis of food products sensory profiling methods are used to assess the 

intensity of certain attributes of a set of products. In contrast to difference testing 

which is used to detect slight differences between products, profiling is used when it 

is known that differences between products exist. The aim of profiling is to identify 

which sensory attributes differ between products and to measure and describe their 

differences. The measuring instrument in sensory profiling is a panel of trained and 

appropriately instructed assessors. The number of assessors in a panel is fixed, usu- 

ally 8-20. They have been trained in food tasting and are familiar with the products 

and the attributes. 

The panel develops a sensory language for each product type it is studying, or mod- 

ifies an existing one, to describe all of the sensory properties of that type of food. 

During a trial, assessors rate several products of a product type, one after the other, 

on the attributes of the relevant sensory language. The set of scores an assessor 

assigns to all attributes of the products in all replications is called a profile. Various 

different scales are used in practise for sensory scoring procedures, e. g. point scales 

with or without labelled categories or line scales with or without marks or labels on 

6 
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the lines. 

7 

In this chapter, several univariate models for estimating product differences for a 

single attribute are discussed. The basic univariate model for sensory profiling ex- 

periments is a linear two-way analysis of variance model with additive fixed product 

and assessor effects, assuming normality for the scores (Nws, 1990): 

MNO : Yatr = /A + as + Tt + Eatr with var (Eatr) = a2 

yat,. is the assessor score of assessor a on product t in replication r, 

where 
as the assessor location effect of assessor a, 
Tt the product effect of product t, 

6Qtr the residual of assessor a on product t in replication r. 

A term for the assessor-by-product interaction could be included in the model. 

MN1 : Yatr =U+ as + Tt + (aT)at + Eatr with var (Eatr) _ o2 

where (aT)at refers to the assessor-by-product interaction of assessor a and product t. 

Order, session and carry-over effects and their pairwise interaction terms can be 

added to this model. Although these effects tend to be an order of magnitude smaller 

than assessor, treatment and assessor-treatment interaction effects, they cannot be 

ignored. Given the usually extremely large variation in sensory profiling data, it it 

is useful to include as many relevant sources of variation as necessary to reduce bias 

of the product estimators. 

The simple additive linear model has two major drawbacks. First, differences in 

scoring behaviour between the assessors tend to be large in spite of intensive train- 

ing: assessors often use different parts or different amounts of the scale and differ 

in precision. Second, there are scaling and distribution problems with the attribute 

scores. Even when the products are scored on a continuous scale, the linearity of the 
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scale is not ensured, i. e. differences on the upper part of the scale have not necessar- 

ily the same meaning as differences of the same magnitude on the lower part of the 

scale. And for a considerable number of attributes the product scores are skewed 

toward the left ("no/hardly any sensation felt")- 

These problems can be handled in two ways: by more extensive training of the as- 

sessors and by incorporating anticipated effects in the model. When searching for 

a model two characteristics have to be taken into account, bias and precision. The 

more parameters are included in the model the "better" is the fit of the model, which 

means there is less bias in the inferences, but sampling variation is greater. For more 

parsimonious models the sample variance is smaller, but there is more bias. The 

task of the statistician is to find a balance between these extremes. The following 

sections discuss a number of models for sensory trials that have been suggested in the 

literature. To make the comparisons easier, a unified notation different from most of 

the notation in the publications is used throughout this chapter. An overview of the 

notation is given in the appendix, Section A. I. In this chapter, the focus is mainly 

on univariate models using normal theory, since these are most frequently used in 

practise. A short summary of generalised linear models suggested for sensory trials 

is given in Section 2.5. 

A "good" assessor scores product attributes consistently, that is, with small variation 

over replications of the same product. Assuming an underlying order of intensity of 

the products for a given attribute, assessors are supposed to recognise this order and 

detect existing differences between products. They should also score accurately any 

reference products on their agreed value, when they are presented "blindly" in the 

trial. Defined control products are the only way to assess the proximity of the asses- 

sor's scores to an actual (true) value, as true product scores cannot be established 

in sensory profiling. It is preferable if assessors use a large part of the scale, because 

it makes it easier to specify existing differences between products. The products to 

be compared should therefore span as wide a range of the scale as possible. This 
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may not always be feasible for all attributes of the sensory language simultaneously. 

The members of the panel are trained to acquire these abilities and their perfor- 

mance is checked regularly to ensure the quality of the panel. Despite extensive 

training differences between assessors in a panel are unavoidable, since large differ- 

ences between individuals exist in the constitution of their sensory organs, resulting 

in different perceived intensities of stimuli and different time courses of perceptions. 

In profiling, assessors are asked to taste or smell a product, judge the differences 

between the perceived stimuli and score the product attributes accordingly on a 

specified scale (Dijksterhuis, 1997). 

During training, the panel is exposed to a range of the stimuli and it is aligned by 

reference products, since it is important that every assessor relates stimulus and 

attributes in the same way. Example products, that demonstrate the attributes, are 

used to ensure this. Additionally, one or more well chosen control products are often 

used, such that their values for the attributes are either agreed by the whole panel 

or set by the panel leader. All other products can then be compared and scored 

in relation to these products. These measures are taken to align assessors in their 

basic levels of assessment. Due to the complexity of the task and in spite of intensive 

training, between-assessor differences will most likely still exist. The inconsistency 

that has not been eliminated by extensive training can be identified and appropriate 

terms included in the model. 

The between-assessor differences in location can be accounted for in the design of 

the trial by using assessors as blocks. If every assessor tastes every product at least 

once, product scores can be compared for each assessor. The assessor term in a 

linear model (a,, in model MNO) can be associated with the location differences in 

scoring behaviour of assessors. 

If a product is tasted more than once (by the same assessor), a measure of asses- 
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sor consistency can also be estimated. This is important, since assessors vary in 

their consistency over replications, which is referred to as heteroscedasticity and is 

discussed in Section 2.1. The simplest way to compensate for differences in repeata- 

bility is by separate standardisation of each assessor's scores (Nws, 1990) before an 

analysis. Pritchett-Mangan (1992) and Wilkinson and Yuksel (1997) suggest using 

a weighted analysis instead, where weights are taken relative to the assessor's vari- 

ation. The idea in both cases is to give greater weight to more consistent assessors. 

Another problem in sensory profiling is that assessors differ also in the range of the 

scale they are using, which means that they are separating products by a different 

number of units, and this inflates the assessor-treatment interaction. This is called 

the "Rubber-Yardstick-Problem" (Gay and Mead, 1992). Brockhoff and Skovgaard 

(1994), Brockhoff (1997) and Mead and Gay (1995) tackle the problem by using a 

multiplicative term for assessor expansion in the model equation, discussed in Sec- 

tion 2.2. The Brockhoff model additionally allows for different individual variances 

to reflect the assessor differences in consistency. 

Another question for the analysis of sensory studies is whether assessors should be 

associated with random or fixed effects, depending on the viewpoint of the analysis. 

This controversy is illustrated in Section 2.3. Further influence factors relevant 

to sensory trials are discussed in Section 2.4. Scale problems and resulting non- 

linearities can be handled by generalised linear models. Suggested strategies are 

outlined in Section 2.5. 

2.1 Data transformation and weighted ANOVA 

models 

Assessor scores often seem to differ in precision, which is caused by two effects: as- 

sessors use different ranges of the scale and they differ in consistency. Nws (1990) 
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and Naes and Solheim (1991) suggest to transform the data before fitting the linear 

model MNI. The aim of their suggested transformations is to assimilate the individ- 

ual profiles to have similar ranges and similar means. The suggested general form 

of the transformation is 

9a1 

Gaya + Ta = 

0 

gall ... galt "". Ya1T 
0 

Yail ... Yoit ... YaiT 

9a1 . 
gall """ galt """ YaIT 

tal 
". " 

tal 

+ tai 
... 

tai 

taI taI 

Yait is the score of assessor a on product t for attribute i 
gat is a shrinking/stretching factor for assessor a and attribute i, 

where where gat can either be assumed to be the same ('aj = gaVi) 

or different for the attributes under consideration 
ta; is a constant added to achieve common centre points for all assessors. 

Two choices of GQ and TQ are suggested: 

" Standardise data to have zero mean and standard variance. 

" Standardise data to achieve minimum distance between profiles, where T. is 

chosen to centre the scores and Ga, as the solution to the minimisation of 

trace E (GaYa 
- Ga'Ya')(G. YQ - G., Y., )t 

a<a' 

Naes (1990) found it preferable to transform each attribute i separately, instead of 

using the same transformation for all attributes. This changes the distribution of 

the scores though, since mean and standard deviation are random variables and thus 

the scores are divided by the square root of a Chi-square distributed variable. 

In the literature, this procedure has been criticised because variation caused by using 

different ranges of the scale is treated in the same way as variation caused through 
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inconsistent scoring of products. Assessors who use a large part of the scale are as 

much down-weighted as assessors with high imprecision. 

Pritchett-Mangan (1992) suggests to include assessor discrepancies directly into the 

model using a weighted linear model, with different weights assigned to each assessor 

and every product. The idea is to weigh each observation by the estimated individual 

assessor variance as a measure of precision. But this adjustment only makes sense in 

relation to the actual length of the scale that has been used by the assessor, therefore 

the following weights are defined: 

Vmax 
wQt i vat actual 

where 
Vm 

(r 
1)Im 

Range2 _ 
(m IR ge)2) 

-1`r /f 

is the maximum variance any of the products could reach given the observed range. 

This transformation of the scale range is used to keep the weights dimension-free. 

vat is the actual observed sample variance of assessor a for product t 
actual 

(replication variance) 
r is the number of times a product is scored by an assessor, 

m is the integer part of 2 and 
Range is the observed range of the scores over the samples /products. 

To achieve a more symmetric distribution of the weights, a logarithmic transforma- 

tion is used for the weighted analysis of variance (ANOVA). The specific form of the 

ANOVA model is not specified by Pritchett-Mangan, but the use of random assessor 

effects is suggested. 

The advantage of this approach over transformation is that the adjustment is part 

of the model and that the weights are adjusted for range differences. 
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Wilkinson and Yuksel (1997) also model the variation dependent on the assessor who 

scores the product. They fit separate models for the location and the dispersion. 

The simplest form of their more general model, which is discussed in Section 2.5, 

assumes normality for the product scores. The location model is a weighted version 

of model MNi. To account for assessor specific variances, the model is fitted using 

estimates for weights that reflect the precision of the assessor 

1 
Wa = oz 

a 

which are estimated from the dispersion model. The dispersion model takes the 

logarithm of the squared residuals from the location model as the response variable 

and regresses it against an overall mean effect and an assessor effect. The models 

are fitted alternately, using the most recent fitted value as the input value in the 

other model. Initial values are estimated by using weights of 1 in the first run of 

the location model. 

2.2 Assessor expansiveness 

Gay and Mead (1992), Mead and Gay (1995), Brockhoff and Skovgaard (1994) and 

Brockhoff (1997) model the heterogeneous scale ranges between assessors directly 

in the model equation. They emphasise, that range differences contribute to the 

assessor-by-treatment interaction. The remainder of that interaction is caused by 

nonlinearities in scoring, for example different rank orders for products. Hence, they 

split the interaction term into a multiplicative term of "assessor expansiveness" and 

the remainder for "nonlinearities" in scoring. In this way, the presence of assessor 

expansiveness and nonlinearities effects can be tested. 

The difference between the models by Mead/Gay and Brockhoff/Skovgaard is in 

the emphasis on session-dependent assessor location effects in the former model and 

assessor dependent variances in the latter model. 
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The model equation for the general interaction model suggested by Brockhoff and 
Skovgaard (1994) differs from MN1 only by allowing for assessor-specific variances. 

MBO : Yatr =u+ as + Tt + (aT)at + Eatr with var (Eatr) = Ora 

A typical sensory trial is made up of several sessions. Assessors can taste only a 

certain number of products, usually three to six, without sensory fatigue. During 

an experiment, efforts are made to keep all conditions constant. Nonetheless, if 

products have to be prepared for every session, the products might differ slightly 
from one session to the next. Mead and Gay therefore include a session effect 

in their model. Instead of a common session effect and additive assessor location 

effects, they combine them to allow for session effects specific to the assessors, (a().,, 

which they call the blocking effect. A block is defined here as the set of scores from 

an assessor within one session. 

MMGO : gast =p+ (a()as + -rt + (aT)at + bast with var (east = 02 

where 
(a()as is a block effect 
Yost is the observation and 

East is the residual of assessor a in session s on product t, 

The product-by-assessor interaction term in both models can then be decomposed 

into a term for assessor expansiveness and one for the remaining interactions caused 

by nonlinearities in the scoring behaviour. A model without any such interaction 

can be written in the notation of Mead and Gay as 

MMGI : gast =A+ (a()as + ßaTt + east, with var (east = Q2 

where Qa is the stretching factor of assessor a and the other terms are defined as 
in model MMGO. MmGo and MMG1 are fitted by maximum likelihood methods and 
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then summarised in an ANOVA table. 

The corresponding notation for the Brockhoff model without nonlinearities is: 

2 MB, : Yatr = as + ßaTt + Eatr var (Eatr) = 0a 

In this model, three parameters are fitted for each assessor. The location parameters 

as allow for assessor-specific basic levels. The variance, resulting from the assessors 

using different ranges of the scale, is explained through the stretching factor /3a and 

the within-assessor variation is modelled through the assessor dependent variance 

or, '. A measure of assessor precision is then defined by 

2 

Sensitivitya =2 0, a 

which is the squared `signal-to-noise' ratio. 

As mentioned before, the size of the individual assessor variance is affected not only 

by inconsistent scoring, but also by the range used. This explains why assessor 

sensitivity is measured as the ratio between the squared stretching factor and the 

individual variance. 

The second criterion for assessor performance are the nonlinearity factors 

Nonlinearitiesa = %Q7(MBl) - QQ(Mso) 

which quantify the portion of the variance that is added to the error term in model 

MB1. The interaction term in model MBO consists of two parts, individual range 

usage and nonlinearities. The latter is dropped in model MBI. Hence the difference 

between both error terms is an estimate of the variance due to nonlinearity. The 

square root is taken, so that it can be interpreted on the units of the scale. The 

smaller the nonlinearity factor the better is the performance of the assessor. Models 
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MBO and MB, are fitted by an iterative algorithm for maximum likelihood, which is 

available as a SAS-macro. 

The Brockhoff and the Mead and Gay models are the most elaborate among the 

proposed linear models with normality assumptions. The advantage over Pritchet- 

Mangan's approach is that individual variances and differences in scale usage are 

separated in the model and each can be tested for significance. Therefore it allows 

more insight into the structure of the data. On the other hand, estimates are less 

precise and depend heavily on the assessor dependent variances, which are estimated 

with only modest precision. This disadvantage also holds for approaches by Noes 

(1990), Pritchett-Mangan (1992) and Wilkinson and Yuksel (1997). 

To gain insight into assessor performance, Brockhoff and Skovgaard (1994) and 

Brockhoff (1997) suggest to find the most parsimonious model that adequately fits 

the data from a profiling experiment. They suggest to compare five hierarchically 

related models, of which the first two are MBO and MBI. Three further models with 

different assessor structures are introduced. 

If all stretching factors , ßa are the same, model MB, simplifies to 

MB2: Yatr = lt + as + Tt + Eatr with var(eatr) _ Orä 

while model Mß. 2 reduces to model MBl with the additional parameter constraint 

c. of constant sensitivities for all assessors = .., _ -f = o1 aA 
C ß2 ßZ 

Y2 MB2.2 : Yatr =A+ cxa + QaTt + Eatr var (Eatr) = 
C2 

Model MB3 assumes no product differences, resulting in a model with assessor loca- 
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tion effects only, still allowing for heterogeneous assessor variances. 

MB3 : Yatr =µ+ cka + Eatr with var(Eatr) = QQ 

In all the models, the errors eat, are independently normally distributed. 

The models are compared by testing the following hypotheses: 

Hä : ... = aA vs. H1 : MBO 
Hg' : MB1 vs. Hl' : MBO 
LAO - Q1 = ... = NA vs. Hi 11 Ma1 

Hov: 4_... 
=4 a a vs. Hf': Mal 

l A 

17 

A likelihood-ratio test statistic is defined as minus twice the log-likelihood, and it 

follows asymptotically a X2-distribution. The Bartlett test is a bias-corrected mod- 

ification of the likelihood-ratio test. For hypotheses 11 to IV, the likelihood-ratio 

tests are used, as each of the models specified under Ho is nested within the corre- 

sponding model under H1. Hypothesis I is tested with the Bartlett test. 

The appropriate models should be expanded to all sub-models with equal variances, 

because hypotheses H0I to HOV are applicable only if the first hypothesis has been 

rejected. If this selection process for the best fitting analysis model is used for every 

trial it might not only result in different models for different attributes, but also in 

different models for the same attribute in different trials. Thus, it will be difficult to 

explain results and compare them between models. Also, such a data-based decision 

process changes the error probabilities when testing for product differences in the 

selected model. 

2.3 Fixed or random assessor effects 

In consumer studies, the subjects (consumers) are assumed to be random since a 

sample of consumers testing a set of products is supposed to represent the consumers 

in general. Assessors, on the other hand, are highly trained individuals whose taste 
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abilities are far more precise than those of average consumers. O'Mahony (1998) 

sees the panel as an analytical instrument. Averaging over assessors is used to sta- 

bilise the results. For him the process of selection and training make the panelists 

non-representative of any population. Differences found with such a panel do not 

imply that consumers would find the same differences. 

The results from sensory profiling about product differences are useful only if any 

other panel that has been trained in the same way would yield similar results and 

Lundahl and McDaniel (1988) believe that anyone chosen to take part in a similar 

training would attain similar abilities. In that sense, the panel is representative of 

experts in the particular field. Therefore assessors are still representatives of such a 

population, which makes them trained consumers. When they are chosen for some 

special abilities, they represent that subgroup. 

There is a general agreement that due to their training assessors do not represent the 

average consumer. Thus, differences detected by a trained panel would not necessar- 

ily mean that consumers would also identify that difference. But, since the panel is 

more perceptive, it will be able to detect smaller differences and when no differences 

are detected by the panel it can generally be concluded that the consumer would 

not detect any differences either. 

The interpretation of analysis results is slightly different if assessors are taken as 

fixed or random. Identifying assessors with random effects puts the emphasis on 

the fact, that product difference are assessor dependent. Assessors in the panel 

are representative of some distinct population of qualified experts and inference 

from a mixed model with random assessor effects is therefore representative for this 

population and it is assumed that similar results would be obtained with different 

panels, while for a fixed model inference is limited to the panel at hand. 
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2.4 Further factors and factorial structure 

Further influence factors in sensory profiling experiments are session, order and 

carry-over effects, batch-to-batch variation and temporal dependencies. Time-related 

effects describe variation over time of the assessor's scores or changing product char- 

acteristics over time. A discussion of session effects is given in Chapter 4, while order, 

carry-over and batch effects as well as time dependence are discussed in the following 

paragraphs. 

In sensory trials, two order effects are regarded as important, the first-sample effect 

and a reduction in perceived intensity over time. Hunter (1996) describes the first- 

sample or first-period effect, where the first product in a session is scored relatively 

higher for a positive factor (lower for a negative factor) than in any of the following 

serving positions. To prevent a first period-effect the inclusion of a pre-period has 

been suggested. An arbitrary product, such as a control product, is tasted first, but 

not scored. Alternatively, it is scored by the assessors, but the scores are not in- 

cluded in the analysis. The other reported order effect is caused by sensory fatigue, 

resulting in reduction of perceived intensities in later servings. The session length of 

a sensory trial should therefore be set carefully, according to the product categories 

in the trial. Avery and Masters (1999) report trial fatigue for long studies, in which 

assessors lose concentration in later sessions. In contrast, O'Mahony (2001) men- 

tions a warm-up effect, i. e. that assessors become more reliable after the first few 

tastings, when they have adjusted to the trial situation. If a first-sample order effect 

or an order effect caused by sensory fatigue is suspected in spite of a careful set up 

of the trial, the serving position of each product should be included in the analysis 

as a blocking factor. The estimates of product comparisons can then be corrected 

for order effects. In the design plan, the presentation order of the products should 

be varied for every assessor, ensuring that each product appears approximately the 

same number of times in every position. For multi-session trials there is an issue of 

whether an order effect occurs only within a session, or also across sessions, depend- 
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ing on the experiment, especially the kind of product tested and the time period 

between sessions. Order effects have commonly been reported in sensory experi- 

ments, for example, by MacFie et al. (1989), Muir and Hunter (1991/92), Hunter 

(1996) and Ball (1997). 

Carry-over effects are expected mostly for products that are bitter or have a strong 

aftertaste. Different kinds of carry-over effects have been reported for sensory trials. 

First, there is the so-called first-order carry-over effect, arising when the product 

tasted has an influence on the score of the following product. The size of the in- 

fluence is assumed to depend on the previous product only. A special case of this 

is reported by Kempton et al. (2001), where the first-order carry-over effect is pro- 

portional to the size of the direct product effect. Second, a product with a strong 

or otherwise distinctive quality may influence all subsequent tastings. Finally, the 

influence of the previous product can vary with the product that is affected by the 

carry-over. This is fairly complicated to model. If carry-over effects are assumed in 

sensory studies, simple first-order carry-over effects are modelled as a priority. First- 

order carry-over effects are the only case of carry-over discussed in this thesis. For 

sensory studies carry-over effects are generally smaller and rarer than order effects 
(Durier et al. , 1997) and might only be relevant for certain types of food (Wakeling 

and Buck, 2001). The problem of possible carry-over effects arising by successively 

tasting products is discussed, for example by MacFie et al. (1989), Muir and Hunter 

(1991/92), Schlich (1993), Wakeling and MacFie (1995), Hunter (1996), Ball (1997), 

Durier et al. (1997) and Kunert (1998). 

For all models discussed so far inferential interest is assumed to be in a general 

treatment effect. When products have a special structure, as when products are 

monitored over time or when the products have a factorial structure, interest might 

be in specific contrasts or treatment factors and their interaction. Models are needed 

that reflect the structure of the products. The special case of models and designs 

for a factorial product structure in sensory trials are discussed in Chapter 7. An 
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outline of the issues for experiments in which products change over time or differ 

between batches is given in the remainder of this section 

The product from a single product type or brand may often vary over time. Products 

can depend on the time and place where they have grown, bred or produced. This 

is the case, for example, for vegetables. Food samples of one product might not be 

homogeneous. They might come from different batches, that comprise homogeneous 

samples, while the batches themselves are heterogeneous. 

If in a trial, samples of a product are used from only one batch, all assessors taste 

comparable samples of a products. Product differences found in such an experi- 

ment are equivalent to brand differences, but no batch-to-batch variation for each 

product can be estimated. Therefore generalisations of product differences are not 

warranted: inferences apply only to the batch included in the trial. If more general 

inferences are sought, products from several batches have to be represented in the 

trial, and each assessor has to taste product samples from more than one batch; 

otherwise batch differences and assessor differences in scoring are confounded. 

Special care should be exercised in constructing the design when between-batch 

variation dominates between-product variation. Steinsholt (1998) gives examples of 

experiments in which batch-to-batch variation is present, where he is mainly con- 

cerned about how to adjust the simple ANOVA model for the special structure of 

products. 

In the following chapters it will be assumed that all samples of a product are homo- 

geneous. 
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2.5 Scale problems: Ordinal data and skewness 

Products in sensory profiling experiments are scored on a scale from "no sensation 

felt" to "maximal sensation felt". Reference products are provided either as a general 

example of the attribute or as an anchor for the magnitude of a specific sensation. 

But not even extensive training can ensure that assessors use the scale identically. 

A linear interpretation of scores over the whole scale can always be questioned. The 

differences on the lower part of the scale are not necessarily comparable to those on 

the upper part of the scale and they can also be of different interest for the scientist. 

If a categorical scale is used, attributes are often scored only in a small number 

of classes and highly skewed or long tailed distributions are common. With a lot 

of products some of the attributes may be relevant only for a subset of the prod- 

ucts. For the other products no intensity is felt for these attributes and almost all 

scores will be equal or close to zero. Hence, assuming normality might lead to biased 

results. Skewed distributions occur also for data scored on continuous scales. When- 

ever normal theory methods are used the model assumptions should be checked, e. g. 

by inspecting the residuals. 

Another possibility, especially for data from ordinal scales, is to use models specific 

to ordinal data, such as ordinal logistic regression. The ordinal fixed-effect model 

can be expanded to incorporate random assessor effects and the dispersion can also 

be modelled. 

In logistic regression for ordinal variables, the cumulative response probabilities 

P(Yt < k) are modelled instead of the category probabilities P(Y = k). Avery and 

Masters (1999), McCullagh and Nelder (1989) and Durier et al. (1997) use the logis- 

tic link for sensory data, which is the natural link for the binomial distribution. The 

simplest model of this form is the proportional odds model, which assumes parallel 

regression lines for the cumulative categories. 
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Avery and Masters (1999) propose to use the mean of scores from one assessor for 

a product instead of the single scores. This is in contrast to most of the other sci- 

entists who believe that information is lost by such averaging, because session and 

assessor differences can no longer be modelled. McCullagh and Neider (1989) use 

the raw scores, acknowledging that they might be correlated for answers from one 

assessor. Therefore they take the estimated model probabilities as upper limits, as 

conclusions from a model with independent observations are conservative. Jones 

and Wang (2000) fit an ordinal logistic regression model to the raw scores, adjusting 

for the repeated scoring, and therefore possible correlations, by using generalised es- 

timation equations (GEE). The exchangeable correlation structure was found to fit 

their data best; in this structure, every pair of scores is assumed to have the same 

correlation independent of their time-difference. Fahrmeier and Tutz (1994) use a 

fixed-effects cumulative logistic model with a random intercept for each assessor to 

adjust for the clustering. 

Wilkinson and Yuksel (1997) model location and dispersion parameters jointly by 

alternately fitting a location and a dispersion model. This procedure is defined 

within the quasi-likelihood extension of the GLM framework. In such models not 

only the expectation of an observation, but also its variance depends linearly on 

some external explanatory variables. 

A normality assumption for the Wilkinson and Yuksel model, as described in Section 

2.1, implies variances independent of the mean score, no skewness of the scores and 

linear dependence of the scores from the co-variates. These assumptions are unlikely 

to be satisfied in the sensory context. Hence, their location model is extended for 

non-normal data by using a logistic link function. It ensures that the estimated 

values all lie within the range of the scale used for scoring. It is specified as follows: 

F' [yatrl 
MWY : log 

(max 

- EIyat =p+ as + -rt + (aT)at 
rý 
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The variance of an observation for the corresponding binomial distribution is given 

by the variance function, V(7r) = ir(1 - ir), with 7r =E [yntr] /Max; 

var[yntr] = Ov (E[yt]) = 
E[yatr] (Max - E[yntr]) 

Max 

where Max denotes the maximum possible value of the scale and 0 the dispersion 

parameter, which is 1 for a Bernoulli distribution. This variance function relates to 

the assumption that the variance varies according to the proximity of the score to 

the extremes of the scale (decreasing toward the extremes). 

For the dispersion model, the variance function associated with the Gamma dis- 

tribution is used. The variance of d(y)Q with d(Y) = (yatr - E[yntr])2 can then be 

expressed as 
)z 

var[d(v)O] = cV(d(y)a) =v 
(E(d(y)o) 

with v being the precision parameter of the Gamma distribution F(E(d(y)0), v). 

The linear predictor for the dispersion model is chosen to reflect the dependence on 

the assessor 

Mwy : log (d(y)a) y+ Ja 

The log function is used as the link function rather than the natural link of the 

gamma distribution, because it ensures positive estimate of the dispersion parame- 

ter. 

For fitting one model, the parameters of the other are required. Therefore, an itera- 

tive see-saw algorithm between location and dispersion model is used, as described 

in Section 2.1 for the Wilkinson and Yuksel model assuming normality. 

Erichsen (1998) expands on the idea of modelling location and dispersion and on 

the use of ordinal logistic regression. He proposes an ordinal threshold model with 
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random effects in both the location and the dispersion models. 

The underlying normal model has the following general form 

ME Yat = 0- (Xato +Z 
tUa + Ent 

with var(yat) = 0. (1 + z'Ez), where 

yat is the unobserved normal random variable underlying the 
observed values rat 

0 is the vector of fixed effects, 
ua N N(0, E) is the vector of random effects for assessor a, 
Zat, Zat are vectors of known explanatory variables corresponding to the 

fixed and random effects, and 
eat N N(0,1) is a standardised residual error. 

With the structure of model MNI Erichsen's location model can be expressed as 

ME: Yat = Oa (µ+Tt+as+(aT)at) 

25 

where the assessor effect and the assessor-by-treatment interaction terms are ran- 

dom. The variances of the two random effects are denoted var (a, ) = a, ', and 

var ((ar)at) = v«, r. 
The scale parameters are assumed to be random and depen- 

dent on the assessor through the dispersion model. 

ME : 1Og(ga) ='y + öa 

where 
y is a mean parameter and 
JQ N N(0, v2) is a normal variate varying over assessors. 

In contrast to Wilkinson and Yuksel's model, the dispersion model is not estimated 
by fitting the deviance residuals, but by maximising the h-likelihood (hierarchical 

likelihood, see Lee and Neider (1996)), as a function of y, ba and Q2. 
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The ordinal scores are assumed to represent classes of the underlying normal variable 
yat" 

rat=k k-1<Yot<ek, k=1,..., K 

where 

rat is the discrete observation of assessor a and product t with possible 
values between 1 and K, 

k the observed value of rat, 
617 ... 7 6K_1 are the unknown cut-points satisfying 6o = -oo < 61 <"""<U= 00. 

Without loss of generality, .1 and ry can be fixed at 0. The remaining (unknown) 

cut-points can be collected in the vector ý_ (2) 
... , eK_1)t. 

2.6 Conclusions 

This chapter discussed several univariate models that have been proposed for sen- 

sory data. These models attempt to describe the assessor impact on the data and 

yield unbiased estimators of product differences. Fixed- and mixed-effects models 

that assume normality are still most frequently used, due to their ease of interpre- 

tation and their speed in calculation, which is an important factor in the everyday 

use of the model. The list of attributes for which a separate model is fitted is usu- 

ally fairly long, so the computing time for each model has to be reasonably short. 

With increasing computing power, generalised mixed models will become more at- 

tractive for everyday use if they can provide more insight into the product structure. 

While some of the sophisticated models seem to explain the underlying structure 

more clearly, they can be firmly established only if their estimators reflect product 

differences more accurately and precisely than simpler models. It is tempting to 

use a model that includes all conceivable parameters, to reduce the bias of the 

estimates of the product differences. This is not useful if it is accompanied by 
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a substantial increase in the sampling variation especially when assessor-specific 

variances are included. A more complex model does therefore not necessarily yield 
"better" results, especially for studies with few replications. 



Chapter 3 

Designs for sensory one-session 

trials 

Statistical design of experiments is concerned with finding a design plan in which all 

the treatment comparisons of interest are estimated with maximum precision with a 

given minimum of resources. In this chapter the basic properties required for single- 

session sensory designs are explored and the appropriate statistical background on 

linear models and experimental design is reviewed. In the following chapters these 

results are extended to more complicated designs. 

In sensory testing, the treatments are the different consumer products whose 

attributes are to be compared in the study. The number of observations in an ex- 

periment is determined by the number of products that are compared, the size of 

the panel and the product replication, which is the number of times each assessor 

tastes each product. Product replication is mostly determined by the available re- 

sources (time, financial and the like). This means that for sensory designs the design 

size is fixed and interest is in design plans with maximum precision of the product 

comparisons for a given product range and panel size and a few other constraints 

which will be explained in the following paragraphs. 

28 
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One of the difficulties that can arise when designing experiments is heterogeneity 

of the experimental units on which the treatments are measured. In the sensory 

context, the experimental unit is an assessor tasting a number of samples. For 

homogeneous experimental units, treatments are usually assigned randomly to each 

unit, the simplest sort of a design plan. If some experimental units are more alike 

than others and variation between experimental units is expected to be as large as 

or even larger than treatment differences, similar units can be grouped together into 

blocks of homogeneous units. Then block designs are needed. Whilst in such a 

setting it is possible to control the heterogeneity between units, it complicates the 

construction of the design plan, since comparisons within blocks are now made with 

higher precision than comparisons between blocks. Thus, the assignment of treat- 

ments to blocks has an influence on the precision of the treatment comparisons. 

Designs used in sensory profiling are usually set up as repeated measurement 

designs in which a number of different treatments are given to each experimental 

unit successively. Thus, each experimental unit forms a block of observational 

units. The observational unit in sensory experiments is an assessor tasting a 

product sample. Repeated measurement designs are used because assessors in a 

panel can be very heterogeneous in their perception and their scoring in spite of 

intensive training. If every assessor tastes every product at least once, product dif- 

ferences can be assessed through within-assessor comparisons, which are usually less 

variable than between-assessor comparisons. 

If the block size in a block design is the same as the number of treatments, designs 

are called complete block designs. For such designs, all treatments occur in each 

block, so that each assessor tastes every product. Complete block designs are in- 

troduced in Section 3.1. A prerequisite for the use of such designs in the sensory 

context is that the number of products to be compared is small enough so that 

sensory fatigue is no concern. If sensory fatigue occurs an identical stimulus feels 

less strong on the palate than it feels earlier in the trial. To prevent sensory fatigue 
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the experiment has to be subdivided into shorter sessions. Designs for experiments 

with more than one session are discussed from Chapter 4 onward. 

If financial or time limitations prohibit assessors from tasting all products under 

consideration, a subset of the products can be given to each assessor instead. This 

means that the block size is smaller than the number of products, and therefore 

incomplete block designs have to be used (described in Section 3.2). For incom- 

plete block designs, the number of times products are directly compared within a 

block depends on the chosen design plan. Product differences are then partly es- 

timated through within-assessor comparisons and partly through between-assessor 

comparisons, where the latter has a larger variance than the former. If all treatment 

differences are of equal interest, it seems advantageous to have each product occur 

the same number of times within a block with all other products apart from itself, 

which would result in equal precision of the product comparisons. Within-block 

comparisons of the same treatment, on the other hand, do not give any information 

about treatment differences. These are useful only if interest is in the consistency 

of the attribute scores rather than in product differences. 

Usually all assessors in a panel taste the same number of products. For all sen- 

sory design plans that we consider from now on, all blocks are equi-sized and all 

products are equi-replicated. The only exception are the designs discussed in 

Chapter 6, where a control product is allowed to have higher replication than all 

other products. In this and the following chapter, it is further assumed that there 

is no restriction on the availability of products, i. e., each product could be served 

to any number of assessors at any serving position. Designs for multi-session trials 

with a limit on the number of different products that can be served at any serving 

position are introduced in Chapter 5. 

In sensory experiments there is often more than one blocking factor to consider. The 

most important blocking factor is the assessor, which will account for the largest 
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part of the heterogeneity in the attribute scores. Since assessors are presented se- 

quentially with the products in the trial, two other effects are often regarded to be 

important: order and carry-over effects. 

Interest in sensory designs is mostly in all pairwise product comparisons for each 

attribute. Designs for which these contrasts are estimated with equal or almost 

equal precision are discussed in Chapters 3 to 5. More complicated contrasts are 

discussed in Chapters 6 and 7. 

As mentioned before, sensory designs are usually equi-replicated, each assessor tastes 

all products, either once or a fixed number of times, which is the same for each as- 

sessor. Section 3.1 covers mainly designs in which each assessor tastes every product 

exactly once. Introduced are randomised complete block designs and row-complete 

row-column and cross-over designs. In Section 3.2 the incomplete block version of 

these three classes is reviewed, and efficiency bounds for them are given in Section 

3.3. Construction methods are discussed in Section 3.4 for cyclic designs and in 

Section 3.5 for non-cyclic designs. 

3.1 Complete block designs 

In complete block designs (CBD) all treatments appear once within each block. 

Thus the block size equals the number of treatments. For sensory designs this means 

that an assessor tastes all products within a session, with assessors representing the 

blocks. They are also known as randomised complete block designs, since treatments 

are assigned randomly to each unit in the block. 

The parameters for complete block designs are 

a= number of assessors taking part in the trial = number of blocks = number of 

times a product is tested 
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p= number of products compared in the trial (number of treatments) = block 

size 

The aim in using a design plan is to minimise the variance for the treatment compar- 

isons of interest. The choice of a "good" design depends on the chosen treatment 

contrasts and on the appropriate linear model that describes the data. Suitable 

treatment contrasts and linear models for sensory trials are given in the next two 

sections and some characteristics for optimal designs are derived for these cases. 

3.1.1 Three alternative linear models 

Sensory trials generate high dimensional data. All assessors in a panel score each 

product on a list of attributes, which generates the sensory profile of a product. 

For each attribute a separate univariate linear model has to be fitted. Since each 

attribute is created from the same process, it is generally assumed that the same 

model can be fitted for each of the attributes. Due to this argument, one optimal 

design can be found for all attributes in a trial simultaneously. The parameter values 

of the model are, of course, assumed to differ between the attributes. All following 

models refer to a single attribute. 

In Chapter 2 elaborate models for the univariate analysis of sensory trials have been 

introduced. Since optimal designs are model dependent, for the purpose of deriving 

and assessing designs in this thesis it has been decided to use simple fixed effects 

models. This has been done for two reasons. Firstly, these models are commonly 

used in experimental design theory and secondly, the more advanced models sug- 

gested in Chapter 2 are rarely used in practise. Three basic univariate models seem 

appropriate for univariate analysis of sensory profiling experiments. For all the fol- 

lowing models the errors are assumed to be independently normally distributed with 

mean 0 and variance Q2 (E N N(O, a2I)). In unreplicated CBD's, the number of ob- 

servations for each model is ap. 
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For all sensory designs, treatments are equivalent to the different products that 

are tasted and for complete block designs, blocks represent assessors. The sim- 

plest model for CBD includes fixed treatment and block effects, or in sensory terms 

product and assessor effects. 

Yjk =µ+a, + Tk + f3k 1<j<a, 1< lC <p ý3.1) 

with assessor effect aj, and product effect Tk. In matrix notation this model can be 

expressed as 
p 

y =XB+E _ lap XA Xp] a +E 
T 

where XA is a binary design matrix referring to assessor effects and Xp the design 

matrix referring to product effects. Each column of the design matrix corresponds 

to a dummy variable from one of the effects and each row of the matrix belongs to 

an observation. 

To illustrate the model structure, model equation (3.1) is shown for an example 

design for four products tasted by four assessors. Since each assessor tastes every 

product once, there are 16 observations. The model matrix includes one variable 

for the overall mean, four dummy variables for the assessor effect (one for each of 

the assessors) and four dummy variables for the product effect (one for each of the 

products). 
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Example 3.1 Model equation (3.1) for a randomised complete block de- 

sign of four products tasted by four assessors. 

The following design is a randomised complete block design. Each assessor is served 

the four products in a different (random) order. Properties of randomised block de- 

sign are discussed in Section 3.1.3. 

Triad 
Serving 1 Serving 2 Serving 3 Serving 4 

Assessor 1 2 3 1 4 
Assessor 2 4 1 2 3 
Assessor 3 2 3 1 4 
Assessor 4 4 1 3 2 

Model equation (3.1) for the above design is: 

yll 1 1 0 0 0 0 1 0 0 ell 
Y12 1 1 0 0 0 0 0 1 0 612 
Y13 1 1 0 0 0 1 0 0 0 E13 

Y14 1 1 0 0 0 0 0 0 1 E14 
Y21 1 0 1 0 0 0 0 0 1 621 
Y22 1 0 1 0 0 1 0 0 0 a1 E22 
Y23 1 0 1 0 0 0 1 0 0 a2 

E23 

Y24 1 0 1 0 0 0 0 1 0 a3 E24 
Y31 1 0 0 1 0 0 1 0 0 a4 + 

E31 

Y32 1 0 0 1 0 0 0 1 0 E32 

4,133 1 0 0 1 0 1 0 0 0 T1 
E33 

Y34 1 0 0 1 0 0 0 0 1 T2 
634 

1/41 1 0 0 0 1 0 0 0 1 T3 
E41 

1/42 1 0 0 0 1 1 0 0 0 T4 
£42 

1/43 1 0 0 0 1 0 0 1 0 E43 
1/44 1 0 0 0 1 0 1 0 0 E44 
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Apart from product and assessor effects, some sort of serving order effect is often 

assumed. If a general effect for serving order is included in the model, model (3.1) 

changes into model (3.2): 

Yjk=, L+7r=+ozj+Tk+E{jk 1<j<a, 1<i, k<p (3.2) 

with the notation as above and an additional period or serving order effect 7rt. This 

means fitting one variable for each serving and it allows for differences in location for 

each serving position. If more is known about the type of order effect, a decreasing 

linear effect or any other function could be fitted instead. Often though there is not 

enough information about such a special structure of the order effect to fit a more 

specific function. The order effect included in any of the following models will be of 

the general kind as used in this model. 

When order effects are expected, row-column designs should be used for an experi- 

ment. These are introduced in Section 3.1.4. 

In matrix notation equation (3.2) is expressed as 

µ 

Y=X8+E= lay XT XA Xp} 
a 

+E, 

T 

where XT is the design matrix referring to the order effects. 

The model matrix for model (3.2) now includes additional columns, which identify 

the serving position a product is served in. 
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Example 3.2 Model matrix (3.2) for a row-column design for four asses- 

sors and four products. 

In the following row-column design each assessor is served each of the four products 

in random order, with the constraint that each product is served in each serving po- 

sition. 

Trial 
Serving 1 Serving 2 Serving 3 Serving 4 

Assessor 1 1 2 4 3 
Assessor 2 3 1 2 4 
Assessor 3 4 3 1 2 
Assessor 4 2 4 3 1 

Model matrix (3.2) for the above design is: 

Yll 1 1 0 0 0 1 0 0 0 1 0 0 0 µ 611 
Y12 1 0 1 0 0 1 0 0 0 0 1 0 0 612 
Y13 1 0 0 1 0 1 0 0 0 0 0 0 1 ir1 E13 
Y14 1 0 0 0 1 1 0 0 0 0 0 1 0 72 614 
Y21 1 1 0 0 0 0 1 0 0 0 0 1 0 1T3 621 
1122 1 0 1 0 0 0 1 0 0 1 0 0 0 74 622 
Y23 1 0 0 1 0 0 1 0 0 0 1 0 0 623 
1124 1 0 0 0 1 0 1 0 0 0 0 0 1 al 624 

_ + 
1131 1 1 0 0 0 0 0 1 0 0 0 0 1 a2 E31 
Y32 1 0 1 0 0 0 0 1 0 0 0 1 0 a3 632 
/33 1 0 0 1 0 0 0 1 0 1 0 0 0 a4 E33 
Y34 1 0 0 0 1 0 0 1 0 0 1 0 0 634 
1141 1 1 0 0 0 0 0 0 1 0 1 0 0 Ti 641 
1/42 1 0 1 0 0 0 0 0 1 0 0 0 1 72 642 
Y43 1 0 0 1 0 0 0 0 1 0 0 1 0 T3 E43 
Y44 1 0 0 0 1 0 0 0 1 1 0 0 0 7-4 644 



Single session designs 37 

If additionally a first-order carry-over effect is included in the model, the model 

equation changes to model (3.3), 

Yd(a. 
7) _A+ lri + Oi + Td(i, J) + Pd(i-1, j) 

+ E2.1 1<i<p, 1<<a (3.3) 

where d denotes a repeated measures design with d(i, j) being the product tested in 

the ith serving position by assessor j and Td(t, 3) denotes the product effect for the 

product that is tasted by assessor j in serving position i, and pd(a_1, j) stands for the 

residual effect of the product that is tasted by assessor j in serving position i-1. 

Carry-over effects are not defined for the first product that each assessor tastes. This 

would of course be different if assessors were given a product to taste in a pre-period 

that functions as a warm-up. For all following models it will be assumed that no 

pre-period is used. 

For experiments in which carry-over effects are expected cross-over designs are used, 

which take account of the assumed order and carry-over effects. These are intro- 

duced in Section 3.1.5. 

Model equation (3.3) is equivalent to the following matrix equation: 

IL 
7r 

Y=XO+b=[lap XT XA Xp XR] a +E 

T 

P 

where XR represents the design matrix of the carry-over effects, which are defined 

by the products served in the serving position before and are equal to zero for 

observations in the first serving position. 
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Example 3.3 Model matrix (3.3) for a cross-over design for four products 

tasted by four assessors. 

The following design serves the four products to each assessor in a different order, 

each product is served in each serving position once and each product is served after 

each of the other product once. 

Thal 
Serving 1 Serving 2 Serving 3 Serving 4 

Assessor 1 1 4 2 3 
Assessor 2 2 1 3 4 
Assessor 3 3 2 4 1 
Assessor 4 4 3 1 2 

Model matrix (3.3) for the above design is: 

Y11 1 1000 1000 1000 0000 E11 
Y12 1 0100 1000 0001 1000 7r1 E12 
Y13 10010100001000001 72 E13 

Y14 10001100000100100 73 614 
Y21 11000010001000000 74 621 
Y22 10100010010000100 of 622 
Y23 10010010000101000 a2 E23 
Y24 

_10001010000010010 
a3 624 

Y31 11000001000100000 a4 + 631 
Y32 10100001001000010 Tl 632 
/33 10010001000010100 T2 633 
Y34 100010010100000013 E34 
Y41 11000000100010000 74 E41 
1142 10100000100100001 Pi E42 
1143 10010000110000010 P2 643 
1144 10001000101001000 p3 644 

The estimator for product differences differs according to the assumptions made 

about existing nuisance effects, i. e. it depends on the model. For a set of products 

the most parsimonious model should be used that fits the data adequately. The 

smaller the number of parameters which has to be estimated the smaller is the esti- 

mated standard error for each parameter estimator. On the other hand, all existing 
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nuisance effects should be included in the model, since the omission of relevant 
factors will give biased parameter estimators. For different sets of products the as- 

sumed model might vary. Some products are more likely to show carry-over effects 
than others and the same applies to order effects. The model equation should there- 

fore always be chosen specifically for the set of products that are assessed in the trial. 

In the next section it will be shown how the estimator for product differences and 
its variance differs for these three models (3.1)-(3.3). 

3.1.2 Estimating product contrasts 

The aim of a descriptive analysis in sensory testing is the comparison of certain 

attributes for a set of products. The interest is in finding out on which attributes 

the products differ and for which they are similar. For each attribute, products can 

then be divided into groups of similar intensities. Translated into design terminol- 

ogy, this means that for a selected attribute the interest is often in a set of product 

contrasts LT, where L= [cl 
... c. 1' is a set of n different contrast vectors ci, where 

c= = [cu,. 
.., qp] with Ej1 cij = 0. A contrast that compares two products is called 

an elementary contrast or a paired or pairwise comparison. The elements of 

such a contrast vector c are all zero apart from one 1 and one -1. In sensory testing, 

the contrasts of interest are generally all p(p - 1)/2 pairwise product comparisons. 

During this and the following two chapters it will be assumed that the aim of the 

sensory experiment is to efficiently estimate all pairwise comparisons. In Chapters 

6 and 7, other product contrasts are considered and methods given to find adequate 

designs for cases where some contrasts are more important than others. 
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Example 3.4 Six pairwise comparisons for four products. 

Cri 1 
-1 

00 Ti - TZ 

Cý Ti 10-1O Tl Ti - T3 

LT = 
C3 T2 

= 
100 -1 TZ Tl - Tq 

G'q T3 01 -1 0 T3 7-2 - T3 
d55 Tq O10 -1 Tq T2 - Tq 

C6 001 -1 T3 - Tq 

For a given design, the variance of a paired product comparison c'T can differ for the 

three linear models. The variance of each product contrast depends on the model 

information matrix, which will be introduced in the following section. 

The parameters of interest in sensory testing are usually all product differences. 

While assessor differences in scoring are assumed to be present, their values are of 

minor interest. ' The same holds for serving order and carry-over effects. These are 

the blocking effects in the model, the so-called nuisance effects. They are included in 

the model only to make the estimators of product differences unbiased. One method 

to find such unbiased estimators is by solving the reduced normal equations, which 

are introduced in the following section. 

Reduced normal equations for product effects 

The normal equations (X'X)B = X'Y of a linear model of the form Y= XO +e 

with e- N(0, QZI) with more than one dependent variable included in the parameter 

vector 0 can, in general, be expressed by partitioning the design matrix X into two 

sub-matrices, X= [Xi X2], where Xl is the part of the design matrix related to 

nuisance or blocking effects 01 and X2 the part of X concerned with the effects of 

interest 02, e. g. the product effects. 

(X'X) e= X'Y 
(X1X1 XJX2 (XiY 

(3.4) 
X2X1 X2 IX2 / 

(B2 

Xis' 

'In contrast, in assessor evaluation studies assessor differences are of primary interest. 
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Example 3.5 Normal equations for model (3.1) with four products and 
four assessors. 

16 4 4 4 4 4 4 4 4 
4 4 0 0 0 1 1 1 1 äl 
4 0 4 0 0 1 1 1 1 ä2 y++ 
4 0 0 4 0 1 1 1 1 ä3 yl+ 
4 0 0 0 4 1 1 1 1 &4 = Y2+ 
4 1 1 1 1 4 0 0 0 Tl y3+ 
4 1 1 1 1 0 4 0 0 T2 Y4+ 
4 1 1 1 1 0 0 4 0 T3 
4 1 1 1 1 0 0 0 4 T4 

where the subscript + indicates summation over the factor (e. g. y++ = >i Ej yij 

and yi+ = Ej yij)" 

The reduced normal equations can then be found by solving the top equation in (3.4) 

for 91. As X'X is not of full rank, normally neither X, X1 nor X2X2 are necessarily 

of full rank. Thus, there is no single solution, but the following range of solutions 

for the parameter vector 01, 

Bl = (X; XI) (x 
- XfX282) + {(XiXl) (XiXl) - I] z 

where z is an arbitrary vector of appropriate size (for a derivation see Searle, 1971) 

and A- denotes the generalised inverse of a matrix A (see B. 1 in the appendix for 

the properties of a generalised inverse). 

Example 3.6 Range of solutions for 81 =Iý] for model (3.1) with four 
La 

assessors and four products. 

11 4T+ - zl 
CYl 
ä 

1 Yl+ + 

+ 

"? + 

7' + 

Z2 

z 2 
6 

= Y2+ 
+ I 

+ 
T + 

3 

/ 3 Y3+ + 4 4 
a4 

4 
Y4+ + 7+ + z5 
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Substituting the expression for Bl into the second equation results in the reduced 

normal equations, which are independent of the special solution for Bl: 

(XäX1) ((X; X1) (x 
- XiX2B2) 

+ 
[(X1X1) (X1X1) 

- 
IJ Z+ X2X28z 

(Xi Xi) (XiX1) (X1Y 
- XiX282 + XZX2O2 

t-ý X1 22 
X202 - XIXi (Xi XI) XiX2B2 

XZ(I-Xi(XiX1) Xi)Xaez 

XI P1 X202 

CO2 

= XZY 

= X2Y 

= X2Y - (XXX1) (XfX1) X1Y 

= Xz(I-x1(XIXI) Xl)Y 
= XZP1Y 
=Q 

(3.5) 

where Pl =I- Xl (XiXI)- Xi denotes the projection matrix. See Section B. 2 in 

the appendix for the characteristics of a projection matrix. 

Example 3.7 Reduced normal equations for product effects for model 

(3.1) with four assessors and four products. 

4 0 0 0 1 1 1 1 7, Y+i - 
jY++ 

0 4 0 0 1 1 1 1 
( 

T2 
= 

Y+z - ++ 
0 0 4 0 1 1 1 

1 

1 

) 

Ts Y+3 I Y++ 
0 0 0 4 1 1 1 1 r4 y+l - 4y++ 

The matrix C= XZP1X2 of the reduced normal equations (3.5) is called the infor- 

mation matrix. Its form depends on the linear model and on the specific design it 

is calculated from. To demonstrate its dependence on the chosen design, denoted 

with d, it is often written as Cd. 

Definition 3.1 (Information matrix) Let Y= X0 +e= [X1 X2] [01 021' with 

e- N(O, a2I ), where X2 is the part of the design matrix referring to the parameters 

of interest, 92. Let Pl denote the projection matrix Pi =I- X1(XiX1)-Xi. The 

pxp coefficient matrix Cd of the reduced normal equations for 02, 

Cd=X'2P1X2 

is called the information matrix for the above linear model. 
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In over-parameterised linear models, such as models (3.1)-(3.3), the vector of prod- 
uct effects 'r itself is not estimable. A solution of the normal equations will depend 

on the specific choice of the generalised inverse of the information matrix, Cd. But 

certain functions of c'T are estimable. 

Definition 3.2 (Estimable functions) A parametric function c'8 is called an es- 
timable function under a given model Y= XB+s if there exists a vector a such that 
E(a'Y) = c'O. 

It can be shown that the function c'O is estimable if c'(X'X)-X'X = c'. Estimators 

obtained for estimable functions are independent of the specific solution of the nor- 

mal equations. 

With the help of the reduced normal equations the general form of an unbiased 

estimator of an estimable function of product contrasts c"r is 

GST = C'Cd Qd (3.6) 

where T refers to the product effect parameters and c denotes a contrast that satisfies 

the estimability constraints. Apart from the estimator itself, interest lies also in the 

variance of the estimator calculated under the given linear model and a design d. 

var(c'T) = Q2 c'Cd c (3.7) 

The specific form of Cd is often quite complicated, but for certain designs simple 

expressions are obtained. To describe these cases adequately, some terminology is 

introduced first. 

Definition 3.3 (Orthogonal block designs) A block design is called orthogonal 

if for each treatment i the proportion of units in a block that receives treatment i is 

the same for every block: nth = NN for all combinations i, j, where n1j denotes 

the number of units for each block-treatment combination (cell), Ni. the number of 

units in each block, Nj the number of units for each treatment, and N. the number 

of units in the whole trial. 
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Under an orthogonal design the estimators for the pairwise product contrasts have 

the same form as under a completely randomised design (c'T = r-i cxTy = >; c, Y for 

both cases, where Y is the mean of all scores for product i. ). 

A slightly less stringent characteristic for designs than orthogonality is variance 
balance, which characterises a design in which all elementary contrasts have equal 

variances. 

Definition 3.4 (Variance balanced designs) A block design d is variance bal- 

anced if vard(T{ - T3) does not depend on the choice of i and j, i, j=1, ... p. 

With the general form of the reduced normal equations and the experimental design 

terms defined above, the information matrix can now be derived for models (3.1)- 

(3.3). 

3.1.3 Randomised complete block designs 

An important matrix in design of experiments is the incidence matrix of a design. 

Definition 3.5 (Incidence matrix) NA = XpXA is called the block incidence 

matrix for a given block design d with design matrix X, where Xp denotes the part 

of the design matrix X referring to treatment effects and XA the part of the design 

matrix referring to the blocking factor. 

The block incidence matrix NA is apxb matrix with a row for each product and a 

column for each block. Its element n, 3 represents the number of times the ith treat- 

ment occurs in the jth block. Its importance in characterising and deriving good 

designs will be more obvious for incomplete block designs, which are discussed in Sec- 

tion 3.2. Since in complete block designs each treatment occurs exactly once in each 

block, all entries of the incidence matrix NA are equal to one, (NA = Jp, a = Iplä, 

where J represents apxa matrix and 1p a p-vector, whose elements are all 1's). 
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The information matrix Cd for product effects under model (3.1) is 

Cd = X2P1X2 = XP (I 
- 

XAXA) XP 

= XpXp 
- XpXAXAXp = aI - NANÄ (3.8) 

with the projection matrix Pi =I- XAXÄ (see Section B. 4 in the appendix for a 
derivation). 

The information matrix Cd for CBD for model (3.1) is therefore 

Cd=al-aJP, P=a(I-IJP, P) (3.9) 

For this special matrix structure the generalised inverse has a simple form (see 

Solution (B. 3) in the appendix). 

Ci =1 (3.10) 
a 

Thanks to the simple form of the generalised inverse of the information matrix the 

estimate for a treatment contrast for model (3.1) can also be expressed explicitly. 

c'T=cCdQd=c'(YP-Y++1p) (3.11) 

where Yp = 
(Yl, 

... , 
Yp) is the vector of product means and Y++ the overall mean 

of all observations. 

The variance for the contrast's estimate c -r is 

var(c'T) = a2c Cd c=1 Q2 c'c (3.12) 
a 

The estimator of the contrast c, r and its variance are the same as for a completely 

randomised design without blocking. That means that treatment effects in CBD are 

orthogonal to block effects. In other words, all CBD are orthogonal. 
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The variance of a pairwise comparison from a CBD is 

vard(T{-r3)= o-2, i, j=1,..., p 
a 

which is the same for all treatment pairs. Thus, all CBD are variance balanced. 

No matter in what order the products are served to each assessor (order of products 

within blocks), all product contrasts will have the minimum variance. A design plan 

with complete blocks for model (3.1), created by randomising products within each 
block separately, is called a randomised complete block design. Randomisation 

is done at three different stages. First, a randomised complete block design of the 

appropriate size is created by assigning an independently drawn random list of all 

p product numbers to each of the a blocks. Second, product names are randomly 

assigned to the product numbers of the design plan. Third, assessors are randomly 

allocated to the blocks of the design plan. 

3.1.4 Row-column designs 

For model (3.2), which includes the additional factor of serving order, two blocking 

systems exist. Assessors represent the row-structure whilst serving position repre- 

sents the column structure. With these two coordinates, the position of a product in 

a design for model (3.2) is completely determined. Changing the order of products 

within blocks in this model influences the column structure and therefore the period 

incidence matrix NT = XPXT. In the sensory context, periods are equivalent to 

serving positions. 

The information matrix Cd for a row-column design for model (3.2) with complete 

rows has the following form 

Cd = alp -1 NTN'' (3.13) 
a 

Thus assessor effects are orthogonal to product effects. 
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For the derivation of the information matrix (3.13), see Section B. 4 in the appendix. 

Its precise form depends on the period incidence matrix NT = XPXT. Each element 

n; j, i=1... a, j=1... p, of this matrix denotes the number of times product 

i occurs in serving position j. Until now, only complete block designs have been 

covered, where the block size of the rows equals p, the number of treatments. The 

following definition is for blocks of any size, where the block size is denoted by t. Its 

extension to other block sizes will be used in later sections. 

Definition 3.6 (Uniform designs) A row-column design d for p treatments in a 

blocks of size t is said to be 

uniform on the units if n=j =p for all 1<i<p, 1<j<a, where n13 is the 

(i, j)'s element of NT 

uniform on the periods if nik =P for all 1<i<p, 1<k<p, where njk is the 

(i, k)'s element of NA 

uniform if it is uniform on units and periods. 

Sensory designs are generally uniform on units; each assessor tastes all products. 

They can also be uniform on periods (serving positions) if the number of assessors a 

is a multiple of the number of products p. To be uniform on periods, each product 

has to occur the same number of times in each period. If model (3.1) is assumed, 

i. e. no serving order effect, uniformity on periods does not improve the design. When 

periods are included in the model equation, as they are in models (3.2) and (3.3), 

uniformity on periods becomes a useful characteristic. 

Uniform complete block designs 

A prerequisite for the existence of uniform complete block designs is that the number 

of assessors is a multiple of the number of products a= pra, where ra is an integer. 

All elements of the period incidence matrix NT then have the value ra, i. e. NT = 

raJp, p. For uniform complete block designs all products are tasted by every assessor 
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once and in every serving position rQ times. For uniform complete block designs, 

the information matrix (3.13) simplifies to 

Cd = aI -1 NTNT = aI - 
rara Jn, 

pJP, p aa 

= aI - raJp, p =a 
(Ip 

- 
Jp 

p) (3.14) 

which is the same as information matrix (3.9). Thus, the estimator and its variance 

for a uniform design under model (3.2) are also the same as for a design uniform on 

assessors under model (3.1). For designs that are not uniform on periods the vari- 

ance for product contrast will differ for the two models and depend on the specific 

form of the period incident matrix NT. 

Thus, all uniform complete block designs are variance balanced and product effects 

are orthogonal to both blocking factors. Design plans for uniform complete block 

designs, where the number of assessors equals the number of products, i. e. rn = 1, 

are called Latin squares. 

Definition 3.7 (Latin squares) A Latin square is an arrangement of m symbols 

in apxp array such that each symbol occurs once in each row and once in each 

column. 

Two squares are pairwise orthogonal if, when one square is superimposed on the 

other, each symbol of one square occurs once with each other label of the other square. 

Three or more squares are mutually orthogonal if any two of them are pairwise 

orthogonal. For some values of p there is a complete set of p -1 mutually orthog- 

onal Latin squares. 

Selected Latin square design plans for 3 to 12 products are given in Cochran and 

Cox (1957). Mutually orthogonal Latin squares are given in Abel et al. (1996) for 

p< 10 and construction methods are given for squares with p-. 5 56. Wakeling and 
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MacFie (1995) have written a macro based on the SAS® procedure PROC FACTEX 

to create a set of mutually orthogonal Latin squares. They suggest Latin squares 
for consumer studies, where the number of tasters is often far larger than in sensory 

profiling with a panel of trained assessors. 

The randomisation procedure for creating Latin square design plans is more difficult 
than for randomised complete block designs. First a Latin square of the adequate 

size has to be chosen randomly from the list of possible Latin squares. Then assessors 

are assigned randomly to blocks and products to product numbers 

Latin squares can be used only when the number of assessors is equal to the number 
of products or is a multiple of the number of products. In the first case one Latin 

square is used, in the second case multiple Latin squares are joined so that the 

number of rows equals the number of assessors. If a design is needed for a number 

of assessors that is not a multiple of the number of treatments, one possibility is the 

use of parts of Latin squares. This will most likely result in the loss of uniformity 

on periods. The exception are the cases in which Youden squares can be used. 

Definition 3.8 (Youden square) Row-column designs in which the number of 

columns is equal to the number of treatments, and in which the treatments are bal- 

anced for their occurrence in columns, are called Youden squares. 

Let x be the number of assessors a reduced modulo p (x =a modulo p). If a balanced 

incomplete block design for p products in p blocks of size x exists, Youden squares 

can be created and combined with Latin squares to create orthogonal designs for a 

assessors and p products. For the definition of balanced incomplete block designs see 

Definition 3.12 in Section 3.2. Youden squares are row-orthogonal designs, in which 

the column structure consists of a complete block design and the row structure of 

an incomplete block design. 

In the standard notation for block designs, blocks are equivalent to columns. For 

sensory designs, it is more natural to write assessors as rows and serving positions 
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as columns. For this reason, transposed Youden squares have to be used to add the 

necessary blocks to the Latin square. 

Example 3.8 CBD created from a Latin square and a Youden square. 
A row-column design for seven products and ten assessors 

Assessor 1 1 2 3 4 5 6 7 
Assessor 2 2 3 4 5 6 7 1 Latin 
Assessor 3 3 4 5 6 7 1 2 square 
Assessor 4 4 5 6 7 1 2 3 
Assessor 5 5 6 7 1 2 3 4 
Assessor 6 6 7 1 2 3 4 5 
Assessor 7 7 1 2 3 4 5 6 
Assessor 8 7 1 2 3 4 5 6 Youden 
Assessor 9 1 2 3 4 5 6 7 square 
Assessor 10 3 4 5 6 7 1 2 

The assessor concurrence matrices for the Latin square, the Youden square and the 

combined design are NA; LSNA; Ls = 7J7,7, NA; rsNA; ys = 3J7,7 and NANÄ = 10J7,7 

respectively, since all rows are complete blocks. The serving order concurrence ma- 

trices are NT; LSNT. LS = 7J7,7 for the Latin square, where the column is also a com- 

plete block and NT;,. SNT, ,= 21 + J7,7 for the Youden square, where the columns 

represent a balanced incomplete block design. This results in NTNý. = 21 + 14J7,7 

for the complete design. 

Youden squares are not squares contrary to their name. Their number of rows is 

not equal to the number of columns, but they are incomplete Latin square designs. 

An extensive list of Youden squares can be found in Cochran and Cox (1957). 

If no Youden square exists, non-orthogonal row-column designs can be constructed 

which are as nearly balanced as possible for products in rows and columns (partial 

balance) with the help of computer algorithms (see Section 3.5). 
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3.1.5 Cross-over designs 
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In model (3.3), additionally to product, assessor and serving-order effects, first-order 

residual or carry-over effects are assumed to have an influence on the assessment of 

the products. This is the effect that the product tasted in the serving position before 

exerts on the score of the following product. The projection matrix P1, which is part 

of the information matrix Cd, is the same for the cross-over model (3.3) and for the 

row-column model (3.2). But the parameters of interest in the cross-over model 

incorporate a vector of direct treatment effects and a vector of carry-over treatment 

effects. The reduced normal equations can therefore be split again, into equations 
for direct product effects and equations for carry-over effects. 

The reduced normal equations for direct product and carry-over effects 

If the parameter vector 02 consists of a vector T for direct treatment effects and 

a vector p for carry-over effects 
(92 

= 
()) and X2 = [XPXR] denotes the design 

matrix for direct treatment and carry-over effects, then the reduced normal equations 

for the direct and carry-over effects can be estimated from the normal equations 

according to the following equation, where 82 denotes the estimator for 02: 

with 

Ce2 =Q 
X2PiX2 [p] 

=Q 
[XpXR]1 P1 [XPXR] 

[A] 
_ 

[XPXR)'P1Y 

XPPIXP T XPPIXR XPP1Y ] 

XRP1Xp 

[ ] 

XRPIXR P 

][ 
XRP1ý' 

[ 

[ Cll C12 
C21 C221 

IPl I 
Q2 

] 

C11 = X; PiXp 

C12 = XXPlXR = Cl 
2 

C22 = XRPIXR 

Ql = XpPiY 

Q2 = XRP1Y 
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The reduced normal equations for the direct treatment and for the carry-over effects 
can then be expressed as 

CDT = QD 

CRP = QR (3.15) 

where 
CD = C11 - C12Czzczl = XRPI [I 

- XP (XPPIXP) XI j PiXR 

CR = C22 - C21C11C12 = XpP1 [I 
- XR (XRPIXR) XR) P1XP 

QD = Ql - C12CzzQ2 = XRPI [I 
- XP (XPPIXP) X' ]PlY 

QR = Q2 
- 

C21C11Q1 = XpPl [I 
- 

XR (XRPIXR) XR] Ply 

Reduced normal equations for complete block cross-over designs 

Since assessors represent complete blocks, all elements of the assessor incidence 

matrix NA are equal to one (i. e. NA = JQ, Q). For the complete block cross-over 

design for model (3.3), the projection matrix Pl is the same as for model (3.2). 

That means that the matrix C1 is the same as the information matrix for product 

effects for model (3.2), information matrix (3.13). 

Cll = aIp -1 NTNT 

a 

For complete block cross-over designs, for which NA = Jp, a, the matrices C12 and 

C22 have the following form: 

C12 = M- NT1VT 
1 

NAIVA + 1prR 

app 

=M-a1 NTNT 
p1 

Jp, 
QXTXR +P1 1prR 

= M-1NTNT-pJp, apXR+p1PTR a 

=M-1 NTNT -1 lpr1z +1 lpr'R 
app 

=M-1 NTNT 
a 
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+1 TRTR C22 = TR 
ai 

NTNT 
-pi NANÄ 

ap 

where M= XPXR, NT = XRXT, NA = XRXÄ, rR = XRlp and rR the diagonal 

matrix with the vector rR on the diagonal. 

The information matrices for direct treatment and residual effects CD and CR have 

only a closed form if the respective matrices C22 and C11 do. 

A generalised inverse C11has a simple form when the design is also uniform on periods 

(i. e. NT = ýJp, r = raJp, p). 
For uniform complete block cross-over design the 

matrices C11, C12 and CR simplify to: 

Cu = alp 
aJ 

P, P p 

C12 =M- 
1 

NTNT 
a 

=M 
Iip 

PN , 
CR = C22 

-1 
C21 C12 

p 

The exact form of the generalised inverse of C22, which is necessary to calculate the 

information matrix CD for direct product effects, depends on the residual incidence 

matrices NT and NA and on TR, the replication vector of the carry-over effects. 

Definition 3.9 (Balanced repeated measurement design) A repeated measure- 

ment design d is said to be balanced if the treatment-residual incidence matrix 

M=X, XR is of the form 

M 
P(p-1) -IP)=rap_1(JP, P-IP) 

It is said to be strongly balanced if 

a(t - 1) t-1 
M= `jp, P - ra 

p 
Jn, n 
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In strongly balanced repeated measure designs, each treatment is preceded by ev- 
ery treatment the same number of times, whilst in balanced repeated measurement 
designs this is relaxed to every treatment preceding every other treatment the same 

number of times apart from itself. 

For complete block designs with t=p the matrix M simplifies to 

M=p ('IP, 
P - 

IP) 

The replication vector for the carry-over effects rR and the residual period incidence 

matrix NT also simplify for balanced repeated measurement designs t: 

rR = XR1ap = (a - 1)1p 

NT =[p 
01, p Op, 1 `p-1, P-1 

A balanced repeated measurement design that is used frequently for sensory ex- 

periments is the Williams Latin square designs (Williams, 1949). Williams Latin 

square designs are Latin square designs in which every treatment occurs the same 

number of times after every other treatment excluding itself, i. e. they are balanced 

repeated measurement designs with t=p. For the residual-treatment incidence ma- 

trix for complete block designs, this means that M=2 (Jp, p - Ip), i. e. every product 

is followed rQ =p times by every other product. For a single square this means every 

product is followed exactly once by every other product, since a=p. The construc- 

tion of Williams Latin squares is explained in Section 3.4.2. These designs have 

been recommended for the use in sensory profiling for example by Hunter (1996), 

Durier et al. (1997) and Schlich (1993). A bibliography for cross-over designs in the 

sensory context is given by Jones and Deppe (2001). 

Williams designs can be used to generate complete block cross-over designs if the 

number of assessors is equal to or a multiple of the number of products. If the number 



Single session designs 55 

of assessors is not a multiple of the number of products, a subset of blocks from a 
Williams designs can be chosen. These designs are no longer balanced for carry- 

over nor uniform on periods, but they are nearly balanced for order and carry-over 

effects. Schlich (1993) suggests to choose blocks randomly from the square, Russell 

(1991) suggests to select the rows that maximise the average efficiency of the reduced 
Williams designs (see Definition 3.16 for the definition of average efficiency of block 

designs). 

3.1.6 Replicated complete block designs 

In experimental design literature, replication denotes usually the number of times 

each treatment occurs in the design. For sensory designs this means the number 

of times a product is tasted over the whole trial. For complete block designs this 

number equals a, the number of assessors, since each assessor tastes each product 

once. Since for sensory designs it is generally demanded that each assessor tastes all 

products, replication in sensory design literature often refers to the number of times 

each product is tasted by a single assessor or, in other words, the number of times 

the whole trial is replicated. Therefore different notation is introduced for these two 

kinds of replication. 

r= number of replicates, 

the number of times each assessor tastes all p products, where one repli- 

cate of the experiment refers to all assessors tasting every product once. 

rp = product replication, 

the number of times each product is tasted in the trial, ar. 

Since they are the experimental units, assessors are not regarded as replicating 

the experiments. Having more assessors will improve the precision of the product 

means, but replication of the experiment will give information on the consistency 

of the product scores given by the assessors. Hunter (1996) recommends r=3 as 

sufficient to gain information on the assessor-replication interaction. 
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The important parameters for replicated complete block designs are 

a= number of assessors taking part in the trial 

= number of blocks 

= number of times a product is tested 

p= number of products compared in the trial (number of treatments ) 

= block size 

r= number of replicates. 

56 

For complete block designs the number of replicates is 1 (i. e. r= 1) and each prod- 

uct is replicated a times (i. e. rp = a). 

If sensory fatigue is not an issue it might be possible to have all rp products tasted 

within one session. If the rp tastings are too many for one session, the most likely 

split would be to have each replication in a single session, so that the whole trial is 

made out of s=r sessions. Design plans for both strategies are described in the 

following section. 

Replication within one session 

If products are compared more than once by each assessor and it is not necessary to 

do this over multiple sessions, replication can be done in single-session designs. Here 

again, a block is represented by an assessor, but the block size is rp. If the number 

of assessors equals the number of products, Latin rectangles can be used. Latin 

rectangles are designs with rp columns and p rows (Hinkelmann and Kempthorne, 

1994), which are generated from a combination of r independently randomised Latin 

squares. 2 The advantage of such a construction is that each replication could be 

analysed separately, in case something goes wrong in one of the replications or the 

trial is stopped prematurely. It ensures that after p tastings, each product has 
2Some authors use the name Latin rectangle for Youden squares, which are different to the 

designs needed for replicated complete block designs. 
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been compared by every assessor. The disadvantage of such a construction for the 

cross-over model is that carry-over effects between replications are not taken into 

consideration and the resulting design is therefore not necessarily balanced for resid- 

ual effects, even if the single complete block designs are balanced for residual effects. 

The model equations for the replicated form within a session are essentially the same 

as for the unreplicated form for models (3.1)-(3.3), only the indices vary. There are 

now arp observations and each of the assessors tastes rp products. 

Replication over multiple sessions 

A more likely scenario is that each replication is done in a separate session, where 

each replication consists of one complete block design. In such a model, session and 

replication describe the same effects. The model equation for such a sensory trial is 

increased by the session term. It can be derived as a special case of the resolvable 

designs described in Chapter 4. 

Carry-over and order effects are assumed to exist only within a session. Balance for 

residual effects will therefore hold for the replicated design, when it holds for every 

session separately. 

3.2 Incomplete block designs 

We argued in Section 3.1 that it is advantageous in sensory experiments to let ev- 

ery assessor taste every product. Sometimes the number of products is so large or 

take so long to assess that it is impossible for one assessor to assess all products, 

so that each assessor is left to taste only a subset of the products. Limitations of 

product resources and time can also create this undesirable situation. Designs for 

this case are called incomplete block designs (IBD). In these designs the block 

size (t, the number of servings per assessor) is smaller than the number of products. 

i. e. t<p. Mead and Gay (1995) and Cochran and Cox (1957) give examples of 
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incomplete block designs in sensory studies. Hunter (1996) discourages their use in 

sensory studies. When incomplete block designs are used for profiling the number of 

assessors has to be fairly large. For consumer studies on the other hand, incomplete 

block designs can be very useful, since consumers can only taste a small number of 

products without sensory fatigue. In these studies, a large number of consumers will 

be asked to assess a small number of products. Even though incomplete block de- 

signs are rarely used in sensory studies, they are the basic constructs for some classes 

of larger designs. Resolvable block designs, introduced in Chapter 4, are used when 

the trial is split into sessions and each session represents an incomplete block design, 

but over the whole trial an assessor still tastes all products. In Chapter 5, resolvable 

designs with additional constraints are constructed by combining incomplete block 

designs with incomplete cross-over designs. For the construction of these two groups 

of designs, knowledge about incomplete block designs is necessary. The properties 

of incomplete block designs are studied in this section. 

The important parameters for equi-replicated incomplete block designs, in which all 

blocks have the same size, are 

a= number of assessors taking part in the trial = number of blocks 

p= number of products compared in the trial (number of treatments ) 

t= number of products compared by one assessor = block size 

rp = number of times each product is tested in the trial 

Since every assessor tastes only a subset of all p products, the replication term r, 

introduced for complete block designs, does not make sense. Replication in incom- 

plete block designs is the number of times each product is tasted, and it is equal 

to the number of assessors that taste the product. It is rp = at/p, and it has to 

be an integer for equi-replicated designs, which are generally used for sensory and 

consumer studies. For incomplete block designs the block size is smaller than the 

number of products, t<p, and it is assumed that products do not occur twice in 
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the same block; they occur either once in a block or not at all. IBD of this sort are 

called binary designs. 

Definition 3.10 (Binary block designs) An IBD is called binary if the block in- 

cidence matrix NA is binary, i. e. all its elements are either zero or one. 

An element n=j of a binary assessor incident matrix NA is equal to one if product i 

is tasted by assessor j and zero otherwise. For equi-replicated binary designs with 

equal block sizes, >t n, j = ri = rp and Fj n, j = tt = t. For the symmetric concur- 

rence matrix AA = NANÄ it follows that >; At? = Et Ek niknkj = ý-, k nkj >= nik _ 

t >k nkj = rpt. 

Whilst for complete block designs all product differences are always estimable since 

every product occurs in every block, this is not necessarily the case for incomplete 

block designs. 

Definition 3.11 (Connected and disconnected designs) A design d is discon- 

nected if the treatments can be split into groups in such a way that no treatment 

from one group occurs in any block with any treatment from another group. A design 

which is not disconnected is said to be connected. 

An essential feature of any incomplete block design is therefore that it is connected. 

Only for connected designs are all treatment comparisons estimable. The rank of the 

information matrix for connected designs is rank(C) =p-1, while for disconnected 

designs it is smaller (John and Williams, 1995). 

3.2.1 Randomised incomplete block designs 

The model equation for a randomised incomplete block design is the same as for a 

randomised complete block design for model (3.1). 

Yjk=It+CYj+Tj+Ejk 1<j<a, 1<k<p (3.16) 
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The difference in the information matrix is due to the block incidence matrix NA. 

Cd=r Ip 
-I 

NANA = rplp -1 
AA (3.17) 

While for complete block designs NA = Ja, p, for incomplete block designs this is a 
binary matrix. The matrix element nt; of NA is equal to one if assessor j tastes 

product i and zero otherwise. Whilst in CBD each product is tasted a times, once 
by each assessor, in IBD each product is tasted rp =p times. This is also reflected 

in the information matrix. 

When all treatments are of equal interest an attractive characteristic is balance, 

which means that each pair of treatments occurs together in a block the same number 

of times. 

Definition 3.12 (Balanced incomplete block design (BIB design)) A bal- 

anced incomplete block design is an equi-replicated binary IBD for which all blocks 

have the same size and in which every pair of products occurs together in exactly A 

blocks. 

For BIB designs all pairwise comparisons are made with the same accuracy, which 

means they are variance balanced. The parameters of a BIB design satisfy the 

following two relationships: 

at = prp 

rp(t - 1) =A (p - 1) (3.18) 

A BIB design can only exist if equations (3.18) are satisfied and all parameters 

are integers. Even when both equations are satisfied, a suitable BIB design may 

not exist. It is therefore not always possible to find a BIB design of the required 

size for a specific sensory experiment. All complete block designs are balanced by 

definition, since every product occurs in every block. Lists of BIB designs are given, 

for example, in Cochran and Cox (1957), Ragharavao (1971) and Mathon and Rosa 

(1996). 
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Definition 3.13 (Complement) The complement of an equi-replicated and equi- 

sized IBD for p treatments with a blocks of size t is an IBD for p treatments and a 
blocks of size p-t, in which each block of the complementary design includes the 

treatments that are not included in the block of the base design. 

Let NA be the incidence matrix of an incomplete block design d(p, a, t), a design for 

p products in a blocks of size t. The incidence matrix of the complementary design 

of d, d, (p, a, p- t) is NÄ = Jp, a - NA, since each of the a blocks is a complement 

of the blocks in d. The complementary design of a balanced incomplete design is 

therefore also an IBD (John and Williams, 1995). 

Definition 3.14 (Symmetric block designs) An equi-replicated and equi-sized 

IBD is called symmetric if the number of treatments equals the number of blocks. 

For sensory designs symmetry means that a=p and t= rp. 

For model (3.16), the information matrix for product effects depends on the block 

incidence matrix NA or rather on the matrix AA = NANA. This is the so called 

concurrence matrix. The diagonal elements of the concurrence matrix );; give 

the number of times product i occurs in the design. Its elements on the off-diagonal 

A, ij, give the number of blocks in which products i and j occur together. For 

BIB designs the concurrence matrix has the special form 

NANA = A. Jpp + (rp 
- A)Ip, with A= rn(t - 1) 

p-1 

Every product is tasted A times with every other product, apart from itself, by an 

assessor and every product is replicated rp times. Thus, the information matrix for 

a balanced design simplifies to 

Cd = 
Ap (IP 

-' JpP) 



Single session designs 62 

and one of its generalised inverses is 

Cd = Ap P 

Example 3.9 BIB design example for seven treatments in seven blocks of 

size three. 
p=a 

at 
rp = -=t=3 

p 

= 
rr(t-1)3_2 

p-1 6 

The product replication for seven treatments in seven blocks of size three is three, 

hence this is a symmetric design. It is balanced since each product occurs once with 

every other product in a block. 

A BIB design for 7 treatments in 7 blocks of size 3 with its block incidence matrix 

NA and its concurrence matrix AA is given by 

124 
235 
346 

d(7,7,3,3) =457 
561 
672 
713 

1 0 0 0 1 0 1 
1 1 0 0 0 1 0 
0 1 1 0 0 0 1 

NA= 1 0 1 1 0 0 0 
0 1 0 1 1 0 0 
0 0 1 0 1 1 0 
0 0 0 1 0 1 1 

AA = NANÄ= J7, T+(3- 1)17 

Cd = rpIp-1NANÄ=317-3(J7, ß+217)=3(7I7-2J7,7) 

Cd =t IP = 7I7 

BIB designs exist only for a limited number of combinations of p, a and t. This 

will rarely fit the parameters of the sensory design that are required for an experi- 

ment. While BIB designs provide estimators for product differences which have the 

same precision for all product comparisons, it is rather more important to find a 
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design for the required parameters than adjusting the trial to fit a BIB design. If all 

pairwise product comparisons are equally important, then the relative precision of 
treatment comparisons is determined primarily by the number of joint occurrences 

of the treatments within blocks. Therefore the pairwise occurrence of treatments 

should be as even as possible. These numbers are given through the elements of the 

concurrence matrix AA = NANÄ. A design in which the concurrence matrix consists 

of two different elements is a partially balanced incomplete block design with two 

associate classes. 

Definition 3.15 (Partially balanced incomplete block design (PBIBD)) 

An equi-replicated binary incomplete block design for p treatments in a blocks of size 

t is said to be partially balanced with two associate classes if a relation of association 

can be established between any two treatments satisfying the following requirements. 

a) Two treatments are either first associates or second associates. 

b) Each treatment has exactly ni associates (i=1, I). 

c) Given any two treatments that are ith associates, the number of treatments 

common to the jth associate of the first and the kth associate of the second 

is pik and is independent of the pair of treatments we start with. Also pki _ 

pjk: (i, j, k=1,2). 

Two treatments which are ith associates occur together in exactly A blocks (i = 1,2). 

Regular graph designs are a special class of partially balanced designs with two 

associate classes which satisfy the additional constraint A2 = Al + 1. 
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Example 3.10 Regular graph design for eight treatments in blocks of size 
four. 

1 2 3 5 
2 3 4 6 
3 4 5 7 

d(8,8,4,4) = 
4 
5 

5 
6 

6 
7 

8 
1 

6 7 8 2 
7 8 1 3 
8 1 2 4 

1 1 1 0 1000 4 2 2 1 2 1 2 2 
0 1 1 1 0100 2 4 2 2 1 2 1 2 
0 0 1 1 1010 2 2 4 2 2 1 2 1 

__ 
0 NA 0 0 1 1101 AA _ 

1 2 2 4 2 2 1 2 
1 0 0 0 1110 2 1 2 2 4 2 2 1 
0 1 0 0 0111 1 2 1 2 2 4 2 2 
1 0 1 0 0011 2 1 2 1 2 2 4 2 
1 1 0 1 0001 2 2 1 2 1 2 2 4 

Each product occurs in ¢ blocks and together in o ne block e ither once or twice with 

any other product. 

When searching for "good" designs it would be useful to be able to compare the 

quality of different designs of the same size. One possibility would be to use the 

variances for each contrast of interest to see which of them estimates the contrasts 

of interest with higher precision. Since in most cases more than one contrast is of 

interest though, a measure has to be defined that combines the variances from the 

multiple contrasts of the design under consideration to a single measure. This is the 

idea of optimality criteria. Instead of the variances themselves, these measures 

use the variance in relation to an orthogonal design. 

Definition 3.16 (Efficiency) Let c'r denote an arbitrary contrast of a treatment 

comparison and c'T its estimator. Let vard(c'r) denote the estimator variance under 

design d and varo(«Tr) the variance under an orthogonal design with the same treat- 

ment replication and the same error variance Q2. 
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The ratio of the variances 
varo(c'T) EST = 
vard(c'T) 

is called the efficiency factor of contrast c'r. 
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For the special case of pairwise comparisons, J _r = (-r, Tj), with treatment i repli- 

cated rs times and treatment j rj times, the efficiency factor 

__ 
varo(r - Tj) 

vard(r= - Tj) 

is called a pairwise efficiency factor. We have varo(T{ - Tj) +) a2. 

Let Cd be the information matrix of an equi-replicated, equi-sized incomplete block 

design and let et be the i-th largest eigenvalue of the matrix p Cd. The p-1 eigen- 

values et of r Cd are called the canonical efficiency factors. 
P 

If interest is in more than one pairwise comparison, the average efficiency can be 

calculated. It is 

EP=-1 Eý=i+1 varo(Ti - Tj) 
-p-1 

EA 
P-1 P1 P-1 P P-1 -1 ýi=1 I-j=i+1 

E i-1 
Ej=i+1 výrd(7i - Tj) ýi-1 ei 

A design d is called efficiency balanced if all its pairwise efficiency factors EST- 
.) 

are the same. 

All orthogonal designs have efficiency 100%, e. g. complete block and uniform row- 

column designs. 

The average efficiency factor is a lower limit of the efficiency of an IBD compared to 

a randomised complete block design. The loss occurs when all experimental units 

are as homogeneous as the observational units within a block. 
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When designs are not equally replicated, but have replication vector r=[7-1,. .., Tr]', 
efficiency can be calculated in two ways. Let ra denote the diagonal matrix with r 
on the diagonal. Using formula 

n-1 1 
(3.19) EA; * =1 

{=1 J 

where e, is the ith largest eigenvalue of the matrix 

Cä = rACdr-2 

EA; r compares the design to an orthogonal design with the same replication. This 

measure is most appropriate if the replication vector r is fixed. If n= Ep 1 r; is 

fixed rather then r itself, the design can be compared to an orthogonal design with 

replication r=R. . 
Efficiency can then be calculated as 

EA; = 
P_1 (3.20) 

ri-1 
ei 

where e; is the ith largest eigenvalue of the information matrix Cd. 

Definition 3.17 (A-optimality) A-optimal designs are designs in which the sum 

of variances of the pairwise comparisons of the treatments is at a minimum. For 

equi-replicated designs it is equal to the maximal value of EA, 

2 P-1 P1(l 
OA = /P 

-) i=1 
L>2 vard (Ti - Tj) 

P( 1 
j=i+1 

If ltj denotes the row vector of the elementary contrast for elements i and j and L 

the matrix of all essentially different elementary contrasts with i<j, EA can be 

calculated as follows: 

i 
OA =2 21 Yard 

(r=^7-j) 

P(P - l) : =i i=i+1 a 
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2 P-1 p 

1jjc lij 
p'P - 1) 

i=1 j=i+1 
1 

= trace(LCd L') 
p(p - 1) 
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Another optimality criterion, also useful when all pairwise comparisons are of equal 

interest, is (M, S)-optimality. It is a two-step criterion, which was developed by 

Eccleston and Hedayat (1974). 

Definition 3.18 ((M, S)-optimality) In the first step, the mean of the efficiency 

factors is maximised (M-step). 

1 P-1 Gp 

e; = trace 

Within the class of M-optimal designs, the spread of the efficiency factors is min- 

imised (S-step). 

P-1 ((! 
cd)2) e; 2 = trace 

T 

For all binary block designs, trace(NN') = EP, . fit= _ E; r;, where r2 is the replication 

of product i. Thus, trace (- Cd) is fixed. For equi-replicated designs, ); i = rr, so 
P 

Er'ei=p(1-I) . 

The S-step is equivalent to minimising the sum of squares of the elements of the 

concurrence matrix, E? E A. For equally replicated designs John and Williams 
.7 tj 

(1995) show that A-optimal designs are all within the class of (M, S)-optimal designs. 

The model equations for row-column and cross-over IBD are the same as for the 

respective complete block designs. The number of observations at is smaller, since 

the block size is smaller than the number of products (t < p). Thus, the actual form 

of the projection matrix changes and with it the form of the information matrix. 
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3.2.2 Row-incomplete row-column design 

The modified model equation for incomplete row-column designs DR, C(p, a, t) is 

Yak=µ. +7, +a +Tk+Ei-ik 1 <i<t, 1<j<a, 1<k<p (3.21) 

with information matrix 

Cd = Tp 
(Ip 

+1 Jp 
pJ-I 

NT NT -I NAN, 
p/ 

which depends on the assessor incidence matrix, as discussed in the previous section 

and on the serving position incidence matrix with t servings. Row-column designs 

are orthogonal when NT = Mp, t and NA = ! Jp, Q. A row-column design is connected 

if rank(Cd) =p-1. 

For uniform row-column designs, in which the number of blocks equals the number 

of treatments, Youden squares can be used if they exist (see Definition 3.8). 

A more general construction method is used for cyclic designs which are always 

uniform on experimental units. Alternatively, there are several computer algorithms 

given in the literature that search for optimal row-column designs. Both methods 

will be discussed further in Sections 3.4 and 3.5. 

3.2.3 Row-incomplete cross-over designs 

For incomplete block cross-over designs Dco(p, a, t), model (3.3) is modified to 

Yd(ij) = JU + 7r; + ai + Td(= i) + Pd(i-i, i) + E_i 1<i<t, 1<j<a (3.22) 
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The information matrices CD and CR for treatments and residuals as defined in 
(3.15) consist of the following parts: 

ill = xpi1Xp 

- rpIP 
1 

QNTNT 

C12 = X, PlXR 

M- 1 NT I 

a 
C'21 

1NANA+ 

1Jpp 
(3.23) 

tý NANÄ +p 1pTR (3.24) 

C22 = XRPIXR 

= rR ' NTNT - NANA + 
apTRrR 

(3.25) 

Balanced cross-over designs, introduced in Definition 3.9, exist only for a limited 

number of parameter combinations. If balanced repeated measurement designs do 

not exist, partially balanced repeated measurement design can be used instead. 

Definition 3.19 (Partially balanced repeated measurement designs) A par- 

tially balanced cross-over design based on a partially balanced incomplete block design 

is an arrangement of p treatments in a rows and t columns such that 

a) Every treatment occurs at most once in a row. 

b) Every treatment occurs p times in each column. 

c) Every pair of treatments (i, j) occurs together in µk columns if i and j are k-th 

associates. 

d) Deleting the last column of the design, every pair of treatments (i, j) occurs 

together in vk rows if i and j are k-th associates. 

e) Every ordered pair of treatments (i, j) occurs together in successive periods in 

A; rows if i and j are k-th associates. 
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f) For every pair of treatments (i, j), the number of columns in which j occurs 

when i is in the last column is the same as the number of columns in which i 

occurs when j is in the last column. 

Computer algorithms for the creation of efficient cross-over designs are described in 

Section 3.5. 

3.3 Efficiency bounds 

Computer algorithms search for designs according to a chosen optimality criterion. 
For these, it is useful to know efficiency bounds, so the algorithm will stop when 

a design is found that is sufficiently close to the bound. The bounds that can be 

used as stopping criteria will depend on the chosen optimality criterion. In this sec- 

tion, bounds will be given for algorithms using (M, S)-optimality and A-optimality 

criteria. These will be given for the three design types; incomplete block designs, 

row-column designs and cross-over designs. While efficiency is defined in relation to 

orthogonal designs, which often do not exist for the design specification of interest, 

efficiency bounds can give a more realistic picture of how "good" a design is than 

efficiency alone. 

3.3.1 Incomplete block designs 

The value of the optimality criterion of a design d depends on its information ma- 

trix, which for equi-replicated incomplete block designs is Cd = rrIP -! NANÄ (see 

equation (3.17)), and therefore depends on the actual form of the block concurrence 

matrix AA = NANA. To find a minimal value of the optimality criteria, some char- 

acteristics of the incidence matrix NA of equi-replicated binary designs with 

equal block sizes and its concurrence matrix NANÄ are needed. These are listed 

below. 
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Let n=j and a=? be the respective elements (i, j) of NA and AA. 

I if treatment i occurs in block j 
n; j = 

0 otherwise 

n; j = rp column/block sum of NA 

P 
E NJ =t row/treatment sum of NA 

a 
Aij =E niknjk 

k=1 
PPaapa 

L. 
Aij = 

1: niknjk => nik > njk = 
E(nikrP) 

= trp 

j j=1k=1 k=1 j k=1 

a 
Aii =E nk = rp if NA is binary 

k=1 
P 

at; = prp = trace(AA) = trace(NANÄ) 

a 
E )jj = Aij - . 1=t = (t - 1)r 

pP 
trace(AÄ) =EA 

i=1 k=1 

Let 

where 

Let 

pp 
A1+ AR Aij 

P(Z - Pý i=i i=1. t#. i 

-A 1= [A] is the integer part of A and 

AR =A-Al is the fractional part of ý 

17=(P-1)AR 

(3.26) 

(3.27) 

71 

When a balanced design does not exist the minimum value of trace(AA) will be 

achieved for a regular graph design, in which each row and column has i elements 
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of Al and p-I. - 77 elements of . '2 (Russell et al., 1981). For the off-diagonal of the 

matrix AA this means that Al and A2 occur with the following frequencies 

fre%A (\1) = P71 

fregnA (Az) = P(p -1-7 7) 

These values are used as stopping rules, in the (M, S)-optimality search algorithm of 
Russell et al. (1981), which is described in detail in Section 3.5.2 (algorithm REK1). 

Other bounds that can be used for (M, S)-optimality search algorithms are lower 

bounds for the corrected second moment of the p-1 canonical efficiency factors. 

The first three moments of the canonical efficiency factors are 

P-1 1 (rp 1\ E ei = trace 
I 

Cd I 
p`1 i_1 p-1 

=p 
11 ýtrace(Ip) 

- T1ttrace(AA)) =11 
(p prp 

(p - 

_ 
p(t - 1) 
t(p - 1) 
p-1 ((in 2 

S2 = et = trace 
(cd2) 

= trace -1 
AA' 

rt i=1 rP 

/I 2trace(AA) 
+ 

trace(AA) 
= trace(P) - 

rpt (rpt)2 

PP 

= p- 
2P+ 

(r t)a 

p 
A2 

Pj 

2 
p(t _t 1) 

+ Fr t 2 )i 
j; ig`j 

S2 E (ei - e)2 (rP t )2 
I 

j=E i(Aij 
- ý)2 

= S12 - (p - 1)e2 

P-1 
S3 = E(e, 

- e)3 

i=11 
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Note that the second and third corrected moments S2 and S3 vanish for efficiency 
balanced designs (i. e. ej = e, i=1, 

... ,p- 1). 

For regular graph designs holds 

S2 < S2L . 
p(P - 1)i(1 - 77) 

(r t)2 

This can be used as a lower bound for (M, S)-optimal designs, when balanced designs 

do not exist. 

A lower bound for S3 is given by Jarrett (1977): 

p(P - 1)ij S3 < S3L 
- (r + pt)3 

where z 
77 ((p +1)77 -3) if 77 < 21) 
(1-r1)(p-(p+1)ii) if 77 > 2( 

If Al =0 then another bound for S3 is given by Paterson (1983) 

S3 < S3L' -- 
p(p - 1)n ((p + 1)i2 - 377 - t+ 2) 

_ (rpt)3 

Upper bounds for A-efficiency can also be expressed in terms of the moments S2 and 

S3. For binary designs, all canonical efficiency factors are positive, hence 

EA= p_111 <Uo 
ýi=1 ei 

This upper bound will only be reached for efficiency balanced IBD. For cases, where 

efficiency balanced designs do not exist, Jarrett (1977) gives the following tighter 

bound: 

Ui Wie-_(p-1)S2 with S2= 
1 S2 

e+(p-3)S (p- 1)(p-2) 
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Alternatively, Tjur's (1990) bound can be used: 

U2-e- (1 - e)S2 
(p - 1)(1 - e) - S2 

A tighter bound that makes use of the third moment has been given by Jarrett 
(1983): 

S2 U3 -e- 
2 

(p-1)(S3+eS2) 

In general, S2 and S3 are unknown, thus, S2 has to be replaced by S2L in Ui and 

U2. An estimate of U3 can be constructed by substituting S2L for S2 and S3 with 

either S3L or S3L'. 

3.3.2 Row-column designs 

Upper bounds for the average efficiency in row-column designs can be found in 

similar fashion as for IBD. The information matrix of a binary equi-replicated row- 

column design is 

Cd = rP(IP 
I 

Jpp) -I NTNT -1 NANA7 
p 

which depends on the concurrence matrices of the row- and the column-component 

AT = NTNT and AA = NANA. The first moment of the p-1 canonical efficiency 
factors of the information matrix of a row-column design is 

to -t -a+ry 
rip - 1) 

which can be used as an upper bound, 

EA =ERc: Uo=e 
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When at least one component of the design is non-binary an improved bound has 
been given by Park and Dean (1990): 

EA<Ul = 1- a'(P-a') 
_ 

t'(p-t') 

a2 (p - 1) t2(p - 1) 

where a' =a modulo p and t' =t modulo p. 

Eccleston and McGilchrist (1985) give the following upper bound 

_1 ý1+ 
U1t J -11 

Ui U2 EaýUi=Ua 
Ul + U2 - UI U2 

where UQ and UU are upper bounds for the average efficiency from the row and the 

column component of the design. The inequality holds when the row-column design 

is an adjusted orthogonal row-column design, so that NÄNT = rrJ, and the upper 
bounds for the component designs are replaced by their actual A-efficiency. 

3.3.3 Cross-over designs 

For partially balanced cross-over designs, Raghavarao and Blaisdell (1985) give the 

following bound for the A-efficiency of the direct treatment effect: 

Ed G Uj _ 
(t 21)p ((t - 1)tp - (t +p)) 

t (p - 1) (p(t - 1) - 1) 

The upper bound is attained if the cross-over design is balanced. 

Most of the bounds for incomplete block, row column and cross-over designs use 

estimates of the moments of the canonical efficiency factors, since the actual values 

are not known. The quality of the bounds depends therefore on the quality of the 

estimate. This has to be kept in mind when a comparison between the efficiency of 

a design and its estimated bound is made. 
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In the following two sections, construction techniques for the introduced design 

classes are discussed, concentrating on methods for settings for which balanced de- 

signs do not exist. 

3.4 Cyclic designs 

Cyclic designs for p products in p blocks of size t are defined through the first block of 
the design, called the initial row. From this block, all other p-1 blocks are created 
through cyclic development. Each element is advanced by one reduced modulo p, 
the number of products in the trial. 

Example 3.11 Cyclic IBD for p= 12 products and assessors with block 

size k=6. 

1 2 5 7 9 10 
2 3 6 8 10 11 
3 4 7 9 11 12 
4 5 8 10 12 1 
5 6 9 11 1 2 
6 7 10 12 2 3 
7 8 11 1 3 4 
8 9 12 2 4 5 
9 10 1 3 5 6 
10 11 2 4 6 7 
11 12 3 5 7 8 
12 1 4 6 8 9 

initial row 
initial row +1 (modulo 12) 
initial row +2 (modulo 12) 

initial row +11 (modulo 12) 

From the initial row a difference matrix 0= [d; jlt, t can be derived, which reveals 

the properties of the concurrence matrix NANÄ for the whole cyclic design. The 

difference matrix of size txt is computed by calculating the difference between the 

t elements of the initial block b modulo p: 

dij = (bi - bj) reduced modulo p i, j=1, ... ,t 

where b; is the ith element of the initial block b. The diagonal of the difference 

matrix consists of structural zeros. This difference matrix can then be summarised 
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by a vector 6 which lists the number of times each difference occurs. 
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Since the concurrence matrix is circular, it is identified fully by its first row, which 

can also be calculated from the difference matrix as explained above. Its faster 

construction compared to that of the concurrence matrix NANÄ calculated from the 

incidence matrix is especially useful in search algorithms for cyclic designs. (M, S)- 

optimal incomplete block designs can easily be found by searching for the initial row 

that minimises the sum of the squared entries of the summary vector. 

Example 3.12 Relationship between the difference matrix and the con- 

currence matrix in a cyclic design. 

Concurrence matrix NANÄ 

Difference matrix 0 
b1 - b, 1 2 5 7 9 10 

1 0 11 8 6 4 3 
2 1 0 9 7 5 4 
5 4 3 0 10 8 7 
7 6 5 2 0 10 9 
9 8 7 4 2 0 11 
10 9 8 5 3 1 0 

Difference summary vector 6- frequency distribution of the elements of A: 

jD 0123456789 10 11 
622343234322 

622343234322 
262234323432 
226223432343 
322622343234 
432262234323 

_343226223432 NANÄ 234322622343 
323432262234 
432343226223 
343234322622 
234323432262 
223432343226 
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Tables of efficient cyclic designs have been extensively published in the literature, 

see for example John, Wolock and David (1972), John (1981) or Lamacraft and Hall 

(1982). Alternatively, computer algorithms can be used to search for efficient cyclic 
designs. 

3.4.1 Search algorithms 

Search algorithms for efficient cyclic designs have, for example, been suggested by 

John et al. (1993) and Nguyen (1994). The algorithm by John et al. (1993) uses 
integer programming to find A-optimal cyclic designs. Unfortunately it was not 

possible to obtain the publication by Nguyen (1994). To create cyclic designs for 

this dissertation, a simple exhaustive algorithm was sufficient, though. 

The amount of computation for an exhaustive search algorithm can be reduced sub- 

stantially when the search is done only within non-isomorphic designs. Isomorphic 

designs are designs derived from each other by re-labelling or permuting treatments, 

which are the products in the sensory context. For the algorithm used here, the ini- 

tial rows removed from the set of candidate designs are the ones that can be derived 

by cyclic development or through permutation of the t entries of the initial rows. 

If the number of products is fairly large the candidate list for non-isomorphic ini- 

tial rows is extensive and the algorithm requires increasing amounts of memory and 

time to inspect all these designs. Since calculating differences is less time intensive 

than calculating generalised inverses, the search algorithm for cyclic designs used 

in this dissertation searches for A-optimal designs within the class of (M, S)-optimal 

designs. It consists of the following four steps: 
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Algorithm CYC1: 

Step 1: Create a candidate list of initial rows {Ct} 

Step 2: Reduce a candidate list to non-isomorphic initial rows {C=S°{ 

Step 3: Calculate the difference matrix A_ [dtj]t, t and the summary vector A. 

Calculate the sum of squares of A. Find the initial rows that minimise the 

sum of squares {Ci S} 

Step 4: Calculate the average efficiency for designs from {Cr} and find designs 

with maximum average efficiency {CA} 

This algorithm can be used for all combinations of (p, t) with p>t of reasonable 

size. For p much larger than 30, the number of non-isomorphic initial rows might 
be too large to process. 

By construction, all cyclic designs are uniform on periods, and so symmetric cyclic 

designs used in sensory studies are always balanced for order. Therefore no special 

algorithm is necessary for the construction of cyclic row-column designs. This bal- 

ance for order is lost when the number of assessors is not a multiple of the number 

of products. When the number of assessors is larger than the number of products, 

cyclic designs can be constructed by using more than one initial row. When the 

number of assessors is not a multiple of the number of products, only some of the 

blocks from a cyclic set are used. Such sensory designs will then be only nearly 

balanced for order. 

3.4.2 Cyclic cross-over designs 

When first-order carry-over effects are included in the model, as in model (3.22), 

and interest is mainly in the direct product effects, optimality criteria depend on 

the information matrix CD for the direct product effects with C11, C12, C21 and C22 

defined as in Equations (3.23)-(3.25). That means that an ideal combination of the 

matrices NA, NT, M, NA and NT has to be found. 
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Complete block cross-over designs 
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For complete block designs, MacFie et al. (1989), Schlich (1993), Durier et al. (1997) 

and Hunter (1996) suggest Williams Latin square designs (introduced in Section 
3.1.5). Williams Latin squares are cyclic Latin squares balanced for first-order carry- 

over effects. The initial row of a Williams Latin square, for which p, the number of 
products is even, has the following form: 

!p1 p-1 2 p-2 3 p-3 
P! 

L 2J 

For an odd number of products two Latin squares are needed to reach balance, which 

can be constructed with the following initial rows: 

P1 p-1 2 p-2 
p-1 p+ll 

22J 

and its reverse 

(p+l p 
L22 "' p-2 2 p-1 I PI 

Wakeling et al. (2001) show that Williams Latin squares are only a subclass of cyclic 
designs balanced for first-order carry-over effects. 

If the number of assessors a is smaller than the number of products p, a subset from 

a Williams square can be taken. Russell (1991) suggests an algorithm comparing all 

non-isomorphic connected subsets of a rows according to their A-optimality criterion. 

These non-isomorphic subsets are equivalent to the non-isomorphic initial rows for 

cyclic designs. 

Incomplete block cross-over designs 

For cyclic cross-over designs in incomplete blocks, Ball (1997) describes an algorithm 

that starts with an initial row whose elements are permuted and the respective 
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designs evaluated according to a chosen optimality criterion. The optimality function 

for the cyclic designs d uses the precedence matrix M of the design: 

c(d) = range(M) + std(M) 

For small designs all permutations can be evaluated but for larger designs a non- 

exhaustive search algorithm is necessary. Ball (1997) suggests selecting ni initial 

rows randomly from a given set of initial rows and performing n2 random permuta- 
tions on each of these. The resulting cyclic designs are then evaluated according to 

the above criterion. 

Cyclic designs are easily constructed and an exhaustive search is possible for designs 

of reasonable size. Their disadvantage is that they are limited to cyclic patterns. 

More efficient designs may be found in the class of all designs d(p, a, t). Thus, non- 

cyclic computer search algorithms are an important alternative to cyclic construction 

techniques. 

3.5 Non-cyclic construction methods 

For creating incomplete block designs, two kinds of algorithms are used, block- 

exchange and treatment-interchange algorithms. Both are usually non-exhaustive 

algorithms that start with a random or partially random starting design. In block- 

exchange algorithms, blocks are exchanged between the design and a list of candidate 

blocks. At each step, the pair of blocks that causes the largest improvement in the 

optimality criterion is swapped between the design and candidate list. In inter- 

change algorithms, single treatments are exchanged between blocks. At each step in 

the algorithm, treatment-block pairs are chosen that cause the largest improvement 

of the chosen optimality criterion. Both kinds of algorithms stop when a design 

is found for which the optimality criterion is close enough to a given upper bound 

(stopping rule) or when no swap can be found that would improve the optimality 

criterion any further. 
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Optimality criteria often involve time-intensive calculation methods, including the 

inversion of matrices. For some methods, updating formulae make it unnecessary to 

perform these calculations at every step in the algorithm, increasing the speed for 

finding optimal designs. 

The disadvantage of exchange and interchange procedures is that searches frequently 

result in sub-optimal designs when the algorithm gets trapped in a local optimum 

of the objective function. One way to overcome this problem is to repeat the search 

with different starting designs. Unfortunately this does not guarantee that the 

global optimum will be found. To increase the chances of finding an optimal or 

nearly optimal design, tabu search or simulated annealing methods have been 

suggested. Tabu search methods prevent the algorithm from inserting elements that 

have been taken out in previous steps. A list of forbidden swaps is created. In 

simulated annealing methods randomly chosen swaps are always made when they 

improve the optimality criterion and they are made with a certain probability p, 

that decreases over the course of the search, even when they make the optimality 

criterion worse. Both methods can be used in combination with block-exchange and 

treatment-interchange algorithms. 

In the following sections, selected construction algorithms are discussed in more 

detail. All of them are simple exchange or interchange algorithms. Since they 

generally find sufficiently efficient designs, it is not necessary to modify them into 

tabu-search or simulated annealing algorithms. Most of the algorithms introduced 

in this chapter will be extended in later chapters to construct more complicated 

designs, for which incomplete block and cross-over designs are the building blocks. 
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3.5.1 Block-exchange algorithms 
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Nguyen and Dey (1990) describe a block-exchange algorithm using the (M, S)-opti- 

mality criterion. A set of candidate blocks is created, from which a starting design 

is chosen at random. From this, complete blocks are swapped out and in, using 

the minimum-maximum principle, i. e., first a block in the design is found whose 

deletion causes the smallest loss in the optimality criterion. For the reduced design 

a block from the candidate list is then found that causes the largest increase in the 

optimality criterion. In this algorithm the following results for trace(GC) are used: 

If a block with incidence vector n is taken from design d, resulting in design d_ 

or added to design d, resulting in design d+, an update formula for the optimality 

criterion of the new designs is 

trace(Cd_) = trace(CC) +t-1- 2S(n) 

trace(Cd+) = trace(CC) +t-1+ 2S(n) 

where 5(n) = ar'n + ßn'NN'n 

with a=1-k, ,ß= 
kz 

7 and r= Nla. If block incident vector nd in the design is 

replaced with block incident vector n, to create design d', 

trace(Ca, ) = trace (Cc) +2 (t -1+ 2S (ne) - S' (nd)) 

where 
S'(n, nd) = S(nc) + andnc + N(n n. )2 

The four steps of the algorithm are as follows: 

Algorithm ND1: (Nguyen and Dey, 1990) 

Step 1: From a randomly chosen b-block starting design, its incidence matrix N and 

the concurrence matrix NN' are calculated. For each candidate block not in 

the design, S(n, ) is calculated. 
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Step 2: Among all candidate blocks, the block with incident vector n" is identified 
for which S(n, ) is minimised. For each block in the design, S(nd) is calculated. 

Step 3: With these values, a block within the current design with incidence vector 

nd' is found for which S'(n,. ) is maximised. 

Step 4: If t-1+ S(nd') - S'(n') is greater than a chosen negative small number, 

-10-5 say, then stop. Otherwise exchange nd' for ne', update NN' and each 
S(n, ) and return to Step 2. 

This algorithm is useful only for small incomplete block designs. For larger designs 

the following problems occur: 

a) It gets frequently trapped in local optima of the objective function, yielding 

sub-optimal designs. 

b) For designs with a candidate block list of more than 15000, the computer 

algorithm requires an enormous amount of memory, which my computer was 
not able to provide. 

It will therefore be used only for the construction of the panel designs, discussed in 
Section 5.4, which are sufficiently small. 

Interchange algorithms are an alternative to block-exchange algorithms. For these, a 

list of candidate blocks is not needed and so the requirements on computer memory 

are modest. 

3.5.2 Interchange algorithms 

In this section, selected interchange algorithms for incomplete block designs and 

cross-over designs are introduced, as these algorithms are needed in Chapter 5. 

Incomplete block designs 

Several distinct search algorithms for incomplete block designs have been given in 

the literature. Examples are the publications by Whitaker and Triggs (1990), who 
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use non-linear 0-1 programming, and Whitaker (1995), who introduces a simulated 

annealing algorithm. The two interchange algorithms, that have been been chosen 
for use in this dissertation are introduced by Russell et al. (1981) and Jones and 
Eccleston (1980). 

Russell et al. (1981) use the characteristics of a PBIB design with two associate 

classes Al and A2 = Al + 1, also referred to as a regular graph design. These designs 

are (M, S)-optimal for design sizes for which balanced designs do not exist. Whilst 

their complete algorithm creates efficient row-column designs, in the first step of 

their algorithm an (M, S)-optimal randomised IBD is created. Only this part of the 

algorithm will be described in detail. 

The authors use the following relationships to find the stopping rules for the algo- 

rithm: 

r= at+ß, a, o EN 

att = tae + 2aß +, 6 
P 

Aij = ar 

p 
E Aij = ar - Aii 

i, =, Ki 
= ar-tae+2a/3+, ß 

= AI(p-1)+71, 
_ (P-1)ai+2Ai, q +77 

A,, 77E No, 0< 71 < (p- 1) 

for (M, S)-optimal designs 

Let a1 and 77 be defined according to equations (3.26) and (3.27). With this notation 

the steps of the algorithm can be summarised as follows: 

Algorithm REK1 (Russell et al., 1981): 

Step 1: Create the incidence matrix NA of an M-optimal incomplete block design 

as a starting design according to the following steps: 
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Step 1.1: Find integers a and ß such that r= at + 0. (For symmetric designs 

with rät, a= 1 and ,ß= 0). 

Step 1.2: Generate apxt matrix of a's. 

Step 1.3: Numbering the columns of NA as 0,1, ... , 
(t - 1), add 1 to the cells 

in columns (i - 1)ß, (i - 1)0 + 1,... (i - 1)ß + (ß - 1) of row i, where 

each (i - 1)ß +j is reduced modulo t, j=0, ... , 
(/3 - 1). 

Step 2: Modify matrix NA of step 1 according to the following steps so that it 
becomes the incidence matrix of an (M, S)-optimal IBD : 

Step 2.1: Calculate AA = NANÄ, gyp; #j ash, Ep 1 Aj. and find A,, 77. and the 

optimality criterion s= trace ((NN')2) 
= ý; > A?. . 

Step 2.2: Create the vector v=ow with the p elements Epi#j A, j=1, 
... ,p and 23 

rank them in increasing order, setting all elements that equal EP 
pýý 

A ("''s)-°P` 
93 

to rank 0. 

Step 2.2.1: Select row i belonging to the next element of vrow if its rank 
is positive. 

Step 2.2.2: Find the next element A, j, i 54 j in row i that exceeds A2 = 
Al + 1. If there is no such j go to Step 2.2.6. 

Step 2.2.3: Find column pair cl and c2 and row rl such that 

N(i, cl) = N(j, cl) = N(ri, c2) =a+ 

and 
N(i, c2) = N(j, c2) = N(rl, c1) = a. 

If such a combination cannot be found return to Step 2.2.1. 

Step 2.2.4: Create N�. 
w 

by changing N(i, Cl) and N(ri, c2) to a and N(i, c2) 

and N(rl, cl) to a+1. 

Step 2.2.5: Calculate Anew = NnewNnew and Snew = trace(Anew)" If Snew <S 

then replace N with Nnew and return to Step 2.1. Otherwise do 
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not update N, and go to Step 2.2.3 to choose another (c1, c2, ri) 

combination. 

Step 2.2.6: Find the first element ate, ij in row i, which is less than 

A1. If there is no such j go to Step 2.2.10. 

Step 2.2.7: Find column pair cl and c2 and row rl such that 

N(i, cl) = N(j, C2) = N(rl, c2) =a+1 

and 

N(2, c2) = N(9, ei) = N(ri, ei) = a. 

If such a combination cannot be found go back to Step 2.2.6. 

Step 2.2.8: Create N1ew by changing N(i, cl) and N(ri, c2) to a and N(i, c2) 

and N(rl, cl) to a+1. 

Step 2.2.9: Calculate Anew lYnewNnew and Snew = trace(nnew). If SneN S 

then replace n with New and return to Step 2.1. Otherwise do not 

update and go to Step 2.2.7 to choose another (cl, c2, rj) combination. 

Step 2.2.10: Change the value of i to the number of the row with the next 

highest rank. If this rank is nonzero go to Step 2.2.2. If no new value 

exists or if its rank is zero, then the current N is a (M, S)-optimal 

incidence matrix and the algorithm terminates. 

As an alternative to using the (M, S)-optimality criterion, Jones and Eccleston (1980) 

use an update formula of the A-optimality criterion for their interchange algorithm. 

The exchange-interchange procedure suggested by Jones and Eccleston (1980) is de- 

scribed here for equi-sized block designs only. In its original form it can produce 

designs with differing block sizes. It uses the weighted A-optimality criterion and 

an update formula for the information matrix. 

Some notation is necessary to describe the steps of the algorithm: Let d� be an n- 

element design with treatment-block incidence matrix Nn for p products in a blocks 
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of size t. Let e; be the elementary vector, whose elements are zero except element 

i, which is one. Also, let N[, i] = Nei denote the ith column of matrix N which 

represents the incident vector of block i. 

The information matrix of a randomised equi-sized block design with n entries is 

Cn =Tn -n N, n 
7 

where r,, is the product replication vector. If an equi-replicated design is con- 

structed, rn = rpIp, but this algorithm can also be used when products have unequal 

replication. This is the case for some panel designs introduced in Chapter 5 and the 

treatment-control designs in Chapter 6. 

Let di_1 be design d� with product pi in block bo removed, and d,,, be design d,, 

with product pl substituted by p2 in block bo. Let N�_1 and N�, be the respective 

incidence matrices, C�_1 and C�, the information matrices. 

Jones and Eccleston (1980) show that for connected designs the inverse of the infor- 

mation matrix for designs 4_1 and d,,, can be calculated by the following updating 

formulae. 

Cn-1 = Cn + c� clclc� where c1 = týtl lý (-Nn [, bo] + kept) 
1-4cnC, 

Cn- = Cn-1 - 
c^-'`2 CZc" ' where c2 = t(tl l) 

(-Na bo) + en1 + (t - 1) ep2) l+c'Zcn_lc2 

With this notation the steps of exchange-interchange algorithm for IBD can be de- 

scribed as follows: 

Algorithm JE1: (Jones and Eccleston, 1980) 

Step 1: Define contrast matrix L for the contrasts of interest, generally all elemen- 

tary contrasts. Provide the weights matrix W= wa, with weights for each 

contrast in L. When all elementary contrasts are of equal interest, W=I. 
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Step 2: Create a connected starting design do according the to algorithm by Jones 

(1976). Calculate its incidence matrix N, the information matrix C, its 

generalised inverse C, and the optimality criterion for weighted A-optimality, 

E,, = trace(LWL'CC ) 

Step 3: Exchange algorithm iteration: 

Ex 1: Create a list of differences Da = En_1-En for all elements in the design. 

Sort this list in reversed order (smallest Ao first) and work through this 
list until an element is found for which E�, < E,,. 

Ex 1.1: Create d,, 
-l, cl and Cn_1 by taking the next block-product com- 

bination (bo, pl) from the list, out of design d,,. 

Ex 1.2: For all products apart from pi, calculate c2, C,, and 
Ai =En-1-Eni 

Ex 1.3: Find the product p2 for which Di is maximum. 

Ex 1.4: If En > E�, for product p2 then update the old design d,, with 

the new design 4,, in which product p2 is substituted for pl in block 

bo and update Nn, C, Cn and E,,. 

Ex 2: Repeat from Step Ex 1 until no further improvement is found, i. e. the 

optimal replication scheme has been found. 

Step 4: Interchange algorithm iteration 

Int 1: Create a list of differences Lo = E,, 
-, -E. for all elements in the design. 

Sort this list in reverse order (smallest Leo first) and work through this 

list until an element is found for which E,,,, < E,,. 

Int 1.1: Create dn_1i cl and Cn_1 by taking the next block-product com- 

bination (b1, pl) from the list out of design d,,. 

Int 1.2: Create a list of differences Ob = En-1 -En, for all products which 

are not in block bl, sort them by size and work through this list until 

< En. an element is found for which E�, 
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Int 1.2.1: Calculate c2, C,, and take L; = E, i_1 - E, a, from the next 

product p2 from list Ob- 

Int 1.2.2: For each block b2 not equal to block bl, swap p2 out of 
block b2 in design da, and create d,,, 

_1i cl and C, ß, 
_1. 

Swap pl 
into block b2 in design d,,, 

_1 and create d�,,, c2 and C,,,. Calculate 

En,, and continue until a block b2 is found for which E, a,, < E,,. 

If none is found, go back to step Int 1.2.1. If no more elements 

are in the list go back to step Int 1.1. 

Int 2: If E1< En, update the old design d� with the new design d an, in which 

product p, in block bl is swapped with product p2 from block b2. Update 

N, C,,, Cn and E� accordingly. 

Int 3: Repeat from Step Ex 1 until no further improvement can be made. 

Row-column algorithms 

Whilst there is a large number of search algorithms for row-column designs suggested 
in the literature, these will not be discussed in this dissertation since they are not 

needed in the remainder of this dissertation. A review of row-column algorithms 

can be found in John and Williams (1995). 

Cross-over designs 

Several algorithms have been suggested in the literature for the construction of bal- 

anced or partially balanced cross-over designs, which are summarised e. g. in Jones 

and Kenward (1990). Unfortunately, many of these designs need too many blocks to 

be useful for sensory designs. Computer algorithms on the other hand, can be used 

to construct cross-over designs of any specified size. Algorithms for cross-over de- 

signs are given for example by Donev (1997), Ball (1997) and Eccleston and Whitaker 

(1999). The program Design Express (2001) also provides efficient cross-over designs. 

It was intended to construct cross-over designs in Chapter 5, using a modified version 
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of the multi-objective simulated annealing algorithm by Eccieston and Whitaker 

(1999). But despite considerable effort, it was not possible to run the obtained 

C-program successfully. While the program did not provide any error messages, 

the output designs produced where clearly not efficient. Attempts to program the 

described algorithm from scratch were also not successful. For these reasons the 

simulated annealing approach was not pursued any further. Instead, the simpler 

algorithm by Ball (1997) is used to create cross-over designs. 

The algorithm by Ball (1997) uses a weighted optimality criterion of the mean square 

of the serving order concurrence matrix NTNT and the mean square of the precedence 

matrix M=X pXR. Let MS(X) = 
ný 

Ei 1 Eý 2 x; ý= nl,, 
trace(X'X), where x=j 

denotes the elements of matrix X. With this, the actual objective function can be 

expressed: 

c(D) = worderMS(NTNT) + w,,, Y_o, e, MS(M) 

where worden and wcary_oe: are a pair of chosen weights. The algorithm comprises of 

the following steps, with Wonder, Wcarry_over, nj, n2 and n3 chosen in advance: 

Algorithm Balll: 

Step 1: Create an efficient incomplete block designs as a starting design d. 

Step 2: Choose a row in d at random. 

Step 3: Perform a random swap in this row. Update the design if the swap improves 

the optimality criterion. 

Step 4: Repeat Step 3 nl times. 

Step 5: Repeat Steps 2 to 4 n2 times. 

Step 6: Increase nl and n2 if no improvement is found in n3 iterations. Set nl and 

n2 back to their initial setting if an improved design has been found. 
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This chapter introduced the characteristics of efficient sensory single-session designs 

in which all product comparisons are of equal interest. Complete block designs are 

useful when the number of products is small enough, so that all products can be 

tested within a session without the onset of sensory fatigue. Due to substantial 

heterogeneity of assessors, repeated measurement designs are used, with assessors 

as blocks. In such a setup, order and carry-over effects are often experienced and 

have to be accommodated for in the design. Thus, interest for sensory trials is 

mainly in row-column or cross-over designs, rather than in simple randomised block 

designs. The relevant linear models and complete block as well as incomplete block 

designs have been introduced and their respective information matrices are given. 

Whilst incomplete block designs are generally not recommended for use in sensory 

experiments, they are still described here since there are the building blocks of the 

designs introduced in the following chapters. For these, efficiency bounds and se- 

lected computer search algorithms have been introduced. The algorithms described 

here in detail are modified in later chapters for the construction of more complex 

sensory designs. 



Chapter 4 

Sensory designs as multi-session 

trials 

In the previous chapter complete block designs were discussed for single-session tri- 

als, in which each assessor tastes every product. The number of products that is 

compared in a sensory profiling experiment is often too large to be assessed in a 

single session without causing sensory fatigue, and so the whole trial needs to be 

split into sessions. This chapter deals with multi-session designs, which ensure that 

each assessor tastes each product. It is shown how the split of a trial into sessions 

influences the properties of the estimates of product differences based on the linear 

models introduced in Chapter 3. Several models and design algorithms are discussed. 

The advisable length of a session can differ for different product categories. The 

stronger a flavour, the less products can be assessed directly after one other without 

sensory fatigue. If the products require a very complicated preparation procedure 

before they can be served, a split into sessions might be necessary due to organisa- 

tional constraints. If products deteriorate very easily and, for instance, loose their 

optimal taste within a very short time, sessions have to be fairly short, to keep the 

products comparable. All products have to be of equal quality for each serving po- 

sition. The number of servings in a session, t, also called the assessor constraint, 
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is primarily determined by the number of products an assessor can taste without 
the onset of sensory fatigue. 

If the trial is split into several sessions it is common to include a session effect in 

the model. A strict cooking regime for preparing products and a standard routine 

for distributing the products to assessors should prevent any differences between 

sessions, but may do so imperfectly. The inclusion of a session term in the model 

caters for the eventuality that differences between products or serving conditions 

between the sessions occur in spite of all precautions. 

The time between sessions can vary in practise from minutes to several days and 

not all periods between sessions are necessarily of the same length. For the analysis 

of the data from a multi-session trial it is generally assumed that the length of the 

time span between sessions has no influence on a session effect. If effects of serving 

order and carry-over are included in the model, such effects are expected to occur 

within each session separately, not over the whole trial, and these effects are the 

same for each session. For carry-over effects, the last product from one session is 

not expected to have an effect on the first product in the next session. This seems 

a reasonable assumption since there is an interval between the sessions, intended to 

prevent sensory fatigue. 

For complete block or incomplete block designs in sensory single-session experiments 

assessors represent the blocks. For multi-session trials, assessors also form the blocks, 

now called long-blocks, but each block is subdivided into sub-blocks, representing an 

assessor within a session. One idea for constructing designs for multi-session exper- 

iments would be to ignore the large blocks and use an incomplete block design for 

the as sub-blocks. Their drawback is that IBD do not guarantee that each assessor 

tastes every product. As an alternative, one could use complete block designs and 

split these into sessions. The disadvantage of CBD is that they do not take into 

account that comparisons within a sub-block are more precise than between sub- 
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blocks. The assignment of products to sub-blocks in split complete block designs 

can therefore be sub-optimal. Thus, designs are needed for multi-session trials that 

assign all products to each assessor and that assign products to assessors within 

sessions in an efficient way. A class of designs that satisfy this constraint are re- 

solvable incomplete block designs. 

In resolvable incomplete block designs blocks can be grouped together, so that each 
treatment is replicated exactly once in each group. Thus, each long-block consti- 
tutes a replicate. 

The parameters of a multi-session resolvable sensory design DR(p, a, s, t) are 

" p, the number of products, which represents the number of treatments 

" a, the number of assessors in the panel, which represents the number of long- 

blocks (replicates), 

" s, the number of sessions, which represents the number of sub-blocks within 

each long-block, and 

" t, the number of servings per session, which represents the block size of the 

sub-blocks. 

The number of sessions, s, depends on the amount of replications required, which is 

often related to the budget for the trial and time constraints. If r=I then s=P, 

and the number of products p needs to be a multiple of the session length t. 
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Example 4.1 DR(12,12,3,4): Resolvable design for 12 products in 3 ses- 
sions with 4 servings each for 12 assessors. 

Serving 1 
Session 1 

23 4 1 
Session 

23 
Session 3 

3 4 
Assessor 1 7 1 12 8 2 11 4 

T 

9 5 
Assessor 2 4 11 2 10 9 5 3 7 12 
Assessor 3 3 5 6 9 12 8 1 7 11 4 2 10 
Assessor 4 8 10 11 5 4 12 9 1 3 2 6 7 
Assessor 5 9 12 4 1 7 2 6 3 10 11 5 8 
Assessor 6 6 2 3 7 11 10 8 5 12 9 4 1 
Assessor 7 5 4 8 3 6 1 7 11 2 12 10 9 
Assessor 8 2 9 10 12 3 4 5 8 7 1 11 6 
Assessor 9 1 6 7 11 10 9 2 12 8 5 3 4 
Assessor 10 11 8 9 6 1 3 10 4 5 7 12 3 
Assessor 11 10 3 1 4 5 7 12 2 9 6 8 11 
Assessor 12 12 7 5 2 8 6 11 9 4 10 1 3 

This design has been generated with Design Express (2001), a design program by Ian 

Wakeling, which specialises in sensory designs. It is a resolvable cross-over design 

and will be used throughout this chapter as an illustration of several linear models. 
At this stage, it is used to illustrate resolvability and the general layout of a multi- 

session design. 

Subsequent discussions revealed that this design is not only resolvable for assessors, 

but also resolvable within sessions: in each session the blocks of three consecutive 

assessors comprise all 12 products. This additional restriction on the design is not 

required and can result in a loss of efficiency. 

If the trial has to be conducted in multiple sessions, a session effect is included in 

the model equation of the univariate analysis. Adequate design plans for such a trial 

differ from those for single-session experiments. The three single-session models for 

incomplete randomised designs, row-column designs and cross-over designs (models 

(3.16), (3.21) and (3.22)) can be extended for the multi-session case. The resulting 

changes of models, information matrices and optimal designs are explained in the 
following three sections and selected algorithms for resolvable designs are discussed. 
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4.1 Resolvable incomplete block designs 

The easiest way to motivate a resolvable design is to regard it as a randomised 
incomplete block design with as blocks of size t that could be analysed according to 

model (3.16), in which the assessor effect is replaced by an assessor-by-session effect: 

1'jkr=p+(a/. 3)jk+T1+Ejkl 1<j <a, 1 <k<s, 1 <l <p (4.1) 

where (a)3)jk denotes an assessor-by-session effect. Its information matrix is 

C4.1 = arIP 
t 

NASNAS 

The model usually assumed for resolvable designs includes, apart from the treatment- 

effect, a replicate and a block-within-replicate effect. For a sensory design, this 

translates into the following model: 

1'jkt=µ+aj+ßk(aj)+Tj+Ejk( 1<j<a, 1<k<s, 1<I<p (4.2) 

where the assessor effect aj represents the replicate effects and , 
8k(aj), the block- 

within-replicate effect. 

For sensory trials a model, in which the session effect is crossed with assessors rather 

than nested within assessors, seems more appropriate. Such a model is: 

Ykr -/u+ai + /3k+T1+Eki 1 <j<a, 1<k<s, 1<l<p (4.3) 

In single replicate multi-session designs every assessor tastes every product once, 

thus NA = Jp, Q, i. e. assessor effects are orthogonal to product effects, as in complete 
block designs. The information matrix for model (4.3) is therefore 

C4.3 = arIp -I NSNS 
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so it depends solely on the assignment of products to sessions. Designs for this 

model are balanced if all products occur equally often in every session. A derivation 

of information matrices in this chapter is given in the appendix. 

Additionally, an assessor-by-session interaction could be assumed, leading to model 

Yki=IL +aj+, ßk+(a, ß)jk+TI +E3kl 1< j <a, 1 <k<s, 1 <l <p (4.4) 

where (aß)jk represents the interaction effect of assessor j in session k. This is 

simply a re-parameterisation of model (4.1) and its information matrix is equal to 

C4.1 

Example 4.2 Characteristics of design DR(12,12,3,4) in Example 4.1. 

Design DR(12,12,3,4) in Example 4.1 is balanced for assessor, session and serving 

order effects: each product occurs four times in each session, three times in each 

serving position and is served once to every assessor. 

The assessor-by-session concurrence of the design is: 

036 

count 24 72 36 

Since assessor and session effects are orthogonal to product effects its efficiency is 

100% according to model (4.3). For model (4.1) the efficiency is 79.26%. These 

efficiencies are listed in Table 4.1 again for a more extended comparison between 

models and designs. 

A special class of resolvable designs, called square lattice designs, was introduced 

by Yates (1936). They are resolvable incomplete block designs with p= s2, where 

s is the number of sub-blocks and t=s the block size of the sub-blocks. Thus each 

replicate consists of s2 products in s blocks of size s. Square lattice designs are 

constructed with the help of orthogonal Latin squares (see Definition 3.7). Rectan- 

gular lattice designs, introduced by Harshbarger (1949), are resolvable designs for 
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v= s(s - 1), constructed according to a similar procedure as that for square lattice 

designs. Patterson and Williams (1976) introduced a more general class of resolv- 

able designs, called a-designs. An a-design is constructed from atxr generating 

array, a generalised cyclic design with cyclic development in steps of t modulo p. 

The search for an efficient a-design is therefore equivalent to searching for an ap- 

propriate generating array. As for cyclic designs, for which the concurrence matrix 

can already be inferred from the initial row, the concurrence matrix for a-designs 

can be inferred from the generating array. With )=[. A, 
) 
A2, ... 

] being the summary 

vector of the concurrence matrix, a-designs are referred to as a(Al, A2, ... 
)-designs. 

Example 4.3 Resolvable design DR(12,6,3,4) created as an (0,2)-a-design. 

The design has been created with the ALPHA algorithm of the ALPHA+ design gen- 

eration package with 100 tries (i. e. the search for an optimal design is repeated with 

100 starting designs and the best designs from these 100 attempts is chosen). 

generating 
array 

0 1 0 0 
1 2 2 0 
0 0 1 1 
0 0 2 0 
2 1 2 1 
1 0 0 2 

resolvable 
design 

5 1 7 10 
2 8 6 11 
9 4 3 12 

12 8 1 5 
10 2 9 6 
4 3 7 11 
9 2 12 5 
11 1 8 4 
6 10 7 3 
9 1 4 10 
7 2 5 11 
12 3 6 8 
10 4 8 2 
7 12 1 6 
3 5 11 9 
9 6 1 11 
5 10 8 3 
4 7 2 12 

For a sensory trial it can be presented in the following more familiar form: 
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Session 1 Session 2 Session 3 
Assessor 1 5 1 7 10 2 8 6 11 9 4 3 12 
Assessor 2 12 8 1 5 10 2 9 6 4 3 7 11 
Assessor 3 9 2 12 5 11 1 8 4 6 10 7 3 
Assessor 4 9 1 4 10 7 2 5 11 12 3 6 8 
Assessor 5 10 4 8 2 7 12 1 6 3 5 11 9 
Assessor 6 9 6 1 11 5 10 8 3 4 7 2 12 

100 

With a balanced assessor-concurrence matrix, the information matrix for model (4.3) 

depends solely on the session incidence matrix NS, while for model (4.4) it depends 

on the assessor-by-session concurrence matrix. Due to the construction principle, 

the assessor-by-session concurrence matrix can never be balanced for a-designs and 

they are not optimised for session effects. 

NASNas = 

6 0 0 22 2 2 2 2 2 2 2 4 2 0 
0 6 0 22 2 2 2 2 2 2 2 2 3 1 
0 0 6 22 2 2 2 2 2 2 2 0 1 5 
2 2 2 60 0 2 2 2 2 2 2 2 1 3 
2 2 2 06 0 2 2 2 2 2 2 3 2 1 
2 2 2 00 6 2 2 2 2 2 2 NS - 

1 3 2 
2 2 2 22 2 6 0 0 2 2 2 1 2 3 
2 2 2 22 2 0 6 0 2 2 2 2 3 1 
2 2 2 22 2 0 0 6 2 2 2 3 1 2 
2 2 2 22 2 2 2 2 6 0 0 3 2 1 
2 2 2 22 2 2 2 2 0 6 0 1 3 2 
2 2 2 22 2 2 2 2 0 0 6 2 1 3 

The efficiencies of Example 4.3 according to models (4.3) and (4.4) are 96.85% and 

80.49%. The lower efficiency from model (4.4) compared to model (4.3) can be ex- 

plained with the small block size of the sub-blocks (assessor within session, t= 4) 

compared to the number of units within a session. 

Note that the efficiency values from Example 4.1 cannot be compared to Example 4.3, 

since the a-design has only half the number of blocks. An a-design for 12 assessors 

could not be created with ALPHA+ and a resolvable design for 6 assessors could not 

be created with Design Express. 
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A summary of the exact construction procedure for square and rectangular lattices 

and a-designs can be found in John and Williams (1995). The program used to 

construct the a-design for Example 4.3, ALPHA+ (Williams and Talbot, 1993), 

applies the algorithms by Nguyen (1993). It is an interchange algorithm in which a 

random pair of products is swapped between blocks and compared according to the 

(M, S)-criterion, optimising each replication sequentially. 

While the efficiency factors for incomplete block designs are also applicable to resolv- 

able incomplete block designs, some tighter bounds are known according to model 

(4.2), with assessors within blocks as a blocking factor. These bounds can be found, 

for example, in John and Williams (1995). 

Subsequent discussions have revealed that a-designs are not suitable for sensory 

trials. The method of construction will always give 0 concurrences for some pairs of 

products. The consequence is that they provide efficient designs for low numbers of 

replication (2,3,4), but not generally for more than 4 replicates. It is recommended 

that the number of assessors in sensory trials should be at least 12. The use of a 

design for 6 assessors, as shown in Example 4.3, is therefore not advisable. 

4.2 Resolvable row-column designs 

As discussed in Chapter 3, in sensory trials an order effect is often expected, and 

thus models (4.3) and (4.4) can be extended with the inclusion of a serving order 

effect, resulting in the following two models: 

Extension of model (4.3): 

Yijkl = /I + 7ri + aj +, 3k + TI + Eijkl (4.5) 
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Extension of model (4.4): 
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Yjki =µ+ In + ai + ßk + (a/3)jk + r1 + Eijkl (4.6) 

with 

1<i<t, 1<j<a, 1<k<s, 1<1<p 

The effect of serving order in these models refers to servings within sessions only. 
The information matrices for models (4.5) and (4.6) are 

C(4.5) = arlp - 
as 

NTNT - NSNS 

1,1 C(4.6) = arlp - 
as 

NTNT -1 NASNAS 

The analysis of variance model generally assumed for a resolvable row-column design 

includes, apart from the treatment effects (products, Ti, ) also terms for replicates 
(assessors, aj), rows within replicates (session within assessors, , 

ßk (aj)), columns 

within replicates (servings within assessors, iri(aj)) and the row-column interaction 

within replicates term (session-by-serving interaction within assessors, (ßk1r=)(aj)): 

Yjkl = /L+Oj +ßk(aj) +ii(aj) + lßkIri)(aj) +Tl +Eijkl (4.7) 

with 1<j<a, 1<i<t, 1<k<s, 1 <l<p 

For sensory models, session and order effects are generally not assumed to be nested 

within assessors and models (4.5) and (4.6) are more appropriate than model (4.7). 

Example 4.4 Characteristics of design DR(12,12,3,4) in Example 4.1 as 

a resolvable row-column design. 

The design in Example 4.1 is balanced for serving order (NT = 12J12,4), i. e. the 

serving order effect is orthogonal to the product effect and the efficiencies for models 

(4.5) and (4.6) are the same as for the models without order effects (4.3) and (4.4), 



Multi-session designs 

which are listed in Table 4.1. 
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Algorithms for resolvable row-column designs are given, for example, by John and 
Eccleston (1986), who gives a construction mechanism for row-column a-design, 
by John and Whitaker (1993), who use a simulated annealing approach, and by 

Nguyen and Williams (1993), who use an efficient RIBD with blocks as columns 

as a starting design and an updating formula for the (M, S)-optimality criterion as 
the objective function. This is an extension of the Nguyen (1993) algorithm. These 

algorithms could not be obtained and their designs could therefore not be included 

in the comparison. 

4.3 Resolvable cross-over designs 

If a carry-over effect is assumed to exist the previous models can be extended by 
including a first-order carry-over effect. 

Model (4.5) changes to 

Yd(ijk) =µ +7(i + CYj + ßk + Td(i, j, k) + Pd(i-l, j, k) + Eijk (4.8) 

and Model (4.6) changes to 

Yd(ijk) /L + 7ri + aj + Nk + (aß)jk + Td(i, j, k) + Pd(i-l, j, k) + Eijk (4.9) 

with 
1<i<p, 1<j<n, 1<k<s 

The relevant components of the information matrices (3.15) for direct product and 
first-order residual effects are as follows: 
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for model (4.8) 

C11; 
4.8 

11 

= arlp - at 
NSNS - as 

NT NT 

012; 
4.8 =M NS Ns 

- 
NANA 

- 
SNTNT 

+ lPrR 

022; 4.8 = rR -1 NSNS -1 NANA -1 NTNT +? rRrR 
at st as ast 

for model (4.9) 

1,1 
C11; 4.9 = arIp - 

as 
NTNT - NASNAS 

t 

012; 4.9 =M-S NTNT -I NASNAS +1 lprR 
p 

C22; 
4.9 = TR - SNTNT -- 

NASNAS + 
ClStrRrR 
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Example 4.5 Characteristics of design DR(12,12,3,4) in Example 4.1 as 

a resolvable cross-over design. 

As mentioned before, DR(12,12,3,4) has been created as an efficient resolvable cross- 

over design. For cross-over designs the precedence matrix M gives information about 

the carry-over effects. For design DR(12,12,3,4) in Example 4.1 the summary vector 
for M is 

JAM 0123 

count 63 55 25 1 

which means that 55 pairs of products occur once one after the other, 25 pairs of 

products occur twice in the design, one pair occurs once and 63 pairs do not occur 

at all. This is a fairly tight distribution of A values. The efficiencies are listed in 

Table 4.1. 

To accommodate order and carry-over effects, Muir and Hunter (1991/92) pro- 

pose Williams Latin squares with each design split into sessions. This construction 

method is used in Example 4.6. 
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Example 4.6 DR(12,12,3,4): Splitting a Williams Latin square. 

Serving 1 
Session 1 

23 4 1 
Session 2 

23 4 1 
Session 3 

23 4 
Assessor 1 1 12 2 11 3 10 4 9 5 8 6 7 
Assessor 2 2 1 3 12 4 11 5 10 6 9 7 8 
Assessor 3 3 2 4 1 5 12 6 11 7 10 8 9 
Assessor 4 4 3 5 2 6 1 7 12 8 11 9 10 
Assessor 5 5 4 6 3 7 2 8 1 9 12 10 11 
Assessor 6 6 5 7 4 8 3 9 2 10 1 11 12 
Assessor 7 7 6 8 5 9 4 10 3 11 2 12 1 
Assessor 8 8 7 9 6 10 5 11 4 12 3 1 2 
Assessor 9 9 8 10 7 11 6 12 5 1 4 2 3 

Assessor 10 10 9 11 8 12 7 1 6 2 5 3 4 
Assessor 11 11 10 12 9 1 8 2 7 3 6 4 5 
Assessor 12 12 11 1 10 2 9 3 8 4 7 5 6 
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This design is created from a Williams square for 12 products and split into 3 ses- 

sions with 4 servings each. Every assessor tastes every product once, every product 

occurs four times in each session and three times in each serving position, so that 

the design is balanced for assessor, session and order effects. 

Due to the split into sessions, the design can be balanced for first-order carry-over 

effects only partially; 108 product-pair sequences occur once and 36 sequences not at 

all. The latter are the sequences of the products in serving position 4 of the previous 

session followed by the product in serving position 1 in the following session, where 

the time gap between sessions eliminates the carry-over effects. 

While the distributions of the entries of M are tighter than in Example 4.1, the 

distribution of the A values for the assessor-by-session concurrence matrix NAS is 

much wider. 
ANASNÄS 0 2 4 8 

count 24 48 36 24 

This is reflected in the efficiencies for the split Williams design, which are listed 

in Table 4.1. One reason for the low efficiency of the Williams Square for model 
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Table 4.1: Efficiencies of Examples 4.1 and 4.6 
Efficiencies (in percent) are compared for models 4.3,4.5,4.8,4.8,4.4,4.6,4.9 and 
4.8. 

Example 4.1 Example 4.6 
incomplete block row-column cross-over cross-over 

design design design design 
model efficiency model efficiency model efficiency model efficiency 
4.3 100.00 4.5 100.00 4.8 92.05 4.8 97.49 
4.4 79.26 4.6 79.26 4.9 66.85 4.9 55.87 

(4.9) is, that Williams designs are not created with the split into sessions in mind. 
Their assignment of products to blocks (assessors within sessions) is therefore not 

optimised. It is optimal for assignments to sessions, servings, and carry-over though. 

4.4 Conclusions 

In this chapter, models for multi-session trials have been introduced. The examples 

have shown how appropriate designs depend on the assumed model. While the class 

of resolvable designs assures that each assessor tastes each product, they do not take 

the assignment of products to sessions into account. Thus, RIBD are efficient if the 

assessor-by-session interaction is included in the model. If no interaction is assumed, 

then the assignment of products to sessions is of sole interest, not the assignment 
to sub-blocks. In that case Williams squares are efficient for the cross-over model, 

since they are balanced for order effects and consequently also for session effects. 

Interest in this thesis is mostly in a special kind of multi-session trials, trials with 

preparation constraints. In the following chapter a construction procedure is devel- 

oped for this special class of designs and it will be shown that this algorithm can 

also be used for the more general case of designs without preparation constraints. 



Chapter 5 

Multi-session trials with 

preparation constraints 

In Chapter 4 resolvable designs for multi-session trials have been discussed, denoted 

by DR, (p, a, s, t). These designs are useful for experiments in which all p products can 
be prepared for all s sessions. In sensory experiments there is often a limit on the 

number of different products that can be prepared for each session. This is referred 

to as the preparation constraint and denoted by k. The constraint is common 

when assessing food products, especially those requiring carefully controlled cooking 

procedures or other preparation prior to assessment. The number of products that 

can be prepared for a session may depend upon the available kitchen facilities - for 

example the number of hobs or cooking utensils, or upon the problems of achieving 

tight control of temperatures, volumes and especially of timings, when too many 

products are being processed simultaneously. Thus, when product numbers are very 
large, it might be advisable to use only a subset of all the products at each session 

to minimise handling mistakes, even if some efficiency is sacrificed in the process. 

For multi-session experiments with a preparation constraint, design plans are re- 

quired that allow for this extra condition. They are denoted as DR, (p, a, s, t; k). Such 

plans are more difficult to construct than the regular resolvable designs discussed in 

107 
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Chapter 4 and no commercially available or otherwise published algorithms exist. 

Often the construction of designs with preparation constraints is handled by limiting 

the parameter k more than necessary and setting it equal to the session length t. 

Hence designs of the kind DR(p, a, s, t; t) are constructed rather than D,, (p, a, s, t; k) 

with k>t. This limitation is used as a matter of convenience, because construction 

of designs with k=t is fairly easy, as will be explained in the following paragraph. 
Thus, even when more than t products could be prepared at one time in the kitchen, 

the number of different products that is prepared for a session is reduced to the 

number of products that can be assessed within a session, the so called asses- 

sor constraint. Unfortunately the number of servings in a session, t, is often fairly 

small, creating a much harsher constraint than a limitation to k products. This 

limits severely the number of possible direct product comparisons within a session. 

In such a design the products that can be compared within a session are the same for 

all assessors, only their presentation order differs between assessors. The influence 

of the size of the preparation constraint on the efficiency of a design is examined in 

Section 5.6 and its impact on the efficiency of the design is assessed. 

When the preparation constraint is chosen to be equal to the assessor constraint 

(k = t), designs DR, (p, a, s, t; t) can be created by choosing t products for each of the 

s sessions according to an incomplete block design D(p, s, t). This design is called 

the preparation design, since it sets out which products are prepared for a session. 

For each session, the available t products are then assigned to the a assessors in a 

different order. This order can, for example, be determined according to one or more 

Williams Latin squares of size t, which are balanced for order and carry-over effects. 

A design plan for assigning the order of the available products to the assessors is 

called the panel design. 
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Example 5.1 D, (12,6,6,4; 4): A resolvable design with the preparation 

constraint equal to the assessor constraint (k = t). 

The preparation design The panel design 

6 9 11 12 
2 4 7 9 
4 5 8 11 
1 2 3 5 
3 6 7 10 
1 8 10 12 

3421 
4132 
1243 
2314 
2134 
1423 

Assigning products to sessions Assigning serving order to assessors 
created with Algorithm JE2 created with Design Express 

Combining the preparation design with the panel design results in the following re- 

solvable design: 

Serving 1 
Session 1 

23 4 1 
Session 2 

23 4 1 
Session 3 

23 4 
Assessor 1 11 12 9 6 7 9 4 2 8 11 5 4 
Assessor 2 12 6 11 9 9 2 7 4 11 4 8 5 
Assessor 3 6 9 12 11 2 4 9 7 4 5 11 8 
Assessor 4 9 11 6 12 4 7 2 9 5 8 4 11 
Assessor 5 9 6 11 12 4 2 7 9 5 4 8 11 
Assessor 6 6 12 9 11 2 9 4 7 4 11 5 8 

Serving 1 
Session 4 

23 4 1 
Session 5 

23 4 1 
Session 6 

23 4 
Assessor 1 3 5 2 1 7 10 6 3 10 12 8 1 
Assessor 2 5 1 3 2 10 3 7 6 12 1 10 8 
Assessor 3 1 2 5 3 3 6 10 7 1 8 12 10 
Assessor 4 2 3 1 5 6 7 3 10 8 10 1 12 
Assessor 5 2 1 3 5 6 3 7 10 8 1 10 12 
Assessor 6 1 5 2 3 3 10 6 7 1 12 8 10 

Note, this example shall only demonstrate the construction principle, a design for 

only 6 assessors is not recommended for use in practice. 

This simple procedure for multi-session designs with a product constraint k=t 

can be extended and modified to cope with a preparation constraint larger than the 
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assessor constraint, i. e. k>t. This modified procedure is called the three-step 

procedure and is described in Deppe et al. (2001). The initial idea was suggested 
by Ian Wakeling and Roland Carpenter. The contribution made in this disserta- 

tion is a formalisation of this idea. In addition, the procedure is closely examined 

and algorithms for a computerised version have been created. In Chapters 6 and 

7 extensions of the procedure are derived for treatment-control and factorial designs. 

The linear models for sensory experiments with preparation constraints are the same 

as described in Chapter 4. The existence of the preparation constraint has an in- 

fluence only on the actual structure of the information matrix. Due to the extra 

limitations on the number of different products assigned to blocks (assessors within 

sessions) an optimal design within the class of sensory designs with preparation 

constraints, DR(p, a, s, t; k), is not necessarily optimal in the class of unconstrained 

designs, DR, (p, a, s, t). All designs in this chapter are optimised for model (4.8), while 

efficiencies according to model (4.9) are also given for selected designs. 

An overview of the three-step procedure is given in Section 5.1. The scope of the 

three-step procedure is outlined in Section 5.2, which includes an introduction to 

the parameters that determine the design size and an explanation of the constraints 

on these parameters. A range of sensory designs are defined and examined in this 

chapter with different algorithms. The algorithms that are used for the construction 

of the preparation design, the panel design and for combining them are explained in 

Sections 5.3 to 5.5 respectively. In Section 5.6, multi-session sensory designs with a 

preparation constraint are compared for a range of preparation constraints k. This 

is an examination of the effect of the preparation constraint on the efficiency of the 

complete sensory design. In Section 5.7, an extension of the three-step procedure is 

derived. 
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5.1 The three-stage procedure 

Multi-session trials with a preparation constraint are constructed from two smaller 

designs which combined make up the complete sensory design. In the first step of 
the three-step procedure, the preparation design, k products are assigned to each 

of the s sessions. This is done with a randomised incomplete block design for p 

products in s blocks of size k, denoted by DQ(p, s, k). The meaning of the index q 

will be explained in Section 5.2.1. It is related to an additional limit on the contents 

of each column: to ensure that each assessor tastes every product r times, each 

column of the preparation design has to contain a certain subset of all products. 

Construction algorithms that create preparation designs with the required structure 

are introduced in Section 5.3. 

Example 5.2 The preparation design. 

D2(18,9,8) - An incomplete block design for 18 products in 9 sessions with a prepa- 

ration constraint of 8 products, equal to the block size. 

Chosen products 
for each session 

Session 1 10 11 16 14 5 1 2 3 
Session 2 11 12 17 15 6 2 3 4 
Session 3 12 13 18 16 7 3 4 5 
Session 4 13 14 10 17 8 4 5 6 
Session 5 14 15 11 18 9 5 6 7 
Session 6 15 16 12 10 1 6 7 8 
Session 7 16 17 13 11 2 7 8 9 
Session 8 17 18 14 12 3 8 9 1 
Session 9 18 10 15 13 4 9 1 2 

product set 1 product set 2 
Column no. 1 2 3 4 5 6 7 8 

Each row/block defines the products that will be prepared for that session. For ex- 

ample, the products available for session 1 according to the preparation design are 

products 1,2,3,5,10,11,14 and 16. Which subset of these products is given to 

which assessor and in what order is determined by the panel design. Each column of 
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this preparation design includes either products 1 to 9 or products 10 to 18, the two 

subsets of the 18 products. By choosing an arbitrary column from each of the two 

sets such two columns form a partition. The column numbers printed in boldface at 

the bottom of the table are the columns assigned to assessor 1 according to the first 

row of the panel design in Example 5.3. 

In the second step, the panel design, the k columns of the preparation design are 

assigned to the t serving positions for each of the a assessors. This is done using a 

cross-over design, denoted by D, o(k, a, t). For a panel design, there is an additional 

constraint on the contents of each row, which has to refer to an equal number of 

columns from each subset of products. This is indicated by q in the notation. The 

exact structure of the panel design, necessary for the resolvability of the complete 

sensory design, is explained in Section 5.2.2. Algorithms for panel designs are dis- 

cussed in Section 5.4. 

Example 5.3 The panel design. 

D2 ,, 
(8,12,4) -A cross-over design with entries 1 to 8, which refer to the 8 columns 

of the preparation design, listed in a= 12 blocks of size t=4. 

Columns chosen 
from the 

preparation design 
Assessor 1 3 57 1 
Assessor 2 1 85 4 
Assessor 3 4 78 1 
Assessor 4 8 23 7 
Assessor 5 8 64 3 
Assessor 6 5 32 8 
Assessor 7 2 47 6 
Assessor 8 5 46 3 
Assessor 9 2 16 5 

Assessor 10 7 31 6 
Assessor 11 7 54 2 
Assessor 12 6 12 8 
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Two of the entries in each row/block refer to columns 1 to 4 of the preparation design 

(subset 1) and two entries to columns 5 to 8 (subset 2). 

Writing out the assignment of columns from the preparation design to assessors 

yields the complete sensory design. The preparation design from Example 5.2 com- 

bined with the panel design from Example 5.3 generates the complete sensory design 

shown in Example 5.5. To show this procedure more clearly the design plan for as- 

sessor 1 is listed in Example 5.4. It is created from the first row of panel design 5.3 

and the appropriate columns of preparation design 5.2. 

Example 5.4 Product assignment for assessor 1. 

D, 0(18,9,4) -A cross-over design for 18 products in 9 blocks (sessions) of size 

(servings per session). 

Design Dian for assessor 1 

1 
Serving 

23 4 
Session 1 16 5 2 10 
Session 2 17 6 3 11 
Session 3 18 7 4 12 
Session 4 10 8 5 13 
Session 5 11 9 6 14 
Session 6 12 1 7 15 
Session 7 13 2 8 16 
Session 8 14 3 9 17 
Session 9 15 4 1 18 

columns 
357 
of the preparation design 

This design is defined from the first row of the panel design, 63 57 1] printed in 

boldface in Example 5.3) and refers to the columns of the preparation design (in 

boldface in the bottom row of Example 5.2). These four columns are listed above in 

the order given by this row of the panel design, which is the order they are served to 

assessor 1. Over the 9 sessions, assessor 1 is assigned each product exactly twice. 
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When the preparation design and the panel design are not completely balanced the 

complete design can be optimised by permuting the row-order of the preparation 
design and choosing the order that provides the highest efficiency for the complete 
design. Thus the third step of the procedure consists of optimising the column order 

of the preparation design to maximise the efficiency of the complete sensory design, 

a resolvable cross-over design. The preparation design in Example 5.2 is already 
listed with its optimal column order. The column optimisation of the preparation 
design is illustrated in Section 5.5. 

5.2 Parameter constraints 

As explained in Section 5.1, the three stage procedure is used to construct designs 

for the special case when only a subset of products (k) can be prepared for each ses- 

sion. It is assumed that the number of products (p) is larger than the preparation 

constraint (k), which in turn is larger than the assessor constraint (t, the number 

of servings per session). In other words, this procedure is adequate for designs for 

which p>k>t. 

Additional to the parameters p, a, s, and t, as defined in Chapter 4, resolvable 

designs DR(p, a, s, t; k) have the preparation constraint k as an additional parameter. 
From these five defining parameters, two others can be derived: 

" the number of times each assessor tastes each product r= st/p and 

" the number of sessions each product is prepared for r3 = sk/p. 

When a design is requested by a sensory scientist, p, a, k and t are often fixed by the 

circumstances. Either s, the number of sessions, or r, the number of times each as- 

sessor tastes each product, has to be chosen. When there is a financial or time limit 

given for the trial, this might provide an upper limit for s, the number of sessions. 

More often though, the minimum number of replications may be requested, or there 

may be a convention in a sensory laboratory or a company to use a certain number 
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of replications for all trials which will define the parameter r. A compromise may 
have to be found between high replication (r) and short trial length (s). 

The choice of parameters for the sensory design defines the size of the preparation 

and the panel designs. The relationships between the parameters and the constraints 
that exist for their choice are explained in the following two sections. A range of 

parameters is chosen for which designs are created as part of this dissertation with 
different algorithms. 

5.2.1 The preparation design 

The parameters in the complete sensory design that are relevant for the preparation 
design D(p, s, k), are: 

" the number of products (p), 

" the number of sessions (s), equal to the number of blocks in the preparation 
design, and 

" the number of products that can be prepared for one session (the preparation 

constraint, k), which determines the size of each block. 

These three parameters define the product replication in the preparation design 

r3 = sk/p, which represents the number of sessions each product will be prepared 
for. For Example 5.2, rs = 9ä = 4, which means that every product occurs in 4 of 

the 9 sessions. 

To ensure that every assessor tastes every product the same number of times, the 

products are divided into q sets. The number of sets gives the number of distinct 

columns that have to include all p products and is determined by the ratio of the 

number of products and the number of sessions: q=P. According to the definition 

of r8, this is equal to the ratio of the preparation constraint and the number of 
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sessions each product is served in. 

p 
q=-=- 

s rs 
(5.1) 

Therefore, p and s as well as k and r3 have to be chosen so that q is an integer and 

equation (5.1) holds. To stress the limitations on the parameters introduced by q, 

preparation designs are denoted as D9(p, s, k). 

Example 5.6 Division of products into sets. 
In Example 5.2, the preparation design with p= 18 products in s=9 sessions, 

products are partitioned into q=E=9 18- =2 sets: 

Product set 1123456789 
Product set 2 10 11 12 13 14 15 16 17 18 

Each column in this design consists of products either from product set 1 (products 

1-9 in columns 1-4) or product set 2 (products 10-18 in columns 5-8). 

Thus the preparation design is an incomplete block design DQ(p, s, k) for which two 

extra conditions hold: 

" Condition Cl: Each column consists of all products from one set. 

" Condition C2: The k columns consist of r, columns from each set. 

When the panel design is described in Section 5.2.2, it will become apparent that 

these two extra conditions ensure the resolvability of the complete sensory design. 

Each assessor is served r replicates of each product, an essential condition for a 

sensory design. 

The column order of the preparation design at this stage is arbitrary. It is impor- 

tant to know only which column belongs to which set before the construction of 

the panel design, because the panel design has to ensure that an equal number of 
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columns from each set is chosen. We always assume that the columns are arranged 
by sets as shown in Example 5.7. The columns belonging to one set are called a 
column-block. The order of the sets and the order within each set are still arbitrary, 
i. e. the same panel design can be used for any column order within each set and any 

order of the sets of the preparation design. 

Example 5.7 The structure of the preparation design 

column column column 
I """ rs rs +I... 2r8 (q - 1)r3 +1... S 

set 1 ... set 1 set 2 ... set 2 
... set q ... set q 

I ... r, I ... r3 1 
... rs 

column-block 1 column-block 2 column-block q 

We consider a selected list of preparation and panel designs which resemble those 

used in industry. With the inequality p>k>t in mind, values for t are chosen as 4 

and 6, k is chosen to vary between 4 and 20 and p between 6 and 30. Larger designs 

can also be constructed with this procedure but the chosen designs are used as ex- 

amples to illustrate the procedure and to compare different construction algorithms. 
Table 5.1 gives the full range of preparation designs that have been constructed, 

representing the first step of the three-step procedure. 

The designs in these tables have been classified by the number of sets, which reveals 

the pattern of possible preparation designs quite clearly. As q and r8 have to be 

integers, only certain combinations of p, s and k are possible. The parameters p and 
k have to be multiples of q, which in combination with q define the values of s and 

r, (see equation (5.1)). Designs with q=1 involve preparation and panel designs 

without constraints. As these can be constructed with any generally available algo- 

rithm, they have not been included in the examples. Every algorithm for designs 

with the required constraints that is developed in this chapter is suitable also for 
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constructing unconstrained designs 

If every product is prepared for one session only (r8 = 1), the preparation design is 

disconnected and therefore the whole sensory design will be disconnected because 

products are compared only in one session. Thus, session effects will be confounded 

with product differences. For this reason, disconnected preparation designs, marked 
D in Table 5.1, will not be considered. 

Only designs are created in which the number of products is larger than the prepa- 

ration constraint (p > k). All preparation designs DQ(p, s, k) can therefore be con- 

structed as binary designs. Some of these can be constructed as complements of 

other designs. More specifically, designs D4(p, s, k) and DQ(p, s, p- k) are one an- 

other's complements. For the designs listed in Table 5.1, we decided to construct 

the smaller designs with k<2. The larger designs, that can be constructed from 

these smaller ones, are marked Ck, where k refers to the design with block size k, 

from which the design can be constructed. 

For all designs in which the product replication is one less than the number of prod- 

ucts divided by the number of sets (r3 =2- 1), the design is a so-called trivial 

matrix. In a trivial matrix, only one of s products from every set is missing in each 

block and so, without loss of generality, as long as a different product is omitted 

from every block, all such designs are isomorphic to each other. These designs, 

marked U in Table 5.1, are complements of disconnected designs. These are not 

constructed, since no search algorithm is needed to construct them. Designs marked 

L are complete block designs, which are not constructed either. For p=k there 

is no preparation constraint and the algorithms for regular resolvable designs in- 

troduced in Chapter 4, can be used to construct these complete sensory designs, 

i. e. no preparation design is needed. Thus, only the remaining designs, marked X, 

are constructed for discussion in this chapter. 
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While in general we assume that t<k<p with t either 4 or 6, the preparation 
designs with k<4 are included for two reasons. First, they can be used to calculate 
their complementary designs and second, they are required in algorithm REK2 in 
Section 5.4 for the construction of larger kitchen designs with q>1. 

5.2.2 The panel design 

The panel design D,, o(p, a, t) is determined by the following parameters 

0 the number of assessors (number of blocks, a), 

9 the number of servings (block size, t), 

" the kitchen constraint (k). 

To ensure the resolvability of the complete sensory design, the structure of the panel 
design is also characterised by q, the number of sets the products are partitioned 
into. The preparation design consists of r8 columns from each of the q sets, thus for 

each block in the panel design an equal number of entries from each set is required, 
i. e. r=q entries in each block refer to one set. This will be referred to as condition 

C3. The parameter r is also the number of replications of the complete sensory 

design, defined as the number of times each assessor tastes all products. Together 

with equation (5.1) from the preparation design this gives the additional constraints 

on the parameters of the complete sensory designs: 

pkt (5.2) s q-=ýsr 

If the number of plots of the panel design, at, is a multiple of k then the panel 

design is equi-replicated - all columns of the preparation design are used the same 

number of times in the complete sensory design. Equal replication is not a necessary 

condition for panel designs though, since the complete design will be equi-replicated, 

namely rp = ar, independently of the number of assessors taking part in the trial, 
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as the design plan for every assessor is equi-replicated with a replication of r. The 

three-step procedure can therefore be used for any number of assessors, i. e. the num- 
ber of assessors is not constrained by equation (5.2) in any way. 

Like preparation designs, panel designs can be ordered according to the number of 
sets to illustrate their underlying pattern. The number of blocks of the panel design 

is defined as the number of assessors (a). Since order and carry-over effects are 
important for panel designs, designs cannot be constructed from their complements. 
Designs with k=t are complete block designs and can be formed from Latin squares 

or Latin rectangles or fractions of these, depending on the number of assessors. They 

are marked L in Table 5.2. 

Each of the designs in Table 5.2 has to be created for the exact number of assessors 

in the trial. For the panel designs created in this chapter, a panel comprising a= 12 

assessors is assumed. 

In this dissertation, only designs DR(p, a, s, t; k) with k>t are considered. There- 

fore panel designs have to be constructed only for k>t. Such panel designs are 
binary. Whilst designs could be constructed in which fewer products are available 
for every session than there are servings, these designs are not binary - an assessor 

tastes a product more than once in the same session. In such a setting, it is more 
likely that the session size would be reduced to the preparation constraint. 

The sensory designs constructed from the panel designs with q=4 (Table 5.2 d) have 

a product replication r=1, which means that every assessor tastes every product 

only once. In such a setup, assessor inconsistency cannot be tested. Hunter (1996) 

suggests to use at least r=3. For designs with q=3 the assessor constraint would 

need to be at least t=9 and for q=4 at least t= 12 to satisfy the constraint r>3, 

which is fairly high and might not be feasible for a lot of products. An alternative 

to increasing the assessor constraint or accepting the low product replication, is to 
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Table 5.2: Panel range 

b) q=2 c) q=3 d) q=4 

k4t6 
4L 
6XL 
8XX 
10 XX 
12 XX 
14 XX 
16 XX 
18 XX 
20 XX 

2r, 23 
r 

k t=6 
6 L 
9 x 

12 X 
15 X 
18 X 

3 r3 r=2 

k t=4 
8X 
12 X 
16 X 
20 X 
4r3 r=1 

X Incomplete block cross-over designs 
L Complete block cross-over designs 
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increase the number of sessions. The trial would then be longer, and so a smaller 

q can be chosen. See also Section 5.7 for alternative designs in which q is not an 

integer. 

5.2.3 The combined sensory design 

With the range of preparation and panel designs defined in Tables 5.1 and 5.2, a 

large number of sensory designs can be constructed. A preparation design D"(p, s, k) 

and a panel design D4(k, a, t) can be combined when they agree on the preparation 

constraint k and the number of sets q (q =P=1=f). The parameter q specifies 

the table in Table 5.1, while k specifies the column in that table. All preparation 
designs from this column can be combined with the panel designs of the row iden- 

tified by k in the table in Table 5.2 identified by q. 
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Example 5.8 Sensory designs constructable from preparation and panel 
designs with preparation constraint k=8 and q=2 sets. 
Given a preparation constraint of 8 in 2 sets, any preparation design with k=8 

for which the number of products and sessions has a ratio of 2 can be used, i. e. all 
designs D2(p, 2,8). For the preparation design in Table 5.1 these are the pairs of s 

andp=2s with s=6,7,..., 15. 

These preparation designs can be combined with the panel designs in Table 5.2 b, 

row 5. Possible pairs oft and r= 4' 
in this table are panel designs D, 0,2(8, a, 4) and 

Dc0,2(8, a, 6) with any panel size a. 

Preparation 
designs 

Panel designs 

, 0(8, a, 6) Döo(8, a, 4) D2 
D2(12,6,8) DR(12, a, 6,4; 8) DR(12, a, 6,6; 8) 
D2(14,7,8) DR (14, a, 7,4; 8) DR(14, a, 7,6; 8) 
D2(16,8,8) DR (16, a, 8,4; 8) DR (16, a, 8,6; 8) 
D2(18,9,8) DR(18, a, 9,4; 8) DR(18, a, 9,6; 8) 
D2(20,10,8) DR (20, a, 10,4; 8) D,, (20, a, 10,6; 8) 
D2(22,11,8) DR(22, a, 11,4; 8) DR(22, a, 11,6; 8) 
D2(24,12,8) DR(24, a, 12,4; 8) DR(24, a, 12,6; 8) 
D2(26,13,8) DR(26, a, 13,4; 8) DR(26, a, 13,6; 8) 

D2(28,14,8) DR(28, a, 14,4; 8) DR(28, a, 14,6; 8) 
D2(30,15,8) DR(30, a, 15,4; 8) DR(30, a, 15,6; 8) 

For a sensory laboratory with constant panel size, a large number of sensory designs 

can be generated from just a few panel designs. It is then easy to create a catalogue 

of designs, that covers most design requests for sensory multi-session trials with 

preparation constraints, when all pairwise comparisons are equally important. When 

the panel size varies, panel designs DC0(k, a, t) have to be created for several values 

of a. As many designs are then required it is useful to have a fast algorithm for the 

construction of sensory multi-session designs with preparation constraints. In the 

following sections, computer algorithms for each step of the three-step procedure are 

discussed. 
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5.3 Creating the preparation design 

At this stage, it is useful to summarise the properties of the preparation designs 

introduced in Section 5.2.1. The preparation design of the three-step procedure 

selects the products that will be prepared for each session. It is a special kind of 

row-column design, in which the rows represent the products prepared for each ses- 

sion. The row structure of the design is an incomplete block design and computer 

search algorithms can be used to construct it. The column structure, on the other 
hand, is fixed. It is defined through q, the number of sets the products are divided 

into. The entries in a single column are a permutation of the numbers of one of the 

sets, where each set is represented in r3 columns. 

Due to the special column structure, available computer algorithms for efficient in- 

complete block designs have to be modified. The optimal preparation design is found 

in the subset of incomplete block designs that observe the restriction C2 of having 

an equal number of products from each set in every block (see page 117). The only 

exception is the case of a single set. For q=1, the preparation design is a simple 

incomplete block design with no restrictions, and the usual search algorithms are 

applicable. 

A design that complies with condition C2 can always be transformed into a row- 

column design that satisfies also condition C1, i. e., a design in which each column 

represents all products from one set. This can be done, for example, with the Algo- 

rithm J1 of Jones (1980), described in Section 5.3.2. This is not necessary for cyclic 

preparation designs, introduced in Section 5.3.1, since they automatically satisfy 

constraint C1. 

In the following two sections, the necessary modifications are discussed for the in- 

complete block design algorithms, introduced in Chapter 3. In Section 5.3.1, cyclic 

construction techniques are described, while in Section 5.3.2 algorithms REK1 and 
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JE1 from Chapter 3 are modified for the construction of preparation designs that 

satisfy conditions C1 and C2. 

5.3.1 Cyclic preparation designs 

Cyclic designs seem to be a straightforward solution for the construction of prepara- 
tion designs as the cyclic construction ensures that each column includes successive 

product numbers. A cyclic design is fully determined by its initial block. All other 
blocks are generated from the initial block, adding one to each element and reducing 

each entry modulo p. With a careful choice of the initial row, this should provide the 

structure necessary for an efficient incomplete block design with an equal number of 

entries from each set of products. 

A careful choice is necessary since, in general, simple cyclic designs do not satisfy 

constraints Cl and C2 for q>I. When the products are split into q sets, a prepa- 

ration design has to be composed of q independent incomplete block designs, with 

s blocks of size rs = Q, referred to as sub-designs. Each sub-design though can be 

constructed as a cyclic design. So, from all cyclic designs, only those initial rows 

can be chosen that satisfy these two conditions. 

Each sub-block represents a subset of the s=Q distinct products that build the 

set. That means that one block of the complete preparation design is formed from 

q of these sub-blocks. To create an efficient preparation design, an optimal combi- 

nation of q sub-designs has to be found. These sub-designs do not have to be optimal. 

Alternatively the preparation design can be viewed as a special kind of 2-cyclic de- 

sign. For 2-cyclic designs, each product label is represented by a set of two numbers 

and the cyclic development is carried out for each number in turn. 

For preparation designs, the first number identifies the set and the second the prod- 
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uct within this set; the products within a set are always assigned numbers between 

1 and s. In contrast to regular 2-cyclic designs, only the second number is developed 

cyclically, while the first remains fixed. 

Example 5.9 Cyclic preparation design D2(18,9,8)- 
The designs in this example are the same as the preparation design in Example 5.2. 

The first design is shown in numerically increasing column order. Each sub-design 

is cyclically developed within each set, and the first sub-design is reduced modulo 9. 

The second sub-design is also reduced modulo 9 but 9 is then added to each reduced 

entry. 

sub-design 1 sub-design 2 
1 23 5 10 11 14 16 
2 34 6 11 12 15 17 
3 45 7 12 13 16 18 
4 56 8 13 14 17 10 
5 67 9 14 15 18 11 
6 78 1 15 16 10 12 
7 89 2 16 17 11 13 
8 91 3 17 18 12 14 
9 12 4 18 10 13 15 

product set 1-9 product set 10-18 

E- initial row 

In the second design in this example the 18 products are numbered according to 

a p-cyclic design. Each subsequent row is created from the initial row by cyclical 

development according to the second digit, calculated modulo 9. 

sub-design 1 sub-design 2 
11 12 13 15 21 22 25 27 
12 13 14 16 22 23 26 28 
13 14 15 17 23 24 27 29 
14 15 16 18 24 25 28 21 
15 16 17 19 25 26 29 22 
16 17 18 11 26 27 21 23 
17 18 19 12 27 28 22 24 
18 19 11 13 28 29 23 25 
19 11 12 14 29 21 24 26 

product set 11-19 product set 21-29 

f-- initial row 
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For regular cyclic designs, the initial row defines a difference matrix that reveals the 

properties of the block concurrence matrix NN' for the whole cyclic design due to 

the circular structure of the concurrence matrix for cyclic designs. For these special 
2-cyclic designs, differences can also be calculated. Differences within a set (the 

same sub-design) are called pure differences, differences between sets (different 

sub-designs) are called mixed differences. If the p products are denoted 1 to p, all 
differences are calculated modulo s, not modulo pas it would be done for a regular 

cyclic design. In the notation as for a two-cyclic design, differences for the cyclic 

preparation design are calculated on the second number only, also modulo s. The 

difference matrix is divided into q2 sub-matrices representing the q pure difference 

matrices and q(q - 1) mixed difference matrices. The diagonal of the difference 

matrix consists of structural zeros. The number of zeros for the pure differences will 

therefore always be r8, the number of columns in each set. For the mixed differences 

there are no structural zeros. 

Example 5.10 Difference matrix for the 2-cyclic design D2(18,9,8). 

The top left and the bottom right sub-matrices of the difference matrix of the cyclic 
design in Example 5.9 are the matrices of the pure differences and the top right 

and the bottom left matrices are the mixed differences. All differences are calculated 

modulo 9. 

11 12 13 15 21 22 25 27 
1 11 1235 1110 11 14 16 

11 1 012 46 
12 2 801 35 
13 3 780 24 

E78 

15 5 567 02 

pure(1,1) 1,2) 

21 
22 
25 
27 

10 
11 
14 
16 

mixed(2,1) 
0124 
8013 
5670 
3457 

pure(2,2) 
0146 
8035 
5602 
3470 

The concurrence matrix of a 2-cyclic design, as well as its difference matrix, consists 
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of q2 different sub-matrices. Each sub-matrix, rather than the complete concurrence 

matrix, has the circular structure of a cyclic design. 

Example 5.11 Concurrence matrix for the 2-cyclic design D2(18,9,8). 

The concurrence matrix for the cyclic design in Example 5.9 consists of four circular 

sub-matrices. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 F7- -1-8-] 
1 4 2 2 1 1 1 1 2 2 3 1 2 1 2 2 2 1 2 
2 2 4 2 2 1 1 1 1 2 2 3 1 2 1 2 2 2 1 
3 2 2 4 2 2 1 1 1 1 1 2 3 1 2 1 2 2 2 
4 1 2 2 4 2 2 1 1 1 2 1 2 3 1 2 1 2 2 
5 1 1 2 2 4 2 2 1 1 2 2 1 2 3 1 2 1 2 
6 1 1 1 2 2 4 2 2 1 2 2 2 1 2 3 1 2 1 
7 1 1 1 1 2 2 4 2 2 1 2 2 2 1 2 3 1 2 
8 2 1 1 1 1 2 2 4 2 2 1 2 2 2 1 2 3 1 
9 2 2 1 1 1 1 2 2 4 1 2 1 2 2 2 1 2 3 

10 3 2 1 2 2 2 1 2 1 4 1 1 2 2 2 2 1 1 
11 1 3 2 1 2 2 2 1 2 1 4 1 1 2 2 2 2 1 
12 2 1 3 2 1 2 2 2 1 1 1 4 1 1 2 2 2 2 
13 1 2 1 3 2 1 2 2 2 2 1 1 4 1 1 2 2 2 
14 2 1 2 1 3 2 1 2 2 2 2 1 1 4 1 1 2 2 
15 2 2 1 2 1 3 2 1 2 2 2 2 1 1 4 1 1 2 
16 2 2 2 1 2 1 3 2 1 2 2 2 2 1 1 4 1 1 
17 1 2 2 2 1 2 1 3 2 1 2 2 2 2 1 1 4 1 
18 2 1 2 2 2 1 2 1 3 1 1 2 2 2 2 1 1 4 

For general cyclic designs, the difference matrix can be summarised by the summary 

vector ö, which is equivalent to the first line of the concurrence matrix. For the cyclic 

preparation design with q>1, a separate summary vector dtj is defined for each 

sub-matrix of the difference matrix, where 6_j refers to the differences between set i 

and set j. Generally, 6 and dot will be different. Each summary vector is equivalent 

to the first row of the matching sub-matrix of the concurrence matrix. Calculating 

the sum of the squared entries of the concurrence matrix is therefore equivalent to 

calculating the sum of the squared entries of the concatenated q2 summary vectors. 

This combined vector is denoted 6. 
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Example 5.12 Summary vector for the difference matrix in Example 5.10. 

The four summary vectors for the sub-matrices of the complete difference matrix are 

associated with each of the four sub-matrices of the concurrence matrix. 

pure(l, l) mixed(1,2) 
611 422111122 F-612 -T-3 12122212 

621 321222121 a22 4112222 T771 

mixed(2,1) pure(2,2) 

The four summary vectors in this example (511, o12i b21 and 622 make up the combined 

summary vector J. 

b=[422111122 312122212 321222121 411222211] 

For finding (M, S)-optimal incomplete block designs, it is sufficient to minimise the 

squared entries of the summary vector of the differences. The same holds for the 

special 2-cyclic case: (M, S)-optimal cyclic preparation designs can be found by min- 

imising b'ö. 

The algorithm to find A-optimal cyclic preparation designs is a generalisation of 

algorithm CYC1, described in Chapter 3. The steps of the modified algorithm are 

summarised below: 

Algorithm CYC2: 

Step 1: Create a candidate list of initial rows for one set, {C1}. 

Step 2: Reduce the candidate list to non-isomorphic initial rows, {C, "'}- 

Step 3: Create all combinations from the reduced set ({Ci30}) for all q sets, {Cq}. 

Step 4: Calculate the difference matrix D= [d; 3)k, k for all pure and mixed differences 

and calculate 8'6. Find the initial rows with minimum d'5, {Cq s}. 
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Step 5: Calculate the average efficiency for designs from {Cq S} and identify the 

designs with maximum average efficiency, {Cq }. 

An optimal preparation design is not necessarily built from optimal cyclic designs 

for one set, due to the consideration of the mixed differences. Thus, the candidate 
list in Step 2 cannot be reduced any further by finding optimal designs for one set 

first and then creating all combinations 

For the range of preparation designs with q>1, defined in Table 5.1, all designs are 

created with algorithm CYC2. For several designs there is more than one optimal 

initial row. For each design an initial row is selected at random from the optimal 

rows and listed in Tables 5.3 and 5.4. The number of optimal rows are listed in 

Table 5.5. 

The average efficiencies of the corresponding designs are listed in Table 5.6. For 

these tables, the efficiency is calculated in comparison to orthogonal designs. Al- 

ternatively, average efficiencies could be calculated by comparison to any of the 

efficiency bounds for randomised incomplete block designs that have been intro- 

duced in Chapter 3. 

In Section 5.3.3, the cyclic preparation designs are compared to computer generated 

designs, described in the next section. 

5.3.2 Computer generated preparation designs 

The second method considered for the construction of preparation designs is by 

an extension of available computer algorithms. Existing algorithms for incomplete 

block designs are modified to include an extra option that limits searching within the 

group of designs that include an equal number of treatments from each set in each 

block (condition C2). The chosen algorithms are the two interchange algorithms 

REK1 and JE1, introduced in Chapter 3. Their respective changes are explained in 
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this section. 

The modified algorithms, REK2 and JE2, generate all preparation designs for the 

range defined in Table 5.1. All the efficiencies are calculated after 100 runs of each 

algorithm. For some designs, the number of runs may be slightly higher because 

the algorithm had to be restarted after some runs. (The designs were mostly run 
overnight and the ones that had not completed by the morning were stopped and 
run again the next night. ) 

The easiest way to ensure the necessary block structure is to create a set of candidate 
blocks that allows for constraint C2. From these blocks a random starting design 

is selected and the remaining blocks are swapped in and out according to a chosen 

criterion until no more improvement can be achieved. Such an algorithm would have 

to be adjusted for the three-step procedure only by reducing the candidate blocks 

to blocks with the same number of products from each set. The adequate candidate 
list is equivalent to the list of initial rows for the cyclic design before reducing for 

rows that are isomorphic through cyclic development. 

Some of the preparation designs are simply too large to be constructed with a 

block-exchange algorithm due to the large number of candidate blocks. Thus, an 
interchange procedure may be better suited for constructing preparation designs. 

Interchange procedures start with an equally replicated starting design. To create 

the special structure for preparation designs, two changes to the original interchange 

algorithms are necessary: 

a) A starting design with the correct structure has to be created. 

b) Interchanges are only allowed between blocks within the same set. 

One such interchange procedure is algorithm REKI, which has been modified to 

allow for the partition of products into sets. The easiest way to adapt this algo- 
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rithm to satisfy the constraints is to create the designs in a sequence. The design 
for the first sub-design is created as before, the following sub-designs are created 
sequentially, so that interchanges are only allowed in the newly added sub-design. 

The resulting efficiency from the algorithm REK2 after 100 runs is given in Table 

5.7 for all designs in the range defined in Table 5.1. 

The other algorithm that was modified is the interchange part of the JE1 algorithm. 
The exchange part of this algorithm is not required since, for designs in which all 

elementary contrasts are of equal importance, an equally replicated design is opti- 

mal. The starting design can therefore already be created as an equally replicated 
design. Thus, only interchanges are needed for optimising the design. To create 

an appropriate starting design with this algorithm, a starting sub-design is created 

separately for each set as a connected equally replicated design. These q starting 
designs are then combined to build the complete starting design. 

To ensure that interchanges are only made within each group, the interchange part 

of the JEI algorithm needs to be modified (Step 4). While the weakest entry of the 

design is determined over the whole design as before (Step 4 Int 1), the sub-design 

that contains the weakest entry is then identified. To find the best product pair for 

an interchange, only treatments in that sub-design are considered. That means that 

treatment swaps are allowed only within each sub-design. 

The resulting efficiency of algorithm JE2 after 100 runs of the algorithm are given 
in Table 5.8 for all designs specified in Table 5.1. 

The designs created with either of the two algorithms do not have the required 

column structure as defined in condition C1. The algorithm to combine the two 

component designs to form a row-column design by Jones (1980) can be used to 

achieve such a structure. 
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Algorithm J1 (Jones, 1980): 

Step 1: A preparation design according to condition C2 and an auxiliary design spec- 

ifying condition Cl are required as input designs. From these, their respective 
incidence matrices are calculated. 

Step 2: For each plot in the design, create a candidate list of eligible treatments and 

a vector of zeros in which assigned treatments will be recorded. 

Step 3: Assign a treatment to the plots successively according to the following steps: 

Step 3.1: Find the next treatment from the list that is still eligible for the next 

plot. 

Step 3.2Y: If one is found, add it to the vector of assigned treatments, take 
it out from both incidence matrices, invalidate it from the candidate list 

and repeat Step 3.1. for the next treatment. 

Step 3.2N: If none is found undo the last step and invalidate the chosen treat- 

ment from the previous step. Return to Step 3.1 for the previous treat- 

ment. 

Step 3.3: Stop the algorithm either when all treatments are assigned to plots 

or when the algorithm has traced back all its steps to the first treatment. 

In the latter case, the two designs cannot be combined to form a row- 

column design. 

Step 4: If all treatments can be assigned to plots, generate the row-column design 

from the assignment list. 
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Example 5.13 Transforming the incomplete block design D2(18,9,4) to 
satisfy condition C1. 

D2(18,94) auxiliary D2(18,9,4) 
design with condition Cl 

1 1 10 10 
2 2 11 11 
3 3 12 12 
4 4 13 13 
5 5 14 14 
6 6 15 15 
7 7 16 16 
8 8 17 17 
9 9 18 18 

1 9 13 18 
2 4 10 13 
6 8 16 14 
8 7 18 11 
9 5 11 17 
7 2 12 16 
4 6 17 15 
3 1 15 12 
5 3 14 10 

9 1 13 18 
2 4 13 10 
6 8 16 14 
8 7 18 11 
5 9 11 17 
2 7 16 12 
4 6 17 15 
1 3 15 12 
3 5 10 14 

ABC 

The incomplete block design in panel A has been created with algorithm JE2. Algo- 

rithm JI requires the auxiliary design in panel B to provide a design with structure 
C1. The resulting preparation design D2(18,9,4) with the required column structure 
is shown in panel C. 

5.3.3 Comparison of the algorithms 

To decide which of the three algorithms performs best, the efficiencies of the 64 dif- 

ferent preparation designs listed in Tables 5.6,5.7 and 5.8 are compared. For each 

of the designs, the maximum efficiency from its three alternatives is determined and 

the algorithm yielding the best result is identified. How frequently each algorithm 

performs best is listed in Table 5.9. 

According to the second column in Table 5.9, all algorithms performed almost iden- 

tically. This result does not seem to agree with the general impression from Tables 

5.6,5.7 and 5.8. A possible reason for this is that the size of the differences is 

not taken into account and that the efficiency value is analysed with all the digits 
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Table 5.9: Comparison of the efficiencies from algorithms CYC2, REK2 and JE2. 

Algorithm with 
maximum efficiency 

Number of designs 

all digits rounded 
CYC2 only 16 10 
REK2 only 17 0 
JE2 only 19 13 

CYC2 & REK2 1 0 
CYC2 & JE2 8 18 

REK2 & JE2 2 4 
All equal 1 19 

provided by SAS IML. Even when efficiencies differ, say, only in their 7th digit, 

one algorithm is classified as better than the other. Such small differences can be 

regarded as negligible. The analysis has therefore been repeated with efficiencies 

rounded to the fourth digit. These results are shown in the third column in Table 

5.9. 

The rounded efficiencies are in closer agreement with the visual inspection of Tables 

5.6,5.7 and 5.8. For 37 designs (57.8%), the cyclic algorithm performed as well as 

either of the two non-cyclic algorithms, for 19 (29.7%) of these all three have equal 

efficiencies. For 17 designs (26.6%), a computer algorithm outperforms the cyclic 

designs and for 10 designs (15.6%) the cyclic algorithm gives better results than 

either of the non-cyclic algorithms. Whilst for 23 designs algorithm REK2 performs 

as well as JE2, it is outperformed in 31 cases by algorithm JE2, ignoring the cases 

where CYC2 is superior. A comparison of the analysis using all digits compared 

to four digits shows that the designs for which REK2 performed best are better by 

only a very narrow margin. 

To analyse the size of the differences, differences between the efficiencies of the three 

algorithms of a design of a certain size have been calculated as percentages from the 
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Table 5.10: Comparison of the efficiencies from algorithms CYC2, REK2 and JE2 
(expressed as percentage differences). 

Deviation from maximum CYC2 REK2 JE2 
Mean 0.0466 0.2222 0.0017 

Standard deviation 0.1297 0.3887 0.0069 

maximum efficiency of the three. Transformed in this way, the efficiency values for 

designs of different sizes can be compared. For this, the values of the efficiencies are 

used without rounding. 

The resulting means and standard deviations, listed in Table 5.10, show that the 

algorithm JE2 performs most consistently and deviates the least of all three algo- 

rithms from the maximum efficiency. REK2 deviates the most from the maximum 

efficiency and also shows the largest variation. The cyclic designs are somewhere 

in-between these two extremes. 

Since the cyclic designs are generated by an exhaustive search algorithm, cyclic 

designs perform worse than the non-cyclic designs when cyclic designs are too re- 

stricted. A computer algorithm performs worse than the cyclic algorithm when the 

algorithm gets trapped in a local optimum of the optimality criterion. 

For the design range explored, algorithm JE2 performs generally better than algo- 

rithm REK2. One explanation for this is that designs with REK2 are constructed 

in a sequential manner and no interchanges are possible in its sub-designs, when the 

next sub-design is added. This is a strong limitation for the algorithm. The differ- 

ences found for the preparation design algorithms REK2 and JE2 do not necessarily 

reflect performance differences of the unmodified algorithms REK1 and JEl. 
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5.4 Creating the panel design 

The panel design is a cross-over design that allocates columns of the preparation 
design to the serving positions for assessors. The block size of the panel design is 

given by the number of servings per session (t) and the number of blocks is given 
by the number of assessors (a) attending the sensory trial. The t entries have 

to be chosen so that associated columns from the preparation design contain ra 

replications of the p products. For the panel design that means that each block has 

to consist of r entries referring to each of the q sets (condition C3 on page 121). 

In this section, cyclic and non-cyclic construction techniques for panel designs are 
discussed. 

5.4.1 Cyclic panel designs 

One possible method for creating panel designs is to use a similar cyclic structure 

as suggested for preparation designs. Since a cross-over design is required for panel 

designs, the designs should be as balanced as possible for both product and carry- 

over effects. Uniformity of order effects for cyclic designs is ensured by the cyclic 

structure. 

Cyclic panel designs can be generated by a two-step algorithm. First, all A-optimal 

initial rows that satisfy condition C3, ignoring order and carry-over effects, can be 

identified. For each of these rows, all column permutations are created and the 

initial rows that maximise the A-efficiency for direct product effects according to 

model (3.22) are identified. 

The simple cyclic method does not work for designs with q>1. When products are 

split into sets, only the subset of cyclic preparation designs for which each block of 

the panel design refers to r columns from each set (condition C3) can be used. If the 

columns of the preparation design are sorted according to their set (i. e. columns re- 

ferring to the same set are arranged in successive columns, so called column-blocks, 
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as described in Example 5.7) the constraint is satisfied only if the sub-designs in each 

column-block are the same modulo r. This limits the number of possible initial rows 

substantially. The cyclic structure with the additional restriction results in a replica- 

tion of the entries of the initial row after r5 = k/q rows, but with a different order of 

the sets. Such a set of rs consecutive rows in a cyclic design is known as a partial set. 

Example 5.14 A cyclic panel design for q=2: D0(6,6,4). 

Two initial rows that satisfy condition C3 are [1 25 61 and [1 35 7]. Panel design 

A, constructed from initial row [1 25 6], consists of partial sets containing four 

rows, i. e. the design repeats itself after 4 rows, in a different order. For example, 

row 1 is [1 25 6], while row 5 is [5 61 2]. Modulo 4 the first sub-design (columns 

1 and 2) is the same as the second sub-design (columns 3 and 4). 

initial row initial row 
[12561 113571 

1 2 5 6 
2 3 6 7 
3 4 7 8 
4 5 8 1 
5 6 1 2 
6 7 2 3 
7 8 3 4 
8 1 4 5 

1 3 5 7 
2 4 6 8 
3 5 7 1 
4 6 8 2 
5 7 1 3 
6 8 2 4 
7 1 3 5 
8 2 4 6 

panel design A panel design 13 

Panel design B, created from initial row [1 35 7], already repeats itself after two 

rows, giving only two essentially different blocks. This design is disconnected and 

should therefore not be used. 

A slightly more complicated method can provide more efficient cyclic panel designs. 

Until now it was assumed that the columns in the preparation designs are ordered 

according to the set they belong to. If instead the columns are ordered alternately 

from each set, cyclic panel designs that do not have the repetitive behaviour shown 
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in Example 5.14 can be easily found. 
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After a cyclic panel design has been found for the alternating preparation design, 

the columns of the preparation design can be reordered into column-blocks. Thus, 

the entries in the panel design have to be updated to refer to the column-block num- 
bering. Whilst it was created as a cyclic panel design, the relabelled panel design 

no longer has a cyclic structure. 

Example 5.15 Special cyclic panel design for q=2: Deo (8,8,4). 

Preparation design 1 is listed in the usual column-block order as described in Example 

5.7. The eight columns are permuted so that they alternate between the q sets, as 
shown in preparation design 2. 

Preparation design 1 
D2(16,8,8) 

column-block order 
1 4 6 8 9 10 13 16 
6 1 2 5 11 14 10 12 
2 3 5 4 13 11 15 10 
4 7 1 3 16 12 11 15 
3 6 8 1 12 15 14 13 
8 5 3 7 10 16 12 9 
5 2 7 6 14 13 9 11 
7 8 4 2 15 9 16 14 

Preparation design 2 
D2(16,8,8) 

alternating order 
1 9 4 10 6 13 8 16 
6 11 1 14 2 10 5 12 
2 13 3 11 5 15 4 10 
4 16 7 12 1 11 3 15 
3 12 6 15 8 14 1 13 
8 10 5 16 3 12 79 
5 14 2 13 796 11 
7 15 8 9 4 16 2 14 

For the case of q=2, the necessary condition that equal numbers of each set occur in 

every block of the panel design translates into the condition that an equal number of 

odd and even entries occur in every block of the panel design. Thus, for this example, 

a cyclic panel design with two odd and two even numbers is required. Panel design A 

shows such a cyclic panel design, created with algorithm CYC3 (see following page). 

Its labelling is suitable for preparation design 2. To refer to preparation design 1, 

the entries of the cyclic panel design have to be relabelled according to the following 

assignment rules: 
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Cyclic design 12345678 
Relabelled design 15263748 

The resulting design is shown on the right (panel design B). 

Panel design A 
(cyclic) 

3 68 ? 
4 71 8 
5 82 1 
6 13 2 
7 24 3 
8 35 4 
1 46 5 
2 57 6 

Panel design B 
(relabelled) 

2 78 4 
6 41 8 
3 85 1 
7 12 5 
4 56 2 
8 23 6 
1 67 3 
5 34 7 

The assignment for assessor 1 can therefore be created either with preparation de- 

sign 1 and panel design B or with preparation design 2 and panel design A. (The 

associated columns in both preparation designs and the first row in both panel de- 

signs related to assessor 1 are shown in boldfaced figures to highlight the construction 

process. 

Assessor 1 
Session 1 4 13 8 16 
Session 2 1 10 5 12 
Session 3 3 15 4 10 
Session 4 7 11 3 15 
Session 5 6 14 1 13 
Session 6 5 12 7 9 
Session 7 2 9 6 11 
Session 8 8 16 2 14 

The initial rows for A-optimal panel designs in Table 5.12 are listed for the range 

defined in Table 5.2. The rows have been created with the following algorithm, 

based on Algorithm CYC1. 

Algorithm CYC3: 

Step 1: A list of all initial rows for a design D(p, p, t) is compiled: {C; }. 

Step 2: Rows without the correct column structure are discarded (rq entries from 

each of the q sets): {C; '}. 
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Table 5.11: Efficiencies of the cyclic panel designs 

a)q=2 b)q=3 c)q=4 

p t=4 t=6 
4 91.67 
6 84.18 96.67 
8 81.34 92.74 

10 78.53 90.53 
12 76.83 89.18 
14 75.62 88.03 
16 73.37 87.35 
18 73.67 86.92 
20 73.06 86.44 

p t=6 
6 96.67 
9 91.40 

12 89.18 
15 87.65 
18 86.92 

p t=4 
8 81.34 

12 76.83 
16 74.56 
20 73.06 

Step 3: All the initial rows with minimum sum of squares of the concurrence matrix 

are identified: {C; S}. 

Step 4: From these, all A-optimal initial rows are identified according to model 
(3.16) (block effect only): {C, }. 

Step 5: For each initial row, the column orders that optimise the cross-over structure 

are identified, using the sums of the squared elements of M: {C°o; ss} 

Step 6: From this list all designs A-optimal according to model (3.22) are identified 

(block, order and carry-over effects): {C°"I 
. 

The efficiencies of the cyclic panel designs generated with algorithm CYC3 are listed 

in Table 5.11. This algorithm is very similar to the one suggested by Ball (1997), 

introduced in Section 3.4.2. In algorithm CYC3, additionally to the (M, S) criterion, 

designs are selected according to the average efficiency of the direct product con- 

trasts. 

As usual for cyclic designs, all designs have p blocks. Their efficiencies are listed 

in Table 5.12. If the number of assessors a is not equal to the number of products 
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p, several cyclic designs have to be combined and subsets of cyclic designs have to 
be chosen to find designs with the required block size. Strategies for choosing such 
designs have been described in Chapter 3. 

An alternative to cyclic designs are designs that are constructed for a specific number 

of assessors with the help of computer algorithms. 

5.4.2 Computer generated panel designs 

For generating panel designs using computer search algorithms a two-step procedure 
is applied. First, an IBD is constructed that complies with condition C3. This im- 

plies that each block of the panel design refers to the same number of columns from 

each set. Second, this IBD is optimised for order and carry-over effects. 

Condition C3 for panel designs is equivalent to condition C2 for preparation designs. 

This means that the algorithms introduced for generating preparation designs can 

be used for panel designs. Algorithm JE2 can be used without changes, whereas 
REK2 has to be modified to handle unequal replication. As JE2 performs generally 
better than REK2 (see Section 5.3.2), REK2 has not been considered for generating 

panel designs. Instead, the block-exchange algorithm ND1 is used. To create valid 

panel designs with this algorithm only blocks are considered for the candidate list 

that comply with condition C3. This modified version with the reduced set of blocks 

is referred to as ND2. ND2 has not been used to create preparation designs, since 

its memory requirements are too large for larger preparation designs. The panel de- 

signs are much smaller and all designs in the suggested range could be constructed 

with the algorithm. The efficiencies of both algorithms based on a minimum of 100 

runs are listed in Tables 5.13 and 5.14 for all designs defined in Table 5.2. For pane] 

designs with unequal replication, efficiency is calculated according to formula (3.19). 
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Table 5.13: Efficiencies of the incomplete block panel design created with algorithm 
JE2 

q=2 q=3 q=4 

k t=4 t=6 
4 100.00 
6 89.65 100.00 
8 85.37 95.17 

10 82.55 92.45 
12 80.49 90.71 
14 78.86 89.35 
16 76.92 88.27 
18 74.34 87.02 
20 72.28 86.14 

k t=6 
6 100.00 
9 93.54 

12 

r 

90.72 
15 88.78 
18 87.02 

k t=4 
8 84.00 
12 79.26 
16 76.92 
20 72.28 

Table 5.14: Efficiencies of the incomplete block panel design created with algorithm 
ND2 

q=2 q=3 q=4 

k t=4 t=6 
4 100.00 
6 89.65 100.00 
8 85.37 95.17 

10 82.55 92.45 
12 79.90 90.40 
14 78.61 89.12 
16 75.22 88.03 
18 73.86 86.10 
20 71.10 - 

k t=6 
6 100.00 
9 93.54 

12 90.39 
15 88.37 
18 86.19 

k t=4 
8 83.67 
12 79.21 
16 74.88 
20 70.98 

Panel design D,. (20,12,6) could not be generated due to insufficient memory of the 
computer. 
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To change these designs into cross-over designs the algorithm for non-cyclic designs 

described by Ball (1997) is used. Its steps have been listed as Algorithm B1 in 

Chapter 3. The transformation process of the panel design from an incomplete 

block design into a cross-over design is shown in Example 5.16. Since overall JE2 

produced more efficient designs, the designs characterised in Table 5.13 are used as 
input designs for algorithm B1. Different weights have been explored and the designs 

with weights giving the highest efficiencies have been chosen, all based on a maxi- 

mum of 100 runs. Their efficiencies according to model (3.22) using formula (3.19) 

with the chosen weights, are listed in Table 5.15. An example of the transforma- 

tion of the panel design from an IBD to a cross-over design is shown in Example 5.16. 

Example 5.16 Panel design D0(8,12,4). 

D2(8,12,4) D2 (8,12,4) 

Pi 3 5 7 
1 4 5 8 
1 4 7 8 
2 3 7 8 
3 4 6 8 
2 3 5 8 
2 4 6 7 
3 4 5 6 
1 2 5 6 
1 3 6 7 
2 4 5 7 
1 2 6 8 

3 5 7 1 
1 8 5 4 
4 7 8 1 
8 2 3 7 
8 6 4 3 
5 3 2 8 
2 4 7 6 
5 4 6 3 
2 1 6 5 
7 3 1 6 
7 5 4 2 
6 1 2 8 

Design A Design B 

Design A is an incomplete block design of the kind D2(8,12,4) with efficiency 85.37%. 

It is used as input design for algorithm B1 with weights wl =2 for order effects and 

w2 =1 for carry-over effects. The resulting design, optimised for order and carry- 

over effects, is design B. Its efficiency according to model (3.22) is 81.96%. 

All complete sensory designs created in this chapter are optimised for model (4.8), 

which includes assessor, order and carry-over effects. The three-step procedure can 
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easily be changed to find optimal designs for cases in which carry-over effects are 
thought to be negligible. If carry-over effects are not expected, panel designs can be 

chosen as row-column designs rather than as cross-over designs. 

5.5 The optimal column order for the preparation 

design 

Since the preparation design is an incomplete block design, the order of the prod- 

ucts within the block has no impact on its efficiency. The panel design attempts 

to balance for order and carry-over, but when it fails to achieve balance, the order 

of the columns of the preparation design can affect the precedence pattern of the 

complete design and its efficiency. 

Whilst the column order of the preparation design has to keep the structure as de- 

scribed in Example 5.7, the order of the column-blocks and the column order within 

each column-block can be varied. The column order does not influence the efficiency 

of the preparation design, only the efficiency of the complete sensory design, since 

it influences the order and carry-over structure of the complete sensory design. To 

find the optimal column order for the preparation design, all permuted preparation 

designs are created and combined with the panel design, generating the different 

complete sensory designs. From the permuted preparation designs, the design that 

results in the highest efficiency for the complete sensory design is chosen. The pro- 

cedure for generating the column permutations is illustrated on a small example. 

Example 5.17 Permutations for a preparation design with 6 columns in 

2 sets. 

First, a list of all r8! permutations is compiled for each set. In this example, there 

are 2 sets with 3 columns each. The r,! =6 permutations of 3 columns are listed 

below. 
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Set 1 Set 2 
1 2 3 1 2 3 4 5 6 
1 3 2 1 3 2 4 6 5 
2 1 3 2 1 3 5 4 6 
2 3 1 2 3 _ 1+3 5 6 4 
3 1 2 3 1 2 6 4 5 
3 2 1 3 2 1 6 5 4 

These q=2 lists are then combined, so that every permutation from each list occurs 

with every other row from the list, yielding r,,! ' = 62 = 36 rows, which represent all 
the within column-block permutations. 

1 2 3 4 5 6 
1 2 3 4 6 5 
1 2 3 5 4 6 
1 2 3 5 6 4 
1 2 3 6 4 5 
1 2 3 6 5 4 
1 3 2 4 5 6 
1 3 2 4 6 5 
1 3 2 5 4 6 
1 3 2 5 6 4 
1 3 2 6 4 5 
1 3 2 6 5 4 

2 1 3 4 5 6 
2 1 3 4 6 5 
2 1 3 5 4 6 
2 1 3 5 6 4 
2 1 3 6 4 5 
2 1 3 6 5 4 
2 3 1 4 5 6 
2 3 1 4 6 5 
2 3 1 5 4 6 
2 3 1 5 6 4 
2 3 1 6 4 5 
2 3 1 6 5 4 

3 2 1 4 5 6 F 
3 2 1 4 6 5 
3 2 1 5 4 6 
3 2 1 5 6 4 
3 2 1 6 4 5 
3 2 1 6 5 4 
3 1 2 4 5 6 
3 1 2 4 6 5 
3 1 2 5 4 6 
3 1 2 5 6 4 
3 1 2 6 4 5 
3 1 2 6 5 4 

Additionally, the order of the sets can be permuted. The first permutation of this list 

L l- 3456 could alternatively be presented with the second column- 

block first: [J-47- 6123 doubling the number of permutations for this 

example. 

The number of valid permutations is n= (r3! )' q!. Table 5.16 gives the number of 

possible column permutations for Step 3 of the three-step procedure for the prepa- 

ration design. 

For some of the preparation designs it is clearly not possible to check all possible 

permutations. A pragmatic solution is to choose a random subset from all permu- 
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Table 5.16: Number of valid column permutations 

rs rs'- q=2 q=3 q=4 
2 2 8 48 384 
3 6 72 1296 31104 
4 24 1152 82944 7962624 
5 120 28800 10368000 4976640000 
6 720 1036800 2239488000 6449725440000 
7 5040 50803200 768144384000 15485790781440000 

tations that has a manageable size. The best design from this subset can then be 

identified. 

Example 5.18 Efficiencies for different column orders of the complete sen- 

sory design DR(18,12,9,4; 8). 
To find the most efficient column order, a permutation matrix with the 1152 different 

permutations has been generated. From each permutation, the corresponding prepa- 

ration design is constructed from the original (Example 5.9) and combined with the 

panel design (Example 5.3). For each combined sensory design the efficiency is cal- 

culated according to model (4.8); the efficiencies vary between 85.13% and 88.89%. 

The maximum efficiency is obtained for permutation 1010 and results in the prepara- 

tion design shown in Example 5.2. The minimum efficiency occurred for permutation 

44, which corresponds to the initial row 1235 10 11 14 15. 

The assessor and session incidence matrices NA and NS are not affected by the col- 

umn permutations. The session incidence matrix of the complete sensory design is 

directly related to the binary block-incidence matrix of the preparation design. Only 

8 different products can be prepared for each session; so, if a product is available in 

a session, it is served to 6 assessors. 
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NA=2J12,12 Ns= 

600006066 
660000606 
666000060 
066600006 
606660000 
060666000 
006066600 
000606660 
000060666 
600606006 
660060600 
066006060 
006600606 
600660060 
060066006 
606006600 
060600660 
006060066 
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The column permutation affects the serving order incidence matrix NT and the prece- 
dence matrix M, whose summary vectors are given below for the best and the worst 

column order. 

best column N, 1567 axs 012345 
permutation freq. 18 36 18 freq. 54 198 45 090 

worst column AN,. 567I aM 012345 
permutation freq. 18 36 18 freq. 117 117 36 18 99 

The difference between the two permutations is in the precedence structure. While 

for the chosen column permutation most pairwise product sequences occur once or 

twice and only a few not at all or four times, the precedence matrix for the worst 

column permutation has a much more dispersed distribution of entries and a larger 

number of product pairs that are never neighbours. 
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5.6 The preparation constraint and the efficiency 

of the sensory design 

The preparation constraint k determines the number of products that can be com- 

pared within a session and therefore also the number of possible direct comparisons 

within each session. The following example illustrates how the preparation design 

influences the efficiency of the sensory design. Sensory designs DR(18,12,9,4; k) are 

created for kE {4,6,8,10,12,14,16,18} and their efficiencies are determined. 

The setting k=p= 18 is equivalent to a resolvable design without constraints and 

choosing k=t=4 means that the preparation constraint is equal to the assessor 

constraint. For the three-step procedure, k has to be an even number since it has 

to be a multiple of q=2. 

The sensory design without constraints has been constructed with the program De- 

sign Express (2001). This program could create only a design for 27 assessors. To 

extract the required sub-design, 12 rows are chosen from the 27. The efficiency of 

the 12-assessor design varies across the subsets of rows. There are (12) 
= 156454740 

possible subsets of 12 rows, too many to compare. We therefore draw a sample 

of 1000 random subsets of 12 rows and choose the most efficient of them. This 

yields the sensory design DR(18,12,9,4) in Example 5.19. The efficiency according 

to model (4.8) is 95.67%, while the least efficient design of the 1000 had an efficiency 

of 92.80%. Using the first 12 rows would have resulted in a slightly lower efficiency 

of 91.97%. 

All designs DR(18,12,9,4; k) are created by the three-step procedure. Preparation 

designs D2(18,9,4), D2(18,9,6) and D2(18,9,8) are generated with algorithm JE2 

and are part of the range whose efficiencies are listed in Table 5.8. Preparation de- 

signs D2(18,9,10), D2(18,9,12) and D2(18,9,14) are constructed as their respective 

complements. Preparation design D2(18,9,16) has been formed by taking out one 
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product at random from each set from each block of a complete block design, with 
the constraint that overall all products are removed exactly once. 

The efficiencies of the required panel designs Dco (k, 12,4) used for this example 

are given in Table 5.14. Preparation and panel designs are combined in the usual 
way giving sensory designs with the efficiencies listed in Example 5.20 according to 

models (4.8) and (4.9). The subset optimisation is used, with 1000 permutations 

selected at random, for all preparation designs for which more than one million 

permutations exist (k > 12). 

Example 5.20 Efficiencies of the sensory designs D,, (18,12,9,4; k) with 

1ý E {4,6,8,10,12,14,16,18} (in percent). 

Exhaustive Random subset Design 

search search Express 

k 468 10 12 14 16 18 18 

Model (4.8) 63.95 81.98 88.41 91.22 93.60 95.17 96.14 96.80 95.67 

Model (4.9) 63.57 68.60 69.67 69.69 68.79 68.49 69.02 68.91 68.68 

The efficiencies according to the two models show two different patterns. For model 

(4.9), an increase can be seen from a preparation constraint of k=4 (63.57%) to 

k=6 (68.60%), all efficiencies for preparation contraints between 6 and 18 products 

are within the range of 69 ± 0.7%. The slight decrease in efficiencies from k= 10 to 

k= 12 is most likely due to the subsets search. 

The efficiencies computed according to model (4.8) are more strongly dependent on 

k and show the expected pattern. The number of direct comparisons increases with 

k and therefore so does the efficiency. The increase in efficiency is steepest between 

k=4 and k=6 but the increases are noticeable up to k= 14. For designs with 

preparation constraints between k= 14 and k= 18, the increases are only slight. 
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The information matrix for the direct product effects according to model (4.8) de- 

pends, among others, on the session concurrence matrix, which depends largely on 
k, the number of different products in a session. The information matrix for model 
(4.9), on the other hand, depends on the assessor-by-session concurrence matrix, 

which is much less dependent on k, since its block size is fairly small. This is also 

reflected in the size of the efficiencies; the efficiencies according to model (4.9) are 
far smaller than for model (4.8). Note also that the designs are optimised according 

to model (4.8) when choosing the column permutation. 

This example shows the advantage of choosing a large k, at least as large as t+2. 

It indicates that when k is chosen not too much smaller than p the loss in efficiency 

may not be too severe. The preparation constraint k can be chosen by a similar 

comparison of efficiencies for several values of k. This might help to balance the 

improvement due to the easier preparation procedure for a small k against the loss 

in efficiency. 

In this example the design for k= 18 created with the three-step procedure is 

slightly more efficient than the design generated with Design Express. A possible 

reason is that the design made by Design Express was optimised for 27 assessors, 

not for 12. This result suggests that the three-step procedure might as well be used 

for generating sensory designs without preparation designs. 

5.7 Extension of the three-step procedure 

Up to now designs have been constructed with q=P=*= r1 
being an integer. 

The p products can then be divided into q distinct sets and each column of the 

preparation design consists of the products from one of the sets. If we relax this 

rule and allow q=P to be a fraction, the three-step procedure needs to be slightly 

modified. 
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Let q=Q, where ql =9 and q2 = 9ýýp s), and gcd(p, s) is the greatest common 
divisor of p and s. The products are divided first into ql distinct sets and q2 of 
these sets are combined into super-sets, where all different q3 = 

(92) combinations 

are created. The sets are then arranged into a q2 x q3 array, so that each column 

consists of the members of one super-set and each row of a set, so that each set 

occurs only once in each row (see the arrangement in Example 5.21). 

Example 5.21 A design for 9 products in 6 sessions. 
The 9 products are divided into 3 distinct sets. 

set I set 2 set 3 
1 4 7 
2 5 8 
3 6 9 

These three sets can then be combined into 3 super-sets, which consist of two sets 

each. These are then arranged in a Latin rectangle with super-sets as columns. 

super-set 1 super-set 2 super-set 3 

setI 
set2 

set2 
set3 

set3 
sett 

Each super-set is replicated in ' columns, so that each product occurs in r8 = L' 
q3 0 

sessions. Therefore only preparation constraints that are multiples of 
(q2) 

can be 

used for the preparation design. Thus, this procedure is most useful for cases where 

qi = q2 + 1, i. e. q3 = q1. In most other cases, q3 = 
(92) is too large to be useful. So, 

it will henceforth be assumed that q, = Q2 + 1. Fractions most likely to be useful 

are q=2 and q=3. Equation (5.2) changes for this extension of the procedure to 

(5.3) 
ql-1 s r, r 

If qi = q2+ 1 the preparation designs Da911(p, s, k) can be constructed with Al- 

gorithm JE2 with the following design parameters: p products in s sessions of size 
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k with a constraint that r° entries in each block are from each of ql sets. The 

auxiliary design needs to be modified, so that it creates the Latin rectangle structure 

of the super-sets. 

Example 5.22 A preparation design D(9,6,6). 

Design from JE2 Auxiliary design Final design 
2 3 6 4 9 7 
2 1 6 5 7 8 
1 3 5 4 9 8 
1 2 6 4 9 8 
3 2 4 5 7 8 
1 3 6 5 7 9 

1 1 4 4 7 7 
2 2 5 5 8 8 
3 3 6 6 9 9 
4 4 7 7 1 1 
5 5 8 8 2 2 
6 6 9 9 3 3 

2 3 4 6 7 9 
1 2 6 5 8 7 
3 1 5 4 9 8 
4 6 8 9 1 2 
5 4 7 8 2 3 
6 5 9 7 3 1 

The product replication in the preparation design is r, q = 4; each product will occur 

in 4 sessions of the complete sensory design. There are q=2 columns that refer to 

each of the 3 super-sets. 

The constraint on the panel design also changes from the regular procedure. To 

achieve r replications of all products in the whole design, rf= ql columns of the 

preparation design have to be chosen from each of the ql super-sets. Therefore, 

the panel designs constructed with the previously introduced panel algorithms can 

be used. A panel design for a assessors with preparation constraint k and assessor 

constraint t will be necessary, where the t elements consist of rf elements from each 
g 

of the ql sets, i. e. Dc'ö ' (k, a, t) = Dgö(k, a, t). 
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Example 5.23 A panel design D0(6,12,3) = D0(6,12,3). 

254 
326 
451 
514 
631 
235 
462 
146 
315 
163 
642 
523 

The preparation design and the panel design can be combined in the usual way, and 

n= (r,! )glql! column permutations of the preparation design have to be considered. 

J 

Example 5.24 A sensory design D. (9,12,3,4; 6). 

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 
Assessor 1 7 3 4 8 2 6 9 1 5 1 6 8 2 4 7 3 5 9 
Assessor 2 6 7 2 5 8 1 4 9 3 9 1 4 8 2 5 7 3 6 
Assessor 3 4 3 9 6 2 7 5 1 8 8 6 2 7 4 3 9 5 1 
Assessor 4 3 9 4 2 7 6 1 8 5 6 2 8 4 3 7 5 1 9 
Assessor 5 2 6 9 1 5 7 3 4 8 4 9 2 5 8 3 6 7 1 
Assessor 6 7 6 3 8 5 2 9 4 1 1 9 6 2 8 4 3 7 5 
Assessor 7 4 2 7 6 1 8 5 3 9 8 4 1 7 5 2 9 6 3 
Assessor 8 9 4 2 7 6 1 8 5 3 2 8 4 3 7 5 1 9 6 
Assessor 9 6 9 3 5 7 2 4 8 1 9 2 6 8 3 4 7 1 5 
Assessor 10 9 2 6 7 1 5 8 3 4 2 4 9 3 5 8 1 6 7 
Assessor 11 2 4 7 1 6 8 3 5 9 4 8 1 5 7 2 6 9 3 
Assessor 12 3 7 6 2 8 5 1 9 4 6 1 9 4 2 8 5 3 7 

According to this design each product is tasted twice by every assessor. Its efficiency 

according to model (4.8) is 87.11% and according to model (4.9) 5742%. 

With this extension of the three-step procedure the range of parameter combinations 

for which sensory designs can be generated is increased with only slight changes to 
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the regular procedure. With this adaptation, the product replication can be handled 

more flexibly. 

5.8 Conclusions 

In many situations, multi-session designs are needed for which only a subset of all 

the products can be prepared for each session. General resolvable designs are not 

useful in these cases. In this chapter, a three-step procedure has been developed for 

generating efficient multi-session trials with preparation constraints. The procedure 
has been fully automated and generates the required designs within minutes. For 

the preparation and the panel design, existing algorithms have been modified to pro- 

vide designs with the special structure and several techniques have been compared. 

It has been shown that algorithm JE2 can be used for the construction of efficient 

preparation designs and for generating the incomplete block structure of the panel 

design. The cross-over structure can then be induced with a regular algorithm. For 

this dissertation, algorithm B1 has been used. 

We showed, that the three-step procedure is an improvement over the common strat- 

egy of forming multi-session designs for which only t products are prepared for each 

session. This procedure can be used for varies choices of the parameter constraint 

k and for a wide range of sensory designs. The only constraints on the parameter 

settings are given by equations (5.2) or (5.3). 

An automated procedure enables us to generate designs for a range of parameter 

settings for a specific experiment and compare the resulting efficiencies. This is espe- 

cially relevant for different numbers of assessors or different preparation constraints. 



Chapter 6 

Treatment-control designs for 

sensory trials 

In the previous three chapters, designs were constructed for sensory trials in which all 

elementary contrasts are of equal interest. For such experiments, equally replicated 
designs are optimal, and all contrasts are estimated with equal precision. When a 

control product is included in the product range the degree of interest may vary 
between different elementary contrasts and designs can be constructed that reflect 
this change in priorities. To distinguish between the control and the other products, 

non-control products will be referred to in this chapter as test products. 

In experiments that include a control product, there are contrasts of two kinds, 

a) contrasts between the test products and the control product and 

b) contrasts between two test products. 

Comparisons of each test product with the control are of equal importance, as are 
the comparisons of each pair of test products. But the test-control comparisons 

are more important than the test-test comparisons. Then designs are needed in 

which control-test comparisons are made with higher precision than test-test com- 

parisons. Such designs are called treatment-control designs. Higher precision of the 

166 
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test-control comparisons is achieved by replicating the control product more often 
than the test products. 

The control in sensory studies refers to a reference product which at the planning 

stage already has a special status among the products. It can be the market leader, 

the cheapest product on the market or some other key product of a competitor. 
Interest is in finding the key sensory difference between the test products and the 

competitor product. Alternatively, a control might be the current commercial prod- 

uct and the test products its various modifications. The aim of such a trial is to 

determine which of the products will perform better or at least as well as the current 

product, seeking a decision to retain or replace the current product, for example, 

with one that has a better formulation or cheaper production. Interest is then solely 

in the comparisons between the control and the test products. This is often the 

case in the early stage of a long term trial, intended to compare the performance of 

the new products with the established control. The selected test products are then 

studied more intensively in the confirmatory stage of the experiment, in which both 

groups of contrasts are of interest, while not necessarily to the same degree. 

In sensory designs without control products, two different situations have to be con- 

sidered: single- and multi-session experiments. In single-session experiments each 

assessor tastes either all products (complete block designs) or only a subset of all 

products (incomplete block designs). For complete block designs, control-treatment 

designs are not relevant because block effects are orthogonal and all product compar- 

isons are made with the same precision. Only when the block size is smaller than the 

number of products does the assignment of products to blocks change the precision of 

a specified contrast. In incomplete block designs, within-block (direct) comparisons 

are estimated with higher precision than between-block (indirect) comparisons and 

the use of treatment-control designs guarantees efficient estimates, when interest is 

mostly in test-control contrasts. 
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Whilst for sensory designs it is generally advisable that every assessor tastes all prod- 

ucts the same number of times, this can be slightly relaxed for sensory treatment- 

control designs, so that every assessor tastes all v test products equally often, say rt 

times, with the exception of the control product, which is replicated more often, say 

r, times. In multi-session trials, the designs need to be resolvable for test treatments. 

The control, on the other hand, occurs in r, > rt blocks, so that rtv + r, = st. Each 

set of s blocks that deliver one resolution of the v+1 products makes up all the 

servings for a single assessor. 

Single- and multi-session treatment-control designs have to be distinguished also by 

the assumed blocking factors in the analysis model. If the only blocking factor in 

the model is the assessor effect, then randomly assigned incomplete block treatment- 

control designs will be used. If order effects are also taken into account, row-column 

treatment-control designs are adequate and when first-order carry-over effects are 

also included in the model, cross-over treatment-control designs are chosen. This 

applies also for multi-session trials, but here blocks are represented by assessors 

within sessions and resolvable treatment-control designs are needed, in the sense of 

resolvable as described above. 

In Section 6.1, an overview of the relevant literature on randomised, row-column and 

cross-over single-session treatment-control designs is given. More extensive reviews 

on the theory of treatment-control designs can be found in Hedayat, Jacroux and 

Majumdar (1988) and Majumdar (1996). In this chapter, only treatment-control 

designs with a single control product are considered, so that the p products of a 

sensory experiment consist of v=p-1 test products and one control. The main 

purpose of this chapter is to develop construction procedures for sensory treatment- 

control designs for non-factorial multi-session trials with preparation constraints. 

Two procedures are introduced in Section 6.2, both an adaptation of the three-step 

procedure for treatment-control designs. The first procedure creates treatment- 

control designs, in which the control occurs in every block. This is discussed in 
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Section 6.2.1. The second procedure is for designs in which the control occurs only 

in some of the blocks, but in more blocks than either of the test products. This 

procedure is developed in Section 6.2.2. 

6.1 Single-session designs 

Before different classes of treatment-control designs can be described in detail some 

notation is needed. In single-session sensory trials there are p=v+1 products, of 

which t are served to each of a assessors. This implies that all blocks in design d 

have equal block size t. As a convention in this text, product 1 will always be the 

control. Let dE D(v + 1, a, t) be a connected block design in the class of designs 

with v+1 treatments arranged in a blocks of size t. Let N be the incidence matrix 

of d with a columns and v+1 rows, where the elements of N= [nij](�+l, 
a) represent 

the number of times each product occurs in a block and Ni denotes the ith row of 

N, i. e. the incidence vector for product i. Let a;; = N; M nzinjl give the 

number of times product i and j occur together in the same block. 

6.1.1 Randomised incomplete block treatment-control de- 

signs 

The more frequent location of the control is not a consideration in the model choice, 

so the three linear models (3.16), (3.21) and (3.22) are also relevant for the analysis 

of data from treatment-control designs. The information matrices for the product ef- 

fects are slightly more complex than their counterparts in equally replicated designs. 

For model (3.16) 

yk=P+aj+Tk+Ejk 1<j<a, 1<k<p 
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the information matrix of a treatment-control design changes to 

C=rp- 
-NN' 

where r'' = [rl r2 r�+1] = [r, rt ... rt] is the replication vector for the v+1 

products. 

Treatment-control designs for model (3.16) are called balanced when all v test prod- 

ucts occur the same number of times in a block with the control product and test 

products occur the same number of times in a block with any other product apart 
from itself. They are known under several names, such as designs with supple- 

mented balance (Pearce, 1960), balanced treatment block designs (Jacroux, 

1989) and for incomplete block designs they are called balanced treatment in- 

complete block designs introduced by Bechhofer and Tamhane (1981). The 

definition of Bechhofer and Tamhane will be used here since interest in sensory 

experiments is mostly in incomplete block designs. 

Definition 6.1 (Balanced treatment incomplete block designs (BTIBD)) 

A design dE D(v + 1, a, t) with t<v is a BTIB(v, a, t) if 

Aga = -.. _ ASU+1 = Ac 

and 
A23= \24 =... =Av-1, v=A 

In other words, for a binary BTIB design the concurrence matrix NANÄ has the 

pattern 

rc Nn NÄ 
Aciv+l 

= 
A, lv+1 AJ�+1,,, +1 + (rt - . 1)Iv+i 

Bechhofer and Tarnhane (1981) show that for BTIB designs the linear estimates of 
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the control-test contrasts have equal variances 

Ac (Ac + pA) 

and equal correlation 
a 

corr(Tj -r1, T{, -T1) = 

for i', i=2, 
... ,v+I with i$ i'. 

171 

A special subset of BTIB designs for which the number of control products in a 
block differs by at most one is defined by Stuflken (1987): 

Definition 6.2 For integers uE {0,1, 
... ,t- 1}, sE {0,1, 

... ,a- 1}, design d 

with v+1 treatments in a blocks of size t is a BTIB(v, a, t; u, s) if it is a BTIB(v, a, t) 

design with the additional property that 

nijE0,1, i=2,3,..., v+1, j=1,2,..., a 

n1e=... =n18=u+1 

nl, s+i = ... = nl, a =u 

If s=0, then the BTIB(v, a, t; u, 0) is called a rectangular (R) type design. 

When s>0 then the BTIB(v, a, t; u, s) is called a step (S) type design. 

This definition can be generalised to unbalanced treatment-control designs. If the 

control product occurs u times in every block of an incomplete block design, the 

design is called a rectangular-type treatment-control design. If the control 

product occurs in a subset of blocks u times and in the remaining blocks u-1 

times, the design is called a step-type treatment-control design. 
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Example 6.1 Sub-classes of treatment-control designs. 

Rectangular-type TC design 

u=1, s=0 
12 -35 
13 

.46 
1 .457 
1568 
1672 
1783 
1824 

Step-type TC designs 

u=0, s=6 
r12 ¢56 

356 
3 !ý6 
256 

1245 
1235 
1234 

u= 1, s=3 
1234 
1234 
1234 
1234 
1123 
1124 
1134 
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Rectangular-type BTIB designs are also known as balanced control incomplete 

block designs (Spurrier and Edwards, 1986), augmented designs (e. g. Majum- 

dar and Notz, 1983) and reinforced block designs (Das, 1958). For rectangular 

BTIB(v, a, t; u, 0) designs the control concurrence is 

ýC 
- 

au(t - u) ,_ a(t - u)(t -u- 1) 

V , A= 
v(v - 1) 

While BTIB designs exist only for designs of special size, Jacroux (1989) introduces 

two wider classes of designs, group divisible treatment designs and regular graph 

treatment designs. He shows that some designs of these two classes are A-optimal in 

the class of treatment-control designs, when BTIB designs of that size do not exist. 

Definition 6.3 (Group divisible treatment designs (GDTD)) A design dE 

D(v+1, a, t) with control replication r, is called an GDTD with parameters m, n, A,, A,, 

and '2 if the products 1, ... ,v+1 can be partitioned into m+1 disjoint groups 

Vc, Vi, 
... ,V�aof size vc, v1, ... , vM, so that the following conditions are satisfied: 

{1} a) V={1} 

b) vi=... =Vm= 

c) a1z = Ac _ (rat - R(rc))/v forI=2, ... ,v+1 and an appropriate constant A,. 
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d) For p, qEV, ý (P 4; i= Apq =A, . 

e) For pE Vý, qEV. 7 
(Z, j=1, 

... m; z 34 1), Apq = 1'2. 

where 

R(r`) - 
(r, 

-aI-I) (i-I +1 J2+(a-r, +a[aD 
1r12 ý6.1} 

and [x] denotes the integer part of a real number x. 

This means that the off-diagonal elements of a concurrence matrix for GDTD com- 

prise three distinct values, A, al and A2 and a pair of test products occurs either 
Al or A2 times, depending on whether they belong to the same group or not. If 

additionally Al _ A2 + 1, then a GDTD is called a regular graph treatment design. 

Definition 6.4 (Regular graph treatment designs (RGTD)) A design d in the 

class of D(v + 1, a, t) with control replication r, is called an RGTD if the following 

conditions are satisfied: 

a) r2 = ... = rv+i = (at - r, )/v = rt 

b) Ail = ... _ Ai�+i = (rct - R(r, ))/v 

c) For all i, j, P, 4 =2,..., v+ 1, i j, p :, 4 4 and j Aij - Apq j51. 

where R(rc) is defined by (6.1). 

For both classes of designs, GDTD and RGTD, the control occurs in a block the 

same number of times with each test product. Compared to balanced designs this 

condition is relaxed only concerning the number of times test products occur with 

each other in a block. 

6.1.2 Optimality criteria, efficiency and efficiency bounds 

Optimality over all possible treatment-control designs of size (v, a, t) is not as simple 

to prove as in equally replicated designs. The main objective for treatment-control 

designs is to compare the control treatments with the test treatments. A meaningful 
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criterion for design selection should therefore be based on the size of the variances 

of the control-treatment comparisons. Three criteria are most commonly used for 

assessing the quality of a treatment-control design: 

a) A-optimality, also referred to as trace optimality, for which the average of the 

control-test contrast variances is minimised, 

b) MV-optimality, for which the the maximum variance of the control-test con- 

trasts is minimised, 

c) Minimising the confidence region of the test-control contrasts (simultaneous 

confidence intervals). 

In this thesis only the first of these three criteria is considered: 

Definition 6.5 (A-optimality, trace optimality) A design d is A-optimal in a 

given subclass D of D(v + 1, b, k) for estimating treatment differences involving the 

control treatment if it minimises 

vard(Ti^Tl) 
v t-1 

over all designs in the class D. 

Bechhofer and Tamhane (1981) show that for any dE D(v + 1, b, k), 

1 
var(T{ - Tl) =1 trace (Cali) =1 trace (LCd L') =1E 

v i=l vvv: =i Z. 

where Cdll is the principal sub-matrix obtained from Cd after deleting row one and 

column one (associated with the control), L, = [1� - I�] is the matrix of test-control 

contrasts, and z; the non-zero eigenvalues of Cs11. 

In more recent publications, treatment-control designs are considered in which not 

only the precision of the control-test contrasts is optimised, but in which the preci- 

sion of test-test is also considered, e. g. in Türe (1994) and Gupta et al. (1999). When 
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both kinds of contrasts are of interest, the aim is to find designs, in which control-test 
contrasts are estimated with high precision and test-test contrasts with reasonably 
high precision. For a computer search of such designs the weighted A-optimality is 

useful. 

Definition 6.6 (Weighted A-optimality) With weights a and /3 = 1-a a design 

d is called weighted A-optimal within a class D(v+ 1, a, t) of designs, if it minimises 

v+1 v+1 v+1 
ßEvar 

i -Ti) +'aE E 
var(r 

i=2 i=1 i'(34i)=1 

For ß>a, test-control contrasts are more important than test-test contrasts. For 

a=1, Q=0 this definition reduces to trace-optimality, for a=ß to the usual 
A-optimality, where all contrasts are equally important. 

An efficiency measure for treatment-control designs has been defined by Stu$ken 

(1988). 

Definition 6.7 (Efficiency) The efficiency E(d) of a design d c- D(v + 1, a, t) is 

defined as 

, ý,, ý 
_ 

trace(L, Cd. L, ) >j vard. (Tl - Tj) 
ýA'c 

traCe(LC Lc) Ej vard(Tl - TJ) 

where d* is a hypothetical A-optimal design in D(v+ 1, a, t) for which trace(LcCd. L') 

is minimum. LEG; L. is the information matrix for the treatment-control contrasts. 

Bounds for the average variance of control-test contrasts in treatment-control designs 

are known for balanced and regular graph treatment-control designs. They can ei- 

ther be given for designs with a fixed control replication r, or for the optimal control 

replication r0. The former is useful, when the control product supply is limited or 

the replication is fixed through financial or other external constraints. The latter is 

useful when the control replication can be chosen solely by statistical considerations. 
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Jacroux (1989) provides a bound on the A-efficiency for treatment-control designs 

with v test treatment in a blocks of size t and r, fixed: 

vt vt t) 
r, t-R(rr) 

+vat(t-1)-rc(vt-v+t)+R(r, ) 

where the function R(r) is defined as in Equation (6.1). 

This bound is reached by a BTIB(v + 1, a, t) design with replication r,, if such a de- 

sign exists. For other settings certain classes of GDTD can be shown to be optimal. 
Details on tighter bounds for GDTD than the one above, which is only reached for 

BTIB designs, can be found in Jacroux (1989). 

The advantage of rectangular designs is that they are easily constructed by augment- 

ing BIB designs with the control in every block. While rectangular BTIB designs are 

A-optimal within the class of rectangular designs, they are not necessarily optimal 

in the class of all treatment-control designs of the same size. Stuffken (1987) shows 

that a BTIB(v, b, k; t, 0) is A-optimal for treatment-control contrasts whenever 

(t-u- 1)2+1 <u2v <(t-u)2 

which simplifies to 

(t-2)2 <v < (t-1)2 for u= 1 

The control replication for rectangular designs is always equal to the number of 

blocks, but it is not necessarily the optimal control replication for a design of the 

required size. 

A lower bound for the average variance of control-test contrasts in treatment-control 

designs with optimal replication was derived by Majumdar and Notz (1983). They 
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show that the lower bound B,. 
o 

is the minimum of the function g(r), defined as 

g(r) 
tv(v - 1)2 

+ 
tv 

avt(t - 1) - r(tv -v+ t) + h(r) tr - h(r) 

with 

h(r) =a 
[a] 2+ 

\2 
[a] 

+ 1) 
(r 

-d[ 
r] 

for r=l,..., a{21 
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This bound is attained by a step-type BTIB(v, b, k; u, s) design for which the values 

of s and u are defined from the optimal replication through the identity r,, = bu + s. 

Hedayat and Majumdar (1984) give the conditions under which such a balanced 

design exists: 

a) A BTIB(v, a, t; u, s) design (where rr = au + s) exists if 

a(t-1)-s at - re 
qi 

vv 

s(t-u-1) 
= q2 

v 

q2(t-u-2)+(qi -q2)(t-u-1) 
v-1 

are integers; r, = au + s. 

b) For an R. -type design it is necessary that a>v, while for an S-type design it 

is necessary that a>v+I. 

From this it can be seen that there have to be more blocks than products. For 

single-session incomplete block designs, this means that optimal sensory designs can 

only be found when the number of assessors is larger than the number of products. 

Average efficiency as in Definition 6.7, where the average variance of the control-test 

contrasts is compared to one from an A-optimal treatment-control design, can be 



Treatment-control designs 178 

calculated only when lower bounds are known for the average variance of the control- 
test contrasts. Since for cross-over designs such a bound is not known, alternative 

measures are needed to compare different designs of the same size. 

General average efficiency has been defined as: 

varo(Ti T rj ) EoA; r _ 
Epi 

- Ea i, j vard(Ti - T. 7) 

by Definition 3.16, where var,, (Tj --T3) is the lower bound taken from the variance of 

the contrasts in a completely randomised design with the same number of treatments 

and the same replication. Efficiency defined in these terms measures the precision 

that is lost due to blocking, under the assumption that the error variance would 

be the same in the blocked design and the design without blocking, rather than 

giving a measure of how good the design is in comparison to the optimal design in 

the same class. For cross-over designs efficiency can be calculated for direct and 

residual treatment effects. The two advantages of this measure are that it can be 

calculated when lower bounds on the variance are unknown and that it can also be 

calculated for single contrasts, which is useful, for example, for factorial designs. 

Average efficiency, as defined by Definition 3.16, is useful when all elementary con- 

trasts are equally important. In treatment control designs the treatment-control 

contrasts are more important than the test-test contrasts. Average variance in this 

context refers to the average of all control-test contrast variances and average ef- 

ficiency for treatment-control designs can, as an alternative to Definition 6.7, be 

defined as: 

Eo 
Ejv=2 vaxo(TlTj) 

A+c 
v Ej_z vard(Tl - Tj) 

(see also Definition 6.5 on A-optimality for treatment-control designs). 
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Often only the average efficiency of the control-test contrasts is given for treatment- 

control designs. When some interest is in test-test contrasts, information about the 

average efficiency of the test-test contrasts can also be useful to assess the quality 

of a design: 
_ 'P, 

«<i var (Tt 
1 Tj) 

Eo =` A, t - r1p<i<j vard(Ti - Tj) 

Unfortunately there are no known lower bounds for the average variance of test-test 

contrasts in treatment-control designs. 

The ratios EA,,, and Eý, t are used to compare designs of the same size and the same 

replication and assess the loss due to blocking. These two efficiencies cannot be 

compared directly to assess the gain in efficiency through the higher replication of 

the control. The average variance of the control-treatment contrasts is expected 

to be smaller than its test-test counterparts for both designs, the optimal and the 

design d under consideration. Rather than compare the efficiencies, the average 

variances can be compared directly. Thus, the ratio of the average variances of the 

test-test contrasts and the control-test contrasts provides a measure of the gain in 

precision for the control-test comparisons, which are of primary interest: 

EA`o 
2 El<<j vard(r1 -7) 

V+1 EI., vard(T1 - Tj) 

This ratio has been suggested by Pigeon and Raghavarao (1987) and is a useful 

efficiency measure for all non-factorial treatment-control designs. 

6.1.3 Row-column and cross-over treatment-control designs 

As discussed in Chapter 3, in sensory experiments it is often useful to include order 

and carry-over effects in a model equation. Relevant designs for these cases differ 

from those with a single blocking effect. This is the same for treatment-control de- 

signs. Thus, row-column or cross-over treatment-control designs are required. 
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When assessor (o, ) and order (7r; ) effects are assumed, model equation (3.21) can 
be used. 

Yijk=P+? ri+a. +Tk+6ijk 1<j <a, I< i, k <p 

The information matrix in the treatment-control case reflects the unequal replication 
compared to designs with equal replication: 

Cd = rp - -NTNT 
NAN'A + -rpr'p 

1, 
= rp 

Ia 
r- IA+ 

I 
rprp 

=rp- Ap (6.2) 

Balanced treatment-control designs in the row-column setting are known either as 
balanced treatment row-column designs (Türe, 1994) or as balanced treat- 

ment vs. control row-column designs (Majumdar and Tamhane, 1996). 

Let Aij =E nA; iknA; kj, i, j=1, ... ,v+1, 
be the matrix entries of the block con- 

currence matrix NANA, as before, and let ryij nT; iknT; k� v+1, be 

the matrix entries of the serving concurrence matrix NTNT. Let ri = E. ' 1 nii _ 
E k=1 nik be the replication of product i. 

Definition 6.8 (Balanced Treatment Row-Column design (BTRCD)) Let 

a=te be the elements of Ap as defined in equation (6.2) 

dt= =2 
Li, L: t, rir;, 

a+t at 

A design d for v+I treatments is a balanced treatment row-column design if 

612 7:: --- --'ý 
61 

V+ I ': -- 
6c 
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X23 ----=avv+1 =at 
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This implies that all treatment-control contrasts of a BTRCD have equal variance 

and equal correlation: 

Q2 VäT(T{ - Tl (öc + at) ý=o(5 

"pat) 

corr(Tr^Tl, Tr, -Tl) = 
ýt 

& +bt 

fori', i=2,..., v+1 with i#i'. 

For row-column designs, Notz (1985) gave the upper bound for the average variance 

of the control-test contrasts as the minimum over 0<r< at for the following 

function, which is attained for a BTRCD: 

vv f (r) - 
r .+a- h}(r) (v - 1) ((v 

- 1)(at - r) - ät ý- h*(r)) 
+ 

where 
) 

h*_ r+(2r-t)[!: -týtý2+ 
(r+(2r-a)[t] 

-a{tJ2/ 

at 

When the selected model includes assessor, order and first-order carry-over effects 

(p; 
_1, ß), model equation (3.22) is required: 

Yd(i, 
1) =A+ 7fi + CYj + Td(i+j) + Pd(i-l j) + Eij 1<i<t, 1<j<a, 

The information matrix for direct product and residual product effects in the treatment- 

control case changes to 

CD = CI I- C12C C2l 

CR = Ci22 - 
Ci21CjjC12 

where the matrices C11, C12 have more complex forms due to the unequal product 
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replication. 

C1 = rP - 
1NTNT 

a 
C12 = M- 

iNTNT- 

a 

tNANÄ+ 
trprp 

t 
NANÄ + trprR 

where rR =X XR is the replication vector of the residual effects and M= XI XR 

the precedence matrix. 

Pigeon and Raghavarao (1987) give the following definition for a balanced treatment- 

control design in the cross-over setting: 

Definition 6.9 (Control balanced residual effects design) An arrangement of 

v+1 products in t periods (p <v+ 1) and a assessors such that every assessor re- 

ceives a product in each period is said to be a control balanced residual effects 

design if 

a) no product is tasted more than once by an assessor; 

b) the control product occurs ýc times in each period and each test product occurs 

t times in each period; 

c) the control product occurs with each test product for a, assessors and each test 

product occurs with every other test product for A assessors; 

d) excluding the last period, the control product occurs with each test product for 

µe assessors and each test product occurs with every other test product for p 

assessors; 

e) the ordered product pairs (1, i) and (i, 1) (i = 1, ... ,v+ 1) occur in succes- 

sive periods for vi assessors and the ordered product pair (i, j) (i # j; i, j= 

2, 
... ,v+ 1) occurs in successive periods for v assessors; 

f) for every pair of distinct products B and ¢, the number of assessors for which 

0 occurs with 0 in the last period is the same as the number of assessors for 
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which 0 occurs with 0 in the last period. 
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The concurrence matrix NANÄ of a control-balanced residual effects design has the 

same form as one from a BTIB design, while the period incidence matrix NT and 
the precedence matrix M have the following form: 

SSC 
ýC 

ýt 
... 

ýc 
NT = 

0 vc """ """ vC 

vC 0 vt """ vg 

vc vt ... 0 vt 

Vc vt ... vt 0 

For cross-over designs upper bounds on the average variance of the test-control 

contrasts, similar to those of randomly assigned and row-column treatment-control 

designs are not known. Pigeon and Raghavarao (1987) propose a comparison of an 

elementary contrast between control-test products of a balanced treatment-control 
designs with t periods and v test products with that of an elementary contrast 

from a balanced cross-over design with t periods and v+1 treatments, where they 

also suggest some adjustment to counteract the different number of blocks needed 

for balance. This measure is introduced to provide information on the gain in 

precision for control-test contrasts, due to the use of control treatment-control design 

compared to equally replicated designs. 

6.2 Resolvable treatment-control designs with pre- 

paration constraints 

In sensory experiments involving multiple sessions, resolvable cross-over designs are 

used to accommodate assessor, session, serving order and first-order carry-over ef- 

fects. In Chapter 5, the three-step procedure was introduced for the construction 

of multi-session designs, in which all elementary contrasts are of equal interest. 

Treatment-control designs will be discussed in more detail in this context. The 
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three-step procedure can be modified to generate designs in which contrasts are 

estimated with unequal precisions. In the following two sections a construction 

procedure is developed for multi-session treatment-control designs with preparation 

constraints. This procedure can also be used to create simple multi-session designs 

as a special case. 

Sensory designs are often limited by time and financial constraints as well as by 

product resources. Thus, here only designs are considered for which the replica- 

tion of the control product for each assessor is limited by the number of blocks, 

i. e. rt < rc < s, so that the control occurs at most once in a block. The optimal 

replication might be higher, but such designs are in practise not feasible. Optimal 

replication is therefore of limited usefulness for sensory designs. 

Increased replication of the control in the complete sensory design can be achieved 

either by increasing the replication of the control in the preparation design, in the 

panel design, or in both. The number of sessions a test product is served in, r, t, is 

smaller than the number of sessions the control product is served in, r3 , which in 

turn does not exceed the number of sessions s. With block size k in the preparation 

design and t in the complete design, the number of design entries is 

ks = vrst + r3C (6.3) 

for the preparation design and 

ast = avrt + ar, 

for the complete sensory design. 

For binary treatment-control designs, the maximum replication of the control prod- 

uct is achieved when every assessor tastes the control product in every session to- 
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gether with t-1 test products (Design case Al); then r, = s. In trials with a 
large number of assessors and/or sessions, this may result in a fairly high overall 

replication of the control product. 

If such a high replication is undesirable or impossible because sufficient quantities 

of the control product are not available, the control product could be given only to 

some of the assessors, say y assessors, where rga/s <y<a. These y assessors would 
then taste the control in every session, while the remaining a-y assessors would 

not taste the control product at all (Design case A2). 

Alternatively, a reduction of the replication of the control could be achieved by re- 
ducing the number of sessions each assessor will taste the control in. For maximal 

control replication for this case, the control is still available in all sessions (Design 

case B1). 

The control replication can still be reduced further, when the control is available 

only in a subset of all sessions. To ensure that the overall replication of the control 

is higher than for the test products, the number of sessions in which the control is 

available has to exceed the number of sessions the test products occur in (Design 

case B2). 

To construct design cases Al or A2, the preparation and the panel design have to 

be treatment-control designs. For designs of cases BI and B2, only the prepara- 

tion design has to be a treatment-control design. For designs Al, A2 and B1, the 

preparation design is a rectangular type treatment-control design, which ensures 

that the control occurs in every session. For design B2, the preparation design is a 

step-type design with u=0, in which the control appears either once or not at all 

in a session. The structure of the design plans is summarised in Table 6.1, where 

'No TCD' stands for no treatment-control design required (the panel designs are as 

equally replicated as possible for the required number of assessors). 
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Table 6.1: Types of treatment-control designs 
Types are given for preparation and complete sensory designs for the four design 
cases. 

Preparation Panel Sensory 
design design design 

Al Rectangular Rectangular Rectangular 
A2 Rectangular Step-type Step-type 
BI Rectangular No TCD Step-type 
B2 Step-type No TCD Step-type 

Table 6.2: Replication numbers for control and test products 
Replication is listed for the three relevant design cases in the preparation and the 
complete sensory design. 

Complete design Preparation design 

Test Control Test Control 
Al t-i rt =s� rc =S 
BI st k-1 

rt= k� - 
st rc= k 

s k-1 
rst= � rsc=S 

B2 St rt = v+x 
2<x< v/(k - 1) 

stx rý = V+s 
v/(k - 1) 

sk rst = v+x 
2<x< v/(k - 1) 

r, = xrýý 
2<x< v/(k - 1) 

Designs of type A2 are not very useful for the sensory setting due to the large scor- 

ing differences between assessors. In this setup, a-y assessors would not taste 

the control product at all. When interest is mainly in the test-control contrasts, it 

is preferable to rely on within-assessor contrasts of the test and control products. 

Hence, case A2 will not be pursued any further; it was introduced only for complete- 

ness. 

The resulting replication of control and test products for the three relevant design 

cases Al, B1 and B2 are given in Table 6.2. The replication in the preparation 

design gives the number of sessions a products needs to be prepared for. When 

product resources are limited it is useful to check first, which of the three design 
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cases can be used. 
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The construction method for case Al is explained in Section 6.2.1. The sensory 
designs for this case are rectangular treatment-control designs, in which all assessors 
taste the control in every session. The complete sensory designs of case Bl and B2 

are both step-type designs. Case BI is essentially a special case of B2, where the 

preparation design is a rectangular treatment-control design. Therefore both can be 

constructed with the same procedure that will be described in Section 6.2.2. 

6.2.1 Sensory designs with a control in every block 

A rectangular sensory design for case Al can be created by augmenting a balanced 

or nearly balanced sensory design. If a treatment-control design for v+1 products is 

needed, which are served in s sessions with t servings and a preparation constraint 

k, a sensory design with equal replication for v products in s sessions oft -1 servings 

with a product constraint of k-1 is used as the base design. Such a design can 
be constructed with the three-step procedure described in Chapter 5 and is then 

augmented with a control product in every block. 

While the augmentation process takes care of the efficient assignment of products to 

blocks, the resulting design also needs to be optimised for its order and carry-over 

structure. A search algorithm is needed that transforms the augmented design into 

an efficient first-order cross-over design. A candidate for this is the algorithm by Ball 

(1997), which was applied in Chapter 5 to generate cross-over panel designs. The 

original form of the algorithm is described in detail in Section 3.5.2 (algorithm B1). 

Its adaptation for rectangular-type treatment-control designs requires two changes: 

a) As most sensory designs are large, the number of possible product arrange- 

ments can be immense and a search for an optimal cross-over design may take 

a very long time. To simplify the process, the algorithm is modified to search 

only within a subgroup of all permutations. 
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b) The optimality criterion needs to be adapted for treatment-control designs, 

where treatment-control contrasts are of prime interest. 

The first change limits the class of possible swaps: only permutations of the control 

product with a test product are considered for improvement of the objective func- 

tion, no swaps between two different test products are made. In a randomly chosen 

block, a swap between the control product and a randomly chosen test product from 

that block is examined. If it improves the optimality criterion the swap is accepted; 

otherwise it is rejected and the next random swap is considered. This is continued 

until no more swaps are found that improve the criterion. 

While these interchanges might not produce an optimal design due to the above 

limitations, they should still be sufficient to create an efficient cross-over design, 

since the base design without the control is already an efficient cross-over design, as 

shown in Chapter 5. 

The second change modifies the original optimality criterion, 

c(d)= WorderMS(NT) + Wcarry-overMS(M) 

the weighted sum of the mean squares (MS) of the order incidence matrix NT and 

the precedence matrix M. 

The minimum for this criterion is achieved for a balanced cross-over design. For 

treatment-control cross-over designs, in which control products are replicated more 

often than test products, the values of these two matrices are expected to be higher 

for the entries related to the control product than either test product and are only 

expected to be the same within each of the two groups (see Definition 6.9). 

NT and M are therefore partitioned into entries related to the control and to the test 

products and the mean square of the entries of each block is calculated separately. 
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2 M= 

v+l 

1 

2 

v+1 
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The order incidence matrix is split into the first row NT(c), which is related to the 

control NT(c) and the remaining rows NT(t) related to the test products. The part 
of the precedence matrix M related to the control comprises the elements ml; and 

mil, for all i=2, 
... ,v+1. The elements of M related to the test products are m; j 

for all i, j=2.... v+1, i#j. The part of the optimality criterion related to each 

matrix is then the sum from both means squares, resulting in the following modified 

optimality criterion: 

c(d) = wo, der (MS(NT, conirOJ) + MS(NT, teet)) 
+ wcerry_over (MS(Mrontrol) + MS(Mte$: )) 

The algorithm optimises the cross-over structure over the whole design. 

Example 6.2 Rectangular-type treatment control design DR°' (17,12,9,5; 9) 

with a control in every block. 

The treatment-control design is constructed from the sensory multi-session design 

D,, (16,12,9,4; 8) and is augmented with a control in every block. The augmented 

design without the cross-over structure is shown in Table 6.3. The control replication 

in this example is r, = 108 and the test products replication rt = 24, so the control 

is replicated 4.5 times as often as the test products. The designs with the cross-over 

structure, induced with Algorithm B2, is shown in Table 6.4. 
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Test-test contrasts in this multi-session treatment-control design are estimated on 

average with 1.64 times larger variance than control-test contrasts, which is the 

efficiency measure EÄ"*. The order incidence matrix and the precedence matrix 

of this design are: 

22 21 21 21 23 0 14 5 5 5 5 4 5 5 5 5 5 5 5 4 5 4 4 5 
6 4 5 6 3 5 0 0 1 0 1 1 0 1 1 4 0 1 2 1 0 0 1 2 
3 7 6 5 3 5 2 0 2 1 1 0 0 0 1 1 4 0 1 0 0 1 1 1 
5 4 4 5 6 5 1 1 0 1 2 0 1 1 0 1 0 1 0 0 0 1 2 1 
3 6 4 7 4 4 1 1 2 0 0 3 1 0 0 1 0 3 1 0 0 1 0 2 
5 5 5 5 4 5 0 1 1 1 0 2 0 1 1 2 0 2 0 1 1 2 0 0 
2 7 4 4 7 5 1 0 1 0 1 0 1 0 1 1 1 2 0 2 1 0 0 0 
4 5 5 5 5 4 0 1 0 0 1 1 0 1 3 0 1 1 1 1 1 2 0 1 
5 6 5 4 4 4 2 1 0 1 0 2 0 0 1 1 0 1 2 2 0 0 3 0 

Ni= 4 6 5 4 5 M= 4 1 2 0 1 0 0 1 1 0 0 2 0 1 2 0 0 1 3 
6 2 5 5 6 5 1 1 0 2 0 0 0 1 0 0 1 0 0 1 3 3 0 0 
5 3 7 5 4 6 0 2 1 1 0 1 1 0 1 0 0 1 1 1 2 2 0 0 
4 5 6 5 4 5 0 0 2 2 0 0 1 2 1 0 1 0 2 1 0 1 2 0 
4 6 6 4 4 4 0 1 0 4 3 0 0 0 1 1 0 0 0 0 1 2 2 1 
6 5 4 4 5 5 0 2 1 0 3 1 1 0 1 0 1 0 1 0 0 1 1 1 
9 4 2 5 4 5 1 1 0 0 0 4 4 0 0 0 1 2 0 1 0 0 1 0 
4 4 5 6 5 5 1 1 2 1 1 0 3 4 0 0 0 0 0 0 0 0 0 1 
6 4 3 5 6 5 1 0 0 0 1 2 0 2 0 1 2 0 2 1 0 0 0 1 
5 4 6 3 6 5 2 1 1 1 0 1 1 0 3 0 0 1 1 0 1 0 0 0 

This augmentation procedure, which creates a treatment-control design with a con- 

trol in every block, can be used with all equally replicated sensory designs. They 

include all the designs created with the three-step procedure as described in Chapter 

5. 

6.2.2 The treatment-control preparation design 

In design cases 131 and B2 the availability of the control product is increased com- 

pared to a regular equally replicated design, but it is no longer necessary that every 

assessor tastes the control product in every session. Therefore only the prepara- 

tion design needs the special treatment-control structure, not the panel design. The 

preparation design defines which subset of products is prepared for each session. 
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Should the control product be available for every session, it has to occur in every 
block in the preparation design; then the preparation design is constructed as a rect- 

angular treatment-control design. For fewer replications of the control a step-type 
design is sufficient. 

Rectangular designs for v+1 products in a blocks of size t can be constructed easily 
from efficient equally replicated IBD's for v products in a blocks of size t-1 by aug- 

mentation, i. e. by adding the control product to every block and then randomising 
the product order within the block. The construction of step-type designs is more 
difficult, since the control product occurs only in a subset of all blocks. 

In Chapter 5 it has been shown that for equally replicated preparation designs, 

equation (5.2) q= p/s = k/rp has to hold. This ensures that the products can 

be divided into q distinct groups (or sets) to allow the panel design to arrange the 

products so that an assessor tastes all products the same number of times. For 

treatment control designs, equation (5.2) changes to 

v+x k 

5 rt 

with integer x, 1<x< v/(k - 1). This identity is satisfied when the replication of 

the test products is rt = k. In combination with equation (6.3) it implies that the 
a 

control needs to be a multiple of the test product replication: r, = xrt. For binary 

designs, r, is bounded by the number of sessions; r, <s= (v+x)/q. The maximum 

value of x that still results in a binary design is x= v/(k - 1). Higher values of x 

result in designs with more than one control in a block and are not considered here. 

Rectangular preparation designs can only be used in the three-step procedure when 

v/(k - 1) is an integer, otherwise only step-type designs with fewer replication can 

be used for a preparation design of that size. 
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Example 6.3 Preparation designs with 12 blocks of size 6 with varying 

control replication r,, = rt +x for xE2,3,4. 
These designs have been constructed using algorithm JE3. 

x=2, p-23 
step-type 

1 2 3 12 18 22 
1 2 7 13 15 16 
1 5 11 12 16 21 
1 3 4 13 17 20 
1 4 10 12 14 23 
1 6 9 16 20 23 
2 5 8 14 19 20 
3 7 9 14 19 21 
4 6 8 15 18 21 
5 9 10 15 17 22 
6 10 11 13 18 19 
7 8 11 17 22 23 

x=3, p=22 
step-type 

1 4 7 113 20 22 
1 5 6 13 16 18 
1 5 9 11 14 22 
1 2 9 13 17 19 
1 4 10 11 16 17 
1 3 7 12 17 18 
1 2 3 11 15 21 
1 3 8 14 16 20 
1 6 9 12 20 21 
2 8 10 18 21 22 
4 5 8 12 15 19 
6 7 10 14 15 19 

a=4, p=21 
rectangular 

1 5 8 10 13 18 
1 3 5 15 16 20 
1 5 9 17 19 21 
1 3 4 10 11 21 
1 2 9 10 14 20 
1 2 4 12 16 18 
1 8 9 11 12 15 
1 7 8 14 16 17 
1 4 6 14 15 19 
1 2 7 11 13 19 
1 6 7 18 20 21 
1 3 6 12 13 17 

Several construction techniques for balanced and regular graph treatment-control 

designs have been introduced; see, for example, Majumdar (1996) for a review. 

Alternatively, computer algorithms can be used for constructing treatment-control 

designs that are more flexible with respect to the design size. Gupta et al. (1999), 

for example, suggest using the algorithm by Jones and Eccleston (1980), which is 

the approach adopted in this dissertation. It has been described in its basic form 

in Chapter 3 (algorithm JEI) and has been modified for the use in the three-step 

procedure in Chapter 5 (algorithm JE2). To use it for treatment-control designs it 

needs further adjustments, which will be described in this section. Jones and Ec- 

cleston (1980) use the weighted A-optimality criterion to search for optimal designs 

given a pair of weights for the two sets of contrasts. This algorithm can be used for 

step-type designs as well as for rectangular treatment-control designs. 

In the first step of the algorithm, an optimal replication scheme for the products is 

created. This depends on the pair of weights provided by the user as an input for 
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the procedure. For these weights, an exchange procedure substitutes products that 

increase the optimality criterion for other products in the design. After the optimal 

replication scheme has been found an interchange procedure is used to search for an 

efficient design by interchanges of treatments between blocks. 

Let w' _ [w12, w13, ."., wlv+ 1i w23, W24, ... 7 wv, -1] be the vector of weights for the 
p21 elementary contrasts. While the algorithm allows for different weights for 

all contrasts, for treatment-control designs only two different weights are necessary, 
one weight for the v control-test contrasts and one weight for the "21 test-test 

contrasts: 

w12, W13, ... , wlv+l = we and W23, W24, ... , w,,,, +1 = Wt 

These weights are then standardised, so that the weights add up to 1, i. e 

v(v + 1) 
v wý+ 2 wt = 1. 

As discussed above, the three-step procedure requires a replication vector that has 

equal replication for all test products (r' _ [re, rt, ... , rt]). 
The Jones and EccIe- 

ston algorithm does not necessarily find a design with equal replication for all test 

products for every chosen set of weights (we, wt). Therefore, an appropriate set of 

weights has to be found, that does provide the required replication vector and that 

represents the weighting of the two groups of contrasts. Unfortunately, there is 

no easy relationship between the weights and the replication. Both are connected 

through the generalised inverse of the information matrix, which depends not only 

on the replication vector but also on the complex concurrence matrix. Therefore 

an iterative use of the exchange part of the algorithm is necessary to find suitable 

weights. Different weights are tried until a pair is found that represents the order 

of importance between the contrasts and that achieves equal replication for the test 

products and higher replication for the control. This can be quite a lengthy process. 

As an alternative to the iterative search only the interchange part of the algorithm is 
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used for the construction of treatment-control preparation designs. A starting design 

with the required replication structure is constructed and interchanges take place 
in that design, which will not change the given replication structure. The specified 

weights are then used only to calculate the weighted A-optimality criterion. This 

approach has been adopted for this dissertation. 

While for q=1 sets the algorithm by Jones and Eccleston (1980) can be used in 

its original form, for q>1 the algorithm needs to be modified to create preparation 
designs with the structure explained in detail in Section 5.3.2. For equi-replicated 

preparation designs this has been shown in Chapter 5 with algorithm JE2. For 

treatment-control designs, this is not as straightforward. While the principle is the 

same, the replication of the control product xrt can now be spread over the design 

in two ways; either all control products occur in one set (algorithm JE3) or the x 

replications are spread over several sets (algorithm JE4). 

Example 6.4 Step-type designs with 12 blocks of size 6 for 22 products 

and a control replication of r,, =3 rt = 9. 

Design P1 
constructed with JE3 

control in set 1 
1 7 10 16 19 22 
1 4 6 15 18 19 
1 2 9 14 19 20 
1 4 10 11 13 20 
I 7 8 12 14 18 
1 3 8 15 20 21 
1 8 9 13 17 22 
1 6 7 11 17 21 
1 2 5 11 15 22 
2 3 6 12 13 16 
3 5 10 14 17 18 
4 5 9 12 16 21 

Design P2 
constructed with JE4 

control in set 1 and set 2 
1 6 11 12 16 17 
1 6 15 18 20 
1 3 9 13 16 18 
1 8 10 13 14 20 
1 5 10 18 19 22 
1 2 10 12 15 21 
2 3 6 1 14 19 
4 5 7 1 12 13 
5 9 11 1 14 21 
2 4 11 16 20 22 
3 7 8 17 21 22 
4 8 9 15 17 19 
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Both designs have an average efficiency for the treatment control contrasts of 86.62% 

and, on average, test-test contrasts in this design are estimated with a 1.54 times 

larger variance than control-test contrasts. 

Both assignment methods have been programmed and designs have been created 
for the specified range given below with 100 runs of each algorithm. To find out 

which version is superior the designs are compared by their average efficiencies for 

control-test contrasts (EA; 
c), and their ratio of control-test and test-test contrasts 

(EA;,. 
t; e). From 88 designs, only 28 (32%) differ in either of the efficiencies for the 

two algorithms. The details of these designs are listed in Table 6.5. For both mea- 

sures, the design that has the larger of the two values is regarded as superior. 

For eight designs (9%), Algorithm JE3 has performed better according to both ef- 

ficiency measures and for eight designs Algorithms JE4 has performed better. For 

12 cases (14%) the two measures give contradictary results. The differences are all 

fairly small, so that overall the two algorithms perform similarly. Thus, either of 

them can be used for the construction of treatment-control preparation designs and 

there is no advantage in the arrangement of control products in one or several sets. 

Treatment-control preparation designs are created for the same product and prepa- 

ration constraint range as the equally replicated preparation designs in Chapter 5. 

This is 6 to 30 products including the control product and preparation constraints 

between 4 and 20 products, which are constructed for designs with products divided 

into 2 to 4 sets. For treatment-control designs, the replication of the control can also 

be varied and has been chosen for a range of r, = 2r,, to r, = 4r,,. Higher control 

replication is possible for a large number of the designs. These designs can also be 

constructed with the algorithm, but only some designs have been evaluated in this 

thesis. Due to limited resources, large control replication is less likely to be used in 

practise. 
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Table 6.5: Designs for which the efficiencies from algorithms JE3 and JE4 differ. 

EA; c EA; ratio 
9 x p 

R 

k rt rc JE3 JE4 JE3 JE4 
2 2 23 8 4 8 98.99 98.94 1.3545 1.3536 
2 2 23 2 1 1 0 5 10 99.64 99.64 1.3561 1.3561 
2 2 25 13 8 4 8 99.03 99.03 1.3538 1.3537 
2 2 25 13 10 5 10 99.53 99.53 1.3532 1.3532 
2 2 25 13 12 6 12 99.81 99.81 1.3538 1.3538 
2 2 27 14 8 4 8 99.03 99.03 1.3542 1.3542 
2 2 27 14 10 5 10 99.50 99.48 1.3520 1.3517 
2 2 27 14 12 6 12 99.78 99.78 1.3522 1.3522 
2 2 29 15 6 3 6 97.48 97.51 1.3591 1.3592 
2 2 29 15 8 4 8 99.03 99.03 1.3544 1.3544 
2 2 29 15 10 5 10 99.48 99.50 1.3511 1.3514 
2 2 29 15 12 6 12 99.72 99.72 1.3505 1.3505 
2 2 29 15 14 7 14 99.87 99.87 1.3506 1.3506 
2 3 24 13 8 4 12 99.21 99.21 1.5380 1.5380 
2 3 26 14 8 4 12 99.08 99.08 1.5351 1.5351 
2 3 28 15 6 3 9 97.57 97.46 1.5383 1.5370 
2 3 28 15 8 4 12 98.99 98.99 1.5329 1.5329 
2 3 28 15 10 5 15 99.58 99.58 1.5317 1.5317 

2 3 30 16 6 3 9 97.28 97.29 1.5360 1.5364 

2 3 30 16 8 4 12 98.94 98.94 1.5310 1.5310 
2 3 30 16 10 5 15 99.51 99.51 1.5293 1.5293 
2 4 23 13 6 3 12 98.08 98.10 1.6532 1.6531 
2 4 25 14 6 3 12 97.74 97.85 1.6484 1.6494 
2 4 27 15 6 3 12 97.60 97.60 1.6474 1.6474 
2 4 29 16 6 3 12 97.41 97.45 1.6452 1.6461 

2 4 29 16 8 4 16 99.04 99.04 1.6406 1.6406 
3 3 28 10 6 2 6 93.21 94.18 1.5446 1.5570 

3 4 30 11 6 2 8 93.06 92.67 1.6478 1.6370 
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The two efficiency measures that have been chosen to characterise the constructed 

preparation designs, EA; 
c and EA;,,,;,, are listed in Tables 6.6 and 6.7, respectively. 

The tables show the maximum efficiency value from Algorithms JE3 and JE4. 

To create the necessary column structure for the preparation design, algorithm J1, 

as described in Chapter 5, can be used again. The auxiliary design for the column 

structure that is required by the algorithm as an input design has to be modified 
from the procedure described in Chapter 5. It has to allow for the increased occur- 

rence of the control product, as demonstrated in Example 6.5. 

Example 6.5 Transformation of the step-type designs from Example 6.4 

into preparation designs with the required column structure. 

To create preparation designs with the required column structure, the following aux- 

iliary designs are needed for algorithm J1. The structure differs according to the 

number of sets the control appears in. 

Design Al 
auxiliary design 

1 1 1 1 1 1 
1 1 1 12 12 12 
2 2 2 13 13 13 
3 3 3 14 14 14 
4 4 4 15 15 15 
5 5 5 16 16 16 
6 6 6 17 17 17 
7 7 7 18 18 18 
8 8 8 19 19 19 
9 9 9 20 20 20 

10 10 10 21 21 21 
11 11 11 22 22 22 

Design A2 
auxiliary design 

1 1 1 11 11 11 
1 1 1 12 12 12 
1 1 1 13 13 13 
2 2 2 14 14 14 
3 3 3 15 15 15 
4 4 4 16 16 16 
5 5 5 17 17 17 
6 6 6 18 18 18 
7 7 7 19 19 19 
8 8 8 20 20 20 
9 9 9 21 21 21 

10 10 10 22 22 22 

Using designs Al and A2 to transform designs P1 and P2, respectively, results in 

the following preparation designs: 
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Design P' l 
constructed with JE3 

7 10 1 19 16 22 
4 6 1 18 15 19 
9 1 2 14 19 20 
1 4 10 20 11 13 
1 7 8 12 18 14 
5 9 4 16 21 12 
3 8 1 15 20 21 

10 5 3 17 14 18 
8 1 9 22 13 17 
6 1 7 21 17 11 
2 3 6 13 12 16 
1 2 5 11 22 15 

Design P'2 
constructed with JE4 

202 

An efficient cross-over panel design for k treatments in a blocks of size t is required for 

the treatment-control version of the three-step procedure. The usual panel designs 

described in Table 5.15 can be used for this purpose. For example, to construct 

a multi-session step-type treatment-control design DRCS(22,12,12,4; 6) (that is a 

design for 22 products, including a control, to examine in 12 sessions of 4 servings 

with a preparation constraint of 6 products served to 12 assessors), a panel design 

Dc2o(6,12,4) is required. 

Example 6.6 Panel design D0(6,12,4). 

5432 
1624 
3561 
6423 
5261 
3652 
4135 
1346 
2514 
4316 
6253 
2145 

2 11 4 22 16 20 
6 1 11 12 17 16 
1 7 6 20 18 15 
9 3 1 16 13 18 
8 4 9 15 19 17 
4 5 7 13 12 1 
3 6 2 19 1 14 
10 1 8 14 20 13 
7 8 3 17 21 22 
5 10 1 18 22 19 
11 9 5 1 14 21 
1 2 10 21 15 12 

In the last step, the panel design is combined with the treatment-control preparation 

design in the usual way to create the complete sensory design. In the optimisation 
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process for the column order of the preparation design in Example 6.7, the average 

variance of the test-control contrasts is minimised. Other measures could be used 

instead, for example, the average variance of the test-test contrast, the average 

of both sets of contrasts, their ratio, or a weighted average. The chosen column 

permutation has an influence on the efficiency of the final design, especially when 

the panel design is not an equally replicated design. 

Example 6.7 Combining the treatment-control preparation design with 
the panel design. 

To create the required step-type multi-session design DR°S(22,12,12,4; 6), prepara- 

tion design P'1 from Example 6.5 and the panel design shown in Example 6.6 are 

combined. The minimum average variance of the test-control contrasts (0.0667 a2) 

is reached for the column order 13 12 5. { 6]. The resulting complete design is shown 

in Table 6.8. The largest variance observed is 0.0669 Q2. The efficiency ratio of 

test-test and test-control contrasts for the design in Table 6.8 is 1.54 and the av- 

erage efficiency of all contrasts compared to an orthogonal designs with the same 

replication vector for this design is 81.29%. 

6.3 Conclusions 

In this chapter, the idea of treatment-control designs has been introduced and their 

theory relevant for sensory designs has been reviewed. Treatment-control designs 

are useful for sensory experiments when interest is mainly in comparisons between 

a control product and alternative products. Control products are frequently in- 

cluded in sensory trials, but their different standing within the product range is 

rarely considered when constructing sensory designs. One reason for this is most 

likely the lack of suitable readily available algorithms that satisfy the requirements 

for sensory designs. While much is known about single-session treatment-control 

designs, multi-session treatment-control designs are less well developed. In this 

chapter, two construction strategies have been developed for treatment-control de- 

signs for multi-session trials with preparation constraints. Both techniques are based 
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on the three-step procedure developed in Chapter 5. The first algorithm constructs 

rectangular-type treatment control designs, in which the control occurs once in every 
block. With the second algorithm, step-type treatment-control designs are created, 

in which the control occurs once in a block or not at all, but in more blocks than 

each test product. These algorithms are flexible enough to create efficient treatment- 

control designs for a wide range of design sizes and preparation constraints. 



Chapter 7 

Factorial multi-session designs 

with preparation constraints 

In Chapter 6 we presented examples of sensory designs, in which the product con- 
trasts are of unequal importance and fully balanced designs are no longer the best 

choice. This has been discussed so far for the case in which individual products in 

the study have particular experimental or commercial relevance, e. g. an experimen- 

tal reference or control products, or the market or brand leader. 

In other cases, there may be specific structural relationships within the product set, 

such that some or all of the products constitute a full or fractional factorial design. 

This is the case, for example, when sensory profiling is used to explore formulation 

or process differences in product development or in optimisation experiments, or to 

investigate temperature, time, and packaging in storage or shelf-life testing. Exam- 

pies of sensory trials with a factorial structure are given, e. g. by Durier et al. (1997) 

and Mead and Gay (1995). 

Whilst for trials in which products have no factorial structure interest is almost 

always in pairwise product comparisons, for factorial designs interest is generally 

in the factors and their interactions rather than in the products themselves. Thus, 

206 
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contrasts related to these main effects and interactions have to be considered. These 

often differ in their importance for the analysis. Main effects are usually regarded 

as more important then lower-order interactions and these are regarded as more im- 

portant than higher-order interactions. Some or all of the latter may be disregarded 

altogether. Therefore, trial-specific designs are needed that maximise the precision 

of the contrasts of interest at the expense of contrasts of lesser or no interest. 

In incomplete block designs, some contrasts are completely or partially confounded 

with blocks. Only the contrasts of no or minor interest should be confounded. In 

sensory designs of the required size it is not always possible to confound solely con- 

trasts of minor interest and a design has to be found, in which the contrasts of 

interest are estimated with maximum precision given such restrictions. 

The linear models introduced in Chapter 4 are also relevant for factorial multi- 

session trials with preparation constraints. They differ only in their structure for 

the treatment effects. Durier et al (1997) and Hunter (1996) show how to partition 

the product sums of squares into its components due to main effects and interactions. 

There are many different scenarios for factorial designs in the sensory setting. In the 

simplest case all products are part of the factorial structure. In other experiments 

there may be two groups of products: one set with a known factorial structure and 

one with the factor settings unknown. Interest is then on the one hand in the facto- 

rial comparisons and, on the other hand, in a comparison of the remaining products 

with either the factors or the single products. In other cases, control products may 

be included in a factorial experiment. The control product can either be part of the 

factorial structure or additional to it. The latter is a special case of the structure 

with two sets of products, one with factorial structure, one without. Here, the group 

of products without a factorial structure consist of a single control product. The 

specific contrasts of interest to the sensory scientist will differ from case to case, and 

will determine the actual form of the design. 
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As in the non-factorial case, efficient designs for multi-session trials with preparation 
constraints can be constructed with the three-step procedure. The factorial structure 
is easily incorporated into the three-step procedure at the preparation design stage. 
Thus, the focus in this chapter is, on the choice of adequate preparation designs 
for the factorial structure at hand. Construction methods for factorial preparation 
designs are discussed in Section 7.2. 

The embedding of factorial designs in the three-step procedure is illustrated with 
two examples from the potentially vast range of sensory factorial designs. These 

will demonstrate how designs for a variety of different contrasts of interest can be 

created. Possible contrasts of interest for these two examples are discussed in Sec- 

tion 7.1. The modified algorithms of the three-step procedure for factorial designs 

are discussed in Section 7.2 and factorial designs with preparation constraints are 

constructed for Examples 7.1 and 7.2. 

Example 7.1 A 24 =2x2x2x2 factorial design. 

The four factors in this example represent 

A two formulations (usual and modified) 

B two types of additives (additive X and additive Y) 

C two storage times (short and long) 

D two storage temperatures (low and high) 

Suppose a multi-session design for 16 products served to 12 assessors in 8 sessions of 

4 servings is required with a preparation constraint of 8 products: DR (16,12,8,4; 8). 

To optimise the factorial structure a factorial preparation design D2; 24 (16,8,8) is 

constructed. 
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Example 7.2 A3x4 factorial design. 

209 

In this example, the first factor (F) represents four fat types with levels F1, F2, 
F3 and F4 and the second factor (P) three preparation methods with levels P1, P2 

and P3. Suppose a multi-session design for these 12 products served to 12 assessors 
in 6 sessions of 4 servings is required with a preparation constraint of 6 products: 
DR 4(12,12,6,4; 6). Thus, the factorial structure has to be incorporated into prepa- 
ration design D2,3x4(12,6,6). 

7.1 Contrasts in factorial designs 

A 211 factorial is the simplest example of a factorial experiment. Each factor has 

two categories, usually labelled low and high. When each of the 24 = 16 product 

combinations is available for the trial and a full factorial can be used, interest is 

most likely in identifying which of the two categories of each factor performs best 

and which two-factor interactions are relevant. 

The factorial contrasts for Example 7.1 are listed in Table 7.1. The products are 

represented by the usual notation for factorial 2-designs and additionally with a 
binary four digit code, where each digit represents one of the four factors and the 

two categories of each factor are coded 0 or 1. E. g., product 8 with Factor A and D 

at their high levels and factors B and C at their low levels is represented as product 

ad according to the usual factorial notation and as product 1001 according to the 

binary notation. 

Table 7.1 shows the main effect for factor A, for example, is represented by the 

contrast between all products made with formulation X compared to all products 

made with formulation Y. The 15 contrasts shown in Table 7.1 are independent and 

orthogonal and define one degree of freedom each in an ANOVA analysis. The prod- 

uct sum of squares can therefore be split into 15 terms referring to these contrasts 

and each contrast can be tested separately for significance. 
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For Example 7.2, in which each factor has more than two levels, the contrasts of 
interest depend on the nature of the factor levels, which can either be qualitative or 
quantitative. Qualitative factors often represent different kinds of treatments and 
the different levels don't have a natural ordering. If both factors are qualitative, as 
suggested for this example, interest may be in the pairwise contrasts of the factor 
levels or in selected comparisons between the levels. These are so-called preplanned 
comparisons. They are determined by the intent of the experiment rather than 
by its outcome and the number of contrasts is generally small (Hinkelmann and 
Kempthorne, 1994). The comparisons of interest sometimes form a set of orthogo- 
nal contrasts, sometimes they are not orthogonal. The corresponding contrasts for 

the main effects for pairwise contrasts of the levels are listed in Table 7.2. They are 

not linearly independent nor are they orthogonal and there are more contrasts than 
degrees of freedom for each factor. While these contrasts cannot be used to subdi- 

vide the product sum of squares in an ANOVA analysis, they can still be estimated 

and tested and can be used in the design construction to identify a suitable design. 

The interest is often in a few of these contrasts rather than all of them. 

The 18 contrasts for the interaction between the two main effects are 

(F1-F2)(P1 -P2) (F1-F2)(P2-P3) (F1-F2)(P1-P3) 

(Fl-F3)(P1 -P2) (F1-F3)(P2-P3) (F1-F3)(P1-P3) 

(F1-F4)(P1 -P2) (Fl-F4)(P2-P3) (F1-F4)(Pl-P3) 

(F2-F3)(P1- P2) (F2-F3) (P2-P3) (F2-F3)(Pl-P3) 

(F2-F4)(P1- P2) (F2-F4) (P2-P3) (F2-F4)(P1-P3) 

(F3-F4) (P1- P2) (F3-F4) (P2-P3) (F3-F4) (P1-P3) 

These can be constructed by multiplication of the main effect contrasts from each 

pair of factors listed in Table 7.2. 

If a factor has more than two levels and it is quantitative, it is also of interest whether 

the levels are equi-distantly spaced. Non-linear relationships can be modelled only 
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Table 7.2: Contrasts of interest for Example 7.2 with qualitative levels 
Pairwise contrasts between main effects are listed. 

Product 
number 

Main effect F Main effect P 
Factor 
setting F1-F2 F1-F3 F1-F4 F2-F3 F2-F4 F3-F4 P1-P2 P1-P3 P2-P3 

1 FIP1 1 1 10 0 0 1 10 
2 F1P2 1 1 10 0 0 -1 01 
3 F1P3 1 1 10 0 0 0 -1 -1 
4 F2P1 -1 0 01 1 0 1 10 
5 F2P2 -1 0 01 1 0 -1 01 
6 F2P3 -1 0 01 1 0 0 -1 -1 
7 F3P1 0 -1 0 -1 0 1 1 10 
8 F3P2 0 -1 0 -1 0 1 -1 01 
9 F3P3 0 -1 0 -1 0 1 0 -1 -1 

10 F4P1 0 0 -1 0 -1 -1 1 10 
11 F4P2 0 0 -1 0 -1 -1 -1 01 
12 F4P3 0 0 -1 0 -1 -1 0 -1 -1 

for factors with more than two levels; Mead and Gay (1995) recommend at most 4 

levels. For quantitative levels that represent measurements from equally spaced in- 

tervals, interest is generally in the nature of the increase or decrease of the response 

with increasing factor levels, e. g. it is examined if there is a linear or quadratic rela- 

tionship. Orthogonal and linearly independent contrasts can be created that divide 

the factors into related components. A table of such contrasts for factors with 3 to 

12 levels can be found in Snedecor and Cochran (1980). The orthogonal contrasts 

for Example 7.2 are shown in Table 7.3. 

The interaction between the two factors can also be divided into relevant contrasts 

by multiplying a contrast from each factor. The six degrees of freedom for the 

interaction term can be divided into the following contrasts: 

FLPL FQPL FcPL 

FLPQ FQPQ FcPQ 
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Table 7.3: Orthogonal contrasts for Example 7.2 

Product 

number 
Factor 
setting FL FQ FC PL PQ 

1 F1P1 -3 1 -1 -1 1 
2 F1P2 -3 1 -1 0 -2 
3 FIP3 -3 1 -1 1 1 
4 F2P1 -1 -1 3 -1 1 
5 F2P2 -1 -1 3 0 -2 
6 F2P3 -1 -1 3 1 1 
7 F3P1 1 -1 -3 -1 1 
8 F3P2 1 -1 -3 0 -2 
9 F3P3 1 -1 -3 1 1 

10 F4P1 3 1 -1 -1 1 
11 F4P2 3 1 -1 0 -2 
12 F4P3 3 1 -1 1 1 
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Which set of contrasts is most appropriate depends solely on the research question 
of the trial. It is possible to construct contrasts that reflect unequally spaced levels. 

The optimal factorial design will differ for different sets of contrasts, so the relevant 

set of contrasts should be chosen that reflects the research objective closest. 

7.2 Construction of factorial preparation designs 

Preparation designs can be constructed "by hand" by deliberately confounding cer- 

tain interactions with blocks (see e. g. John and Williams (1995) or Bailey (1977) for 

a description of the general technique) or by using designs from the vast literature 

on factorial designs (see e. g Cochran and Cox (1957)). An example of a preparation 
design constructed by partially confounding some of the higher-order interactions is 

given in Example 7.3. Designs obtained in this way do not necessarily provide the 

column structure that is needed for preparation designs (condition C2) and it may 
be difficult to include this structure intentionally. When choosing the interactions 

for confounding and relabelling the factorial products into numbers, preparation de- 

signs with the required structure can be found by trial and error. 
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The interchange part of the algorithm by Jones and Eccleston (1980) can also be 

used to create factorial preparation designs. In Chapter 5, we showed how this al- 
gorithm can be modified to generate designs that satisfy constraint C2 (algorithm 

JE2). For factorial designs, algorithm JE2 needs to be modified so that, instead 

of using all pairwise product contrasts, a matrix of factorial contrasts is specified. 
To accommodate all kinds of product structures, this contrast matrix is not created 

automatically within the algorithm, but is required as an input matrix. 

Further, a weight is required for each contrast, specifying its relative importance in 

relation to the other contrasts. In the algorithm the input vector of weights is stan- 
dardised, so that their sum is equal to one. The factorial version of algorithm JE2 is 

called JE5 and is used for the construction of the preparation designs in Examples 

7.4 and 7.5. 

For factorial designs satisfying condition C2, Algorithm J1 can be used, without 

any modifications, to create a preparation design with the required column struc- 

ture (condition Cl). The panel design can also be constructed in the usual way. 

For step three of the three-step procedure the optimality criterion that identifies 

the best column structure needs to be modified, since in factorial designs not all 

contrasts are of equal importance and the average efficiency is not a meaningful cri- 

terion. Possible criteria for factorial designs are the sum of the contrasts of highest 

importance or a weighted sum of all contrast. A possible weighting is given by the 

vector of weights, required by algorithm JE5. 

For factorial 2"-experiments a lot of designs are tabulated and it is relatively easy 

to deliberately confound certain contrasts with blocks. Thus, if interest in Example 

7.1 is mostly in main effects and two-factor interactions, some of the higher order 

interactions (ABCD, ABD, ABC, ACD in the example) can be confounded with 
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blocks (sessions). First the confounding scheme for the blocks is devised and then 

to the entries in the resulting design are translated into product numbers. The 

equivalence relation between product numbers and factor settings is given in Table 

7.1. 

Example 7.3 Preparation design with partially confounded three- and 
four-factor interactions. 

Factorial design Relabelled design 

with constraint C2 

Preparation design 

with constraints 
Cl and C2 

1 ab ac ad be bd cd abed 1 6 7 89 10 11 16 1 6 7 89 10 11 16 

a bcd abc abd acd bed 2 3 4 5 12 13 14 15 2 3 4 5 12 13 14 15 

a bd ac be cd abd abed 2 3 5 79 11 13 16 3 5 2 7 11 9 16 13 
1 cab ad bd abc acd bed 1 4 6 8 10 12 14 15 4 8 1 6 10 14 15 12 

a b cad bd cd abc abed 2 3 4 8 10 11 12 16 8 2 3 4 16 11 12 10 

1 d ab ac be abd acd bed 1 5 6 79 13 14 15 5 6 7 1 13 15 9 14 
a c dab be bd acd abcd 2 4 5 6 9101416 6 4 5 2141610 9 

I b ac ad cd abc abd bed 1 3 7 8 11 12 13 15 7 1 8 3 15 12 13 11 

The blocks in the designs are chosen so that the ABCD interaction is confounded 

between the first and second block, i. e. all products with 1 in the ABCD contrasts 

are in block 1 and all products with -1 are in block 2. The ABD interaction is con- 

founded between the third and fourth block, ABC between the fifth and sixth block 

and ACD between the seventh and eighth block. Due to the intentional confounding 

the efficiencies for the preparation design are 100% for the unconfounded contrasts 

(all main effects, two factor interactions and the three factor interaction BCD) and 

75% for the partially confounded interactions (ABC, ABD, ACD and ABCD), see 

Table 7.4. 

In this example, the division of the products into two sets is obvious. The relabelled 

design has already the C2 structure. The required column structure for a preparation 

design can be achieved by applying algorithm Jl. 
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The factorial preparation design can then be combined with panel design, D20(8,12,4) 

to generate the complete sensory design with a factorial structure. The panel design 

shown in Example 5.3 can be used again for this example. The resulting complete 

sensory design is shown in Table 7.5. The column order of the preparation design 

has been optimised by using the permutation with the highest average efficiencies 
for all main effects. The different column permutations create sensory designs with 

average efficiencies of the main effects between 87.17% and 89.35%, and the highest 

efficiency is reached for column order 15 786 .423 
1t. 

The efficiencies of the factorial contrasts for the complete sensory design according 

to model (A. 8) are listed in Table 7.4. For comparison, the efficiencies of the prepa- 

ration design according to model (3.16) have also been included. It shows clearly 

that the factorial structure induced by the preparation design is transferred to the 

complete sensory design. All effects that are not confounded in the preparation de- 

sign are also estimated with highest efficiency in the complete sensory designs, while 

the confounded contrasts in the preparation design have lower efficiencies for the 

complete sensory design. 

The preparation design selects the products for each session. In a factorial prepa- 

ration design, the direct comparisons within each block are chosen, so that the 

factorial contrasts are optimised. The panel design assigns a subset of these prod- 

ucts to each block of the sensory design, where each subset is chosen nearly equally 

often. Although not all direct comparisons from the preparation design are made in 

each session, this setup still transfers the general factorial structure on to the final 

design. 

Example 7.4 Factorial preparation designs for Example 7.2. 

Interest in Example 7.2 with four fat types and three preparation methods is most 

likely in differences between the preparation methods and between formulations, as 

well as the resulting interactions, rather than in all pairwise comparisons between 

the products, disregarding the factors. The contrasts have been partitioned into two 
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Table 7.4: Efficiencies for the factorial contrasts for Example 7.1 (in %) 

Contrast Preparation design Complete design 
A 100 96.84 
B 100 96.91 
C 100 94.38 
D 100 94.86 
AB 100 97.75 
AC 100 91.14 
AD 100 98.48 
BC 100 96.64 
BD 100 96.13 
CD 100 96.47 

ABC 75 73.23 
ABD 75 73.23 
ACD 75 73.23 
BCD 100 73.23 

ABCD 75 73.04 

groups, the main effects and the interaction effects, and contrasts in one group are 

assigned the same weights. Four preparation designs are generated with algorithm 
JE5 using four different pairs of weights. The contrasts matrix consists of the main 

effects shown in Table 7.2 and the corresponding interactions. 

For the first three preparation designs the contrasts related to the main effect of fac- 

tor P are all 100%, while the pairwise contrasts related to factor F are either 100% 

or 94%. The contrasts of the first and second preparation design have essentially 

the same efficiencies and differ only in the assignment of the efficiencies to the 

contrasts. For both designs, all main effect contrasts have higher efficiencies than 

the interaction contrasts. For the third design, which was constructed with weight 

0 for the interaction effects, the interaction efficiencies are much more dispersed 

than for the first and second design and the efficiency of the interaction contrast 

(Fl -F2)(PI -P3) with 95% is even slightly higher than the efficiency of the main 

effect contrast (F1-F2) with 94%. Other interaction contrasts for this design have 

much lower efficiencies though, with a minimum of 61% for (FI-F4)(P2-P3). This 
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Table 7.6: Efficiencies of the factorial contrasts for Example 7.4 
Column 2 to 6 show the efficiency of the four preparation designs. In the last column 
the efficiencies from the complete sensory design, constructed from P1 and and the 
panel design from Example 6.6 are listed. 

Preparation designs Complete design 
Weights (2,1) (4,1) (1,0) (1,2) (2,1) 

Factor le vel P1 P2 P3 P4 C1 
F1-F2 94.12 94.12 94.12 71.79 90.94 
F1-F3 100.00 94.12 94.12 80.00 97.10 
F1--F4 94.12 100.00 100.00 87.50 91.20 
F2-F3 94.12 100.00 100.00 87.50 91.20 
F2-F4 100.00 94.12 94.12 80.00 97.10 
F3-F4 94.12 94.12 94.12 71.79 90.33 
P1-P2 100.00 100.00 100.00 82.35 93.97 
PI-P3 100.00 100.00 100.00 82.35 94.50 
P2-P3 100.00 100.00 100.00 82.35 94.00 

(F1 -F2)(P1 -P2) 84.42 84.42 67.27 96.55 81.41 
(F1 -F2)(P2 -P3) 84.42 84.42 76.42 96.55 80.78 
(F1 -F2)(P1 -P3) 84.42 84.42 95.11 96.55 81.01 
(F1 -F3)(P1 -P2) 83.33 84.42 82.58 100.00 80.27 
(F1 -F3)(P2 -P3) 83.33 84.42 64.20 100.00 80.80 
(F1 -F3)(P1 -P3) 83.33 84.42 72.60 100.00 81.11 
(F1 -F4)(P1- P2) 84.42 83.33 62.54 96.55 81.40 
(F1 -F4)(P2- P3) 84.42 83.33 61.12 96.55 82.37 
(F1- F4)(P1- P3) 84.42 83.33 89.80 96.55 80.85 
(F2- F3)(P1- P2) 84.42 81.25 90.90 96.55 81.69 
(F2- F3) (P2- P3) 84.42 81.25 73.46 96.55 79.88 
(F2- F3)(P1- P3) 84.42 81.25 64.98 96.55 81.53 
(F2- F4)(P1- P2) 81.25 84.42 77.95 100.00 78.27 
(F2- F4)(P2- P3) 81.25 84.42 76.39 100.00 77.98 
(F2- F4)(P1- P3) 81.25 84.42 84.32 100.00 79.60 
(F3- F4)(P1- P2) 84.42 84.42 73.77 96.55 82.28 
(F3- F4)(P2- P3) 84.42 84.42 66.52 96.55 81.47 
(F3- F4)(P1- P3) 84.42 84.42 82.75 96.55 81.96 
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Table 7.7: Factorial preparation designs, D2; 3x412,6,6), for Example 7.2 
Design P1 for qualitative factors and design P5 for quantitative factors. 

P1 
12 7 9 5 2 1 
9 8 11 4 1 3 
7 11 12 3 5 4 

10 12 8 1 6 5 
8 10 7 6 3 2 

11 9 10 2 4 6 

P5 
12 8 7 5 4 3 
10 9 11 1 2 6 
9 7 11 2 6 4 

12 8 10 5 1 3 
10 9 8 5 6 1 
7 12 11 2 3 4 

shows that it is preferable to include all contrasts that are estimated in the analysis, 

and assign to them non-zero weights. If the interactions are of any interest at all, 
however minute, the first two designs are preferable over the third. 

The fourth design, which was constructed with weights giving priority to interac- 

tion contrasts, reflects this ordering in the efficiencies. Interaction contrasts have 

an efficiency of either 100% or 97%O, the main effect contrasts of factor P have an 

efficiency of 82% and the main effect contrasts of factor F are in the range 72 to 

88%. This design is preferable to the other three if interactions are of primary and 

main effects of secondary interest. 

From these four preparation designs, the first design, P1, is selected and combined 

with panel design D2 
co(6,12,4), which has already been used in Example 6.6. For step 

three of the three-step procedure, optimising the column structure of the preparation 

design, the average efficiency of all main effect contrasts is chosen as optimality 

criterion. Average efficiencies of the main effects vary between 85.98% and 86.60% 

for the different column permutations. The efficiencies for the factorial contrasts are 

shown in Table 7.6; the factorial preparation design with the optimal column order 

is shown in Table 7.7 and the final sensory design is presented in Table 7.8. 



Factorial designs 

d' NO 07 r+ CO NO Cfl - Q) 

r-+ r+ 
N 

l, " 
ON 

, --4 -, zr CO MOOMNO . -+ ID 
-4 1ý 

& O) 'r -I 'N -4 co '1ON Co M 

Cd 
w 1-+ 

X cn 
O C) NO CO ,T Q) qA - V' N '-+ 

*-i 1- ý--ý 
c. 

w 
M Co I- O 00 N CO [l- N 00 O CO 

1-4 1-4 

> 
LO 

to 00 MNO [- [- O CO h 00 N 

4: wOM 00 M CO 00 CV M t- Cc GV O 

c0 --4 Cf) 

cd [-- O co t- NmON 00 M Co 00 

to -4 00 NO to -. 4 00 LO (:: ) cl, (o 

1-4 -4 1-4 -4 
co 

O CO ýN 00 00 CV -4 OO O to 

+O 

U) N CO O to -4 O LtJ to 00 - ulý N 

00 ý -4 00 LO CD CýO co r+ O 
r-4 -4 

cri N '-+ N d' MN ýl t- r+ 
u -4 -4 -4 - 

. ý+ 
MM 

N- keD C r--- NN . -4 MN h- fit' 

. _, ýy rl -4 *-4 -4 

"3 0 
,.., 

" 

cc -4 Ln r- Lo c) r- 11 LCD ý V) 

cD r--ý -4 
M C4 ýT U. ) N N 

NMM 00 *-+ 4 -, 00 (M MN 

NO-M OO r+ ý-r 00 -W (M CO 
-W gl. 
x0 

mcd O 

týia o0 , C) 
d' M 00 

NO U) 

-. 4 00 24 ý co -q 00 mM 
CU '.. 4 1-4 

-0 
>4 CSI 0) NC N- N 

O 
90N 

CV rý lam- Oý Oý tom- Lr> Mc 

yO 

w N- NNN ko C', -N (V) N- 

ä -4 p 
Oý N- 'n m '. N I- r"4 04 N 197) 04 

U 

NMC uJ cD l- 00 O) 
N 

[ý HH Fw Fy F. ý F. HHH 

47 OO mr! 

ý 

U) mm U)Oi) 
V) yW 

(n 
co d a) G 4) 4) 4) Wy a) d 

WW CO My V1 

QQQQQQQQQQQQ 

221 



Factorial designs 

Table 7.9: Efficiencies for Example 7.5 

Efficiency 
Contrast Preparation design Complete design 

P5 C5 
FL 100.00 92.01 
FQ 88.89 85.40 
F cc 100.00 95.91 
PL 100.00 96.79 
PQ 100.00 90.26 

FLPL 100.00 88.58 
FQPL 55.56 53.61 
FcPL 100.00 92.52 
FLPQ 100.00 81.76 
FQPQ 55.56 49.84 
FCPQ 100.00 82.02 

222 

Example 7.5 Designs for Example 7.2 with quantitative and equally spaced 
levels. If the factors are quantitative and their levels equi-distant, a preparation de- 

sign for the orthogonal contrasts listed in Table 7.3 could be used instead. Choosing 

weights 4 and 1 for the main effects and interaction respectively, the preparation de- 

sign P5, shown in Table 7.7, was produced by algorithm JE5. Its efficiencies for the 

quantitative contrasts and the efficiencies from the resulting complete sensory design 

(listed in Table 7.10) are given in Table 7.9. For the preparation design, only three 

contrasts are partially confounded, the quadratic contrast of factor F (resulting in an 

efficiency of 89%) and the cubic-by-linear and the linear-by-quadratic interactions 

with an efficiency of 56% each. The same relation is visible for the final design, with 

effciencies between 85% and 96% for main effects and 50% to 92% for interactions. 

The average efficiencies for the complete design vary between 87.69% and 91.88% 

for the column permutations of the preparation design. 
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7.3 Conclusions 

224 

The examples shown in this chapter only give a small glimpse of the range of sen- 

sory factorial designs. When products have a factorial structure, interest is in special 

contrasts and we have shown how the basic three-step procedure from Chapter 5 

can be modified to reflect the contrasts of interest and their relative importance. 

While in the earlier chapters interest was always in pairwise contrasts of products, 
in this chapter efficient designs are found for other preplanned contrasts. 

The factorial structure is incorporated in the first stage of the procedure, the con- 

struction of the preparation design and we have shown how factorial preparation 
designs can be constructed, either "by hand" or by the algorithm of Jones and Ec- 

cleston (1980) with an appropriate modification. An external source can be used 

to construct a factorial design, as long as it satisfies the constraints imposed on the 

preparation design. Alternatively, the preparation design can be constructed within 

the three-step procedure by specifying the contrasts of interest. 

When contrasts of interest and the associated weights are specified the introduced 

method can be used to construct equi-replicated designs of any kind. This includes 

factorial treatment-control designs and designs for experiments in which some prod- 

ucts have a factorial setting and others do not. 

It has been shown how designs with a higher replication for a single control product 

can be constructed. This procedure can be extended to designs with more than one 

control product, although this is more difficult because products are divided into 

sets. It will be fairly straightforward to modify the algorithms for a special design 

example, in which more than one product has a higher replication. To find a gen- 

eral rule that assigns any number of test and control products to sets will be more 
difficult, though. 



Chapter 8 

Conclusions and further work 

Designs used for sensory studies are generally repeated measurement designs that 
take order and carry-over effects into account. Complete and incomplete block de- 

signs for such studies are well known and have been discussed in Chapter 3. When 

a large number of products are compared in a trial, the experiment is split into 

sessions and resolvable row-column or cross-over designs are required. Algorithms 
for such designs have been reviewed in Chapter 4. 

A common problem for sensory experiments is that only a subset of all products 

can be prepared for a session. The usual solution to this problem has been so far 

to use designs, in which the number of products for each session equals the number 

of servings in the session, so that every assessor tastes the same set of products in 

a session. While there is a limit on the number of products that can be prepared 
for a session, it is often larger than the number of servings in a session. It has been 

shown in this dissertation that it is beneficial to exploit the preparation constraint 

and construct more efficient designs than the simple split-plot designs. 

The main purpose of this thesis was to create an algorithm to construct efficient sen- 

sorg multi-session designs with preparation constraints. Building on an initial idea 

of Ian Wakeling and Roland Carpenter, a fully automated procedure was created 

225 
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to construct, designs in which all pairwise product comparisons are of equal inter- 

est. All search algorithms have been programmed as macros in SAS/IML. These 

macros have been incorporated in a web-based design service provided (internally) 

by Unilever. 

In the first step of the procedure, a preparation design is constructed. This is an 
incomplete block design with a special column structure that ensures the resolv- 

ability of the resulting sensory design. This preparation design assigns products to 

sessions. In this thesis, three search algorithms, modified to construct designs with 
the required column structure, have been compared and the algorithm based on the 

one by Jones and Eccleston (1980) performed best. The algorithm by Jones (1980) 

is then used to re-sort the products into the required column structure 

The second step is the construction of a panel design, a cross-over design with a spe- 

cial structure on the contents of the rows. It is required to ensure the resolvability 

of the complete design. It assigns columns from the preparation design to assessors. 
The panel design is constructed in two steps, first an efficient IBD of the required size 

and with the row-constraint is constructed, then the order and carry-over structures 

are optimised. While it is known that optimal cross-over designs are not necessarily 

built from efficient incomplete block designs, the two-step approach is chosen, since 

it is the easiest to provide the row structure for efficient panel designs, while still 

creating efficient designs. The IBD for the panel design is constructed with the same 

algorithm as is used for the preparation designs. The algorithm by Ball (1997) is 

used to optimise the estimation of order and carry-over effects. 

Another stage of the three-step procedure is required, when the final design is not 

balanced. The efficiency of the complete sensory design varies for different column 

permutations of the preparation design. Thus, the column order with the highest 

efficiency is searched for. If the number of permutations is small enough, all column 

permutations are explored, otherwise the best permutation from a random subset is 
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used. 
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The three-step procedure produces efficient multi-session designs with preparation 

constraints within minutes. When efficient preparation and panel designs are stored 
it is often possible to re-use these component designs by combining them with stored 
designs of different sizes. If, for example, a design is needed for a number of assessors 
different from the stored one, then only steps two and three need to be re-run. This 

time saving feature is an issue only for large designs. Otherwise, it is recommended, 
from a randomisation point of view, to construct a new designs for each experiment. 
Assignment of products to design entries and assessors to rows should be randomised 
for every new experiment anyway. 

The basic procedure was extended to cover treatment-control and factorial designs. 

Treatment-control designs are useful, when the greatest interest is in product com- 

parisons involving the control product. Increased precision of these contrasts can 

most easily be achieved by increased replication of the control product. This can 

be done in keeping with the convention that all non-control products are tasted by 

all assessors the same number of times. With the adjusted three-step procedure a 

method has been developed for the construction of efficient treatment-control designs 

for multi-session trials with preparation constraints. Treatment-control designs have 

so far rarely been used in sensory trials, because this class of designs is generally 

not well known and has not been easily available. 

In experiments with a factorial structure, designs optimised for all pairwise product 

comparisons are not necessarily the best option any longer. In factorial experiments, 

interest is usually in the main effects and lower-order interactions, and designs are 

optimised for the selected contrasts of interest. With the extension of the three-step 

procedure to factorial designs, sensory multi-session designs with preparation con- 

straints can be constructed for any set of contrasts relevant for a specific experiment. 

Since the matrix of contrasts has to be provided by the user, this is a flexible tool 
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for a wide range of experiments. 
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A potential extension for the three-step procedure, which has not been considered 
in this thesis, are designs for experiments with more than one control product. For 

such trials specifying meaningful weights for the algorithm is more complex: weights 

are required for the contrasts of each control with the test products and for contrasts 
between the different controls. Weights for control-test contrasts do not need to be 

identical and can differ between the controls. The problem for the construction of 
treatment-control preparation designs with several controls is due to the special col- 

umn structure of the preparation designs. Products with different replication have 

to be assigned to sets. While this can easily be solved on a case by case basis, it 

is much more difficult to do so in a general algorithm. However, one advantage 

of the three-step procedure is that special preparation designs can be constructed 

externally and can then be incorporated into the procedure if they follow the two 

necessary constraints. Thus, specialised non-equally replicated designs can be con- 

structed "by hand" or can be taken from the literature and can be included as 

preparation designs. 

All designs in this thesis are constructed as cross-over designs. If carry-over effects 

are regarded as not relevant for an experiment, this algorithm can be used also for 

the construction of row-column designs by using a row-column panel design. 

The designs in this thesis have been optimised for two simple fixed-effects models. 

The procedure can be adapted for other linear models by altering the third step, 

in which the efficiency could be calculated according to other models. This might 

be relevant especially for models with random assessor effects, which are frequently 

used in sensory trials. 
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Notation 

A. 1 Notation for models in Chapter 2 

The following is an overview of occurring effects: 

as assessor location effect, a=1, ... ,A 

Aa "stretching" factor for each assessor, a=1,..., A 

ry intercept in dispersion model 

ÖQ assessor effect in dispersion model, a=1, ... ,A 

gat, residual of assessor a on treatment tin replication r, a=1,... , A, t=1, ... ,T 
and r= 1,..., R 

C. session effect, s=1, ... ,S 
0 vector of all unknown fixed parameters 

7r; serving position / period effect, p=1, """, 
P 

pt carry-over effect of product t, t=1,. .., 
T 

a2 variance of observation yat,. 

Tt product/treatment effect, t=1, ... ,T 
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0Q scale parameter, a=1, ... ,A 
ek cut-points, k=1, 

... ,K 

p intercept in location model 

rat is the discrete ordinal observation of assessor a and product t with possible values 
between 1 and K 

uQ vector of random effects for each assessor a, a=1, ... ,A 

Xat vector of known explanatory variables for fixed effects 

Yatr observation of assessor a on treatment t in replication r, a=1, ... , 
A, t= 

1, .-., T and r=1, ... , R. In the Erichsen model it is the unobserved under- 
lying continuous normal variate instead, see rat. 

ZZt vector of known explanatory variables for random effects 

A. 2 Notation for designs in Chapters 3 to 7 

Summary of design notation 

a= number of assessors taking part in the trial 

p= number of products / treatments compared in the trial 

r= number of replicates, i. e. the number of times each assessor tests all p products 

t= number of products tested per session by each assessor 

s= number of sessions 

k= number of products available at each session 

q= number of sets products are divided into 

rp = product replication, i. e. the number of times each product appears in the 

preparation design 
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a; assessor effect 
Qk session effect 
Ti serving order effect 
Ti product effect 
pl residual effect 
X model/design matrix 
Xl design matrix related to nuisance effect 
X2 design matrix related effects of interest 
XA design matrix related to assessor effects 
XP design matrix related to product effects 
XR design matrix related to residual effects 
Xs design matrix related to session effects 
XT design matrix related to serving order effects 

NA =X , XA assessor incidence matrix 
Ns = XPX5 session incidence matrix 
NT = XPXT serving order incidence matrix 
NA = XRXA assessor incidence matrix for residual effects 
Ns XRX5 session incidence matrix for residual effects 
NT = XXT serving order incidence matrix for residual effects 
ra = XR1at replication vector of the carry-over effects 
Y++ = Ylats sum of all observations 
YP = XPY vector of product sums 
YA = XÄY vector of assessor sums 
Ys = XXY vector of session sums 
YT = XTY vector of serving position sums 
Y++ = Q!, 

Y++ mean of all observations 
YP = --I YP vector of product means 
YA 

arp 

YA vector of assessor means 
Ys = j Ys vector of session means 
YT = sYT vector of serving position means 
AA = NANA' assessor concurrence matrix 
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Reduced normal equations 

B. 1 Generalised inverses of X'X 

Definition B. 1 (Generalised inverse) A generalised inverse of a matrix A is de- 
fined as any matrix G that satisfies the equation 

AGA =A 

Characteristics of a generalised inverses of X'X 

Let G= (X'X) - be any generalised inverse of X'X, then 

a) X'XGX'X =G 

ýý XGX'X =X 
c) XGX' is invariant to G 

d) XGX' is symmetric 

Calculating generalised inverses 

When deriving the information matrices for the models introduced in this thesis 

we will make use of three calculating methods for generalised inverses of partioned 
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symmetric matrices. Two ways are given in Searle (1971): Let XX', the matrix of 

cross-products of the designs matrix be partitioned as 

XX' 
X1 

XX= 
XIXI X'X2 

_AB XZ 
1 2ý 

XIX, XIX2 B' D 

Calculation Method BA: 

If rank(XX')=rank(D) then 

o0 (BA) 
0 D-1 

Calculation Method B. 2: 

If both A- _ (X1Xi)- and D- = (X2X2)- can be calculated then 

A-+ A BQ B'A -A BQ (B. 2) 
-Q_ B'A Q 

A- 0 -A-B + Q-j-A-B I] 
001 

Calculation Method B. 3: 

Another way of calculating a generalised inverse of the information matrix is given 

by Shah (1959) as 

C= (C + xi)-1, where x 0, 

if a matrix C+ xJ can be found that is non-singluar. This solution is most useful 

for the special case when X'X has the form X'X = a(Jb -b Jb, b). Then 

(XX')- - 
1Ib (B. 3) 
a 
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B. 2 Projection matrices 
Let 

' 
XX' _ 

X' 
[Xi X2] 

X2 

The projection matrix from Xl into X2 is P=I- X1 (XiXI)- Xi 

a) P is ideenpotent (P = PP) 

b) P is symmetric (P = P') 
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B. 3 Information matrices for incomplete block de- 

signs 

In the following sections the information matrices are derived for the models de- 

scribed in this thesis. If incomplete block designs are used for sensory experiments 

the number of observations per trial is rp p=at and the product replication is 

rp=at/p 

For the partitions of the design matrix holds: 

Assessors: XXIaj = tla, XÄXA = tIa 

Serving positions: XTlat = ale, XTXT = alt 

Products: XPlQt = rplp, X Xp = rrII 

Carry-over: XR1at = rR, XRXR = ý'R 

B. 3.1 Randomised incomplete block designs 

The linear model (3.16) appropriate for analysing data from randomized complete 

block designs is 

Yk = EL + aj + Tj + Cjk 1 <j <a, I< k <p 
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The design matrix X for this model is 

X= lap XA XP] = [XI X21 

where 

Xl = flap XAJ and X2 = fXpJ 

with rank(X1) = a. The matrix of crossproducts of the nuisance effects XfXI 

has the form 

1 alas 1. tXA at t lä 
X, X 1= XTlat XÄXq t la tIa 

A general inverse for XiXI is given with method B. 3: 

10 ()1,. 
(X, X, ) =t 

Oal IQ 

The projection matrix Pl is independent of the choice of the general inverse and 

can be expressed as 

Pi = IQc - Xi (XiX 

1 

= IQt - [1atXAl t 

= Iat -1 [0 XAI 

0-X 1 

0 °l, 
a 

1at 

Oa, 1 Ia XA 

tat 

x' A 

'at - 

IXAXA 

The information matrix for product effects and the right hand-side of the reduced 

normal equations Qp in model (3.16) are therefore 

C3.16 = 
XPPIXP 

= X, XP - 
X, XAX'AXP 
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=rpI-1I IVANA 

Q3.16 = XpPIY 

= XPY -1 NAXAY 
1 

= YP- tNAYY 

B. 3.2 Row-column designs 

The model equation for row-column designs is model (3.21): 

1; jk=p+7ri+a. 7 +Tk+sijk 1<i<t, 1<j<a, 1<k<p 
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The design matrix X and the matrix of crossproducts of the nuisance effects for this 

model are 

X= flat XT XA XPI 

X1 = flat XT XAI 

x2 = [xpJ 

'atlat latXT 'atXA 
x111 = XTlat XTXT XTXA 

XÄlat XAXT XÄXA 

at al; t1Q 

= alt alt Jt, a 

Plo Ja, t tba 

A generalised inverse for X1X1 can be found using Calculation Method B. 2, for 
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which X, XI is devided into 4 sub-matrices: 

AB 
XiX, _ 

B' D 

A=ap 
lp 

iP Ip 

B_ 
P1ä 

Jp, 
a 

D= PIa 

A- 
10 01, P 

=- 
a ()P, ' pI 

B'A = Pin Japj 
1O O1, P =1 [o. � JQ, P) a 0P>1 Ip a 

A_B = (B'A_)' = al 

()1,. [spa 

Q=D- B'A-B=pIa -1 L04,1 Ja, Pl 
p1ä 

a Jp, a 
1 

_ PIa -1 
Ja, 

PjP, a = p(Ia 

1-a 
Ja, 

a) 

a 
Q 

B. 3 1 
Ia 

=p 

A -BQ- =1 -01, 
a 11 01, a j_IaI=- 

a Jp, 
a 

p ap Jp, 
a 

Q-B'A- = (A-BQ-)'= 
p [Oa, ý Ja, P) 

1 01, a 110 °1, P 
A-BQ-B'A- _-- [Oa, ý Ja, P) =2 

aP J9, 
a 

aap OP, 1 Jp, 
aJaP 

10 01, P 

dp 0R1 JP, 
P 
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With these calculations, a generalised inverse of XiX2 is 

0 Ol, a [A- 
+ A-BQ-BA- -A-BQ- 1 

()�t 
(X iX i) _= QOt, 1 t It + Jt, t -Jt, Q 

-Q-BA- Q- t 
°a, l -JQ, t a Ia 

The projection and information matrices and Qp for model (3.21) are: 

Pi = Iap - Xi (XiX1) Xi 

0 O,, t Ol, a 1ät 

= lap - [1atXTXA4 1 
at 

Ot, l tIt + Jt, t -Jt, a X7 

Oa, l -Jat a10 X, '4 

it 

= Iat -a [o XT(tlt + Jt, t) + XA(-Ja, t) XT(-Jg, 
a) + XA(ala)) XT 

XA 

= Iat - at 
[XT(tlt + Jt, t)XT - XAJa, tXT - XTJt, aXÄ + XA(aIa)XA} 

= 'at 
- ýXTXT - 

XAX'A - 
(XT1t1tXT 

- 
XAIa1tXT 

- 
XT1t1QXÄ) 

t at 
= Iat 

-a XTX7. -t XAXq + 
at 

Jat, 
at 

03.17 = XpP1XP 

= Xp 
(Jap 

a- 
1 
ýXTXT -I XAXÄ +I Jap, ap XP 

p at 

= X, Xp- 
I 

XpiXTXTXp- X, XAXÄXP+ 
I 

XPJat, 
atXP 

= rplp -1I NTNT 
-11 

NANA +p `Ip, p 

Q3.17=Xý, PIY 

= XpY - QXpXTXTXp - 
IXpXAXÄXP 

+ XP. Iat, 
atY t at 

= Yp - 
äNTYP 

- 
INAPA+ rpP++ tat 
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B. 3.3 Cross-over designs 

Model (3.22): 

Yd(ij) =µ+ 1r; + ai + Td(i,. i) + Pd(i-i, j) <j<a 

X = [latXT XA XP] 

X1 = [latXT XA] 

X2 = [XP XR] 

at a1 t1ä 

X, Xi = alt alt Jt, a 

pla Ja, t tla 

Pi = XTX7 -t Iat - XAXÄ + 
at 

Jat, at 
a 

C11; 3.22 = 
XPP1XP 

= rpIP -1 
NTNT t NA NA +p JP, 

P 

! 12; 3.22 = XPPIXR 

= X, XR - NTN7. -- NANÄ +X pJat, 
atXR 

at 
= 

a 
X, XR- 

iNTNT 
- 

iNANÄ+TIPTR 

t at a 
= C21 

022; 3.22 = XRi 
1XR 

= XRXR 
- -NTNT -t 

NANÄ + tXpJat, atXR 

= XRXR -a 
NTNT 

t 
NANA + 

at 
rfT R 

Jat, 
at) 

Y Q1; 3.22 = Xp(Iat - 
XTXT - 

XAXA + 
at a 

= Yp- 
1. 

NTYT- 
1 
INAYA+Tp1 

Y++ 

1 
Q2; 3.22 = XR(Iat - aXTXT tXAX q+ atJat, at)Y 

Y 
YR 

aNTYT tNAPA+ at 
rRlp 
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CD; 
3.22 = C11 - C12C C21 

CR; 
3.22 = C22 

- 
C21 C11 C12 

QD; 
3.22 = Ql 

- 
C12C22Q2 

`v'ß; 3.22 = Q2 
- 

C21C11Q1 

B. 4 Information matrices for complete block de- 

signs 
The information matrices of complete block designs are special cases of the infor- 

mation matrices C3.16, C3.21 and C3.22 for incomplete block design with 

t=p 

rp =a 

NA = Ja, p 

Number of observations in a trial from a complete block design: ap 

Replication: r=1, rp =a 

Assessors: XA 1ap = p1a, XI ýXA = PIa 

Serving position: XT1ap = alp, XTXT = alp 

Products: XPlap = alp, XpXp = alp 

For the following three models the information matrices can be derived from the 

information matrices above: 

Model (3.1): Yjk =µ+ aj + Tk + Ejk 

Model (3.2): Y9k =p+ iri + aj + Tk + 6ijk 

Model (3.3): Yd(ij) _P+ ? ri + aj + Td(i, j) + Pd(i-1, j) + Eu 

1<j<a, 1<i, k<p. 
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C3.1 =alp- 
1 NANA 

p 

( 

=af 
Ip 1 

-- . 
I, 

p 

C3.2 = 2Ip- NTNT NANÄ+pJP, P - 
a p 

= aIp - 
1 NTNT 
a 
1 

011; 
3.3 = alp - 

, 
aNTNT 

012; 3.3 = 
1 

NTNT, X, XR- ,1, Jp, 
aNA+ 

1PrR 
a 

C22; 3.3 = XRXR 
aNTNT pNANÄ + prRrR 

CD; 3.3 = C11 - C12G2C21 

CR; 3.3 = C22 - C21 Cl 
l 

C12 

Q3.1 = YP 
-11 

NAYA 

2 Q3 NTYP - tNAYA+ 
rp p++lat 

= Yp - 
. 

a 

Q1; 3.3 = 

1 
XP(Iat - -XTXT 

XAXA + 
at'Jat, 

at)Y 

= YP- 
INTYT- INAYA+rplpY++ 

t 
Q2; 

3.3 = 

1 
t XAXA + 

at 
Jat, 

at)Y x XR(Iat - 

= 

a 
Y 

YR 
-NTYT tNAYA+ at 

rRip 

QD; 3.3 = Ql - 
C12C! 

2Q2 
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QR3.3 = Q2 - 
C21C11Q1 
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B. 5 Information matrices for resolvable incom- 

plete block designs 

Number of observations in a trial: apr = ast 
Replication: r=p, rp = ar 

Assessors: XÄ last = Stla, XgXA = Stla 

Sessions: Xsla, t = atls, XXXs = atls 
Serving positions: XTlast = as1t, XTXT = asIt 
Products: XPlap,. = arlp, XPXP = arlp 

NA' = XÄXp = rJ0,, every assessor tastes all products r times 

XÄXS = tJ0,, every assessor tastes t products in every session 

XÄXT = sJa, t every assessor tastes s products in every serving position 

XsXT = aJ,, c a products are tasted in every serving position in a session 

B. 5.1 Information matrix for a randomised RIBD 

The simplest form for a linear model for multi-session trials is model (4.3): 

Yjkl =%L+aj +Nk+Tl+Ejkl 

1<j<a, 1<k<s, 1<l<p 

The design matrix X and the matrix of crossproducts for the nuisance effects XiX1 

are: 

X= [1st XS XA XP] 

X1 = [1st XS XA] 

Lastlast lastxS 1astXA 

XiX1 = XSlast XsXS XS A 

Xglnst XAXS XAXA 
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I 
as al; s1 

=t als als J5,6 

s1a Ja, s SIa 
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The information matrix for this model can be derived from row-column model (3.21), 

which includes a serving order effect. If this effect and respectively its model matrix 

XT is replaced by a session effect with its model matrix Xs the information matrix 

for model (4.3) can be derived from information matrix C3.21: 

10 01,8 01, a 1 
(XIX1) - ast 

03,1 S Is + J.,., -J3, Q 
00, i -Ja,, a IQ 

P1; 4.3 = 'ast - X1 (XIX1) XI 

-1rr = rast 
ast 

(SXSX' + aXAXA - 
Jast, 

ast) 

C4.3 = ApF1; 4.3-'P 

= arIp - 
at 

NSNS 

1 
NS YS Q4.3 = YP 

- 
at 

B. 5.2 Information matrix for resolvable row-column designs 

Model (4.5): 

Yjklm =P -I- CYi+ßk +Tl +Eijklm 

1<i<t, 1<j<a, 1<k<s, 1<l<p, l<m<r 

The design matrix Xl for this model and the matrix of cross-products for the nui- 

sance effects XfXI are 

X =[1stXSXAXTXP] 
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XI = flst VS XA XT1 

it 
stalast 

lastXS lastXA lastXT 

Xslast XsXS 
Xlxl 

= 
XA XS XSXT 

XAlast XA%1ýS 
'A"A -"AXT 

XTlast XT' XS XT'tA XTXT 

ast atls st1Q asli 

atls atls tJ,, a aJ3, t 

Stla tJa, s stIa SJa, t 

aslt aJt,, sJt,, asIc 
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A generalised inverse for XiXI can be calculated by method B. 2. The auxiliary 
matrices are 

as a18 s1, '� 

A=t a1, aI, J,, Q 
s1a JQ,, sIa 

aslt 

B= aJ,, t 
sJa, t 

D- asI1 
0 01,, 01,4 

__1 
ast 

0ls1, J,,, A+ -J,, a 
0a, 1 -J0 a I. 

0 01,, 01, a as1', 

A -B 
ast 

0,, 1 s I, + J,,, -J�. aJ,, t 
Oa, l -J0,, a IQ 8J0, t 
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ol, t 
ast 

a(sI, +J,, )J, ý-sJ, QJat 

-aJQ,, J,, t + asJa, t 

Ol, t 
1 

= asJ,, t + asJ,, t - saJ,, t ast 
-asJQ, t + asJa, i 

Oi, t 
1 

=tj Js e 

Oa, t 

B'A _ (A-B)' =t [Ot, l Jt, s Ot, a] 

aslt 

Q=D- B'A-B = ash -1t [Oe, i JJ, 3 Ot, a] aj,, e 

sJa, t 

= ash -a Jt, sJs, t t 

= as(It - Je, e) t 

= 
as 

- I Ol, t 01, e 
A BQ_ _1 -t J., e 

1_1 

as 
It 

ast 
Js, e 

Oa, e 
Oa, e 

Q-B'A- = (A_ BQ_)- [Ot, i A, Oe, a) ast 

Ol, t 
A-BQ-B'A- =1 J 

' e 
1 [Ot'1 A., Ot, a] ast ' t 

0a, t 

01,1 Ol, 
s 

Ol, 
a 

ast 
Os, l 

Js, 
s 

Os, 
a 

Oa, 1 Oa, 
s 

Oa, a 
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With these matrices, a generalised inverse for XiXI is 

[A-+A-BQ-B'A- 
-A-BQ- 

-Q- B'A- Q- 

0 0,,, o,, a ol, t 
1 0,, 1 s I, + 2J8,3 -Js, Q -Js, t 

ast OQ 
1 -JQ,, a Ia Oa, t 

ot,, -Jt, 8 0t, a tIt 

Projection matrix for model (4.5) and (4.8) : 

P1; 
4.5,4.8 =I- X1 (X1 X1) X1 

0 01, s Ol, a Om 1äs1 

[last XT] 
Os, 1 S Is -Js, a -J3, t 1 

ast s = Iast ast - 
X s 

, ast Oa, 1 -Ja, s a Ia 0a, t xÄ 

0t, ' - Jt, s 0t, a tIt X'T 

= lasc ast - 
1 

XAJa, s - XTJt, s - XSJs, 
a + aXA [0 sXs + 2J,, 

s - , ast 
last 

Ix 
-XSJ5, t+ tXT 1 

X' 
A 

X'T 

= Iast, 
ast 

(sXs + 2XSJs, 
s - 

XAJa, 
s - 

XTJt, 
s) 

XS 

ast 
1 

(- XSJs a+ aXA) XA 
ast , 
1 (- XSJ5 

t+ tXT) XT 
ast , 

Iast, 
nst `SXSXT 

+ 2XSJs, 
SXs 

1r 

S' 
+ aXAX' A+ 

1X7X XAJa 
sXS 

ast 

-XTJL, iXst - XSJ3, 
aXÄ - XSJs, tXT) 

= Iast, 
ast 

1 
(sXSXS + aXAXA + tXTXT - fast, 

ast) 
ast 
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The information matrix for product effects for model (4.5) is 

C4.5 = X' Pj Xp 

=X pXP 
-ast (sNsNN + aNANA + tNTNT - XPJasl, astXP) 

1,11, ar 
= arI. - at 

NSNs 
st 

NANA 
as 

NTN7 +- JP, 
P 

p 

= arIP -1 NsNs - 
rJP, 

aJa, P -1 NTN7" + arJP, 
P at p as p 

1,1, 
= arl4 - at 

NsNs 
as 

NTNT 
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B. 5.3 Information matrices for resolvable cross-over designs 

Model (4.8): 

Yd(ijk) =µ+ 7f= + ai + /3k + Td(i, j, k) + Pd(i-1, j, k) + Eijk 

1<i<p, 1<j<n, 1<k<s 

Information matrices for direct product and first-order residual effects: 

X =[i, XSXAXTXPXR] 

X1 = ist XS XA XT] 
x2 [XP XRJ 

P1,4.8 = Iast, 
ast ast 

(sXSXS + aXAXA + tXTXT - Jast, 
ast) 

011,4.8 = arlJ -1 NSNS -1 NTNT 
at as 

C12,4.8 = XPXR 
- 

at 
NSNS p'>P, aNA as 

NTNT + 
ap 

1PrR 

= XPXR 
-1 

NSNS 
- 

TP1PrR NTNI + 
rP 

1PrR 
at 

- 
as ap 

022,4.8 = rR - 
t1VsNs 

- tNANÄ - NTNr + prRrR 
CD, 

4.8 = ! 11,4.8 - C12,4.8C22,4.8C21,4.8 

CR, 
4.8 = %22,4.8 

- 
C21,4.8CI1,4.8C12,4.8 
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Abstract 

In most cases the choice of sensory designs is driven solely by the limitation of assessor fatigue. However, often there is an 
additional but unrelated kitchen constraint. which limits the number of products that can be prepared for a given session. Nested 
incomplete block designs provide the opportunity to take proper account of both of these constraints, and in so doing, identify 
opportunities for more effective product comparisons. Here we describe a new three-stage method for constructing such designs and 
identify criteria for assessing their quality. We illustrate an extension of the method for situations where there is a factorial product 
structure and some contrasts are judged more important than others. . 2001 Elsevier Science Ltd. All rights reserved. 
Kel words: Nested incomplete block design; Three-stage procedure; Sensory design 

1. Introduction 

One of the key aims of sensory analysis is to objec- 
tively assess and compare product properties based 
upon responses from a panel of trained assessors. 

The reliability and relevance of the inference will 
depend crucially on the quality of the underlying design. 
In the sensory context, the design process takes on 
additional significance in attempting to cope with the 
inherent limitations of human response data. These 
limitations are especially evident when a large number 
of products are to be compared in a given study, as is 
frequently the case. 

It is therefore appropriate to search for new systema- 
tic approaches for generating designs that are better 
able to address these additional design objectives, whilst 
at the same time fully recognising the practical opera- 
tional constraints. For this reason, we focus on nested 
incomplete block designs. 

The special requirements for sensory designs are dis- 
cussed in Section 2. The suggested three-stage procedure 
to construct such designs is introduced in Section 3. 
explained in detail in Section 4 and further expanded to 

Corresponding author. Tel.: +44-116-255-1551, ext. 8510: fax: 
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include factorial designs in Section 5. A summary of 
results is given in Section 6. 

2. Practical constraints and objectives in sensory design 

The number of products (p) for comparison in a sen- 
sory experiment is usually fixed by the client, and will 
therefore be called the client constraint. 

If the number of products is too large to be presented 
on a single occasion without sensory fatigue, only a 
subset of products (t) will be tasted by an assessor in 

one session. Products have to be presented over multiple 
sessions (s). This will be called the assessor constraint. 

In addition, a kitchen constraint arises if it is only 
possible to prepare a subset of products (k) for a given 
session. This is a common situation when assessing 
food products, especially those requiring carefully 
controlled cooking or other preparation prior to assess- 
ment. The constraint may depend upon the available 
kitchen facilities - e. g. the number of hobs or cook- 
ing utensils, or upon the problems of achieving tight 

control of temperatures, volumes and particularly of 
timings, when too many products are being processed 

simultaneously. 
Sensory assessors cannot be trained to perform in an 

entirely homogeneous and consistent manner. A further 
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consideration is thus the number of replications (r) 
that is assumed to be necessary for a valid experiment. 
To accommodate the differences among assessors' 
scores, assessors are used as blocks, with the require- 
ment that every assessor tastes every product at least 
twice, and with equal frequency. This results in equal 
replication of all products, namely each product is 
tasted axr times, where a is the number of assessors in 
a panel. 

Often all pairwise product comparisons are of equal 
importance. as might be the case when there is no 
underlying product structure. For efficient designs for 
models with independent error terms, products have to 
be arranged in blocks in such a way that they occur the 
same number of times alongside all other products 
within sessions (concurrence). 

Balance for serving position within a session will addi- 
tionally provide efficient estimates when order effects 
are expected and balance for precedence will cater for 

possible carryover effects between one product and its 

successor, this is particularly associated with strong and 
persistent aroma, flavour, or astringency. 

Complete balance for concurrence, precedence and 
serving position is rarely possible due to the given con- 
straints. so a strategy to reach near balance will be 
derived. These latter requirements will determine the 
sequence of products that will be assigned to each 
assessor. 

Designs suggested for sensory experiments are mostly 
constructed from Williams Latin squares (Williams. 
1949). which are balanced for order and carryover 
effects. Balance for first order carryover effects requires 
that each product is preceded equally frequently by 
every other product and balance for order requires that 
each product occurs equally frequently in each period of 
the design. The rows of the Latin square are assigned 
randomly to assessors, the columns specify the test 
sequence. The labels within the cells of the Williams 
square are assigned randomly to the names of the pro- 
ducts in the test. 

If the number of products (p) is larger than the num- 
ber of assessors in the panel (a), only a subset of the 
rows of the square will be used. If p<a. rows from a 
second square will be used. If incomplete Williams 

squares are used, balance for order and carryover effects 
is lost. Further information on such designs in the sen- 
sory context can be found in Hunter (1996) and Wakel- 
ing and MacFie (1995), for example. A more general 
review is given by Jones and Deppe (2000). 

The linear model assumed here for a sensory trial 
includes additive assessor. session. serving-order, pro- 
duct and first-order carryover effects. All observations 
are assumed to be independent. 

},, t =assessor, + session, + serving position& (within session, ) 

+productd; Al + carryover4,4k_I y+ eyk 

where producte1f, *j is the product served to assessor i in 
session j in serving position k. Carryoverd1,; 11 is defined 
as 0 for products in the first serving position of every 
session, as any carryover effects are assumed to occur. if 
at all, only within a session. The general ANOVA table 
for this model has the following form: 

Source of variation Degrees of freedom 
Between subjects: 
Assessors a-I 

subjects: 
Session s- 
Serving position within a session t-I 
Product p- I 
Carryover within a session p-I 
Residual axsx t-a-s-t-2p +4 

Often the interest of analysis is on all pairwise com- 
parisons between products. The three-step procedure 
ensures that the comparisons are all estimable, when the 
kitchen and the panel design are connected designs. 

3. A useful design strategy 

The construction process for a nested incomplete 
block design will be illustrated using a typical example: 
a 16 product design (client constraint p= 16) with k=8 
products available at every session (kitchen constraint) 
and t=4 products to be tasted by an assessor within a 
session (assessor constraint). This particular example 
has been chosen as it can also be used to demonstrate 
designs with factorial structure. 

As mentioned before, a block in the sensory design 
refers to the number of products an assessor is given 
within the whole trial, with the constraint that each 
assessor will taste every product r times. This assign- 
ment can be viewed as r complete block designs. Each 
block is split into s sessions, such that an assessor within 
a session can be viewed as a sub-block. Ignoring asses- 
sors, these sub-blocks form an incomplete block design. 
The two design structures therefore form a nested 
incomplete block design. The kitchen constraint adds 
extra difficulties to the construction. as only a subset of 
all products can be available for a session. The con- 
struction process is therefore split into three stages: 

A suitable kitchen; preparation design is devised 
(Table I). This defines which products will be 
available in a session. It is an incomplete block 
design with an additional and design-specific con- 
straint on its columns, which will be explained in 
Section 4.1. A cyclic construction method for the 
design will be demonstrated in the example. 
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2. A suitable panel design is built (Table 2). The 
panel design is constructed as a cross-over design 
that allocates columns of the kitchen design to 
serving positions for the assessors. The design tries 
to balance for concurrence, serving position, and 
precedence. Again a cyclic design will be used. 

3. The kitchen and the panel design are combined in 
an optimum way (Tables 3 and 4). In cases where 
it is necessary to compromise the structure of the 
panel design, e. g. because there are insufficient 
assessors to achieve perfect balance, the exact 
sequence of columns in the given kitchen design 
can have a profound influence. 

In Section 4, this three-stage approach is applied to 
the construction of a sensory design in which all pro- 
duct contrasts are equally important. 

In Section 5 more complex sensory design situations 
are identified in which some selected product contrasts 

Table I 
Explanation of the three step procedure - step l: the kitchen design 

Products available in each session 

Session I 1 10 3 11 2 9 5 13 
Session 2 2 11 4 12 3 10 6 14 
Session 3 3 12 5 13 4 11 7 15 
Session 4 4 13 6 14 5 12 8 16 
Session 5 5 14 7 15 6 13 1 9 
Session 6 6 15 8 16 7 14 2 10 
Session 7 7 16 I 9 8 15 3 11 
Session 8 8 9 2 10 1 16 4 12 

Column 12345678 

Table 2 
Explanation of the three step procedure - step 2: the panel design 

Assessor Serving position 

1234 

13687 
24718 
35821 

etc... 

Table 3 
Explanation of the three step procedure - step 3: combining the 
kitchen and the panel design assignments for assessor I 

Serving I Serving 2 Serving 3 Serving 4 

Session 1 3 9 13 5 
Session 2 4 10 14 6 
Session 3 5 11 IS 7 
Session 4 6 12 16 8 
Session 5 7 13 9 
Session 6 8 14 10 2 
Session 7 1 15 11 3 
Session 8 2 16 12 4 

may be more important than others. The three-stage 
approach is then adapted to cope with one such case. 
namely 16 products in a full 2x2x2x2 factorial design. 

4. Building a nested incomplete block design 

4.1. Stage 1 -the kitchen design 

The first task is to construct an efficient incomplete 
block design for 16 products in eight blocks of size 8. 
where each block of the kitchen design represents the 
products available for the corresponding session. The 
number of blocks in the kitchen design is the number of 
sessions (s); the size of the blocks represents the number 
of products that can be prepared for one session (k). 
The number of sessions is s=pxr; t, determined by the 
number of products (p), the number of replications (r), 
and the number of servings within a session (t): for this 
example p= 16. s=8, t=4 and r=2. The construction 
method only works when .s is an integer. 

The method for constructing a kitchen design is based 
upon cyclic incomplete block designs, John and Williams 
(1995). A cyclic design is fully determined by its initial 
block. All other blocks are generated from the initial 
block, adding one to each element and reducing modulo p. 

The 16 products are randomly assigned the numbers 
1-16. As there are 16 products but only eight sessions, 
the products are divided into two separate sets, products 
1-8 form the first set and products 9-16 the second. 
Half of the columns of the kitchen design will contain 
all numbers from the first set, the other half of the col- 
umns the numbers from the second set. Two columns 
picked randomly from each set will therefore always 
contain all 16 products. This ensures that assessors will 
taste all products the same number of times. 

Each set is the basis of a different cyclic incomplete 
block design, and the two block designs are combined to 
build the kitchen design (Table 5). In general p products 
are separated into pis=t/r sets, where both fractions 
have to be integers. Columns are then arranged alter- 
nating from each set, such that p/s consecutive columns 
contain all p products. In this example 16/8 =2 con- 
secutive columns include the 16 products. 

With careful choice of the initial block it is possible to 
achieve an optimum concurrence matrix for a cyclic 
design (Table 6). The elements of the concurrence 
matrix (1) denote how often each product occurs in the 
same session with every other product. The design will 
be constructed such that a product will never occur 
twice in the same block, resulting in a diagonal of Os. If 

all products occur the same number of times with all 
other products, the design is called balanced for product 

effects. If balance is not possible, a concurrence matrix 

with all entries as equal as possible will be called optimal. 
As the concurrence matrix is symmetric it is sufficient to 
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refer to the upper diagonal only. From this, a summary 
of the concurrence matrix can be constructed which 
gives the number of times each different entry of the 
concurrence matrix is repeated in the matrix (Table 7). 

As explained before, the kitchen design is created 
from two different cyclic designs (A and B in Table 5). 
The first cyclic design (A) refers to products 1-8. the 
second (B) to the products 9-16. For the first cyclic 
design the initial row is reduced modulo 8. The second 
design is constructed equivalently to the first, with the 
exception that 8 is added to each entry so that the 
entries in the second design refer to the products 9-16. 

To find an optimal initial block for the first part of the 
kitchen design (A in Table 5), the concurrence matrix 
and its summary are calculated for all possible initial 
blocks for this part. From all initial rows with optimal 
concurrence (all elements as equal as possible, eight 
products occur once in a block with another product 
and 20 products occur twice, Table 7) the initial row 
chosen for this case is 1235. 

The initial row for the second design (9 10 12 13) is 

also chosen from the list of optimal initial rows, but 

with 8 added to each entry. The row is chosen so that a 
combination of the two initial rows results in an optimal 
concurrence matrix for the combined kitchen design. 

The first and the fourth quadrants of the concurrence 
matrix in Table 6 are determined through each of the 
single designs, with the second quadrant determined by 
their combination. For this example it is not possible to 

Table 4 
Explanation of the three step procedure - the complete sensory design 

have a concurrence matrix that does not contain a 3. 
The resulting concurrence matrix is as balanced as pos- 
sible under the given constraints, i. e. all of the elements 
are as equal as possible. All comparisons are repre- 
sented, and none occurs more than three times. 

With these two initial rows the kitchen design is 
almost fully determined. Only the order of the columns 
has to be chosen, which will not affect the efficiency of 
the kitchen design but that of the complete sensory 
design. This will be referred to in Section 4.3. 

Efficiency for a comparison of two products is defined 
as the ratio between the minimal variance of this com- 
parison and the variance under the given design. The 
minimum variance for the example is given as the var- 
iance of a comparison from an orthogonal design, in 
this case a complete block design, where each product is 
replicated kxs%p times. To calculate an average effi- 
ciency, the average over all possible pairwise compar- 
isons is calculated. The average efficiency from the 
resulting incomplete block design is 92.7%. 

4.2. Stage 2- the panel design 

There are three design issues to be optimised within 
the panel design. 

1. for optimum overall concurrence, each of the 
entries, representing columns I to 8, must occur 
with equal frequency in the panel design; 

Session I: serving poistion Session 2: serving poistion ... Session 8: serving poistion 

2341234I234 

Assessor I39 13 5 4 10 14 6 2 16 12 4 
Assessor 2 11 51 13 12 6 2 14 10 4 8 12 
Assessor 32 13 10 1 3 14 11 2 1 12 98 

etc... 

Available products 1,2,3,5 , 
9,10,12,13 2,3,4,6,10,11,12,14 ... 

1,2,4,8,9,11,12,16 

Table 5 
Construction principle of the kitchen design' 

Session First set - design A Second set - design B 

lb 12 3 5 9 10 12 13 

223 4 6 10 11 13 14 

334 5 7 II 12 14 15 

445 6 8 12 13 15 16 

556 7 1 13 14 16 9 

667 8 2 14 15 9 10 

778 1 3 15 16 10 11 

881 2 4 16 9 II 12 

Generated modulo 8 Generated modulo 8+8 

For the final kitchen design colums are arranged alternatley from both sets and permuted in step 3. The final kitchen design is shown in Table 1 

Intial rows for A and B. 



Table 6 
Concurrence matrix of the kitchen design 

Design A- first set 

1234 

Design A 
122I 
222 
32 
4 
5 
6 
7 
8 

Design B 
9 
10 
11 
12 
13 
14 
15 
16 

5 6 7 8 9 10 11 12 13 14 15 16 

2 1 2 2 3 2 2 2 2 1 I 3 

1 2 1 2 3 3 2 2 2 2 1 1 
2 1 2 1 1 3 3 2 2 2 2 1 

2 2 1 2 1 1 3 3 2 2 2 2 
2 2 1 2 1 1 3 3 2 2 2 

2 2 2 2 1 1 3 3 2 2 
2 2 2 2 1 1 3 3 2 

2 2 2 2 1 1 3 3 

2 I 2 2 2 1 2 
2 1 2 2 2 1 

2 1 2 2 2 
2 1 2 2 

2 1 2 
2 1 

2 

2. if tasting order is to be balanced overall, then the used by each assessor at that serving. So, assessor 1 will 
panel design itself must be balanced with respect to be allocated products from columns 3,6,8 and 7 of the 
serving position; and 

3. if the carryover effect is to be balanced overall, 
then the panel design matrix must itself be 
balanced with respect to carryover. 

It is rarely possible to completely satisfy all three of 
these objectives. 

The assignment of kitchen design columns to assessor 
serving positions is achieved using a crossover design to 
achieve balance for serving position, product and car- 
ryover effects. The panel design consists of 16 rows, one 
for each assessor, and four columns, one for each ser- 
ving (Table 8). 

One possibility for creating the panel design is to use a 
similar cyclic structure as for the kitchen design, but 

checking for precedence as well as concurrence. The 

panel design for this example requires two cyclic designs 
to assign columns of the kitchen design to 16 assessors, 
each cycle providing eight rows. 

The entries in the panel design (numbers 1-8) specify 
which of the columns from the kitchen design are to be 

Table 7 
Summary for the cyclic kitchen design 

123 

Design A8 20 0 
Design B8 20 0 
Kitchen design 32 72 16 
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Design B- second set 

285 

kitchen design in that order (Table 3). 
To ensure that every assessor tastes every product 

twice, the initial row of the panel design must consist of 
two even and two odd entries, representing columns of 
the kitchen design. The odd columns of the kitchen 
design contain only products 1-8, and the even columns 
contain only products 9-16. 

Again, cyclic designs from all possible initial rows are 
constructed and the concurrence matrix and its sum- 
mary calculated. For a carryover design it is not sufficient 

Table 8 
The panel design 

Assessor Serving position 

1234 

13687 
24718 
35821 
46132 
57243 
68354 
7 1 4 6 5 

8 2 5 7 6 

9 I 2 6 3 

10 2 3 7 4 

11 3 4 8 5 

12 4 5 1 6 

13 5 6 2 7 

14 6 7 3 8 

15 7 8 4 1 

16 8 1 5 2 
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to optimize only concurrence, as precedence should also 
be optimized. The precedence matrix (Tables 10-13) 
refers to successive pairs of products and indicates how 
often one entry in the design is followed by another 
entry. The precedence matrix is, in general, not sym- 
metric. To check for balance, the summary matrix of the 
precedence matrix is sufficient. For the first cycle an 
initial row is chosen that is as balanced as possible for 
concurrence and precedence (Tables 9 and 10), for this 
example this is 3687. 

One cyclic design supplies assignments for eight 
assessors; therefore a second cyclic design is necessary 
to provide additional and different assignments for 
assessors 9-16. (Refer to Section 4.4 for cases with less 
more than 16 assessors. ) 

There is no other initial row for the second cycle 
containing two odd and two even numbers, which gives 
a better-balanced concurrence matrix for the complete 
design than the one chosen (Tables 1I and 12, summa- 
ries in Table 13). All alternatives also include zero 

Table 9 
Concurrence summary for the first cycle of the panel design, the sec- 
ond cycle and the complete panel design 

11 
2 3 4 

First cycle 8 20 0 0 
Second cycle 8 20 0 0 
Complete panel design 0 8 0 20 

Table 10 
Precedence matrix for the first cycle of the panel design 

12 3 4 5 6 7 8 

10 1 1 0 0 0 1 
21 0 1 I 0 0 0 
30I 0 I I 0 0 

400 1 0 1 1 0 

500 0 1 0 1 1 
610 0 0 I 0 1 
711 0 0 0 1 0 
801 I 0 0 0 1 

Table II 
Precedence matrix for the second cycle of the panel design 

12 3 4 5 6 7 8 

1 0 0 1 1 0 0 
20 1 0 0 1 I 0 
300 1 0 0 1 
410 0 1 0 0 1 

511 0 0 I 0 0 

601 I 0 0 1 0 
700 1 1 0 0 1 
810 0 1 1 0 0 

concurrences. The initial row for the second cyclic design 
is therefore chosen to include no zero concurrences, and 
to create a precedence matrix with zeros and ones only. 

In the panel design each of the values 1-8 is compared 
alongside each other value on either two or four occa- 
sions (Table 9). It is nearly balanced for carry-over with 
each of the 56 possible carryover sequences represented on 
one occasion or not at all (Table 12). The average efficiency 
of all pairwise product contrasts of the panel design is 
76.0%. calculated in comparison to an 8x8 Latin Square. 

4.3. Stage 3- the optimum combination 

Having fixed the kitchen design and the panel design, 
there remains one further opportunity for optimisation. 
This opportunity arises because the properties of the 
kitchen design are not changed if the columns are placed 
in a different order. In fact, with eight columns there are 
8! = 40320 possible column sequences. However, only 
those with alternating 'high' and 'low' columns are 
considered, leaving 4! x4! = 576 possibilities. 

So the final step in design optimisation is to work 
through each of the sequences of the kitchen design in 
turn, combining it with the panel design, and then to 
investigate the properties of each resulting design by 

calculating overall concurrence and precedence matrices 
and efficiencies. The efficiency of the complete sensory 
design is calculated by comparing it to a randomised 
complete block design with a product replication of 32 
for each product, i. e. two 16x 16 Latin Squares. 

Table 14 summarises the concurrence and precedence 
matrices and average efficiencies from all possible 
resulting designs. All 576 different design matrices fall 
into one of six sets. 

Table 12 
Precedence matrix for the complete panel design 

I 2 3 4 5 6 7 8 

1 I I I i 1 0 
2 I I I I I I 0 
3 0 1 I I I I t 
4 1 0 1 1 
5 I 1 0 I I 1 1 
6 I 1 I 0 I I 1 
7 I 1 I I 0 1 
8 I I 1 I I 0 

Table 13 
Precedence summaries 

x 
0i 

First cycle 32 24 

Second cycle 32 24 

Complete panel design 8 48 
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In cases where it is necessary to compromise the 
structure of the panel design the exact sequence of col- 
umns in the given kitchen design can have a more pro- 
found influence than in this example, where the 
efficiencies are all quite close. 

A column sequence for the kitchen design is chosen 
that results in an efficiency of 80.5%. This final kitchen 
design is shown in Table 1. 

The resulting complete sensory design is presented in 
Table 15. Each of the 16 rows in the sensory design 
shows the serving sequence for an assessor, split into 
eight sessions. The design efficiency is 90.6%. Sixteen 
direct product comparisons are never made within a ses- 
sion and eight product comparisons on the other hand, will 
be made 16 times (see last line Table 14). All other product 
comparisons are made between two and eight times. Thiry- 
two of the possible carry-over sequences do not occur, 
while 16 carry-over sequences will occur four times. All 
other carryover sequences either occur once or twice. 

Cyclic designs are only one possible type of design to 
use for the kitchen and panel designs. Existing algo- 
rithms for efficient incomplete block and crossover 
designs can only be used to construct designs where the 
number of products equals the number of sessions. For 
all other cases these algorithms have to be adjusted to 

ý, - 
incorporate the extra constraints resulting from dividing 
the products into separate sets. 

4.4. Compromising the panel design to deal with 
additional or fewer assessors 

Taking the cyclic panel design in Table 8, some con- 
sideration will be given on how to adjust the design to the 
exact number of assessors taking part in the experiment. 
Balance for serving position will be lost, and the changes 
in the concurrence and precedence matrix are discussed. 

If two more assessors are available, the two rows 7,8,1, 
2 and 3,4,5,6 are a possibility for the panel design. These 
rows use 6 of the unused carry-over pairings (i. e. con- 
secutive treatments), leaving only pairs (2,3) and (6,7) 
unused. Concerning concurrence, these additions result in 

six column pairs occurring three times within a block, 20 

column pairs four times and two column pairs five times. 
The problem of restricting the number of assessors is 

evidently likely to result in a sub-optimal panel design 

and it has to be decided which part of the 16-assessor 
design should be used. 

For 15 assessors it does not matter which row is taken 
out. Reducing the design for 14 assessors, two rows have to 
be taken out. To preserve equal occurrence of each column 

Table 14 
Summary measures for the resulting sensory designs from different permutations 

Concurrence Precedence Efficiency 

02468 16 0I24 

16 0 56 16 40 8 32 96 112 16 90.3 
16 8 44 16 44 8 40 80 120 16 90.4 
16 8 40 24 40 8 32 96 112 16 90.5 

16 16 32 16 48 8 48 64 128 16 90.4 
16 16 28 24 44 8 40 80 120 16 90.5 

16 16 24 32 40 8 32 96 112 16 90.6 

Table 15 
Final sensory design 

Assessor Session I Session 2 Session 3 Session 4 Session 5 Session 6 Session 7 Session 8 

139 13 54 10 14 65 II 15 76 12 16 87 13 918 14 10 2I 15 11 32 16 12 4 

2 11 51 13 12 62 14 13 73 15 14 84 16 15 159 16 26 10 937 11 10 48 12 

32 13 10 13 14 11 24 15 12 35 16 13 469 14 57 10 15 68 II 16 7I 12 98 

49I3 10 10 24 11 11 35 12 12 46 13 13 57 14 14 68 15 15 71 16 16 829 

55 10 11 36 II 12 47 12 13 58 13 14 61 14 15 72 15 16 83 16 9I49 10 2 

6 13 32 11 14 43 12 15 54 13 16 65 14 976 15 10 87 16 11 189 12 21 10 

71 II 922 12 10 33 13 II 44 14 12 55 15 13 66 16 14 779 15 88 10 16 1 

8 10 259 11 36 10 12 47 II 13 58 12 14 6I 13 15 72 14 16 83 15 914 16 

91 10 932 11 10 43 12 11 54 13 12 65 14 13 76 15 14 87 16 15 189 16 2 

10 10 35 11 II 46 12 12 57 13 13 68 14 14 7I 15 15 82 16 16 139924 10 

11 3 11 13 24 12 14 35 13 15 46 14 16 57 15 968 16 10 719 11 82 10 12 1 

12 II 2I9 12 32 10 13 43 11 14 54 12 15 65 13 16 76 14 987 15 10 18 16 

13 29 10 53 10 11 64 11 12 75 12 13 86 13 14 I7 14 15 28 15 16 3I 16 94 

14 953 13 10 64 14 11 75 15 12 86 16 13 179 14 28 10 15 31 11 16 42 12 

15 5 13 11 16 14 12 27 15 13 38 16 14 419 15 52 10 16 63 11 974 12 10 8 

16 13 12 10 14 23 11 15 34 12 16 45 13 956 14 10 67 15 11 78 16 12 819 



from the kitchen design. each entry from I to 8 should be 
taken out. However, there are no two rows that include 
together all eight entries, so two rows will be chosen 
that include only one common entry. A possibility 
would be to take out rows 10 and 16, where 2 occurs in 
both rows and 6 is missing (2,3.7,4 and 8.1,5,2). 

Possible options arc: 
1. no substitution; or 
2. substitute a remaining 6 for a2 for example in row 

14 or 12 

In both cases this would mean introducing a carry- 
over sequence that has already occurred (7 following 2 
for row 14. or 2 following I in row 12). All other sub- 
stitutions would mean that serving position has to be 
further compromised by having 2 three times in a col- 
umn. When a substitution is made, the structure of two 
odd and two even entries has to be preserved. 

The summaries of the concurrence and precedence 
matrices in Table 16 show little difference between the 
three options, but there are other designs where adding or 
taking out can create large differences in the concurrence 
and precedence values. The design with no substitution 
and the design with a substitution in row 14 both result in 
an efficiency of 89.8%. One key consequence of this is that 
designs should be optimised to take accurate account of 
the number of assessors who are expected to participate. 

5. Emphasising particular product contrasts 

Within the set of products presented for sensory ana- 
lysis it often happens that there are particular product 
contrasts which are of special relevance, so all contrasts 
may no longer be of equal importance and fully 
balanced designs may no longer be the best choice. This 

may arise when individual products in the study have 

particular experimental or commercial relevance, e. g. an 
experimental reference or control product, or the mar- 
ket or brand leader. 

In other cases there may be specific structural rela- 
tionships within the product set such that some or all of 
the products constitute a full or fractional factorial 
design. In these cases, there is usually more importance 

attached to the estimates of main effects and the lower 

order interactions. 

Just one example from this potentially vast range of 
sensory designs has been selected as an illustration -- a 
design again involving 16 products, but this time arran- 
ged as a 2x2x2x2 factorial. 

Two different strategies are compared: 
1. ignore the factorial structure: assign the products 

randomly to a design constructed as described 
above. and 

2. confound the three and four-factor interactions 
with the rows of the kitchen design. 

5.1. Ignoring the factorial structure 

For this method the kitchen design in Table I is used. 
For a design with 16 products there are 16! ways to 
assign product levels to the design. As there are too 
many to compare them all, a randomly chosen subset of 
10000 assignments is used for comparison. 

The efficiencies of the 10000 different incomplete 
block designs that result from the different product 
assignments to the kitchen design vary over all contrasts 
between 75 and 100%. Main effect contrasts A. B. D 
and two-factor interaction contrasts BD. and BCD have 
minimum efficiencies of 80.0%, while all the other fac- 
torial contrasts have a minimum efficiency of 75% 
(Table 17, columns I and 2). 

As a next step. efficiencies for the complete sensory 
design are calculated. Again, maxima and minima are 
tabulated for every contrast (Table 17, columns 3 and 
4). The same pattern as for the kitchen design is evident. 
but with reduced efficiencies compared to the kitchen 
design. The maximum efficiency is 98.7%. and the 
minimum efficiency is either 80 or 74.4%. So, the worst 
case than can happen for a design that has been opti- 
mised to have all pairwise product contrasts as equal as 
possible. is that a factorial product contrast of interest is 
estimated with 74.4% efficiency. 

An idea might be to search for the design from the 
10000 that gives the highest efficiency for: main effects 
(M); two-factor interactions (I). and main effects and 
two-factor interactions (B). 

The efficiencies for these designs are tabulated in 
Table 17, columns 5-7. For these three designs all con- 
trasts of interest have an efficiency higher than 89%, 

and those of lesser interest higher than 80%. 

Tabk 16 
The summary for the concurrence and the precedence matrix and efficiencies for the complete sensory designs resulting from the three alternative 

panel designs for 14 assessors 

Design Concurrence Precedence Efficiency 

14 0 

No substitution 16 88 16 8 24 8 32 88 40 120 80 88 89.8 

Substitution in row 12 16 88 16 8 24 16 16 16 8 40 120 80 88 89.7 

Substitution in row 14 16 0 20 8 12 24 24 8 16 8 48 104 88 88 89.8 
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Whereas previously assessors were randomly assigned 
to sequences and products randomly assigned to labels, 
for this strategy only the first randomisation can take 
place, because this design is optimised for the best pro- 
duct-label allocation. 

5.2. Confounding three and four-factor interactions 

If interest is mostly in main effects and two-factor 
interactions, another possibility is to confound higher 
order interactions (ABCD. ABD. ABC. ACD in the 
example) with blocks (sessions) in the kitchen design. 
The first step is to write out the confounding scheme for 
the blocks (Table 18) and translate it into product 
numbers. 

As a second step, a computer algorithm for creating 
row-column designs will be used to create a kitchen 
design with the correct column constraint (Jones, 1980). 

The efficiencies for the kitchen design are, as expected, 
100% for the unconfounded effects and 75% for the 
partially confounded effects (Table 17. column 8). Using 

Table 17 
Efficiencies for the factorial contrasts 

289 

different column permutations for the kitchen design 

results in very similar efficiencies. 
This strategy of confounding higher order interac- 

tions results in higher efficiencies for the contrast of 
interest by reducing the efficiencies of the higher order 
interactions compared to the previous design strategy 
(Table 7, column 9). 

6. Conclusions and implications 

A strategy for the construction of nested incomplete 
block designs where only a subset of products is avail- 
able in a session has been developed and evaluated. The 

construction strategy is applicable in all areas of sensory 
research where monadic assessment is undertaken. 

Even though our procedure uses cyclic designs, the 
whole process of constructing and assessing a design is 

still very time consuming. While algorithms to check the 
design qualities have been developed, the process itself 

needs to be automated and optimised and alternative 

Contrast Ignoring the factorial structure 
Confounding interactions 

Kitchen design complete design 

Maximum Minimum Maximum Minimum Al I B Kitchen Complete 
design design 

A 100 80.8 98 7 80.0 95.2 94.7 92.7 100 99.0 

B 100 80.8 . 
98 7 80.0 96.4 88.0 94.4 100 96.1 

C 100 75.0 . 
98 7 74.4 94.5 89.5 89.9 100 96.2 

D 100 80.8 . 98 7 80.0 94.4 85.6 91.5 100 96.1 

AB 100 75.0 . 98.7 74.4 91.7 95.0 91.2 100 97.5 

AC 100 75.0 98.7 74.4 87.4 94.5 91.0 100 98.5 

AD 100 75.0 98.7 74.4 93.0 94.7 94.7 100 97.3 

BC 100 75.0 98.7 74.4 88.2 94.5 94.3 100 97.2 

BD 100 80.8 98.7 80.0 88.6 93.1 94.2 100 99.5 

CD 100 75.0 98.7 74.4 85.3 94.6 91.5 100 97.2 

ABC 100 75.0 98.7 74.4 87.4 86.1 80.7 75 73.7 

ABD 100 75.0 98.7 74.4 88.8 86.4 88.7 75 73.1 

ACD 100 75.0 98.7 74.4 87.5 89.6 94.4 75 74.0 

BCD 100 80.8 98.7 80.0 94.5 86.1 83.7 100 96.1 

ABCD 100 75.0 98.7 74.4 87.5 88.2 88.3 75 73.4 

Table 18 
Confounding scheme for blocks 

Confounded 
Session Products available in each session 

I I ab ac ad be bd cd abed ABCD 
2 a 

b c d abc abd acd bcd 

3 a 
b d ac be cd abd abed ABD 

4 1 c ab ad bd abc acd bcd 

5 b c ad bd cd abc abed ABC 
6 

a 
1 d ab ac be abd acd bcd 

7 c d ab be bd acd abed ACD 

8 
a 
1 b ac ad cd abc abd bcd 



construction methods for the kitchen as well as for 
panel designs have to be evaluated. 

in cases where individual product comparisons are not 
equally important. the second approach offers an 
opportunity to concentrate on those product differences 
of main interest, and estimate these with higher precision 
than would be the case with the general procedure. where 
the special structure is ignored. How far this procedure 
can be generalised to include control products that are 
outside the factorial structure has still to be investigated. 
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