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ABSTRACT

After a brief overview of the simulation of a linear and
time-invariant system through the digital convolution,
the paper will start with the description of the various
kinds of techniques for the calculation of the impulse
response (IR) of the system that has to be simulated.
For each technique, and for each signal used for the
extraction, we will analyze the positive and negative
aspects, then the problems and the advantages that can
help the choice of one signal, instead of another, for the
simulation of certain kinds of systems.
Starting with the IR extraction through the reproduction
and recording of the Dirac δ (the impulse function), we
will analyze the advantages of this simple technique,
and the disadvantages connected with the impossibility
of a correct reproduction of the impulse function.
The second technique discussed in the paper will be the
white and pink noise one: we will reflect on the
computational advantages of the FFT algorithm and on
the phase problems of pseudo-random noise signals.
Then, we will move on to describing the Minimum
Length Sequence signal (MLS), the shift register and the
XOR for its generation, the extraction of the Dirac δ
through the auto-correlation between the original MLS
and the one passed through the system, and the
problems of this technique, which are strictly linked to
the linearity of the system used to measure the IR.
At the end, we will talk about the sweep signal: a
simple sinusoid, modulated in frequency by an
exponential function, seems to be the best method for
the extraction of IR from various kinds of systems. The
simplicity of the inversion of the sweep signal and its
independence from the non-linearities of the measuring
system, make this technique the most suitable for the
IR calculation of various kinds of systems. A brief
example of an IR extraction from a dummy head system
(Head Related Impulse Response), should then give the
idea of how this technique can be used for the
simulation of all kinds of systems, from the old style
compressors and equalizers, to the best sounding rooms.

Keywords – Convolution, impulse response, sweep,
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1. INTRODUCTION

The exponential increase of the calculation power of
CPU and DSP for the consumer market, and the
consequent decrease of the prices of fast personal
computers, have allowed the development of

increasingly “computationally heavy” algorithms for the
processing of signals. For this reason, the real time
digital convolution technique, which just five years ago
could be carried out only using dedicated hardware, is
becoming really popular as the engine of audio plugins
for the simulation of systems, such as environments
(convolution reverb plugins), frequency equalizers and
dynamic compressors.
In this scenario, the importance of the techniques for the
extraction of the impulse responses of these systems,
has become primary. In the digital domain, the use of a
simple Dirac δ is the best way to extract the transfer
function of a system. The problems start when we try to
pass from the digital to the analogue domain: it is
impossible (in reality) to generate a Dirac δ  from any
kind of transducer. For this reason, in previous years
various techniques for the extraction of the characteristic
of an analogue system have been developed: of course
each of these techniques use a particular kind of signal.
In this paper we will have a brief overview of four
different techniques: the Dirac δ , the white or pink
noise (FFT algorithm), the MLS (autocorrelation
algorithm) and the seno-logaritmic sweep (convolution
algorithm).

2. THE SYSTEMS AND THE TRANSFER
FUNCTIONS

Given two families of signals, F1 and F2, a system is
an apparatus that can transform each F1 signal into an
F2 signal. A system can be seen as a “black box”, the
behaviour of which is described by the transform law S:
F1  F2.
In environmental acoustics, a system is a room or a
hall; in a recording studio, a system is an outboard
effect; in an orchestra, a system is a musical
instrument…all these can be schematized as follows:

Figure 1. Schematization of a system

The mathematical expression to describe a system is:

   Y(t) = F[X(t)]                                                  (1)

We now assume that we have a system that is:

Lorenzo Picinali1

Music, Technology and Innovation Research Centre
De Montfort University

Leicester, UK



• Linear: the “overlap property” needs to be valid; if
the input consists of a weighted sum of different
signals, the output of the system is an overlap (that
is a weighted sum) of the replies of the system to
all the single signals in input, as shown in the
formulas numbers 2 and 3 (obviously, this is an
approximate definition, but it is enough in this
case).

X(t) + Z(t)   Y(t)                                            (2)

Y(t) = F[X(t) + Z(t)] = F[X(t)] + F[Z(t)]             (3)

•  Time-Invariant: it needs to be independent from
the time; if the input is X(t) and the output is Y(t),
for X(t-t0) the system has to give in output Y(t-t0),
as shown in the formula number 4.

X(t)   Y(t)     ⇒      X(t-t0)   Y(t-t0)                  (4)

A really important notion about the linear spaces it is
“basis”: a basis is a set of arrays {a1,……an}, and each
array x  can be obtained as a linear combination
(weighted sum) of  ∑i αi ai  elements of the basis, and at
the same time no element of the basis can be obtained
as a linear combination of the others.
A linear system S can be univocally defined knowing
the responses of the system on the elements of a basis.
In fact, for each input x , x  is obtained as a linear
combination x = ∑i αi ai, therefore:

S(x) = S (∑i αi ai) = ∑i αi S(ai)                          (5)

Knowing S(ai), for each i, we are able to know S(x) for
all the x signals of the space.

2.1. The Impulse Function, or Dirac δ

The function δ(t) can be thought as a rectangle with an
“infinitesimal” base Δ and an infinite height 1/Δ  (see
figure 2), so that:

                                        (6)

Figure 2. The  Impulse Function, or Dirac δ

The frequency analysis of the Impulse Function is an
horizontal line, parallel to the x axes: therefore, it is
possible to deduce that the δ(t) impulse contains all the
frequencies at the same intensity.
It is then possible to say that a linear and time-invariant
system can be described by its response to a specific
signal: the Dirac Delta δ(t). In fact, referring to the
response of the system at the δ(t) impulse, it is possible
to use as a characterizing element the function h(t):

 h(t) = F[δ (t)]                                                  (7)

In a linear and time-invariant system, is it possible to
describe the output y(t) with the following expression:

 ∫
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This formula is the so-called “analogue convolution”.

2.2. The digital convolution

When we are talking about audio plugins for the real
time convolution (like a convolution reverb), we are not
in the analogue domain, but in the digital one, where,
fortunately, the formulation of the convolution theory is
particularly easy.
In the digital domain, the signals are represented
dividing their variability interval into 2n “sub-intervals”
(this operation is called “quantization”, where n  is the
number of bits used for the digital representation). The
analogue signal is periodically measured (an operation
called “sampling”) and, depending on the value of the
signal in that time gap, the sample takes on a value
expressed in the number of n bits.
The signal gets into the system as an array of numbers,
and goes out as another array of numbers, with the same
sample rate and the same bitrate. Calling X the array in
input and Y the one in output, they can be represented
as shown in figure 3.

Figure 3. The arrays in input and in output from a system

It is important to notice that the numbers in output are
directly dependent on the numbers in input: having



inputted a sequence of zeros (silence) followed by non-
null numbers and by zeros again, in output we would
have a sequence similar to the one in input, but with a
different number of zeros before and after the signal.
This imparity is due to the fact that the response of the
system is not immediate, nor when the system is
excited (attack), nor when the system goes back to its
beginning state (release). In mathematical terms, it is
possible to say that Xn is not just in function of Yn, but
of a certain number of samples in input, starting from
the n one and going backwards. In the digital domain,
this is expressed by the following equation:

yn = xn*h1+xn-1*h2+xn-2*h3+…+xn-m*hm       (9)

where m  is the last sample in the memory. This
operation is the digital convolution, and is indicated by
the following expression:

y = x ⊗  h                                                     (10)

Therefore, the h coefficients are “characteristic” of the
system: looking at them as a waveform, it represents the
impulse response of the system.

3. MEASURING THE IMPULSE RESPONSE

After having defined the impulse response of a system,
it is essential to establish how to “extract” it: I have
outlined below an overview of four techniques for the
extraction of the IR from a linear and time-invariant
system.

3.1. The deconvolution

Having the system S, knowing the signal x in input and
the signal y measured in output, we have to determine
h. To do this it is necessary to find a signal x which has
an inverse x-1 so that:

x ⊗ x-1 = δ                                                     (11)

In this case, we could then obtain:

y ⊗ x-1 = h ⊗ x ⊗ x-1 = h ⊗  δ = h                    (12)

This means that, knowing x-1 (starting from x) and the
measured response y, it is possible to obtain h.
It theory, as much as in the digital domain, the
extraction of an IR from an analogue system is rather
simple: it is enough to put into the system a Dirac δ (a
signal made by an one followed by a sequence of zeros),
and record the output signal. As said before, the Dirac δ
contains all the frequencies at the same intensity: in this
way is it then possible to “test” and have the response
of the system for all the frequencies.
On a theoretical level, this operation seems to be
simple, however, in practice, there are numerous
difficulties: first of all, it is essential to reproduce an
impulsive noise sufficiently intense (at least with 60 dB
of Signal to Noise Ratio) and short (for example,
working at a sample rate of 96 kHz, the impulse should
last for 1/96000 seconds).

It could be possible to think about the shot of a gun,
but unfortunately the shot doesn’t generate a signal with
the duration just one sample, but of a few tens of
cycles. To get round this problem, it is possible to
convolve the signal with itself reversed on the time
axes, so that the first sample would be the last one.
This technique, known as Time Reversal Mirror, helps
to arrive quite close to the Dirac δ, but it is impossible
to reach it, just because it is really complicated to arrive
at x-1 with enough precision.
Synthesizing a digital impulse, it could be possible to
reproduce it through a loudspeaker, but with an elevated
intensity for such a short time, the reproduction of the
IR signal through a transducer (in this case a woofer and
a tweeter) is almost impossible without frequency and
phase distortions, and this could create big problems on
the calculation of h.

3.2. The pink and the white noise

Looking at the problems showed above, it could be
convenient to pass from the time to the frequency
domain using the Fourier transform: the convolution
between two signals in the time domain becomes a
simple multiplication in the frequency one:

y = x ⊗  h         H = X * H                              (13)

Each harmonic is multiplied with an m coefficient, for a
result of m  operations (in the time domain they were
m2), considering then that the transforms and the anti-
transforms have a limited computational cost (referring
to the Fast Fourier Transform, which is much more
efficient if compared with the Discrete Fourier
Transform).
With this technique, the extraction of the m coefficients
is quite easy, because they represent the quotients
between X and Y: once obtained the coefficients, it is
sufficient to carry out an anti-transform to obtain h(t). In
this particular case, H  is defined as the “transfer
function”, while h  is the “impulse response”.
Nevertheless, there is an instability problem: having a
frequency with a null m  coefficient, its relating H
coefficient diverges.
To get round this problem, is it possible to refer to the
white and the pink noise signals: these are two kinds of
signals that have the same energy on all the frequencies.
The white noise has a flat spectrum if displayed on a
linear frequency scale, while the pink noise has a flat
spectrum if displayed on a logarithmic (or exponential)
frequency scale. The rich frequency content of these
signals, make them really useful for a lot of
applications. The main problem is that the samples are
generated randomly: therefore, the spectrum is rather
discontinuous if visualized with a short windowing, and
the phase is not known at all. Increasing the dimension
of the FFT windowing, besides the enhancement of the
computation time, it introduces problems on the time
resolution.
These frequency and phase problems make this
technique unsuitable for the majority of cases, where the
phase and frequency resolution are essential.



3.3. The MLS signal

A really “clever” signal to use, instead of the white and
pink noise, is the MLS (Maximum Length Sequence). It
is a binary sequence generated by a shift register that
follows the following scheme:

Figure 4. The MLS generation scheme

Figure 5. The MLS signal generated with Cool Edit

With a correct positioning of the XOR, is it possible to
obtain different kinds of MLS signal. A really
important property of this signal is that, by auto-
correlating itself, it is possible to obtain a Dirac δ
without using the FFT algorithm. In fact, it would be
enough to generate a MLS x in input, sample the y
output signal and cross-correlate x  with y; this
operation, in the time domain, will generate the impulse
response h.

   If    y =h ⊗ x   and   x ⊂⊂ x = δ        
⇒  y ⊂⊂ x = h ⊗ x ⊂⊂ x = h ⊗ δ = h                (14)

Unfortunately, the principal disadvantage of this
technique is the strong dependence on the linearity of
the system. The MLS technique requires a perfectly
linear and time-invariant system: inexistent echoes and
phase problems can appear even with small non-
linearities. These problems make this really simple
technique unusable for the IR extraction when it is
impossible to have a really precise measurement system
(in the analogue domain, this happens frequently).

3.4. The sinus-logarithmic sweep signal

Right now, it seems that the most effective and efficient
technique for the IR extraction is the one that uses a
signal made by a sinusoidal function which goes from
the low frequencies to the high ones; a pure tone that
increases its frequency with time.

The advantages of this technique is that generating the
sweep signal x, its inverse x-1 is just the  x  signal
reversed on the time axes. Having x-1 and measuring y,
it is possible to calculate the IR h with a deconvolution
operation:

x ⊗ x-1 = h ⊗ x ⊗ x-1 = h ⊗  δ = h                    (15)

The only problem of this calculation is that the
convolution operation is not streamlined, and the
computational efficiency of the sweep technique is
lower, if compared to the ones described above.
The sweep signal can be linear or logarithmic,
depending on the frequency-increasing curve. The most
used is the logarithmic one, because with it, it is
possible to give more energy on the lower frequencies
(critical zone), and to go faster on the higher ones.
The sinus-logarithmic sweep formula is the following:

              (16)

where fi n f   is the starting frequency, fsup is the arrival
frequency and T is the time duration.

Figure 6. The sonogram of a sinus-logarithmic sweep
signal

4. A BRIEF EXAMPLE: THE HRTF
CALCULATION

As an example, I will shortly describe how these issues
are embedded in my research work on binaural
spatialization: the main objective of the research project
is to realize an algorithm for the binaural spatialization
of audio signals based on a convolution engine.

4.1. The dummy head, the HRTF and the HRIR

Considering a “dummy head” (an artificial head
mannequin with two microphones placed at the
beginning of the ear canals) as a system to simulate, it
is possible to extract the HRTF (Head Related Transfer
Function) calculating all the HRIR (Head Related
Impulse Response). In this case it would not be enough
to calculate only one HRIR, just because the response of



the dummy head system is different depending on the
direction of the sound source. In fact, the DDF,
Direction Depending Filtering , is one of the
localization cues used by our hearing system to
establish the position of the sound source in a three
dimensional soundscape.

4.2. The HRIR extraction

To extract the impulse responses of the dummy head, it
is necessary to sample the azimuth and the elevation
parameters in spheres around the head, at different
distances (different diameters of the spheres). In all the
sampled positions, we have then to reproduce the signal
chosen for the IR extraction, and record the output of the
system through the microphones placed on the dummy
head.
Using the sweep signal (which seems to be the most
suitable for this kind of system), we just have to
reproduce the signal in all the sampled position, then to
convolve the inverse of the input signal with the output
one (the one recorded through the dummy head
microphones), and we will have in output the HRIR of
that specific position. The database of all the HRIR at all
the sampled positions will constitute the HRTF.

4.3. The convolution with the HRIR

At this point, the algorithm will work quite easily:
giving in input the signal that has to be spatialized and
its virtual position in a three dimensional space
(azimuth, elevation and distance), the algorithm has just
to extract the suitable IR from the HRIR database, and to
convolve the input signal with it, giving in output a
stereo signal with the binaurally spatialized sound
source.

5. CONCLUSIONS

After this short overview, is it possible to say that each
of these techniques have their advantages and
disadvantages. For this reason, each kind of signal
(Dirac δ, white and pink noise, MLS and sweep) and
each kind of algorithm (deconvolution, FFT,
autocorrelation and convolution) are suitable for
different kinds of systems and purposes.
For example, to extract acoustical parameters from a
theatre hall, the reproduction of an impulse from a gun
shot would be the most suitable technique, while for the
digital simulation of the same environment, the sweep
technique would be much more precise.
At the end, it is possible to say that the most important
thing is the careful choice of the technique that seems
most suitable for the specific system that has to be
simulated. It is important to take into consideration all
the aspects, from the computational efficiency of the
algorithm, to the dependence on the non-linearities of
the measuring system.
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