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9 Abstract: Multivariate analysis of a heavy metal pollution survey of closed and active landfill  

10 precursors was carried out in order to compare environmental risk levels in relation to age,  

11 particle size and depth of the precursors. Landfill precursors (77) were collected and analyzed  

12 for 15 USEPA toxic heavy metals using ICP-MS. Heavy metals concentrations in closed  

13 landfill precursors were significantly higher than those in the active landfill for 11 of 15 heavy  

14 metals investigated (closed landfill order: Fe > Al > Mn > Cu > Pb > Ba> Co > Cr > Ni > Cd 15 

> As > Se > Ti). Cluster analysis and correlation studies indicated the distribution of the  

16 metals was more influenced by landfill precursor size than by depth of the sample. Principal  

17 component analysis (PCA) showed that 10 of 15 of heavy metals of both landfill precursors  

18 were from similar anthropogenic sources. Heavy metals pollution indices (Igeo > 5, EF > 40  

19 and CF > 7) of both active and closed landfill precursors exceeded limits in the order of Zn >  

20 Cd > Pb > Cu > Ag, indicating a major potential health risk influenced by age and particle  

21 size of precursor. Zn, Cd, Cu and Pb of both landfill precursors exceeded the USEPA set  

22 standard for assessment of human health risk for each of the metals (1×10 -4 to 1× 10-3). This  

23 study highlights the need for the integration of a clean-up process for precursors from both 24 

types of landfill to reduce possible environmental pollution during a reuse process.    
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Introduction 27 

Heavy metal deposition into landfill is of major concern due to the possible complex pathways 28 

into the environment and the possible high risk effect on living organism within the landfill 29 

areas. Heavy metal contamination from landfills has been attributed to farmland, surface water 30 

and underground water pollution (Lu et al., 2010; Chen et al., 2015, Sharifi et al., 2016).   31 

Unlike organic pollutants, heavy metals do not degrade in the landfill and their residual time in 32 

a municipal landfill can be for about 150 years if the metal is leached at a rate of 400mm/year 33 

(EU, 2002). This indicates that only a small proportion of the possible heavy metals content of 34 

a landfill is reflected in its leachate. Major heavy metals content of the landfill is reflected by 35 

landfill precursor which is the solid waste formed as result of the heterogeneous interaction 36 

between disposed wastes, climatic conditions and the management practice of the landfill. The 37 

growing interest in landfill mining and reuse of landfill precursors as compost (Masi et al., 38 

2014; Rong et al., 2017), landfill covering (Jain et al., 2005) and energy recovery (Quaghebeur 39 

et al., 2013) requires an evaluation of heavy metals enrichment level and associated health risks 40 

of landfill precursors, as part of a strategy to prevent further deposition of the heavy metals into 41 

the environment. Exposure to certain concentrations of heavy metal could lead to diverse health 42 

challenges especially for vulnerable people (children and aged), e.g. Cd, As, and Pb induces 43 

carcinogenesis of organs like lungs, kidney, bladder and skin (Kamunda et al., 2016).   44 

  45 

In Nigeria, heavy metal percolation into wells and underground water within 50-100m from an 46 

active landfill at Olushosun, Lagos, had been reported (Aboyeji and Eigbokhan, 2016). The 47 

rapid urbanization in the commercial capital Lagos has also increased pressure on the 48 

government to seek alternative reuse of closed landfill precursors, but heavy metal 49 



contamination levels and the possible human health risk involved is essential information 50 

needed to make an informed decision. Heavy metal concentrations of the landfill within the 51 

Lagos area had been largely determined by the soil/fine components of landfill, while the 52 

possible contribution of other component of the landfill has been ignored.  Jain et al. (2013) 53 

and Kaartinen et al. (2013) have reported size grouping of landfill precursors as important to 54 

understanding pollution assessment and possible reuse option. Multivariate analytical tools 55 

have been deployed to measure relationship, impact and association within several symmetrical 56 

and asymmetrical environmental components (Lu et al., 2010; Singh & Kumar, 2017). There 57 

is also a paucity of published report on the effect of landfill depth and age on the heavy metal 58 

pollution indices of landfill precursors.   59 

  60 

We report here on a multivariate analysis of heavy metals pollution survey of a closed and 61 

active landfill precursors using major pollution indicators (geo accumulation index, Igeo; 62 

enrichment factor, EF; contamination factor, CF), in order to compare the environmental risk 63 

levels in relationship to the age, particle size and depth of the landfill precursors.   64 

2.0 Material and method   65 

2.1 Sampling locations   66 

The Olusoshun active landfill site is located in the northern part of Lagos Metropolis within the 67 

Ojota area of Ikeja Local Government Council, within a Longitude of 6 ° 35' 50"E to 6 °  68 

36' 30 "E and Latitude 3 ° 22 ' 45 "N to 3 ° 23 ' 30 "N. It has been in operation since November 69 

1992 with an area of 42 hectares and receives an average of 8,000 metric tons of waste daily 70 

(Lawma, 2012).  The Abule-Egba closed landfill is located in the Western part of Lagos, under 71 



the Alimosho Local Government Council, with an area of about 10.2 hectares. It started receiving 72 

waste in 1984 and has an estimated 1.3 million metric tons of waste with an average height of 73 

12.5 m. The site had been closed since 2009 (LAWMA, 2012).  Detailed site operational activities 74 

of the two sites are reported in Adelopo et al. (2017). The two landfills have similar anthropogenic 75 

activities around their vicinity with residential, commercial and industrial settlements bordering 76 

different ends of the landfill sites. Figures 1 shows the sampling locations.  77 

** Figure 1 here **  78 

2.2 Sampling Profile   79 

Sampling for this research was designed to evaluate the first receptor layer (between 5 and 30 80 

cm) of the landfills, which reflect the early changes in the composition of the landfill waste. A 81 

shallow landfill sampling covering the whole expanse of the landfill was used to reveal the 82 

spatial-temporal nature of heavy metal load of waste components within this landfill layer.   83 

2.3 Sampling procedure   84 

The sites were systematically gridded into seven sampling cells using a procedure described by 85 

Resource Conservation and Recovery Act (RCRA) waste sampling technical guideline  86 

(USEPA, 2002). A sampling cell was approximately 14,571 m2 for the closed landfill and 87 

52,857 m2 for the active landfill. Each cell was located using the GPS and a total of three 88 

samples were obtained from each cells at different locations at the following depth: (i) 89 

upperdepth between 0-15 cm; (ii) mid-depth between 16–35 cm; and (iii) low-depth between 90 

36-50 cm.  Sample collection was achieved using a bucket auger and samples were placed in 91 

decontaminated plastic containers. An average of 500 g of sample was collected from each 92 

sampling point and a total 44 samples was collected from active landfill and 33 samples from 93 



the closed landfills. Oven drying, sieving and sorting were carried out in the laboratory. The 94 

dried samples were separated by size into composites of less degraded (S >6.3mm) and more 95 

degraded (S <6.3mm) components. A composite representative sample of 12 samples per each 96 

landfill was achieved by combination of all samples of the same depth and particle size before 97 

homogenization.   98 

Homogenized samples (20 g) were further grinded using a mortar and pestle, and pass through 99 

a uniform sieve. The powdered samples (0.5 g) were then digested by AnalaR grade  acids (9.0 100 

mL HNO3 and 3.0 mL HCl) using a MARS microwave digestion system (CEM, USA) according 101 

to EPA method 3052 (USEPA, 2007). Samples were filtered and diluted with distilled water to 102 

the 50 ml mark, then centrifuge at 3000 rpm for 7 minutes. Aliquots of final solutions (5 ml) 103 

were analysed for heavy metal content by Inductively Coupled Plasma – Mass Spectrometry 104 

(ICP-MS; Agilent 7500, Agilent, USA). The instrument was calibrated prior to each set of 105 

measurements. A total of 15 metals were selected based on USEPA carcinogenic potential rating 106 

of metals and metalloids pollutants; Ag, Al, As, Ba, Cd, Co, Cr, Cu, Fe Mn, Ni, Pb, Se, Ti and 107 

Zn were investigated.     108 

  109 

2.4 Quality control samples  110 

Quality control samples were digested alongside each batch of samples: spiked sample with 20 111 

mg/l standard solution of Cr, duplicate sample, reagent blank and certified reference standard 112 

soil sample, CRM051-50G. Microwave digest power calibration was carried out to determine 113 

the optimum digestion power condition. The geochemical background value in average shale 114 

was used as reference control values (Turekian and Wedepohl, 1961). The densely populated 115 



area around the landfill had different anthropogenic activities contaminating the environment 116 

making the area unsuitable for obtaining a control sample; metal air pollution within the Lagos 117 

sampling area has previously been reported (Oketola et al., 2007).   118 

2.5 Statistical analysis  119 

Similarity and trends in the concentrations of heavy metals of the closed and active landfill were 120 

studied using SPSS 21. Normality test, Mann–Whitney test, cluster analysis and principal 121 

component analysis (PCA) were used to investigate the type of relationship between heavy metals 122 

concentrations of the landfill samples with the depth and size of precursors. Cluster analysis was 123 

used to sort data into groups for better understanding of the relationships between variables, and 124 

for informing further analysis.   125 

2.6 Heavy metal pollution assessment  126 

 2.6.1 Geo-accumulation Index  127 

The geo-accumulation index (Igeo) was used to estimate the metal accumulation levels in the 128 

landfill precursors. Li et al. (2014) and Aiman et al. (2016) have used this index to determine 129 

the extent of the metal accumulation in soil and environmental components above the expected 130 

natural level.  131 

 Igeo is expressed as:       132 

 ……………… equ. (1)  133 
Where Cx is the concentration of the heavy metal x in the landfill precursor, and Bx is the 134 

geochemical background value in average shale of element x (Turekian and Wedepohl, 1961). 135 

The constant 1.5 is to minimize the effects of lithologic variations and small anthropogenic 136 

influences in the background values (Aiman et al., 2016; Ali et al., 2013). Igeo classification 137 



according to Loska et al. (2004) and Aiman et al. (2016) is given as: unpolluted, Igeo <0; 138 

unpolluted to moderately polluted, Igeo ≤1; moderately polluted, 1 ≥Igeo <2; moderately polluted 139 

to highly polluted, 2 ≥Igeo <3; highly polluted, 3 ≥Igeo <4; highly polluted to very highly 140 

polluted, 4 ≥Igeo <5; and very highly polluted, Igeo >5.  141 

  142 

2.6.2 Contamination Factor and Degree of Contamination  143 

The contamination factor (CF) and the degree of contamination (DC) was use for the assessment 144 

of landfill precursor contamination. The concentrations of metals in the landfill precursors are 145 

compared to the background values of the reference sample. CF is the single metal index, while 146 

the sum of contamination factors for all metals evaluated is represented as CD. The equation 147 

for CF and CD is given by Chen et al. (2015) and Sharifi et al. (2016) as thus:  148 

CF =  ………………….  equ. (2)  149 

  150 

  ……………   equ. (3)  151 

157 Where Cs is the concentration of each metal in the landfill precursor, while Cr is the  152 

158 concentration of metal in the reference control sample, as given by Turekian and Wedepohl 159 153 

(1961) and Ali et al. (2013). CF values are classified as low degree of contamination (CF < 1)  154 

160  to very high degree of contamination (CF ≥6).  155 
  156 

2.6.3 Enrichment factor   157 

The enrichment factors (EFs) of heavy metals were calculated to assess the contributions from 158 

anthropogenic sources to the landfill precursor concentrations. The EF is determined by 159 



comparing the concentration of metals from the landfill precursors to that of a reference metal 160 

(Lu et al., 2010). The EF of each heavy metal in the precursor was evaluated as:  161 

EF =       ………… equ. (4)   162 

Where: Ci and Cr are the concentrations of the metal of interest in the landfill precursor and the 163 

chosen reference metal of the sample, respectively; Bi and Br are the background 164 

concentrations of the metal of interest in the shale and the chosen reference metals of the shale, 165 

respectively (Hu et al., 2013). The most common reference metals are Sc, Mn, Ti, Al, and Fe 166 

(Schiff and Weisberg 1999; Sutherland, 2000; Ali et al., 2013). Mn was chosen as the reference 167 

metal for the landfill precursor due to its prevalence in all samples evaluated. EF is classified 168 

as deficiency to minimal enrichment (EF 2), moderate enrichment (2 ≤ EF < 5), significant 169 

enrichment (5 ≤ EF <20), very high enrichment (20 ≤ EF < 40) or extremely high enrichment 170 

(EF ≥ 40).  171 

  172 

2.7 Potential human health risk of metals in the study sites  173 

Heavy metals are classified as either non-carcinogenic or carcinogenic in health risk assessment 174 

(USEPA 2002a; Kamunda et al., 2016), and the potential risk procedure is calculated based on 175 

these classification. Non-carcinogenic chemicals are presumed to have threshold concentrations 176 

below which there are no potential adverse health effects, while carcinogens are assumed to 177 

have no concentrations exposure limit. The human health risk  178 



184 effect of landfill precursors were assessed using the procedure provided by USEPA (1989 and  

185 2002a) for risk exposure to heavy metals contamination on children and adults. The 186 

guidelines identify three exposure route: (a) ingestion of substrate dust particles (ADI  

187 ingestion); (b) inhalation of suspended dust particles through mouth and nose (ADI  

188 inhalation); and (c) dermal absorption of heavy metals in particles adhered to exposed skin 189 

(ADI dermal).   

190  Average Daily intake for each pathway was calculated using equations 5-7 below:  

191    

          ………………….equ. (5)   

193    

       ………………..equ. (6)  

195    

  …….. equ. (7)  

197    

198 Where: ADI (mg kg−1 day−1) is average daily intake (ADI) through ingestion (AIing),  

199 inhalation (ADIinh); dermal contact (ADI dermal); Cs is the concentration of the elements in  

200 the landfill precursor; EF is the exposure frequency (d/y); ED is the exposure duration (years); 
201 BW the body weight (kg); AT is the average time (days); CF is the conversion factor (1 X 

10202 6);  Rinh is the ingestion (mg day−1) and inhalation (m3 day−1) rate for children (1- 6 years) 
and  

203 above 30 years for adults; SA is the exposure surface area (cm2/day); ABS is the skin  

204 absorption factor; PEF is the particle emission factor (m3 kg−1); and AF is the soil adherence  

205 factor (mg cm2 h−1) for both children and adults.   



For this study, non-residential evaluation framework data for these parameters were used to 205 

determine ADI (USEPA, 2002a; Li et al., 2014). The daily doses estimated for each metals via 206 

the exposure pathway are divided by the reference dose (RfD, mg/kg-day) of the specific metal 207 

to yield a non-carcinogenic hazard quotient (HQ), which is aggregated together to give the 208 

overall non-carcinogens health risk index (HI, Hazard Index). Whereas, for carcinogens dose, 209 

the corresponding slope factor (SF, per mg/kg-day) for each metal is multiplied by the ADI to 210 

determine the cancer risk level per each pathway and a summation to indicate the overall risk, 211 

as indicated in equation 8-9. (USEPA, 2002a; Li et al., 2014; Chen et al., 2015).   212 

  213 

HI (non-carcinogenic) =     ……………… ……………..equ. (8)  214 

  215 

Carcinogenic risk =  …………………………………… equ. (9)  216 

  217 

   218 

3.0 Result and Discussion  219 

3.1 Quality control samples  220 

The recovery study of spiked sampled were within 88 to 99% for the three spiked samples used, 221 

while duplicate samples replicated at RPD< 8%.  Metal concentrations for the certificated 222 

referenced sample analyzed were within the predicted interval of 80% for all elements except 223 

Ag.  224 

   225 



3.2 Statistical analysis of trends in heavy metals concentrations   226 

Tables 1 and 2 present heavy metal concentrations of precursors from the two landfill types 227 

with depth of sampling. The landfills had similar types of heavy metals content, but with some 228 

variation in the concentration trends of the metals. For the closed landfill the concentration 229 

order was Fe> Al > Zn >Mn>Cu>Pb>Ba>Co>Cr>Ni>Cd>As>Ag>Se>Ti, compared to the 230 

active landfill order of Fe>Al>Zn>Mn>Cu>Pb>Ba>Cr>Ni > Cd > Co  231 

>As>Ag>Se>Ti.   232 

  233 

***Table 1 and 2 here**  234 

  235 

The heavy metal concentrations of the landfill precursors were subjected to KolmogrovSmirov 236 

and Shapiro-Wilk normality tests to identify the appropriate SPSS analysis tools for these data. 237 

Most of the data (82%) for both landfills showed significant at the p< 0.05 level, which indicated 238 

that the data sets were not normally distributed. Based on these results, the non-parametric 239 

Mann–Whitney U test was used to evaluate similarity between heavy metal concentrations of 240 

samples from both landfills. Of the 15 heavy metals determined, 11 (Mn, Co, Ni, Zn, Fe, Cu, 241 

Se, As, Cd, Ba and Pb) showed a statistical significant difference (p<0.05) between the median 242 

concentrations of these element for active and closed landfill precursors (supplementary table), 243 

while there was no such significant statistical difference (p>0.05) for Ti, Al, Ag, Cr.  244 

The box plot presented in Figure 2 compares the concentrations of each heavy metal in the 245 

active and closed landfill samples.  246 

     **  Figure 2 **   247 

  248 



The box plots (Figure 2) indicated higher concentrations of heavy metals in precursors from the 249 

closed landfill compared to the active landfill for all metals investigated except Cr.  Heavy 250 

metals availability in landfills has been associated with the nature of waste disposed, landfill  251 

management  practice  and  degradations  activities  (EU,  2002).  The  composition  252 

characterization studies of these landfills precursors, reported by Adelopo et al. (2017), have 253 

shown no statistical significant difference (p>0.05) in the composition between the active and 254 

closed landfill precursors, but a comparatively high level of degradation in the closed landfill 255 

which  may cause elevated concentrations of heavy metals in the samples. In older landfills, 256 

there is the possibility of heavy metal diffusion into the micro pore of soil and solid matter 257 

through the process of (co)precipitation and (co)flocculation, and cavity entrapment (USEPA, 258 

2007a). Waste degradation may reduce the weight of landfilled waste but heavy metal 259 

concentration is not often reduced. Rather the metals are being redistributed by the leaching 260 

process within the depth of the landfill (EU, 2002). Tye et al. (2003) and Hamon et al. (1998) 261 

suggested that the aging processes could reduce the bioavailability of metals in the soil 262 

component due a stronger bonding system formed within this component.  263 

  264 

The heavy metal content of the investigated landfill precursors were compared to previous 265 

published report of heavy metals of other mined municipal solid waste landfills. Except for Cu 266 

and Zn, the concentrations of heavy metals in the landfill were generally lower compared to 267 

reported values of mined landfill studies in other countries:  Belgium (Quaghebeur et al., 2013) 268 

and United Kingdom (Gutiérrez-Gutiérrez et al., 2015). This suggests that Cu and Zn are high 269 

in the content of waste disposed into the Lagos area landfills, or are influenced by the existing 270 

management practice which involve the use of clay soil as linking road within the landfill. 271 



Conversely, the concentrations of metals of landfill precursor in the present study were higher 272 

compared to reported metals in other dumpsite area within Nigeria: Sagamu,  273 

Ogun state (Ogunbanjo et al., 2016); Aba, Abia state (Amadi & Nwankwoala, 2013); and  274 

Lafia, Nasarrawa state (Opaluwa et al., 2012).  Similarly, heavy metals in dust from an  275 

Electronic market at Westmestar in Lagos (Adaramodu, et al., 2012) and power station soil in 276 

Lagos (Adeyi and Torto, 2014) had lower concentrations than the present study. This indicates 277 

that the landfill precursors in the present study have a higher heavy metal pollution potential 278 

compared to other anthropogenic sources within the country. The reason for this could be due 279 

to the fact that the landfills are the major final disposal for all types of solid waste including 280 

electronic waste (e-waste). About 80 per cent of the world's e- wastes end up in landfills across 281 

Asia and Africa (Adaramodu, et al., 2012). Lagos being the commercial capital of Nigeria 282 

receives over 600,000 tons of unserviceable e-waste (computers and laptops) per year imported 283 

from developed countries as donation to organizations and educational institutions but are 284 

finally disposed at the landfills (Nnorom and Osibanjo 2008).  285 

Longe et al. (2007) reported that the landfill sites’ lateritic stratification provides natural 286 

attenuation for heavy metal percolation into the ground water. This may be responsible for low 287 

percolation of heavy metals into the ground water.   288 

3.3 Depth and size relationships of heavy metal load in precursor     289 

The relationships between heavy metal distribution, depth of sampling and particle size were 290 

evaluated using correlations analysis (see supplementary data). There was no significant 291 

correlation between most concentrations of heavy metals in both landfill and the depth of 292 

samples. Only Cr, Ag and Ni within the closed landfill had a strong negative correlation (-  293 



0.86, -0.51, and -0.71 respectively; p=0.01) with depth of sampling. This implies that Cr and Ni 294 

concentrations significantly decrease as the sampling depth increases from 5 to 50 cm. For the 295 

active landfill precursors, a strong positive correlation was observed for Mn and Ba at 0.59 and 296 

0.62 respectively (p< 0.05).  This may have been influenced by metal content of waste dispose 297 

and bounding system of these metals within the landfill depths. Fate and transport of metals 298 

within solid waste are influence by metals’ complexation system with the pore water and by 299 

adsorption onto molecules of the waste (EU, 2002; USEPA, 2007a).  Correlation analysis 300 

between heavy metal content and particle size indicated a strong negative correlation (p<0.05) 301 

with increased particle size for Cr (-0.82), Cu (-0.77), Ag (-0.63) and Pb (-0.63) in the active 302 

landfill samples and for Co (-0.63), Mn (-0.63), Pb (-0.63) in the closed landfill samples. The 303 

negative correlations indicated that the concentrations for these eight heavy metals increased 304 

with decrease in the particle size, within the identified landfills. This indicates the prevalence 305 

of these metals at higher concentrations in the degraded samples compared to less degraded 306 

components.   307 

                                                                                        308 

  ** Figure 3  here **  309 

  310 

   311 

    312 

Cluster analysis:  313 

For further understanding of the interaction between heavy metal concentrations, depth and 314 

particle size (degraded / less degraded) a cluster analysis was carried out. Hierarchical 315 

agglomerative cluster analysis was performed using Ward’s method, and squared Euclidean 316 



distances as a measure of similarity within distribution of heavy metals within each landfill 317 

samples. The analysis of the closed and active landfill samples generated similar clusters 318 

grouping (Fig. 3). The clusters consist of two main clusters having equal number of cluster 319 

member (3) for both landfill precursors.  One cluster consisting of more degraded sample (2 of 320 

3 cluster member), while the second mainly of less degraded (2 of 3 cluster members). In both 321 

landfill, the nature of precursor (more / less degraded) was found to be linearly relate to the 322 

concentrations of heavy metals rather than the depth of precursors. More degraded landfill 323 

precursors were associated with higher concentrations of metals than the less degraded 324 

precursors of both landfills. The degraded component of the landfill precursors have the 325 

potential to adsorb more heavy metals due to increased porosity within surface area and the 326 

ability to forming a stronger bonding system (EU, 2002). Quaghebeur et al. (2013) also 327 

observed elevated concentrations of Cu, Cr, Ni and Zn in fine components of mined landfill in 328 

Belgium.  329 

  330 

3.4 Principal component analysis (PCA)  331 

In order to identify the source trends in heavy metals of the landfill precursors (active and closed 332 

landfills), PCA was carried out using the metal concentrations as the independent variables. The 333 

Kaiser–Meyer–Olkin test values of 0.56 (for Active landfill) and 0.59 (for closed landfill) 334 

indicated that the data were above a fair level of sufficiency. Furthermore, the Bartlett’s test of 335 

sphericity with an associated p value of <0.001 indicated that PCA was suitable for the data set.  336 

  337 

The eigenvalues of the matrix was determined using varimax rotation with Kaiser  338 



Normalization. Varimax rotation was selected to reduce factors influencing each variable for 339 

enhanced result interpretation. The PCA for active landfill precursors indicated there are four 340 

major components with eigenvalues of the factors explaining 85% of the variance in the data 341 

set, while closed landfill precursors had five factor components and eigenvalues explaining 87% 342 

of the variance. The relations among the heavy metals based on the first three principal 343 

components are illustrated in Fig. 4 and Fig. 5, while the factor loadings result, eigenvalues and 344 

communalities are presented in the supplementary data. The results indicate there are 345 

differences in the number of factor components for the precursors in the closed and active 346 

landfill. The 1st factor explains 38.2% and 35.6% of the total variance for the closed and active 347 

precursor respectively. It loads heavily on four metals (Mn, Ba, Al, Co,) for the closed landfill 348 

sample as against seven metals in the active landfill sample (Mn, Ba, Fe, Se,  Zn, Ni, and As).  349 

The component in the 2nd factor for both landfill samples were mainly of four metals (closed - 350 

Ti, As, Fe, Se; active - Ti, As, Al, Cd), accounting for 15.4% and 28.8% of the total variance 351 

respectively. The 3rd factor of the landfill samples have the same variance effect of ≈12% and 352 

consist of 4 and 3 metals for closed (Cu, Cr, Ni, Zn) and active (Cu, Cr, Pb) landfill precursors. 353 

From the component grouping it could be inferred that the metal source of the 1st component 354 

of the landfill samples (active vs. closed) is the major distinguishing source between the landfill 355 

samples (7 metals vs. 4 metals), while the 2nd and 3rd components were similar in terms of 356 

numbers and types of metals in the components (4 vs. 4) and (3 vs. 4) for the closed and active 357 

landfill samples respectively. The heavy metal source in landfill samples is dependent on the 358 

component waste and mineral content of the landfill covering (EU, 2002). The sharp difference 359 

in the 1st component may be a result of the metals from the clayey landfill cover used in the 360 

active landfill which is absent in the closed landfill (LAWMA 2012;  361 



Longe, et al. 2007).   362 
  363 

**Figures 4 and 5 **  364 

  365 

3.6 Pollution indicators   366 

3.6.1 Geo-accumulation Index    367 

Most (10 of 15) of the heavy metals evaluated (Ti, Cr, Mn, Fe, Co, Ni, As, Se, Pb, Ba and Al) 368 

had a geo-accumulation index below zero (Igeo <0) for both closed and active landfill 369 

precursors (see supplementary data). This indicates that both landfills were uncontaminated in 370 

terms of these metals. However, the landfill precursors contained pollution concentrations 371 

levels of Zn, Cd, Ag and Cu (Igeo > 2).  The Igeo accumulation of Cd for more degraded 372 

samples of both landfills indicated heavier pollution than the less degraded sample (MD =Igeo 373 

>4, LD =1 > Igeo ≤ 2). The pollution trend bears no definitive relationship to the depth of 374 

samples in both landfill samples (p>0.05). Elevated geo-accumulation of Cd in landfill and 375 

dumpsite has been reported for Ogun, Nigeria (Ogunbanjo et al., 2016) and for Pakistan (Aiman 376 

et al., 2016).   The level of geo-accumulation Cd metals in the landfill samples present a major 377 

health risk. Exposure to high concentrations of Cd could damage the reproductive system, 378 

lungs, DNA and kidney, and could cause deficit in learning, cognition, behaviour and 379 

neuromotor skills in children (Chen et al., 2015). Disposal of e-waste, batteries and painting 380 

residual are the likely source of Cd on unregulated municipal landfill (EU, 2002).   381 

  382 

3.6.2 Contamination factor (CF) and the degree of contamination  383 

CF values of most metals (Ti, Cr, Mn, Fe, Co, Ni, As, Se, Ba and Al) were within the low degree 384 

of contamination category for all precursors evaluated (CF< 1) (see supplementary data). A 385 



serious source of concern is the CF values for Zn, Cd, Cu, Pb and Ag, which fall within a very 386 

high degree of contamination (CF≥6). There was no definite depth relation with the CF, except 387 

for Ag which increased down the depth of the active landfill for both MD and LD (MD: 7- 71, 388 

LD: 4- 17).  CD values for samples in both landfill indicated a very high degree of 389 

contamination (CD >28), which is mainly influenced by the CF values of Zn, Cd, Cu, Pb and 390 

Ag. For both landfill precursors, the degree of contamination of Zn, Cd, Cu, Pb and Ag in the 391 

more degraded samples was higher than in the less degraded sample.   392 

3.6.2 Enrichment factor (EF)  393 

The metal EFs for Ti, Cr, Mn, Fe, Co, Ni, As, Se, Al and Ba were below enrichment level  394 

(EF≤ 2) for precursors of both landfills. However, extreme high enrichment was observed for 395 

Zn, Cd, Cu Pb and Ag for both landfill sample (EF > 40). EF values of <2 are assumed to be an 396 

indication that metal are mostly from natural source (Zhang and Liu, 2002), while EF values 397 

>2 suggest a significant contribution from an anthropogenic source. The high EF values for Zn, 398 

Cd, Cu, Pb and Ag strongly indicated that the metals are from anthropogenic source, mostly 399 

from waste disposed on the landfill.   400 

  401 

The pollution index (Igeo > 5, EF > 40 and CF> 7) indicated a similar trend for metals likely to 402 

pose major challenge in the reuse options of both landfill precursors, i.e. Zn, Cu, Cd, Pb and  403 

Ag. The pollution indexes imply that the landfills’ (closed and active) precursors have high 404 

concentrations of heavy metal with potential human health risk. It is evident from the results 405 

that both less degraded and more degraded pose potential danger to human health.    406 

There is an observed similarity in the trend of heavy metal pollution in the present study and 407 

previously reported trend in the contamination of metals in soils of e-waste recycling area in 408 

China (Chen et al., 2010; Tang et al., 2010; Luo et al., 2011). In all of these studies, Zn, Cu, 409 

Cd, and Pb are the major contaminants, although their concentrations varied depending on 410 



sampling area. This could suggest the possible accumulation of e-waste at the investigated 411 

landfills.  412 

  413 

  414 

3.7 Human health risk assessment   415 

Human health risk assessment of the landfill precursors focused on the possible main routes of 416 

heavy metal contamination through operations on the landfill and during reuse. Three exposure 417 

pathways were identified: (i) ingestion of the metals through water consumption after 418 

contamination of underground / surface water or oral ingestion along with food due to poor 419 

hygiene; (ii) inhalation of suspended dust particles through mouth and nose (CDIinh) during 420 

clearing, spreading, sorting and excavation of waste on the landfill; and (iii) skin absorption 421 

through bathing with contaminated water.   422 

Five heavy metals (Zn, Cd, Ag, Pb and Cu) identified as having a high pollution index were 423 

evaluated. There are no carcinogenic slope factors for Pb, Cu, Ag and Zn; only the carcinogenic 424 

risks for Cd was estimated using carcinogenic slope factors, while others were compared based 425 

on cumulative intakes of the metals. Table 3 and 4 present the risk factor for carcinogenic and 426 

non-carcinogenic metals of landfill precursors. The result indicated that for precursors from 427 

both types of landfill the potential risk was in the order dermal > ingestion > inhalation, for both 428 

non-carcinogenic and carcinogenic risk factor.   429 

***Tables 3 and 4****  430 

The inhalation risk factor falls below the acceptable range of the carcinogenic risk (1 × 10−6 to  431 

1 × 10−5). However, ingestion and dermal risk factor were mostly above acceptable level (1× 432 

10-4 to 1× 10-3). According to USEPA guidelines, cancer risk factor is expressed as a unitless 433 

probability with a threshold exceeding 1× 10-5 (USEPA, 1989). Inhalation risk factor is 434 



influenced by the aerodynamic size, lifetime in air and behavior of associated composition of 435 

metals in the respiratory system of human (EU, 2002). Kamunda et al. (2016) reported similar 436 

observations with limited risk contribution via inhalation for heavy metal within a mining site 437 

in South Africa. The total cancer risk factor from all pathway indicated that Zn and Cu were the 438 

most potent health risk hazards. The hazard quotients (HQs) of Pb, Cu, Zn and Ag were within 439 

the acceptable limit (HQ< 1) for all precursors.  Cd is potentially a major risk especially among 440 

the children with HQ above 1 (close landfill precursor, 1≥HQ≤5; active landfill precursor, 441 

1≥HQ≤2). The MD valued showed higher risk than the LD samples for all metals considered. 442 

The risk assessment of both landfill precursors also showed similar potential risk with 90% of 443 

samples from both landfill below the acceptable limit. The risk potential of the metals in both 444 

landfill precursors were in order Cd> Pb > Cu > Zn >Ag.   445 

  446 

The research reported on here provides important information that needs to be considered in 447 

development of a policy for environmentally sustainable reuse of landfilled waste. The pollutant 448 

indexes (Igeo, > 5, EF> 40 and CF> 7) of five metals are identified as possible source of 449 

contamination. Extractive and recycling processes of landfill waste should be carried out with 450 

adequate attention to preventive protective materials for the site workers and the environment. 451 

Presently, most recycling activities on both landfill sites are carried out with inadequate 452 

attention to potential health risk. Tang et al. (2015) reported considerable contamination of the 453 

soil and sediment by Cd through recycling of plastic due to different mechanical recycling 454 

processes.  Waste spreading and compacting activities could increase aerodynamic size and 455 

lifetime period of heavy metals in air.  Landfill mining should preferably be carried out during 456 

low wind speed periods to limit particulate dispersal, which could affect the air quality.  The 457 



high concentrations of these metals precludes consideration of these landfill precursor for use 458 

as compost for farmland and agricultural purposes. The more degraded (MD) and less degraded 459 

(LD) components have pollution index values that indicate a clean-up process is required before 460 

possible reuse options are considered. Singh and Lee (2015) reported that an extraction clean–461 

up process of an automobile shredder residues waste was able to reduce high risk factor of Pb, 462 

Zn Cu and Cd to tolerant level.  463 

The degree of clean-up needed may be under estimated if heavy metals pollution toxicity was 464 

estimated based on the more degraded part of landfill waste alone, as the data reported on here  465 

indicates that the less degraded component contributed significant pollution to the landfill.    466 

4.0 Conclusion   467 

Heavy metal content of landfill waste is a major challenge in developing a sustainable reuse 468 

process for landfilled waste. The heavy metals concentrations in closed landfill precursors were 469 

significantly higher than those from active landfill for 11 of 15 heavy metals investigated.  The 470 

differences were likely due to the age difference between the landfill precursor (closed: 7-8 471 

years, active: 1-2years). Though both landfill had similar heavy metals content Fe > Al > Mn > 472 

Cu > Pb > Ba> Co > Cr > Ni > Cd > As > Se > Ti, cluster analysis and correlation studies 473 

indicated the distribution of the heavy metals were influenced by precursor size (more degraded 474 

vs. less degraded) than by depth of the sample. PCA analysis indicated similar source for 10 of 475 

15 of heavy metals investigated for both landfill precursors. The heavy metals pollution index 476 

(Igeo, EF, CF) of active and closed landfills indicated a major health risk potential, in the order  477 

of Cd > Cu > Pb > Zn > Ag.   478 

The study showed that landfill precursor of both landfill posed a major human health risk with 479 

carcinogenic and non-carcinogenic risk of Zn, Cd, Cu and Pb above the USEPA set standard 480 



for each of the metals. In light of previous studies (Chen et al., 2010; Tang et al., 2010; Luo et 481 

al., 2011 ), it is possible that e-wastes may be the main source of these elements. It also 482 

identified particle size as an essential factor in evaluating the potential pollution risk factor of 483 

landfills precursor for reuse. Integration of a clean-up process for the landfill precursor during 484 

any reuse process is highly recommended in order to reduce possible environmental pollution.   485 
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Figure 3: Dendrograms showing similarity in the active and closed landfill samples based 656 
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 Figure 5:   Rotation component of heavy metals content in the closed landfill precursor   663 
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 Table 
                        Table 1    HEAVY METALS CONCENTRATIONS OF CLOSED LANDFILL PRECURSORS AT EACH DEPTH ( mg/kg)  

 Element     Ag  Al  As  Ba  Cd  Co  Cr  Cu  Fe  Mn  Ni  Pb  Ti  Se  Zn  
 

More degraded samples         
  

  
  

  
  

  
  

  
  

  
  

  
  

  
  Upper layer    

Mean(N=4)    0.79  3370.08  2.81  117.77  4.48  53.31  26.15  538.84  11910.47  363.37  11.59  253.67  0.03  0.4  4316.81  
SD    0.3  1288.51  0.02  87.29  1.1  30.22  6.35  344.33  608.91  66.95  3.05  46.31  0.01  0.2  1593.67  
 mid layer  

                                                
Mean(4)    0.71  4241.25  3.05  118.11  4.58  41.33  32.6  262.17  17488.41  373.44  14.2  184.4  0.03  0.34  3734.83  
SD    0.22  1596.8  0.64  52.46  1.13  47.63  11.54  25.87  3992.65  154.95  5.87  18.63  0.01  0.07  2843.2  
 lower layer                                                  
Mean(4)    1.24  4296.29  4.41  287.56  12.49  8.97  46.63  1250.15  15095.17  472.55  22.74  339.1  0.04  0.36  2443.35  
SD    0.21  258.79  1.35  9.29  10.36  3.92  4.93  1334.4  2739.57  113.58  10.78  139.31  0.01  0.03  724.66  
Less degraded samples                      

upper layer                         

Mean(4)    0.6  3245.77  2.71  82.78  3.09  15.4  18.14  170.5  16707.67  236.94  38.07  107.26  0.03  0.46  1221.95  
SD    0.42  2259.44  0.98  15.2  3.33  18.39  6.45  9.13  1127.96  124.61  39.88  55.98  0.01  0.38  1198.94  
                                  
mid layer                                  
Mean(4)    0.3  2255.58  4.21  96.11  2.66  12.16  17.09  177.68  9558.39  607.76  10.77  88.05  0.03  0.25  2126.14  
SD    0.12  888.64  2.98  53.21  0.16  3.48  3.26  160.35  940.33  562.51  4.02  31.8  0  0.04  569.19  
                                  
lower layer                                  
Mean(4)    0.39  2796.48  3.73  233.53  5.63  34.08  17.89  141.22  34130.09  7616.55  24.07  198.24  0.03  0.91  13204.81  
SD    0.3  
  

132.75  2.68  152.2  2.71  9.84  0.88  64.47  18730.28  9650.75  25.06  175.3  0  0.9  11609.91  

SD: standard deviation, N: number of sample  
  

  

  

  

  



  
                    Table 2  HEAVY METALS CONCENTRATIONS OF ACTIVE LANDFILL PRECURSORS AT EACH DEPTH (mg/kg)  

 
  
Upper layer   

                             

Mean(4)  0.55  2930.86  2.13  68.25  1.83  3.26  29.18  168.88  15091.74  295.50  16.63  83.44  0.03  0.20  1883.31  
SD  

mid layer  

0.20  573.17  0.04  1.20  0.26  0.96  3.54  171.97  3013.10  89.10  10.78  2.71  0.01  0.02  1734.97  

Mean(4)  0.41  2628.61  1.55  54.53  5.16  3.12  30.94  58.30  9644.72  247.86  10.50  105.39  0.02  0.19  663.23  
SD  

lower layer  

0.04  836.39  0.00  23.14  4.21  1.43  12.56  0.27  258.45  144.63  2.14  41.75  0.01  0.02  321.12  

Mean(4)  5.00  2792.73  2.06  73.95  2.97  3.17  21.15  77.94  11184.90  183.84  10.33  82.69  0.03  0.22  965.83  
SD  
Less degraded samples upper 
layer  

6.53  99.33  0.24  6.73  2.02  0.31  4.13  25.15  38.74  2.96  1.35  11.27  0.00  0.01  256.15  

Mean(4)  0.30  2434.01  1.85  48.65  0.88  1.91  35.63  42.70  10249.65  161.30  7.05  42.41  0.02  0.20  372.89  
SD  

mid layer  

0.20  1474.46  1.18  24.18  0.65  0.54  13.60  38.63  5401.86  102.41  6.33  11.28  0.01  0.04  268.37  

Mean(4)  0.40  3681.89  2.33  59.52  2.96  2.81  22.66  76.87  11263.09  245.59  9.15  93.67  0.03  0.22  563.86  
SD  

lower layer  

0.16  1707.35  0.42  2.39  1.41  0.47  6.10  41.32  4233.93  84.63  3.60  37.72  0.00  0.07  122.51  

Mean(4)  1.22  1828.37  1.55  48.34  2.35  1.37  13.11  97.41  10511.49  105.91  5.34  40.51  0.03  0.17  1454.36  
SD  
  

  

1.38  161.52  0.47  12.39  2.05  0.23  1.78  82.89  6458.32  21.25  1.57  5.22  0.01  0.01  1343.69  

SD: standard deviation, N: number of sample  

  
   

Table 3     POTENTIAL HUMAN HEALTH RISK ASSESSMENT INDEX OF HEAVY METALS OF CLOSED LANDFILL  

Ni   Pb   Ag   Al   As   Ba   Cd   Co   Cr   Cu   Fe   Mn   Ni   Pb   Ti   Se   Zn   



PRECURSORS (Non-carcinogenic and carcinogenic) 

More degraded samples  
  mean  mini  max   mean  mini  max   mean  mini  max   mean  mini  max   mean  mini  max  

 ingestion  3E-02  1E-02  5E-02    1E-02  5E-02  2E+00    1E-01  8E-02  2E-01    3E-04  2E-04  4E-04    2E-02  1E-01  2E-02  

HQnc  inhalation  4E-04  3E-05  9E-04    2E-05  9E-06  3E-05    2E-04  1E-04  2E-04    4E-07  1E-06  2E-06    2E-05  2E-05  3E-05  
 dermal   3E-02  1E-02  6E-02    4E-01  3E-01  7E-01    3E-02  2E-02  4E-02    5E-07  4E-07  7E-07    3E-02  2E-02  4E-02  

   HIC  8E-04  6E-14  6E-04   8E-06  2E-14  6E-06   4E-05  8E-15  4E-05   8E-07  5E-16  9E-08   2E-03  2E-12  2E-03  

 Less degraded samples                                  

 ingestion  7E-03  6E-03  7E-03    6E-03  4E-03  9E-03    6E-02  4E-02  9E-02    1E-04  2E-04  1E-04    3E-02  1E-02  7E-02  

HQnc  inhalation  1E-04  1E-04  1E-04    8E-06  1E-05  6E-06    8E-05  5E-05  1E-04    2E-07  1E-07  3E-07   4E-05  9E-06  9E-05  

 dermal   8E-03  7E-03  8E-03    2E-01  2E-01  3E-01    1E-02  1E-02  2E-02    2E-07  2E-07  3E-07    2E-02  1E-02  5E-02  

  HIC  1E-04  9E-14  1E-04   3E-06  3E-14  3E-06   2E-05  6E-15  2E-05   4E-07  2E-16  3E-07   8E-02  2E-12  6E-03  

children  More degraded samples                                    
 ingestion  1E-01  4E-02  2E-01    5E-02  3E-02  8E-02    5E-01  3E-01  6E-01    1E-03  9E-04  2E-03    7E-02  5E-02  9E-02  

HQnc  inhalation  4E-05  6E-05  3E-04    2E-05  9E-06  3E-05    7E-04  5E-04  9E-04    2E-06  1E-06  2E-06    1E-04  8E-05  1E-04  
 dermal   2E-01  8E-02  4E-01    3E+00  2E+00  5E+00    2E-01  1E-01  2E-01    3E-06  3E-06  5E-06    2E-01  1E-01  2E-01  

  HIC  4E-03  9E-14  3E-03   4E-05  2E-12  3E-05   2E-04  4E-15  1E-04   4E-05  4E-15  2E-05   1E-02  8E-12  9E-02  

 Less degraded samples                                   

 ingestion  3E-02  2E-02  3E-02    2E-02  2E-02  4E-02    2E-01  2E-01  4E-01    6E-04  4E-04  8E-04    1E-01  5E-02  3E-02  

HQnc  inhalation  2E-04  1E-04  1E-04    8E-06  6E-06  1E-05    4E-04  2E-04  6E-04    8E-07  1E-06  8E-07    2E-04  4E-05  4E-04  
 dermal   5E-02  4E-02  6E-02    1E+00  1E+00  2E+00    9E-02  6E-02  1E-01    2E-06  1E-06  2E-06    3E-01  9E-02  7E-01  

  HIC  4E-04  6E-13  3E-04   2E-05  9E-15  3E-06   1E-04  3E-14  6E-05   1E-06  1E-15  9E-07   4E-02  7E-12  3E-02  

                                            
  

                                               HIc : Hazard index for Carcinogenic risk       HQnc: Hazard Quotient for non-Carcinogenic risk        

Age  
group   Element       Cu               Cd               Pb               Ag               Zn           
Adult   



  

  

  

  

  

  

  
Table 4  POTENTIAL HUMAN HEALTH RISK ASSESSMENT INDEX OF HEAVY METALS OF ACTIVE LANDFILL PRECURSORS   

(Non-carcinogen and carcinogenic)  

 
Adult   More degraded samples                  

  mean  mini  max    mean  mini  max    mean  mini  max    mean  mini  max    mean  mini  max  

  ingestion  4E-03  2E-03  7E-03    5E-03  3E-03  8E-03    4E-02  4E-02  5E-02    2E-04  1E-04  2E-04    6E-03  4E-02  5E-02  
HQnc  inhalation  7E-05  4E-05  1E-04    7E-06  1E-05  6E-06    5E-05  5E-05  6E-05    2E-07  2E-07  2E-07    8E-06  1E-05  7E-06  
 dermal  5E-03  3E-03  8E-03    2E-01  1E-01  3E-01    1E-02  9E-03  1E-02    3E-07  2E-07  3E-07    8E-06  1E-05  7E-06  

 HIC  1E-04  2E-14  8E-05   3E-06  8E-15  2E-06   1E-05  3E-15  1E-05   3E-07  4E-16  3E-07   6E-04  7E-13  5E-04  

 less degraded samples                                     

 ingestion  3E-03  2E-03  4E-03    3E-03  1E-03  5E-03    3E-02  2E-02  4E-02    2E-04  1E-04  4E-04    4E-03  2E-02  4E-02  

HQnc  inhalation  5E-05  3E-05  7E-05    4E-06  2E-06  6E-06    4E-05  2E-05  6E-05    3E-07  1E-07  5E-07    6E-06  3E-06  1E-05  
 dermal          3E-03  2E-03  5E-03  

HIC
  6E-05  1E-14  5E-05  

  

  1E-01  
2E-06  

5E-02  
1E-14  

2E-01  
1E-06  

  6E-03  
5E-06  

4E-03  
3E-15  

1E-02  
1E-05  

  4E-07  
2E-07  

2E-07  
2E-16  

7E-07  
7E-07  

  6E-06  
9E-04  

1E-05  
3E-13  

4E-06  
7E-04  

Children  More degraded samples                                     

 ingestion  2E-02  7E-04  7E-04    2E-02  1E-02  3E-02    2E-01  2E-01  2E-01    6E-04  5E-04  7E-04    2E-02  1E-03  4E-02  

HQnc  inhalation  2E-05  1E-05  4E-05    3E-05  2E-05  5E-05    3E-04  2E-04  3E-04    1E-06  8E-07  1E-06    4E-05  2E-05  6E-05  
 3E-02  2E-02  5E-02 

dermal  
  1E+0 

0  
7E-01  2E+00    6E-02  6E-02  7E-02    2E-06  2E-06  2E-06    6E-02  3E-02  9E-02  

 HIC  5E-05  6E-15  2E-04   1E-05  6E-15  7E-06   5E-05  1E-14  6E-06   1E-06  2E-15  2E-06   4E-03  3E-12  5E-03  



Less degraded samples                                       

 ingestion  1E-02  7E-03  2E-02    1E-02  1E-02  6E-03    1E-01  2E-01  8E-02    8E-04  4E-04  2E-03    2E-02  8E-03  3E-02  
HQnc  inhalation  2E-05  1E-05  2E-05    2E-05  9E-06  3E-05    2E-04  1E-04  3E-04    1E-06  8E-07  2E-06    3E-05  1E-05  5E-05  
 dermal  2E-02  1E-02  3E-02    8E-01  3E-01  1E+00    4E-02  3E-02  7E-02    2E-06  1E-06  5E-06    4E-02  2E-02  7E-02  
 HIC  3E-04  3E-13  2E-04  

     
 8E-06  8E-15  7E-06   5E-05  6E-15  2E-05   3E-06  4E-15  1E-06   2E-03  5E-12  1E-03  

  

                                               HIc : Hazard index for Carcinogenic risk          HQnc: Hazard Quotient for non-Carcinogenic  risk       
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