
Security Policy Architecture

for Web Services Environment

 PhD Thesis

Khalid Aldrawiesh

This thesis is submitted in partial fulfilment of the requirements for the

Degree of Doctor of Philosophy

Software Technology Research Laboratory (STRL) Faculty of Technology,

De Montfort University

August 2011

Dedication PhD Thesis

I

Dedication

To

My Mother and Father

To

My Wife and Children

To

My sisters and brothers

For their love and encouragement

During this time of challenges

Declaration PhD Thesis

II

Declaration

I declare that this work was presented by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degrees or professional qualification.

This work is original work undertaken by me for the degree of Doctor of Philosophy, at the

Software Technology Research Laboratory (STRL), Faculty of Technology, at De Montfort

University, United Kingdom.

Abstract PhD Thesis

III

Abstract

An enhanced observer is model that observes behaviour of a service and then automatically

reports any changes in the state of the service to evaluator model. The e-observer observes

the state of a service to determine whether it conforms to and obeys its intended behaviour or

policy rules. E-observer techniques address most problems, govern and provide a proven

solution that is re-usable in a similar context. This leads to an organisation and formalisation

policy which is the engine of the e-observer model. Policies are used to refer to specific

security rules for particular systems. They are derived from the goals of management that

describe the desired behaviour of distributed heterogeneous systems and networks. These

policies should be defended by security which has become a coherent and crucial issue.

Security aims to protect these policies whenever possible. It is the first line of protection for

resources or assets against events such as loss of availability, unauthorised access or

modification of data. The techniques devised to protect information from intruders are

general purpose in nature and, therefore, cannot directly enforce security that has no

universal definition, the high degree of assurance of security properties of systems used in

security-critical areas, such as business, education and financial, is usually achieved by

verification.

In addition, security policies express the protection requirements of a system in a precise and

unambiguous form. They describe the requirements and mechanisms for securing the

resources and assets between the sharing parties of a business transaction.

However, Service-Oriented Computing (SOC) is a new paradigm of computing that

considers "services" as fundamental elements for developing applications/solutions. SOC has

many advantages that support IT to improve and increase its capabilities. SOC allows

flexibility to be integrated into application development. This allows services to be provided

in a highly distributed manner by Web services. Many organisations and enterprises have

undertaken developments using SOC. Web services (WSs) are examples of SOC. WSs have

become more powerful and sophisticated in recent years and are being used successfully for

inter-operable solutions across various networks. The main benefit of web services is that

they use machine-to-machine interaction.

Abstract PhD Thesis

IV

This leads initially to explore the "Quality" aspect of the services. Quality of Service (QoS)

describes many techniques that prioritise one type of traffic or programme that operates

across a network connection. Hence, QoS has rules to determine which requests have priority

and uses these rules in order to specify their priority to real-time communications. In

addition, these rules can be sophisticated and expressed as policies that constrain the

behaviour of these services. The rules (policies) should be addressed and enforced by the

security mechanism. Moreover, in SOC and in particular web services, services are black

boxes where behaviour may be completely determined by its interaction with other services

under confederation system.

Therefore, we propose the design and implementation of the “behaviour of services,” which

is constrained by QoS policies. We formulate and implement novel techniques for web

service policy-based QoS, which leads to the development of a framework for observing

services. These services interact with each other by verifying them in a formal and systematic

manner. This framework can be used to specify security policies in a succinct and

unambiguous manner; thus, we developed a set of rules that can be applied inductively to

verify the set of traces generated by the specification of our model’s policy. These rules

could be also used for verifying the functionality of the system.

In order to demonstrate the protection features of information system that is able to specify

and concisely describe a set of traces generated, we subsequently consider the design and

management of Ponder policy language to express QoS and its associated based on criteria,

such as, security. An algorithm was composed for analysing the observations that are

constrained by policies, and then a prototype system for demonstrating the observation

architecture within the education sector. Finally, an enforcement system was used to

successfully deploy the prototype’s infrastructure over Web services in order to define an

optimisation model that would capture efficiency requirements.

Therefore, our assumption is, tracing and observing the communication between services and

then takes the decision based on their behaviour and history. Hence, the big issue here is how

do we ensure that some given security requirements are satisfied and enforced? The scenario

here is under confederation system and based on the following:

Abstract PhD Thesis

V

 System’s components are Web-services.

 These components are black boxes and designed/built by various vendors.

 Topology is highly changeable.

 Consequently, the main issues are:

 The proposal, design and development of a prototype of observation system that

manages security policy and its associated aspects by evaluating the outcome results

via the evaluator model.

 Taming the design complexity of the observation system by leaving considerable

degrees of freedom for their structure and behaviour and by bestowing upon them

certain characteristics, and to learn and adapt with respect to dynamically changing

environments.

Acknowledgement PhD Thesis

VI

Acknowledgements

First and foremost, my deepest thankfulness goes to Almighty ALLAH for all his bounties

and blessings, and for giving me the ability to complete this research.

I was very lucky to have Professor Hussein Zedan, the director of the STRL, as my adviser.

His scientific support, insightful comments, ideas, visionary approach, support and guidance

have greatly helped and supported me in the development my thinking and technical writing,

and widening my horizons.

My thankful goes to the first supervisor Dr. Amelia Platt for her support, management and

guidance during my studying. Also, my thankful goes my great second supervisor Dr.

Francois Siewe through very exciting and enjoyable discussions and his patience. His

scientific and moral support through the difficulties I faced during my research was crucial to

my success. Also, thankful goes to Dr. Helge Janicke for his support at the beginning phase.

Express thankful must go to Professor. Hongji Yang for his support and cooperation with

during studying, also, great thankful should go to all member of Software Technology

Research Laboratory (STRL) especially Mrs. Lindsey Trent and Mrs. Lynn Rayn for their

support and management since started in 2005.

I would like to thank all of my colleagues, especially Dr. A. Alqahtani, Dr. A. Al-Ajlan, Dr.

A. Al-bayati, Dr. N. Al-alwan, Dr. M. Muqabla, Dr. M. Al-Sammaraei, Dr. O. Al-Shathri,

Dr. F. Al-Shathri, Dr. O. Aldabbas, H. Aldabbas, Dr. A. Bajahzair, Dr. Y. Al-Saway, Dr.A.

Alhussain, Dr. A. Al-hammad and Dr. M. Sarabb, in STRL at De Montfort University for

their valuable suggestions and discussions during the study.

I would also like to thank the staff in the Research Office at De Montfort University for their

outstanding management. I am also deeply indebted to my friends Reyad Al-Waddan,

Abdulmalek Al-Duhami and Abdullah Al-Asem, for their concern and encouragement

through all my study years. As well as, special thankful goes to Dr. A. Murali Rao for his

value advice at the beginning stage.

Acknowledgement PhD Thesis

VII

My thankful should go to my sponsor the MOE and member staffs for their financial support,

patience and dealing with my requests to issue and extend my scholarship especially the

Centre of IT & Computer Department at the MOE Dr. J. Al-ghamdi-Direct manager- and the

former managers, Eng A. Al-rawaf, Dr. M. Al-humaid.

Thankful again must go to Minister of Education Prince Faisel Bin Abdullah Al-Saud, Vice

Minister Faisel Bin Moamer also, the former Minister of the MOE Dr. Saleh Al-Obaid and

Vice Minister Prince Khalid Bin Abdullah Al-Meshari

My special gratitude is due to my dearest brothers and to my lovely sisters and their children

and families for their loving support, concern and encouragement. I would like also to

express my deepest gratitude to my loving mother and father, who gave their love, pray and

support, for everything they sacrificed in their life for me. Without their loving care,

encouragement and support, it would have been very difficult for me to achieve my goals.

I would like to express my deepest love and gratitude for my wife, who stood by me in all

these difficult years and has offered me her unconditional constant support, patience,

encouragement, love and life. Finally, my love goes to my children Abdullah, Shahd,

Shaden, Shouq and Shima for the hope and encouragement they have given to me, without

knowing it, to complete this work.

Publications PhD Thesis

VIII

Publications:

Throughout the course of the incremental study and research, the results have been reported

and published in scientific papers:

1. K. Aldrawiesh, H. Janicke and H. Zedan. Policy-based QoS approach in Web

environment, the 1
st
 Saudi Innovation International conference, in proceedings of ICT

Workshop, Newcastle University, SIIC2007, 12-13 May 2007, Newcastle, UK.

2. K. Aldrawiesh, F. Siewe and H. Zedan. Security Policy Architecture for Web Services

Environment, the 2
nd

 Saudi Innovation International conference, in proceedings of ICT

Workshop in Leeds University, SIIC2008, 4-5 Jun 2008, Leeds, UK.

3. K. Aldrawiesh and F. Siewe. QoS Approach in WS-Security Policy Environment, the 3
rd

Saudi International conference, in proceedings of ICT Workshop in Surry University

SIC2009, 5-6 Jun 2009, Surry, UK.

4. K. Aldrawiesh and F. Siewe. An Observable model for developing Security Policy

approach in Web services, the 4
th

 Saudi International conference, in proceedings of ICT

Workshop in Manchester University, 30-31 July SIC2010, Manchester UK.

5. K. Aldrawiesh, F. Siewe and H. Zedan. An Enhanced Observer Model to Detect Security

violations in Web services, in proceedings of the ACM International conference on

Intelligent Semantic Web-Services and Applications (ISWSA 2011) April 18-20, 2011,

Amman, Jordan. 978-1-4503-0474-0/04/2011.

6. K. Aldrawiesh, Amelia Platt and F. Siewe. Towards Development a Policy-Based

Technique for Enforcing Security Violations, the 5th Saudi International Conference, in

proceedings of ICT Workshop in The University of Warwick, Coventry, 23-26 June

SIC2011, Coventry UK, ISBN:978-0-9569045

List of Acronyms PhD Thesis

IX

List of Acronyms

ACP Access Control Policy

AGG Attributed Graph Grammar

API Application Programming Interface

BEEP Blocks Extensible Exchange Protocol

COBOL COmmon Business-Oriented Language

DS Distributed Systems

UML Uniform Modelling Language

FSM Finite State Machine

FTP File Transfer Protocol

GUI Graphical User Interface

GT Graph Transformations

JFLAP Java Formal Languages and Automata Package

LS Legacy Systems

LIS Legacy Information System

IT Information Technology

HTTP Hypertext Transfer Protocol

J2EE Java Platform, Enterprise Edition

LDAP Lightweight Directory Access Protocol

ODBC Open Database Connectivity

OOP Object-Oriented Programming

SOAP Simple Object Access Protocol

SLAs Service Level Agreements

URL Uniform Resource Locator

URI Uniform Resource Identifier

UDDI Universal Description, Discovery, and Integration

ADSL Asymmetric Digital Subscriber Line

SMTP Simple Mail Transfer Protocol

SLM Service Level Management

SMS Short Message Service

List of Acronyms PhD Thesis

X

PL/SQL Procedural Language/Structured Query Language

SP Service Provider

SReq SReq Service Requestor

SReg SReg Service Registry

KSA Kingdom of Saudi Arabia

MOE Ministry of Education

WIS Web Information Systems

WSPS Web Services Protocol Stack

WSM Web Services Management

WSDL Web Service Description Language

XML Extensible Markup Language

WAP Wireless Application Protocol

W3C World Wide Web Consortium

ASL Authorisation Specification Language

KAoS Policy language

LaSCO Language for Security Constraints on Objects

ISPS IPsec Security Policy Specification

KAoS Policy language

Ponder Ponder Policy language

PDL Policy Description Language

Rei Policy language

DAC Discretionary access control

MAC Mandatory access control

SOC Service-Oriented Computing

SOA Service-Oriented Architecture

RBAC Role-Based Access Control

QoS Quality of Service

ACLs ACL Access Control Lists

JIT Just-In-Time (JIT)

QoS-A Quality of Service Architecture (QoS-A)

EPI Enterprise Application Integration (EAI)

List of Acronyms PhD Thesis

XI

PDAs Personal Digital Assistants (PDAs)

WSA Web Services Architecture (WSA)

ESP External Service Provider (ESP)

WSM Web Service Management (WSM)

KPIs key performance indicators

PAP Policy Administrative Point

PDP Policy Decision Point

PEP Policy Enforcement Point

PR Policy repository

PIP Policy Information Point

PE Policy Enforcer

PM Policy Manager

RPCs Remote Procedure Calls

RMI Remote Method Invocation

IDE Integrated Development Environment

LGTS Layered Graph Transformation Systems

JDK Java Development Kit

SDL Specification and Description Language

ADL Architecture description Language

OMT Object Modelling Technique

RSC Rational Software Corporation

OOSE Object-Oriented Software Engineering

COM Component Object Model

CLR Common Language Runtime

IIS Internet Information Services

ORM Object Role Modelling

SOMF Service-Oriented Modelling Framework

EEML Extended Enterprise Modelling Language

XACML eXtensible Access Control Markup Language

List of Figures PhD Thesis

XII

List of Figures:

Fig 2.1 Service Architecture Model 15

Fig 2.2 Exchanging messages between different databases 18

Fig 2.3 QoS Architecture 24

Fig 2.4 Basic QoS management 26

Fig 2.5 Web Service Architecture 37

Fig 2.6 Web service Scenario 38

Fig 2.7 The next generation of the Web 41

Fig 3.1 Security concern and functionalities 49

Fig 3.2 Relationship between a Security Policy and a Security model 57

Fig 3.3 Subjects are active entries that access objects 58

Fig 4.1 Framework of Architecture 70

Fig 4.2 Flowchart of the Architecture 71

Fig 4.3 Observation Model 73

Fig 4.4 Enhanced Observer Model 75

Fig 4.5 Methods add and remove objects 77

Fig 4.6 Refers to the method to update all registered observers 78

Fig 4.7 The evaluator model 84

Fig 4.8 Enforcer architecture Model 86

Fig 4.9 Sequence of access control services returns control decision 89

Fig 4.10 Sequence of access control services 90

Fig 4.11 Sequence of Authentication 91

Fig 5.1 Ponder language expresses authentication 101

Fig 5.2 Authorisation Policy Syntax 104

Fig 5.3 Filters on Positive Authorisation Actions 105

Fig 5.4 Syntax of Delegation Policy 106

Fig 5.5 Refrain Policy Syntax 107

Fig 5.6 Obligation Policy Syntax 108

Fig 5.7 The Search paths in Domains 109

Fig 5.8 The Operation in Ponder Policy 109

Fig 5.9 The Syntax of Observation Model 111

List of Figures PhD Thesis

XIII

Fig 5.10 AGG, e-observer, evaluator, enforcer and state of the Observation Model 112

Fig 5.11 The Graph of Observation Model 113

Fig 5.12 Rule 1-The Observation of State 114

Fig 5.13 The Policy of State Observation 115

Fig 5.14 Rule 2 - the Report of Observer 115

Fig 5.15 The Policy of Observer Report 116

Fig 5.16 Rule 3 - Evaluator Notes Rule 116

Fig 5.17 The Policy of Evaluator Notes 117

Fig 5.18 Rule 4 - Enforcer Detection Rule 117

Fig 5.19 The Policy of Enforcer Detection of State 118

Fig 5.20 Rule 5 - Enforcer Re-evaluation Rule 118

Fig 5.21 The Policy of Enforcer Re-evaluation of State 119

Fig 5.22 Rule 6 - Observation Action Rule 119

Fig 5.23 The Policy of Evaluator Notes 120

Fig 5.24 The Result of Execution Type Graph on Observation Model 121

Fig 6.1 Action of enforcement phase 127

Fig 6.2 A typical sequence dialogue of manager action operations 130

Fig 7.1 Main Menu of NOOR Project 135

Fig 7.2 Framework of eStudent 138

Fig 7.3 Framework relationship between eStudent and Observation systems 139

Fig 7.4 Use case for students and other relation 141

Fig 7.5 Users use the main login 146

Fig 8.1 Observer registers and store in container 156

Fig 8.2 Observer can add/remove objects 156

Fig 8.3 Methods notify all registers objects 157

Fig 8.4 Methods deregister all registers observers 157

Fig 8.6 Methods deregister all registers observers 158

Fig 8.7 Observation diagram by FSM and JFlap 159

Fig 8.8 Implementing the observer methods 160

Fig 8.9 Observation diagram by AGG tool 161

Fig 8.10 Snapshot of running the observation 163

List of Tables PhD Thesis

XIV

List of Tables

Tab 3.1 Summary of most security models 60

Tab 4.1 Relational database stores policies 91

Tab 5.1 Ponder Policy Specification Language 99

Tab 5.2 The Syntax and Expression of Ponder Policy 101

Tab 5.3 The domain path 109

Tab 7.1 Catalogues defined inputs and their types. 137

Table of Contents PhD Thesis

XI

Table of Content

Dedication...I

Declaration...II

Abstract..III

Acknowledgment...VI

Publication..VIII

List of Acronyms..IX

List of Figures..XII

List of Tables...XIV

CHAPTER 1..1

Introduction...1

1.1 Background..2

1.2 Motivation..3

1.3 The objectives of the research..3

1.4 Research Question..4

1.5 Research Methodology...5

1.6 Thesis Contributions..7

1.7 Thesis Outline..8

 Table of Contents PhD Thesis

XII

CHAPTER 2..10

 Background and Related Research..10

2.1 Introduction..11

2.2 What is a service?...11

2.2.1 What kind of thing is a service?...14

2.2.2 The Service Framework...16

2.2.3 Behaviour...21

2.3 Quality of Service (QoS)...22

2.3.1 Quality of Service Architecture..23

2.3.1.1 Basic QoS management..25

2.3.1.2 Web service and QoS requirements.................................28

2.4 Service-Oriented Computing-SOC..29

2.4.1 Meaning SOC...32

2.4.2 Advantages of SOC..33

2.4.3 What are Web Services (WSs)?...34

2.4.3.1 Meaning of WSs..35

2.4.3.2 Web Services Architecture (WSA)..........................36

2.4.3.3 Scenario of WSs...37

2.4.3.4 Future of WSs...40

2.5 Summary..42

CHAPTER 3..44

 Critical Review of Security Policy..44

3.1 Introduction..45

3.2 Critical review of Security policy..45

 Table of Contents PhD Thesis

XIII

3.3 Security Requirements...46

3.4 Goals of Security..49

3.5 Security policy...50

3.5.1 Definition of Security Policy..51

3.5.2 Significance of Security Policy...53

3.5.3 Managing a Security Policy in Web..54

3.6 Security Models..55

3.7 Relationship between Security policy and Security Models..................57

3.6.1 Other Security Models...57

3.6.1.1 ECA Model..60

3.6.1.2 The Summary of Security Models....................60

3.7 Security Mechanism..61

3.8 Security Threats..63

3.8.1 Definition of Threats..63

3.8.2 Types of Threats...64

3.9 Summary...65

CHAPTER 4..67

 Architecture..67

4.1 Introduction...68

4.2 Framework of the Architecture...69

4.2.1 Policy..70

4.3 Flowchart of the Architecture..71

4.4 Observation Model..72

4.4.1 Enhanced Observer Model..74

4.4.2 Definition of e-observer..76

 Table of Contents PhD Thesis

XIV

4.4.3 E-observer’s Technique...78

4.4.4 Duties of the e-observer..78

4.4.5 Advantages of the e-observer..80

4.4.6 Drawbacks of the e-observer..80

4.4.7 E-observer model’s component...80

4.4.7.1 The Monitor..81

4.4.7.2 The Log file...81

4.4.7.3 The Modulator..81

4.4.7.4 The Predictor..82

4.4.7.5 The Data analyser...82

4.4.7.6 The Aggregator...82

4.4.7.7 The Processor...82

4.4.8 The Evaluator Model...83

4.4.9 The Enforcer Model..84

4.4.9.1 Enforcer Architecture..85

4.4.9.2 The Description of enforcer architecture...........88

4.4.9.3 Policy Specification Languages............................92

4.5 Summary...93

CHAPTER 5..95

Formulate a Policy-Based Technique for the Verification of the

Observation Approach..95

5.1 Introduction...96

5.2 AGG..97

5.3 Selection Study of Policy Specification Languages............................98

5.3.1 Ponder..100

5.3.1.1 Ponder Policies..100

 Table of Contents PhD Thesis

XV

5.3.1.1.1 Types of Ponder Policy..102

5.3.1.1.1 Access Control Policies (ACP)..........................103

 Authorisation Policy...103

 Information filtering Policy.................................104

 Delegation Policy...105

 Refrain policy...106

5.3.1.1.2 Obligation policies...108

5.3.1.2 Graph Representation of Ponder Policy.....................................108

5.3.1.3 The Specification and Verification of Simulation Tools...........110

5.3.1.4 The Explanation of Problem..111

5.3.1.5 AGG Simulation...112

5.3.1.6 The Rules and their Policies of our Observation System.......113

5.3.1.7 The Result of Execution Rules...120

5.4 Summary..121

CHAPTER 6..123

Development Enforcement Techniques for Security

Violations…..123

6.1 Introduction..124

6.2 Enforcement System...124

6.3 Why should the policy be enforced?...125

6.4 The Enforcement Technique...125

6.5 Detection Architecture..126

6.5.1 Enforcement of Decision and Action..127

6.5.2 The Decision stage..128

6.5.3 The Policy enforcement stage...128

 Table of Contents PhD Thesis

XVI

6.5.4 The Action stage..129

6.5.4.1 Action stage diagram...129

6.6 Summary...130

CHAPTER 7..133

 Prototype Implementation..133

7.1 Introduction..134

7.2 NOOR Project..134

7.3 Prototype Framework..136

7.3.1 System Design..136

7.3.2 eStudent Client Applications...137

7.3.3 Observation system..137

7.3.4 Application Components..141

7.3.5 Database Design...142

7.3.6 The Algorithm for the observation technique.............................142

7.3.7 Development tools..145

7.3.8 Mobile Application...146

7.3.9 Web and Desktop Application...147

7.3.10 Testing..147

 Black box...148

 White box..148

7.3.11 Discussion..149

7.4 Summary...150

CHAPTER 8...151

 Evaluation..151

 Table of Contents PhD Thesis

XVII

8.1 Introduction ..152

8.2 Evaluation...152

8.2.1 Analysis the Prototype system..153

8.2.2 Evaluation of the Observation system..153

8.2.2.1 Behaviour...154

8.2.2.2 The Proposed Technique..155

8.2.2.2.1 How does the observer technique work?......................155

8.2.2.3 Validation of Observation by FSM and AGG Tools..........159

8.2.2.4 The Algorithm for the observation approach..............161

8.2.2.5 Implementing the Observation by Java........................162

8.2.2.6 Evaluation...164

8.3 Summary...164

CHAPTER 9...166

 Conclusion and Future Research...166

9.1 Introduction...167

9.2 Summary..167

9.3 Research Question Revisited...169

9.4 Thesis Contributions..169

9.5 Future Research...172

Bibliography..173

 Chapter 1 Introduction PhD Thesis

1

CHAPTER 1

INTRODUCTION

Objectives

 To present the background, motivation and objectives of the research

 To highlight the research questions, research methodology and original

contributions

 To explain thesis’s outline and structure

 Chapter 1 Introduction PhD Thesis

2

1.1 Background

Having and managing huge information technology resources have become a difficult

mission. These resources must be operated by system managers and take heterogeneous

systems, different networking technologies and distributed applications with several

considerations to be controlled, this growth has become more complicated and powerful and

has changed the nature of computing over the last decade. As computer software, systems,

services, visionaries and technologies have become cheaper, smaller and more powerful, they

have also become more complex. The information revolution has made these technologies

visible and tangible. Most of these technologies and systems are connected via networks, so

computer systems and their associated architectures have developed quickly and this leads to

that the security of these technologies has become a coherent and crucial issue.

For many organisations and enterprises, security becomes a significant requirement. Formal

methods are increasingly being used to protect security issues in the field of development of

information systems, where confidentiality, integrity and availability of information are

paramount. Security is the first line of protection for information or resources stored in a

system and should prevent any event that can result in loss of availability, unauthorised

access or modification of data.

However, web Services (WSs) are identified as a means of allowing applications to deal and

talk with each other using Extensible Markup Language (XML) messages to exchange via

the standard web protocol of Hyper Text Transfer Protocol (HTTP) to request web pages

from web servers and join it with XML to pass structured information back and forth

between computers. WSs are examples of Service Oriented Computing (SOC). SOC offers a

way to create a new architecture that gives reflection components trends toward autonomy

and heterogeneity. SOC has grown and become a dynamic field for research and

improvement and offers many advantages to support information technology (IT), including

the enhancement and management of their systems. SOC is an ongoing topic for research and

is currently being investigated regarding its promise to share several resources (Aldrawiesh,

Siewe et al. 2011).

 Chapter 1 Introduction PhD Thesis

3

1.2 Motivation

As the augmentation, the case that the emergence in the use of computers can be regarded as

a major scientific and technological accomplishment which has advanced technical and

manufacturing processes. Computer technology has changed rapidly in the recent years.

Computer technology and services are under the risk so, researchers and developers are being

asked to provide enhanced security in order to keep these systems safe.

However, with the advent of the Internet, new types of computation have emerged to leading

to Service-Oriented Computing. In this paradigm, the system can be formed / constructed,

and dissolved rapidly. In all cases, these systems need to be highly dependable at all times.

This means that they must be reliable, available, secure and safe. In our thesis, we will only

consider security. The main challenge here is: How to ensure some given security

requirements are satisfied and being enforced, given that services are black boxes/legacy/etc

and built by many vendors.

1.3 The Objectives of the Research

The objective of this study is how to effectively ascertain results when observing services

occur interactively within a web service environment. Also, how to evaluate this interactivity

of services? By considering the aforementioned, it need to expose some of its features in

order to achieve a successful assessment, a seamless system must be envisaged, considered

and protected. A web service environment and its associated components have many

characteristics such as the following:

 Connectivity – access to information is available on a global scale

 Flexibility – the service is available at any time and place

 Interactivity – assessment can be immediate and autonomous

 Collaboration – the ability to share many operating systems and platforms

 Chapter 1 Introduction PhD Thesis

4

 Availability – maintaining the system within a safe environment against attack or

unauthorised access of data

These characteristics can be used as the criteria to evaluate the quality of web services. Thus,

the main goal here is to demonstrate and explore novel techniques that can be developed for

use in policy-based QoS for Service-Oriented Computing (SOC). In particular, we intend to

present a model for SOC where "policy" is the first priority. This model should open the door

for collaboration between services that are widely distributed, flexible and effective as

follows:

 Manage and formulate a policy language that declares QoS and the criteria issues in

terms of security.

 Design an algorithm for analysing observations that are constrained by policies.

 Develop a prototype system for evaluating observation approach within the education

sector to simulate the Noor project at The Ministry of Education (MOE) in the

Kingdom of Saudi Arabia.

 Present an enforcement system for successfully deploying the infrastructure over Web

Services to classify an optimisation model that would capture efficiency requirements.

Consequently, the outcome upon concluding the evaluation process, related work and case

study, the suitability of throughput will have been assessed for implementation within a web

service and its addendum environment.

1.4 The Research Question

The overall questions investigated by this research are:

How to build a secure system from vulnerable components? Those components may be

(web) services?

In order to illustrate these questions, we have assumed a set of research questions that define

and address the problems in detail:

 Chapter 1 Introduction PhD Thesis

5

 What is the paramount technology for supporting the Observation approach and its

associated architecture?

 What is the most suitable platform for using and applying this technology?

 And what are the effects by using and applying Web services to the Observation

system?

 What requirements should Web services and the Observation system fulfil?

 Can we apply the Observation approach into the MOE’s systems?

Fundamental to these questions is to study the service behaviour. So construction of the

behaviour of a service can only be achieved via observing the interaction between services,

by demonstrating the process of building the practical applicability with the utilisation of

information technologies.

Future chapters will discuss the research question in the technical realm. Nonetheless, other,

non-technical issues affect the needs and requirements for technical solutions. Research into

these issues helps guide research into the technical areas. A key question is how to quantify

risk. The research issue is how to determine the effects of a system’s vulnerabilities on its

security. A rigorous technique for determining appropriate solutions will be considered and

presented.

1.5 Research Methodology

This research analyses and proposes the principles, rules and postulates that could be viewed

during the research. This thesis is shaped by the integration of three main important fields in

IT: SOC, observation technique and service behaviour. All these fields increasingly play a

major role in the strategy for securing a system. Therefore, there is a growing demand for

methodologies and technologies that support the use of these fields for different security

purposes. The most important challenge for this investigation is to discover a suitable

technology to develop an approach to ensure that security requirements are satisfied and

enforced.

 Chapter 1 Introduction PhD Thesis

6

1.5.1 Choice of methodology

The aim of this thesis is to explain and analyse the interaction process between services by

using observation system based on the significance of the web environment. Having this in

mind, the focus throughout the thesis will be the field of web services and security policies in

order to identify any factors that might affect them.

This study uses pure scientific research methodology and it examines the adoption and

dissemination of security policy for web services. Security policies have to be constantly re-

defined, updated and maintained to be a valuable technique. It is, therefore, important to

develop to capture best practices for the protection of software applications. Moreover, this

study traces the roots of web services from their background and related work in the

architectural built surroundings to the present conflicting views of its associated

environment. The study then presents a critical assessment of the structure of the observation

technique for documenting knowledge, including a process for using that knowledge and

environment that is involved. This research, in particular the technique, is prompted by the

scarcity of resources for organisations that wish to introduce security into their systems.

1.5.2 Choice of theory

It is important to clarify the type of scientific path that is chosen when conducting pure

scientific research. The path will facilitate the progress of designing and then answering the

research questions.

One type of research involves an evaluation of the observation system that integrated and

represents advanced stage in this research. Another type of research involves gathering

background material by using books, journals, articles and papers. The research is intended to

take the form of a theory-based/research-based experimental investigation model to produce

a plan, which will be implemented, tested, evaluated and summarised. It is, consequently, an

exploratory and experimental study for building a secure system in this relatively unexplored

area. During this process, data will be extracted, providing a basis for comment. In this way,

conclusions and opinions drawn from this research can be evaluated.

 Chapter 1 Introduction PhD Thesis

7

1.6 Thesis Contributions

The major focus of our research is to ensure that security requirements are satisfied by

studying the behaviour of services during interaction communication and to ascertain how

effectively these services can be contacted and implemented. Because several vendors

provided information, the sheer size of the services investigated led us to look at different

issues that could contribute to the research. These contributions constitute the underlying

organisation for a comprehensive infrastructure support for web services. The main

contribution of this research is to develop a rigorous approach that specifies and verifies the

behaviour of services coupled with the aim of simplifying the task of designing and

implementing the observation system and their interactive requirements. Hence the main

contributions of the research are:

 Propose observation system that increases surveillance by observing the interactive

communication between services and then processes and sends the outcomes to the

evaluator model and then to the enforcer model.

 Accommodate and tame the design complexity of the observation system by leaving

considerable degrees of freedom for their structure and behaviour and by bestowing

upon them certain characteristics and to learn and adapt with respect to dynamically

changing environments.

 Devise a novel policy-based technique, which supports the observation system for

monitoring the services when interacting with each other, and verifying them in a

formal and systematic manner. We developed a set of rules by AGG tools, which can

be applied inductively to verify the set of traces generated by a specification of the

policy. These rules can also be used to verify the functionality of a system.

 Design enforcement architecture that uses a technique to detect any violation activity

by addressing the security policy system using a systematic approach that can be

leveraged by the model’s requirement within the web context.

 Perform the enforcement system to deploy successfully infrastructures as web

services in order to define the optimisation model. This model would efficiently

capture requirements via addressing the enforcement system and a systematic

approach that can be leveraged by the model specifications.

 Chapter 1 Introduction PhD Thesis

8

 Develop and implement a prototype system that supervised by the observation system

will manage and reduce risk by adopting the protection features of the enforcement

system that can specify a method to describe concisely the set of traces generated by

the enforcement tool.

 There are other important contributions, for example, the knowledge that is embedded in this

thesis, which is based on the above contributions such as:

 Propose and design the observation system, which consists of an enhanced observer

model, an evaluator model and an enforcer model. The e-observer will monitor the

behaviour of service when interaction happens, the outcomes of which are reported to

the evaluator model, which will evaluate the outcomes and then send them to enforcer

model for detection.

 The technique of the e-observer uses a proactive or precaution system to minimise the

risk to the resources.

 The enforcer model uses an independent technique and, therefore, it can be adapted

for use with another solution as its dynamicity.

1.7 Thesis Outline and Structure

The thesis is consists of 8 chapters, which are briefly described in outline below.

Chapter 2 Conduct a comprehensive review of SOC, policy based approaches and QoS.

This will enable discussion and comments to be made on related background

information derived from the literature to include web services, their benefits,

architecture with the scenario of Web services. In addition, it describes the Web

Services protocol stack with XML, WSDL and UDDI languages.

Chapter 3 Provides an overview of the background information that has influenced the

course of security policies. The background information includes a definition of

the term “security policy,” access control models, security policy languages,

security threats and the goals of security. The chapter also discusses the impact of

 Chapter 1 Introduction PhD Thesis

9

security models.

Chapter 4 Describes the design of the architecture of observation, which will manage the

surveillance technique to reduce the risk. This chapter is elaborated the

observation and its associated parts.

Chapter 5 Formulates a policy-based technique for verification the observation approach

and to describe policy specification languages e.g. ponder policy. In addition, the

rules that are designed by AGG’s tools for simulation and verification are

discussed.

Chapter 6 Describes the design and development enforcement architecture that provides a

technique for detecting violations, as well as minimising the risk to resources by

using a proactive approach.

Chapter 7 Provides a prototype system that developed upon the conduct and

implementation of the experiment. The observation system is embedded within

this prototype to manage the security.

Chapter 8 Proceeds to analyse and evaluate the observation approach which integrated with

the prototype system. We use a benchmark technique to examine its

dependability, this evaluation should demonstrate the practical applicability of

the proposed approach of by using tools e.g. AGG and FSM with JFLAP to prove

and validate the feasibility of this prototype.

Chapter 9 Sums up the work presented in this thesis. The significance of the main findings

is provided. The chapter highlights the most important contributions and then

discusses methods and directions for possible future studies.

 Chapter 2 Background and Related Research PhD Thesis

10

CHAPTER 2

Background and Related Research

Objectives

 To present an overview of SOC and its associated parts

 To illustrate Quality of Service-QoS

 To focuses on Web services and their benefits, architecture, scenario, services

and the future of Web services.

 To describe Web Services Protocol Stack

 Chapter 2 Background and Related Research PhD Thesis

11

2.1 Introduction

Service-oriented computing (SOC) is a new and emerging pattern for distributed computing

systems and e-business processing that uses and exploits services as essential elements to

permit a wide range of agile networks of collaborating business applications distributed

within enterprises and across organisational boundaries(Nabor, Jos et al. 2005; Massimo,

Mourad et al. 2006). The ongoing of SOC technologies has encouraged its capability to be

adopted by a number of enterprises, governments, financial and travel agencies. In addition,

universities and associated institutes in modern countries have recognised that their

computing infrastructure can be used to research SOC-based modelling languages, service

verification, validation and automated code generation(Tsai and 2006). SOC’s feature uses

services as important elements for enhancing applications to generate the service model.

SOC is based upon SOA and is a method of re-organising software applications and

infrastructure into a set of interacting services.

In this chapter, we will conduct an overview of SOC and its associated environment, such as,

web services and their use within policy-based quality of service (QoS). In addition, we will

examine, analyse and evaluate existing services, especially focusing on the assignment

module in order to explore its functionalities and limitations with respect to its design on the

behaviour of the service, which is constrained by QoS policies and to discover novel

techniques for protecting our system.

2.2 What is a service?

There is no consensus on the definition of a service. In the context of this research, the term

“service” is ubiquitous. To some extent; a service can be defined by considering what it is

NOT. Services are not the same as the organisation that delivers the service; neither should

they be confused with documents, which either delineate the service e.g. leaflets, web pages

or are used in transacting the service e.g. application forms.

The vision of a service as something defined and limited by the boundaries of SOAP, Web

Service...etc is artificially constraining and blind to the realities of a world, which is

 Chapter 2 Background and Related Research PhD Thesis

12

increasingly being driven by services over a variety of protocols. This certainly was not the

only missive in my notion to blur the conventional wisdom of what constituted a

service(Roberts 2002).

Simply, a service (Hans Weigand, Paul Johannesson et al. 2008) is an abstract resource that

illustrates an ability to perform tasks with a coherent functionality from the provider entities

to the requester entities. A service in order to be used must originate with an agent who acts

on behalf of a provider. The provider is either a person or an organisation. Therefore, a

service is a thing that fulfils a purpose. Essentially a service is a worker employed to

accomplish a specific end aim for a requester. The aim may be small in scope, like retrieving

or exchanging information or wider ranging, such as, executing a business process. Most

services are mid-ranging in scope, for example, completing a function. The range of a service

is referred to as its grain or source or level of granularity(Hans Weigand, Paul Johannesson et

al. 2008). Moreover, a service is self-describing, well controlled, has open components or

ingredients that uphold fast, cheap and low-cost composition of distributed applications.

Services are presented by service provider organisations that obtain the service

implementation, supply their service descriptions and provide related technical and business

support. The service specifies a contract between the user/client and the operations that could

be expected.

The service may be produced and explored using UDDI while is used SOAP for vendor-

neutral communications between applications over HTTPs (Goethals 2002; Newcomer 2002;

Avik and Amit 2006; Cavanaugh 2006; Jagadeesh, Nandigam et al. 2006). Services have

many features that are autonomous, platform-independent computational entities. They can

be used in a platform independent way. As well as to its features, they can be specified,

published, explored and assembled in dynamic for developing massively distributed, inter-

operable and evolvable systems. Services make functions that can range from answering

simple requests to executing sophisticated business processes that require peer-to-peer

relationships between possible multiple layers of service consumers and providers. Any piece

of programme code and any application component deployed on a system can be re-used and

transformed into a network-available service. Services reflect a "service-oriented" approach

to programming, based atop of the idea of composing applications by discovering and

 Chapter 2 Background and Related Research PhD Thesis

13

invoking network-available services rather than building new applications or by invoking

available applications to accomplish some task(Papazoglou 2003).

Mainly, services are often built in a way that is independent of the context in which they are

used. This means that service providers and the consumers are loosely coupled. Thus, service

can be based on their descriptions, terms and conditions.

A user of a service usually relies on a contractual agreement with the provider, including

what is provided and what comprises the associated QoS, for example, availability, security

and other requirement conditions in order to use it(Francisco, Matthew et al. 2002). The

service-oriented approach is a design pattern that indicates the creation of automation logic in

the form of services; however, it is independent of particular computer programming

languages or operating systems-OS. It permits organisations to disclose their core

competencies programmatically over the Internet or different types of networks, e.g. cable,

UMTS, XDSL and Bluetooth, using standard (XML-based) languages, protocols and

implementing a self-describing interface.

As these service technologies proliferate, a world of co-operating services has developed

where application elements come together with little effort to form a network of services.

This network could loosely couple to create dynamic business processes and agile

applications that can span organisations and computing platforms (M. Papazoglou1, P.

Traverso et al. 2006). Services keep the promise of moving beyond the simple exchange of

information, the dominating mechanism for application integration today, to the notion of

accessing, programming and integrating application services that are encapsulated within old

and new applications(M. Papazoglou1, P. Traverso et al. 2006). However, in service-oriented

computing, services are the main building blocks out of which new applications evolve. As

these in-place services grow, which are accessible in a standardised way, composition

languages, such as, BPEL are needed to integrate them and subsequently disclose the

resulting artefact as a Web service.

In addition, composition and co-ordination, composition middleware and co-ordination

middleware are two complementary phases and techniques. The diagram for a service

composition is an aspect that is mainly internal to the implementation of the service that

 Chapter 2 Background and Related Research PhD Thesis

14

composes other Web services, whereas the protocols for service co-ordination are required

properties of the external interactions between Web services (Stefan, Rania et al. 2004).

Therefore, the service is available at a specific endpoint in the network and it receives and

sends messages and presents behaviour based on its specification. The service has a

particular functionality and is offered with appropriate QoS at its endpoint (S. Weerawarana,

F. Curbera et al. 2006). Services should be formed to create applications based on the

functionality of the services that are available(Gorton and Reiff-Marganiec 2007). Services

become more useful when there is some suitable method, abstracted from technological

details, to indicate requirements, which are then used by the system to discover and compose

services into an executable application that fulfils our aim(Gorton and Reiff-Marganiec

2007).

2.2.1 What kind of thing is a service?

Certainly, not all services are similar and not all services are simple information-oriented

requests/replies. Beyond request/reply, a service might be a user, a worker, a monitor, an

agent, an aggregator or even a process. A service is a summary resource that has some

characteristics viz. a name, a job, number, job tasks, contact information and policy regarding

security and service levels. To request a service, a user/consumer sends a message in

accordance to the contact information and policies and then should receive a reply. However,

the job of a service is limited and dominated to a single distinct business concept, function or

process. This feature is referred as the bounds of a service. Finding the correct bounds is a

key element in service definition. Based on its job or needs to complete its job, a service may

call upon other services. This service-to-service relationship is called collaboration

method(David Booth, Hugo Haas et al. 2004; Michelson 2008).

2.2.2 The Service Framework

The recent spurt in the growth of businesses on the web is being transformed rotated into

services that are accessible on it. Figure 2.1 below demonstrates and proposes a framework

 Chapter 2 Background and Related Research PhD Thesis

15

for the service and its basic associated entities. This diagram illustrates some entities that

could be used and joined together when a service is processing e.g.

request/respond/send/receive a message regarding a system requirement. A brief description

of these entities follows.

User or

Organization
Resource

Policy

Service Role

Agent

Service

Service Task

Performs

Owns

A
d

o
p

ts

Owns

Figure 2.1 Service Architecture Model

H
as

Service

Description

Semantics

Has

Message
Service

Interface

H
as

About

P
ro

vi
de

s

O
w

ns

Applies to

is a

D
escrib

es

Has

Uses

Describes

E
stab

lish
es

Abstracts
D

efin
es

Pertains to

Establishes

 Service description is an entity that is defined as a collection of statements that

describe the interface and the semantics of a service. .It contains details of the service’s

interface, its potential and expected behaviour. It includes a summary, such as, a job

description, data types, operations, transport protocol information and address. It should

also include classification, other metadata to obtain, facilitate discovery and utilisation

(D. Austin, A. Barbir et al. 2004; S. Weerawarana, F. Curbera et al. 2006).

 Service interface is an entity that defines as an abstract border what a service discloses.

It identifies the types of messages and the message exchange models that are included

when interacting with the service, together with any conditions implied by those

messages(D. Austin, A. Barbir et al. 2004; C. Matthew MacKenzie, Ken Laskey et al.

2006).

 Chapter 2 Background and Related Research PhD Thesis

16

 Service intermediary is an entity that works in the background as a Web service

whose main task is to alter messages in a value-added way. Particularly, the service

intermediary is a service whose outgoing messages are equivalent to its incoming ones

in some application-defined sense. Hence, the service intermediary is a specific type of

service that typically performs as a type of filter on messages it handles (David Booth,

Hugo Haas et al. 2004).

 Service Role is an entity that defines as a summary a set of tasks that are relevant to a

user or an organisation offering a service. The service role is an intermediate notion

between service and task. In addition, the service’s roles are connected to particular

phases in the messages that are exchanged with a service. The distinction can be

formalised by noting that a service role is typically associated with a particular property

of the message. Service roles identify the points of interest that a service owner has in

the processing of messages(D. Austin, A. Barbir et al. 2004; David Booth, Hugo Haas

et al. 2004).

 Service Semantics in a service is the conduct expected when acts interacting with the

service. Semantics declare a contract between the provider entity and the requester

entity. It liberates the intended real-world effect of invoking the service. Service

semantics is the agreement between the provider and the requester entities regarding the

outcomes and requirements referring to the use of a service. It illustrates the intended

effects of using a service as identified by a service description. Service semantics may

use a formal, machine-processed language. Knowing the type of data structure,

however, is not enough to understand the goal and meaning behind its use. For instance,

making a deposit/withdrawal into a bank account typically has the same type signature

but with a different effect, the result of the operation is the semantics of the operation.

It is good practice to be explicit about the intended effects of using a Web service even

to the point of constructing a machine-readable description of the semantics of a

service.

Machine processed semantic descriptions show the potential for sophisticated usage of Web

services. For instance, by accessing such descriptions, a requester agent may autonomously

choose which provider agent to use. Apart from the expected behaviour of a service, other

semantic phases of the agreement will include any policy restrictions on the service, the

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#service#service
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/#provider_entity#provider_entity

 Chapter 2 Background and Related Research PhD Thesis

17

relationship between the provider and the requester entities and what manageable features are

associated with the service(D. Austin, A. Barbir et al. 2004; David Booth, Hugo Haas et al.

2004). Figure below shows an example of a tier service by MS VB.Net.

 Service Task is an entity that defines a form of business service with a functional

framework that depends on a specific business process. In general, service task is not

considered agnostic and thus has less re-use potential than other service models. Service

task is a combination of actions that is connected to a preferred goal. Achieving the task

involves completing the actions to achieve a particular aim. The service task has a

service interface. It is also a concept that encapsulates some intended effect by invoking

a service. Tasks are connected with goal states, which are portrayed by predicates that

are satisfied on successful completion. The performance of a task is made observable by

the exchange of messages between the requester and the provider agents.

Figure 2.2 shows exchange messages with several databases. Moreover, there may be other

private actions related to a task, such as, a database update. The task could be pointed to by

an initiation and completion message, which are public and the real database update, which is

typically private.

In the case of service-oriented architecture, only the common phases of a task are important

and are completely stated in terms of the messages that are exchanged. Service tasks are a

useful unit in modelling the semantics of a service and indeed of a service’s role. A given

service may be formed from a number of tasks(David Booth, Hugo Haas et al. 2004; Hugo

Haas and Brown 2004).

 Chapter 2 Background and Related Research PhD Thesis

18

Figure 2.2 exchanging messages between different databases

 Policy

Information technology resources have become increasingly complicated and need to be

controlled; therefore, administrators and managers must consider heterogeneous systems,

different networking technologies and distributed applications. As the number of resources

that are managed grows, the task of supervising these devices and applications depends on

numerous systems and vendor specific issues (Xiaoyuan).

Policy is very common word that used to organise the rules. Policy in general, looks like a

decision or a set of decisions. Decisions and policies are not themselves statements but they

only a set of actions, although, as with decisions, we can infer what a person's or an

organisation’s policy is from the statement he makes about it or if he makes no statement or

we do not believe his statement from the way he acts. Similarly, we can claim that a

statement or set of actions is misleading and does not faithfully reflect the "true" policy.

Then, it is not like a decision(Verma 2000). The term policy usually implies some long-term

purpose in a broad subject field. Nevertheless, we conceive that policy is not so much

actively purposefully oriented but rather a cohesive set of responses to a problem that has

arisen. In addition, policy is widely deployed in information systems and networking services

viz. security, management and QoS. Policy is a proving solution for securing wide Web

application systems(Hedi Hamdi, Adel Bouhoula et al. 2007).

Whenever a policy is defined there is a question of who and what is authorised to state the

goals (permission) and carry out the necessary actions (obligation). So, policy is a collection

of action that owing to decision and event of government intended to influence decisions,

actions and other matters(Denis 2006). The meaning of policy is used to refer to the specific

security rules of particular systems. It creates mandates, usually emanating from the highest

authority of an organisation. .They are usually phase to allow for a certain degree of

 Chapter 2 Background and Related Research PhD Thesis

19

longevity. Policy must be formed and maintained as a living document and it needs to be able

to grow along with any changes to an IT environment. In addition, it must clearly show and

delineate its network context. Policy indicates the unified regulation of access to network

resources and services based on administrative criteria.

Policy specifies the rule that allows a user to participate in the use of network resources and

services. Policies control which users, applications or hosts should have policy architecture

access to which resources and services and under what conditions.

In addition, policies, (Xiaoyuan) define the desired behaviour of resources. They are

recognised as concepts that carry out complex management tasks by identifying the means

that enable enforcement of this behaviour. Policies are created and organised at every level of

a corporation forming a policy hierarchy, starting from corporate level through to small

business units. At all levels, they state the desired behaviour of the underlying resources. At

the corporate level, policies are primarily subjective and guided by institutions whereas

policies for network and systems management are technology orientated. At this level,

formalisation seems possible and necessary. Policies are important between interacting web

services where they may use by a web service to notify users/clients about constrains under

which it is operating, such as, the “system is down,” or the “system is under maintenance.”

Moreover, policies have wide statements that support and cover general security concerns.

Hence, they are high-level descriptions that do not change regularly and are based on the

organisation’s requirements(Sloman 1994). They are, therefore, a set of assertions e.g.

obligations, rules and requirements based on a system that identifies properties of contract of

web service communication. Policies are constrained the behaviour of system components.

Policies are often request to apply to automated network administration tasks, such as,

configuration, security, recovery, or Quality of Service (QoS) (Andrzej Uszok, Jeffrey M.

Bradshaw et al. 2004).

 Message

Message is an entity that defines the purpose of a communication. It is something that

presents information and can be this information itself. Therefore, its meaning is based on the

context in which it is used. In addition, it is a brief report or statement made by a user or

 Chapter 2 Background and Related Research PhD Thesis

20

agent. Thus, it is an essential unit of data sent from one web service agent to another (David

Booth, Hugo Haas et al. 2004).

 User

A user or consumer or an organisation is an entity that can request a service or may perform

or run one. A service is an abstract resource that represents a means of performing duties and

offers a coherent functionality for the provider and requester entities. To be used, however, a

service must be realised by a concrete provider agent that acts on behalf of the person or

organisation - the provider entity. Thus, a service is a thing that accomplishes a purpose. A

service is like a worker that achieves a specific end-goal for a requester(Newcomer 2002). In

order to successfully exchange messages the requester and provider entities ought to accept

first both the semantics and the mechanics of the message exchange that will govern the

interaction between the requester and provider agents. Next, the service description and

semantics need to be understood by the requester and provider agents. Later, the requester

and provider agents exchange messages, hence performing some task on behalf of the

requester and provider entities(David Booth, Hugo Haas et al. 2004).

 Requester and Provider

The Web service acts as a requester and provider agent and so provides some functionality

on behalf of its owner (e.g. a person or organisation). The provider entity is the user or

organisation that presents a suitable agent to implement a particular service. A requester

entity is a user or organisation that hopes to make use of a provider entity’s Web service. It

will apply a requester agent to exchange messages with the provider entity’s provider

agent(David Booth, Hugo Haas et al. 2004).

 Agent

An agent is a user or an entity that is authorised to take a certain action. The agent is either a

set of software or a hardware component that is able to perform in a precise way in order to

achieve tasks on behalf of its requestor. In addition, the agent is part of a programme that

accomplishes some information processing tasks in the background (H. Janicke 2007).

 Chapter 2 Background and Related Research PhD Thesis

21

 Resources

Resource is an entity that is defined as an accessible source of wealth. In general, any item,

device or storage that can be used and shared or a new or reserve supply that can be accessed

whenever it is needed. In addition, it can be used to specify many things. In general,

resources are used to illustrate important materials. In addition, it can be used to show

anything that is used to supply or resource something else. It refers to service capability, data,

component or real world effect.

 Service

As a result, a service is a unit or an entity of logic solution that can perform tasks to which

service-orientation is applied to a significant extent. The service occupies a position on the

network so that it has a machine-readable description of the messages it receives and

optionally returns. Therefore, the service is identified in terms of the message exchange

model it supports. A schema for the data held in the message is used as the main part of the

contract between the service requester and provider. Other items of metadata illustrate the

network’s address for the service, the operations it supports and its requirements for

reliability, security and to carry out transactions (Newcomer 2002).

2.2.3 Behaviour

Behaviour refers to the actions that made by a systems and impact with its environment,

which includes the other systems. It is the response of the system or organism to various

inputs, whether internal or external, conscious or subconscious, covert. Behaviour is the way

of responding to a system of the situation that been found. Behaviour is a set of values that

alternates over time (Harel and Polit 1998).

Moreover, the term behaviour is classified in many senses such, the action or reaction of

something as a machine under specified circumstances, behavioral attributes the way a

person behaves toward another person and psychology the aggregate of the responses or

movements made by an organism in any situation.

 Chapter 2 Background and Related Research PhD Thesis

22

The service behaviour is set of collection of data that includes information of services which

should be used for control the system. It is a sequence of state of the system that may impact

its environment or system.

Behaviour service is a description of sequence of state of the service that specifies dynamic

aspects of entire system. It specifies the states and modes of the system that could impact

with its environment.

2.3 Quality of Service (QoS)

With the fast advent of Internet, its usage and complexity, offering a Quality of Service

(QoS) which becomes increasingly important for network design, traffic, troubleshooting and

service-level-agreement (SLA) verification. Further, the rapid development of the Internet

makes QoS monitoring a challenging task. QoS is the most important issue when determining

the efficiency of a Web service. As businesses start to create new functionality in the form of

composite Web services, QoS becomes increasingly more important(Xiaoyuan 2007). QoS is

one of the most elusive and confusing fields to date pertaining networking. It (Paul Ferguson

and Huston 1998) allows user to offer a better service flow. Moreover, it describes the

assurance of sufficiently low delays and packet loss from different types of applications or

traffic. The term of QoS relates to resource reservation control mechanisms regardless of the

achieved service quality. QoS is the capability to present different priorities to different

applications its users to be ensured of a smooth flow of data (Paul Ferguson and Huston

1998). One definition of QoS refers to a diversity of methods that prioritise one type of

traffic or a programme that runs across a network connection instead of being only based on

good effort connectivity. QoS also ascribes to the capability of a network to give a better

service to selected network traffic over different technologies. The main aim of QoS is to

provide priority containing dedicated bandwidths, controlled jitter and latency and mitigate

loss characteristics(Andrew, Geoff et al. 1994; Corp 2003; Boxman 2005).

QoS has been the major subject of research in packet networks in recent years (Foster and

1998; Paul Ferguson and Huston 1998). Concepts of QoS were primarily used in networking

 Chapter 2 Background and Related Research PhD Thesis

23

and multi-media applications. There has been a surge in adapting this concept to Web

services in recent years(Steve 2003).

QoS caters for estimable qualities, such as, latency and throughput, things that directly

influence user experience. Generally, network traffic and packets are handled in a “best

effort” manner. QoS is sometimes referred to as traffic control or traffic shaping (Boxman

2005). It is a wide term utilised to express the overall experience that a user or application

could receive over a network. An advantage of QoS is that it includes a wide range of

technologies, architecture and protocols and a network should have end-to-end QoS so that

network component requests are guaranteed consistent treatment with respect to traffic flows

across the network.

In addition, QoS is about choosing the correct set of resources, applications or users that

allow high priority access to network resources(Raju Rajan, Dinesh Verma et al. 1999).

2.3.1 Quality of Service Architecture (QoS-A)

QoS-A (Andrew, Geoff et al. 1994) presents a framework for indicating and implementing

the required performance properties of multi-media applications over high performance on

the network. As shown in figure 2.3 QoS-A is a set of layer architectures of services and

mechanisms for QoS management to control the continuous media flows in multi-service

networks.

The essential architectural concept that is used is the notion of flow. A flow distinguishes the

production, transmission and eventual consumption of a single media stream as an integrated

activity governed by a single statement of QoS. Flows are always simplex but can be either

uncast or multicast. They may carry a range of data types that include continuous media and

control data, such as, messages or RPC packets. The realisation of the concept of flow

requires active QoS management and tight integration between device management thread

scheduling, communications protocol and network components of the end-to-end data path.

 Chapter 2 Background and Related Research PhD Thesis

24

The figure 2.3 below depicts different levels at which regulation may be expressed and

exercised(Raju Rajan, Dinesh Verma et al. 1999). They are a convenient mechanism to

control and change the system’s behaviour.

However, policies have to be used to specify how a management system could or could not

authorise policies; for example, a policy can be used that limits attempts to login to no more

than three attempts and that should be authorised by the system. Policies illustrate a variety

of written sources that express security practices within an organisation. Policies are

declarations that reflect an organisation’s approach toward security and how it affects

(Sloman 1994).

In functional terms, in figure 2.3 the QoS-A is shown broadly divided into various layers,

roles and planes. The upper layer contains a distributed applications platform augmented by

services that present multi-media communications and a QoS configuration in an object-

based environment. In the layer below, however, the platform level is an orchestration one,

which offers multi-media synchronisation services across multiple related application flows

with jitter correction. Supporting this is a transport layer, which includes a range of QoS

configurable protocols. For instance, separate protocols are given for continuous media and

constrained latency messages protocols.

Figure 2.3. QoS Architecture

Flow management plane

Physical layer

Data link layer

Network layer

Transport layer

Orchestration layer

Distributed system platform

Flow management level

QoS maintenance level

Protocol layer

Flow

management

projection

User levelControl level

 Chapter 2 Background and Related Research PhD Thesis

25

The vertical planes of QoS-A have three levels as follows(Andrew, Geoff et al. 1994; Mario

2007):

 The protocol level: contains a user and a control level. The QoS-A, uses separate

protocol profiles to control the flow of data components because of the primary

different QoS requirements for control and data. In general, control needs a low

latency full duplex assured service whereas multi-media data generally requires a

range of non-assured, high throughput simplex services.

 QoS maintenance level: contains many layer particular QoS managers. They are each

responsible for fine-grained observing and maintenance of their associated protocol

entities. Based on flow observing information and a user supplied service contract, QoS

managers support the level of QoS in the managed flow by means of fine-grained

resource tuning strategies.

 Flow management level: is responsible to establish a flow (including flow admission

control, resource reservation and QoS based routing, QoS re-negotiation, QoS mapping

(which translates QoS representations between layers) and QoS adaptation (which

implements coarse-grained QoS maintenance control). As shown in the QoS-A, flow

management projection demonstrates the relationship between the three levels, which

work together to supervise and examine end-to-end Qos.

2.3.2 Basic QoS management

QoS management is a set of assistant and evaluations to help QoS policies and goals. Figure

2.4 shows a basic arrangement for QoS management. It presents three essential components

for QoS implementation(Systems CISCO 2001):

 Chapter 2 Background and Related Research PhD Thesis

26

Figure 2.4 Basic QoS management

Co
nne

cte
d n

etw
ork

Host node

1. QoS in the node

(Queuing,

shaping...etc)

2. QoS signalling

3. Policy, management, accounting

 Connected

network

Client node

 QoS classification and marking techniques are used to co-ordinate QoS from source to

destination between network factors.

Explanation

QoS identification and marking is achieved through classification and reservation.

Classification offers a desirable service for a given type of traffic but firstly it should

identify. Secondly, the packet may be marked or unmarked. These two tasks precede

classification. When the packet is identified but not marked classification is on a per-hop

basis. When packets are indicated or marked for network-wide use IP precedence bits can be

set.

 QoS within a single network aspect viz. queuing, scheduling and shaping

Explanation

QoS within a single network aspect, for example, congestion management, queue

management, link efficiency and shaping/policing tools.

Congestion Management

Due to the huge volume of voice/video/data traffic, the amount of traffic sometimes

surpasses the speed of a link. In this case, the router will buffer traffic in a single queue and

 Chapter 2 Background and Related Research PhD Thesis

27

enable the first packet to be selected or it will assign packets into different queues and service

them more often.

 Queue Management

As queues are of finite size, they could fill and overflow. Then, additional packets cannot be

taken into the queue and will be dropped. The issue with tail drops is that the router cannot

avoid this occurring.

 Link Efficiency

On numerous occasions, low-speed links present an issue for smaller packets. This may

occur for a number of different reasons, for example, due to the cable, router or modem

issues. An ADSL or broadband connection gives more efficiency in this case.

 Traffic Shaping and Policing

Shaping is used to generate a traffic flow that limits the full bandwidth potential of the

flow(s). Policing is similar to shaping but differs in one very important way. Traffic that

surpasses the configured rate is not buffered and is normally discarded.

 QoS policy, management and accounting functions that organise and manage end-to-end

traffic across a network.

Explanation

Service levels apply to actual end-to-end QoS capabilities. Services will differ in terms of

their level of QoS strictness, which expresses how much the service can jump due to specific

bandwidth, delay, jitter and loss characteristics.

In addition, QoS (M. Papazoglou, P. Traverso et al. 2006) is surrounded by the important

features of functional and non-functional service quality attributes, such as, performance

metrics, accessibility, security, integrity, reliability, scalability and availability. Having and

delivering QoS on the Internet is a meaningful and significant challenge regarding its

dynamic and unpredictable nature. Software applications with very different characteristics

and requirements compete for all types of network resources. The creation of Internet QoS

 Chapter 2 Background and Related Research PhD Thesis

28

standards is required for changes in traffic models, securing mission critical business

transactions, the effects of infrastructure failures, low performance of Web protocols and

reliability issues over the Web. Frequently, unresolved QoS issues make critical transactional

applications suffer from unsatisfactory levels of performance degradation. Usually, QoS is

estimated by the grade to which applications, systems, networks and all other essentials of

the IT infrastructure support availability of services at a needed point of performance under

all access and load conditions. While traditional QoS metrics apply, the attributes of Web

service environments consider two things. High availability of applications and raised

complexity in terms of accessing and organising services and hence impose specific and

intense demands on organisations, which QoS must address.

2.3.3 Web service and QoS requirements

Often, the Web services (Mani and Nagarajan 2002) that are deployed cannot offer

guarantees for QoS. The recent growth of Web services and QoS has become a major issue in

characterising the success of service providers. QoS decides both of the service usability and

utility influence the popularity of the service.

There is a vision of dynamic e-business requests in a seamless integration of business

processes, applications and Web services on the Internet. The main challenge here is

delivering QoS over the Internet. Delivering QoS has become a crucial aspect due to its

dynamic and changeable nature.

All major Web service players are approving Web standards, such as, SOAP, UDDI and

WSDL. These include those Web services that cover the financial business services, high-

tech and media. Web standards that serve these sectors are being improved. These Web

services will need to be launch and adhere to standards, therefore, QoS will be become a

significant selling and differentiating key between these services. QoS covers a whole range

of techniques that join the needs of service requestors to those of service providers based on

an availability of the network resources.

 Chapter 2 Background and Related Research PhD Thesis

29

2.4 Service-Oriented Computing-SOC

The landscape of today’s business technology is changing. Traditional integrated enterprises

with centralised control are able to loosely-coupled network applications that are controlled,

owned and managed by diverse business partners. A vision of SOC technology is ongoing to

achieve its rhetoric. An SOC (Tsai and 2006) pattern is a set of notions, principles,

techniques and methods that position computing in a Service-Oriented Architecture (SOA)

where software applications are constructed based on independent component services with

standard interfaces. SOC (Stefan, Rania et al. 2004) is a distributed computing paradigm that

deals with the distributed, loosely coupled and heterogeneous nature of this trend in a first-

class manner.

The major utopia of SOC and SOA is to fragment explicitly software engineering from

programming in order to highlight on software engineering, and to de-emphasise the latter.

SOC splits software development into three independent parties(Edgardo, Marco et al. 2006):

 Application builders (by software engineers)

 Service providers (by programmers)

 Service brokers (Co-operative effort from standard organisations, computer industry

and government).

Service providers use a computer programming language, such as, C++, C# or Java to write

programme (code) components. All components will be wrapped with open standard

interfaces, call Web services if they are available over the internet. This means that

application builders can use the services without further communication with their service

providers. In addition, the same services can be used by many other applications.

Service brokers: permit services to be registered and published for the public to access and

use. Help and facilitate application builders are able to find services they need.

Application builders: instead of constructing software from scratch using old or basic

programming language constructs, such as, Pascal or Borland C, application builders enable

end users to specify the application logic in a high-level specification language, such as,

 Chapter 2 Background and Related Research PhD Thesis

30

object-oriented language by using standard services as components. Application builders are

software engineers or software planners who have a good understand of software architecture

and the application domain.

SOC allows the creation of customised software in a dynamic environment depended on re-

usable services with well-defined interfaces that are available on the Internet(Gorton and

Reiff-Marganiec 2007). It is an emerging model for distributed computing and service

processing. It uses services as vital elements to enable the building of agile networks of

collaborating business solutions distributed within and across organisational boundaries

(CÖMERT 2004; Huhns and Singh Feb 2005). In addition, it is a recent idea for a computing

pattern that employs services as important factors for increasing networked applications

(Nirmal, Ravi et al. 2004). In short, it is a modern ideal of a computing service that uses basic

constructs to support rapid low-cost growth and easy composition of distributed applications

in many heterogeneous environments. The expectation of SOC is a world of co-operating

services where application components are assembled with little effort into a network of

services that can be loosely coupled to create flexible dynamic business processes and quick

applications that may span organisations and computing platforms(M. Papazoglou1, P.

Traverso et al. 2006). SOC (Papazoglou 2003) is a computing hypothesis that supports

services as primary elements for enhancing applications or solutions to make the service

model. SOC is based on SOA, which is a way of re-arranging software applications and

infrastructure into a set of interacting services.

However, an essential or basic SOA could not refer overarching concerns e.g. management,

service orchestration, service transaction management and coordination, security as well as

other concerns that apply to all components in a service’s architecture.

Developers and designers think that SOC has become a valuable area of research and

improvement. Business management continues to favour SOC-type architecture, which could

support and improve information technology (IT) in order to enhance and develop their

systems and architecture. SOC allows applications to integrate faster and easier. This

integration occurs at an advanced stage in the protocol stack, based on messages centred

more on service semantics and less on network protocol semantics, which enable a loose

integration of business functions. The integration of applications can be increasingly based

 Chapter 2 Background and Related Research PhD Thesis

31

upon available platforms, languages and by adopting existing legacy applications(CÖMERT

2004; Huhns and Singh Feb 2005).

The advance of Web services technologies offers to have far-reaching effects on the Internet

and enterprise networks. Having Web services technologies (K. Gottschalk, S. Graham et al.

2002) means language and environment-neutral programming models that express

application integration inside and outside enterprises and organisations.

WSs (K. Gottschalk, S. Graham et al. 2002) can easily applied as a wrapping technology

around existing applications and information technology (IT) assets, therefore, new optimal

solutions can be increasingly deployed and re-created to address new opportunities. As the

adoption of Web services(K. Gottschalk, S. Graham et al. 2002) accelerates, their number of

will increase, which will foster the development of more dynamic models of just-in-time

applications and business integration over the Internet.

WSs based on the idea of SOC are a most promising technology. They support e-business on

the Internet via standard protocols and interfaces. Web service technology enables the

composition of less dynamically changing forms of the system. WSs in various forms are

widely becoming a significant emerging technology that is still undergoing change and has

yet to mature(Jeffrey, Marijn et al. 2004). The crucial advantage of Web services is their

machine-to-machine interaction (Alter 2005). WSs allow applications to be integrated faster,

easier and cheaper. The ongoing research of SOC is a world of supporting services loosely

coupled to flexibly create dynamic business processes and agile applications that may extend

across organisations and computing platforms and that can quickly and autonomously adapt

to changes of context and requirements. SOC exploits services as essential elements for

developing applications and solutions (Bussler 2002; Petrone, Ardissono et al. 2003;

Cavanaugh 2006).

The ability to exchange information between internal enterprise business units, partners and

customers is essential for success. Several research efforts continue to focus on a variety of

phases of SOC, particularly web service technology, composition, specification modelling,

discovery and verification(Jianchun and Subbarao 2005). WSs are the most promising

technology for easier system integration by giving standard protocols, such as, XML

 Chapter 2 Background and Related Research PhD Thesis

32

messages for exchanging data and a standard interface declaration language viz. the Web

Service Description Language(WSDL) (Nirmal, Ravi et al. 2004; Avik and Amit 2006)

(Petrone, Ardissono et al. 2003).

However, for e-businesses, a Web services application (K. Gottschalk, S. Graham et al.

2002) needs to meet the strict demands of trading, therefore, an enterprise-class infrastructure

must be supplied that includes three aspects, namely, security, management and quality-of-

service management. As well as, e-businesses valuable Web services applications have also

been developed and deployed but widespread commercial exploitation of Web services

across the public Internet awaits development and acceptance of higher-level standards in

such areas as security, reliable messaging, transaction support and workflow(K. Gottschalk,

S. Graham et al. 2002).

In recent years, Web services have rapidly expanded to become more popular with

application developers. WSs can be used, run and developed for any platform environment

regardless of the operating system. They can exchange and communicate with other Web

services using common protocols. They make communication much easier for trading

partners to connect by modern electronic means. WSs overcome the obstacle of various

platforms and operating systems and create new business opportunities and a greater degree

of business performance flexibility (Goethals 2002; Newcomer 2002; Cavanaugh 2006;

Jagadeesh, Nandigam et al. 2006).

2.4.1 Meaning of Service-Oriented Computing

Munindar and Huhns, M. (M. Papazoglou and Georgakopoulos 2003; Stephen, James et al.

2005; Huhns and Singh Feb 2005) define SOC as,

“SOC is a process of discovering and composing the suitable services to satisfy a

specification. It is a computing paradigm for distributed computing that is

changing the way of software applications which are designed, delivered,

consumed and architected. It involves extended, loosely coupled activities among

two or more autonomous business partners.”

 Chapter 2 Background and Related Research PhD Thesis

33

The purpose for a SOC is a worldwide mesh of collaborating services, which are published

and available via its capabilities. Having and adopting SOC is essential to deliver business

agility and IT flexibility as promised by the Web Services. These benefits are delivered not

by just viewing their service architecture from a technology perspective and the adoption of

Web Service protocols(David Sprott and Wilkes 2004).

2.4.2 Advantages of Service-Oriented Computing

SOC has a collection of methods, principles and concepts that show and represent computing

in SOA where software applications are constructed based upon independent elements and

component services with standard interfaces(Ravi and Pallavi 2006). SOC has some

advantages that offer a number of research challenges that need to be addressed. These

include among other things, integration, monitoring, composition, the discovery of services

and their quality, development, evolution and security. These issues are attracting the interest

of researchers in different communities, such as, databases, software engineering, artificial

intelligence and distributed systems. The advantages of SOC are articulated as (Nirmal, Ravi

et al. 2004; M.Huhns and 2005; Nabor, Jos et al. 2005; Tsai and 2006; Huhns and Singh Feb

2005).

1. SOC has a significant economic advantage that facilitates application developers

rapidly and dynamically to grow application portfolios more than ever before by

creating compound application solutions that use internally existing organisational

software assets, which they appropriately join with external components possibly

residing in remote networks.

2. SOC allows novel flexible business applications of open source systems that would

not be possible otherwise.

3. SOC enables the customisation of new applications by offering a Web service

interface that removes messaging problems by giving a semantic basis to

customise the functioning of the application.

 Chapter 2 Background and Related Research PhD Thesis

34

4. SOC in open source systems develops the production of programming and

administering applications, viz. applications are notoriously complex.

5. SOC offers the efficient usage of grid resources and facilitates utility computing,

especially where huge services can be used to achieve fault tolerance. SOC

presents a semantically rich and flexible computational model, for which it is

easier to produce software.

2.4.3 What are Web Services?

A Web service (K. Gottschalk, S. Graham et al. 2002), as the name pronounced, is an

interface that depicts a collection of operations and processes that are network-accessible and

accessible through standardised XML messaging. A Web service performs a specific task or

a set of tasks. WSs (Newcomer 2002) offer and present a layer of abstraction over existing

software systems, such as, CORBA, .NET servers, messaging, and packaged applications.

WSs, for example, XML, WSDL, SOAP and UDDI unlike existing distributed computing

systems, are adapted and accomplished on the Web. HTTP is the default network protocol.

Most existing distributed computing technologies contain this communications protocol as

part of their domain. With Web services, the communications protocol is already in place,

even for the far-flung. Furthermore, WSs are capable of bridging any operating system,

hardware platform or programming language. It is possible, therefore, easy to develop new

software applications, as everything is Web service enabled. The advent of web services

means that existing business patterns, discussion groups, interactive forums and publishing

models will adapt and new ones will emerge to take advantage of this new capability. WSs

are rapidly emerging as a popular standard for sharing data and functionality between loosely

coupled and heterogeneous systems. Currently, most organisations employ a diversity of

disparate applications that exchange and store data by different approaches(Utkarsh, Kamesh

et al. 2006). WSs support the basis for e-business processes that are distributed over the

internet and exist via standard protocols and interfaces (Jianchun and Subbarao 2005). WSs

are SOC implemented and provide a simple mechanism to connect applications regardless of

the type of device that is used or its technology. WSs have evolved as a practical, cost-

 Chapter 2 Background and Related Research PhD Thesis

35

effective solution for uniting information distributed between critical applications over

language barriers, operating systems and platforms that were impassable(Stephen, James et

al. 2005).

Moreover, WSs are a collection of promising and established communication protocols that

includes of XML, Simple Object Application Protocol (SOAP), Universal Description

Discovery and Integration (UDDI) and Web Services Description Language (WSDL) over

Hypertext Transfer Protocol (HTTP) (Jeffrey, Marijn et al. 2004; Cavanaugh 2006). WSs

allow applications to combine faster, simply and inexpensively. They are used and expressed

as a WSDL that is XML-based language (Stephen, James et al. 2005). These services will

specify a contract between the client and the operations that the user can expect. The services

could be published, used and discovered using UDDI, whilst SOAP allows vendor-neutral

communication between applications over HTTP (Coyle 2002; Newcomer 2002; Katia

Sycara, Paolucci et al. 2005; Jagadeesh, Nandigam et al. 2006; Ravi and Pallavi 2006).

2.4.3.1 Meaning of Web Services

WSs are achieving momentum, thus they have become widely established for use in different

activities on the Web. They promise to be the next wave of innovation in the Web revolution

(Shalom, Serge et al. 2001). WSs, also called service computing, are uncomplicated and self-

contained applications, which achieve functions from easy requests to difficult business

processes. They happen through a machine-to-machine communication without a user

interface to call the services. The Meaning of Web services is given by(Bussler 2002)

(Goethals 2002) as follow:

“Web services are a new breed of Web application. They are self-contained, self-

describing and modular applications that can be published, located and invoked

across the Web. Web services perform functions, which can be anything from

simple requests to complicated business processes. ... Once a Web service is

deployed other applications (and other Web services) can discover and invoke the

deployed service.”

 Chapter 2 Background and Related Research PhD Thesis

36

The WWW Consortium (D. Austin, A. Barbir et al. 2004) has defined Web services as a

software application identified by a Uniform Resource Identifier (URI), whose interfaces and

binding are capable of being defined, described and discovered by XML artefacts and

supports direct interactions with other software applications using XML based messages via

Internet-based protocols. Currently, Web Service based computing is an essential driver for

the software management business. WSs are software components that communicate using

pervasive, standards-based Web technologies including HTTP and XML-based

messaging(Massimo, Mourad et al. 2006). Next, they are efforts to extend the Web from an

infrastructure that provides services to humans to one that provides services to software

looking to connect with other software. This innovation can be developed on any platform

and within any developmental environment and communicate with other Web services by

using the above common protocols (Sleeper, and et al. 2001; Bussler 2002; Tian, et al.

2003).

2.4.3.2 Web Services Architecture (WSA)

Web services architecture (Ethan 2002; Frank 2002; Stefan, Rania et al. 2004; Stephen,

James et al. 2005) aims to provide and offer a standards-based platform for SOC. It defines a

set of specifications that support an open XML based platform for the description, discovery

and inter-operability of distributed heterogeneous applications as services. It is based on the

interactions between three roles as shown in figure 2.5 (Bussler 2002; Edgardo, Marco et al.

2006; Ravi and Pallavi 2006). These are the Service Provider, the Service Registry and the

Service Requestor. The interactions involve publishing, finding and binding operations.

Together, these roles and their operations act upon Web services artefacts, the Web service

software module and its description. It (Frank 2002) places the above into a relationship

among various components and technologies. It forms a Web Services “stack,” which is

capable of complete functional implementation. The basic architecture includes Web services

technologies that:

 Exchange messages

 Describe Web services

 Chapter 2 Background and Related Research PhD Thesis

37

 Publish and discover Web services descriptions

Figure 2.5 Web Service Architecture

Service Registry

Publish

(WSDL)

Find

(UDDI)

Bind

HTTP/SOAP

Service ProviderService Requester

2.4.3.3 Scenario of Web services

As illustrated in figure below 2.6, the scenario involved with Web services is that service

providers deploy and publish services to the service registry. The service requester using a

service broker explores the services available and subsequently negotiates with service

providers to bind them. The service requesters can be a human user, a client, a device, an

application or any other web service. A service broker offers registries for exposing web

services. A service provider and service requestor’s roles are logical constructs and a Web

service can demonstrate characteristics of both (Myerson 2002; Nirmal, Ravi et al. 2004;

Jianchun and Subbarao 2005; Edgardo, Marco et al. 2006; Tsai and 2006).

 Service Provider:

A service provider is the owner of the service and is responsible for publishing a description

of its service to a service registry. It also hosts the service and controls access to it.

 Service Registry (broker):

A service registry is a central store that makes possible service discovery by requestors. This

component provides a searchable repository of service descriptions where providers publish

their services and requesters find services and obtain binding data for these services.

 Chapter 2 Background and Related Research PhD Thesis

38

 Service Requestor:

A service requestor is a software component in search of a service to invoke across the Web.

It finds a suitable service by discovering the set of available services that meets some pre-

defined criteria.

 Publish: Is how the providers of Web services registers themselves

 Find: Is how an application finds a suitable Web service

 Bind: Is how an application connects to and interacts with a suitable Web service

once it has been found (Vasudevan 2001; Frank 2002).

Service Registry

(Broker)

Service Provider
Service

Requester

(Consumer)

Find via UDDI
Publish via WSDL &

Connect by SOAP

Bind via UDDI

Figure 2.6 Web service Scenario

Bind

Invoke

Services

Develop

Describe

Services

Publish

Description

Services

Web services environments are pieces of business logic accessible via the Internet using open

system standards. WSs are a group of emerging and established communication standard

protocols e.g. XML over HTTP (CÖMERT 2004; Nirmal, Ravi et al. 2004; Jianchun and

Subbarao 2005; Huhns and Singh Feb 2005). WSs have a major advantage that they inter-

operate between several software applications running on a variety of platforms (Avik and

Amit 2006) (Jianchun and Subbarao 2005) (CÖMERT 2004). Recently, WSs permitted a

collection of solutions/applications to be integrated faster, easier and cheaper (Petrone,

Ardissono et al. 2003). Further, WSs provide a standard means of inter-operating between

 Chapter 2 Background and Related Research PhD Thesis

39

different software applications that run on a variety of platforms or frameworks. WSs are

independent software systems that can be promoted, located and accessed via messages

encoded under an XML based standard, such as, SOAP, WSDL and UDDI (Petrone,

Ardissono et al. 2003) and transmitted using Internet protocols (Cavanaugh 2006). Moreover,

they encapsulate application functionality and information resources and make them

available via programmatic interfaces, as opposed to the interfaces provided by customary

web applications, which designed for manual interactions. WSs are designed to be discovered

and used by other applications across the web. WSs need, therefore, to be portrayed and

understood in terms of functional capabilities and QoS properties (Goethals 2002; Newcomer

2002; Jian 2003; Jagadeesh, Nandigam et al. 2006).

In addition, the appearance of WSs for ordering a purchase, finance, accounting, human

resources and manufacturing has created unprecedented opportunities for organisations to

develop agile and multi-collaborations with other organisations(Goethals 2002; Newcomer

2002). WSs are a collection of protocols, processes and standards that are used to exchange

data between different applications or systems. WSs are easy to implement with existing

technologies. Again, WSs are parts of software components that join using pervasive

standards-based web technologies including HTTP and XML-based messaging (Papazoglou

2003). The effect of this is to expand the web from an infrastructure that present services to

humans to one that presents services to software looking to communicate with other

software. WSs can become enhanced to run on any platform and by any development. In

addition, it can connect with other Web services using common protocols (M. Papazoglou

and Georgakopoulos 2003),(Massimo, Mourad et al. 2006) (Nabor, Jos et al. 2005). In

addition, different pieces of software are enabled to be executed in different languages and

run on a variety of operating systems in a cheaply and easily. Applications that run in

different parts of an organisation and in different ones come to exchange data easily and

inexpensively. WSs are applications or solutions that run anywhere on any technology or

device that has a web service. They are an automated innovation and present a mechanism

for discovering service providers, which can be automated (Nirmal, Ravi et al. 2004;

Jianchun and Subbarao 2005). They are defined as software with explicit interfaces and they

remain ready to interact with other ones. To describe Web services, several standards have

been widely adopted. These standards pertain to describing, publishing, enacting and

 Chapter 2 Background and Related Research PhD Thesis

40

composing services. They include WSDL (Richards 2006), UDDI (Panagiotis 2006) and so

on. Besides that, with the popularity and proliferation of communications, services are now

provided for devices, such as, a commodity. For developers, researchers, designers and

vendors, web services offer a means to present integration points with their systems by

synchronous and asynchronous message exchanges. Generally, web services technology is

available with implementations in several widely used computer programming languages, for

instance, Java, C++, C#, Perl, and Python (Newcomer 2002).

2.4.3.4 Future of Web services

WSs are expected as most technological change that will develop and revolutionise business.

Most technology, business companies and visionaries have started their rhetoric and

challenge with Web services. An entirely (Newcomer 2002; Vincent 2002) new era is

emerging where anyone can publish their services using standard Internet protocols and

consumers around the world can easily combine these services in any fashion to provide

higher order services. These service network chains will solve every business problem in the

world and in the process generate revenues to everyone involved in the chain. Despite the

fact that the technology for implementing web services is available together with its

capability the question arises, to what extent is it being used. When the whole world is

moving in one direction, the way to use it is initially via the Web. This proves difficult when

the change is in the field of technology. Every change is unique and can alter the whole of

history. There will be some data points and issues that could be gathered by research and

experience, which can be used to extrapolate future trends in technology. The future of web

services can be predicted by comparing it with the real world of service interactions. As

evident from real world services, one can expect only a certain type of service relationship to

form sustainable business models.

 Chapter 2 Background and Related Research PhD Thesis

41

Yet, the next generation (Newcomer 2002) will witness improved integration of the Service

Web based on software-oriented interactions. Web services have the potential to put the vast

global network of the Web established for human interaction, to a completely new purpose.

Software-oriented interactions will automatically make operations that previously required

manual intervention, such as, searching for and buying goods and services at the best price,

co-ordinating travel tickets and restaurant tables for a given date, streamlining business

procurement, invoicing and shipping operations as illustrated in the above figure 2.7, the next

generation of the Web will use software-oriented services to inter-operate directly with

applications built using any combination of objects, programmes and databases. However,

Web services are not only about interfaces to objects, programmes, middleware and

databases for access over the Internet. Combining a series of Web services into a larger

interaction it will provide the means to perform new types of communications.

Most the Web's (Davies, Fensel et al. 2004) success can be ascribed to its simplicity. It

directly offers a means by which static information could be published and interconnected on

universal basis. The Web Services proposal effectively adds computational objects to the

static information of yesterday's Web and offers distributed services capability over a

network. They have the potential to produce new paradigms for both the delivery of software

capabilities and the models by which networked enterprises will trade. In the meantime, Web

Services technology, useful though it is, will be enhanced over the time by the harnessing of

Semantic Web technology to deliver a step change in capability. In addition, they provide an

easy way to make existing components available to applications via the Internet.

Currently Web services are essentially described using semi-structured natural language

mechanisms, which mean that considerable human intervention is required to discover and

Figure 2.7 The next generation of the Web

(Davies, Fensel et al.)

 Chapter 2 Background and Related Research PhD Thesis

42

combine Web Services into end applications. The Semantic Web will facilitate the accessing

of Web resources by semantic content rather than just by keywords. In spite of technology

(Vincent 2002) SOAP, XML and WSDL will continue to penetrate as technologies for

joining software applications in a loosely coupled manner. The use of these technologies for

building successful business models is altogether different. Successful business models for

web services must satisfy many criteria. In the end, only the existing physical services make

sense even as web services most of the time. There will be many constraints on pure software

based web services not founded on real world services. Consequently, there needs to be

further technological research accompanied by some unified industrial agreements on

identification, authentication and development in the form of a security infrastructure before

dreaming to write a piece of code and the whole world accessing it and fetching revenues for

the creator.

2.5 Summary

In this chapter, we introduced, described and discussed Service Oriented Computing that

provides separate tiers for composing, for co-ordinating and for managing services in an open

marketplace by employing grid services.

Web services primary focus on document-level integration and virtualisation. The Web

services approach abstracts the details of underlying platforms and operating systems, which

reduces system coupling and much of the tight co-ordination and synchronisation required by

traditional integration methods. It is more important than ever to build security into the co-

operating systems and services early and throughout the software’s development life cycle.

This is due to the complexity of co-ordinating (and achieving compatibility) of security

policies and the requirements derived from these policies (as reflected, for example, in a

common message schema) across all of the participants in a web services application.

This chapter has elaborated architecture for Service Oriented that provides optimal services

for composing, for co-ordinating and for managing services in an open environment by

utilising Web services. In addition, this chapter has illustrated the key point about SOC and

its associated framework, such as, service discovery, service description and SOA. SOC

 Chapter 2 Background and Related Research PhD Thesis

43

involves extended, loosely coupled activities among two or more independent business

partners, e.g. activities can be thought of as business processes that engage several services in

a manner that brings about the desired business outcome. Adopting and having SOC has the

potential to bring about a decrease programming difficulty expenses, lower costs, quicker

time-to-market, new revenue streams and improved operational efficiency.

Further, this chapter has provided a survey of Web services, which are fast becoming an

important technology in the evolution of distributed computing over the Web. These

technologies are rapidly changing and a long list of additional features and functionality is

required to complete the vision. Web services allow applications to become integrated faster,

more easily and more cheaply than ever before and they can influence the data independence

of XML to solve problems. The essential Web services standards SOAP, WSDL and UDDI

are directly valuable for many applications, such as, publishing interfaces for automated

business processes, bridging disparate software domains and connecting wireless customers

for Web purposes. Nonetheless, there is vast interest in the Web about policy-based

techniques as a means of implementing adaptive QoS management, caching, persistence and

security to support modern software applications and omnipresent computing. QoS is a vital

requirement of business-to-business transactions and thus a necessary part of Web services.

The various QoS properties, such as, availability, accessibility, security, integrity,

performance, need to be addressed together with the considered implementation of Web

service applications. The properties become even more complicated when adding the need

for transactional features to Web services. Some of the limitations of protocols, such as,

HTTP and SOAP could delay QoS implementation but there are a number of ways to offer

proactive QoS in Web services. QoS presents differentiated services, such as, higher-priority

to flow services that offer an assured service level. Both of these are contrasted by best-effort

services, which are provided by what is generally considered a lack of QoS. FIFO shows

best-effort service where flows are not differentiated and are serviced on a first-come, first-

served basis. We conclude, when we look at the various Web service QoS requirements,

bottlenecks that affect the performance of Web services, approaches to provide service

quality, transactional services and a simple method of measuring response time of your Web

services using the service proxy.

 Chapter 3 Critical Review of Security Policy PhD Thesis

44

CHAPTER 3

Critical Review of Security Policy

Objectives

 To present a critical review of security policy and its associated parts

 To illustrate an overview of security requirements and their associated features

 To focus on security and access control models

 To provide security goals and threats

 Chapter 3 Critical Review of Security Policy PhD Thesis

45

3.1 Introduction

Security is a continually evolving process in order to accommodate the latest security

concepts. This research introduces some approaches to develop an adequate security system

to meet the necessary specifications for utilisation of information technologies (ITs).

Computer systems play an increasing and essential role in our society; therefore, security has

become a dynamic and critical issue in IT. Security issues are a fascinating topic for research,

which is driven by the promised development of shared networks and their resources. They

cover many different areas e.g. physical, networks, platforms and applications. Each of these

areas has its own risks, threats and heterogeneous solutions. Security therefore, has become a

coherent and crucial issue to protect assets whenever possible. When security is discussed,

the theme is usually about hackers and software vulnerabilities. Security has a wide base that

touches upon several different areas. Thus, security poses a complex matter for many

companies. Developers and designers of security need to comprehend the vision in order to

understand how it will influence the design of the system as so many areas of security

impinge on each other.

The primary purpose of this research is to develop a high-level security policy consisting of

specifications that can be diffused into it by mapping out the primary relationships between

services/states and users in a Web services environment. The significant task here is to

provide a critical view and formulate security policies that allow the system to be used

without breaching security.

3.2 Critical review of Security policy

A critical review is an evaluation and consideration of a research or subject; it makes

judgments, positive or negative, based on various criteria. The information and knowledge in

the research needs to be evaluated, and the criteria that should be used can vary depending on

discipline.

 Chapter 3 Critical Review of Security Policy PhD Thesis

46

The overall system was deemed a success in that in functioned according to the desired

objectives and approaches. The functionality, usability testing concluded that the service

behaviour was able to be collected and then evaluated. The validation of this approach is

used by various tools e.g. FSM and AGG. FSM supports a lot of modelling that makes

programmer and designer to understand the requirement. This approach has examined and

implemented by Sun Java computer programming language.

The overall aim of the research was to propose and develop architecture-based observation

that uses paramount technology to observe the interaction between services.

A genuine lack of knowledge at the beginning of the research had to be overcome fast; this

knowledge has been gathered from many resources. Hence, a slight criticism of this research

is that, this system needs to be performed under environment or confederation system. The

usability of this approach requires criteria that based on pre-defined services, observer and

their associated parts.

3.3 Security Requirements

Security is defined as a set of features and services that tackle a set of security requirements

by handling a set of cases. It plays a critical role in the development and functionality of

many large scale distributed software systems. Information security is a serious requirement,

which must be considered carefully and not in isolation but as an element that is present in all

stages of the software development. The importance of security to enterprises and

organisations has risen rapidly and it may be attributed to several important trends. Security

(Peri 1996) is an integral element of a management system. The main idea of security is to

protect our system's valuable resources against an intruder. Through the selection and

application of appropriate safeguards, security supports and helps our model's mission by

protecting its resources. When a system's role is set and defined, the security requirements

implicit in that role can be defined. Security can then be explicitly stated in terms of the

organisation's mission.

 Chapter 3 Critical Review of Security Policy PhD Thesis

47

Security requirements (Bishop 2002; Siewe 2005) are vital to overcome different attacks and

threats and are used by different enterprises and organisations to keep their systems safe.

Security requirements are concerned with the protection of assets from threats. They state

constraints about who is authorised to access resources and information. Moreover, when

these requirements are provided and managed, security will be much more easily achieved

(Edward 1994; Siewe 2005). Security rests primarily on confidentiality, integrity and

availability. The explanations for these three features vary, as do the contexts in which they

arise. The explanation of a phase in a given environment is dictated by the needs of the

individuals, customs and regulations of the particular organisation (Peri 1996; Bishop 2002).

The definitions most often proposed for security requirement and information security

identify three primary requirements: confidentiality, integrity and availability. These

requirements should be used and applied in a system in order to keep a high level of security.

Confidentiality ensures that the information or resources in a computer’s system will be

disclosed only to authorised parties. Integrity refers to the protection of information against

improper or unauthorised modifications. It maintains and keeps the value and the state of the

information so protecting it from unauthorised modification.

A major objective of information security policies is to ensure that information is not

modified, destroyed or subverted in any way. Availability ensures that information and

information systems are accessible and operational when requested. Furthermore, it is

concerned with the facility to use the information or resource that is desired. It is an

important aspect of reliability as well as of system design because an unavailable system and

information is at least as bad as no system at all (Edward 1994; Siewe 2005). To enforce the

above requirements, three mutually supportive technologies are used: authentication, access

control and auditing. Authentication is essential to ensure that both end peers are genuine and

not impersonators. Without correct authentication, no other requirements can be

implemented. In addition, an adversary might masquerade within the operation of other

nodes in the network. Authentication is the procedure used to verify the digital identity of the

sender of a communication, such as, a request to log in. The sender who is authenticated may

be anyone using a computer, a computer itself or a computer programme. Furthermore,

authentication deals with the identification of users. Access control means the user has right

 Chapter 3 Critical Review of Security Policy PhD Thesis

48

of access to the resources. This feature is also concerned with limiting the activity of users

(who have successfully gained entry into the system) by ensuring that every access to

information or resource is controlled and that only authorised accesses can take place.

Auditing is the procedure of recording information viz. user IDs and PWs about access to

resources so as to be able to establish responsibilities in the event of a security breach (Siewe

2005).

Security requirements (Firesmith 2003) (Bishop 2002) should be based on an analysis of the

assets and services to be defended against the intruders and the security threats from which

these assets and services should be protected.

As illustrated in Figure 3.1 below, there are clear relationships between assets and services

which are vulnerable to security threats. Thus, security requirements exist that need security

mechanisms to counter these threats and thereby protect the assets and services. Ensuring (H.

Janicke, F. Siewe et al. 2006) the confidentiality, integrity and availability of information is

the key issue in the battle for information superiority and thus is a decisive factor in modern

warfare. Security policies and security mechanisms govern access to information and other

resources. Their correct specification, i.e. denial of potentially dangerous access and

adherence to all established need-to-know requirements is critical. A main purpose of an

information security policy must be to ensure that information is always available to support

critical business processing when it is needed.

 Chapter 3 Critical Review of Security Policy PhD Thesis

49

Confidentiality Availability Integrity

Concerns

Communication

Confidentiality
Communication

Integrity

Functionalities

Semantic Integrity

Authentication

Intrusion detection

Authorization

Access Control

Accountabilit

y

Audit
Non-

Repudiation

Figure 3.1. Security concern and functionalities

Encryption

3.4 Goals of Security

Defining security goals is measured by the degree of being secure. The prime purpose of

security goals is to present the insights, techniques and methodologies of a system that are

used to mitigate threats. A meaningful of security goals are the predefined targeted levels of

protection deemed to be adequate. So, in this research we will make long phases of

consideration that should show good part of the security goals. And these goals are:

 Prevention

Prevents attackers from violating security policy

 Detection

Detects attackers’ violations of security policy

 Recovery

Stops attacks, assesses and repairs damage and continues to function correctly even if

the attack succeeds

 Chapter 3 Critical Review of Security Policy PhD Thesis

50

3.5 Security policy

The rapid growth in security policies has led to the need for a co-ordinating framework and

standardisation. Security policy (Harris 2008) represents and expresses exactly what the

security level must be by setting the objectives of what the security mechanisms are to

accomplish. This essential aspect has a major role in defining the design of the system. A

security policy is a base and foundation for the specifications of a system and offers the

baseline for evaluating the latter. Security policies should address operating systems and

applications of a system. Hence, security policies and their mechanisms manage and govern

access to information and other resources (Bishop 2002; Siewe 2005). In addition, security

policies are cited as one of the largest cost issues in the maintenance of enterprise networks.

Designing and implementing security policy is complex and, in a huge organisation,

procedural controls often become vague or cumbersome. Security policies, therefore, have

become a popular topic of research, especially in the last few years. They are a high-level

specification and requirement of the security of properties and should dominate a given

system. Moreover, they are a means for developers and designers to communicate with each

other during implementation and validation. Developers and implementers have become

increasingly interested in improving security policies which are not flexible and expressive

enough to handle the specification and enforcement of multiple policies. In practice, a single

policy is not general enough to achieve the level of protection required in many real-world

applications; rather a combination of such policies applies.

Therefore, a security policy is a set of collections and specifications of the security

requirements of a system. It describes the rules about who is allowed to do what within a

system. It (Symon, Qiming et al. 2003) must guarantee the end-to-end agreement for many-

to-many inter-operations; ensure the versioning inter-operability and privacy of collaborating

partners; and ensure the dynamic establishment of security policies, because any statically

defined security policy tends to be unsecured after a certain period of time. It (Symon,

Qiming et al. 2003) expresses protection requirements on the system in a precise and

unambiguous form. In addition, it describes the requirements and mechanisms for securing

the resources and assets between the sharing parties of a business transaction. A modern

security policy’s (Rajagopalan 2004) administration practices represent the ability to manage

 Chapter 3 Critical Review of Security Policy PhD Thesis

51

and control network security but some have not kept pace with advances in networking

technology. While technologies for designing large-scale networks and network services

have advanced dramatically so creating new vulnerabilities and opportunities for difficult

attacks, systematic principles for network management, especially security management have

lagged behind.

So, security policies can be defined to perform a wide variety of actions with respect to

enforcer management (F. García, G. Martínez et al. 2005). There are multiple approaches

towards policy specification. These range from formal policy languages that a computer

system can directly process, to rule-based policy using some commands or to the

representation of policies based on obligation and permissibility rules. To cover this wide

range of security policy languages, this research aims to examine the current state of policy

engines and their languages by focusing on the approaches enriched with semantics as

requirements of policy specification. That will show the strengths and limitations of such

languages by comparing policy specifications.

 Given the high value and delicacy of security policies, ensuring the correctness of security

policies is important but difficult. Any error in security policies directly leads to irreparable

damage. To achieve their goals, security policies must undergo systematic and rigorous

testing so that they truly represent the intention of their regulation (Vincent C. Hu, Evan

Martin et al. 2007; Xie 2008). A major benefit of specifying security policy rules in this way

is that a user or an organisation can utilise common aspects that can be shared amongst

services and service clients.

3.5.1 Definition of Security Policy

Security policy, heterogeneous in nature must deliver a high level of protection. It declares

protection requirements on the system in an exact and unambiguous form. It is concerned

with access control, obligations and integrity. It joins the entities in the system and defines

the constraints on their interactions (H. Janicke 2007).

 Chapter 3 Critical Review of Security Policy PhD Thesis

52

In its purest sense, security policy is an explanation of what it means to be secure for a

system, organisation or other unit. It defines the security requirements for a given system. It

addresses constraints on functions and flow amongst them. It constrains access by external

systems and adversaries including applications and access to data by intrusion. Constraints

can be imposed by mechanisms like doors, locks, keys and walls (Sattarova Feruza 2008).

Since a security policy demands a high-level definition of secure behaviour, it is meaningless

to claim an entity is "secure" without knowing what "secure" means. It also makes no sense

to consider and address security without tracing the efforts that is required to build a security

policy. Another definition (Oriyano 2008) of the term security policy is as a set of obligations

that explains how an organisation or a system intends to protect its assets. In another words,

it is a collection of declarations of what is permitted and what is not permitted. Alternatively

(Karila 1991; Shirey 2000) it is a document that declares in terms of some model regarding a

system. It (Shirey 2000) is a set of regulations and practices that specify how a system or

organisation grants security services to protect resources and properties. The security policies

are factors of security architectures.

Further, it (Karila 1991) is a statement prepared with the information, knowledge and

assistance of top management that can act on who/what is…and who/what is not to be

authorised to access the area of security during the general operation of the system that is

being secured. In other words, security policy is a collection of regulations and practices that

states how information is controlled, protected and distributed.

Without a security policy, availability of a system can be compromised. The policy starts

with assessing the risk to the network and continues with the need to implement changes in

security management practices and for monitoring the network for violations. Ideally,

security policies are a set of persistent, immutable and yet practical rules about how systems

should be managed and protected (Denis 2006). Consequently, a security policy is a set of

specifications of the security requirements for a system. It expresses regulations about who is

permitted to do what within a system. In another sense, it describes the goals and elements of

an organisation's computer systems.

However, security policies are imposed by organisational policies or security mechanisms,

hence, they can be informal or highly mathematical in nature. They are specified by giving a

 Chapter 3 Critical Review of Security Policy PhD Thesis

53

predicate on sets of executions (Fred 2000)and protect and serve as a legal first line of

defence against negligence and intrusion.

3.5.2 Significance of Security Policy

A recent spurt in growth of security policy on the Internet has led to conceptualisation of web

services. As stated previously, in terms of a meaningful security policy, it is meaningless to

argue an entity or service is "secure" without knowing what "secure" means. This urgent

matter needs to be resolved. The confidentiality, integrity and availability of digital

information are constantly threatened by malevolent software or intrusions. The significance

of a security policy has increased dramatically during the past few years and, therefore, it has

played an extremely vital role but in an invariably technically fragile business environment.

This means secured communication is needed in order for both organisations and customers

to benefit from the advancements that the Internet provides to empower their users. Owing to

the importance of security, whatever your system, a number of security policies have to be

proposed and considered extensively. It is, therefore, crucial to ensure that the whole security

policy is enforced by sufficiently robust mechanisms. To guarantee completeness of security

policies and assure that they are fully enforced, there are a collection of organised

methodologies and risk assessment strategies. In compound systems, such as, information

systems management, policies can be decomposed and divided into sub-policies to assist the

allocation of security mechanisms to impose sub-policies.

This practice has pitfalls. It is easy to go directly to the sub-policies, which are regulations

governing the system’s operations and dispense with the high-level policy. That offers the

false sense that the regulations of operation address some overall definition of security when

they do not. Regulations of operation declared as "sub-policies" with no "super-policy"

usually turn out to be rambling rules that fail to enforce anything with completeness. Hence,

a high level of security policy is vital for effective security. Sub-policies and regulations of

operation are worthless without it and it is postulated they would be unable to keep states or

systems protected.

Web services technology (K. Aldrawiesh, A. Al-Ajlan et al. 2009) as distributed systems are

the next innovation in the development of the Internet. The service will allow active objects

 Chapter 3 Critical Review of Security Policy PhD Thesis

54

to become located on Websites so offering distributed services to potential clients. The most

crucial benefit of Web services is using machine-to-machine interaction. Web services allow

applications to be integrated quicker, more economically and with best effort. Web services

standards do not create effective policy. The creation and coordination of security policies

are the responsibility and obligation of the participating organisations. As pointed out above,

security policies have established a set of security requirements that should serve as the base

supported by Web services for building security into Web services applications. A

collaborative review (Newcomer 2002) of their security policies by participating

organisations can assist to resolve inconsistencies among the various policies and the

corresponding sets of security requirements derived from them. Moreover, the collaborative

review can itself help to prompt, develop and increase trust in the systems and services

controlled by those participating organisations.

In fact, security policies are a powerful resource to assist many enterprises and software

applications. Security policies not only state what systems and services are supposed to do

but also what actions must be taken when failure occurs. High-quality security practice

mandates the creation and periodic review of policies and procedures for reporting, response,

and recovery based on the discovery of violations or other security problems (Newcomer

2002). Nonetheless, security policy in Web services or Web computing has become an

increasingly complicated matter. It assumes more and more responsibilities and carefulness

towards all sectors of the information systems and computer networks. Many applications

today, especially in higher education i.e. universities and colleges are based upon

interconnecting networks. Although they are used via infrastructure networks and are

inexpensive to deploy, therefore, providing security and its associated is complex, especially

when dealing with unique types of networks, such as, wireless, Wi-Fi. Hence, providing and

managing the security requirements on the Web are a great challenge.

3.5.3 Managing a Security Policy in Web

Comprehensive security policy automation is a relatively active area of research and

development. The goal of a security policy is to express some requirements at a high level of

 Chapter 3 Critical Review of Security Policy PhD Thesis

55

abstraction but hiding the details of the implementation that is necessary for their

enforcement. The security policy rules are used as the basis for policy specifications. Rule-

based languages are well established and well suited because most of these requirements

have been previously informally expressed in the form of conditions and consequences.

Security policy regulates the rules, requirements and mechanisms for the large Web Services

environment. In such an environment, business partners carry out transactions by exchanging

Extensible Markup Language (XML) documents encoded in Simple Object Access Protocol

(SOAP) messages. The responsibility of the security policy is to define how end-to-end

security is enforced. Typically managing and organising a security policy should include the

following (Peri 1996):

 How the sender is authenticated, e.g. what mechanism is used, with what parameters

and in what range of values?

 Within the SOAP message, which XML elements are encrypted, what kind of

algorithm is used, what are the key sizes and for which particular recipient or

recipient roles?

 Within the SOAP message, which XML elements are integrity protected, using what

mechanisms, and with which algorithms and key sizes?

 In a multiple-hop environment, where to perform security actions, e.g. in building

credentials for authentication, authenticating senders, encrypting and decrypting

messages, signing and verifying digital signatures.

3.6 Security Models

Designing and implementing secure systems is important, as the number of intrusions has

rapidly increased. A security model is a set of structures that offers and gives a policy form

and solves security access problems for particular situations. Security models (Harris 2007)

integrate the security policy that should be defended and enforced in the system.

A model is a set of symbolic representations of a policy. It outlines and maps the desires of

the policy engine into a set of regulations that a system must follow. A security model states

 Chapter 3 Critical Review of Security Policy PhD Thesis

56

and outlines the abstract goals of the rules to information system by indicating an explicit set

of data structures and techniques to defend and enforce the security policy. After that, it has

to represent them in sets of maths, formulas and analytical ideas and then outline and map

them to system requirements and finally design and develop them by programmers by a

computer programming language (Harris 2007).

In very general and simplistic example, if a security policy states that subjects need to be

authorised to access objects, the security model could provide and formulate the

mathematical relationships and explain how A can access B only through the outlined

specific methods. Requirements are then developed to provide a bridge to what this means in

a computing environment and how it maps to components and mechanisms that need to be

coded and developed. The programmers afterwards write the programme code e.g. C++, C#

to generate the mechanisms that provide a way for a system to use access control lists

(ACLs) and offer and give net administrators some degree of control. This mechanism has to

show and present to the network administrator a graphics user interface (GUI). This interface

enables the administrator to choose via e.g. check boxes, which subjects can access what

objects and to be able to adjust this configuration within the operating system. In spite of this

rudimentary example, the security model can be very complex and complicated to implement

in a system but it is used here to express the relationship between the security policy and the

security model. Some security models, for example, the Bell-LaPadula model enforces rules

to provide confidentiality protection whereas the Biba model enforces rules to provide

integrity protection. Both of these models are used to provide high assurance in security.

Informal models, such as, Clark-Wilson are used as a framework to state and describe how

security policies should be demonstrated and executed and several security models have been

designed to reinforce security policies (Harris 2007).

Further, security models (Peri 1996; Bishop 2002) are used to formalise security policies, in

particular to depict the security relevant features of information systems that permit one to

reason about their behaviour. Many access control models are defined to carry out different

kinds of security policies. These models are primarily used for describing the protection

features of systems, e.g. operating systems and application software. Access controls are sets

of security features that manage how others and systems communicate with other systems

 Chapter 3 Critical Review of Security Policy PhD Thesis

57

and resources. Further, they protect the contexts, systems and resources from unauthorised

access and can be components that participate in affecting and determining the level of

authorisation after an authentication procedure has been successfully completed.

3.6.1 Relationship between a Security Policy and a Security Model

As illustrated by figure 3.2 below, the relationship between a security policy and security

model is complicated and strong. A security policy sketches and outlines goals without how

they will be achieved.

Security policy

Security model

Programming code

Resulting outcome

Figure 3.2. Relationship between a Security Policy and a Security Model

(8s+24)(s*x*14)

Operating system

There are many types of entities, such as, a user, a programme that requires access to other

network entities and resources that are subject to access control. Access control is a broad

term that covers several different types of mechanisms that enforce right of entry control

features on computer systems, networks and resources. Access control is extremely important

because it is one of the first lines of defence in battling unauthorised access to contexts,

 Chapter 3 Critical Review of Security Policy PhD Thesis

58

systems and network resources. When a user is offered or prompted for a username and

password, this is called access control. Once the user logs in and later attempts to access a

file, that file may have a list of users and groups that have the right to access it. When the

user is not on this list, the user is denied entry. The users’ permissions and rights could be

based on their identity, clearance and/or group membership. The ability that access controls

give organisations is to manage, restrict, observe and protect resource availability, integrity

and confidentiality. Access controls are one of the foundations of computer security. They

are becoming an important issue in research in many fields. It enables and facilitates a user to

control access to assets in a given system. In addition, it relates to security features that

manage and control who can access resources in the operating system(Peri 1996; Harris

2007).

Files

Programs

Subjects Objects

processes

processes

Figure 3.3 Subjects are active entries that access objects, while objects are passive entities.

The Access Control Model, as the name proposes controls access to information. A

framework states and dictates how subjects access objects. Furthermore, it applies and uses

access control technologies and security mechanisms to enforce the regulations of the

system. Access control models are broadly categorised into (H. Janicke 2007): Discretionary

Access Control (DAC) and Mandatory Access Control (MAC) Models.

Each model type uses different methods and techniques to control and manage how subjects

access objects and each has its own merits and limitations. The business and security goals of

an organisation will help prescribe what access control model should apply. It depends on the

organisation’s needs for conducting a particular type of business. Some organisations use

only one model, whereas others combine them to be able to provide and offer the necessary

level of protection. These models are built into the kernel of the different operating systems

 Chapter 3 Critical Review of Security Policy PhD Thesis

59

and possibly their supporting applications. Every operating system has a security kernel that

enforces a reference monitor concept, which differs depending upon the type of access

control model embedded into the system. For every access attempt, before a subject can

communicate with an object, the security kernel reviews the regulations of the access control

model to determine whether the request is allowed (Harris 2008).

Discretionary Access Control (DAC) is an access policy that is set and determined by the

owner of an object. It offers users the means for defining the access control themselves. It

sets the restriction to access objects based on the identity of the subjects and groups to which

they belong (Siewe 2005; H. Janicke 2007).

Mandatory Access Control (MAC) is an access policy that is set and determined by the

system, not the owner. It is used in multi-level systems that process highly sensitive data e.g.

military policies. In a mandatory access control the system’s security policy is under the

control of a dedicated administrator, for instance, MAC policies are Bell-LaPadula or the

Chinese Wall Policy. MAC involves centralised mechanisms to control access to objects with

a formal authorisation policy (Siewe 2005; H. Janicke 2007).

3.6.2 Other Security Models

As pointed out, security models are a set of declarations that identify the requirements that

support and implement a certain security policy. If a security policy states and shows that all

users/others are to be recognised, authenticated and authorised before accessing a network’s

resources, the security model might possess an access control matrix. The matrix should be

constructed so that it fulfils the requirements of the security policy. Several security models

exist to enforce security policies for example, Bell-LaPadula Model, Biba Integrity Model

Graham-Denning Model, Harrison-Ruzzo-Ulman Model and Brewer and Nash Model, in

order to emphasise those aspects of their policy models (Bishop 2002; Siewe 2005; H.

Janicke 2007; Harris 2008).

 Chapter 3 Critical Review of Security Policy PhD Thesis

60

3.6.2.1 Event-Condition-Action (ECA)

ECA model is a powerful paradigm for programming reactive systems. The fundamental

construct of ECA model is reactive rules of the form On Event If Condition Do Action which

means: Event occurs, if Condition is satisfied, then run Action. ECA systems receive inputs

(mainly in the form of events) from the external environment and reacts by performing

actions that change the stored information (internal actions) or influence the environment

itself (external actions). ECA has to satisfy many properties to be useful and reached in a

wide range spectrum of applications. First of all, events occurring in a reactive rule can be

complex, resulting from the occurrence of several basic ones. A widely used way for

identifying complex events is to rely on some event algebra, e.g. to introduce operators that

define complex events as the result of compositions of more basic ones that occur at the same

or at different instants. Actions that are triggered by reactive rules may also be complex

operations involving several (basic) actions that have to be performed concurrently or in a

given order and under certain conditions. The possibility to define events and actions in a

compositional way (in terms of sub-events and sub-actions), allows a simpler programming

style by dividing complex definitions into simpler ones and by permitting the use of the

definition of the same entity in different fragments of code (Alferes, Banti et al. 2006).

3.6.2.2 The Summary of Security Models

Security models have become one of the most of active topics in the range of security

technology. They have been built to support the requirements of their policies. As a result, a

summary of most security models is listed below in table 3.1 with their job description:

Model Description

DAC Determined by the owner of an object

MAC Determined by the system, not the owner

RBAC(Non DAC) Relates to the concept of roles within the subjects and objects

 Chapter 3 Critical Review of Security Policy PhD Thesis

61

Access matrix A table of subjects and objects indicating what actions individual

subjects can take on individual objects

Bell-LaPadula Protects the confidentiality of the information within a system

Biba Protects the integrity of the information within a system

Clark-Wilson Protect the integrity of data and ensures that properly formatted

transactions take place

Brewer and Nash Allows for dynamically changing access controls that protect

against conflicts of interest

Graham-Denning Creates rights for subjects, which correlate to the operations that

can be executed on objects

Harrison-Ruzzo-

Ullman

Allows access rights to be changed and specifies how subjects and

objects should be created and deleted

ECA On Event If Condition Do Action

3.7 Security Mechanism

A mechanism may be procedural, technical or physical. A security mechanism (Bishop 2002)

is a unit or procedure that enforces some stages of the security policy. It is a scheme, tool,

process or procedure to enforce a security policy. It is an algorithm or logic that applies a

particular security enforcing or security relevant function to any hardware or software.

Alternatively, it may be considered an entity that enforces some part of the security policy. It

is used to implement security services.

In general, developers and designers of computer system have achieved many things such as,

where security mechanisms should be located and performed i.e. in software, hardware,

kernels, operating systems or services and identified the objects that are included and how

those components should interact with each other. A security perimeter (Harris 2008) has

been formed that isolates and separates trusted from the distrusted components. In addition,

proper interfaces have been developed for these entities to communicate securely. The

current need is to build, improve and apply a mechanism that ensures that subjects that access

Table 3.1 a summary of most security models

 Chapter 3 Critical Review of Security Policy PhD Thesis

62

objects have the necessary permissions to do so. This means the designers should enhance

and perform a reference monitor and security kernel. In most models, the security mechanism

works under several assumptions:

 Each mechanism is designed to apply one or more parts of the security policy.

 The union of the mechanisms applies all features of the security policy.

 The mechanisms are applied correctly.

 The mechanisms are installed and administered correctly.

Therefore, “A security mechanism is defined as the low level (software and hardware)

functions that implement the controls imposed by the policy and formally stated in the

model.” Furthermore, it is a method, tool or procedure for enforcing a security policy. It

detects and prevents attacks and recovers from those that succeed. Analysing the security of a

system requires an understanding of the mechanism that enforces its security policy (Siewe

2005). The figure 3.4 below shows the sequence of security heterogeneous.

Table

Entity Are vulnerable to

Assets & Service Security Threats

Security

Requirements Security Mechanisms

 Require

 Obligate Defend C
ounter

Figure 3.4 Cycle of Security Threats, Requirements, and Mechanisms

The prime goal of a security policy is to define the means for facing a given context of

threats. Having and managing a model leads to the definition of some important rules that

could be taken to support formalising and designing security policy requirements for

organisations with a particular high degree of security (Shimonski 2003).

 Chapter 3 Critical Review of Security Policy PhD Thesis

63

3.8 Security Threats

Increased usage of the Internet has resulted in the growth of security attacks against users and

systems. Attacks are increasing as the value of the data increases. This means that an

organisation must come to estimate the value of the data it holds. An ever-increasing amount

of information and data are needed for many purposes e.g., education and business and with

the advent of the Internet threats to these values are increasing apace. Techniques are devised

to protect systems, services and contexts from known threats. Security attacks cannot be

deflected from threats that are either unknown or have no universal definition. The high level

of definition and assurance in security properties of systems used in security-critical areas

viz. finance, military and education is usually accomplished by verification. In addition, a

key role to avoid security threats is to realise and identify the IT infrastructure’s

vulnerabilities and to take corrective action. When corrective action is complicated, attacks

must be observed to assess and estimate the time and scope of penetration by perpetrators.

One, therefore, needs to develop a technique for carrying out this verification in a systematic

manner and this will be discussed in chapter 6.

3.8.1 Definition of Threats

The principal function of a security threat is to classify and define atypical security activity

within a system. In general, a threat is a set of circumstances that have the potential to cause

loss or harm to something of value. It (Edward 1994) is in a computer system that any

potential occurrence and maliciousness can have an undesirable effect on the properties and

resources associated with the contexts. It is a potential violation of security activity. When a

violation occurs, those actions are called attacks. Those who cause or defend such actions are

called attackers. The following list includes a brief description of some common threats

(Siewe 2005; Harold F. Tipton and Krause 2009):

 Phishing: In general, phishing is carried out by email when a user/receiver is

instructed to click on a link/button that takes them to a counterfeit website that could

request their personal information.

 Chapter 3 Critical Review of Security Policy PhD Thesis

64

 Hackers: The term 'hacker' can infer computer proficiency. The term describes a

skilled computer user who uses this knowledge and information to achieve an

advantage over those who are less familiar with computing technology. The ability of

the hacker is used to facilitate and perpetrate cyber crime.

 Bots: The term 'bots' refers to a computer that can be remotely accessed and

controlled by software in conjunction with thousands of other computers that have

been compromised in the same fashion. Bots are designed and created by malware

that allows an unauthorised individual remote access to a network computer. This

type of malware is known as a ‘backdoor’.

 Password Cracking: Is a process that recovers passwords from data transmitted by a

computer system. Passwords are the most common method and technique of

authentication used to control access to digital resources viz. data or information.

They are also the easiest way to accomplish unauthorised access to these resources.

Armed with password cracking software, an intruder can break a dictionary word

password in seconds. When setting a password a user should consider how much

information is saved and solely protected by it. It quickly becomes clear that good

passwords are vital to preserving confidentiality.

 Malware: Refers to any computer programme (software) that executes without the

full knowledge and consent of the system’s owner. There are several types of

malware e.g. bots, backdoors, rootkits and spyware. Malware usually makes

computers operate more slowly and may damage files and hard drives.

3.8.2 Types of Threats

Threats have remained a major challenge to computer security for a long time. The threats

that a site faces and the level and quality of its countermeasures is based on the excellence of

http://www.albany.edu/its/security_threats_bots.htm

 Chapter 3 Critical Review of Security Policy PhD Thesis

65

its security services and supporting procedures. The specific mix of these attributes is

governed by the site’s security policy, which is created after a careful analysis of the value of

the resources on or controlled by the system and of the risks involved.

Essentially, there are two types of threats (Edward 1994): Behavioural and Software. Often,

these threats are used in combination. Behavioural threats, more commonly known as social

engineering, are designed to obtain and install malicious software (malware) or to reveal

personal information. Malware generally offers and provides unauthorised access to the use

of the computer. Revealing personal information, i.e. account numbers can lead to fraud and

identity theft. Listed below are brief descriptions of common social engineering techniques

and different types of malware.

 Disclosure: Dissemination of information to an individual for whom that information

should not be seen

 Modification: Unauthorised change to information stored on a computer system or in

transit between computer systems

 Denial of service: Access to some computer system resource is intentionally blocked

as a result of malicious action taken by another user (Edward 1994)

3.9 Summary

This chapter has provided an introductory tutorial on the importance of security models,

services and mechanisms. We have introduced and presented an extended account of related

work on security policy with their associated features and some related concepts and

techniques, for discovering and expressing security policies.

Several proposals of security models have attempted a combination of mandatory flow

control and discretionary authorisations. Security models are a collection of structures that

present features of a policy and support security access problems for particular situations.

They have become one of the most important topics as specified by the large number of

researchers that have been initiated in recent years. These researchers’ efforts have led

software vendors to integrate model requirements into their products. Security models set a

 Chapter 3 Critical Review of Security Policy PhD Thesis

66

number of security issues, and these issues are covered by the system’s security policy. All

these security models cover a wide range of security policies encountered in practise.

In this chapter, we have determined the importance of using the security policies in order to

protect the resources from threats.

Security policy is still a work in progress both from the development of emerging standards

and from the security community’s growing awareness of the benefits and pitfalls of this new

integration paradigm.

 Chapter 4 Architecture PhD Thesis

67

CHAPTER 4

ARCHITECTURE

Objectives

 To define the architecture of Observation and its associated components

 To classify the observation and its associated components

 To provide an enhanced observer model and its advantage and disadvantage

 To present evaluator and enforcer models and their associated parts

 Chapter 4 Architecture PhD Thesis

68

4.1 Introduction

Administrators have to take different networking technologies and distributed applications

into consideration in order to control them. The challenge of controlling such vast

information technology is rapidly becoming complex. The growth of these heterogeneous

systems and technologies has led to their becoming more complicated, which encourages

security violations to occur with increasing frequency. This makes monitoring information

technology systems a day-by-day necessity. Consequently, the ability of observation systems

must increase. There is an increasing need to ensure the security of observation systems plays

a critical role in technical and theoretical impact. The complexity of security of observation

systems is growing as the system’s architecture and application has to fulfil the requirements

of ever demanding project scenarios. Due to the growth in the complexity of today’s software

systems, new ideas for the design and management of those systems have to be discovered.

Most software designers and programmers still design their systems following the top-down

approach, trying to control this increasing challenge. As the numbers of resources that need

to be managed and controlled grow, the task of managing these devices and applications

depends on numerous system and vendor specific issues. To avoid the operators drowning in

excessive detail, the level of abstraction needs to be raised in order to hide system and

network specifics.

In general, the observer always observes everything that can be seen within a context and the

result should be tackled and passed to a superior. Observation can be an activity of a living

being e.g. a human via the reception of information from the environment through recording

data using a set of scientific instruments. In addition, Observation is a collection of

qualitative research methods and, therefore, has previously recognised strengths and

weaknesses. It can be used quantitatively, for instance, counting the number of states. It may

be a diagnostic tool to help and understand what is occurring. Observation can also produce

descriptions, such as, number, time and duration of events. It can reduce risk and emphasise

meanings and experiences (K. Aldrawiesh, Siewe et al. 2011). It is a set of research methods

that is qualitative in nature and offers information that can help and support by highlighting a

problem. The observation’s methods include open or structured observation which may be

overt or covert. The ’observation’ is informally divided into two categories as follows:

 Chapter 4 Architecture PhD Thesis

69

 Unfocussed observation

 Structured observation and this category are based on qualitative.

The observation is defined as a science class of research that encourages and supports the

development of a system for an administrator's observational abilities central to the scientific

method by integrating, writing and recording the component events. The observation is a

useful approach for developers and researchers. It allows the analysis and differentiation of

recent developments in order to discover the damage. Also, it categorises the various

researches by classifying the elements that are essential for building an observation system as

well as discussing the necessity of new observation and control structures in Web context

systems, starting from the basic contradiction between bottom-up behaviour and top-down

design. Observation systems serve the purpose of keeping emergent behaviour within

predefined limits.

4.2 The framework of Architecture

As shown in figure 4.1 below, the architecture consists of many components that are

designed to be used for several purposes. This architecture identifies common environment

syntax for expressing functional or non-functional properties of a Web service in a

declarative manner. In addition, it illustrates description and communication between the

components and their structures, which describes a broad range of service requirements,

preferences, and capabilities.

Moreover, this architecture includes a solution of optimal entities that have connected to

control service behaviour whenever interactions and communication have occurred. These

entities are commonly used in observation systems, such as, policy, e-observer, evaluator and

enforcer. The aim here is to provide a formal framework in which observation systems can be

expressed together with their security requirements at different levels of abstraction. Secure

in this context means the system presents adequate mechanisms to enforce dynamically

changing security policies that define constraints on the system’s behaviour.

 Chapter 4 Architecture PhD Thesis

70

E
n
fo

rc
e
s

H
as

User or service

or organization

Resources

E-Observer

Evaluator

Policy

Enforcer

Has

Observers by

Reports to

H
a
s

H
a

s

Applies action

C
o
n
strain

ed
 b

y

Figure 4.1 Framework of Architecture

Reports to

4.2.1 Policy:

The main part of this architecture is policy. The policy is constrained by the behaviour of

system components. The policy (Andrew, Geoff et al. 1994; Raju Rajan, Dinesh Verma et al.

1999) becomes an increasingly popular approach to the dynamic adjustability of applications

and management. Policies are often requested to be applied to automated network

administration tasks, such as, configuration, security and QoS. Furthermore, policies can

manage and control the system’s behaviour, as they become a key to permit those who can

access a system. In our observation model, policy manages and controls the system’s

behaviour. It works as a key to decide who can access information or data. Other parts of this

architecture have been described in chapter two.

 Chapter 4 Architecture PhD Thesis

71

4.3 Flowchart of the Architecture

Figure 4.2, below, shows flowchart of the architecture which is proposed and drawn based on

the essential architecture. It provides the crucial parts of the sequential stages, beginning with

a user or customer, which is constrained by global policy. This policy obligates these

properties (services) such as, the e-observer, the evaluator and the enforcer/actuator. Each

one has a different policy depending on their job. In addition, each one of them has a local

policy also regarding their job. Figure 4.2 shows the sequence of the data flow in the model

to demonstrate how the system could be working to control any violation activity.

Firstly, services will be collected into a container and when they communicate with each

other the e-observer will start observing the service behaviour based on its security

requirement. Then whatever is observed should go to the evaluator which will start to

evaluate this observation. If the evaluation is satisfied then it can pass to the end, otherwise

the evaluation is not satisfied and needs to be enforced by the enforcer.

No

Was a

Service

satisfied

Yes

Start

Finished

Figure 4.2 flowchart oF the Architecture

Service

Policy

E-Observer

Enforcer

Apply Action

Evaluator

 Chapter 4 Architecture PhD Thesis

72

4.4 Observation Model

Observation systems are vital, meaningful for safety and need to be highly dependable. They

are a collection of components that connect and adhere service behaviour, whenever

interactions occur, with the expected results of these interactions by making an aggregation

of the results to accomplish a satisfactory System Observer Model (SOM) (K. Aldrawiesh,

Siewe et al. 2011).

Observation systems have evolved and grown significantly over the years and are becoming

an essential active tool for different organisations and their security applications. They are

traditionally used to enhance the security of a system. Furthermore, they are found and used

in several enterprises for many purposes, for example, education, business and finance.

Figure 4.3 below shows the observation framework which includes components that are used

to manage the sequence of the service. A closed loop control consists of controlled process

sensors. These components can be typically found in security systems that are used for

observation. Our observation framework consists of three main components (K. Aldrawiesh,

Siewe et al.):

 Enhanced observer model

 Evaluator model

 Enforcer model

In addition, system observer model (SOM) is a collection of services that are designed to

receive many services.

Observation technique is an important issue and adopted by different companies to enhance

performance and control their ability to examine in close detail, service behaviour. Moreover,

observational technique is a process and method by which an individual gathers firsthand

data about programmes, processes or behaviour that are being investigated. It facilitates an

opportunity to collect information on a wide range of behaviour, to monitor a great variety of

interactions and to explore openly the model’s requirements. By directly observing

operations and activities, the e-observer can develop a holistic perspective, such as,

understanding the context within which the project operates.

 Chapter 4 Architecture PhD Thesis

73

As mentioned, our model includes an e-observer which maintains a list of its dependents and

then automatically reports any changes in state of service to the evaluator model by calling

one of their methods.

Figure 4.3 Observation Model

E-Observer

SOM

Reports

O
b

s
e

rv
e

s

Output

Writes

Evaluator
Enforcer

Input

A
c

tio
n

Moreover, e-observer techniques (Jürgen Branke, Moez et al. 2006) address most problems

and provide and govern a proven solution that is re-usable in similar contexts. The proof of

the solution lies in its ability to provide a facility for the system and other associated parties

to collaboratively perform and control any violation activities. It addresses these activities by

a technological approach. Figure 4.3 states that the e-observer is responsible for appropriate

observation and feedback. The sensor and actuator are at the heart of SOM. They are devices

that measure a measurable attribute and convert it into a signal which can be read by an

observer. A control-closed loop is created on top of the SOM to rotate the states/services.

Thus, the e-observer observes behaviour through sensors by comparing the results with the

expectations and decides what action is necessary and directs the SOM to provide the best-

known action through the enforcer system, but only after the evaluator has assessed the

results.

We have to pre-suppose some criteria for use when observing services in a system,

comparing the expected knowledge of historical and current data and the rules that are

 Chapter 4 Architecture PhD Thesis

74

assumed. The e-observer’s task is measured in order to quantify and predict emergent

behaviour with the basic metrics of QoS e.g. time, availability and security.

Despite the good progress in terms of the security that is being made by such observation

systems, only a few results have been reported in the literature, in particular, Web services.

Security in observation is an important issue that needs to be explored. This research deals

with e-observer techniques over the Web environment, which makes it possible to achieve

adaptability in order to improve system performance in dynamic environments by efficiently

using the available resources and controlling the policy’s model.

In spite of presenting security in previous chapters, the observation model has to address and

animate the security to protect its resources. The prime purpose of security here is to present

the insights and techniques of the model that can be used to mitigate threats.

4.4.1 Enhanced Observer Model

As seen in figure 4.4, the e-observer collects and gathers information (raw data) from the

SOM and then the aggregated values are reported to the processor. Subsequently the

evaluator model assesses the situation and feeds back the appropriate action to the enforcer

model to influence the SOM. The raw data which is collected from SOM is not unprocessed.

The observation behaviour itself is variable; hence, the e-observer model influences the

observation procedure, e.g. by selecting certain detectors or certain attributes of interest. The

feedback from the e-observer to the evaluator directs attention to certain observables of

interest in the current context.

 Chapter 4 Architecture PhD Thesis

75

Figure 4.4 Enhanced Observer Model

Predictor

Log file

AggregatorData Analyser

Monitor

SOM

Modulator

System data Individual data

E
n

fo
rc

e
r

E
v
a

lu
a

to
r

E-Observer

Model

Raw data

P
ro

c
e

s
s
o

r

Based on the aggregate results by the e-observer, the evaluator can benchmark the data with

an objective function and knows what actions are best to guide the SOM in the desired

direction by informing the enforcer model, which acts as a switcher to detect the violation

(K. Aldrawiesh, F. Siewe et al. 2011). Our assumption here is, tracing and observing the

communication between services and then taking the decision based on their behaviour and

history. Hence, the big issue here is how do we ensure that some given security requirements

are satisfied and enforced? The scenario in our model is based on the following:

 System’s components are Web-services.

 These components are black boxes and designed/built by various vendors.

 Topology is highly changeable

The "observation" model allows to observe (partial) of behaviours of those services

and to construct complete behaviours that can be analysed and compared with security

requirements. So we have two sets of behaviours: (a) the observed (partial) behaviours; and

(b) the actual required behaviours.

 Chapter 4 Architecture PhD Thesis

76

These two sets can then be compared and determined to see if the system satisfies the

security requirements. If the two sets are the same then the system satisfies the requirements;

otherwise it does not.

Therefore, the e-observer observes these services when they interact with each other and then

the evaluator model assesses the communication between them to discover any deviation that

is based on their behaviour and history. The evaluator then writes to the enforcer model for

detection. In a technical system, the e-observer plays the role of the limbic system. It

observes the external environment via the sensory input as well as the internal behaviour of

the low-level execution unit and is highly manipulative in several ways. The usage of the e-

observer structures can be regarded as the introduction of emotions into technical systems.

4.4.2 Definition of e-observer

The e-observer is a set of structures that collects information about service behaviour by

tracking it to ensure it acts in a suitable way. It provides feedback that is superior to the

evaluator model. It works by combining knowledge about the information of services, such

as, behaviour, parameters, attributes and feedback to extract action that is better than can be

obtained and detected.

In addition, e-observers are a worthwhile field for research and development. They are

considered promising methods for the development of shared heterogeneous systems. The

principle used by the e-observer is to combine a measured feedback with knowledge of the

System Observer Model’s (SOM) components, which is reported to an evaluator model via

many operations. The e-observer is used to enhance system performance and security. It can

be more accurate than the phase lag inherent in the sensor. Moreover, it studies a group of

subjects engaged in certain activities but does not directly participate in them.

E-observer technology is not a panacea; it could work with assistant tools by adding

complexity to the system. This will require computational resources with a high cost. In the

meantime, observation as a technique is required by several enterprises to enhance and

control their ability to examine, in detail, service behaviour. E-observers are used in many

 Chapter 4 Architecture PhD Thesis

77

systems in different ways with high efficiency and good results. They are simply listeners

that have been used for years by selected industries and they use complex mathematics. In

our model, they are defined as digital algorithms that combine outputs with knowledge of the

SOM to provide results superior to traditional structures that rely wholly on the evaluator via

the processor.

Programmatically an e-observer is a software design in which an object, called the subject,

maintains a set of observable dependents and notifies them automatically of any state

changes by calling one of their methods. The e-observer works as a listener by registering

their interest viz. service with observables that alert all registered listeners when an update is

required. Consequently, it observes and analyses the state of the system by checking and

comparing the correctness of the observed state of the system with its expectation.

4.4.3 E-observer’s Technique

The e-observer is able to add and remove observables to or from observers. It ensures that

updates are performed correctly. In addition, the e-observer class recursively updates as

registered observers while avoiding multiple updates and cyclical behaviour. Figure 4.5

below shows methods to add and remove objects:

 void Register(Object anObservable, Object anObserver)

 If anObservable is registered with the manager, add anObserver to the list of observers for

 anObservable,

 otherwise, register anObservable and add anObserver to its list of observers.

void Deregister (Object anObject) removes all references to anObject from the manager where

 anObject is an observer, observable, or possibly both of these.

void Deregister (Object anObservable, Object anObserver)

 Remove anObserver from the list of observers for anObservable. If anObserver is the only observer,

the observable object anObservable is also removed.

Figure 4.5 Observer can add or remove objects

 Chapter 4 Architecture PhD Thesis

78

The e-observer updates and notifies all registered observers of a particular observable when

an update is required. Where an observer is also an observable the method recursively

processes all of its observables and their dependencies. Multiple updates and cycles are

avoided by viewing the update. A process is a graph traversal, which maintains a list of

visited objects. An argument parameter and a reference to the observable implement both the

push and pull models of event notification. Figure 4.6 below refers to the method to update

all registered observers.

 void notifyManager (Object anObservable, Object arg)

 {

 if (anObservable s exists)

 { for (all observers of anObservable) // process in reverse order of registration

 { currentObserver.notify (anObservable, arg) // combine push and pull models

 place the current observer on the visited list

 if (currentObserver is also an Observable)

call notifyManager (currentObserver, arg)

 }

 }

 }

Logically, an e-observer system is not a sufficient solution; it needs technical tools to work

perfectly. It is also used to regulate an enormous variety of services, software and processes.

It controls and manages the state attributes, parameters and interactions of service behaviour.

It is common to use the concept of e-observer techniques to address certain problems relating

to application design and architecture. The definition of an e-observer is often difficult to

convey with any level of accuracy which the concept warrants, so a proposal of observation

is used as the conventional means.

4.4.4 Duties of the e-observer

The e-observer is a piece of a system that monitors and catches an interaction and execution

of the communication of the services behaviour and meets properties in accordance with its

policy. Observing allows a tool or user to monitor and analyse to recover detected faults and

to provide the information to the evaluator. Thus, the e-observer is a component of the

Figure 4.6 Methods can update all registered observers

 Chapter 4 Architecture PhD Thesis

79

software or hardware that observes interactions and events of the service behaviour or any

interactions between services. It, however, does not participate in these interactions.

In addition, it is a technique used to confirm that the security practices and controls in place

are being amenable and effective. It also supervises the interception of communications, the

interacting checking of our system, the logging, recording, inspecting and auditing of data.

As a technical definition, the e-observer pattern is used to keep consistency between related

objects while minimising their coupling and maximising re-usability of the objects.

Therefore, the e-observer observes the service behaviour of the SOM in terms of system

parameters that are well defined.

In general, the e-observer is advantageous in creating a clear distinction between various

objects in the system. It is also common to find this solution utilised within a non-user

interface (UI) related segments of a framework or application. The usefulness of the e-

observer pattern extends far beyond its original intent.

 In addition, the e-observer has some factors and duties that should organise its capability and

its observation of the framework. The usage of e-observer structures can be regarded as the

introduction of emotions into technical systems. The overall objective and challenge of

observation is how to guarantee the e-observer captures suspicious services and to ascertain

how effectively they can be contacted and implemented within a web service environment or

decentralised system.

Having and managing services and their associated components on the Web is a meaningful

and significant challenge regarding their dynamic and unpredictable nature. To ease this

potentially dangerous situation, an observation model tries to mimic key phenomena when

interactions occur between services in order to obtain what actions should be requested.

Therefore, the duties of e-observer are as follows:

 Record available information of an event, effort and estimate total catch

 Collect critical information e.g. history, behaviour and risk preference

 Monitor services to determine the level of fulfilment of policy’s regulations.

 Record incidental takes and interactions of events of services

 Chapter 4 Architecture PhD Thesis

80

4.4.5 Advantages of the e-observer

The e-observer has some advantages that may enhance the prospect of optimal solution for

the security:

 Minimal coupling between subject and observer

 Provide direct information about behaviour of services

 Permit/report to the evaluator to enter into and understand situation/context

 Provide good opportunities for identifying unanticipated outcomes

 Exist in a natural, unstructured and flexible setting

 The observer can add new independent observers

 Observer does not participate with objects that have been observed

4.4.6 Drawbacks of the e-observer

The principal difficulties in using observation are the large amount of information. In spite of

the advantages of the e-observer, some drawbacks need to be considered, such as,

 Expensive and time consuming, which leads to depletion

 May affect the behaviour of participants

 Selective perception of observer may distort data

 The investigator has little control over the situation

 The behaviour or the set of behaviours observed may be atypical

As abovementioned in figure 4.4, the e-observer is the main component of the observation

model that aggregates available information with complex calculation of QoS metrics then

reports to the evaluator model via the processor. The e-observer model has some

components, as follows. (Eales 2005):

4.4.7 E-observer model’s components

As mentioned in figure 4.4, the e-observer model has many components as follows:

 Chapter 4 Architecture PhD Thesis

81

4.4.7.1 The Monitor:

The monitor is an explorer tool that has needs to verify and watch states/services while in

operation. It processes the data coming via the SOM. As previously pointed out, SOM has a

control loop to rotate the states/services. The SOM is considered a set of factors possessing

certain attributes. The monitor samples the attributes of the SOM according to a sampling

frequency given by the observation framework and its policy. The information coming from

the SOM constitutes as raw data (unprocessed) for the e-observer, which can be classified

into individual data common to all elements of the system and some global system attributes.

In order of occurrence, monitoring the SOM is nothing else than the generation of a time

series that reflects the current state of the system as well as its history. The sensory

equipment of the SOM limits the selection of observable attributes and the resolution of the

measurement.

4.4.7.2 The Log file:

The log file is a process that includes a record of events/actions that have occurred. It is

generated automatically by some applications and is typically stored as text editable files. As

a sign of the significance of the data, in every loop of observing the SOM, all measurable

data is stored in a log file. This stored data can be used within the predictor for the

calculation of time-space-patterns by the data analyser.

4.4.7.3 The Modulator

The modulator is a co-ordinator process component that is located between the predictor,

data analyser and monitor. The modulator is a process that facilitates the transfer of

information to another. It is the process of varying one or more of elements and attributes of

high value. It conveys information/messages to a superior. In the next step, some derived

attributes can be computed from the raw data, e.g. an attribute velocity can be derived from

the attributes as x and y coordinates take into account the history of these two attributes. The

modulator of the raw data also contains a selection of the relevant data that is required to

compute aggregated system-wide parameters. The processed data is passed to the next

components, the data analyser and predictor.

 Chapter 4 Architecture PhD Thesis

82

4.4.7.4 The Predictor:

The predictor is a tool or process that predicts the outcomes based on mathematics and

knowledge to obtain and predict the most possible system states. It processes the data coming

from the modulator and the results from the data analyser with the objective of giving a

prediction of the system’s future state. The predictor can use its own methods or some

derived from the data analyser combined with prediction methods taken, for example, from

technical analysis. Prediction includes an analysis of the system’s history and QoS. For this

purpose the predictor is prepared with a memory to store a given time window.

4.4.7.5 The Data analyser:

The data analyser is the process of evaluating data using analytical and logical reasoning to

explore each part of the data provided based on system policy. It is gathered, reviewed and

then analysed to form, as is required. The data analyser produces sophisticated solutions to

analysed data. It uses and applies a set of detectors to the processed data vector. These

detectors can be mathematical and statistical values to be evaluated. At the end of this step, a

system-wide description of the current state is provided.

4.4.7.6 The Aggregator:

The aggregator receives data from the data analyser and the predictor. In addition, possibly

some raw data emanating from the modulation is handed on with QoS to the aggregator. The

aggregator then sends the outcome to the processor and evaluator model to be assessed. The

evaluator has a memory to store current values together with their history and is subsequently

stored forming a set of data vectors. These vectors are needed to perform filtering, such as,

smoothing of the results to remove the effects of noise. Further, it delivers and sends a set of

filtered current and previous values to the evaluator model via the processor.

4.4.7.7 The Processor

The processor is the last component to obtain a sequence of aggregations and linked

procedures, which at every stage converts inputs into outputs. It is an organiser component

and is located between the aggregator and the evaluator models. Moreover, it receives the

results which contain aggregated information to be processed. It should then transfer

 Chapter 4 Architecture PhD Thesis

83

information to the evaluator. It is used to perform a final check on the aggregated results to

decide whether these results are worthwhile sending to the evaluator model or whether to

disregard them.

The major aim of the e-observer is to perform an aggregation of all the available information

and data about the SOM in the form of indicators to give a global description of the state and

the dynamics of the underlying system, hence, the observation framework guides the e-

observer.

4.4.8 The Evaluator Model

As shown in the figure 4.7, the second component in the observation model is the evaluator.

The purpose of the evaluator model is to delineate the risk analysis to be carried out by

detection tools. The intention is to carry out an evaluation to identify risks and problems.

Furthermore, the evaluator is a model that receives results from the e-observer model to

evaluate and process them in order to decide whether they adhere to the observation policy.

The figure below shows the evaluator model, which has three interfaces to organise its task

and are briefly described as follows (Jürgen Branke, Moez et al. 2006): the aggregated data is

obtained from the e-observer via the processor. The objectives are imposed on the evaluator

by the observation system using the second interface. This is used for the evaluation routine

of further actions. The evaluator contains all the information needed for the interaction and

reconfiguration of the SOM. Every evaluation system provides a number of different

parameters and interfaces for manipulation. During the last decision, called the action

selector, the mechanisms will respond to the enforcer model via the observation model to

take best action on the SOM. Therefore, the evaluator selects the best adequate actions to

optimise the system’s behaviour with respect to certain global objectives. The main criteria in

the evaluator model are based on the behaviour and history of observed services.

 Chapter 4 Architecture PhD Thesis

84

Figure 4.7. Evaluator Framework

Adaption EvaluationSimulation

SOM

History

Enforcer

Evaluator

system

E
n

h
a

n
c
e

d
 o

b
s
e

rv
e

r

O
b

s
e

rv
a

tio
n

 m
o

d
e

l

S
e

le
c
t

Mapping

We briefly described the main component, which is given the best possible evaluation in our

approach by addressing the criteria of selected services to obtain a highly keyed solution and

which then sends it to the enforcer model for detection.

4.4.9 The Enforcer Model

The third component in the observation model is the enforcer model. The enforcer executes

unpleasant tasks for a superior. It enforces threats that it will not co-operate with the

observation policy. It can excel at detecting adversary attempts to violate security on a host.

Furthermore, it receives a final evaluated action and aggregation via the processor to perform

the best trigger to the services that are determined and controlled to influence in accordance

with the observation policy. In technical terms, it is an online tool that observes and identifies

security deviation in the environment and then tackles and passes these on in the SOM. In

addition, it uses the defined evaluation policy as input, creates a separate process as a thread

 Chapter 4 Architecture PhD Thesis

85

for each service and runs parallel activities to detect security violations (K. Aldrawiesh, Platt

et al. 2011).

The major theme behind the enforcer system is that the proactive detection provides the

additional strength, which then informs the model to detect effectively any violations. The

Enforcer model should be able to detect any deviation of the system. It simply works in an

anti-malicious capacity to deal with intrusions and for enforcing the services or objects when

required.

The popularity of the enforcer’s technique has rapidly increased. Several researchers and

designers developed the enforcer technique that is currently in use. Our enforcer model has

some modules that have been joined to control and manage its behaviour as well as achieving

an acceptable System Observer Model (SOM). These modules are commonly used to manage

access control services. Moreover, the enforcer technique has been adopted by many

organisations and enterprises for a variety of purposes, such as, military, business and

financial. This technique is a process and a method that should detect any intrusions by

applying mechanisms to control any violations.

4.4.9.1 Enforcer Architecture

This research proposes the requirements for addressing and enforcing access control policies

to satisfy and reduce any violation at SOM as follows (K. Aldrawiesh, Siewe et al. 2011):

 Components: Our model consists of many components, such as, PAP, PDP, PEP and

policy repository (PR). They will be described during this chapter.

 Performance: Our model makes a low time response to accomplish and support real time

applications.

 Platform: Our model offers the distribution regardless of different modules on different

machines and with different operating systems.

 Dynamicity: Our model can be easily extended by adding components e.g. PDP and

PEP, hence additional levels of management and control should increase safety.

 Chapter 4 Architecture PhD Thesis

86

PEP

Respond

PDP

Request

Request

PEP

Access

Policy
……......

Figure 4.8 Enforcer architecture Model

Policy

Repository

Storage

Retrieve

PAP

Policy Enforcer (PE) Policy Manager (PM)

Request

Evaluator

As shown above in figure 4.8, the architecture is mainly contained in two parts: the policy

manager (PM) and the policy enforcer (PE). This architecture totally wraps up the

computation of access control services. PM is a logical unit or entity that oversees and

manages policy implementation. Each PM has its own management scope. The PM is a user

interface that works as offline and adjusts a list of jobs e.g. policy creation, modification,

activation, synchronisation, validation and termination. The PM also maintains and updates a

policy repository. The PM offers centralised administration and management of entitlement

policies and delegation and integration; and uses and runs various policy validation

techniques to confirm each policy before storing them in the policy-engine. The validation

techniques include a syntax check, a condition check, a dictionary check and a duplication

check. The PM groups policies resource wise within a domain and made ready to be input to

the policy enforcer.

PE works as online tool that detects violation activities in our model and their associated

components.

 Chapter 4 Architecture PhD Thesis

87

This architecture has set the progress of access permissions to individual Web services,

returning for each request, and the decision of whether the access should be accepted or

denied. In addition, it has been designed and proposed to impose the system against

intruders.

As overalls of this architecture, it has various components i.e. PAP, PDP, PEP and PR. The

PAP, PDP and PEP are implemented as Web services. These access control services are

described in the next few paragraphs.

PAP is an entity that issues authorisation policies. PAP controls and offers centralised

administration, management and the monitoring of entitlement policies, their delegation and

integration. PAP creates and manages security policies and stores these policies in a policy

repository (Verma 2000).

PDP is an entity that evaluates an access request against one or more policies to make an

access decision. PDP assesses the prerequisite conditions for enforcing the policies with

respect to their conditions. PDP is the policy management module of the router that is

responsible for enforcing the deployed policies. PDP is logical unit or place on a server that

enforces policies for admission control and policy decisions in response to a request to access

a resource on a computer (Verma 2000).

PEP is an entity that enforces access control for one or more resources. PEP is a network

device by which policy decisions are enforced. PEP is a component or unit of policy-based

management. When a user tries to access a file or other resource on a computer network or

server that uses policy-based access management, the PEP will explain the user's attributes to

other entities on the system, then the PEP will give the PDP the decision of authorised or

unauthorised user access based on the description of the user's attributes. Applicable policies

are stored on the system and are evaluated and considered by the PDP. The PDP makes its

decision and returns it. The PEP will inform the requester whether the requester is

authorised/unauthorised to access the requested resource (Verma 2000).

PR is the main database for the policies that are managed and controlled by PAP. PR offers

and provides a persistent policy store for policies that are known by the PAP. These policies

may or may not be currently "active" with regard to the policy decision process. For Policy

 Chapter 4 Architecture PhD Thesis

88

Managers with distributed components, the PR also provides secure access. The policy

repository is a set of directories that stores policies and distributes them to policy engines

(Verma 2000).

The policy engine operates as a PDP as it is responsible for making decisions about the

deployment of policies on the router device and is a repository for security policies in a

directory store that is defined by the system.

4.4.9.2 The Description of enforcer architecture

As aforesaid in the figure above, the model and its components are implemented as Web

services. The PDP component receives an access request and replies with a ‘yes’ or ‘no’

decision. The PEP component deals with the PAP that encapsulates the information needed

to define the applicable policies from PR. It then examines the request against the applicable

policies and returns the final decision to the PDP component. The PAP component attempts

to action the policies that are applicable to a given access request and replies them to the PEP

component.

However, a typical dialogue in figure 4.9 below shows the sequence of access control

services that returns an access control decision as well as requesting attributes. Firstly, when

a user requests a service to access a response to an access request, the PDP locally attempts

to fulfil the request, which is dependent on applicable policies and attributes that are

controlled by PIP. If it is unable to resolve the request, it becomes indeterminate or

undefined, so it may require additional attribute assertions. In this case, it may query these

attributes from one or more PIPs, which depend on PAP. The resulting data will be re-

evaluated and the response returned to the requestor.

 Chapter 4 Architecture PhD Thesis

89

PDPPAP

Request policy/

policies

Local policy

looks-up

Otherwise, request policy

Policy/policies

Figure: 4.9 Diagram of access control services

Requester

Found policy

Reply policy

Respond

Request access control

decision E
v

alu
ate

Controller

Moreover, figure 4.10 below, shows a typical dialogue of sequence of access control services

that present a diagram to return an access control decision as well as requesting attributes.

Firstly, a user requests a service to access a response to an access request. The PDP attempts

to fulfil the request, which depends on the applicable policies and their attributes that are

 Chapter 4 Architecture PhD Thesis

90

controlled by PIP. If it is unable to resolve the request, it becomes indeterminate or

undefined, so it may require additional attribute assertions. In this case it may, query these

attributes from one or more PIPs, which depend on PAP. The resulting data will be re-

evaluated and the response returned to the requestor.

PDP

Request access

Control decision

Evaluate

with local

attributes &

policies

Evaluate

with local

attributes and

policies

[INDETERMINATE]

Request Attributes

Attribute Assertions

Policy Decision

Figure: 4.10 Sequence of returning an access control decision

PIPRequester

However, the enforcer architecture has the advantage that is dynamicity as stated in figure

4.11; it allows the model to be used in different environments that use enforceable systems.

For example, if a client requests the service to access a resource; the PDP0 evaluates the

request and then sends it to the PEP0, which needs to be authenticated by PAP. Next, the

 Chapter 4 Architecture PhD Thesis

91

PAP should generate a new PDP e.g. PDP1 and a pair of PEP1-PAPs accordingly,

consequently, these components can be used and implemented as Web services.

PEP n

PDP 0

Figure 4.11 Sequence of Authentication

PAP 0
Service

Client

PEP 0

PDP n
PAP n

...
.

...
.

...
.

Policy

Repository

The major purpose here is to keep and retrieve the policies applicable to a given access

request. The PAP component looks in the policy repository depending on the received

parameters, such as, service name and location.

The policy manager (PM) has a user interface that generates a policy. The policy engine is a

repository of security policies defined at service domains. The PM creates and produces a set

of relational databases that stores policies as shown by the following table 4.1:

This table is set as: Policy ID defines a policy ID number which is unique and used to sort

the policy. Name defines name of a policy. Subject identifies the range of the policy of users

that are certified to initiate an action. Condition defines a condition to be tested for a target.

Priority defines the priority of a policy, which ranges from zero to one (0-1). Zero is low

priority and one is high priority of a policy. This priority is dynamically changeable during

execution. Action defines the immediate action to be performed to reduce and control the

risk. The attack name defines a suspected name that the policy can detect. As illustrated in

the table, we assume an algorithm that has a collection of episodes. This algorithm can

examine a policy where P is the policy as shown below.

Table 4.1 Relational database stores policies

 Chapter 4 Architecture PhD Thesis

92

This algorithm is used in the enforcer system at the decision stage. It performs a policy as

follows: reading a policy and then obtains the value of a resource as related with a policy.

Next test the condition, later if a resource gets any variation, then calls action_policy.

4.4.9.3 Policy Specification Languages

A policy is a set of declarations that is set by the owner of some computing resource. It

specifies how a policy should be used. Policy specification languages (Al-Ajlan 2008) are an

attempt to address and formalise the intent of the owner into a form that can be understood

by machines; hence a policy may give certain permission to entities i.e. resources,

programmes and users that fulfil some requirements. Each policy language must state the

entities and their attributes that are to be considered, as well as the rights that can be granted.

Different policy specification languages are considered and summarised for use on different

networks and services with different operating systems, as well as taking into account their

limitations. Therefore, a policy language is designed and proposed for easy representation of

a security on a system. In chapter 5, we will elaborate on Ponder policy language.

Begin

[Read a policy from memory]

Get←a policy (P)

[Get current values of a resource in association with policy]

 If condition ≠ satisfy

 If variation in current values of a resource

 ElseIf ∑ variation…then

Run← action_policy(P) //This will call execute action of a policy

 If policy-association exists…then

 Get←a policy from associated domain

 Endif

 End

Algorithm 5.1 Examine the policy in Enforcer system

 Chapter 4 Architecture PhD Thesis

93

4.5 Summary

In this chapter, we have introduced the framework of architecture that provides separate tiers

for composing and coordinating services for managing services in an open environment by

employing these components to obtain a meaningful advantage for enhancing the observation

in the system. This model illustrates the main elements that improve the observation in the

context, and can be used in different purposes that are concerned with security.

Also, in this chapter, we portrayed and described the important components and their

associated issues that are used and stated in the observation model by complying optimal

systemic manners to obtain a highly dependable system.

Moreover, the e-observer architectural model is a natural way of implementing and using

observation. It serves the purpose to keep emergent behaviour within predefined limits for

reaching the required level of security. It is a highly traditional technique that has been used

by many developers for a long time and adopted by many enterprises.

The second model of the observation framework is the evaluator, which receives the

outcomes of the e-observer in order to apply assessment and then writes to the third model.

The evaluator should produce an evaluation report that indicates the violations which need to

be detected. And then the third model which is the enforcer acts on these violations by

applying detection, re-evaluation and then action. It is a highly worthable technique that

works as a web service to support its detection. The advantage of the enforcer is it can easily

add components e.g. PDP and PEP to manage and enhance security.

Therefore, the observation framework is responsible for actually changing the internal

behaviour and structure of the processes. It possesses the major power that allows the e-

observer, evaluator and enforcer to guard and control the model cycle and information by

estimating the threats that could be detected by appropriate actions to adhere to the SOM.

The next chapter will consider the Ponder policy that is used in this research. This policy will

be depicted in more detail in this coming chapter, and it has two main parts. The first part is

access control policies, which has four parts: authorisation, information filtering, delegation

and refrain. The second part is obligation policies. In addition, this chapter will contain

 Chapter 4 Architecture PhD Thesis

94

graphical representations of Ponder policies, which also has two aspects. These are domain

hierarchy policy and set operation policy. At the end of this chapter, we will explain the tool

simulations problem description and AGG simulation.

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

95

CHAPTER 5

Formulate a Policy-Based Technique for the

Verification of the Observation Approach

Objectives

 To present an overview of Ponder policies and their associated parts

 To present a graphical representation of Ponder policy

 To illustrate problems by using the simulation tools (AGG)

 To develop compositional rules for verification of Observation system

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

96

5.1 Introduction

The visionary promise of the usage of policy-based techniques has become an increasingly

and applying solution to manage heterogeneous system networks and distributed systems.

The management of large-scale integrated systems, particularly transnational system, is

difficult because of the wide range of available policies with differing types of information.

Due to the importance of using policy-based management, which are enhanced and

developed scalability and flexibility for a system. Scalability is developed by uniformly

applying the same policy to a set of devices. Flexibility is gained by separating the policy

from the implementation of the managed system.

Web services are increasingly emerging as a popular standard for sharing data and

functionality between loosely coupled, different platforms and heterogeneous systems.

Consequently, the integration of existing Web systems’ technologies permits the provision of

advanced and complicated services, e.g. enabling and supporting browsers to use different

sorts of resources and services at the same time in an easy procedure. However, managing

and controlling vast number of services is complicated, as it needs a suitable policy to be

defined in order to develop reliable and secure Web services. This chapter rests and proposes

a policy verification and analysis method by graph transformations, which support an

intuitive way to represent abstract policies in a simple-to-understand style. Furthermore, it

performs as an informal language reference for the environment of Ponder policy language.

The most important section of this chapter is the simulation of AGG tools with a set of graph

rules to illustrate its ability to protect an observation system and to verify and analyse a

system with the Attributed

Graph Grammar (AGG) tools. This chapter shows and uses contextual graphs to define

security policies that encompass actions at different stages of model systems.

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

97

5.2 The Attributed Graph Grammar (AGG)

AGG was designed and developed at the beginning of 1997. AGG is subject to ongoing

research activity by the graph grammar group in Berlin. AGG (Taentzer 1997) is a

development environment tool for attributed graph transformation systems supported by an

algebraic approach. It aims to support and specify building prototyping applications with

complex graph-structured data. AGG uses a general-purpose graph transformation engine in

high level SUN JAVA applications that employs graph transformation methods. In addition,

AGG language is a rule based visual language supporting an algebraic approach to graph and

depict transformation. The AGG environment is designed as a set of tools to directly control,

change typed and attributed graphs and to define a graph grammar.

Having and adopting an AGG graph grammar may validate using its ability analysis

techniques, namely, critical pair analysis, consistency checking and termination criteria for

Layered Graph Transformation Systems (LGTS).

AGG (Taentzer 1997) is a general development environment for algebraic graph

transformation systems tools. AGG follows the interpretative approach. AGG has an ability

that comes from a very flexible attribution concept. The relationship between Java and AGG

are allowed to attribute any kind of Java objects, so graph transformations can be equipped

with arbitrary computations on Java objects described by a Java expression. The environment

tools of AGG include a graphical user interface comprising of a set of visual editors, an

interpreter and validation tools.

Graph grammars use as specification technique for a set of particular kinds of systems,

especially in situations where states exist as complex structures that can be adequately

modelled as graphs and in which the behaviour involves a large amount of parallelism. They

can be described as reactions to stimuli that can be observed in the state of the system. Graph

grammars are a formal language suitable for a set of specifications for the type computational

systems.(Taentzer 1997).This kind of formalism is particularly well suited to applications

whose states have a complex topology and in which behaviour is essentially data-driven, that

is, events are triggered by configurations of the state.

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

98

AGG is a technical tool that has used by a number of developers and designers for attributed

graph transformation systems that support an algebraic approach to graph transformation. It

is particularly suitable for rapid prototyping applications with complex graph structured data.

In addition, AGG may be used as a general purpose graph transformation engine for high

level SUN Java applications that employ graph transformation methods(Taentzer 1997).

The interpreter in AGG allows the stepwise transformation of graphs as well as rule

applications for as long as possible. AGG supports several kinds of validations, which

comprise graph-parsing, consistency checking of graphs and conflict detection in concurrent

transformations by critical pair analysis of graph rules. Applications and components of

AGG have graph and rule-based modelling software, validation of system properties by

assigning graph transformation based semantics to some system model, graph transformation

based evolution of software and the definition of visual languages based on graphs (Taentzer

1997).

With regard to AGG’s abilities, it is possible to define typed attributed graph transformation

with node type inheritance. This attributed type graph can be enriched by an inheritance

relation between nodes. Each node type can have only one direct ancestor from which it

inherits the attribute and edge types. The value of using this feature is equivalent to a number

of concrete rules, which results from the substitution of the ancestor nodes by the nodes in

their inheritance clan. Therefore, rules become compact and more suitable for their use in

combination with object-oriented modelling(Taentzer 1997).

Thus, we will use this tool to illustrate our proposed approach by adapting the requirements

to its rules in order to assess their capabilities.

5.3 Selection Study of Ponder Policy Specification Language

A policy is a set of declarations that authored by the owner of some computing resources.

The declaration specifies how the policy should be used. Policies usually manage and control

the behaviour of large-scale systems e.g. a Web system. Policy specification languages (Al-

Ajlan 2008) are an attempt to address and formalise the intent of the owner into a form that

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

99

can be understood by machines; hence a policy may give permission to certain entities i.e.

resources, programmes and users that fulfil some of its requirements. Each policy language

must state the entities and their attributes, and the rights that can be given. Each policy

contains actions, entities, attributes and combinations but how they are represented depends

upon the policy language used. A policy language, therefore, is designed and proposed for

the easy representation of security on a system.

Policies can either be used in a stand-alone manner or aggregated into policy groups to act

upon functions that are more elaborate. Stand-alone policies are termed policy rules. Policy

groups are sets of aggregations of rules or groups, but not both. Policy groups can model

intricate interactions between objects that have compound interdependencies(Syed Naqvi and

Philippe Massonet 2006). Therefore, we will present a suitable policy to be used with our

approach through a comparative study of the most well known policy language. Table 5.1

shows a coarse-grained of common policy specification language that has been stated and its

features required for the security policy specification (Syed Naqvi and Philippe Massonet

2006; Al-Ajlan 2008).

Specification Ponder Policy Language

Access control √

Identification- Authentication √

Confidentiality-Integrity X

Obligation √

Auditing √

Delegation √

Constraints √

Abstraction X

Semantics X

Reasoning √

Deployment √

Table 5.1 Ponder policy specification language

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

100

5.3.1 Ponder

Ponder is popular common policy language being an objected–oriented programming

language that uses a variety of access control mechanisms for firewalls, operating systems,

databases and Sun Java. It supports obligation policies that are event–triggered; condition-

action rules for the policy based management of networks and distributed systems.

Furthermore, it can be used for security management activities.

5.3.1.1 Ponder Policies

As mentioned in table 5.1, we have chosen Ponder policy as it is suitable language for this

research. In this section, we will present an extended account of this policy including its

features i.e. detention, benefits and types. Ponder policies for specifying management and

security policies evolved out of work on policy management at Imperial College in the UK

over 16 years (E. Lupu 1998 ; Damianou, Dulay et al. 2002).

The main concepts in ponder policies are that they contain domains to group the objects to

which the policies apply, roles to group policies based on a position in an organisation or

enterprise, relationships to explain interactions between roles and management structures to

express a configuration of roles and relationships pertaining to an organisational part (N.

Damianou, N. Dulay et al. 2001). Few policy languages specify both management and

security policies, such as, Ponder policy. As well as its simplicity, it uses human managers

and its design model is based on domain-based policy management. Domains are categorised

and are similar to directories. The advantages of using of domains are (N. Damianou, N.

Dulay et al. 2000; N. Damianou, N. Dulay et al. 2001):

1. They automatically allocate data to sub-domains, which lets them handle many data sets

that lead to provide scalability.

2. They allow new objects to be added /removed from the system without modifying

policies.

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

101

Ponder is a set of rules that can be used to change a system’s behaviour. It has a feature to

present positive and negative authorisation, information filtering, obligation and delegation

policies. Ponder is a set of policy specifications, which has to be compiled into a

programming language for Java and C Borland (N. Damianou, N. Dulay et al. 2001; Y. Zhao

and F. Parisi-Presicce 2004). As shown in the figure 5.1 below, ponder language expresses

authentication to an employee.

 Type auth+ FileAccess {subject Employee,

 Target CompanyFiles}

 {

 Action read, write;

 When

 IsAuthorizedEmployee(TRUE);

 }

Figure 5.1 : Authorisation actions

Before policies designed and implemented, it should be possible to analyse and verify that

they behave as expected; we have to assume some definitions for the terms that are used in

Ponder. These terms are subject, target, domain, action, role and relationship. They are

illustrated in Table 5.2 below:

Syntax Expression

Subject Observer, evaluator, enforcer, state/service

Target State, service, resources or objects

Domain A group of objects, to which the policies can be applied

Action The activities, which subject can carry out i.e. state

Role A group of policies, which have the same subject

Relationship

A group of policies, which define the rights and duties of roles

towards each other, such as, the relationship between observer

and enforcer....etc

Language Keywords Inst- subject-target-action-when-then

Choices They are round brackets () separated by

Optional elements They are square brackets []

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

102

Repetition Braces { }

Constraints It is optional in all types and can be specified to limit the

applicability of policies based on time or values of the

attributes of the objects to which the policy refers

Elements They can be specified in any order. The subject and target

elements can be optionally. This can be used to check that the

objects do support the specified operations or to locate the

interface specification

Policy Name It can be specified as a path, hence defining the domain into

which the policy must be stored

in/out keywords They are used to specify input and output parameters of the

action on which the filter is specified

Result It is used to transform the return value of the action

Table 5.2: The Syntax and Expression of Ponder Policy

5.3.1.1.1 Types of Ponder Policy

The Ponder language is able to specify security policies that portray a wide range of access

controls that implement mechanisms for firewalls and operating systems. Ponder adopts and

copes the language by making it flexible and extensible for a wide range of management

requirements and actions them on the current platforms of distributed systems. An object-

oriented language that specifies management for distributed system patterns. Ponder

language has two main types of policies (N. Damianou, N. Dulay et al. 2001; Y. Zhao and F.

Parisi-Presicce 2004):

 Access control policies

 Obligation policies

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

103

5.3.1.1.1.1 Access Control Policies (ACP)

ACP is defined as the most fundamental and widely used security mechanisms. It authorises

users to perform a set of actions on a set of resources within a system as well as having the

ability to permit or deny the use of a particular resource by a particular entity. It can be used

to manage several types of resources e.g. physical, logical and digital. Further, it is concerned

with limiting the activity of permitted browsers who have accessed successfully.

All policies relate to objects by using an interface definition language in which the

expression subject refers to browsers and to administrators/owners who have management

responsibility. The subject accesses target objects by invoking methods visible on the target’s

interface. The most suitable protection for ACP in Ponder is an interface method and both

subject and target objects are stored in the domain’s service. These domains supply a means

of grouping objects to which policies apply and they can be used to divide the objects in a

huge system according to object type, authorisation and responsibility and for the

convenience of human managers. The policy specifications, with millions of objects in large-

scale systems, are similar to directories and are implemented using the Lightweight Directory

Access Protocol LDAP service. Ponder policy offers ACP in the form of four policy sub-

types, which are described as (Evan 2007; S. Parsa and M. Damanafshan 2007; V.. Hu, E.

Martin et al. 2007):

 Authorisation Policy

The authorisation policy is central and the other sub-types are considered as auxiliaries. This

type of policy identifies access control for security. It describes a member of the subject

domain that can access the group of objects in the target domain and this leads to protect

services and resources from unauthorised access. In addition, it has two types:

 A negative authorisation policy that identifies the actions that subjects are forbidden

to undertake on target objects.

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

104

 A positive authorisation policy that identifies the actions that subjects are permitted to

undertake on target objects.

Both these types, positive (P+) and negative (P-) authorisation policies must contain the

following policy parts:

 Subject (except in roles)

 Target

 Action

The authorisation policy is presented and implemented on the target host by an access control

component. The syntax of the authorisation policy structure is shown in the figure 5.2, below

the expression of this structure is described in Table 5.2. Here, we have stated an example of

an authorisation policy, a positive one (P+) and a negative one (P-):

Inst (auth+ | auth–) policyName “{”

 subject [<type>] domain-Scope-Expression ;

 target [<type>] domain-Scope-Expression ;

 action action-list ;

 [when constraint-Expression ;]

“}“

Figure 5.2 : Authorisation Policy Syntax

 Information filtering Policy

There is a need to filter the information policy because filtering should transform the data

input/output parameters into action. For example, a location service can authorise access to

detailed position information, e.g. a person in an exact area to browsers within the sub-

division. Outside browsers can only determine whether someone is at work or not.

Authorisation policies (positive P+) may include filters to transform input or output

parameters as well as with their actions based on attributes of the target or subject on system

parameters i.e. time. The process has to be completed and then a choice made on whether to

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

105

permit the results to be returned to the subject or whether the results need to be transformed,

therefore, filtering policies can only be used and applied to positive authorisation actions.

actionName { filter }

 filter = [if condition] “{” { (in parameterName = expression ; |

 out parameterName = expression ;

 |

 result = expression ;) }

“}”

Figure 5.3: Filters on Positive Authorisation Actions

As stated in figure 5.3 above, each action can be related to a number of filter expressions. An

optional condition should include every filter but if the condition is assessed as being true

then the transformations are executed.

 Delegation Policy

Delegation in general is a given authority and responsibility to another i.e. user/service/unit.

It carries out specific activities and rights and it will remain accountable for the outcome of

the delegated work. Delegation means to empower a subordinate to make decisions.

A delegation policy is kind of permission to a subject. It gives the subject actions to be

delegated to others but a user must be strongly managed and controlled by security policies

to delegate access rights to another. This kind of policy authorises subjects to award

privileges or rights, which they have to grant to achieve an action on their behalf; it enables

cascaded delegation of access rights and it is critical in software.

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

106

inst deleg+ “(”associated-auth-policy “)” policyName “{”

 grantee [<type>] domain-Scope-Expression ;

[subject [<type>] domain-Scope-Expression ;]

[target [<type>] domain-Scope-Expression ;]

[action action-list ;]

[when constraint-Expression ;]

[valid constraint-Expression ;]

 “}”

Figure 5.4: Syntax of Delegation Policy

In addition, a delegation policy is defined as a permission policy that classifies access rights

to resources. A delegation policy does not mean using a system that has specified user rights

by security administrators.

As stated in figure 5.4, according to the syntax of a ntitageled policy, the delegation has two

categories: policy positive and negative where negative delegation policies ban delegation.

The delegation policy has only one require part, that is, the grantee type. This type has three

parts: subject, target and action. These parts must be sub-sets of those in the associated

authorisation policy. A positive delegation policy classifies delegation constraints to limit the

validity of the delegated access rights. Constraints could be time restrictions, together with

duration and validity periods in order to indicate the length over which the delegation is valid

before it is revoked.

 Refrain policy

Refrain policies indicate to a subject to refrain from doing something and are similar to

negative authorisation policies but are interpreted by the subject. These kinds of policy define

the actions that the subjects have to refrain from achieving even though they may actually be

permitted to access that target.

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

107

Inst refrain testingRes {

subject s=/test-programmers ;

target /analysts + /designers;

action discloseTestResults() ;

when s.testing_sequence = "in-progress" ;

}

Figure 5.5: Refrain Policy Syntax

There is a similarity in the syntax of refrain and negative authorisation policies. Refrain

policies are compulsory for subjects but not for access controllers. They also take action as

restraints on the actions that subjects accomplish and are executed by those subjects.

Furthermore, they are used for situations where negative authorisation policies are

unsuitable, as the targets cannot be trusted to enforce the policies. Figure 5.5 illustrates the

similarity of the syntax used in refrain and negative authorisation policies.

5.3.1.1.1.2 Obligation policies

Another type of Ponder Policy is an obligation policy, which states the activities that a

subject has to do in order to a set number of target objects and they define the tasks or duties

of the policy subject. In addition, these types of policies are managed and interpreted by an

administrator at the subject and describe the behaviour of the managers of the system when

an event happens. Obligation policies define the actions that need to be executed by policy

managers when specific events happen and they support the ability to respond to changing

situations.

Moreover, obligation policies are event-triggered and identify the activities that subjects, e.g.

what human or automated manager components have to accomplish on objects in the target

domain. Events may be internal or external timer ones that are alerted by monitoring service

components. Composite events can be stated by using event composition operators. The

required event specification follows the 'on' keyword as stated at the syntax of obligation

policies in figure 5. 6.

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

108

 Inst oblig policyName “{”

on event-specification ;

subject [<type>] domain-Scope-Expression ;

[target [<type>] domain-Scope-Expression ;]

do obligation-action-list ;

[catch exception-specification ;]

[when constraint-Expression ;]

 “}”

Figure 5.6: Obligation Policy Syntax

In obligation actions, the aim of the element is optional (it might be internal to the subject),

while authorisation actions always relate to a target object. Actions have to be preceded by a

prefix representing the target set when they are be invoked on a target. The catch-clause is

optional and describes an exemption that is executed if the actions are unsuccessfully

performed for some reason.

5.3.1.2 Graph Representation of Ponder Policy

Ponder includes tools for dynamically managing and controlling the behaviour of system

components that are devoid of changing codes. This feature requires the co-operation of the

components that are being governed. A system should be able to adapt continuously in order

to adjust to differences in externally imposed constraints and environmental conditions. A

policy-based approach requires a suitable policy representation and the design and

development of a policy management framework for controlling a system and then policies

will gradually become more important to the real-world implementation of Web

services(Damianou, N. Dulay et al. 2001; Parisi-Presicce and Zhao 2005). In this part of the

chapter, we will discuss the representation of the basic policy types of Ponder by graph rules.

 Domain

Domain is a collection of entities used to group the system’s data. They are controlled and

managed by all the policies. It is arranged in a hierarchical manner, represented by a graph,

with nodes for every domain and edges representing the sub-domain relationship of an object

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

109

to a domain. As shown in the figure 5.7, our graph representation has six domains (D1, D2

D3, D4 D5 and D6):

D1 Level 1

D6

D4

Node1 Node2

D5

D3D2

Figure 7. 5 : The Search paths in Domains

Level 2

Level 3
Node3

Node4

The domain paths as declared displayed and processed in table 5.3 For instance, if our goal is

node 3, the search should take the first or third path in table 5.3 D1/D2/D5/node1 or

D1/D3/D5/node 1.

 Operation

As shown in figure 5.8 below, Ponder uses many symbol/operations i.e. union (U), difference

(–) and intersection (∩), to represent domain ScopeExpressions in a policy. This figure

presents the operations of Ponder policies for the graph representation of domains in figure

5.7 above.

 Figure 5.8: The Operation in Ponder Policy

D1 U D1..n

+

D1..n

node1

D1

node1

+

U

D1 ∩ D1..n

node1

D1 D1..n

+

+

∩

D2 –

node1

+

+

D1 – D2

 D1

Table 5.3, the domain paths as in figure 5.7

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

110

As they appeared in the figure 5.8,

1. The left stage states the union (U) operation (D1 U D1...n), with one graph for every

component. The adding symbol ‘+’ means that there exists at least one edge in the

path from a domain to a node. While a node satisfies at least one of the graphs, it

satisfies the union.

2. The middle stage shows the intersection (∩) operation (D1 ∩ D1…n). It satisfies the

whole graph if a node satisfies the intersection operation.

3. The right stage presents the difference (–) operation (D1 – D2). The dashed edge

symbolises the negative constraint and the solid edge symbolises the positive

constraint, such as, the absence of a path from D2 to node1.

5.3.1.3 The Specification and Verification of Simulation Tools

Simulation tools are a method of computational model or computer programme that tries to

imitate an abstract model of a particular system. Simulations tools have become a powerful

technique in most fields of modelling and it has enabled several systems to achieve insights

into their operations as well as observing their behaviour. Further, simulations are useful for

modelling and analysing the factual performance of evolving production systems(Azadeh,

Anvari et al. 2007). A simulation environment enables designers and developers of

established systems to predict behaviour and apply the tools needed to manage disturbances

to an acceptable degree. Thus, simulation tools should intelligently direct a production

system towards a smoother and more efficient performance. In addition, simulation tools

should enable the automatic prediction of the behaviour of most systems as well as increasing

production situations.

This section describes a simulation tool, demonstrated by the AGG tool. This tool will

portray a simplified observation problem with interaction between services/states by using a

proposed approach. We will, therefore, explain the problem and then use the AGG tool to

create and propose a set of rules. Figures 5.10 and 5.11 show the relationship between the

components that are used in the observation model as well as stating the scenario for most

surveillance platforms.

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

111

The syntax is similar to that used for Ponder policies (authorisation policy type or refrain

policy type) as in Figures 5.2 and 5.5 to design and declare our policy as shown in Figure 5.9.

This because these types of policies specify the actions that subjects must refrain from

performing on target objects. For instance, if states enter the System Observer Model (SOM),

the e-observer will observe these states at every rotation at SOM. Thus, we can use our

policy to specify this activity, as in Figure 5.9. The syntax of the observation model contains

some definitions for the terms that are used in the policy. These terms are SUBJECT,

TARGET, IF, WHEN and ACTION. All these terms were explained above in Table 5.2.

POLICY policy_name {

 SUBJECT object ;

 TARGET object ;

WHEN trigger ;

IF condition ;

ACTION action ;

 }

Figure 5.9: The Syntax of Observation Model

5.3.1.4 The Explanation of Problem

An understanding of the relationships between the nodes is important for building the

scenario of our observation model. Therefore, before starting to analyse the problem, the

model should know the position of every node as shown in Figure 5.10. The e-observer is the

main component in the architecture. It can invoke any target, such as, update or delete. It has

the ability to manage the sequence of the data flow that is coming through SOM and

accessing the monitor component (Described in chapter 4) which is a part of the e-observer.

The data then experiences a long trip via the activities of several components. Figure 5.10

simply presents the relationship between the components and state in the Observation Model.

Figures 5.10 and 5.11 below both show the three main components of the observation model:

e-observer, evaluator and enforcer. The state, however, is the service that comes via SOM to

be observed.

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

112

5.3.1.5 AGG Simulation

As abovementioned, the AGG is a technical tool used to detect and control conflicts either

statically or dynamically. AGG defines three types of conflicts (Azadeh, Anvari et al. 2007)

which it can find during static checking:

1. One rule application deletes a sub-graph needed for the match of another rule application.

2. One rule application generates a sub-graph prohibited by a negative application condition

of another rule application.

3. One rule application changes the attributes needed for the match of another rule

application.

Figure 5.11 shows that the graph of the observation model that has been designed by using

AGG tools. This graph shows and describes the scenario of the problem, which is with some

type nodes: E-Observer, Evaluator, Enforcer and State. The most important nodes in our type

graph are e-observer. We shall describe this type of node with their rules and policies below.

Figure 5.10: An AGG diagram between e-observer, evaluator, enforcer and state of the Observation Model

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

113

5.3.1.6 The Rules and their Policies of the Observation System

In this part, we established some rules regarding the scenario in the type graph of observation

as showed above in Figure 5.11. A policy was built for each rule, which depended on the

policy syntax, as in Figure 5.9. The tool that was used to set up these rules was an AGG tool

as described in the above section. A list of abbreviations (o, e, en and s) in our policy

indicates e-observer, evaluator, enforcer and state respectively. The left cell in each rule is

the negative application condition, the middle cell is the left side and the right cell is the right

side.

Here, we will state our rules as the following; the first rule gives the e-observer node the right

to observe the state’s node. The second rule allows the e-observer node to report to the

evaluator node with the condition: if observer = observes(s) = true; then the policy enables

the observer to report to the evaluator. The third rule enables the evaluator node to write a

note with a condition: if evaluator = o.report(e) = true; then the policy enables the evaluator

to write a note. The fourth rule enables the enforcer node to do a detect for the state node

with the condition: if enforcer = en.write(en) = true; then the policy enables the enforcer to

do a detection. The fifth rule enables the enforcer node to do a re-evaluate for the state node

Figure 5.11: The Graph of Observation Model

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

114

with the condition: if enforcer = en.write(en) = true; then the policy enables the enforcer to

do a re-evaluation. The sixth rule enables the enforcer node to do an action for the state node

with the condition: if enforcer = en.write(en) = true; then the policy enables the enforcer to

do an action. These rules and their policies are as follows:

State Observation Rule

This rule permits the e-observer node to observe the state node as in Figure 5.12 below.

There is no condition for this rule. The middle cell is the left side and the right cell is the

right side.

Rule 1: State Observation

Description: This rule says that an e-observer observes a state from many states as in

Figure 5.10

Parameters: Observer (observeNo, reportNo) and State (id, observeNo)

The policy of rule 1 is described in Figure 5.13. This policy allows an observer to observe a

state node. This policy does not have a condition to observe the state and the observer will

observe all the states.

Figure 5.12: Rule 1-The Observation of State

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

115

POLICY observation {

 SUBJECT o= observer;

TARGET s= state;

ACTION get state observation;

 }

Figure 5.13: The Policy of State Observation

E-Observer Report Rule

Figure 5.14 below describes the second rule, which permits the observer node to write a

report that describes the condition of the state. The condition of this rule is o.observe, so only

the observer node must observe the state node to satisfy this rule.

Rule 2: Observer Report

Description: This rule enables the observer to report to the evaluator for all states.

Parameters: Observer (observeNo, reportNo) and Evaluator (reportNo, writeNo).

The policy of rule 2 is described in Figure 5.15. This policy allows an observer to report to

the evaluator only if the observer meets the condition: if observer = observes(s) = true; then

the policy enables the observer to report to the evaluator.

Figure 5.14: Rule 2 - the Report of Observer

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

116

POLICY Observer_Report {

 SUBJECT o= observer;

TARGET e= evaluator;

WHEN o.reports(e);

IF o.observes(s)

ACTION get observer report;

 }

Figure 5.15: The Policy of Observer Report

Evaluator Notes Rule

The third rule shows how an evaluator can write a note to the enforcer depends on the report

of the e-observer as shown in Figure 5.16. The condition of this rule is o.report, so only the e-

observer node must observe state node to satisfy this rule. If e-observer satisfies this

condition, the rule will allow the binding service.

Rule 3: Evaluator Notes

Description: This rule enables the evaluator to write a note to enforcer and this depends on

the previous action of the observer, which is o.reports (e).

Parameters: Observer (observeNo, reportNo), evaluator (reportNo, writeNo) and enforcer

(writeNo, actionNo).

Figure 5.16: Rule 3 - Evaluator Notes Rule

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

117

The policy of the evaluator notes rule is described in Figure 5.17. This policy allows an

evaluator to write a note to the enforcer node only if the evaluator meets the condition: if

evaluator = e.write(en) = true; then the policy enables the evaluator to write a note.

POLICY Evaluator Notes {

 SUBJECT e= evaluator;

TARGET en= enforcer;

WHEN e.write(en);

IF o.reports(e);

ACTION get evaluator notes;

 }
Figure 5.17: The Policy of Evaluator Notes.

Enforcer Detection Rule

The fourth rule shows how the enforcer detects the state as shown in Figure 5.18 below. The

condition of this rule is that the enforcer must e.write(en). If the enforcer satisfies this

condition, the rule will allow the enforcer to the next rule, which is to re-evaluate the state.

Rule 4: Detect the state by the Enforcer.

Description: This rule enables the enforcer to detect the state if the enforcer already has a

note from evaluator that the state has been observed.

 Parameters: enforcer (writeNo, detectNo, Re-evaluateNo, actionNo), evaluator (reportNo,

writeNo) and state (id, observerNo, detectNo, Re-evaluateNo, actionNo)

Figure 5.18: Rule 4 - Enforcer Detection Rule

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

118

The policy of rule 4 is described in Figure 5.19 below. This policy allows an enforcer to

detect a state node only if the enforcer meets the condition: if enforcer = en.write(en) = true;

then the policy enables the enforcer to do detection.

POLICY Enforcer Detection of State {

 SUBJECT en= enforcer;

TARGET s= state;

WHEN e.write(en);

IF en.detect(e);

ACTION get detect state;

 }

Figure 5.19: The Policy of Enforcer Detection of State.

Enforcer Re-evaluation Rule

The fifth rule shows how the enforcer re-evaluates the state as shown in Figure 5.20 below.

The condition of this rule is that the enforcer must e.write(en). If the enforcer satisfies this

condition, the rule will allow the enforcer to the next rule, which is an action state.

Rule 5: Re-evaluate the state by enforcer.

Description: This rule enables enforcer to re-evaluate the state if the enforcer already has

detected the state after the note from the evaluator states that the state has observed.

 Parameters: enforcer (writeNo, detectNo, Re-evaluateNo, actionNo), evaluator (reportNo,

writeNo) and state (id, observerNo, detectNo, Re-evaluateNo, actionNo)

Figure 5.20: Rule 5 - Enforcer Re-evaluation Rule

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

119

The policy of rule 5 is described in Figure 5.21. This policy allows an enforcer to detect a

state node only if the enforcer meets the condition: if enforcer = en.detect(s) = true; then the

policy enables the enforcer to do detection.

POLICY Enforcer Re-evaluation of State {

 SUBJECT en= enforcer;

TARGET s= state;

WHEN en.re-evaluate(s);

IF en.detect(s);

ACTION get re-evaluate state;

 }

Figure 5.21: The Policy of Enforcer Re-evaluation of State

Observation Action Rule

The sixth rule shows how the last step of our scenario, which is an enforcer, can make an

action for a state that is observed by the e-observer, as shown in Figure 5.22 below, the

condition for this rule is that the enforcer must en.re-evaluate (s). If the enforcer satisfies this

condition, the rule will allow the observation action.

Rule 6: Action of Observation

Description: This rule enables the enforcer to do an action if the enforcer already has note

from evaluator that the state has observed.

 Parameters: enforcer (writeNo, actionNo), evaluator (reportNo, writeNo) and state (id,

observerNo)

Figure 5.22: Rule 6 - Observation Action Rule

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

120

The policy of rule 6 is described in Figure 5.23 below. This policy allows an enforcer to do

an action on a state node only if the enforcer meets the condition: if enforcer = en.re-

evaluate(s) = true; then the policy enables the enforcer to do an action.

POLICY Action of Observation {

 SUBJECT en= enforcer;

TARGET s= state;

WHEN en.action(s);

IF en. re-evaluate (s);

ACTION get action;

 }

Figure 5.23: The Policy of Evaluator Notes

5.3.1.7 The Result of Execution Rules

By using AGG tools, we can execute our rules with their conditions and the results of this

execution are shown in Figure 5.24 below. This figure highlights and describes how to

overcome the infected states after a collection of analysis and operations. It shows the

components of the observation model when makes the compilation by using AGG tools. In

addition, the outcomes here is that the e-observer observes the states and then reports to the

evaluator in order to evaluate these interactions and next, writes to the enforcer for detection

and enforcement. The enforcer has three rules; detect, re-evaluate and afterwards make action

on deviation.

Moreover, it is possible to verify formally the security policies that are captured in our

observation diagram by proposed approach. This is done and validated by AGG tools. AGG

possess an excellent ability to transfer the graph grammar so conveying the structure and

operation of many types of systems. AGG formulates and then examines our proposed rules

with their attributes on associated components to obtain the optimal outcomes for the

verification of observation diagrams on a number of entities in one test. This enables to

discover whether the security policies are consistent with the accompanying Ponder rules and

viewing what actions should entities be subjected.

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

121

5.4 Summary

Despite rapid advance in enforcing violation activities and the efforts of developers and

researchers, the demand for new and updated requirements continues to outstrip available

technological solutions.

This chapter presented a comparative study of a selection of well-known policy specification

languages Due to this comparison study of the most well-known policy languages, which has

chosen Ponder as a suitable policy specification language to be used it in this research.

Ponder is a language for specifying policies for the management and security of distributed

systems. Ponder includes most standard features, such as, authorisation, filter, refrain and

delegation policies for specifying access control and obligation policies to specify

management actions. Ponder thus provides a uniform means of specifying policy that relates

to a wide range of management applications, networks, storage, systems applications and

Figure 5.24: The Result of Execution Type Graph on Observation Model

 Chapter 5 Formulate a Policy-Based Technique PhD Thesis

122

service management. In addition, this research has presented a proposed technique that

addresses and supports the analysis of policies. This technique aims to allow feasible

validation of policies in their development life cycle.

Moreover, this chapter has proposed a Ponder policy verification and analysis method by

graph transformations. It acts as an informal language reference for the environment of the

Ponder policy language. We have presented an overview of Ponder including it language

sub-types and a brief comparative study with several other policy languages. We have

discussed and showed in detail the representation of Ponder policies by graph rules and has

used the simulation (via AGG tools) with a set of these rules. Subsequently a policy example

was used to show how to verify and analyse our proposed approach by using AGG tools.

These tools have the capability and efficiency to represent the rules of graph transformation

systems supported by an algebraic approach.

This chapter demonstrated that it is possible to model partially the observation diagram with

its accompanying Ponder rules. This means that it is feasible to verify formally the security

of graphical tools.

In the next chapter, we will describe in depth the development of enforcement technique for

security violations, which illustrate how enforcement and detection works.

 Chapter 6 Development Enforcement Technique PhD Thesis

123

CHAPTER 6

Development Enforcement Technique for

Security Violations

Objectives

 To define an enforcement system and its associated technique

 To expose our enforcement technique based on web service

 To propose decision and action architecture for violation activity

 Chapter 6 Development Enforcement Technique PhD Thesis

124

6.1 Introduction

The integration of openness and distributed system technologies can improve security over

the systems. Due to the widespread diversity and complexity of computer infrastructures and

their associated systems, it is difficult to provide an ultimate secure system; therefore,

numerous security systems have been developed. But even then, computer systems are

vulnerable to be abused by insiders and penetration by outsiders, as shown by the growing

number of incidents reported in the press. To close all the security loopholes of today's

systems is simply not feasible and no combination of technologies and systems can prevent

legitimate users from abusing their authority in a system; hence, attempts to keep the

environment safe is viewed as the first line of defence.

As previously mentioned, policies (Hedi Hamdi, Adel Bouhoula et al. 2007) are widely

diffused in networking services and information systems viz. security, management and QoS

and they present promising and adoptable solutions for securing a wide range of Web

application systems. Still, the adoption of a policy-based approach for security requires an

appropriate specification and enforcement tool. The major remaining problem for a security

mechanism is how to state, specify and correctly enforce its security policies.

An essential issue for the Internet and a networked information system’s protection is the

specification and enforcement of a security policy. A security policy-based approach will

describe its tools indicating how actions, e.g. permissions and obligations, can be passed. In

addition, it will also describe how the enforcement model that supports the dynamic

configuration of the system meets the security requirements of its policy.

This research, therefore, mainly focuses on how to identify systematically the correct policies

instead of manually configuring them and how to enforce automatically security policies in

distributed systems. Hence, a proposed approach is presented to overcome these issues.

6.2 Enforcement system

The main aim of the enforcement of a security policy is to protect and maintain a system to

keep it fair and in a safe environment. The enforcement system has a set of wide ranging

objectives, rules and activities but its basic role is in the area of regulatory control in order to

meet statutorily based rules for the enforcement of security policies.

 Chapter 6 Development Enforcement Technique PhD Thesis

125

The purpose of an enforcement action is to achieve compliance from a user or consumer to

provide protection and satisfy the enforcement policy’s system.

The enforcement system is a means to provide mechanisms to the system which can ensure

that its policy specification is not violated by the system’s own execution. The standard

model for policy enforcement that is used by most industrial enterprises approaches is

defined in the ISO standard.

Most policy models and languages focus their discussion on their enforceability on the PDP.

They show that the answer to an access control request is decidable and tractable. This is

typically achieved by restricting the language/model to constrained data log programmes,

which allow evaluating requests in polynomial time with respect to data-complexity (H.

Janicke 2007).

6.3 Why should the policy be enforced?

The objectives of the enforcement of a security policy and its implementation procedures are

to improve and control the service provided in its environment. Any services that do not

adhere to the system policy shall be warned and compelled to establish the existence of facts

in order to ascertain compliance with its regulations:

 In the interests of our model’s security against intrusions.

 To prevent and detect threats and intrusions while the model is operating.

 To investigate or detect unauthorised use of our networked systems.

 To secure effective system operation.

 To define standards and criteria for different enforcement actions.

6.4 The Enforcement Technique

Several years ago, designers of computer security systems have developed automated system

tools to analyse computer system audited data for suspicious user and system behaviour.

Technical scenarios in areas, such as, automotive or production systems will increasingly

come to consist of a wide number of components co-operating in potentially unlimited and

dynamically changing networks to satisfy the functional requirements of their execution

environment. Due to the high complexity of these systems, it will be impossible to design

 Chapter 6 Development Enforcement Technique PhD Thesis

126

explicitly the behaviour of their components for every potential situation that may arise.

Therefore, it will be necessary to leave an adequate degree of freedom allowing for self-

organised behaviour. Developing and designing the enforcement technique has become an

urgent global priority, promising economic, financial, education and military benefits, the

enforcement technique should maintain the integrity of endpoint devices and the enterprise

network as a whole. Administrators can enforce all critical areas of endpoint security,

including network access privileges of all consumers/users, devices and applications. This

precise level of control prevents unsecured devices from serving as an entry point for a worm

or hacker attack.

Enforcement technique (H. Janicke 2007) provides the bridge between policy specification

and primitive operations e.g. device configurations, that are available in any given

networking systems environment. The major challenge to enforcement techniques is that the

accurate mapping of policies to primitives depends critically on the differences in the

semantics between policies and primitives.

6.5 Detection Architecture

Certainly, having a policy means owing to enforce that policy. Wherever policies are

implicit, an enforcer usually enforces them by working according to its policy or the

regulatory requirements of the security’s infrastructure. A major purpose of a policy is to

express the requirements at a high level of abstraction while hiding the details of the

implementation that is necessary for their enforcement. Moreover, policies, which usually

manage the behaviour of services e.g. security and QoS are becoming more popular methods

for the dynamic regulation of web service environments. Policies can be logically divided

into two main types (F. García, G. Martínez et al. 2005):

 Permission policies: concern those actions and accesses that entities are permitted to

perform.

 Obligation policies: concern those actions and states that entities are required to perform.

A main goal of the policy-based approach is to allow network, service and application

controls which are managed at a high abstraction layer. Using a policy language, the

administrator disseminates rules that explain domain-wide policies, which are independent of

 Chapter 6 Development Enforcement Technique PhD Thesis

127

the implementation of the particular network node, service or application. The policy based-

service architecture provides support to transform and distribute these policies to each node

and thus enforce a consistent configuration in all the elements involved by the enforcer. This

is a prerequisite for achieving a means to dynamically constrain and control the behaviour of

a system without human intervention. In the web application systems security field, a policy

(i.e., security policy) can be defined as a set of rules and practices that describe how an

organisation controls, manages, protects and distributes sensitive information from several

different levels (Verma 2000).

6.5.1 Enforcement of Decision and Action

As aforementioned in chapter four concerning the enforcer architecture, we will here

elaborate upon this architecture. Figure 6.1 below illustrates a typical action architecture that

collates and controls when actions are applied in respect of any deviation that occurs in the

services of the system. This architecture defines the ability to allow better visibility and

agility and tackles the sticky cases of such contaminating entities. This section will describe

how the enforcement of decision and action will take place, and how these steps help to

assess the capability of the policy enforcer.

Figure: 6.1 Action of enforcement phase

Action queue

Action Script

Action Executor

Action

Alert generator

Log Rep Store

 Chapter 6 Development Enforcement Technique PhD Thesis

128

6.5.2 The Decision stage

As previously mentioned, the policy enforcer (PE) is an online tool that detects violation

activities in the system and their associated components. In fact, the enforcer model

generates separate processes and runs each process parallel to observe closely any ongoing

activities of services to the system domain.

The term ‘decision’ means making a judgment about whether there is a deviation at resource

level. Decisions can be taken by comparing a resource’s legal state with its current state with

regard to its terms, such as, privileges, behaviour and availability. At this stage, the enforcer

obtains a policy from memory and observes on behalf of a resource, in association with the

policy when there is violation activity. The enforcer then determines what actions are

applicable and to what part.

As described in detail in chapter four, we have illustrated an algorithm at the decision stage

that includes a collection of episodes which perform and examine a policy where (P) is the

policy.

6.5.3 The Policy enforcement stage

A precise characterisation should be given for the class of security policies that are

enforceable by mechanisms that work by observing system action executions and automata.

This specifies exactly the class of security policies involved in enforcement. After detecting a

deviation at its decision phase, the policy enforcer begins its enforcement, which is based

upon the deviation itself. Policy enforcement is a set of executions of the action part of a

policy in the case of a deviation. Each policy is defined by keeping a sensitive resource in

service domains in mind. If there is a resource deviation in terms of the resource, such as,

privileges, behaviour and availability, the action part of the policy is executed. The action

part of each policy is a collection of scripts, which have a pointer to indicate an association

with them. Therefore, the enforcer begins its enforcement by tackling and then triggering on

the violation. Throughout the enforcement, the enforcer sends an alert message to the

system’s administrator, which consists of event details, which are sent to the log repository

 Chapter 6 Development Enforcement Technique PhD Thesis

129

for further diagnosis. Moreover, the enforcer runs a collection of scripts to repair any

damage.

6.5.4 The Action stage

In figure 6.1 above, the action stage will execute and remove any deviation that was

addressed by previous stages. The action manager receives a policy and stores it in a queue

after detecting a deviation via the decision phase of the enforcer. A separate independent

process or thread continuously executes queued action parts of policies. The action part is a

set of a collection of scripts, which have a pointer to indicate its association with it. The

action executer of the action manager simultaneously obtains a policy from the action queue

and the collection scripts which are associated with it and fetched from the memory. The

action executor then proceeds with its execution.

The collection of scripts has three method functions. The first function is to produce an alert

message and then send it to the administrator. The second one is to reinstate the damage of

the legal values of such resources. Finally, the third one is to send the event details to log-rep

for more diagnosis.

6.5.4.1 Action stage diagram

Figure 6.2 below shows a typical sequence dialogue of manager action operations. It presents

a diagram for receiving and responding to infected services. Firstly, the action manager

receives an infected service and then the alert message based on applicable policies is added

to the action queue. The message is then sent to the action executor after applying the

collection of scripts. Finally, all event details are stored in the log file for more diagnosis.

 Chapter 6 Development Enforcement Technique PhD Thesis

130

Infected service/state

A
le

rt/R
e
in

Then send to queue

Action Executor

Figure: 6.2 Sequence of manager action operational

Requester

Action script

Respond

Action Manager Action Queue

A
d
d
e
d
 to

 q
u
e
u
e

Action Executor

Store

6.6 Summary

This chapter has addressed the issues surrounding the capability for controlling and reducing

violation activity. The openness and heterogeneity of most system environments makes

security a complex issue. Taming and managing this kind of environment are now

highlighting security rather than its traditional issues. Our objective was to define end-to-end

 Chapter 6 Development Enforcement Technique PhD Thesis

131

security. Consequently, this chapter proposed and developed an enforcement approach that

protects and secures our system.

This enforcement has two parts: the policy manager (PM) and the policy enforcer (PE). They

are introduced in detail as special objects that mediate the access to interfaces under their

protection. We have defined for each enforcement mechanism and its associated methods, the

abstraction over which the enforcement of the policy is defined. Furthermore, action

architecture was developed, which enables the enforcement technique to detect, enforce and

then take appropriate action on deviations.

The approach that we adopted is relatively straightforward and flexible. It is suitable for

many organisational environments that use similar enforcement systems, in particular those

where their systems are a facet of their security infrastructure. Organisations, such as,

education, military and business that regularly retain highly sensitive information is

considered prime candidates.

The proposed approach mitigates the threats by specifying the condition of the corporate

security policy under which information can be exchanged during the model’s activity. This

will show and provide great potential for future extensions ranging from the combination of

access control policies to property checks at the abstract level.

Policy enforcement acts on the potential risk and ensures adherence to our model’s rules and

granted security policy settings. The various policy enforcement mechanisms that have been

implemented supplement rather than replace existing operating system security mechanisms.

The proposed policy enforcement is fragmented into two main parts:

 policy manager (PM)

 And policy enforcer (PE).

The PM logs event information provided from the policy enforcer and reinstates the default

policy whenever it needs to. The PE is a collection of kernel-resident policy enforcement

mechanisms that mediate actions to resources and impose the default policy.

 Chapter 6 Development Enforcement Technique PhD Thesis

132

In the next chapter, we will develop a prototype to demonstrate and validate the feasibility of

the observation approach. It should span the possible application space of the targeted

application domain.

 Chapter 7 Prototype Implementation PhD Thesis

133

CHAPTER 7

Prototype Implementation

Objectives

 To present the architecture of the eStudent system

 To develop and implement the eStudent system

 To describe the implementation of the eStudent system

 To integrate an algorithm method of Observation technique with

eStudent system

 Chapter 7 Prototype Implementation PhD Thesis

134

7.1 Introduction

The development of education in the Kingdom of Saudi Arabia (KSA) is evolving rapidly

thereby increasing its capability and facility to deliver a high quality of service to the public.

The government of the Kingdom of Saudi Arabia has developed education as a first priority

for the nation. It has charged the Ministry of Education (MOE) with the task of

revolutionising, modernising and expanding the Kingdom’ education system and increasing

the number of students of all ages. The MOE, therefore, has overseen the introduction and

fast growth of IT in education. This has introduced many valuable opportunities for teachers,

students and their parents in the education sector. As a result, the MOE now supervises a

huge number of students (both boys and girls) of all abilities together with their teachers. The

number of students in the KSA is approximately five million. They are registered at different

schools and educational institutions in a number of subject areas. Some students are of

Arabian nationality, such as, Egyptian, Jordanian, Palestinian, Kuwaiti, UAE, Qatari, Omani,

Syrian, Moroccan, Iraqi, Libyan and Sudanese. The education system in Saudi Arabia is

similar to the American education system. The Kingdom’s system involves a student with six

years of primary, three years of secondary and three years of high school education. The

MOE organises and manages education strategy and its associated system and provides the

service to the public. Several years ago the MOE started to introduce the use of information

technology into its departments and schools, which has made the education system easier for

teachers, students, parents, staff and researchers to access and use.

7.2 The NOOR Project

MOE is rapidly adopting IT which has influenced the direction of software design. This is

because of the constantly changing and ever-increasing demand for education services based

on the Web. The NOOR project is one of most used projects in the KSA and in the field of

education. It has a high budget to develop and perform it for serving a huge number of

students in different schools in the KSA. This project has various software applications for

example, school management, student clinics and student marks. In this chapter, we will

make a simulation of the NOOR project and adapt a small part to design a prototype to

accomplish the proposed approach. Figure 7.1 below shows the main menu of the NOOR

 Chapter 7 Prototype Implementation PhD Thesis

135

project. Thus, we have adopted one part of the applications of the NOOR project and have

applied it to exhibit and validate the feasibility of our proposed approach.

However, the development of IT in the education sector will introduce many benefits. Some

advantages of using advanced technology are to join the MOE and its staff, students, parents,

teachers and users with more advanced and powerful applications; electronic education

records can be retrieved more easily; industries are enabled to be able to develop information

sharing technologies within the bandwidth education networks. All users expect that a new

paradigm in digital education solutions will offer new challenges to the underlying user

teaching, care, communication and network infrastructure.

Information technology (IT) can make a significant contribution to education by improving

the quality of its service and efficiency. Research indicates that the education industry is

always willing to invest in IT in order to become an efficient accurate and high quality

service. The complexity of implementation and its unbearable cost are the main barriers that

confront IT applications in the education sector.

This chapter will describe a technological approach that delivers learning services online by

using a distributed system as well as demonstrating how teachers, students and their parents

can use and interact with high levels of technology over the network.

Our objectives in this chapter are to provide an assistant tool-support for the analysis of

policies. This assistant tool aims to allow for the early and frequent validation of policies

based on an observation approach, which is integrated into this development software. In

7.1 Main menu of NOOR project at MOE

 Chapter 7 Prototype Implementation PhD Thesis

136

addition, the aim is to test whether a policy captures the original intent when enforcing our

policies in the system.

7.3 Prototype Framework

The eStudent system is a whole development system designed and implemented to facilitate

and solve many of the issues at the MOE’s interactions, as well as supporting students and

teachers to use this system to facilitate interactions between themselves, parents, school

management as well as the MOE. This system will systematically work to reduce time and

cost when a student requests a service.

With the rapidity of high-speed network communication, vast information technology and

huge digital storages has reduced time consuming to access more convenient learning

facilities. With concern to IT in education this part will show many advantages for its

improvement and associated parts for example, students and teachers. This system manages

and provides access to a wide variety of services e.g. schools. Access into the system is via

different component technologies, such as, the web, mobiles and PCs. Our system is

processed by components that have been built into various standardised education

applications along with a standard communication protocol to communicate between the

system’s components. Security and the privacy are enforced with the help of a modern

security mechanism, which has been described in previous chapters.

The proof of our research’s concept system is elaborated in this part of the chapter and it

introduces a novel approach to education management in IT.

7.3.1 System Design

All expected requirements of the eStudent system should be applied and implemented to be

satisfied.

The major design principle upon which the system is based is extendibility. The eStudent

system is required to provide and support all marketplace requirements while containing the

facility to adapt to new ones as the education sector is a rapidly evolving industry that

introduces new initiatives daily.

 Chapter 7 Prototype Implementation PhD Thesis

137

Firstly the main inputs and outputs are processed as manipulating inputs. They generate the

required output, which is the primary concern of any system. For eStudent, there is variety of

inputs both defined and undefined. As mentioned, the system should be able to process and

manipulate unidentified inputs since extendibility is enforced. Table 7.1 catalogues defined

inputs and their types.

Input Students basic information Students records

Type Numeric/Text/String Documents/files

Table 7.1 defined inputs/types

A database can be considered as the core of our system. The major aim of a database is to

store all the data that relates to eStudent. As assumed in the table above, the database has to

store all the expect data formats as described above. It is designed for storing and retrieving

data efficiently in order to manage a huge number of users, e.g. students and teachers, at

once. The main requirement of the database is concurrent processing of data, as student

information can be manipulated from anywhere simultaneously. Because the eStudent system

can be accessed from remote locations via Web services, PL-SQL stored procedures are used

to provide for the huge traffic usage that is expected. This is achieved by reducing network

traffic and serving users with a quick response to data. MS SQL server is used for the

database, which is one of the best database technologies that support all the aforementioned

techniques.

7.3.2 eStudent Client Applications

eStudent is designed and implemented to provide different types for users from different

locations facilitated by the most modern communication technologies, such as, ADSL, WAP

and Wi-Fi. An important characteristic of eStudent is its ability to provide these technologies

for users e.g. teachers, students, parents and staff members.

7.3.3 Observation system

As shown in figure 7.2 below, the Observation System is embedded to reinforce and control

the eStudent system when any attack occurs. As described in detail in chapter four, the

 Chapter 7 Prototype Implementation PhD Thesis

138

observation system has three main components: an enhanced observer, an evaluator and an

enforcer.

Desktop Client

Internet or Network

Web Client

Database

O
bs

er
va

tio
n

S
ys

te
m

Mobile ClientWeb Services

Firewall

Figure 7.2 Framework of eStudent system

Request

Authorization

 Authorization

Decision

The observation system works as an online active tool that controls and increases security. It

is traditionally used to increase the surveillance of the system. It has been found and used by

several enterprises. In addition, it is implanted within the eStudent system to enhance its

security. It acts by observing any interaction between services in the system. It is an

additional tool that controls and minimises any leak of security. This tool is not rogue

software, it implants within the eStudent system to trace all services.

Figure 7.3 below shows the relationship between the eStudent system and the observation

system. It shows that the eStudent system works as middleware between users and the

observation system. The observation system has been implanted to manage all requests that

come from users, which are then examined before accessing the resources. These requests,

which are sent by users, are services. The user may notice a delay during the process because

a service may pass via all the observation’s components. So, the system will respond when

any deviation occurs during sending or receiving.

The observation system is not part of the eStudent framework; it supervises the system by

checking incoming services from users and when they interact with each other. As shown in

algorithm 7.1, a scenario of the observation system begins as follows. The student requests

an appointment with a tutor concerning a course or assignment. The system will respond to a

 Chapter 7 Prototype Implementation PhD Thesis

139

student’s mobile phone or email that is registered in the profile. The tutor should receive an

email about that request. eStudent has the ability to find the optimal services that meet the

user's demands, therefore, it will search in the tutor’s school and database to find his or her

timetable and appointment and then respond to the student.

eStudent system

Observation System

Users

Respond

Respond Request Authorization

Figure 7.3 Framework relationship between eStudent and Observation systems

Request

To realise the system requirements, as seen in figure 7.2, eStudent defines three main user

terminals, which will cover almost all technologies. Those client interfaces are stated and

described blow.

 Desktop Client

The first one is the Desktop Client, which is a software programme that is installed on a PC.

Desktop client will provide users with an interactive user-friendly interface to use eStudent

services. Desktop clients are recommended for use in schools, offices and other educational

institutions.

 Web Client

The second one is the Web Client, which is simply a website that permits users to use

eStudent services from anywhere and is recommended for use by those who do not use a

permanent PC.

 Mobile Client

The third one is the Mobile Client, which is a small software application that runs on small

devices, e.g. mobile phones and PDAs. Mobile Client is recommended and useful for

 Chapter 7 Prototype Implementation PhD Thesis

140

portable and roaming users. Users, therefore, can use eStudent services via their mobile

phones when they are travelling or roaming but based on a Wi-Fi connection.

The most important component of the eStudent system is the Web service. All the eStudent

components and services are implemented by Web services. All end user interfaces are

involved with Web services in order to make requests. As stated in the figure 7.2 above, the

major component linked to web service is the database. The main features of the research are

inter-operability and extensibility. These features are enforced by the Web service. The

communication standard of the web service here is via SOAP, which is the optimal service in

different client technologies to access eStudent services.

The main concern for our system is security, which is integrated during the development of

eStudent, because educational records are considered highly sensitive information. Security,

which was described in previous chapters, will be enforced in this system by the enforcer

model based on its policy.

Another concern is the privacy of the users. A huge amount of data is provided by eStudent

and its services; therefore, it is felt that users would be reluctant to disclose important private

information, e.g. names, addresses and DOB. Furthermore, interlopers may try to access the

system to obtain and modify the user’s records or information. To solve and overcome

unauthorised access, this system has a security implementation based on our observation

system, which helps to preserve the system’s integrity. This defence mechanism explained in

detail in the last chapter how violations can be detected and what response to make. A user

must register before using eStudent and then they are able to use the system. In order to

register, users must provide a name, username and password each time they login to the

eStudent system. Web services have to use a high-level of encryption to communicate with a

client’s software. As shown in figure 7.4 below, the use case diagram is drawn to state all

users’ interactions with the system.

 Chapter 7 Prototype Implementation PhD Thesis

141

MOE

Admin

Enter/update

information for a

student

Enter and update last news

of education system

Create account for

a student

State, enter and update general

strategy information

Permit a subscribe for new

service

Schedule/View appointments for a

student e.g. Exam, registration,

holiday..etc.

Request a service e.g.

PW, change email..etc

View/print a student

record

Student

Staff

Parents

Figure 7.4 Use case for students and other relation

7.3.4 Application Components

The application components of the eStudent system allow access to its data via multiple

application component types; therefore, users are able to access the system via many devices

regardless of their location.

The system’s main application is developed and implemented as a desktop application. Users

e.g. teachers, students and staff can use the desktop application within their offices, e.g. in

schools and in the MOE, and if they install the application on their PCs or mobile computers

(Netbooks) based on accessing the Internet.

Moreover, the two applications, the desktop and web-based, are designed and implemented

with the same core forms. The ability of the web based application is that it can be accessed

and used via any machine using an Internet browser. The web based application will be

 Chapter 7 Prototype Implementation PhD Thesis

142

designed by ASP.NET and is hosted on the Internet Information Site (IIS) running behind the

firewall as stated above in the figure 7.2.

Furthermore, the mobile client application is designed for using on smart phones using and

running on Microsoft Windows platforms. The application will be designed using the .NET

framework environment. This type of application will serve and enable users, e.g. students, to

access and request services via their mobiles. The limitation of this application is that

available information is limited when comparing it to the desktop application. Therefore, all

these different categories of applications will be accessing the same web services to obtain

information.

7.3.5 Database Design

Figure 7.2 shows that the eStudent system is linked to the database which is developed to

store and retrieve data efficiently and accurately.

As mentioned earlier, the education part in the KSA is a great industry that is founded and

provided by a number of institutes in both government and private parties. The capabilities of

the eStudent should cater for all these parties with the ability to address their demands. The

implementation of eStudent is carried out in different stages, as it is difficult to implement a

collection of application systems at one time. From a technical viewpoint, the infrastructure

needs to be in place first before eStudent can be efficiently installed.

Essentially, the servers need be set up in a suitable location e.g. at the MOE, and these

servers should have their physical security. The server requirement is database server and

Web server. For the database server a MS SQL server is used while the Internet Information

Services (IIS) server is used as the Web server.

7.3.6 The Algorithm of observation method

Pseudo code is a process of compact that illustrates a high-level description of a computer

programming algorithm. It is informal and uses the structural conventions of a programming

language with basic explanation, but is proposed for human reading rather than programming

or machine reading. As illustrated below in algorithm 8.1, the pseudo code of main

observation method() describes how services can be observed, evaluated and then enforced.

 Chapter 7 Prototype Implementation PhD Thesis

143

This algorithm has shown the compact of implementing the main method of the proposed

technique which is impacted on the observation system. It is embedded to underpin the

security. This algorithm is not part of the eStudent system but is immersed to act when it is

requested.

This algorithm typically omits details that are not important for understanding the algorithm,

such as variable declarations. The programming language is detailed with descriptions, where

convenient, or with compact mathematical notation. The purpose of using pseudo code is that

it is more easy to understand than conventional programming language code. It is also

sketching out the structure of the programme before the actual coding takes place. In the

algorithm 8.1, the observation method() consists of three methods and they are observer

method(),evaluator method() and enforcer method(). Firstly, the observer method() will

receive two things, a number of services and the interactions between services which are:

getService_no() and getAll_Servcies() and these tasks should obtain the number of services that

come in SOM and their interactions in services. Then observer method() will observe these

services and sends them to the evaluator method() as shown in the phase (i) and (ii)

respectively.

Secondly, the evaluator method() should receive the outcomes of interactions between the

services that are observed. The evaluator method will examine and assesses the behaviour

and history of the services that are observed by the observer, getReturn_of_Services(),whether

these services have ‘deviation’ , and then sends the report by Report[P]() as shown in the

phase (iii).

Thirdly, the enforcer method() will receive the report to detect, re-evaluate and then action as

shown in the phase (iv).

 Chapter 7 Prototype Implementation PhD Thesis

144

Algorithm of observation method()

Variables=counter, Interact_of_services[A], List_of_services[L], Return_of_services[R], Report[P]

Begin

 For all services ∈ All_Services

 All_Services←getAll_Services

 Counter ←getServices_no (i)
List_of_services[L]←All_Services

 do For i=0; i < counter ; i++

 Read(list_of_services[L])

 End for

 // observer method ()

 Interact_of_services[A]← getAll_Services (ii)

 For i=0; i< counter ; i++

 do getRotate Interact_of_services[A]

 Read(Interact_of_services[A])

 If anObservable is registered with observer, add anObservable to the list of observers

Otherwise, register anObservable and add anObserver to its list of observers.

 If found interaction between any services ∈ All_services

 then Insert Interact_of_services[A] into Return_of_services[R]

 else if no interaction found with ∈ All_services == ∞

 End for

 // evaluator method ()

 do While Return_of_services[R] ≠ Null (iii)

 do For i=0; i < counter; i++

 Read(Return_of_services [R])

 Evaluate interaction into Return_of_services

 If (Return_of_services [R]) ≠ satisfy

 else if (Return_of_services [R]) =’deviation’

 then Report[P]← getReturn_of_services [R]

 End for

 End while

 // enforcer method() (iv)

For i=0; i < counter; i++

 do check(Report[P])

 if (Report[P]=’deviation’)

 Detect ’deviation’ in (report[P])

 then Re-evaluate (report[P])

 Still has’deviation’

 else if Report[P] is == ’deviation’

 then Report[P] ≠ satisfy

 get.remove(‘deviation’)

 end for

 End

 Chapter 7 Prototype Implementation PhD Thesis

145

7.3.7 Development tools

The powerful and capable Microsoft .Net framework and its features act as assistants and are

there to use and design the whole system. Microsoft .Net framework offers many features to

develop our system efficiency. Visual Studio 08 and above is the Integrated Development

Environment (IDE) used to design this whole system. In addition, MS SQL server is the

database server that is used.

For the windows application, the system’s solution is constructed as shown below:

eStudent includes four individual development application components. These are:

1. A windows desktop application

2. A web application

3. A Web service

4. A mobile application (Under development)

All these application components are developed and implemented individually in separate

solutions by MS Visual Studio. The web service and the web application should be set and

hosted by the IIS server. Afterwards, the database should be attached and added to a SQL

 Chapter 7 Prototype Implementation PhD Thesis

146

Server by using the SQL Server Management Studio Express and then the connection

parameters are set on client applications.

The core functionality of the system is controlled by the eStudent Web service. All client

components can access the Web service to achieve all the services that are provided. For

instance, if student wants to request a service e.g. complete a test on a subject, the student

can simply login to the web application or mobile application and place the request via the

web service. Then the student should receive a response about that particular request.

As shown in figure 7.5 below, users are required to enter their user ID, name and password

when accessing both the applications on desktop and the Web.

Figure 7.5 Users use the main login

7.3.8 Mobile Application

The mobile and web applications show the booking functionality which allows the student to

book and request a service from their school e.g. book an appointment with a tutor. This

application is based on a Wi-Fi connection. After that, the student should receive

confirmation of the request. This confirmation should show the student’s ID, student

name…etc, as follows and an email will be sent.

 Chapter 7 Prototype Implementation PhD Thesis

147

7.3.9 Web and Desktop Application

The eStudent desktop client application works as a Web and mobile application with

additional features. This application should be installed at schools for use by teachers,

students and members of staff. In addition, it presents all administrative functionalities, such

as, managing student information. Students can add, view and update their information. In

addition, this application allows students to submit and retrieve any enquiry, such as, a

request for a subject mark or to book a test.

7.3.10 Testing

Benchmarks are formulated to mimic a particular type of workload on a component or

system. The computer programmes are used for compiling some of the benchmark data. The

Computer Language Benchmark’s site includes a large number of micro-benchmarks of

reader-contributed code snippets with an interface that generates different charts and tables

that compares specific programming languages and types of tests.

At this step, and after the development of the system is complete, it is essential to test it

thoroughly before it is deployed. This is because the system will be used in education where

availability and reliability are the main features, and which users expect from the system.

Consequently, overall testing of the system should be conducted. To ensure all the functional

and non-functional requirements are checked and functioning properly, testing is conducted

in several stages throughout the entire system’s development process.

The initial test uses unit testing where the consistent functionality of each code segment is

checked. Unit testing is also accomplished by the designer and completed before the end of

the development process.

A number of unit testing tools are available to assist designers to ensure that unit testing is

completed perfectly. Each of these tools is developed by appropriate software development

technology.

In addition, the next stage of the testing process commences. The overall testing of the

software is carried out component by component or part by part as eStudent is shaped by the

integration of several application components e.g. Desktop client, Web Application Mobile

Client as well as Web Services, hence the span of inputs and output is relatively large.

 Chapter 7 Prototype Implementation PhD Thesis

148

The major aim here is to ensure that the system comprehensively meets expected functional

and non-functional requirements by defining potential faults. All the faults and suggestions

should be reported back to the development process.

Since the system is mostly tested component by component, it cannot be considered a fully

tested distribution system, because the system as a whole is based on the proper interaction

between components and if these interactions are out of order then particular components

could be considered useless.

To overcome this, the next stage of the system’s testing process is integrated testing, which

focuses on the correct interaction between components so they fulfil their requirements and

duties.

The last stage of the testing process involves a special test, called a user acceptance test to

ensure that the user is fully satisfied with the system that has been developed.

As a result, there are two main types of testing methodologies, which are applicable for any

testing stage discussed above and they are used by several enterprises as white box and black

box testing.

 Black box

In this approach, the tester acts as a typical user to test the system. Knowledge of the internal

code level is not required for the tester. This is because only the system’s functions are being

tested. In a black box test, it is not required to know any details of the code.

 White box

For white box testing, the tester must know the code levels for all the internal

implementations.

Testing is carried out by concentrating on all code paths and their desired functions

individually in more detail. In addition, all the components are tested altogether (also called

integration testing) to confirm that components are working together as required.

 Chapter 7 Prototype Implementation PhD Thesis

149

7.3.11 Discussion

In general, the research development system is introduced for use by public bodies, such as

schools and education institutes. They are developed and deployed for use by educated

people. The major purpose is to ensure that all requirements of the system satisfy the user’s

expectations. All users of the system must possess an account with a user ID and password to

login into the system. Web client is expected to be used by students and parents. Mobile

client is intended for use by students to make requests or update their information. The

functionalities of the mobile application have some limitations as it runs on a mobile phone

or PDA, which has limited resources and is based on a Wi-Fi connection.

When the system is more stable and comprehensive, the second phase of implementation will

start. The knowledge base of eStudent is designed to reach a satisfactory level after the first

phase of implementation. Many organisations, in particular the education sector, become

involved at this stage. Students, parents and teachers are able to interact with each other in

real time using the facilities that are provided by the eStudent system. It is essential that the

web server is readily available and reliable. The server should have the capability of being

able to cater for a wide range of user requests and the capacity to accommodate a large flow

of data. Replicating and restoring servers are suggested to solve sudden hardware and

catastrophic failures.

Further, eStudent is proof of a concept that was developed and implemented to offer a facility

for teachers, students, institutes and other relevant parties to perform education activities

collaboratively. This proof is validated by the proposed approach that used and applied the

observation technique.

Lack of access to education information is the major issue in the field, and is addressed by

eStudent’s technological approach. eStudent provides global access to education information

via the World Wide Web (WWW) and the Internet, which enables users of the system to

receive accurate, reliable information in real time.

Our system is developed and implemented by using the best software development

technologies and methodologies, which enforces its dynamic expansion while it is being

used. It is simply ready to add new features as an organisation evolves. Accessibility to the

system is increased by implementing several client components and users can use those

 Chapter 7 Prototype Implementation PhD Thesis

150

components as required. The system deals with highly sensitive data, therefore, the integrity

and security of the system is very important and security features are embedded and

implemented via the observation system along with the system’s development.

In addition, The MOE and associated departments as well as a wide range of schools have

used it and have provided good evaluations and valuable feedbacks. The compilation of

education people and the IT sector will contribute to the community of students, teachers and

researchers in the future.

7.4 Summary

In this chapter, we considered the development and implementation of the eStudent system

prototype, which leads from the abstract specification of education to a concrete

implementable code to ease using the facility among the MOE, schools, teachers and

students. The eStudent system is a simulation of NOOR project.

We outlined and depicted the architecture of the eStudent system and embedded within it the

Observation system to reinforce the security violations. The eStudent’s implementation

demonstrates the feasibility of the education techniques involved.

With rapid development in IT and the education sectors, collaborative and integrated

education systems are required to support such technological management and administrative

activities of information dissemination in the form of an education service. Surveys indicate

that the majority of teachers and students are willing to use this kind of technology. In fact,

developing and implementing a comprehensive education system contributes a range of

capabilities to the education system in the country and for their teachers, students and

parents.

Since many other aspects are influenced by implementing this system, students and teachers

will consider eStudent as a valuable resource that enriches their lessons. Business sectors can

also use eStudent to market their valuable products. For the smooth expansion of eStudent

through various geographical regions, bilingualism is essential, which should be

implemented as a future improvement.

In the next chapter, we will provide an evaluation of this prototype to demonstrate and

validate the feasibility of our planned approach.

 Chapter 8 Evaluation PhD Thesis

151

CHAPTER 8

Evaluation

 Objectives

 To present the analysis and evaluation technique

 To evaluate the prototype of eStudent system including Observation approach

 To define and implement the Observation methods

 Chapter 8 Evaluation PhD Thesis

152

8.1 Introduction

With the proliferation and revolution of the Web it is not only used as a research tool but also

by many major sectors, such as, education, business and health. The Web uses business

communication tool groups as new ways to communicate. Technologies, such as Web

services, permit communication structures to be built easily and efficiently, giving even more

interaction and participation. They support this process by using the information that is found

on the Internet in new ways, even if only allowing users to subscribe to pouches of

information. Services are directly notified when any new information is published and this

should help to create complex business applications to control complex real-time offer

chains. System architectures normally become more and more complex due to increasing

functionality and by implementing additional features.

Hence, the analysis and evaluation processes are important issues; they divide a complex

topic into smaller parts in order to obtain a better view and understanding of a problem. This

will imply a common system view with comparable structures and similar modelling

approach technologies. The overriding process of analysis in the eStudent system is to gain a

greater understanding of the needs of users in order to fulfil their requirements. The main

purpose of this chapter is to analyse and evaluate the observation system by examining the

behaviour of services to obtain satisfactory results. It will focus on the value of the research

study to the research community, researchers and students.

8.2 Evaluation

Evaluation is the process of assessing and examining a subject. It is based on criteria that

rate its significant features. This evaluation will describe and explore how the eStudent

system is valuable when it is integrated with the observation system. In addition, evaluation

is a popular technique used in a number of different areas (Schmitter 1996). By applying

expect criteria to discover an entity’s strengths and weaknesses we can then decide how

much or how little we value something by using judgment depending on measurements that

have been predefined. The major advantage of evaluation is that it will state, whether the

entity, in this case the observation system, performs satisfactorily.

 Chapter 8 Evaluation PhD Thesis

153

8.2.1 Analysis the Prototype system

As previously stated in the previous chapter, the prototype of the eStudent system is a whole

development system that was designed and implemented to solve numerous educational

issues which is a simulation of the NOOR project in the MOE. It is intended that the system

supports students and teachers in using its facility.

Therefore, in this section, we will present critical evaluation for the observation approach

which is integrated with the eStudent system. This evaluation should provide explanations

for the main aspect technique of the observation. It is used to validate and demonstrate the

feasibility of the proposed approach, which showed that the methodology could work and

produce impressive results to span the potential application space of the targeted domain.

8.2.2 Evaluation of the Observation system

As mentioned in chapter four, the observation system is responsible for actually changing

the processes internal behaviour and structure by issuing new parameters or process

configurations. A main goal of observation is to observe service behaviour to determine

whether it complies with its intended behaviour when interaction occurs. The observation

system observes the services and checks correctness by comparing an observed state of the

services with an expected state of the services.

Hence, we have to assume some criteria that should be based upon when using the

observation technique so, to implement our planned approach we have set and used a

confederation system that has pre agreement from those observables which will allow the

observation of the behaviour of incoming services by collecting data and then processing it.

Thus, our assumption is, tracing and observing the interaction communication between

services under confederation and then takes the decision based on their behaviour and

history.

The big issue here is how do we ensure that some given security requirements are satisfied

and enforced?

 Chapter 8 Evaluation PhD Thesis

154

Therefore, the confederation scenario is based on the following:

 System’s components are Web-services.

 These components are black boxes, designed/built by various vendors.

The "observation" allows to observe (partial) behaviours of those services

and to construct complete behaviours that can be analysed and compared with security

requirements. So we have two sets of behaviours: (a) the observed (partial) behaviours; and

(b) the actual required behaviours.

Given these two sets can then be compared, it can be determined if the system satisfies the

security requirements. If the two sets are the same then the system satisfies the

requirements; otherwise it does not and needs to be detected.

Consequently, the e-observer observes these services when interacting with each other and

then sends them to the evaluator system which assesses the behaviour of services to

discover any deviation that is based on their history. The evaluator then writes to the

enforcer system to make the detection, re-evaluation and then action. In a technical system,

the observer observes the external environment via the sensory input as well as the internal

behaviour of the low-level execution unit and is highly manipulated in several ways.

8.2.2.1 Behaviour

As mentioned in chapter two, behaviour is the way of responding to a system to the situation

that has been found. It is a sequence of state of a system.

The behaviour service is a description of a sequence of state that specifies dynamic aspects of

an entire system. It specifies the states and modes of the system that could impact with its

environment. So, we will use and analyse the behaviour of the service to determine whether

it obeys the expected behaviour.

 Chapter 8 Evaluation PhD Thesis

155

8.2.2.2 The Proposed Technique

As elaborated in previous chapters, the e-observer technique addresses most problems and

provides ultimate solutions that have been proven in similar contexts. The proof of the

solution lies in its ability to provide a facility for the system in order to collaboratively

perform and control any violation activities. The e-observer addresses these activities by a

technological approach. The e-observer is responsible for appropriate observation and

feedback. Thus, the e-observer observes behaviour through sensors by comparing the results

with the expectations and decides what action is necessary to provide the best-known action

through the enforcer system, but only after the evaluator has assessed the results.

The advantage of this technique is to deal with the e-observer technique over the Web

environment, which makes it possible to achieve adaptability in order to improve system

performance in dynamic environments by efficiently using the available resources and

controlling any activities.

The observation behaviour itself is variable; hence, the e-observer influences the observation

procedure, e.g. by selecting certain detectors or certain attributes of interest. Based on the

aggregate results by the e-observer, the evaluator can benchmark the data with an objective

function and knows what actions are best to guide the SOM in the desired direction by

informing the enforcer model, which acts as a switcher to detect the violation. Our

assumption here is, tracing and observing the communication between services and then

taking the decision based on their behaviour and history. Hence, the big issue here is how do

we ensure that some given security requirements are satisfied and enforced? The scenario of

observation and its observables can be formed as the following:

8.2.2.2.1 How does the observer technique work?

 Observer Registration

Figures 8.1 and 8.2 depict the registration sequence; the e-observer invokes the register

method on the subject, passing itself as a conversation or argument. Once the subject receives

this reference, it must store it in order to notify the e-observer when a state change occurs

 Chapter 8 Evaluation PhD Thesis

156

sometime in the future. Rather than storing the observer reference in an instance variable

directly, most observer implementations delegate this responsibility to a separate object,

typically a container. Use of a container to store observer instances provides important

benefits. With that in mind, the next action in the sequence is the storage of the observer

reference denoted by the invocation of the add method on the container.

Observer Subject Container

Register(this)

Attach(observer)

 void Register(Object anObservable, Object anObserver)

 If anObservable is registered with the manager, add anObserver to the list of observers for

 anObservable,

 otherwise, register anObservable and add anObserver to its list of observers.

Figure 8.1 Observer can register and store in container

Figure 8.2 Observer can add or remove objects

 Chapter 8 Evaluation PhD Thesis

157

 Observer Notification

Figures 8.3 and 8.4 highlight the notification sequence. When a state change occurs

(Changed(state)), the subject retrieves all the observers within the container by invoking the

GetObservers method. The subject then enumerates through the retrieved observers, calling

the Notify() method, which notifies the observer of the state change.

Subject Container Observer

GetObserver()

Notify()

Change(state)

 void notify (Object anObservable, Object arg)

 {

 if (anObservable s exists)

 { for (all observers of anObservable) // process in reverse order of registration

 { currentObserver.notify (anObservable, arg) // combine push and pull models

 place the current observer on the visited list

 if (currentObserver is also an Observable)

call notify (currentObserver, arg)

 }

 }

 }

Figure 8.4 Methods notify all registered observers

Figure 8.3 Observer can notify of any change

 Chapter 8 Evaluation PhD Thesis

158

 Observer Unregistration

Figures 8.5 and 8.6 present the unregistration sequence. This sequence is performed when the

observer no longer needs to observe the subject. The observer calls the Unregister method,

passing itself as an argument. The subject then invokes the Remove method on the container,

ending the period of observation.

Observer Subject Container

Unregister(this)

Remove(observer)

 void Deregister (Object anObservable, Object anObserver) Remove anObserver from the list of

observers for anObservable. If anOb server is the only observer, the ob servable object anObservable is

also removed.

Figure 8.5 Methods deregister all registered observers

Figure 8.6 Methods deregister all registered observers

 Chapter 8 Evaluation PhD Thesis

159

8.2.2.3 Validation of Observation system by FSM and AGG

Tools

As shown in figures 8.7 and 8.8, the main role for using FSM is to facilitate the proposed

approach of the observation system by complying with the utilisation to obtain optimal

solutions. FSM simplifies the complex application into simple classified search steps in the

overall model to help and give developers a good visualisation of the model. In order to

declare each state of our approach, we therefore, examine our model’s design with a Jflap

tool using two main tests: step test-by-state and multiple run tests. These tests showed the

validation of the model by declaring a green sign with each state with typical results.

Moreover, we inspect these states by testing most possibilities to achieve expected outcomes

via using test methods to obtain optimal results.

Figure 8.7 The Observation diagram by an FSM and JFLAP to validate proposed approach

 Chapter 8 Evaluation PhD Thesis

160

 private class InputFormObserver implements Observer {

 public void update(Observable ob, Object o) {

 doSomeUpdate();

 if (obsInput.countObservers()>0)

 obsInput.deleteObservers();

 obsInput = inputForm.getInputInfo();

 obsInput.addObserver(input);

 }

 }

However, in figure 8.9, the validation of the proposed approach has also been examined by

the AGG tool to prove and demonstrate the practical applicability of the prototype system by

complying with the utilisation of information technologies. AGG uses a specification

technique for a set of particular kinds of systems, especially in situations where states exist as

complex structures that can be adequately modelled as graphs and in which the behaviour

involves a large amount of parallelism. AGG can be described as reactions to stimuli that can

be observed in the state of the system. AGG is a formal language suitable for a set of

specifications for a type of computational systems. AGG is a development environment tool

for attributed graph transformation systems supported by an algebraic approach.

In figure 8.9 below, as elaborated in the previous chapters, the scenario is shown that, all

these components are under a confederation system so, the student-a, student-b (Service 1 &

2 or client 1 & 2) and exam have a pre-agreement to be observed. Student-a & student-b have

an exam and they are under observation by the observer which should observe the interaction

communication between them. In fact the observer observes (partial) behaviours of these

services and complete behaviours that can be analysed and compared with security

requirements. As a result, we have two sets of behaviours: (a) the observed (partial)

behaviours; and (b) the actual required behaviours. Given these two sets can be then

compared, it can be determined if the system satisfies the security requirements. If the two

sets are the same then the system satisfies the requirements; otherwise if it does not the

observer will report to the evaluator and then to the enforcer.

Figure 8.8, Implementing the observer methods

 Chapter 8 Evaluation PhD Thesis

161

8.2.2.4 The Algorithm for the observation approach

As mentioned in chapter 7, pseudo code is a process of compact that shows a high-level

description of a computer programming algorithm. In algorithm 8.1, the observation

method() is described, how services can observed, evaluated and then enforced. This

algorithm has shown the compact of implementing the main method of the proposed

technique which is impacted on the observation system.

Moreover, this algorithm typically omits the details that are not important for understanding

the algorithm, such as variable declarations. The purpose of using pseudo code is that it gives

the ability to understand it more easily than conventional programming language code. It is

also sketching out the structure of the programme before the actual coding takes place.

Figure 8.9 The Observation diagram by AGG tool to validate proposed approach

 Chapter 8 Evaluation PhD Thesis

162

Algorithm of observation method()

Variables=counter, Interact_of_services[A], List_of_services[L], Return_of_services[R], Report[P]

Begin

 For all services ∈ All_Services

 All_Services←getAll_Services

 Counter ←getServices_no (i)
List_of_services[L]←All_Services

 do For i=0; i < counter ; i++

 Read(list_of_services[L])

 End for

 // observer method ()

 Interact_of_services[A]← getAll_Services (ii)

 For i=0; i< counter ; i++

 do getRotate Interact_of_services[A]

 Read(Interact_of_services[A])

 If anObservable is registered with observer, add anObservable to the list of observers

Otherwise, register anObservable and add anObserver to its list of observers.

 If found interaction between any services ∈ All_services

 then Insert Interact_of_services[A] into Return_of_services[R]

 else if no interaction found with ∈ All_services == ∞

 End for

 // evaluator method ()

 do While Return_of_services[R] ≠ Null (iii)

 do For i=0; i < counter; i++

 Read(Return_of_services [R])

 Evaluate interaction into Return_of_services

 If (Return_of_services [R]) ≠ satisfy

 else if (Return_of_services [R]) =’deviation’

 then Report[P]← getReturn_of_services [R]

 End for

 End while

 // enforcer method() (iv)

For i=0; i < counter; i++

 do check(Report[P])

 if (Report[P]=’deviation’)

 Detect ’deviation’ in (report[P])

 then Re-evaluate (report[P])

 Still has’deviation’

 else if Report[P] is == ’deviation’

 then Report[P] ≠ satisfy

 get.remove(‘deviation’)

 end for

 End

8.2.2.5 Implementing the Observation system by Sun Java

As in figure 8.10, we have used Sun Java to implement and run the observer technique with

its services or clients to prove the feasibility of the planned approach. So, we have assumed

 Chapter 8 Evaluation PhD Thesis

163

two clients that deal with each other and are under observation at the same time. As we

assumed in the confederation system, these clients interact by messaging. However, to detect

any deviation we have assumed that any words which include symbols e.g. ($,%,@, ? and #,

it can be added to any word or symbol) will be defined as a deviation or violation.

In figure 8.10 below, to run the program we have firstly to re-name each client and then press

on connect-to-server to link the client to be observed. Afterwards, the Observer will check all

interaction messages between clients and if any messages have unaccepted symbols then they

will be detected by adding it to the blockSymbols file.

Fig 8.10 Snapshot of running and testing the observation

 Chapter 8 Evaluation PhD Thesis

164

8.2.2.6 Evaluation

This program is done by Sun Java to present the e-observer technique. The e-observer was

explained and elaborated within chapter four. The usage of observation has rapidly increased

in recent years and a number of enterprises have required it.

In figure 8.10 above, the program has shown that the e-observer technique is an important

aspect for many action research studies that are used for many purposes. The use of the e-

observer technique eases the attachment and detachment of monitoring agents to software

probes and reduces the information distribution complexity. Further-more, monitoring agents

can again become observable objects, allowing other agents to subscribe to their processed

information. This mechanism is the foundation for building complex multi agent networks

inside the agent concentrator component for monitoring the protocol stack instances.

8.3 Summary

This chapter has analysed and evaluated the eStudent system prototype, which is embedded

within the observation system. The observation system includes important modules, which

have the ability to keep the system safe.

At the beginning of this chapter, we considered the value of the eStudent as a proposed

system to prove the observation approach. The security requirements of the observation

system, based on Web services, have also been considered during this chapter. Moreover, the

validation of the observation system has been shown by using FSM, JFLAP and AGG tools

which have demonstrated the feasibility of the proposed approach and illustrated the

methodology that could produce a high performance. The main issue in this chapter is to

prove the validation of the e-observer approach which has been done and provided by Sun

Java. Java is an object-programming language that is used for its facility and usage. We have

used Java to design and implement this technique to demonstrate the applicability of this

approach.

 Chapter 8 Evaluation PhD Thesis

165

The evaluation that we used has taken into consideration several tools to analyse the outcome

of the results to validate and obtain satisfactory results of the system.

The next chapter will conclude and summarise the work presented by this thesis. The

significance of the main findings of the research will be presented. Further, it will highlight

the most important contributions that have been made. The chapter will then conclude with a

discussion of methods and direction for possible future studies in this field.

 Chapter 9 Conclusion and Future Research PhD Thesis

166

CHAPTER 9

 Conclusion and Future Research

Objectives

 Summarising our findings, achievements and suggestions for future research.

 Chapter 9 Conclusion and Future Research PhD Thesis

167

9.1 Introduction

This analysis proposes the principles, rules and postulates that were contained in this

research. The analysis has been shaped by the integration of three main, important fields in

IT: the SOC, observation technique and service behaviour. All these fields come to play

increasingly important roles in the development of a strategy of security. This means that

there is a growing demand for the methodologies and technologies that support these fields

for their different purposes. The most important challenge for this investigation was to find a

suitable technology that develops an approach to ensure security requirements are satisfied

and enforced.

This thesis focused upon examining the adoption and dissemination of security policy in a

Web service environment. In addition, it traced the roots of Web services from its

background and related work in the architectural built environment to the present.

Conflicting views of its associated parts were critically analysed for an optimal solution.

Afterwards, the thesis presented a critical assessment of the observation technique in terms of

a structure for documenting information. This research was prompted by the scarcity of

resources for organisations that wish to introduce security into their systems.

Moreover, this study discussed a leverage of security policy implementation in web service

environments and its associated part. This should help to discover a notion technique through

policy-based QoS to find the desired information and solution with additional features for

policy.

9.2 Summary

This thesis has addressed the key issues which manage and enable tracing services during the

process of communication in the Web environment. We proposed the observation system that

provides a meaningful surveillance to minimise and control security leaks. This system can

be used in many purposes by different organisations. We dedicated most of our research to

present a comprehensive technique to develop an infrastructure for the emerging concept of

 Chapter 9 Conclusion and Future Research PhD Thesis

168

Web services. The key in this technique relates to security policy architecture based on Web

services.

In addition, the thesis has described the key points for an SOC, which involves extended

loosely coupled activities among several systems. Web services, as a part of the SOC, are

becoming an important technology in the evolution of distributed computing and Web

throughout the world. Web services are dynamic and independent entities offering a variety

of miscellaneous functionalities on the Web. For a given functionality, several Web services

may compete with their offerings.

The main aim of this study is to tame an appropriate solution so that it is able to adopt the

observation system, which is based on Web services and their related technologies. This

approach has provided a rich context for a set of robust core capabilities that enable

observing services to foster an efficient collaboration. The outcome results were then

evaluated and subsequently detected and enforced by the enforcer model. The enforcer

technique is a fundamental step towards attaining the envisioned controlling of the resources.

In our research, we formulated compositional rules that resolved, by combining and verifying

these rules, to overcome any violation activities in the system. A major purpose of these rules

is to express the requirements at a high level of abstraction, hiding the details of the

implementation that is necessary for their enforcement. To efficiently deploy such a scheme,

we proposed design of optimisation strategy for the enforcer model, which selects an optimal

way for its successful detection deployment over Web services.

The desire of this thesis was to explain and analyse the interaction communication process

between services under the Observation system based on the significance of Web

environment. By having this view in mind, the focus throughout the thesis was the field of

Web services, Observation systems and behaviour to identify the affecting factors.

 Chapter 9 Conclusion and Future Research PhD Thesis

169

9.3 Research Question Revisited

To evaluate the research presented in this thesis, which emphasises the significance of the

contributions, the research questions are re-visited. The overall research question investigated

and presented in Chapter one was:

 How to build a secure system from vulnerable components? Those components

may be (web) services?

Fundamental to this question is to study the service behaviour. So construction of the

behaviour of a system can only be achieved by observing the communication between

services, via demonstrating the process of building the practical applicability with the

utilisation of information technologies. Also, a rigorous technique for determining

appropriate solutions has been considered and presented.

The questions were addressed in general terms by proposing an observation framework and

the novelty of the proposed framework derives from a consideration of three main aspects:

SOC, observation process itself and behaviour.

9.4 Thesis Contributions

The major focus of this thesis is to ensure that security requirements are satisfied by

investigating and studying the behaviour of services during communication. In addition, to

ascertain how effectively services can be contacted and implemented. Due to the sheer size

of the services that are provided by many vendors, to achieve our goals, we looked at

different issues and made several contributions, these contributions constitute the underlying

infrastructure upon which to build a comprehensive infrastructure to support Web services.

The main contribution towards this work is to form a rigorous approach to specify and verify

the behaviour of services with the aim of simplifying the task of designing and implementing

the Observation system and their interaction requirements. Hence the main contributions of

the research are:

 Chapter 9 Conclusion and Future Research PhD Thesis

170

 The proposal and development of the Observation system that increases surveillance

by observing interactive communication between services and then sends outcome

results to the evaluator model after processing them.

 The taming of the design complexity of the Observation Model by leaving

considerable degrees of freedom for their structure and behaviour and by bestowing

upon them certain characteristics and to learn and adapt with respect to dynamically

changing environments.

 Formulate novel policy-based techniques, which support the Observation Model in

monitoring the services that interact with each other by verifying them in a formal

and systematic manner. We developed a set of rules using AGG tools, which can be

applied inductively to verify sets of traces that are generated by a specification of the

policy. These rules could also be used for verifying the functionality of a system.

 Design enforcement architecture that uses a technique to detect any violation activity

by addressing the security policy system using a systematic approach that can be

leveraged by the model’s requirements within the Web context,

 Perform the enforcement system for successfully deploying infrastructure as a Web

service to define the optimisation model that would capture efficiency requirements

via addressing this enforcement system and a systematic approach that can be

leveraged by the model’s specifications.

 Implement a prototype system that uses the observation technique to control, manage

and reduce risk by adopting those protection features of the enforcement system that

can specify a method that concisely describes the set of traces generated by the

enforcement tool.

As well as these contributions, other important contributions relate to the knowledge that is

embedded within this thesis and based on the above contributions, such as:

 Propose and design an Observation Model, which consists of an enhanced observer,

evaluator and enforcer models, which works via an e-observer that will monitor the

behaviour of service and then report them to the evaluator model, which will evaluate

the outcomes and then send them to the enforcer model to be detected.

 Chapter 9 Conclusion and Future Research PhD Thesis

171

 A technique of the e-observer that uses a proactive or precaution system to minimise

the risk to the resources.

 The enforcer model uses an independent technique, which means it can be used with

any other solution owing to its dynamicity.

The contents of the thesis are précised chapter by chapter by the following summary.

In chapter 2, we conducted a comprehensive review of SOC, policy based approaches and

QoS, which formed a framework to discuss and comment upon the relevant literature,

including an overview of the literature on Web services, and their scenarios, benefits and

architecture. In addition, it describes the Web Services Protocol Stack in detail with XML,

WSDL and UDDI languages.

In chapter 3, we provided, in depth, an overview of the background information that

influences security policies. This background information includes a definition of security

policy, access control models, security policy languages, security threats and security goals.

The chapter also discussed the impact of security models.

Chapter 4, we proposed and designed an Observation Architecture, which managed the

surveillance technique to reduce risk. This chapter elaborated on the Observation and its

associated parts.

In chapter 5, we formulated a policy-based technique for the verification of the observation

approach. This chapter described policy specification languages e.g. ponder policy. In

addition, it provided and made rules designed by AGG tools for simulation and verification.

In chapter 6, we designed and developed the enforcement architecture that provided a

technique for detecting violations, as well as to minimise the risk to resources by using a

proactive approach.

In chapter 7, a prototype system was developed that focused upon the experimental conduct

and implementation. The Observation system was embedded in this prototype to manage

security.

 Chapter 9 Conclusion and Future Research PhD Thesis

172

In chapter 8, we provided an evaluation of the prototype system to demonstrate the practical

applicability of the proposed approach by using tools e.g. AGG and FSM with JFLAP to

prove and validate the feasibility of this prototype which integrated with the proposed

technique.

Chapter 11 summarises the research presented in this thesis, highlights the significance of the

proposed contributions and discusses directions for possible future work in this field.

9.5 Future Research

This research is ongoing. We feel that further study is required in order to analyse some of

the main features of this work, namely, the SOC and observation approach based upon the

security policy in order to penetrate more deeply to discover and obtain the visibility, facility,

power and performance of these fields.

Several extensions to the observation infrastructure can be made. One of them is to enhance

the developed evaluator model to optimise techniques for Web services. This would require

using intelligent systems that take advantage of the current context. Evaluation as a technique

is a significant issue as it is related to many sciences, such as, mathematics and computing.

Another extension is to cater for the dynamic and volatile nature of Web services. An

adaptive approach needs to be designed to ameliorate the effects upon the efficiency of the

service’s execution plan when unpredictable events occur during run time. Another extension

is to the main part of the enforcer model, where the Policy enforcer (PE) should address the

following:

 The dynamic policy priority should increase for prompt response in case of any

violation activity.

 The multi-domain should handle and control multiple attacks simultaneously.

 Bibliography PhD Thesis

173

Bibliography

1. Al-Ajlan, A. (2008). Service Oriented Computing for Dynamic Virtual Learning

Environments (Moodle). STRL. Leicester,UK, De Montfort. PhD Thesis: 328.

2. Aldrawiesh, K., F. Siewe, et al. (2011). An observation model to detect security

violations in web services environment. Proceedings of the 2011 International

Conference on Intelligent Semantic Web-Services and Applications. Amman, Jordan,

ACM: 1-6.

3. Alferes, J. J., F. Banti, et al. (2006). An event-condition-action logic programming

language. Proceedings of the 10th European conference on Logics in Artificial

Intelligence. Liverpool, UK, Springer-Verlag: 29-42.

4. Alter, M. (2005). Web Services.

5. Andrew, C., C. Geoff, et al. (1994). "A quality of service architecture." SIGCOMM

Comput. Commun. Rev. 24(2): 6-27.

6. Andrzej Uszok, Jeffrey M. Bradshaw, et al. (2004). "Policy and Contract

Management for Semantic Web Services ".

7. Avik, S. and P. Amit (2006). Model-based functional conformance testing of web

services operating on persistent data. Proceedings of the 2006 workshop on Testing,

analysis, and verification of web services and applications. Portland, Maine, ACM.

8. Azadeh, M. A., M. Anvari, et al. (2007). An integrated FDEA-PCA method as

decision making model and computer simulation for system optimization.

Proceedings of the 2007 summer computer simulation conference. San Diego,

California, Society for Computer Simulation International: 609-616.

9. Bishop, M. (2002). The Art and Science of Computer Security, Addison-Wesley

Longman Publishing Co., Inc.

10. Boxman, J. (2005). A Practical Guide to Linux Traffic Control.

11. Bussler, D. F. a. C. (2002). The Web Service Modeling Framework WSMF. De

Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands.

 Bibliography PhD Thesis

174

12. C. Matthew MacKenzie, Ken Laskey, et al. (2006). Reference Model for Service

Oriented Architecture OASIS Standard.

13. Cavanaugh, E. (2006). Web services: Benefits, challenges, and a unique, visual

development solution, Product Marketing Manager, Altova® WhitePaper.

14. CÖMERT, C. (2004). Web Services and National Spatial Data Infrastructure (NSDI).

Trabzon, Turkey, KTU, 6108

15. Corp, N. n. (2003). Introduction Quality of Service (QoS) Nortel networks Corp,

White Paper.

16. Coyle, F. P. (2002). XML, WEB SERVICES, AND THE DATA REVOLUTION,

Addison-Wesley

17. D. Austin, A. Barbir, et al. (2004). "Web Services Architecture Requirements." from

http://www.w3.org/TR/wsa-reqs/.

18. Damianou, N. Dulay, et al. (2001). Ponder: A language for specifying security and

management policies for distributed systems, the language specification, , Imperial

College of Science Technology and Medicine, Department of Computing, London,

UK. 2.3,.

19. Damianou, N., N. Dulay, et al. (2002). Tools for Domain-based Policy Management

of Distributed Systems. NOMS, IEEE/IFIP, Network Operations and Management

Symposium, 2002. , London, UK, IEEE.

20. David Booth, Hugo Haas, et al. (2004). Web Services Architecture, World Wide Web

Consortium(W3C).

21. David Sprott and L. Wilkes (2004). "Understanding Service-Oriented Architecture."

Microsoft Architect Journal.

22. Davies, N. J., D. Fensel, et al. (2004). "The Future of Web Services." BT Technology

Journal 22(1): 118-130.

23. Denis, V. (2006). "Security Policies and the Software Developer." IEEE Security and

Privacy 4(4): 42-49.

http://www.w3.org/TR/wsa-reqs/

 Bibliography PhD Thesis

175

24. E. Lupu (1998). A Role-Based Framework for Distributed Systems Management.

Department of Computing London UK, Imperial College. PhD Thesis.

25. Eales, A. (2005). The Observer Pattern Revisited. Educating, Innovating &

Transforming: Educators in IT Concise paper,NACCQ05.

26. Edgardo, A., B. Marco, et al. (2006). When is it convenient to predict the web

services completion time? Proceedings of the 24th IASTED international conference

on Parallel and distributed computing and networks. Innsbruck, Austria, ACTA Press.

27. Edward, G. A. (1994). Fundamentals of computer security technology, Prentice-Hall,

Inc.

28. Ethan, C. (2002). Web Services Essentials, O'Reilly \& Associates, Inc.

29. Evan, M. (2007). Testing and Analysis of Access Control Policies. Companion to the

proceedings of the 29th International Conference on Software Engineering, IEEE

Computer Society.

30. F. García, G. Martínez, et al. (2005). Representing Security Policies in Web

Information Systems. WWW 2005. Chiba, Japan.

31. Firesmith, D. G. (2003). "Security Use Cases " Journal of Object Technology 2(3):

12.

32. Foster, I. and C. K. (1998). The Grid:Blueprint for a New Computing Infrastructure.

San Francisco, California, Morgan Kaufmann.

33. Francisco, C., D. Matthew, et al. (2002). "Unraveling the Web Services Web: An

Introduction to SOAP, WSDL, and UDDI." IEEE Internet Computing 6(2): 86-93.

34. Frank, P. C. (2002). Xml, Web Services, and the Data Revolution, Addison-Wesley

Longman Publishing Co., Inc.

35. Fred, B. S. (2000). "Enforceable security policies." ACM Trans. Inf. Syst. Secur.

3(1): 30-50.

36. Goethals, F. (2002). 4 New directions in Application Integration: Web Services: 21-

44.

 Bibliography PhD Thesis

176

37. Gorton, S. and S. Reiff-Marganiec (2007). Policy-driven Business Management over

Web Services Integrated Network Management, IFIP/IEEE International Symposium

38. H. Janicke (2007). The Development of Secure Multi-Agent Systems. Software

Technology Research Laboratory. Leicester,UK, De Montfort Ph.D Thesis: 219.

39. H. Janicke, F. Siewe, et al. (2006). Analysis and Run-time Verification of Dynamic

Security Policies Defence Applications of Multi-Agent Systems Springer Berlin /

Heidelberg.

40. Hans Weigand, Paul Johannesson, et al. (2008). Value-based Service Design Based

On A General Service Architecture. IFIP International Federation for Information

Processing BUSITAL’08.

41. Harel, D. and M. Polit (1998). Modeling Reactive Systems with Statecharts: The

Statemate Approach, Mcgraw-Hill (Tx).

42. Harold F. Tipton and M. Krause (2009). Information Security Management

Handbook, Sixth Edition, Auerbach Publications.

43. Harris, S. (2008). CISSP Certification All-in-One Exam Guide, Fourth Edition,

McGraw-Hill, Inc.

44. Hedi Hamdi, Adel Bouhoula, et al. (2007). A Software Architecture for Automatic

Security Policy Enforcement in Distributed Systems. Proceedings of the The

International Conference on Emerging Security Information, Systems, and

Technologies, IEEE Computer Society.

45. Hugo Haas and A. Brown (2004). Web Services Glossary, World Wide Web

Consortium(W3C).

46. Huhns, M. N. and a. M. P. Singh (Feb 2005). Service-Oriented Computing:

Semantics, Processes, Agents. England, Johe Wiley & Sons ltd.

47. Jagadeesh, Nandigam, et al. (2006). "A tool for experimenting with web services." J.

Comput. Small Coll. 22(1): 36-45.

48. Jeffrey, G., J. Marijn, et al. (2004). The advantages of web service orchestration in

perspective. Proceedings of the 6th international conference on Electronic commerce.

Delft, The Netherlands, ACM.

 Bibliography PhD Thesis

177

49. Jian, Y. (2003). "Web service componentization." Commun. ACM 46(10): 35-40.

50. Jianchun, F. and K. Subbarao (2005). "A snapshot of public web services." SIGMOD

Rec. 34(1): 24-32.

51. Jürgen Branke, M. C. Moez, et al. (2006). Organic Computing - Addressing

Complexity by Controlled Self-Organization. Proceedings of the Second International

Symposium on Leveraging Applications of Formal Methods, Verification and

Validation, IEEE Computer Society.

52. K. Aldrawiesh, A. Al-Ajlan, et al. (2009). "A Comparative Study between Computer

Programming Languages for Developing Distributed Systems in Web Environment."

ICCIT2009, ACM.

53. K. Aldrawiesh, F. Siewe, et al. (2011). An Observation Model to Detect Security

Violations in Web Services Environment. The International conference on Intelligent

Semantic Web-Services and Applications (ISWSA 2011), Amman, Jordan, Isra

University (ISWSA 2011).

54. K. Aldrawiesh, A. Platt, et al. (2011). Towards Development a Policy-Based

Technique for Enforcing Security Violations. The 5th Saudi International

Conference, in proceedings of ICT Coventry, UK, SIC2011.

55. K. Aldrawiesh, F. Siewe, et al. (2011). An observation model to detect security

violations in web services environment. Proceedings of the 2011 International

Conference on Intelligent Semantic Web-Services and Applications. Amman, Jordan,

ACM: 1-6.

56. K. Gottschalk, S. Graham, et al. (2002). "Introduction to Web Services Architecture."

IBM Systems journal 41(2).

57. Karila, A. (1991). Open Systems Security – an Architectural Framework. Helsinki

FINLAND, Helsinki University of Technology. PhD: 143.

58. Katia Sycara, M. Paolucci, et al. (2005). Combining Services and Semantics on the

Web. Cambridge, MA.

59. M. Papazoglou1, P. Traverso, et al. (2006). Service-Oriented Computing Research

Roadmap. Dagstuhl Seminar Proceedings 05462 Service Oriented Computing (SOC).

 Bibliography PhD Thesis

178

60. M. Papazoglou and D. Georgakopoulos (2003). "Introduction to Service-oriented

computing (SOC)." Commun. ACM 46(10): 24-28.

61. M. Papazoglou, P. Traverso, et al. (2006). Service-Oriented Computing Research

Roadmap. Dagstuhl Seminar Proceedings 05462 Service Oriented Computing (SOC).

62. M.Huhns and M. S. (2005). "Service-Oriented Computing- Key Concepts and

Principle." IEEE Internet Computing.

63. Mani, A. and A. Nagarajan (2002). Understanding quality of service for Web

services, IBM developerWorks.

64. Mario, M. (2007). QoS Over Heterogeneous Networks, Wiley Publishing.

65. Massimo, M., O. Mourad, et al. (2006). Access control enforcement for conversation-

based web services. Proceedings of the 15th international conference on World Wide

Web. Edinburgh, Scotland, ACM.

66. Michelson, B. M. (2008). Service Discovery Using Customer Scenario® Mapping,

Enterpriseleadership.org

67. Myerson, J. (2002). "Advancing the Web services stacks." from

http://www.ibm.com/developerworks/webservices/library/ws-wsa/#main.

68. N. Damianou, N. Dulay, et al. (2000). Ponder: A Language for Specifying Security

and Management Policies for Distributed Systems. London, Imperial College of

Science Technology and Medicine, Department of Computing.

69. N. Damianou, N. Dulay, et al. (2001). The Ponder Policy Specification Language.

Workshop on Policies for Distributed Systems and Networks, Bristol, Springer

70. Nabor, C. M., Jos, et al. (2005). An empirical evaluation of client-side server

selection policies for accessing replicated web services. Proceedings of the 2005

ACM symposium on Applied computing. Santa Fe, New Mexico, ACM.

71. Newcomer, E. (2002). Understanding Web Services, XML/ WSOL/ SOA and UDDI,

Addison-Wesley Professional.

http://www.ibm.com/developerworks/webservices/library/ws-wsa/#main

 Bibliography PhD Thesis

179

72. Nirmal, K. M., K. Ravi, et al. (2004). Cooperative middleware specialization for

service oriented architectures. Proceedings of the 13th international World Wide Web

conference on Alternate track papers \& posters. New York, NY, USA, ACM.

73. Oriyano, S.-P. (2008). Why a security policy? Introductory, IBM Corporation: 10.

74. Panagiotis, L. (2006). "SOAP and Web Services." IEEE Softw. 23(6): 62-67.

75. Papazoglou, M. P. (2003). Service-oriented computing: concepts, characteristics and

directions. Web Information Systems Engineering, 2003. WISE 2003. Proceedings of

the Fourth International Conference

76. Parisi-Presicce, F. and Y. Zhao (2005). "Policy Analysis and Verification by Graph

Transformation Tools." Electron. Notes Theor. Comput. Sci. 127(1): 101-112.

77. Paul Ferguson and G. Huston (1998). Quality of Service: Delivering QoS on the

Internet and in Corporate Networks, John Wiley & Sons.

78. Peri, R. V. (1996). Specification and Verification of Security Policies. Faculty of the

School of Engineering and Applied Science. Virginia, University of Virginia. Ph.D:

179.

79. Petrone, G., L. Ardissono, et al. (2003). Enabling conversations with web services.

Proceedings of the second international joint conference on Autonomous agents and

multiagent systems. Melbourne, Australia, ACM.

80. Rajagopalan, S. R. (2004). Automatic Security Policy Management in Modern

Networks Guarding Your Business, Springer US.

81. Raju Rajan, Dinesh Verma, et al. (1999). A policy framework for integrated and

differentiated services in the Internet. IEEE Communications Society IEEE.

82. Ravi, D. and T. Pallavi (2006). "Web services demystified." J. Comput. Small Coll.

21(5): 1-2.

83. Richards, R. (2006). Pro PHP XML and Web Services, Apress.

84. Roberts, J. (2002). Functional Requirements for Describing Services Discussion

paper for DC-Gov. New Zealand.

 Bibliography PhD Thesis

180

85. S. Parsa and M. Damanafshan (2007). Seamless Secure Development of Systems:

From Modeling to Enforcement of Access Control Policies. AICCSA '07. IEEE/ACS

International Conference on Computer Systems and Applications, 2007., Amman,

IEEE.

86. S. Weerawarana, F. Curbera, et al. (2006). Web Services Platform Architecture:

SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging

Prentice Hall

87. Sattarova Feruza, Y. (2008). Advanced Security Policy Implementation for

Information Systems. Proceedings of the 2008 International Symposium on

Ubiquitous Multimedia Computing, IEEE Computer Society.

88. Schmitter, E. (1996). Modelling, Analysis and Evaluation of Systems Architectures.

Selected papers from the 4th International Workshop on Computer Aided System

Theory, Springer-Verlag: 241-251.

89. Shalom, T., A. Serge, et al. (2001). Are Web Services the Next Revolution in e-

Commerce? (Panel). Proceedings of the 27th International Conference on Very Large

Data Bases, Morgan Kaufmann Publishers Inc.

90. Shimonski, R. J. (2003) Defining a Security Policy. Articles / Misc Network Security

2,

91. Shirey, R. (2000). Internet Security Glossary, RFC Editor.

92. Siewe, F. o. (2005). A Compositional Framework for the Development of Secure

Access Control Systems. STRL. Leicester,UK, De Mont Fort. Ph.D Thesis: 238.

93. Sleeper, B., and, et al. (2001). "Defining Web Services." from

http://www.site.uottawa.ca/~stan/csi5389/readings/wsdefined.pdfhttp://www.site.uott

awa.ca/~stan/csi5389/readings/wsdefined.pdf.

94. Sloman, M. (1994). "POLICY DRIVEN MANAGEMENT FOR DISTRIBUTED

SYSTEMS " Journal of Network and Systems Management 2: 22.

95. Stefan, T., K. Rania, et al. (2004). Composition of coordinated web services.

Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware.

Toronto, Canada, Springer-Verlag New York, Inc.

http://www.site.uottawa.ca/~stan/csi5389/readings/wsdefined.pdfhttp:/www.site.uottawa.ca/~stan/csi5389/readings/wsdefined.pdf
http://www.site.uottawa.ca/~stan/csi5389/readings/wsdefined.pdfhttp:/www.site.uottawa.ca/~stan/csi5389/readings/wsdefined.pdf

 Bibliography PhD Thesis

181

96. Stephen, J. H. Y., S. F. H. James, et al. (2005). Composition and evaluation of

trustworthy Web Services. Proceedings of the IEEE EEE05 international workshop

on Business services networks. Hong Kong, IEEE Press.

97. Steve, V. (2003). "Service Discovery 101." IEEE Internet Computing 7(1): 69-71.

98. Syed Naqvi and Philippe Massonet (2006). A Study of Languages for the

Specification of Grid Security Policies, CoreGRID Technical Report TR-0037.

99. Symon, C., C. Qiming, et al. (2003). Managing Security Policy in a Large Distributed

Web Services Environment. Proceedings of the 27th Annual International Conference

on Computer Software and Applications, IEEE Computer Society.

100. Systems CISCO, I. (2001). Internetworking Technologies Handbook (Cisco Core)

Cisco Press

101. Taentzer, G. (1997). "The Attributed Graph Grammar System, AGG Site, from

http://user.cs.tu-berlin.de/~gragra/agg/index.html.

102. Tian, M., T. V. , et al. (2003). "Performance Considerations for Mobile Web

Services."

103. Tsai, W. T. and Y. C. (2006). Introduction to Service-Oriented Computing.

Arizona, USA.

104. Utkarsh, S., M. Kamesh, et al. (2006). Query optimization over web services.

Proceedings of the 32nd international conference on Very large data bases. Seoul,

Korea, VLDB Endowment.

105. V.. Hu, E. Martin, et al. (2007). Conformance Checking of Access Control Policies

Specified in XACML. Proceedings of the 31st Annual International Computer

Software and Applications Conference - Vol. 2- (COMPSAC 2007) - Volume 02,

Beijing, China IEEE Computer Society.

106. Vasudevan, V. (2001). "Web services Primer." from

<http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/index.html>.

107. Verma, D. (2000). Policy-Based Networking: Architecture and Algorithms, Sams.

http://user.cs.tu-berlin.de/~gragra/agg/index.html
http://webservices.xml.com/pub/a/ws/2001/04/04/webservices/index.html%3e

 Bibliography PhD Thesis

182

108. Vincent C. Hu, Evan Martin, et al. (2007). Conformance Checking of Access

Control Policies Specified in XACML. 31st Annual International Computer Software

and Applications Conference(COMPSAC 2007), IEEE Computer Society.

109. Vincent, T. P. (2002). Future of web services, Cognizant Technology Solutions 9.

110. Xiaoyuan, T. (2007). Internet Quality of Service Monitoring System, VDM Verlag.

111. Xie, T. (2008). Testing and Verification of Security Policies. Automated Software

Engineering Research Group North Carolina State, North Carolina State University.

112. Y. Zhao and F. Parisi-Presicce (2004). Policy Analysis and Verification by Graph

Transformation Tools. Electronic Notes in Theoretical Computer Science, USA,

elsevier.

