
REASONING ABOUT HISTORY
BASED ACCESS CONTROL
POLICY USING PAST TIME
OPERATORS OF INTERVAL

TEMPORAL LOGIC

PhD Thesis

Sami Alsarhani

Software Technology Research Laboratory

Faculty of Technology

De Montfort University

England

Supervisors:

Dr Antonio Cau
Dr Francois Siewe

This thesis is submitted in partial fulfillment of the

requirements for the Doctor of Philosophy.

July 17, 2014

Draft: v0.4



Abstract

Interval Temporal Logic (ITL) is a flexible notation for the propositional and first-

order logical reasoning about periods of time that exist in specifications of hardware

and software systems. ITL is different from other temporal logics since it can deal

with both sequential and parallel composition and provides powerful and extensible

specification and verification methods for reasoning about properties such as safety,

time projection and liveness. Most imperative programming constructs can be seen

as ITL formula that form the basis of an executable framework called Tempura that

is used for the development and testing of ITL specifications.

ITL has only future operators, but the use of past operators make specifications

referring to history more succinct; that is, there are classes of properties that can

be expressed by means of much shorter formulas. What is more, statements are

easier to express (simplicity) when past operators are included. Moreover, using

past operators does not increase the complexity of interval temporal logic regarding

the formula size and the simplicity. This thesis introduces past time of interval

temporal logic (ITLp) where, instead of future time operators Chop, Chopstar, and

Skip, we have past operators past Chop, past Chopstar and past Skip. The syntax

and semantics of past time ITL are given together with its axiom and proof system.

Furthermore, Security Analysis Toolkit for Agents (SANTA) operators such always-

followed-by and the strong version of it has been given history based semantics

using past time operators. In order to evaluate past time interval temporal logic,

the problem of specification, verification of history based access control policies has

been selected. This problem has already been solved using future time of interval

temporal logic ITL but the drawback is that policy rules are not succinct and simple.

However, the use of past time operators of ITL produces simple and succinct policy

rules. The verification technique used to proof the safety property of history based

access control policies is adapted for past time ITL to show that past time operators



of interval temporal logic can specify and verify a security scenario such as history

based access control policy.

2 Sami Alsarhani



Declaration

I declare that the work described in my thesis is original work undertaken by me

between January 2009 to December 2013, for the degree of Doctor of Philosophy, at

De Montfort University, United Kingdom.

This thesis is written by me and produced using LATEX.



Acknowledgement

I wish to sincerely acknowledge the help, motivation and encouragement provided

to me by all my supervisors. In particular, I wish to thank Dr Antonio Cau, my first

supervisor, with whom I had regular contact and interesting discussions. I also wish

to acknowledge the help from my second supervisor Dr Francois Siewe, with whom I

had many useful discussions. Last but not least, I wish to acknowledge the support

I received from Professor Hussein Zedan, my brother, with whom I had interesting

discussions as well as a lot of encouragement and support.



Contents

1 INTRODUCTION 11

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 What is Temporal Logic . . . . . . . . . . . . . . . . . . . . . 12

1.1.2 Why temporal logic? . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.3 Why past temporal logic? . . . . . . . . . . . . . . . . . . . . 14

1.1.4 Background of history based access control policy . . . . . . . 15

1.2 Problem statement and research motivation . . . . . . . . . . . . . . 16

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.6 Success Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 LITERATURE REVIEW 23

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Formal specification . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Temporal Logic (TL) . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.1 Time in temporal logic . . . . . . . . . . . . . . . . . . . . . . 29

2.3.2 Temporal Logic System classification: . . . . . . . . . . . . . . 30

2.3.3 Temporal Logic Application . . . . . . . . . . . . . . . . . . . 42

2.4 Access control policies . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Access control . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.3 Access Control Policies elements . . . . . . . . . . . . . . . . . 45

2.4.4 Access Control Policies types . . . . . . . . . . . . . . . . . . 45

2.4.5 Access Control policies categories . . . . . . . . . . . . . . . . 46

5



CONTENTS

2.4.6 History based access control policy languages . . . . . . . . . 48

2.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3 PAST TIME INTERVAL TEMPORAL LOGIC 63

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Interval Temporal Logic (ITL) . . . . . . . . . . . . . . . . . . . . . . 64

3.2.1 Syntax of ITL . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2.3 Derived formula . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Past Time Interval Temporal Logic . . . . . . . . . . . . . . . . . . . 76

3.3.1 ITLp versus ITL . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.3.2 Syntax of ITLp . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.3 Semantics of ITLp . . . . . . . . . . . . . . . . . . . . . . . . 79

3.3.4 Derived formula . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4 Relation between past and future time using time reversal . . . . . . 88

3.5 Axioms and Rules in Logic . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5.1 Propositional Axioms and Rules for ITL . . . . . . . . . . . . 93

3.5.2 Propositional Axioms and Rules for ITLp . . . . . . . . . . . 94

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4 ITLp TO REASON ABOUT HISTORY-BASED ACCESS CON-

TROL POLICIES 96

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Choice of temporal logic . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.1 Formal semantics of policy rules . . . . . . . . . . . . . . . . . 97

4.2.2 Propositional interval temporal logic . . . . . . . . . . . . . . 98

4.2.3 Propositional linear temporal logic (PLTL) . . . . . . . . . . . 100

4.2.4 Interval Temporal Logic (ITL) . . . . . . . . . . . . . . . . . 100

4.2.5 Interval Temporal Logic with past time (ITLp) . . . . . . . . 107

4.3 Verification Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

4.3.1 Proof Rules: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5 SCENARIO:

GENERAL PRACTICE SYSTEM (GPS) 118

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 System description: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6 Sami Alsarhani



CONTENTS

5.2.1 Subjects description table . . . . . . . . . . . . . . . . . . . . 120

5.2.2 Objects description table . . . . . . . . . . . . . . . . . . . . . 120

5.2.3 Action in the GPS: . . . . . . . . . . . . . . . . . . . . . . . . 120

5.3 Past time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.3.1 Access control policy specification: . . . . . . . . . . . . . . . 122

5.3.2 Specification with past time . . . . . . . . . . . . . . . . . . . 123

5.3.3 Policies summary . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.3.4 Semantics of GPS policies . . . . . . . . . . . . . . . . . . . . 130

5.3.5 Safety property: . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.4 Future time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.4.1 Specification with future time . . . . . . . . . . . . . . . . . . 147

5.4.2 Semantics of GPS policies using future time . . . . . . . . . . 153

5.4.3 Safety property: . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.5 Comparison between the two proofs . . . . . . . . . . . . . . . . . . . 173

5.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6 CONCLUSION 176

6.1 Thesis summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

6.2 Comparison with related work . . . . . . . . . . . . . . . . . . . . . . 177

6.3 Original Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.4 Success Criteria Revisited . . . . . . . . . . . . . . . . . . . . . . . . 180

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

6.6 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.7 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.8 Future impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.8.1 Academic impact . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.8.2 Industrial impact . . . . . . . . . . . . . . . . . . . . . . . . . 184

Appendices 199

7 Sami Alsarhani



List of Tables

3.1 Syntax of ITL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Semantics of ITL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3 Derived formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.4 Frequently used concrete derived constructs . . . . . . . . . . . . . . 75

3.5 Frequently used derived constructs related to expressions . . . . . . . 75

3.6 Syntax of ITLp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.7 Semantics of ITLp . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.8 Derived formula for ITLp . . . . . . . . . . . . . . . . . . . . . . . . 86

3.9 Frequently used concrete derived constructs . . . . . . . . . . . . . . 86

3.10 Frequently used derived constructs related to expressions . . . . . . . 87

3.11 Future and past operators relation list . . . . . . . . . . . . . . . . . 91

3.12 Axioms and Rules for Propositional ITL . . . . . . . . . . . . . . . . 93

3.13 Axioms and Rules for Propositional ITLp. . . . . . . . . . . . . . . . 94

5.1 Objects description table . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Action in the GPS: . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.3 Rules proof comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8



List of Figures

1.1 Future ITL expressing past . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Past ITL expressing past . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Time Models [75] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 LTL [47] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 CTL [47] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Points based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 Interval based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Discrete time [47] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.7 Continuous time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.8 Past VS Future [47] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9 Usage control from [142] . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.10 Syntax of SANTA [69] . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.11 Computational model [24] . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1 Future interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.2 Chop of finite interval . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.3 Chop of infinite interval . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Chopstar of finite interval . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Chopstar of finite interval final infinite . . . . . . . . . . . . . . . . . 70

3.6 Chopstar of infinite interval . . . . . . . . . . . . . . . . . . . . . . . 70

3.7 Next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.8 Weak Next with one state interval . . . . . . . . . . . . . . . . . . . . 71

3.9 Weak Next with more than one state interval . . . . . . . . . . . . . 71

3.10 Sometimes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.11 Always . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.12 States in past interval . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.13 States in future interval . . . . . . . . . . . . . . . . . . . . . . . . . 76

9



LIST OF FIGURES

3.14 Future changed states . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.15 Past changed states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.16 Historical interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.17 Semantics of past Chop . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.18 Semantics of past Chopstar . . . . . . . . . . . . . . . . . . . . . . . 81

3.19 Previous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.20 Weak Previous with one state interval . . . . . . . . . . . . . . . . . . 82

3.21 Weak Previous with more than one state interval . . . . . . . . . . . 82

3.22 Past Sometime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.23 Past Always . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.24 Chop future formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.25 Chop with reversal time . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.26 Past Chop formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1 Always-followed-by . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2 Strong-always-followed-by . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3 Syntax of SANTA policy language . . . . . . . . . . . . . . . . . . . . 103

4.4 Always-followed-by-past . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Strong-always-followed-by-past . . . . . . . . . . . . . . . . . . . . . . 108

4.6 Syntax of SANTA policy language with past time . . . . . . . . . . . 109

4.7 Safety property always . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.8 Safety property past box-i . . . . . . . . . . . . . . . . . . . . . . . . 114

4.9 Safety property past always . . . . . . . . . . . . . . . . . . . . . . . 115

4.10 Safety property future box-i . . . . . . . . . . . . . . . . . . . . . . . 115

5.1 AlwaysPastChop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1 Duan Chop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.2 Mexitl Chop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10 Sami Alsarhani



Chapter 1

INTRODUCTION

This Chapter introduces the following:

• Background.

• Problem statement.

• Motivation and Research Objectives.

• Research Questions.

• Research Approach.

• Scope of the research.

• Success Criteria.

• Thesis Outline.

11



CHAPTER 1. INTRODUCTION

1.1 Background

According to Ambrose Bierce [50], “Logic is the art of thinking and reasoning in

strict accordance with the limitations and incapacities of human misunderstanding”.

When we study ordinary logic, it can be seen from two viewpoints. One of these is

“where logical systems are seen as being self-contained and not meant to model any

real-world objects or actions” [50].

These systems have typically been studied by philosophers and logicians when

they are trying to explore and extend various notions of truth, and provability.

We tend to follow the alternative view of logic, which is “a formalization of some

aspect of the real world”. In this view, some abstraction of objects or actions

that either do or do not occur in real life are being described or modelled logically.

However, we can use another language to describe such aspects: for example the

English language, which has been widely used to describe and reason about problems

and situations. Nonetheless, the disadvantages of the natural language - which

include ambiguities and inconsistencies - must be overcome.

For this reason, a formal language with well-defined semantics, a consistent reasoning

mechanism, and logical systems are required to accurately describe these objects and

actions. However, as more complex or detailed properties are represented, a deeper

logical system must be used as that logic represents a particular abstraction of the

real world [50].

1.1.1 What is Temporal Logic

In classical propositional logic, formula are evaluated within a single fixed world (or

state), which generally supports the reasoning with propositions; that is, with state-

ments to be evaluated as either true or false. However, temporal logic (TL) is the

logic of studied reasoning that focuses on propositions whose truth values depend

on time [120, 46]. Temporal logics, which can be seen as an extension of classical

logic in its simplest form [46], was originally developed in order to represent tense

in natural languages [116].

Another definition of temporal logic is given by Manna et.al. [86], which de-

scribes it as a special branch of logic that deals with the development of situations

in time. Whereas classical logic is adequate for describing a static situation, tem-

poral logic gives us the possibility of discussing how a situation changes with the

12 Sami Alsarhani



CHAPTER 1. INTRODUCTION

passage of time.

In addition, to the timeless logic operators, temporal logic contains additional op-

erators such as (©), which means in the next moment of time, (2), which means at

every future moment of time, and (3), which means at some future moment. These

additional operators allow us to establish formulas that cannot be established with

classical logical operators; for example:

2(try to print⇒ ©(printed ∨ try to print))

this formula means:

“ whenever we try to print a document then, at the next moment in time, either

the document will be printed or we try again to print it ” [48].

Despite the fact that classical logics do not include a time element, temporal logics

characterize changes which depend on time and this makes temporal logics a richer

notation than classical logics.

1.1.2 Why temporal logic?

Formal languages, and their well-defined semantics, are increasingly used to describe

systems behaviour precisely, clearly and unambiguously [48].

For example, it is important to verify that a system behaves as required. These

requirements can be captured as a formal specification in an appropriately cho-

sen formal language with the selected specification providing the basis for formal

verification. Formal verification provides a comprehensive approach to potentially

establishing the correctness of the system in every possible situation. Alternatively,

we may want to use the logical specification of a system in other ways such as treat-

ing it as a program and directly executing it and again the well-developed logical

machinery helps us with this [48].

Temporal logic (TL) within computer science plays a significant role in a number

of areas, particularly the formal specification and verification of concurrent and dis-

tributed systems [111].

Temporal logic has achieved much of its popularity because a number of useful

properties - such as: “safety”, which ensures something bad never happens to the

system; “liveness”, which asserts that something good will eventually happens to

the system; as well as “weak fairness”, which states that any transition that is con-

tinuously enabled eventually happens and “strong fairness”, which states that any

transition that is enabled infinitely will often occur eventually [48] - can be formally

13 Sami Alsarhani



CHAPTER 1. INTRODUCTION

and concisely specified.

1.1.3 Why past temporal logic?

In computer science, most theoretical studies of temporal logic only use future time

constructs. This contrasts with the temporal logics studied in linguistics, philosophy

and other areas where past time and future time have been on an equal footing [116].

This is a surprising fact as computer scientists recognize that past time constructs

can be very useful when it comes to expressing certain properties. For example,

using “2” for “at all future moments” and “3̂” for “at some past moment”. We can

easily state that “in all cases the occurrence of a problem must have been preceded

by a cause”; namely, “no problem will ever occur without a cause”, which is an

important safety property under some forms. One simply writes:

2(problem ⊃ 3̂ cause) (1.1)

However, it has been shown that formulas using past time constructs can often be

replaced by equivalent pure future formulas [53, 83]. For example, formula (1.1) is

equivalent to formula (1.2):

¬(¬ cause U problem) (1.2)

which uses the “Until” construct U for “the problem holds at the current or a future

position, and the cause has to hold until that position and after that position’s cause

does not have to hold any more”.

These two formulas (1.2) and (1.1) are formally stated as being the same [80]; how-

ever, the second formula (1.2) is more intricate than the first one (1.1). This is even

more obvious when one tries to express a statement like “in all cases the occurrence

of a problem must have been preceded by cause1 and cause1 must have been pre-

ceded by a cause2” as has been shown in (1.3):

2(problem ⊃ 3̂ (cause1 ∧ 3̂ cause2) (1.3)

Formula (1.3) is very complicated when ignoring the past construct as shown in (1.4):

¬(¬(¬cause2 U cause1) U problem) (1.4)

14 Sami Alsarhani



CHAPTER 1. INTRODUCTION

Clearly, a formulation like (1.3) is much easier to understand than the more intricate

one (1.4).

The practical consideration has a formal counterpart as linear temporal logics with

past time operators are very useful in practice as shown in the given examples.

However, it has been agreed that in various relevant cases such usefulness does

not involve any increase in expressiveness to linear temporal logic, that is, all the

formulations which can be expressed using past time operators can be rewritten

using future pure ones [79, 93, 90].

This research is looking at the possible advantages of using the past time operators of

interval temporal logic to reason about history based access control policy. History-

based policies are a very expressive (not easy to express) class of policies that can

define policy decisions dependent on previously observed behaviours [69]. This class

of policies consists of phases, each phase consists of a sequence of states and ITL

with the introduced past operators ( ; and ∗ specifically ) is a convinced language

to reason about it. Next, we will give an overview of history based access control

policies.

1.1.4 Background of history based access control policy

During the last decade, access control models have been developed in order to protect

important resources from unwanted access. Historically, access control mechanisms

have been rigid; whilst they may be either dynamic, or static, (dependent upon

a particular access or environment), they either deny or grant access consistently.

This is necessary to ensure that the systems’ security is well defined and that it

satisfies given specifications [109].

Several models for access control have been proposed including stack inspection,

adopted by Java and C#. In this model, a policy grants static access rights to the

code, while actual runtime rights depend on the static rights of the code frames on

the call stack. As access controls only rely on the current call stack, stack inspection

suffers from two main weaknesses. First, it is difficult to place the needed checks

at the relevant points in the code, and even more difficult to guarantee that they

suffice for enforcing the intended security policy. Second, stack inspection may fail

to enforce some security constraints, because it relies on the call stack only. Indeed,

the access rights of a certain method are no longer affected by the execution of an

untrusted one, after it has been popped from the call stack [51].

Conversely, as Abadi and Fournet note, stack inspection is not useful in providing

15 Sami Alsarhani



CHAPTER 1. INTRODUCTION

protection to the caller. Thus, if the trusted code calls the untrusted code and pro-

ceeds with the results returned by the latter using the same permissions it has used

for the call, undesired results may occur: in proceeding with the results returned by

the untrusted code, stack inspection forgets that security may depend on how,(i.e.,

with which permissions) the results were computed in the first place. This is be-

cause the stack frame containing the permissions is popped upon return so that the

permissions are no longer available on the stack.

Abadi and Fournet have introduced a novel access control mechanism called His-

tory Based Access Control (HBAC) which records the history of previously executed

codes [1]. Therefore, each and every code executed before a security-sensitive oper-

ation must be sufficiently authorized to execute that operation.

History based access control considers instead a suitable abstraction of the whole

execution, and the actual rights of the running code depend on the static rights of

all the pieces of code (possibly partially) executed so far.

At runtime, both stack inspection and the history based mechanism involve a set of

currently enabled permissions; it is a subset of the statically authorized permissions

of the class of the currently-executing code. When a method is invoked, the initial

permission set for the method body is the intersection of the caller’s current set and

the static permissions of the called code. Note that it is the class of the dynamically

dispatched code that matters, not the class of the target object. In stack inspection,

the method call has no effect on the current permission set of the caller. In the

history based mechanism, the caller’s permissions become the intersection of their

initial value with the final permissions of the called method.

The typical runtime mechanisms for enforcing history-based policies are reference

(execution) monitors [127]. Usually, policies constrain the behaviour of the refer-

ence monitors in the information system. More precisely, access control policies

determine the choice of the reference monitor to permit or deny the execution of a

request. A complete specification of the reference monitor can be given in the form

of an access control matrix that fully determines the access rights at any point in

time during the system execution. This matrix will depend not only on the current

state of the information system, but also on the history of execution [69].

1.2 Problem statement and research motivation

Reasoning about histories is gaining an increased importance in several areas; for

example, history based access control policies and log file analysis among others.

16 Sami Alsarhani



CHAPTER 1. INTRODUCTION

The future time operators of interval temporal logic can be used to reason about

histories [69]. The normal approach to reason about history with future time oper-

ators is to go to the final state of the interval and refer from this final state to the

prefix states as history.

The final state in the future interval is σ|σ| and to reach this state you need a tem-

poral operator such as fin . This operator means the final state of this interval and

from this final state we refer to the remaining states which are σ4, σ3, σ2, σ1, σ0, as

history states as is shown in Figure 1.1.

•
σ|σ|

f

•
σ4
f ••

σ3

f
••

σ2

f
••

σ1

f
••

σ0

f

Figure 1.1: Future ITL expressing past

However, when the introduced past time operators of interval temporal logic are

used to reason about history, τ0 is the current state in the past interval, which is

the final state of the future interval, and from this state we can refer to the past

interval which are states τ1, τ2, τ3, τ4, τ|τ | so, we do not need the additional operators

to reach the final state such as fin as is shown in Figure 1.2.

• •
τ0τ0

f

•
τ1
f ••

τ2

f
••

τ3

f
••

τ4

f
••

τ|τ |

f

Figure 1.2: Past ITL expressing past

In addition, the “numbering of states” is changed when the past operators are

used. The normal approach of numbering the states in the future time and the past

time is from the left state to the right state, σ0 · · · i · · ·σ|σ| where i is the current

state in this interval.

However, on our approach the numbering of states is from the right state to the

left one as it is shown in the Figure from the state τ0 to states τ1, τ2, τ3, τ4, τ|τ |

respectively.

17 Sami Alsarhani



CHAPTER 1. INTRODUCTION

In this research, we are introducing the past time operators of interval temporal logic

to reason about history based access control policy and compare it with the future

time operators. Depending on the discussion above, the introduced past operators

change the “numbering of states” and reduce the symbols used such as the temporal

operator fin . The introduced past time operators of interval temporal logic give us

two main advantages:

In particular, the change of state numbering makes many past statements easier to

express (simplicity). This is clear because in the introduced “numbering of states”

the current state of the past interval τ0 is the final state of future interval; moreover,

we do not need an additional operator to reach the final state of the future interval

and this reduces the symbols used.

The second advantage is that reasoning about history with past time operators

is more succinct; that is, there are classes of properties which can be expressed by

means of much shorter formulas and less symbols (fin operator in the given example).

When succinctness is achieved, simplicity is achieved; that is, the formula is easier

to express due to the formula being shorter and containing less symbols. This study

is therefore focusing on the benefits of introducing past time operators to investigate

if they resolve the problems identified.

1.3 Research Questions

The first research question, RQ1, is rather global. Answering this question results

in a broad understanding of the aims and results of our research.

RQ1: What are the benefits of the past time operators for interval temporal logic?

RQ2: What are the benefits of the introduced “numbering of states” with past time

to interval temporal logic ITL?

RQ3: Can past time operators be used to reason about and express history based

access control policies?

RQ4: Does the past time operators making the specification and verification process

more succinct and thus easier to express (simpler)?

18 Sami Alsarhani



CHAPTER 1. INTRODUCTION

1.4 Research Approach

The adopted research methodology follows the constructive research approach [32],

which refers to the contribution to knowledge being developed as a new solution for

an identified problem.

A formal framework was developed based on past-time ITL for a known problem

which is the formal specification and verification of history-based access control sys-

tems. The methodology of the proposed approach consists of the following six steps:

• Step 1: Literature review :

The research study starts with a critical review of published works on the

following:

– Firstly, the specification in temporal logic.

– Secondly, temporal logic history including the classification of temporal

logic.

– Finally, the history-based access control Section.

• Step 2: Past time interval temporal logic (ITLp):

This step introduces the following:

– Interval temporal logic (ITL), its syntax and semantics.

– Past time interval temporal logic ITLp, its syntax and semantics.

– The propositional axioms and rules of interval temporal logic and past

time interval temporal logic. These axioms and rules have been proven

sound in appendix A.

• Step 3: Past time interval temporal logic (ITLp) to reason about history-based

access control policies:

In this step:

– Justification of our choice of past time interval temporal logic.

– Description of the computational model and its components.

– SANTA Policy language with future time.

– SANTA Policy language with the history based semantics using past-time

operators of ITL.

19 Sami Alsarhani



CHAPTER 1. INTRODUCTION

– The verification rules.

• Step 4: The scenario:

In this step, in order to evaluate our past time interval temporal logic ITLp

for reasoning about histories.

– Specification of history based access control policies.

– Verifications properties of histories.

• Step 5: Conclusion and future work:

This step draws conclusions about introducing ITLp to reason about history-

based access control policy. Limitations and potential further research are

discussed as well as the future impact of this study.

1.5 Scope

This thesis introduces past time operators of ITL. The syntax and semantics of

past time operators of ITL are given together with its axiom and proof system.

In order to evaluate past time operators of interval temporal logic, the problem

of specification and verification of history based access control policies has been

selected. The reason why we chose history based access control policies are that

they are a class of policies that can define policy decisions dependent on previously

observed behaviours within the system. The past time operators with their history

semantics will be used to specify these previously observed behaviours.

The verification technique used to proof the safety property of history based access

control policies is adapted for past time operators of ITL to show that past time

operators of interval temporal logic can specify and verify a security scenario of

history based access control policy such as GPS.

20 Sami Alsarhani



CHAPTER 1. INTRODUCTION

1.6 Success Criteria

In order to measure the success of our research, the following success criteria have

been formulated:

• The past time operators of interval temporal logic is suitable for reasoning

about and expressing history based access control policies.

• The change of numbering of states with past time operators of interval tem-

poral logic make the reasoning about history easier.

• The formal specification and verification of history based access control policies

when using past time operators of ITL is more succinct and thus easier to

express (simpler).

1.7 Thesis Outline

The PhD thesis outline is as follows:

• Chapter two is the literature review and in the first Section the specification

has been defined, what it is, its advantages and disadvantages. In the second

Section, an overview of temporal logic is given in detail including how we can

classify temporal logic systems and what temporal logic applications are in

general and in computer science in particular.

In the third Section, which is history based access control, the access control

elements, types and categories have been explained. The models used for

history based access control policy are listed to justify our choice of SANTA.

• In Chapter three, the interval temporal logic ITL operators and their syntax

and semantics have been explained with the derived formula and constructs.

Then the past time interval temporal logic operators have been proposed with

their syntax and semantics with the derived formula of past time operators.

The axioms and rules in logic are explained, then the propositional axioms

and rules for ITL and for ITLp are listed here. These axioms and rules have

been proven sound in Appendix A.

21 Sami Alsarhani



CHAPTER 1. INTRODUCTION

• The fourth Chapter shows how to use ITLp to reason about history based

access control policies. The logic languages and its ability to reason about

history based access control policy is discussed to justify our choice of past

time interval temporal logic ITLp. Then, SANTA and SANTA with past

operators which is given a history based semantics using the past operators,

are used to give the syntax and semantics of policy rules. Additionally, the

formal syntax and semantics of policies and compound policies are explained

in this Chapter. A list of verification rules which are used to verify that a

policy satisfies a certain property is given.

• In the fifth Chapter, to evaluate our work, a General Practice System GPS

scenario is described. An introduction has been given to this scenario, then

a description of General Practice System GPS including the system subjects,

objects and actions. The specification of policies has been listed. The seman-

tics of GPS policies has been described in detail, and has been used with the

proof rules to verify the safety property of GPS policies.

• In Chapter six we will bring to a conclusion the work done in this thesis

and discuss the weaknesses and limitations of this work. Moreover, further

research needed in this area is proposed and the future impact is discussed;

recommendations have been given to help any researcher who wants to work

in this field.

22 Sami Alsarhani



Chapter 2

LITERATURE REVIEW

In this Chapter:

• Specification.

• Temporal logic history.

• History based access control.

23



CHAPTER 2. LITERATURE REVIEW

2.1 Introduction

This Chapter gives the background to interval temporal logic and its uses. It dis-

cusses the specification and its uses and the most relevant terms related to specifi-

cation, such as “formal specification” and “formal specification approaches”.

In the second Section temporal logic history, and how we can classify temporal logic,

as well as the temporal logic applications, has been discussed.

In the last Section of the literature review, the access control has been defined, its

elements, types and categories. Finally, the languages that are suitable to express

history based access control policies have been listed and discussed.

2.2 Specification

Specification is a vital activity of the software engineering process since it provides

a conceptual model of the system if there is a description of the required behaviour

of a software system. But the question raised here is what we mean by specification.

What is the difference between requirements and specifications?. To answer this

question we should define requirements and specifications.

There is a distinct difference between requirements and specifications. While require-

ment is a condition needed by a user to solve a problem or achieve an objective, a

specification is a document that specifies the requirements, design and behaviour in

a verifiable, complete and precise manner [132].

Another term that is commonly used in books and papers is requirements specifi-

cation. That is a document that specifies the requirements for a system or com-

ponent. It includes functional requirements, performance requirements, interface

requirements, design requirements, and development standards. Therefore, the re-

quirements specification is simply the requirements written down on paper.

So, the first step toward developing accurate and complete specifications is to es-

tablish correct requirements. This is not an easy task and is more of an art than a

science.

Requirements and specifications are very important components in the development

of any system. Requirements analysis is the first step in the system design pro-

cess, where a user’s requirements should be clarified and documented to generate

the corresponding specifications. While it is a common tendency for designers to

be anxious about starting the design and implementation, discussing requirements

with the customer is a vital activity in the construction of any systems. For ex-

24 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

ample, errors developed during the requirements and specifications stage may lead

to errors in the design stage. When an error is discovered, the engineers must re-

visit the requirements and specifications to fix the problem. This leads not only to

wasted time but also the possibility of other requirements and specifications errors.

For these reasons, software requirements are defined in functional terms, and refined

and updated as the project progresses to the different stages of its life cycle. Correct,

accurate and complete documentation and understanding of software requirements

are the most important factors in the success of meeting the required goals and

achieving the functional validation of the produced software [117].

So, the relation between requirements and specification is that the specification is

a formal documented form of requirements. This document may include, but is not

limited to, drawings, patterns, and an itemized description of the system. The spec-

ification document can be checked for conformity with the set of requirements at any

stage of the software development. Written specifications can be of several types

such as system requirements specification, software requirements specifications, and

software design specifications, etc. These specifications are the design outputs, and

set the criteria to evaluate and verify the system’s behaviours as per given require-

ments [117].

There are three uses of software specification:

1. Statement of user needs: this means that it captures information about the

problem; it does not propose or promise any particular solution.

2. Statements of the implementation requirements: they are also used during the

verification activity to check if the implementation complies with them.

3. Reference during product maintenance where implementations are modified

and consequently their compliance with specifications must be checked.

2.2.1 Formal specification

In the past, specifications may have been written in natural language or informal

language. Because of that, producing formal specifications was not part of common

software engineering practice [71]. Software developers were not usually familiar

with using formal specifications languages, and training in using these languages

was both time consuming and expensive [138]. However, today the specifications

25 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

are written in formal specification languages such as temporal logic, so we are trans-

lating a non mathematical description, such as English and diagrams, into formal

specification language [140]. What is more, the formal specification, which uses

mathematical notation, is used precisely to describes the functionality, structure

and interfaces of software systems. This process does not include the programming

languages details needed to produce an implementation [132].

The reason behind this is that the system developer works at a higher level of ab-

straction than the programmer, so, they have the chance to define system function-

ality concisely without worrying about other aspects of implementation that they

have nothing to do with, such as the functional behaviour of the system, algorithms,

efficiency and memory management [138, 132].

This abstraction decreases the specification error rate and removes the confusion

that such details bring to the specification reader, and allows him to recognize the

defined functionality. This permits the verification of implementation [138, 132].

A formal specification provides a dependable point of reference for researchers who

want to study the customer’s needs, those who execute the programs in order to

ensure that the needs are met, those who evaluate the outcome of the execution,

and those who write instruction manuals for the system. Formal specification of a

system can be concluded in the early stages of program development, since it is not

dependent on the program code. This formal specification has to be modified as the

design progresses and the designers better understand the customer’s needs. But it

is a powerful tool creating a mutual understanding among all parties involved in the

system.

According to Gehani [55], formal specifications are used for several reasons which

are :

• Ambiguities, omissions and contradictions can be found in the informal for-

mulation of the problem throughout the formalisation process.

• The formal model can be proven correct with mathematical methods.

• Analysis can be made to a formally specified system to have or not to have

wanted properties.

• A formal specified system can be embedded within a larger system with more

confidence.

26 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

• The formal model (partly) leads to automated development methods and tools

like simulations.

• Formally specified systems’ designs can be easily compared with each other.

Formal specification approaches:

To write detailed formal specifications for any software systems, five basic approaches

have been used, these are:

• Algebraic approach:

This approach emerged in the mid-70s as a technique to deal with data struc-

tures in an implementation-independent manner. In this approach, we are giv-

ing an implicit definition of operations by relating the behaviour of different

operations without defining state, but no explicit representation of concur-

rency. An example of this approach is OBJ language [56] and PLUSS. In this

sense, equational logic [133], a branch of first-order logic, constitutes that part

which deals exclusively with sentences in the form of identities chosen as the

specification formalism and universal algebra and category theory provided

the underlying semantical techniques [40].

• Model-based approach:

In this approach, we build the system model using familiar mathematical con-

structs such as sets and sequences. The system operations have been defined

as modifications of the systems state [132]. Unlike algebraic specification, the

state of the system is not hidden and the state changes are straightforward

to define, but again there is no explicit representation of concurrency; this is

the approach most widely used by Z notation [35] and Vienna Development

Method (VDM) [81].

• Process Algebraic approach:

This approach is an explicit model of concurrent processes and representing

behaviour by means of constraints on allowable observable communication

between the processes (e.g. π−Calculus [92, 135] and Calculus of Communi-

cating Systems (CCS) [91]).

• Logic-based approach:

Here, we are describing properties of systems, including low-level specification

27 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

of program behaviour and specification of system timing behaviour. An ex-

ample of this approach is Temporal and Interval Temporal Logics [18, 23, 88].

• Net-based approach:

In this approach, we are giving an implicit concurrent model of the system

in terms of (causal) data flow through a network, including the representing

conditions under which data can flow from one node in the net to another. An

example of this approach is Petri nets, and predicate transition nets [135, 21].

28 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

2.3 Temporal Logic (TL)

Temporal logic has become one of the most important formalisms for specifying, ver-

ifying and reasoning about systems that interact with their environment [45]. The

formal language with its proof theory, decision algorithms and associated methods

of practical application, has found many uses in dealing with programs [65].

Temporal logic is considered to be a very suitable formal method for specifying and

verifying concurrent and reactive systems [41, 89, 128]. By ‘temporal logic’ we mean

“ a family of logics and logical techniques which can be applied to a wide range of

problems, both abstract and concrete ” [134]. Temporal logic formulas can describe

sequences of state changes and properties of behaviours, and, hence, can span a wide

range of problems in various fields with a richer notation [74].

As temporal languages are increasingly employed to cover a variety of uses, as men-

tioned above, there is growing interest to include the use of past operators to the

temporal logic languages [80, 79, 93, 90, 37, 49, 57].

In the next Section, we will give an overview of temporal logic starting from the

models of time.

2.3.1 Time in temporal logic

Time has been studied in disciplines such as physics, philosophy and computer sci-

ence. It has been one of the most paradoxical concepts of philosophy throughout

history [128, 74]. The concept of time has been studied in order to introduce a

satisfactory definition of time since there is no common understanding of time that

has been given till now. The main reason is that each definition has covered some

aspects of time whilst excluding others. The time concept has been studied in vari-

ous disciplines in order to introduce a common language for time.

In many science applications such as physics, mathematics and first order predicate

calculus, which is used to reason about expressions containing the time variable,

time has been represented as another variable. Therefore, there is apparently no

need for a special temporal logic [128, 74].

In philosophy, temporal logic has been an important subject, as some of the ancient

philosophers used some form of temporal logic to analyse the structure of time.

Plato defined it as the ‘moving image of eternity’ while Aristotle described it as

‘the number of motion with respect to earlier and later’ [139]. Philosophers found it

useful to introduce special temporal operators for the analysis of temporal connec-

29 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

tives in languages. The verbs ‘incipit’ (it begins) and ‘desinit’ (it ends) are found

in Aristotle’s Physics books 6 and 8[105]. These new operators were soon seen as

potentially valuable in analysing the structure of time [89].

Classical logic deals with timeless propositions, so logic formulas can character-

ize only static states and properties. Temporal propositions typically contain some

reference to time conditions, so temporal logic formulas can be used to describe

sequences of state changes and properties of behaviours. Therefore, temporal logic

can cover a wide range of problems in different fields and areas with richer notations

[74].

The various temporal logics can be used to reason about qualitative temporal prop-

erties:

• Safety: nothing bad happens to the system.

• Liveness: something good eventually happens to the system.

• Fairness: something good happens fairly.

Depending on the view of time (whether time is linear or branching, or whether

time is discrete or continuous) and the types of temporal semantics (interval se-

mantics, point semantics, linear semantics, branching semantics and partial order

semantics), we can classify temporal logic. In the next Section, we will discuss the

classification of temporal logic systems in details. For an appropriate definition of

any temporal logic, the following are necessary:

• Syntax: the language for describing the time or temporal systems;

• Semantics: the model of time to derive the meaning of a logic formula.

The main question we need to ask is what is the system structure of time that should

be used (model of time) [85]

2.3.2 Temporal Logic System classification:

Most temporal logic systems can be classified along a number of axes. We will list

the most popular axes that can be used to classify temporal logic systems which are:

30 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

• Propositional versus first-order;

• Linear versus branching;

• Points (instances) versus intervals;

• Discrete versus continuous; and

• Past versus future tense.

as are shown in the next Figure 2.1.

Figure 2.1: Time Models [75]

Next, the most common criteria to distinguish between temporal logic systems

is described [41, 75].

Propositional versus First order:

Propositional temporal logic is similar to the classical propositional logic. In propo-

sitional temporal logic, problems are expressed in generic language such as the set

of propositional letters, the classical propositional connectives ¬,∨ and ∧ and a set

of temporal operators [41, 75].

When creating a program from formal specifications it is crucial to use propositional

temporal logics since they have the finite model property. The created model is sim-

ilar to a finite state machine; but, the model accepts infinite strings.

First order temporal logic (FOTL) is similar to predicate logic. Different kinds of

FOTL have been suggested; however the generic language consists of predicate sym-

bols, variables, constants, Boolean connectives, quantifiers and temporal operators

[41, 75].

31 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

A difference can also arise as a result of enabling or disabling restrictions on the

interaction of quantifiers and temporal operators. Lack of restrictions or freedom

in some cases might lead to logics that cannot be decided. For instance, enabling

modal operators within the freedom of quantifiers can cause a serious problem. On

the other hand, one can have a restricted FOTL composed of propositional tempo-

ral logic together with a first order language for defining the atomic propositions by

disabling such quantification over temporal operators [41].

Computational versus Linear Time:

There are two main contrasting views that have tried to explain the structure of

time. One view is that the course of time is linear because time flows in only one

direction and the other view is that time has a branching tree like nature. According

to the theory of linear time, at any instant there is only one possible future moment

[74, 41, 128].

According to the branching theory of time, at each moment of time, time can split

into alternate courses portraying different possible futures, which mean that at any

moment, time has many futures but only one linear past[74].

So, if linear temporal logic has the linear structure of time we call it linear time

logic (LTL); however we call it branching (computational) time logic if it has the

branching time structure[74, 128]. Depending on the two views stated above, we

can classify a system of temporal logic as either a linear time logic or a system of

branching time logic.

The nature of time assumed in the semantics is normally reflected in the tem-

poral modalities of a temporal logic system. When it comes to a linear time logic,

the flow of events can be explained along a single time line in temporal modalities.

On the other hand, in branching time logic systems, modalities enable quantifica-

tion over possible futures. We can get different logics by changing the structure of

the language of the logic in both linear and branching time temporal logic systems

[74, 41].

Linear Temporal Logic (LTL):

Linear-time temporal logic, or LTL for short, is a widely accepted formalism for the

specification and verification of concurrent and reactive systems [82]. It models time

as a sequence of states, extending infinitely into the future. This sequence of states

is sometimes called a computation path, or simply a path. In general, the future is

not determined, so we consider several paths, representing different possible futures,

32 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

any one of which might be the actual path that is realized as shown in Figure 2.2

[66, 128].

Figure 2.2: LTL [47]

-Formula of LTL:

The formula in LTL is defined inductively as follows:

• > and ⊥ are formulas.

• All atomic propositions p ∈ FP are linear temporal logic formulas.

• If F is a formula, then ¬F is a formula.

• If F1, ..., Fn are formulas, where n ≥ 2, then (F1 ∧ ... ∧ Fn) and (F1 ∨ ... ∨ Fn)

are formulas.

• If F and G are formulas, then (F → G) and (F ↔ G) are formulas.

• If F is a formula, then ©F , 3F , and 2F are formulas.

• If F and G are formulas, then F U G and F R G are formulas.

The symbols ©,3,2,U ,R are called temporal operators.

Now we explain their meaning informally. The formulas of LTL are true or false

on computation paths, that is sequences of states s0, s1, .... The formula 2F means

that F is true at all states along the path.

33 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

The formula 3F means that F is true at some state on the path. The formula

©F means that F is true at the next state after the initial one, that is, at s1.The

formulas F U G and F R G will be formally defined below because they are a bit

more complex [41, 66, 128].

Any two formula F and G called equivalent (F ≡ G) if for every path σ we have

σ � F if and only if σ � G. Examples of linear time temporal logic formula:

• Liveness: Every request is followed by a grant.

2(request→ ©Grant)

• Safety: p never happens.

2¬p

• Fairness: p happens infinitely often.

(2© p)→ f

• Another natural example, we may want to express that a professor and a

student cannot be borrowers from the library at the same time:

2¬(borrower student ∧ borrower prof)

• 2 (S → 3T )

The informal meaning of this formula is:

Whenever S holds, in the future T is bound to hold [121].

Computational Temporal Logic (CTL):

Computational Temporal Logic, is a branching time logic, which means that its

structure model of time is tree like and has many branches (paths), any one of

which might be the actual computation path. In this model of time we should spec-

ify the path before any computation as shown in Figure 2.3 [66, 128].

34 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

Figure 2.3: CTL [47]

-Formula of CTL:

The formula in CTL is defined in pairs inductively as follows:

-Firstly Path part:

• A: means all paths (inevitably)

• E : means on some path (possibly)

-Formula of LTL:

The formula in CTL has the tree like (branches), if the branch is computed then in-

side the branch it has the same syntax of LTL formula, and it is defined inductively

as follows:

• > and ⊥ are formulas.

• All atomic propositions p ∈ FP are linear temporal logic formulas.

• If F is a formula, then ¬F is a formula.

• If F1, ..., Fn are formulas, where n ≥ 2, then (F1 ∧ ... ∧ Fn) and (F1 ∨ ... ∨ Fn)

are formulas.

35 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

• If F and G are formulas, then (F → G) and (F ↔ G) are formulas.

• If F is a formula, then ©F , 3F , and 2F are formulas.

• If F and G are formulas, then F U G and F R G are formulas.

The symbols ©,3,2,U ,R are called temporal operators.

Now we explain their meaning informally. The formulas of LTL are true or false

on computation paths, that is sequences of states s0, s1, .... The formula 2F means

that F is true at all states along the path.

The formula 3F means that F is true at some state on the path. The formula ©F

means that F is true at the next state after the initial one, that is, at s1. The

formulas F U G and F R G explained in LTL Section [41, 66, 48, 128].

Another example of branching time temporal logic formula:

Safety: bad thing never happens:

A2(¬bad thing)

Fairness: p happens infinitely often.

E(2© p)→ f

E3(P ∧ ¬ q)
Which means: There exists a state where p holds but q does not hold. A2(p → A3 q)

Which means: Whenever p holds, eventually q holds. A2(E3 q)

Which informally means: That at all the paths q holds after some time.

Time Instants (points) versus Intervals:

The choice between time instants and time intervals has been a centre of focus in

philosophy when using temporal logic. Temporal logics normally represent time ei-

ther as point based or intervals. Until the last decade, logic scholars were greatly

interested in point based temporal logics. Prior and Pnueli considered time as a

discrete sequence of points in their model of temporal logic and used it in system

specification and verification [74]. Modelling the refinement of a system specification

is a widely recognized problem when using a point-based temporal logic [44].

However, the interval based approach is more efficient than the point based ap-

proach since it can provide efficient representation of temporal facts. For example,

the interval notion is necessary to show continuous processes and to make temporal

statements in AI applications; because of this, temporal statements are based on

36 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

intervals [74]. In a point based temporal logic model, the formula evaluated as true

or false of points in time is as shown in Figure 2.4.

• • • • · · · •
σ0 σ1 σ2 σ3 σn

Figure 2.4: Points based

However, in interval based temporal logic the formula is evaluated over intervals

of time as shown in Figure 2.5.

| < —f1— > | < —f2— > | < —f3— > |
σ0 σj σk σl

• · · · • · · · • · · · •

Figure 2.5: Interval based

The claim is that use of intervals greatly simplifies the formulation of certain

correctness properties [41].

There are many scientists who proposed use of the interval in many areas; however

when it comes to philosophical logic, Simons and Galton suggested the need for inter-

vals with regard to conceptual structures in natural language [54, 130]. Formal tools

for reasoning in artificial intelligence have sprung up from Interval based temporal

logics. Major contributions in this area were carried out by Allen [2, 3, 4, 5]. Allen

proposed thirteen relations between intervals, called Allen’s relations. He provided

an axiomatisation and representation result of interval structures, and interval-based

theory of actions and events.

Interval based logics have been used in other areas of computer science. One of the

first applications of interval temporal logic (ITL) in computer science for design of

hardware components was developed by Moszkowski [95]. Interval Temporal Logic

is a linear temporal logic over (in)finite time. ITL has been applied in different

problems, from specification and verification of hardware devices [60, 96, 97] and

temporal logic programming [98, 37] to the specification of multimedia documents

37 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

[19] and human computer interaction [17]. Interest in ITL also comes from its natu-

ral notation and expressiveness. Operators such as chop, projection and star support

sequential composition, multiple time granularities and repetitive behaviour in sys-

tem specifications. Additionally, high-level, imperative-like operators such as loops,

conditionals and assignments can easily be defined, and so ITL naturally lends itself

to execution [57]. ITL’s features make this logic an attractive alternative to the

problems faced by conventional point-based temporal logics. It is accepted that the

specification of properties in such point-based temporal logics could be difficult for

non-temporal logic experts. Thus, successful verification of a misformulated prop-

erty may give unjustified confidence in a system design. According to Pnueli and

Vardi [112, 136], specification languages need the full power of regular expressions

which is the term used to describe a codified method of searching, defined by Stephen

Kleene in 1956 [73]. It is known that chop and chopstar bring this expressive power

to ITL [57]. Furthermore, there is an increasing industrial interest in ITL; for ex-

ample, Verisity have adopted ITL concepts in their temporal language [64] and a

temporal logic called Sugar has been introduced by IBM containing ITL (like) oper-

ators and these works targets are making the logic more usable for industrial design

engineers [11].

The nature of interval temporal logic can be viewed from two distinct perspectives,

according to philosophy. Intervals can be viewed as points, which are the only prim-

itive objects, or they are primitive objects in the logic. The majority of interval

based logics construct intervals out of points, for example [2].

The following is an example of instant (points) time temporal logic formula:

(σ, 6) � 3(p)

This formula can be defined informally as:

there exists a point where p holds.

The following is an illustration of interval time temporal logic formula:

A ; B

The above formula can be defined as:

The interval decomposed (chopped) into a prefix interval and suffix interval, such

that A holds over the prefix interval and B over the suffix interval, or A holds for

that interval if it is infinite.

38 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

The issue below is linked to the underlying structure of time.

Discrete or Continuous (Dense):

A more fundamental choice is that between Discrete or Continuous of a flow of time.

It implies that it would be composed of a sequence of instances where each non-final

point is followed by another immediate point. We can therefore say that a property

is correct in the following moment and also correct all time or at some future time.

This can be formulated in first-order logic:

∀ x, y(x < y → ∃ z(x < z ∧ z ≤ y ∧ ∀ w(x < w ∧ w ≤ y → z ≤ w)))

Temporal logics mostly used for program reasoning consider time as discrete where

the present instant matches to the program’s present state and by the finite model

property. Hence the temporal structure which matches with a series of states of a

program execution is the non negative integers as it is shown in Figure 2.6.

Figure 2.6: Discrete time [47]

Here, each of the black circles represents a classical propositional state, and the

arrows represent the accessibility relation, in our case the ‘step’ to the next moment

in time. Note that we also have one state identified as the ‘start of time’.

Dense refers to a linear ordering in which we can find another different point between

any two distinct points. This can be mathematically represented as:

∀ x, y(x < y → ∃ z(x < z < y))

The idea of the flow of time can be modelled using rational or real numbers, which

can represent the flow of dense time [137, 74, 41] as is shown in Figure 2.7.

39 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

• • • • • • • • • • ••
σ0 σn

Figure 2.7: Continuous time

Philosophers have been studying tense logics interpreted over a dense time struc-

ture. Cau [22] proposed the application of dense time temporal logics to reasoning

about concurrent programs. Dense time temporal logics can also be used in real

time programs where strict, quantitative performance requirements are placed on

programs [41].

Past versus Future:

In this Section, we are trying to answer the old question of whether temporal logic

with the past is more succinct than pure-future temporal logic. Logicians have used

temporal modal operators to explain the happening of events both in the past and

future. Also specifications which could be expressed in natural language sometimes

use references to events that happened in the past. In addition the temporal logics

studied by linguists and philosophers are where past and future time have been used

on an equal footing [116]. In temporal logic systems, for reasoning about concur-

rency, past time operators do not enhance the expressive power because program

implementations have a specific starting time and for this reason, these logic systems

usually do not have past time operators [80].

Generally, it can be said that the use of past time operators do not add any expres-

sive power to linear time temporal logic [53]. Also, any past time formulas can be

translated into equivalent pure future ones [52]. So, there is no need to use the past

operators depending on this theorem [79].

Temporal languages are increasingly employed to cover the variety of uses and there

is a growing interest in using past time operators for temporal logic languages

[80, 79, 93, 90, 37, 49, 57, 84].

40 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

Figure 2.8: Past VS Future [47]

At the moment, past time operators play an important role in compositional spec-

ification similar to that of history variables [41]. Finally, the usefulness of past-time

constructs is most apparent in the classification of temporal properties [145, 87, 26].

We adopt the view that past time operators make the specification and verification

of systems much shorter and contain less symbols, hence it is easier to express. Re-

garding succinctness and simplicity, past time operators do add expressive power

to temporal logic, but from a practical point of view not from a theoretical point

of view, as has been shown in many articles such as [79, 93, 90]. All the proposed

works in past time ITL are combining the use of past time operators with the future

time one [37, 19]. However, in this thesis, our work aims to introduce the past time

operators of ITL and use it to reason about history based access control policies

separately.

The following are examples of past time formula:

©̂ (p)

This formula can be defined informally as:

p holds in the previous state.

2̂(grant→ ©̂ request)

The informal meaning for this formula is (every given grant is previously requested).

The following is an example of future time formula:

© (p)

The formula can be defined informally as:

p holds in the next state.

2(request→ © grant)

The informal meaning for this formula is (every request will be granted in the next

state).

41 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

2.3.3 Temporal Logic Application

Generally, temporal logic is applicable in various areas and sciences such as Phi-

losophy, Computer Science, Artificial Intelligence(AI) and natural language [58]. In

philosophy, temporal logic is used as a formalism to clarify philosophical issues about

time; however, in computer Science it is used as a tool for handling the temporal

aspects of the execution of computer programs and in artificial intelligence (AI) as

a language for encoding temporal knowledge and finally, as a framework to define

the semantics of temporal expressions in natural language.

Computer Science Application:

Temporal logic has been used in many areas within Computer Science, including the

specification and verification of reactive systems. Manna and Pnueli [89] recognized

that temporal logic is well-suited for their formal specification and verification of

reactive systems. The range of reactive systems is wide. It comprises embedded sys-

tems, process control systems, and all types of interactive, concurrent or distributed

hardware and software systems.

Generally, temporal logic is applied in computer science in the following areas:

1. Formal specification:

Temporal logic formulas are used to make accurate, formal and mandatory

specification of systems and components [114, 113, 111, 77, 128, 89].

2. Formal verification:

The rules of a temporal logic proof calculus are used to verify the validity of a

temporal logic specification with regard to more abstract system specifications

[113, 128, 89].

3. Requirements description:

In the initial stages of creating a system design, a set of temporal logic formulas

are normally used to express the consequences of the requisites restricting the

functional system behaviour [111].

4. Specification checks:

In case different methods other than temporal logic are used to create the

specifications, temporal logic may also be used to specify the requisites and

plausibility states. At the moment there are several procedures that can work

42 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

with the tool-based checking of formal system specifications concerned with

temporal logic conditions [111].

Also there are uses of temporal logic for the synthesis of programs from temporal

specifications [115, 76], knowledge representation and reasoning [42, 141, 7], and

temporal databases [28, 27, 36].

2.4 Access control policies

In this Section, we will introduce history based access definition, elements, types

and categories. Also, a comparison between set of policy languages is proposed to

express history based access control policy in order to support our choice of policy

language and the computation model used.

2.4.1 Introduction

History-based policies [1] are a special class of policies where the policy decisions

depend on previously observed behaviours within the system. This has some ad-

vantages however it also has some drawbacks, in the next Section we will discuss

this special class of policies and discuss the languages which are suitable to express

these policies.

2.4.2 Access control

Access control is one of the earliest approaches used to implement security policies,

which is still largely practised at present. To give a general description of access

control, it is a process of arbitrating requests to the desired resources and data

maintained by a system and evaluating whether the access should be granted or

denied [123].

In spite of the fact that access control guarantees that every single attempt to

get access to a system or its resources should be controlled, with a set of predefined

policies [123], access control is one of the major security mechanisms used to achieve

confidentiality (information is not disclosed to non permitted persons, processes or

devices [63]), integrity(unauthorized persons, processes or devices cannot modify

information [63]) and privacy(data is protected so that it is used only by authorized

people or for business purposes, based on legal requirements, corporate policies and

43 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

end-user choices [63]) in software systems [43]. An access control system design is

considered by three stage components which are: access control policies, models,

and mechanisms [123].

Access Control Policies

Access control policies are security requirements, that describe how access is man-

aged, and who can access which information, and what shall be the conditions for

the access of this information. These policies are implemented via a mechanism that

arbitrates access requests with the system and makes grant/deny decisions [43]. Ac-

cess control policies are derived from, and must comply with, security requirements

[63].

Access Control Mechanism

Access control mechanisms provides the details of the low level functions for im-

plementation of access control policies.. The access control mechanism must also

work as a reference monitor [123], and a trusted component intercepting every single

request received by the system [63].

Access Control Model

Access control models are a formal representation of an access control system. They

provide the mechanism of how to reason about the supported policies, and provide

the proof of the security policies of the access control system. Access control models

provide a level of abstraction between policies and mechanisms, enabling the design

of implementation mechanisms to enforce multiple policies in various computing

environments [123].

Several proposed models exist to represent access control. For example, one of the

main models is the stack inspection run using Java and C#. This model represents

the policy to grant static access rights to the code, while the actual run-time rights

depend upon the static rights of the code frames in the stack. One of the other

main access control models is history-based access control. In this access control

method proposed by Abadi and Fournett, consideration is taken into account of the

entire process execution, and the actual rights of the running code depend upon the

static rights of all parts of the code executed in time. The mechanisms that are used

in order to enforce history-based policies are execution (reference) monitors which

observe computations and abort them if policy is at risk of violation [1].

44 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

2.4.3 Access Control Policies elements

An access control policy is comprised of a set of access control rules. A rule can

have various modes for example allow, deny and oblige. The work in this dissertation

focuses on rules related to allow and deny mode. An allow rule authorizes to perform

an action on an object, deny rules are used to restrict a subject to perform an action

on an object. When a request is generated by a subject, enforcement authority uses

these to assess and make decisions. A typical access rule is expressed as a 3-tuple

(subject, object, action), such as a subject can perform an action on an object [34].

An access control policy may require satisfying some supplementary requirements

before access is granted to a request. For example, in case of health care, the

location of the originated request might affect the grant or deny decision [34]. If a

particular request can only be allowed access if it is made from an emergency room,

hence location (emergency room) can be specified as a condition for the access

control rule. In requirements specification, we are concerned with the actions for

which each actor (subject) is responsible, the conditions under which each action

can occur (constraints and preconditions). Each of these access control elements

can be mapped to a requirements specification element. This mapping suggests it

is possible to derive access control policies from requirements to ensure that access

control policies comply with the requirements.

2.4.4 Access Control Policies types

Access control policies are typically categorized into two main approach types which

are dynamic and static. The dynamic approach type is where access control to

protected resources is supervised by an execution (reference) monitor. An execution

(reference) monitor is defined as a software component that is used to supervise the

execution of programs, and thereby decide whether or not authorisation to use a

resource is granted or not according to the security policy in place. In contrast in

the static approach type, we attempt to determine at a compile time if a program

obeys the security policy [9].

Stack Inspection Access Control

Stack inspection is an access control mechanism which grants authorisations based

on the contents of the runtime call stack. The Current implementations of stack

inspection uses a lazy evaluation approach; this limits the stack inspection to the

45 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

point when stack inspection tests are performed. This is done by retrieving and

inspecting call stack data. This conventional strategy appears to be quite efficient,

because the security state needs not be updated upon method invocations. However,

this strategy has a few drawbacks such as during the runtime inspection the run-

time overheads may grow to a large extent; secondly, inter procedural program

transformation may be prevented because these optimizations may change the call

stack structure [9].

History-based Access Control Policy

History-based policies [1], are an expressive class of policies that can define policy

decisions dependent on previously observed behaviours within the system. Abadi

and Fournet advocates history based access control as a suitable alternative to stack

inspection. History based access control is considered as more expressive than con-

ventional methods such as stack inspection [69]. The motivation behind this is that

history-based access control overcomes some of the known weaknesses of stack in-

spection such as imprecise records of the execution history, unclear security goals

attained, and invalidation of interprocedural optimizations. Another motivation

which makes history based access more attractive is based on some efficient tech-

niques, which illustrate some choices that can be made while re-implementing the

access control mechanism of Java and the Common Language Runtime (CLR) [20]

to deal with execution histories, rather than with call stacks. Discussion on two

high-level programming constructs, that permit changing the set of current access

rights, is also provided. First of these language constructs is called grant, which

amplifies the rights of the callee, by yielding the static access rights of the caller;

this method is similar to Java’s privileged method calls. The second language con-

struct is accept, in which a caller entrusts its callee, by restoring, when the callee

returns its set of rights before the call is made. Also, worth mentioning is that this

construct can be used for recovering of the stack inspection, while providing history

based access control [9].

2.4.5 Access Control policies categories

To ensure security and what should and what should not be allowed, various access

control policies can be applied. There are different definitions of what security means

and so many different criteria can be applied. Access control policies are grouped

by three different criteria:

46 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

Discretionary Access Control (DAC)

Discretionary Access Control (DAC)(authorisation-based) provides access depend-

ing upon the identity of the initiator of the request, and on access rules which state

which requestors are allowed or not [123]. These are Discretionary privileges as users

have the facility of passing their privileges to other users; the granting and removal

of the privileges is regulated by an administrative policy. Early discretionary ac-

cess control models, such as the access control matrix model [78, 59] and the HRU

model [62], provide a basic framework for describing DAC policies. The HRU model

has been formalised by Harrison, Ruzzo, and Ullmann for analysing the complexity

of access control policies and they identify six primitive operations that describe

changes to the state of a system [123].

A more specific assessment of the access control problem indicates the benefits of

separating users from non-users. Users are inert entities for whom authorisations

are specified with specifics of who can and cannot connect to the system. Once con-

nected to the system, users originate processes (subjects) that execute on their behalf

and, accordingly, submit requests to the system. This is different for discretionary

policies which do not provide this distinction and treat each process (submitted on

behalf of a user) based on the user’s authorisation rights. This is a drawback of the

discretionary policies as they are vulnerable to malicious programs, which can run

processes based on authorisation rights of other users, such as Trojan Horses can

bypass these authorisations as they are embedded in programs.

Trojan horse is a malicious program with apparent useful functionality but actually

has harmful functions embedded inside, which use the authorisations of the invoking

processes. Trojans could even delete all files of the users (this destructive behaviour

is not uncommon in the case of viruses) [123].

Mandatory Access Control (MAC)

Mandatory security policies enforce access control on the basis of regulations man-

dated by a central authority [123]. The most common form of mandatory policy

is the multilevel security policy, based on the classifications of subjects and objects

in the system. Objects are passive entities storing information. Subjects are active

entities that request access to the objects. Note that there is a distinction between

subjects of the mandatory policy and the authorisation subjects considered in the

discretionary policies. While authorisation subjects typically correspond to users (or

groups thereof), mandatory policies make a distinction between users and subjects.

47 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

Users are human beings who can access the system, while subjects are processes

(i.e., programs in execution) operating on behalf of users. This distinction allows the

policy to control the indirect accesses (leakages or modifications) caused by the exe-

cution of processes [123]. An example of MAC policy is the lattice-based multilevel

security policy [33], policies represented by the Bell-LaPadula model [12, 13, 122]

and the Biba model [15, 122] are MAC policies. MAC policies protect indirect in-

formation leakages (e.g., Trojan Horse attacks), but are still vulnerable to covert

channel attacks [123, 110]. Covert channels are channels that are not intended for

normal communication, but can still be exploited to infer information [123, 129].

Role-Based Access Control (RBAC)

The RBAC model is an alternative to traditional DAC and MAC models and has

received increased attention in commercial applications, such as the Oracle 9i DBMS

[119]. The concept of role-based access control (RBAC) began with multi-user and

multi-application on-line systems pioneered in the 1970s. The central notion of

RBAC is that permissions are associated with roles, and users are assigned to ap-

propriate roles. This greatly simplifies management of permissions [43, 125]. Roles

are created for the various job functions in an organisation and users are assigned

roles based on their responsibilities and qualifications. Users can be easily reassigned

from one role to another. Roles can be granted new permissions as new applications

and systems are incorporated, and permissions can be revoked from roles as needed.

A role is properly viewed as a semantic construct around which access control policy

is formulated. The particular collection of users and permissions brought together

by a role is transitory. The role is more stable because an organisation’s activities

or functions usually change less frequently [125, 123].

2.4.6 History based access control policy languages

In the next Section, we will now discuss the proposed policy language to be used for

history based access control. As the name suggests, the history-based language will

deal with the history of the execution and will not only depend upon the current

state of the system. A rule-based approach will specify the access control rights in

relation to the policy rights.

According to Becker et al. [10] a policy language is expected to be:

48 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

• Expressive::

A policy language can be judged on its ability to express informal requirements.

A good policy language will be easy to use and provides simple statements to

express specific requirements.

• Clear and Readable:

The language syntax should be humanly readable, and must be as simple as

possible making it easier to learn. Becker et al. [10] in his work reasons that

most of the logic based languages are too difficult to read and thus make it

difficult to learn; he mentioned about XML-based languages, that they are too

verbose making them programmer-unfriendly.

• Intuitive and Unambiguous Semantics:

The statements written in the policy language must have a concise meaning.

Any good policy language shall allow the user to write statements in a clear

way and with a concise meaning. Languages without formal foundation nor-

mally struggle to provide clear meaning of their statements as, for example,

natural language descriptions are mostly ambiguous making them unsuitable

for writing specifications and requirements.

• Effective Decision Procedure:

A policy language must evaluate the query efficiently and provide accurate

decisions.

• Extensibility:

Any policy language must provide ease of extensions to its existing syntax to

cater for any additional language. Also, it is important that the extension

procedures must be simple and not too difficult as to discourage extensibility.

The main technical features of what a policy language is expected to be is listed

above. Now we introduce and test the ability of policy languages to express history-

based access control policies in order to support our choice of SANTA policy lan-

guage with the proposed model to reason about history-based access control policies.

Flexible authorization manager authorization language (FAM)

According to Jajodia et al. [67], most policy languages specify two specific types of

policies:

49 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

• Open Policies: The access is allowed to anyone unless denied. An example of

this type is blacklist.

• Closed Policies: The access is denied to anyone unless explicitly allowed. An

example of this type is the E-mail.

The positive and negative authorisations rule has been proposed as well as the de-

cision rules by Jajodia et al. [67]. These decision rules are normally used to resolve

the conflicts between authorisations. Also, they introduce the rule-based Flexible

Authorization Manager (FAM) authorization language, where positive and negative

authorisations for a subject (or group) to perform an action on a specific object can

be expressed. Next, we will give an example of positive and negative authorization

rules with the informal meaning:

cando(mail, faculty,+read)

This authorisation states that faculty is a subject authorised to execute read which

is an action on the object mail.

cando(personal, faculty,−read)

This authorisation states that faculty is a subject not authorised to execute the

action read on the object personal. An authorisation is a triple of the form:

(o, s, 〈sign〉 a) where o ∈ AO, s ∈ AS, a ∈ A and “sign” is “+” or “-”.

What is more, FAM also allows expressing authorisations based on a previous ac-

cess using so-called done rules (history access). These are essentially facts that are

created by the system (FAM) during runtime and reflect the access executed by a

user. However, the final decision of granting access or denying it is resolved by a

decision rule introduced before. To explain this, assume the following rule:

do(file, s,+a)← dercando(file, s,+a)&¬dercando(file, s,−a)

This specifies that if it can be derived that s is allowed to perform action a on

file, and it cannot be derived that s is denied to perform action a on file, then

s is effectively allowed to perform a on file. In FAM, despite there being no no-

tion of time or temporal dependency between the done events, the history-based

access control requirements is nevertheless supported and can be expressed. In the

architecture of authorisation framework there is a component called history table,

and in this table each row shows a single executed access. A row is structured as

(Object, User, Role, Action, T ime).

The history is represented formally by the predicate done with a matching list of

parameters. However, it is not clear how the history table is actually updated. The

temporal relations are difficult to express at a higher level of abstraction because the

50 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

time is represented explicitly. So, it can be concluded that Flexible authorization

manager authorization language is not suitable to reason about history based access

control policies.

Temporal role-based access control

Role-based Access Control (RBAC) defines a role as a set of privileges associated

with a specific position within an organisation. Authorizations are assigned to roles

which are then assigned to users. This user is allowed to execute all accesses for

which the role is authorized. The policy management when using this mechanism is

much easier regarding the separation of assigning the roles to users and the authorisa-

tions to roles, so these assignments can be manipulated independently. The model

which addresses temporal constraints for an Role-Based Access Control (RBAC)

is then proposed [14] and known as Temporal Role-Based Access Control (TR-

BAC). In these constraints ,the users can be restricted to execute roles at certain

time periods represented by using a countable set of contiguous intervals called cal-

endars; these calendars are numbered by integers called indexes of the intervals.

Hours,Days,Weeks,Months, and Y ears, are examples of calenders. Moreover,

we can combine these calenders to represent more general periodic expressions, for

example, the set of Sundays or the set of The second hour of the ninth day of each

month.

The Role Enabling Base (REB) is a Role that contains temporal constraints on the

enabling time. This Role is enabled or disabled at run-time by means of Run-time

Request Expressions of the form p : E (prioritized event expression) after duration

expression ∆t only. A system trace is modelled as a sequence of snapshots which

correspond to the current set of events and the status of roles. Some Role Enabling

Base (REB) specifications may be ambiguous and they may lead to states where

there is no unique way of deciding which roles are enabled because of the expressive

power provided by TRBAC. Therefore, to ensure that the specifications are unam-

biguous and consistent, a notion of safeness is introduced as well as a polynomial

algorithm to test the safety of REB specifications [14].

The differences between the proposed SANTA and TRBAC is clear. Firstly, TR-

BAC is mainly concerned with the assignment of roles; however, SANTA is con-

cerned with the assignment of authorisations. Secondly, TRBAC uses explicit time

to model temporal dependencies and incorporates temporal constraints on the role

enabling only.

51 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

It can be concluded that TRBAC is not suitable to express history based access

control policies due to the following reasons:

Firstly, TRBAC is mainly concerned with the assignment of roles and not concerned

with the assignment of authorisations. Secondly, TRBAC uses explicit time to model

temporal dependencies and incorporates temporal constraints on the role enabling

only.

Usage control model

We are going to give an overview of the Usage Control Model (UCON):

The Usage Control (UCON) Model [107, 144] is a session-based model where, be-

tween the start of the session and its termination, the user is allowed to perform a

usage request which consists of a number of actions. This model supports autho-

risation (concerned with the authorisation of a subject to exercise a specific right),

obligation (concerned with actions the user must perform) and conditions (deter-

mine the access of a subject depending on the environment of the usage process).

The novelty of the approach is that it addresses mutable attributes [108] and the

continuity of the enforcement. Mutable attributes are associated with the subjects,

objects or the system and are updated as side-effects of usage processes. They can

be used for example to count the number of times a resource has been accessed.

The continuity of enforcement means that a UCON process can be revoked based

on conditions that are expressed in terms of attributes. The UCON model has been

first formalised using an extension of the temporal logic of actions (TLA) [77] by

Zhang et al. [143, 142]. Here a single usage process is described in the form of a

state diagram. System and user actions represent the transitions in the diagram.

UCON policies are then defined as logical formula that postulate temporal relation-

ships between system and user actions of a single usage process. The formalization,

however, makes a strong assumption in that only a single usage process is specified.

It is assumed that the time-line is finite, i.e., it starts with the beginning of the

single usage request and ends with the subsequent usage request. This makes it

difficult to reason about the interactions of several concurrent usage requests, or

even sequences of usage requests, thus complicating the formal analysis of policies.

The (side)effects of a usage process are captured in mutable attributes which are

assumed to be persistent over usage processes and can influence subsequent usage

control decisions.

52 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

A UCON usage process is characterized by the triplet (s, o, r), where s is the subject

that exercises its right r on the object o. The usage process can be in one of the

following states: initial, requesting, denied, accessing, revoked or end. The current

state is described by Zhang et al. as a function state mapping from the triplet

(s, o, r) to one of these states. A single usage process is defined by the state diagram

in Fig. 2.9.

Figure 2.9: Usage control from [142]

53 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

In the initial state the subject s performs the action tryaccess(s, o, r) initiating

the usage process. The enforcement mechanism, for example a reference monitor

(RM), either denies the access (denyaccess(s, o, r)) or proceeds by executing ac-

tions to update those attributes, which must be updated before the usage process

commences. After the RM has updated the relevant attributes (preupdate(s, o, r)),

it permits the access (permitaccess(s, o, r)) and continues to perform all required up-

date actions that must be performed during the ongoing usage process (onupdate(s, o, r)).

Alternatively the RM may revoke the access if any of the constraints of the UCON

model are violated. The subject may end the usage process using the endaccess(s, o, r)

action. In both cases, the post update actions (postupdate(s, o, r)) are performed

to change any mutable attributes that require modification. UCON policies define

the enforcement of protection requirements at a relatively low level of abstraction.

Janicke et al. [70] have presented an alternative formalisation of the UCON model

[107]. They have used Interval Temporal Logic (ITL) for the formalisation which

they said it is a more natural logic to express this model than the extended Tempo-

ral Logic of Actions (TLA) [142].

In UCON, the time line is assumed to be finite, for instance, it starts with the

beginning of the single usage request and ends with the subsequent usage request.

So, the interactions of several concurrent usage requests or even sequences of usage

requests are difficult to reason about, which makes the formal analysis of policies

very complicated. Also, the (side)effects of a usage process are captured in mutable

attributes which are assumed to be persistent over usage processes, and can influence

subsequent usage control decisions.

Finally, the UCON policies define the enforcement of protection requirements at a

relatively low level of abstraction. Because of the above, it can be concluded that

UCON is not suitable to express history based access control policies.

SANTA

Security Analysis Toolkit for Agents (SANTA) is a technology to address the arising

complexity and its implication on the security of the system [126]. A security policy

conveys the safety requirements of the system in an exact and clear way. SANTA

provides policies, which are linked to obligations, access control and integrity of a

system, and relate the entities with framing of constrains on their interaction. Access

control requirements in this model are authorisation requirements, viz. constraints

54 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

on the actions that a subject can perform on objects, or delegation requirements,

namely which subject can delegate which right to another subject. Obligation re-

quirements express that subjects must perform specific actions. Integrity require-

ments define constraints on the effect that the execution of an action has on subjects

and objects. The aim of policies is to express these requirements at a high level of

abstraction, hiding the details of the implementation that is necessary for their en-

forcement. In SANTA, policy rules are used as the basis for policy specifications.

Rule-based languages are well established and well suited because most of these

requirements are already informally expressed in the form of conditions and conse-

quences. Each rule is expressed in terms of subjects, objects and actions. Subjects

are the actors in the system. They can request access to objects that represent the

available resources. The term action is used to denote the mode of access [68, 129].

Policy specification expresses the casual protection requirements for the policy lan-

guage. One of the major tasks of SANTA policy specification is the development

of policy rules that precisely elicit the informal requirements. When dealing with

complex requirements the accurate capturing of requirements is not a trivial task.

For example it is not simple to specify the state of the system or dependencies on

the history of the execution. The SANTA policy language provides support for both

state and history based dependencies [68].

The advantage of policies specified using SANTA over the majority of other policy

languages is that policies can be specified in smaller units, and also these policies

are defined using a rich set of SANTA operators. The provided operators allow the

policies to be composed along a temporal and structural axis.

Temporal Composition

Siewe [68, 129] first introduced the temporal composition of policies. Temporal com-

position leads to policies that change dynamically over time or on the occurrence

of events and it allows independent specifications of policies for a particular situa-

tion. The composition operators are then used to define the conditions of the policy

change [68, 129].

Structural Composition

Large-scale systems spanning a large number of organizations, are controlled by the

use of policies.. In this case, the composition along the structural axis can effec-

tively elicit the requirements for each unit of the organisation for, e.g., organisation,

department, project-group, etc as an individual policy. The policies for the smaller

units are then used to compose the overall policy of the larger system. However,

there are issues with this compositional approach as conflicts can easily arise in poli-

55 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

cies due to either common resource sharing or a particular individual placed under

more than one policy. In addition, the resolution of these conflicts is difficult because

of the dynamics of the system. A specific policy can only be applied to a subset

of subject, objects and actions and this forms the basis of structural composition.

These sets are referred to as the scope of the policy [68].

Policies in SANTA

Policies in SANTA are an integral part of the system specification. A policy rule

is the smallest part of the policy specification, where each rule captures a discrete

requirement, such as, “allow member to register”.

The Authorisation rules demonstrate the access control requirements. Three differ-

ent rules are related with authorization such as positive and negative authorization

and finally the decision rule.

Authorisation Rules We use a rule-based approach and specify sets of access con-

trol rights in terms of policy Authorisation rules and their compositions. A simple

access control policy consists of three types of Authorisation rules:

1. Positive authorisation rules are statements that indicate under which condition

an access request should be granted. It is important to note that it is only

an indication, which is taken into account for the final access decision of the

policy.

2. Negative authorisation rules are statements that indicate under which condi-

tion an access request should be denied. Similar to positive authorisations,

they are only an indication, which are taken into account for the final access

decision of the policy.

3. Decision Rules and Conflict Resolution specify the final access control decision

of a policy. Any policy should contain at least one decision rule, as otherwise no

access will be granted by the policy. The alternative term “conflict resolution

rule” originates from the fact that this rule de-conflicts the policy if a positive

and negative authorisation is derived for a specific access. The term decision

rule describes more accurately the fact that any access control decision defined

by the policy is decided by one or more of these rules, not only decisions in

the conflicting case [68, 69].

These simple access control rules are combined to form larger units called simple

policies; where simple policies are implemented concurrently. The simple policies

56 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

are used to define for example the protection requirement applied during a certain

phase or situation of the system execution. In the following, we provide the syntax

of SANTA policy language.

Subjects

su ::= Si | cs
Objects

ob ::= Oi | co
Actions

ac ::= Ai | ca(e1, ..., en)

Premise of rule

pr ::= pr1 chop pr2 | pr1 and pr2 | pr1or pr2 |
always pr | sometime pr | not pr | next pr |
if be then pr1 else pr2 | exists x in se : pr |
forall x in se : pr | last(e) : pr | e : pr | be
Rules

ru ::= [rn ::] allow(su, ob, ac)when pr |
[rn ::] deny(su, ob, ac)when pr |
[rn ::] decide(su, ob, ac)when pr

Policies

po ::= (ru1...run)|po2 policy pn :: po end|
po2 chop po1|if be then po1 else po2|
aslongas be : po

Figure 2.10: Syntax of SANTA [69]

Figure 2.10 summarizes the syntax of our policy language where e is an expres-

sion, be a Boolean expression, and se a Set expression with their usual operators

and semantics. Si is a subject variable, where i is a arbitrary name, similarly Oi is

an object variable, Ai is an action variable and pn is a name for a policy; rn is a

name for a rule (optional). Let Subjects, Objects and Actions be, respectively, the

universal set of subjects, objects and actions. These can be used as part of SANTA

expressions. Let cs ∈ Subjects be a subject, co ∈ Object be an object and ca(v) ∈
Actions be an action with interface v.

It can be concluded that SANTA has the advantage over the majority of other pol-

icy Languages; that is the policies can be specified in smaller units, and also these

policies are defined using a rich set of SANTA operators. So SANTA policy lan-

57 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

guage is appropriate to express history based access control policies. We will show

in Chapter 5, that we will give new semantics to SANTA operators using past time

operators of ITL. These operators with the new semantics will be used to reason

about history based access control policies in the Scenario Chapter.

In the next Section, we will describe the computational model used with SANTA

policy language, its components and how these components interact together; this

model has been introduced by Cau et al. [24].

Computational model

In a policy based management approach [8, 131], the specification and enforcement

of these constraints are loosely coupled from the system.

In Figure 2.11, we proposed the computational model used with SANTA policy

language, in this model, the behaviour of the Policy Decision Point (PDP) is de-

termined by the policy, so the specification and verification of policy is crucial for

the administration of the system. Policy-based management can be implemented by

many real-world implementations that use the Policy Decision Point (PDP)/Policy

Enforcement Point (PEP) architecture. The computational model used (which de-

scribes the system entities, their behaviour and interactions) represents a suitable

abstraction for these real world implementations. The external observation of sys-

tem behaviour is sufficient for specification, verification and analysis purposes of

dynamic security policies. Therefore, the implementation details of the domain-

dependent interactions between users and system is not used.

In our system, we have three different entities: subjects, objects and reference mon-

itors. The subject can be defined as any entity that performs actions on objects and

it could be a human user, a group or role or a program acting on behalf of a user.

The object is any passive entity that represents a shared data structure in the in-

formation system. The main function of reference monitors is to control the subject

access to objects and whether the subject can perform an action on an object or

not. The security policy specifies the concrete conditions under which a reference

monitor permits or denies an execution request. The security policy represents an

abstract specification of constraints that govern the relation between the subjects

and objects in the system. However, the reference monitor behaviour is refines the

abstract specification constructively in such a way that the overall system satisfies

the policy. If the reference monitor implementation is correct, the properties of the

policy are preserved by the system.

58 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

In Figure 2.11, in the reference monitor part a description of the reference moni-

tor behaviour and other system components and how they interact with each other

is given as a Statechart [61]. Statecharts constitute an extensive generalization

of state-transition diagrams. They allow for multilevel states decomposed in an

And/Or fashion, and thus support economical specification of concurrency and en-

capsulation. Concurrency is represented by a dashed line that separates components

of a parallel system. The labels on the transitions in Statecharts are of the form

Trigger[Condition]/Action, where Trigger determines if and when a transition will

be taken and Action is performed when a transition is taken and the Condition is

true. An action includes the generation of events [24, 69].

Figure 2.11: Computational model [24]

59 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

User model

The process (represented by subject s) in the user model acts on behalf of a user

and can be in one of three states:

1. idle,

2. wait or

3. access.

The initial state of user process s is assumed to be in its idle state. When the event

Req(s, o, a) is raised, this mean that the process s requests the execution of action a

on the system object o and transitions to the state wait(s, o, a). The waiting state

remains until it is either denied and the event Deny(s, o, a) is raised or the request

is executed and the event Exec(s, o, a) is raised before transitioning to the state

access(s, o, a) (see user process in Figure 2.11) [24, 69].

Reference monitor model

The behaviour of the reference monitor is represented as:

Initially, the reference monitor (RM) process is in its idle state. During a user

request Req(s, o, a), the RM move to the state process(s, o, a) and the policy spec-

ifies its behaviour. The event Permit(s, o, a) is raised if the policy grants access

(Aut(s, o, a)istrue), however the event Deny(s, o, a) is raised if it denies the access

(Aut(s, o, a)isfalse) and then the RM returns to its idle state consequently ( see

Figure 2.11) [24].

System model

The access to the objects is facilitated by the system process, depicted in Figure 2.11.

We assume that the system is initially in the state idle(s, o, a). In the event that

the controller permits the execution, it will transition to the state execute(s, o, a)

and raise the event Exec(s, o, a) that synchronizes the state access(s,o,a) of the user

process and the state execute(s, o, a) of the system. The concrete behaviour of the

user process and the system in these states are not explicitly defined; however, we

will assume for the analysis of information flow that every pairing of these states

60 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

can be characterized into the categories read, write and read + write. The com-

putational model represents a simplification of real information systems, where not

only subjects can concurrently make requests, but also the reference monitors and

the system facilitating access to the shared objects are distributed and can exhibit

concurrent behaviour [24, 69]

Policy rules

History based access control models express a policy in terms of authorization and

denial and decision rules. This use of rules makes the specification clearer and easier

to understand. A rule typically expresses a single security requirement and forms

the basic building block of a policy.

Rules consist of a premise and a consequence. The premise describes a set of system

behaviour, which lead to the consequence that represents an assertion on the current

system state, such as allowing or denying a particular access. The consequence of

a rule defines the decision taken by the reference monitor. The set of system be-

haviour in the premise is matched against the history of the system execution. Rules

therefore can refer to sequences of previously observed states in the system execu-

tion, allowing for the expression of history-based policies and dynamic separation of

duty constraints. The key idea is to associate a transaction control expression with

each information object. This expression constrains the transactions which can be

applied to that object to occur in the specified pattern. As operations are actually

executed the transaction control expression gets converted to a history. This his-

tory serves to enforce separation of duties [124]. Events that can be referred to in

the premise of rules are those defined in the computational model (Figure 2.11) or

external events that are observable by the RM process.

Authorization defines the access to resources in the system. With respect to the

computational model they define whether the execution of an action is permissible.

An authorization rule defines the condition under which a subject is allowed to per-

form an action on an object. In the following we will describe the syntactic elements

of the language informally [69].

61 Sami Alsarhani



CHAPTER 2. LITERATURE REVIEW

2.5 Chapter summary

This Chapter has been divided in to four main sections:

• In the specification Section, the definition of software specification is given and

enumerates the purposes of software specification. The formal specification

definition and approaches have been described, and why informal specifications

have been used in the past. Finally, the advantages and disadvantages of

formal specifications have been listed.

• Next, an overview of temporal logic is given and the axes along which temporal

logic systems can be classified. Temporal logic classification axes have been

discussed in detail here, and the application of temporal logic in general and

specifically for computer science applications.

• In the last Section of this Chapter, access control policies, mechanism and

models have been explained, and what are the elements and types of access

control policies have been described in detail.

An explanation of stack inspection and history-based access control policy

has been given in this Section. The categories of access control policies are

listed here; Discretionary Access Control (DAC), Mandatory Access Control

(MAC), Role-Based Access Control (RBAC). The description also includes

the advantages and disadvantages of each model. Finally, history based ac-

cess control policy languages (Flexible authorization manager authorization

language (FAM), Temporal role-based access control (TRBAC),Usage control

model (UCON) and Security Analysis Toolkit for Agents (SANTA)) have been

introduced and discussed with their models.

This Chapter contributes basic information about our research such as speci-

fication, temporal logic and history based access control policies. This infor-

mation constructs the basis of our research and gives a good background to

the knowledge needed in the following chapters.

62 Sami Alsarhani



Chapter 3

PAST TIME INTERVAL

TEMPORAL LOGIC

• Interval temporal logic, syntax and semantics.

• Past time interval temporal logic, syntax and se-

mantics.

• Axioms and Rules for ITLp

63



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

3.1 Introduction

In this Chapter, an overview of interval Temporal Logic (ITL), its syntax and seman-

tics as well as the derived constructs are given. In addition, the main contribution

of this thesis which is the past time operators of ITL (ITLp) is proposed, with the

syntax and the semantics of these operators as well as the derived formula and con-

structs. Since the introduced ITLp uses the past time operators only, new axioms

and rules need to be introduced. Therefore, the axioms and rules for Propositional

ITLp have been introduced and listed in this Chapter, while the soundness proofs

of these axioms and rules have been given in Appendix A.

3.2 Interval Temporal Logic (ITL)

Interval Temporal Logic (ITL) is a flexible notation for both propositional and first-

order reasoning about periods of time found in descriptions of hardware and software

systems. Unlike most temporal logics, ITL can handle both sequential and parallel

composition and offers powerful and extensible specification and proof techniques

for reasoning about properties involving safety, liveness and projected time [99].

Timing constraints are expressible and furthermore most imperative programming

constructs can be viewed as formulas in a slightly modified version of ITL [25].

Interval Temporal Logic (ITL) is

• discrete

• linear temporal logic

• for (in)finite time which includes

• a basic construct for sequential composition and

• an analog of Kleene star.

3.2.1 Syntax of ITL

The key notion of ITL is an interval. An interval σ is considered to be a (in)finite

sequence of states σ0, σ1 . . ., where a state σi is a mapping from the set of variables

Var to the set of values Val. The length |σ| of an interval σ0 . . . σn is equal to n

which is one less than the number of states in the interval (this has always been a

64 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

convention in ITL), i.e., a one state interval has length 0.

- Future intervals:

The semantics of future interval is as shown in Figure 3.1:

• • · · ·· · · •
σ0 σ1 σ|σ|

Figure 3.1: Future interval

The syntax of ITL is defined in Table 3.1 where

z is an integer value,

a is a static integer variable (does not change within an interval),

A is a state integer variable (can change within an interval),

v a static or state integer variable,

g is a integer function symbol,

q is a static Boolean variable (does not change within an interval),

Q is a state Boolean variable (can change within an interval),

p is a predicate symbol.

Expressions e ::= z | a | A | g(e1, . . . , en)| ©A | fin A

Formula f ::= true| q | Q | p(e1, . . . , en)| ¬f | f1 ∧ f2| ∀v.f | skip| f1 ; f2| f∗

Table 3.1: Syntax of ITL

Expressions

The syntax is explained with some examples below:

Expressions are built inductively as follows:

• Constants (z):

We denote Constants by letters of the form z for examples: z0, z1 to denote

values like 0,4,9 and so on.

65 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

• Individual variables:

- By convention, capital letters are used to denote state variables which are

variables whose values can change within an interval for example A,B,C, ....

- Small letters to denote static variables which are variables whose values does

not change within an interval for example a, b, c, ....

- Letters of the form v are used to denote a variable which can either be a

static or a state variable.

• Functions :

-g(e0, e1, e2, .., ek) where k ≥ 0 and e0, e1, e2, ..., ek are expressions.

-+ and mod are among common functions used.

-Constants (such as 0,1 etc.) are treated as zero place functions.

- Next: © e, where e is an expression.

- Fin: fin e, where e is an expression.

Examples include: A+B, a− b, A+ a, v mod C and so on.

Some examples of syntactically legal expressions are given below:

I + (© J + 2)

This expression adds the value of I in the current state, the value of J in the next

state and the constant 2.

I + (© J)− (© I)

This expression adds the value of I in the current state to the value of J in the next

state and subtracts the value of I in the next state from the result [98, 23].

Formula

Formulas are built inductively as follows:

• Predicates p(e0, e1, e2, .., ek) where k ≥ 0 and e0, e1, e2, ..., ek are expressions. Pred-

icates include ≤ and other basic relations.

• Equality: e1 = e2; where e1 and e2 are expressions.

• Logical connectives:¬f and f1 ∧ f2, where f , f1 and f2 are formulas.

• Universal Quantifier : ∀v.f where f is formula.

• Skip: skip is true on an interval σ iff σ has length 1 (unit interval).

66 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

• Chop: f1 ; f2, where f1 and f2 are a formulas.

• Chopstar: f ∗, where f is a formula.

Some examples of syntactically legal formulas are given below:

-(J = 2) ∧ (K = 4)

This formula states that the value of J is 2 in the current state and the value of K

is 4 in the current state.

-(I = 2) ∧ (© J = I + 2)

This formula states that the formula is true if I equal to 2 in the current and the

value of J in the next state would be I+2.

Note that the operator © can be used both for expressions (e.g.,© I ) and for for-

mulas, e.g., ©(I = 5) [98, 23].

3.2.2 Semantics

The informal semantics of the most interesting constructs are as follows:

• ©A: if interval is non-empty then the value of A in the next state of that

interval else an arbitrary value.

• fin A: if interval is finite then the value of A in the final state of that interval

else an arbitrary value.

• ¬f : f does not holds for that interval.

• f1 ∧ f2: f1 holds for that interval and f2 holds for that interval.

• skip unit interval (length 1).

• f1 ; f2 holds if the interval can be decomposed (“chopped”) into a prefix and

suffix interval, such that f1 holds over the prefix and f2 over the suffix, or if

the interval is infinite and f1 holds for that interval.

• f ∗ holds if the interval is decomposable into a finite number of intervals such

that for each of them f holds, or the interval is infinite and can be decomposed

into an infinite number of finite intervals for which f holds.

To define the formal semantics, we introduce the following notations:

• Σ denotes the set of sequences of states.

67 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

• Σω denotes the set of infinite sequences of states.

• Σ+ denotes the set of non-empty finite sequences of states.

• σi→j for 0 ≤ i ≤ j ≤ |σ| denotes a subinterval σiσi+1 · · ·σj.

Let EσJ. . .K be the “meaning” (semantic) function from (Σ+ ∪Σω)× Expressions

to Val and letMσ[[. . .]] be the “meaning” function from (Σ+∪Σω)× Formula to Bool

(set of Boolean values, {tt,ff}) and let σ = σ0σ1 . . . be an interval from (Σ+ ∪ Σω).

We write σ ∼v σ′ if the intervals σ and σ′ are identical with the possible exception

of their mappings for the variable v.

The formal semantics of ITL, except the chop and chopstar operators, is listed in

Table 3.2.

EσJzK = z

EσJaK = σ0(a) and for all 0 < i ≤ |σ|, σi(a) = σ0(a)

EσJAK = σ0(A)

EσJg(e1, . . . , en)K = g(EσJe1K, . . . , EσJenK)

EσJ©AK =

{
σ1(A) if |σ| > 0

undefined otherwise

EσJfin AK =

{
σ|σ|(A) if σ is finite

choose-any-from(V al) otherwise

Mσ[[true]] = tt

Mσ[[q]] = σ0(q) and for all 0 < i ≤ |σ|, σi(q) = σ0(q)

Mσ[[Q]] = σ0(Q)

Mσ[[p(e1, . . . , en)]] = tt iff p(EσJe1K, . . . , EσJenK)
Mσ[[¬f ]] = tt iff not (Mσ[[f ]] = tt)

Mσ[[f1 ∧ f2]] = tt iff (Mσ[[f1]] = tt) and (Mσ[[f2]] = tt)

Mσ[[skip]] = tt iff |σ| = 1

Mσ[[∀v q f ]] = tt iff (for all σ′ s.t. σ ∼v σ′,Mσ[[f ]] = tt)

Table 3.2: Semantics of ITL

- Chop (;):

The semantics of chop (;) is as follows:

Mσ[[f1 ; f2]] = tt iff

68 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

exists k, such that 0 ≤ k ≤ |σ|, and

Mσ0→σk [[f1]] = tt and Mσk→σ|σ| [[f2]] = tt.

Future interval σ is a fusion of two future intervals, the first interval σ0. . .σk satisfies

f1 and the second interval σk. . .σ|σ| satisfies f2

| < —f1— > | < —f2— > |
σ0 σk σ|σ|

• • •

Figure 3.2: Chop of finite interval

or the interval is infinite and

Mσ[[f1]] = tt

Future interval σ is infinite and satisfies f , so f2 is irrelevant.

| < —f1— >

σ0

• · · · · · ·

Figure 3.3: Chop of infinite interval

- Chopstar (f ∗):

The semantics of chopstar (f ∗) is as follows:

Mσ[[f ∗]] = tt iff

if σ is finite then exists l0,....ln, such that l0 = 0 ∧ ln = |σ|
∧ for all 0 ≤ i <n, li≤ li+1 ∧ Mσli→σli+1

[[f ]] . . . = tt.

Finite future interval σ is the fusion of a finite number of finite intervals in the future

each satisfying f.

| < —f— > | · · · | < —f— > | · · · | < —f— > |
σl0 σl1 σli σli+1

σln−1 σln

• • · · · • • · · · • •

Figure 3.4: Chopstar of finite interval

69 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

Else exists l0,....ln, such that l0 = 0 ∧ Mσln→σ|σ|
[[f ]] = tt

∧ for all 0 ≤ i <n, li≤ li+1 ∧ Mσli→σli+1
[[f ]] . . . = tt.

Infinite future interval σ is the fusion of a finite number of sub-intervals in the future

each satisfying f.

Each future sub-interval is finite except the last one which is infinite.

| < —f— > | · · · | < —f— > | < —f— >

σl0 σl1 σln−1 σln

• • · · · • • •

Figure 3.5: Chopstar of finite interval final infinite

or there exists an infinite number of li such that l0 = 0 ∧ for all 0 ≤ i ,li≤ li+1

and Mσli→σli+1
[[f ]] = tt.

| < —f— > | < · · · · · · > | < —f— > | < · · · · · · >
σl0 σl1 σli σli+1

• · · · • · · · • · · · • · · ·

Figure 3.6: Chopstar of infinite interval

Infinite future interval σ is the fusion of an infinite number of finite sub intervals

in the future each one satisfying f.

- True (true):

Mσ[[true]] = tt.

- Skip (skip):

Mσ[[skip]] = tt iff |σ| = 1.

Skip (skip), is an interval with only two states.

70 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

- Next (©f):

© f =̂ skip ; f

Mσ[[© f ]] = tt iff |σ| >0 ∧ Mσ1→σ|σ| [[f ]] . . . = tt.

Next (©f) holds in the next state of the future interval:

| | < —f— >

σ0 σ1

• •

Figure 3.7: Next

- Weak Next (©w f):

©w f =̂ ¬©¬f

Mσ[[©w f ]] = tt iff |σ| = 0 ∨ Mσ1→σ|σ| [[f ]] . . . = tt.

Weak Next (©w f), holds if the future interval has only one state:

σ0

•

Figure 3.8: Weak Next with one state interval

or f holds in the next state of the future interval:

| | < —f— >

σ0 σ1

• •

Figure 3.9: Weak Next with more than one state interval

71 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

- Sometimes (3f):

3f =̂ finite ; f

Mσ[[3f ]] = tt iff exists k where 0 ≤ k ≤ |σ|, such that Mσk→σ|σ| [[f ]] = tt.

Sometime (3f), holds if there exists a suffix interval in the future satisfying f.

¬f ¬f f

σ0 σ1 · · · σk · · · σ|σ|

• • · · · • · · · •

Figure 3.10: Sometimes

- Always (2f):

2f =̂ ¬3¬f

Mσ[[2f ]] = tt iff for all 0 ≤ k ≤ |σ|, such that Mσk→σ|σ| [[f ]] = tt.

Always (2f), holds if all the suffix intervals in the future are satisfying f.

f f f f

σ0 σ1 · · · σk · · · σ|σ|

• • · · · • · · · •

Figure 3.11: Always

- More (more):

more =̂ © true

Mσ[[moref ]] = tt iff |σ| >0.

More (more) holds if there is a future interval with at least two states.

- Empty (empty):

empty =̂ ¬more

72 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

Mσ[[empty]] = tt iff |σ| = 0.

Empty (empty) holds if there is a future interval with only one state.

- Infinite (inf):

inf =̂ true ; false

Mσ[[inf]] = tt iff σ is infinite.

inf holds if there is a future interval with an infinite number of states.

- Finite(finite):

finite =̂ ¬inf

Mσ[[finite]] = tt iff σ is finite.

finite holds if there is a future interval with a finite number of states.

- Diamond-i (3i f):

3i f =̂ f ; true

Mσ[[3i f ]] = tt iff

exists k, such that 0 ≤ k ≤ |σ|, and Mσ0→σk [[f ]] = tt.

Diamond-i (3i f) holds if there exists a prefix interval in the future that satisfies f.

- Box-i (2i f):

2i f =̂ ¬(3i ¬f)

Mσ[[3i f ]] = tt iff

for all k, that 0 ≤ k ≤ |σ|, and Mσ0→σk [[f ]] = tt.

Box-i (2i f) holds if all the prefix intervals in the future are satisfying f.

- Diamond-a (3a f):

3a f =̂ finite ; f ; true

Mσ[[3a f ]] = tt iff

exists l, k, such that 0 ≤ l ≤ k ≤ |σ|, and Mσl→σk [[f ]] = tt.

Diamond-a (3a f) holds if there exists a sub interval in the future that satisfies f.

73 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

- Box-a (2a f):

2a f =̂ ¬(3a ¬f)

Mσ[[3a f ]] = tt iff

for all l, k, that 0 ≤ l ≤ k ≤ |σ|, and Mσl→σk [[f ]] = tt.

Box-a (2a f) holds if all the sub intervals in the future are satisfying f.

3.2.3 Derived formula

Now, we are using the basic operators such as ; and skip and true to derive and

define a new formula, in order to help us in formulating and constructing a logical

argument or proof.

The common derived formula listed in Table 3.3 is as follow:

false =̂ ¬true false value

© f =̂ skip ; f next

©w f =̂ ¬©¬f weak next

more =̂ © true interval with ≥ 2 states

empty =̂ ¬more one state interval

inf =̂ true ; false infinite interval

finite =̂ ¬inf finite interval

3f =̂ finite ; f sometimes in the future

2f =̂ ¬3¬f always in the future

3i f =̂ f ; true some initial future subinterval

2i f =̂ ¬(3i ¬f) all initial future subintervals

3a f =̂ finite ; f ; true some subinterval

2a f =̂ ¬(3a ¬f) all subintervals

Table 3.3: Derived formula

74 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

Frequently used concrete derived constructs

In this part, the concrete derived constructs are introduced in Table 3.4 as follow:

if f0 then f1 else f2 =̂ (f0 ∧ f1) ∨ (¬f0 ∧ f2) if then else

if f0 then f1 =̂ if f0 then f1 else true if then

fin f =̂ 2(empty ⊃ f) final state

halt f =̂ 2(empty ≡ f) terminate interval when

keep f =̂ 2a (skip ⊃ f) all unit subintervals

while f0 do f1 =̂ (f0 ∧ f1)∗ ∧ fin ¬f0 while loop

repeat f0 until f1 =̂ f0 ; (while ¬f1 do f0) repeat loop

Table 3.4: Frequently used concrete derived constructs

Frequently used derived constructs related to expressions

In this part, the derived constructs related to expressions are introduced in Table

3.5 as follow:

A := exp =̂ ©A = exp assignment

A ≈ exp =̂ 2(A = exp) equal in interval

A← exp =̂ finite ∧ (fin A) = exp temporal assignment

A gets exp =̂ keep (A← exp) gets

stable A =̂ A gets A stability

len(exp) =̂ ∃I q (I = 0) ∧ (I gets I + 1) ∧ (I ← exp) interval length

Table 3.5: Frequently used derived constructs related to expressions

75 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

3.3 Past Time Interval Temporal Logic

Past Time Interval Temporal Logic (ITLp) is a flexible notation that uses past time

operators only. Past Time Interval Temporal Logic is the main contribution of this

thesis, therefore what are the differences between past time interval temporal logic

and future time interval temporal logic. Next, we will answer this question and

discuss the main differences between ITLp and ITL.

3.3.1 ITLp versus ITL

There are many differences between ITLp and ITL, the first one is that ITLp

uses the past constructs only while, ITL uses future time constructs. The second

difference is that past time operators are interpreted over a finite interval because

the history interval is assumed to be finite. However, ITL can be interpreted over

finite and infinite interval. A part of the contribution introduced in this thesis is

that the introduced past time operators change the “numbering of states”; that is

the current state of the past interval is the most rights of this interval τ0 and the

remaining states are τ|τ |....., τ2, τ1 as has been shown in the Figure 3.12:

• · · ·· · · • •
τ|τ | τ1 τ0

Figure 3.12: States in past interval

However, the “numbering of states” of the future interval is from left to right so,

the current state is σ0 and the remaining states are σ1, σ2, .....σ|σ| or graphically as

has been shown in the Figure 3.13:

• • · · ·· · · •
σ0 σ1 σ|σ|

Figure 3.13: States in future interval

This reflects on the interpretation of ITLp formula being from right to left which

opposes the interpretation of ITL formula which is from left to right.

76 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

Finally, if the interval has expanded, there is a new state added σ4 to the interval

then, in the future interval, only the final state is changed, so, states σ0, σ1, σ2 and

σ3 do not change as shown in Figure 3.14.

Figure 3.14: Future changed states

However if the past interval has expanded and a new state τ0 is added, all the

states in this interval will be changed, state τ0 in the top of the Figure is changed to

τ1 in the bottom of the Figure and so on, state τ1 is changed to τ2 in the expanded

interval, so the interval states τ0, τ1, τ2 and τ3 are changed to τ1, τ2, τ3 and τ4

respectively as shown in Figure 3.15.

Figure 3.15: Past changed states

Past time interval temporal logic ITLp is:

77 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

• discrete

• linear temporal logic

• for history finite time which includes

• a basic construct for sequential composition and

• an analog of Kleene star

3.3.2 Syntax of ITLp

The key notion of ITLp is a history interval. A history interval τ is considered to

be a finite sequence of states, τ0, τ1, . . . τn where a state τi is a mapping from the

set of variables V ar to the set of values V al. The length |τ | of an interval τ0 . . . τn

is equal to n (one less than the number of states in the history interval, i.e., a one

state history interval has length 0).

The semantics of historical interval is shown in in Figure 3.16:

• · · · • •
τ|τ | τ1 τ0

Figure 3.16: Historical interval

The syntax of ITLp is defined in Table 3.3 where:

z is an integer value,

a is a static integer variable (does not change within an interval),

A is a state integer variable (can change within an interval),

v a static or state integer variable,

g is a integer function symbol,

q is a static Boolean variable (does not change within an interval),

Q is a state Boolean variable (can change within an interval),

p is a predicate symbol.

Expressions e ::= z | a | A | g(e1, . . . , en)| ©̂A | fîn A

Formula f ::= t̂rue| q | Q | p(e1, . . . , en)| ¬h| h1 ∧ h2| ∀v.h| ŝkip| h2 ;̂ h1| h∗̂

Table 3.6: Syntax of ITLp

78 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

3.3.3 Semantics of ITLp

The informal semantics of the most interesting constructs are as follows:

• ©̂ A: if the history interval is non-empty then the value of A in the previous

state of that history interval has an arbitrary value.

• fîn A : The value of A in the final state of that history interval.

• ŝkip : is a history interval (sequence) of 2 states.

• h1 ;̂h2: is called ‘h1 past chop h2’ and denotes sequential composition of two his-

tory intervals, i.e., h1 ;̂h2 holds if the interval can be decomposed (“chopped”)

into a prefix and suffix interval, such that h1 holds over the prefix and h2 holds

over the suffix.

• h∗̂: is called ‘h past chopstar’ and denotes finite iteration of a history interval,

i.e., h∗̂ holds if the interval is decomposable into a finite number of intervals

such that for each of them h holds.

In order to define the formal semantics, the following notions are introduced:

• ∆ denotes the set of states.

• ∆+ denotes the set of history non-empty finite sequences of states.

• τ is a history interval, τ ∈ ∆+.

• |τ | denotes length of τ and is defined as number of states minus 1.

• τj←i for 0 ≤ i ≤ j ≤ |τ | denotes a history subinterval τj · · · τi+1τi.

Let EτJ. . .K be the “meaning” (semantic) function from V al to (Expressions×
∆+) and let Mτ [[. . .]] be the “meaning” function from Formula×∆+ to Bool (set

of Boolean values, {tt,ff}) and let τ = τ|τ | . . . τ0 be a history interval.

79 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

We write τ ∼v τ
′

if the intervals are identical with the possible exception of their

mappings for the variable.

The formal semantics of ITLp, except the past chop and past chopstar, are listed in

Table 3.7.

Eτ JzK = z

Eτ JaK = τ0(a) and for all 0 < i ≤ |τ |, τi(a) = τ0(a)

Eτ JAK = τ0(A)

Eτ Jg(e1, . . . , en)K = g(Eτ Je1K, . . . , Eτ JenK)

Eτ J©̂AK =

{
τ1(A) if |τ | > 0

undefined otherwise

Eτ Jfîn AK = τ|τ |(A)

Mτ [[t̂rue]] = tt

Mτ [[q]] = τ0(q) and for all 0 < i ≤ |τ |, τi(q) = τ0(q)

Mτ [[Q]] = τ0(Q)

Mτ [[p(e1, . . . , en)]] = tt iff p(Eτ Je1K, . . . , Eτ JenK)
Mτ [[¬h]] = tt iff not (Mτ [[h]] = tt)

Mτ [[h1 ∧ h2]] = tt iff (Mτ [[h1]] = tt) and (Mτ [[h2]] = tt)

Mτ [[ŝkip]] = tt iff |τ | = 1

Mτ [[∀v q h]] = tt iff (for all τ ′ s.t. τ ∼v τ ′,Mτ [[h]] = tt)

Table 3.7: Semantics of ITLp

-Past Chop (̂;)

The semantics of past Chop (̂;) is as follows:

Mτ [[h2 ;̂ h1]] = tt iff

exists k where0 ≤ k ≤ |τ |, s.t. Mτ|τ |←τk
[[h2]] = tt and Mτk←τ0

[[h1]] = tt.

History interval τ is finite, then interval τ is a fusion of two past intervals, the

first interval τ0 . . . τksatisfies h1 and the second interval τk. . . τ|τ | satisfies h2.

State τk is shared by both.

80 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

| < —h2— > | < —h1— > |
• · · · • · · · •
τ|τ | τk τ0

Figure 3.17: Semantics of past Chop

- Past Chopstar(h ∗̂)

The semantics of past Chopstar(h ∗̂) is as follows:

Mτ [[h
∗̂]] = tt iff

τ is finite then exists l0,....ln, such that l0 = 0 ∧ ln = |τ |
∧ for all 0 ≤ i <n, li≤ li+1 ∧ Mτli→τli+1

[[h]] . . . = tt.

Finite past interval τ is the fusion of a finite number of finite past intervals each

satisfying h.

| < —h— > | · · · | < —h— > | · · · | < —h— > |
τln τln−1 τli+1

τli τl1 τl0

• • · · · • • · · · • •

Figure 3.18: Semantics of past Chopstar

- Past Skip (ŝkip):

Mτ [[ŝkip]] = tt iff |τ | = 1.

Past Skip (ŝkip) is a past interval with only two states.

- Previous (©̂ h):

©̂h =̂ h ;̂ ŝkip

Mτ [[©̂h]] = tt iff 0 <|τ | ∧ Mτ|τ |←τ1 [[h]] . . . = tt.

Previous (©̂h) holds if the previous state of the past interval holds:

81 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

< —h— > | |
τ1 τ0

• •

Figure 3.19: Previous

- Weak Previous (©̂w h):

©̂wh =̂ ¬ ©̂¬h

Mτ [[©̂wh]] = tt iff |τ | = 0.

Weak Previous (©̂wh) holds if the past interval has only one state.

h

•

Figure 3.20: Weak Previous with one state interval

∨ Mτ|τ |←τ1 [[h]] . . . = tt.

or h holds in the previous state of the past interval:

< —h— > | |
τ1 τ0

• •

Figure 3.21: Weak Previous with more than one state interval

- Past Sometimes (3̂ h):

3̂h =̂ h ;̂ fînite

Mτ [[3̂h]] = tt iff exists k where 0 ≤ k ≤ |τ |, such that Mτ|τ |←τk [[h]] = tt.

Past Sometime (3̂ h) holds if there exists a suffix interval in the past which is sat-

isfying h.

82 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

< —h— > | |
τ1 τ0

• •

Figure 3.22: Past Sometime

- Past Always (2̂h):

2̂h =̂ ¬3̂¬h

Mτ [[2̂h]] = tt iff for all 0 ≤ k ≤ |τ |, such that Mτ|τ |←τk [[h]] = tt.

Past Always (2̂f) holds if all the suffix intervals in the past are satisfying h.

| < · · ·h· · · | · · ·h· · · | < —h— > |
τ|τ | · · · τk · · · τ1 τ0

• · · · • · · · • •

Figure 3.23: Past Always

- Past More (m̂ore):

m̂ore =̂ ©̂ true

Mτ [[m̂ore]] = tt iff |τ | >0.

Past More (m̂ore) holds if there is a past interval with at least two states.

- Past Empty (êmpty):

êmpty =̂ ¬m̂ore

Mτ [[êmpty]] = tt iff |τ | = 0.

Past Empty (êmpty) holds if there is a past interval with only one state.

- Past Diamond-i (3̂i h):

3̂i h =̂ true ;̂ h

83 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

Mτ [[3̂i h]] = tt iff

exists k, such that 0 ≤ k ≤ |τ |, and Mτk←τ0 [[h]] = tt.

Past Diamond-i (3̂i h) holds if there exists a prefix interval in the past that satisfies

h.

- Past Box-i (2̂i h):

2̂i h =̂ ¬(3̂i ¬h)

Mτ [[2̂i h]] = tt iff

for all k, that 0 ≤ k ≤ |τ |, and Mτk←τ0 [[h]] = tt.

Past Box-i (2̂i h) holds if all the prefix intervals in the past are satisfying h.

- Past Diamond-a (3̂a h):

3̂a h =̂ true ;̂ h ;̂ true

Mσ[[3̂a h]] = tt iff

(exists l, k, such that 0 ≤ l ≤ k ≤ |τ |, and Mτk←τl [[h]] = tt).

Past Diamond-a (3̂a h, holds if there exists a sub interval in the past that satisfies h.

- Past Box-a (2̂a h):

2̂a h =̂ ¬(3̂a ¬h)

Mτ [[2̂a h]] = tt iff

(for all l, k, that 0 ≤ l ≤ k ≤ |τ |, and Mτk←τl [[h]] = tt).

Past Box-a (2̂a h) holds if all the sub intervals in the past are satisfying h.

2̂a h =̂ ¬(3̂a ¬h)

84 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

- Past halt ĥalt h:

This operator can be used, in the form ĥalt h, to specify that a formula h becomes

true only at the end of the past interval.

ĥalt h =̂ 2̂(êmpty ≡ h)

- Past Fin (fîn h):

fîn h =̂ 2̂(êmpty ⊃ h)

The value of h in the final state of that history interval.

85 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

3.3.4 Derived formula

A list of ITL derived formula has been shown in Table 3.3. However, in this Section,

the derived formula for ITLp will be introduced and listed in Table 3.8.

©̂h =̂ h ;̂ ŝkip previous

©̂wh =̂ ¬ ©̂¬h weak previous

m̂ore =̂ ©̂ true history interval with ≥ 2 states

êmpty =̂ ¬m̂ore one state history interval

3̂h =̂ h ;̂ true all history unit subintervals

2̂h =̂ ¬3̂¬h always in the history

3̂i h =̂ true ;̂ h some initial history subinterval

2̂i h =̂ ¬(3̂i ¬h) all initial history subintervals

3̂a h =̂ true ;̂ h ;̂ true some history subinterval

2̂a h =̂ ¬(3̂a ¬h) all history subintervals

Table 3.8: Derived formula for ITLp

The frequently used concrete derived constructs

The frequently used concrete derived constructs is shown in Table 3.9:

if w0 then h1 else h2 =̂ (w0 ∧ h1) ∨ (¬w0 ∧ h2) if then else

if w0 then h1 =̂ if w0 then h1 else t̂rue if then

fîn h =̂ 2̂(êmpty ⊃ h) final state

ĥalth =̂ 2̂(êmpty ≡ h) terminate interval when

k̂eeph =̂ 2̂a (ŝkip ⊃ h) all unit subintervals

ŵhilew0d̂oh1 =̂ fîn ¬w0 ∧ (w0 ∧ h1)∗̂ while loop

r̂epeath0 until h1 =̂ (ŵhile¬h1 do h0) ;̂ h0 repeat loop

Table 3.9: Frequently used concrete derived constructs

Frequently used derived constructs related to expressions

The frequently used concrete derived constructs related to expressions is shown in

Table 3.10:

86 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

A =: exp =̂ ©̂A = exp past assignment

A≈̂ exp =̂ 2̂(A = exp) equal in history interval

A←̂ exp =̂ fîn A = exp history temporal assignment

Aĝets exp =̂ k̂eep (A←̂ exp) past gets

ŝtableA =̂ A ĝets A stability

l̂en(exp) =̂ ∃I q (I = 0) ∧ (I ĝetsI + 1) ∧ (I←̂exp) interval length

Table 3.10: Frequently used derived constructs related to expressions

87 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

3.4 Relation between past and future time using

time reversal

We have shown in Section 3.3.1 the differences between the future time interval

temporal logic (ITL) and the past time interval temporal logic (ITLp); however,

we need to know the relation between these two versions of interval temporal logic.

To answer this question, we should introduce the time reversal which was used by

Moszkowski to verify certain properties expressed in PITL [102].

Time reversal is related to mirror images [116] used for temporal logics to obtain

a rule for past-time operators from an analogous one for future-time operators by

means of time symmetry [24]. To explain this, let formula f r denotes the time re-

versed version of f . Let the time reversed interval of a finite interval σ be denoted

by reverse(σ) and be defined as:

reverse(σ0 · · ·σ|σ|) =̂ σ|σ| · · ·σ0

The semantics of time reversal is defined as

Jf rKσ = tt iff JfKreverse(σ) = tt

In addition, the time reversal can be used if the semantics of interval temporal Logic

is defined over finite intervals only like the past time interval temporal logic. So, it

can be said that:

τ = reverse(σ)

Therefore, we have three versions of temporal logic which are future time, past time

and time reversal. To clarify the relation between these three versions of ITL lets

have the future formula:

f1 ; f2

The semantics of this formula for finite time is as follows:

Mσ[[f1 ; f2]] = tt iff

exists k, such that 0 ≤ k ≤ |σ|, and

Mσ0→σk [[f1]] = tt and Mσk→σ|σ| [[f2]] = tt.

Which is if the future interval σ is a fusion of two future intervals, the first interval

88 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

σ0 . . . σk satisfies f1 and the second interval σk . . . σ|σ| satisfies f2

| < —f1— > | < —f2— > |
σ0 σk σ|σ|

• • •

Figure 3.24: Chop future formula

However, if the time reversal is used for the same formula we have:

(f1 ; f2)
r = (f2)

r ; (f1)
r

The semantics of this formula is as follows:

Mσ[[(f1 ; f2)
r]] =Mσ[[(f2)

r ; (f1)
r]] = tt iff

exists k, such that 0 ≤ k ≤ |σ|, and

Mσk←0[[f1]] = tt and Mσ|σ|←k[[f2]] = tt.

Which is if the interval σ is a fusion of two intervals, the first interval σ0 . . . σk

satisfies f2 and the second interval σk . . . σ|σ| satisfies f1

| < —f2— > | < —f1— > |
σ|σ| σk σ0

• • •

Figure 3.25: Chop with reversal time

When the past time operators are used for the same formula we have:

f2 ;̂ f1

The semantics of past Chop (̂;) is as follows:

Mτ [[f2 ;̂ f1]] = tt iff

exists k where0 ≤ k ≤ |τ |, s.t. Mτ|τ |←τk
[[f2]] = tt and Mτk←τ0

[[f1]] = tt.

89 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

History interval τ is finite, then interval τ is a fusion of two past intervals, the

first interval τ0 . . . τksatisfies f1 and the second interval τk. . . τ|τ | satisfies f2.

State τk is shared by both.

| < —f2— > | < —f1— > |
• · · · • · · · •
τ|τ | τk τ0

Figure 3.26: Past Chop formula

If we compare Figure 3.25 for the time reversal with Figure 3.26 for the past

time formula we can see the two formula are the same.

It can thus be said that the time reversal of interval temporal logic ITLr can be

used to transform the future time interval temporal logic ITL to past time interval

temporal logic ITLp

ITL
USING→ ITLr

PRODUCE→ ITLp

and at the same time, the time reversal ITLr can be used to transform past time

interval temporal logic ITLp to the future time interval temporal logic ITL

ITLp
USING→ ITLr

PRODUCE→ ITL

It can be concluded that the time reversal plays an important role in transforming

the past time formula to future time formula and vice versa. The importance of

this relation between the past time operators and the future time is that the ITLp

has the same expressive power of ITL depending on the fact that any future time

formula ITL can be transformed to past time formula ITLp using the time reversal.

Next, in table 3.11, we will list future time operators of interval temporal logic with

the time reversal and the produced past time operators of interval temporal logic.

90 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

Future time+ time reversal Past time

(f1 ; f2)
r = (f2)

r ; (f1)
r f2 ;̂ f1

(f ∗)r = (f r)∗ f ∗̂

(skip)r ŝkip

(© f)r ©̂ f

(©w f)r ©̂w f

(3f)r 3̂f

(2f)r 2̂ f

(3i f)r 3̂i f

(2i f)r 2̂i f

(3a f)r 3̂a f

(2a f)r 2̂a f

Table 3.11: Future and past operators relation list

3.5 Axioms and Rules in Logic

Several temporal languages have been proposed for the specification and verification

of concurrent systems in the last three decades, such as Linear Temporal Logic [88],

Computation Tree Logic [30], Interval Temporal Logic [99, 100], Temporal Logic

of Actions [77], and many others. In practice, there are two popular verification

approaches, the first is model checking and the second is theorem proving.

Model checking is an automatic verification approach based on model theory for con-

current systems that are finite state or have finite state abstractions. This approach

was developed independently in the early 1980’s by Clarke and Emerson [29] and by

Queille and Sifakis [118] and it has been applied successfully to computer hardware

and many aspects of software verification. The advantage of model checking is that

the verification can be done automatically. However, it suffers from the well-known

problem called state explosion [38]. As the number of state variables in the system

increases, the size of the system state space grows exponentially. For example, con-

sider a system composed of n processes, each having m states. The asynchronous

composition of these processes may have mn states. In model checking we refer to

this problem as the state explosion problem [31].

With the theorem proving approach [16], we assume we have the system S and the

property P; to verify whether or not a system S satisfies a property P is to prove

whether or not S ⊃ P is a theorem within the proof system. The advantage is that

91 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

theorem proving avoids the state explosion problem and can verify both finite and

infinite systems, and can be done semi-automatically; therefore, it is also suitable

for data intensive applications. However, within the verification process, lots of as-

sertions need to be inserted in the context of the program modelling the system.

So, the use of theorem prover requires considerable expertise to guide and assist the

verification process and one of the famous theorem provers is PVS [106].

There are many axiom and proof systems for different temporal logic languages,

each of these axiom systems providing a set of basic theorems together with infer-

ence rules for generating new theorems.

Theorems describe the universal truths of a formal language, and are typically de-

fined as formula prefixed by the “`” symbol [48], for example:

` true thing

Logical axioms (or axiomatisation) are certain formulas in a formal language that are

universally valid; these formulas provide rules for generating new universal truths

[48], and can be used to prove that a given temporal formula is valid over a given

program or in another meaning, used for proving properties of programs [72].

The expressive power (the greater variety and quantity of ideas that can be repre-

sented by) of ITL is stronger than these logics (Linear Temporal Logic, Computation

Tree Logic, Temporal Logic of Actions) because ITL uses chop (;) and chop-star (∗),

so it is a useful and powerful formalism for specification and verification of reactive

systems [38].

Within the interval based TL community, several researchers have investigated ax-

iom systems with different extensions [39]. Moszkowski [99] presented axiom systems

over finite intervals for PITL and first order ITL. The propositional part was claimed

to be complete but only an outline of a proof was given. Later he extended this

for chop and chop-star with infinite time [100]. Recently, he presented [103] a com-

plete axiom system for Propositional Interval Temporal Logic with infinite time and

proven completeness by a reduction to his earlier complete Propositional Interval

Temporal Logic axiom system for finite time [101] and conventional propositional

linear-time temporal logic (PTL). ITLp which contains temporal operators ;̂ and ∗̂ is

proposed in Chapter 3, therefore in this Section, the axioms and proof rules suitable

for ITLp are proposed and have been proven sound.

92 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

3.5.1 Propositional Axioms and Rules for ITL

In Table 3.12 we list the propositional axioms and rules for ITL.

ChopAssoc ` (f0; f1); f2 ≡ f0; (f1; f2)

OrChopImp ` (f0 ∨ f1); f2 ⊃ (f0; f2) ∨ (f1; f2)

ChopOrImp ` f0; (f1 ∨ f2) ⊃ (f0; f1) ∨ (f0; f2)

EmptyChop ` empty; f1 ≡ f1

ChopEmpty ` f1; empty ≡ f1

BiBoxChopImpChop ` 2i (f0 ⊃ f1) ∧ 2(f2 ⊃ f3) ⊃ (f0; f2) ⊃ (f1; f3)

StateImpBi ` w ⊃ 2i w

NextImpNotNextNot ` © f0 ⊃ ¬©¬f0
KeepnowImpNotKeepnowNot ` keepnow (f0) ⊃ ¬ keepnow (¬f0)
BoxInduct ` f0 ∧ 2(f0 ⊃ ©w f0) ⊃ 2f0
InfChop ` (f0 ∧ inf) ; f1 ≡ (f0 ∧ inf)

ChopStarEqv ` f ∗0 ≡ (empty ∨ ((f0 ∧ more) ; f ∗0 ))

ChopstarInduct ` (inf ∧ f0 ∧ 2(f0 ⊃ (f1 ∧ fmore) ; f0)) ⊃ f ∗1

MP ` f0 ⊃ f1, ` f0 ⇒ ` f1

BoxGen ` f0 ⇒ ` 2f0
BiGen ` f0 ⇒ ` 2i f0

Table 3.12: Axioms and Rules for Propositional ITL

93 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

3.5.2 Propositional Axioms and Rules for ITLp

In Table 3.13 we list the propositional axioms and rules valid for ITLp.

PastChopAssoc ` (h0 ;̂ h1) ;̂ h2 ≡ h0 ;̂ (h1 ;̂ h2)

PastOrChopImp ` h2 ;̂ (h1 ∨ h0) ⊃ (h2 ;̂ h1) ∨ (h2 ;̂ h0)

PastChopOrImp ` (h2 ∨ h1) ;̂ h0 ⊃ (h1 ;̂ h0) ∨ (h2 ;̂ h0)

PastEmptyChop ` h ;̂ êmpty ≡ h

PastChopEmpty ` êmpty ;̂ h ≡ h

PastBiBoxChopImpChop ` 2̂i (h0 ⊃ h1) ∧ 2̂(h2 ⊃ h3) ⊃ (h2 ;̂ h0) ⊃ (h3 ;̂ h1)

PastStateImpBi ` w ⊃ 2̂i w

PastNextImpNotNextNot ` ©̂h ⊃ ¬ ©̂¬h
BoxInduct ` h0 ∧ 2̂(h0 ⊃ ©̂wh0) ⊃ 2̂h0

PastChopStarEqv ` h∗̂0 ≡ ((h∗̂0 ;̂ (h0 ∧ m̂ore)) ∨ êmpty)

MP ` h0 ⊃ h1, ` h0 ⇒ ` h1

PastBoxGen ` h0 ⊃ ` 2̂h0

PastBiGen ` h0 ⊃ ` 2̂i h0

PastChopEmptyAnd ` h ∧ w0 ≡ h ;̂ (êmpty ∧ w0)

Table 3.13: Axioms and Rules for Propositional ITLp.

Where w is a state formula, the propositional axioms and rules of ITLp are as-

sumed to be complete according to Moszkowski introducing the complete axioms

system of ITL [104], and we used the axioms and rules with finite time to generate

the axioms and rules for ITLp and proof it for past time, thus, it can be said that

we have a complete axioms and rules of ITLp.

The soundness proof of axioms and rules of ITLp is given and listed in Appendix

A.

3.6 Chapter Summary

This Chapter mainly discusses:

ITL, its syntax and semantics and provides a discussion on past time ITL. Section

wise detail of topics covered in this Chapter is:

94 Sami Alsarhani



CHAPTER 3. PAST TIME INTERVAL TEMPORAL LOGIC

• The start of this Chapter introduces ITL (Interval temporal language) and its

formal definitions.

• The next Section covers the syntax and semantics of Interval temporal logic,

these have been explained with the help of examples.

• Past time interval logic, its semantics and syntax, is explained with the help

of related examples; a detailed discussion on the past time operators is also

presented.

• The last Section of this Chapter introduces an overview of axioms in logic. The

axioms and rules for both propositional ITL and its past time counterpart i.e.

Propositional ITLp are listed, and these axioms and rules are proved sound.

This Chapter introduces past time ITLp, its syntax and semantics, which is the

main contribution of this thesis. Past time operators of ITLp will be used in the

next Chapter to give SANTA operators history based semantics.

95 Sami Alsarhani



Chapter 4

ITLp TO REASON ABOUT

HISTORY-BASED ACCESS

CONTROL POLICIES

In this Chapter:

• Choice of temporal logic

• Formal semantics of SANTA

• History based access control policies using ITLp

• Formal semantics of SANTA

• Verification rules

96



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

4.1 Introduction

In this Chapter, a set of temporal languages has been investigated to express history

based policies. To represent policy rules formally, the semantic model for the always-

followed-by operator will be given in order to investigate the suitability of these

languages to reason about history based policies. SANTA policy language has been

introduced in Chapter 2, however, in this Chapter, we will redefine SANTA operators

and use it to introduce the semantics of individual rules and the semantics of policies

as well as the semantics of compound policies. Also, we will list refinement rules

used to refine compound policies but we will not use it. What is more, a description

of the verification rules used to verify properties is given and we will show how

the compositional specification of policies can be exploited using proof-rules that

simplify the verification tasks by splitting the proof of a property for a complete

specification of rules to proofs of individual weak rules. The refinement rules into

enforcer are introduced, these rules can be used to construct an enforcer E for the

compound policies.

4.2 Choice of temporal logic

In this next Section, we will investigate a chosen set of temporal languages to ex-

press history based access control policies. A formal semantic model for the always-

followed-by operator (used to represent policy rules) will be used for this investi-

gation.

4.2.1 Formal semantics of policy rules

The semantic model needs to model sequences of “snapshots” of a system. These

sequences represent the behaviour of the system. We model these snapshots via a

state mapping. A state is a mapping from the set of propositional variables V ar to

the set of values {tt, ff}.
An interval (behaviour) is a finite sequence of one or more states σ0σ1σ2 . . . σ|σ| where

|σ| denotes the length of an interval σ and is equal to the number of states minus 1.

Let Σ denote the set of all possible intervals. Let σ = σ0σ1 . . . σ|σ| be an interval.

Then σ0 . . . σk (where 0 ≤ k ≤ |σ|) denotes a prefix interval of σ, σk . . . σ|σ| (where

0 ≤ k ≤ |σ|) denotes a suffix interval of σ and σk . . . σl (where 0 ≤ k ≤ l ≤ |σ|)
denotes a subinterval of σ.

97 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

Let [[...]] be the “meaning” function from policy rule language ×Σ to {tt, ff}. The

formal semantics of the always-followed-by operator Pre 7→ W , where Pre is a

formula denoting the history and W is an access control variable.

The semantics [[Pre 7→ W ]]σ of the always-followed-by operator is as follows:

for all k, (where 0 ≤ k ≤ |σ| and [[Pre]]σ0...σk= tt) implies[[W ]]σk = tt.

Notice that the implication in the semantics of an individual rule means that W

can be true in a state even if Pre does not hold in the prefix of that interval.

However, for verification purposes, we need to know the value of W in any state of

the interval. This is exactly what the strong always-followed-by operator does,

it explicitly specifies the conditions under which the access decision is false [32,

61]. This operator will be used in the verification of properties on policy rules and

is defined as:

Pre↔ W =̂ Pre 7→ W ∧ ¬Pre 7→ ¬W.
If Pre holds in the prefix interval, then W must hold in the last state of that prefix

interval, otherwise W must not hold in that state.

We will discuss the suitability of Propositional Interval Temporal Logic (PITL) [97],

Propositional Linear Temporal Logic (PLTL) [88] and the proposed ITLp to show

that ITLp is the right choice to express history-based access control policies.

4.2.2 Propositional interval temporal logic

Propositional Interval Temporal Logic (PITL) [97] is a temporal logic with a basic

construct for the sequential composition of two formula as well as an analogue of

Kleene star. Within PITL one can express both finite-state automata and regular

expressions. The syntax of PITL is as follow:

Note that the operator © can be used both for expressions (e.g.,© J ) and for

Formula f ::= true| q | Q | p(e1, . . . , en)| ¬f | f1 ∧ f2| ∀v.f | skip| f1 ; f2| f∗

formulas, e.g., ©(I = 3) [98].

Semantics

The informal semantics of the most interesting constructs are as follows:

• ¬f : f does not holds for that interval.

• f1 ∧ f2: f1 holds for that interval and f2 holds for that interval.

• skip unit interval (length 1).

98 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

• f1 ; f2 holds if the interval can be decomposed (“chopped”) into a prefix and

suffix interval, such that f1 holds over the prefix and f2 over the suffix, or if

the interval is infinite and f1 holds for that interval.

• f ∗ holds if the interval is decomposable into a finite number of intervals such

that for each of them f holds, or the interval is infinite and can be decomposed

into an infinite number of finite intervals for which f holds.

The formal semantics of PITL is as follows:

Let [[...]] be the “meaning” function from PITL formula ×Σ to {tt, ff}.

• [[p]]σ = tt iff σ0(p)=tt.

• [[¬f ]]σ = tt iff not [[f ]]σ=tt.

• [[f1 ∨ f2]]σ = tt iff [[f1]]σ=tt or [[f2]]σ=tt.

• [[skip]]σ = tt iff |σ|=1.

• [[f1 ; f2]]σ = tt iff (exists k s.t. ([[f1]]σ0...σk= tt and [[f2]]σk...σ|σ| = tt)).

• [[f ∗]]σ = tt iff (exists l0 . . . ln s.t. l0 = 0 and ln = |σ| and for all 0 ≤ < n,

li < li+i and [[f ]]σli ...σli+1
= tt).

Now, we need to introduce the following operators in order to help us in expressing

the policy rule:

• more =̂ skip ; true which is an interval with two or more states.

• empty =̂ ¬more which is an interval with one state only.

• 3i f =̂ f ; true a prefix interval for which f holds.

• 2i f =̂ ¬(3i ¬ f )

Now, always-followed-by and strong-always-followed operator are introduced as fol-

lows:

always-followed-by (Pre 7→ W )

Pre 7→ W =̂ 2i (¬(Pre ; ((¬W ) ∧ empty)))

strong-always-followed-by (Pre ↔ W )

99 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

Pre ↔ W =̂ 2i (¬(Pre ; ((¬W ) ∧ empty))) ∧ 2i (¬(¬ Pre ; (W ∧ empty)))

As we see above when introducing always followed by and strong always followed

by operators, PITL is suffering from non-elementary complexity. The development

of efficient PITL-based verification tools is very difficult due to this problem. So, it

can be said that PITL is not a good choice to reason about history based policies.

4.2.3 Propositional linear temporal logic (PLTL)

In the next part, we will investigate whether PLTL [88] is suitable to express history-

based access control rules.

The syntax of PLTL formula f is introduced follows:

Formula f ::= true|p|f1 ∨ f2|¬f |© f |2f |f1 U f2

Until operator has the semantics:

-[[f1 U f2]]σ = tt iff there exists k : 0 ≤ k ≤ |σ|, [[f2]]σk...σ|σ|= tt and for all j : 0 ≤
j < k, [[f1]]σj ...σ|σ| =tt.

Therefore the semantics of ¬(f1Uf2) is:

[[¬(f1 U ¬f2)]]σ = tt iff there exists a k : 0 ≤ k ≤ |σ|, [[f2]]σk...σ|σ|= tt or not for all

j : 0 ≤ j < k, [[f1]]σj ...σ|σ| =tt.

which is almost the always-followed-by operator, i.e., if the formulas f1 and f2

are restricted to be state formula then ¬(f1 U ¬f2) corresponds to (2f1) 7→ f2.

It is clear from above that the premise in Propositional linear temporal logic can only

be an always type of property. Hence, the sequential composition of, for example,

two phases cannot be expressed in the normal way. Therefore, the sequential access

and cardinality on history policy rules are hard to express [24].

4.2.4 Interval Temporal Logic (ITL)

In Chapter 3, Interval temporal logic operators were introduced and now we will use

these operators to define SANTA operators always-followed-by and strong-always-

followed-by, and use these operators to express history based policies.

Always-followed-by (7→):

The operator always-followed-by denoted by the symbol( 7→) is defined as follows:

f 7→ w =̂ 2i (f ⊃ fin (w))

100 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

where f stands for any ITL formula, and w is a state formula. The intuition of the

operator(f 7→ w) is that whenever the formula f holds for a prefix interval then

the state formula must w holds in the final state of that interval, that is, f is always

followed by w as shown in Figure 4.1:

f 7→ w =̂ 2i (f ⊃ fin (w))

iff for all k such that(0 ≤ k ≤ |σ| ∧Mσ
k→|σ|

[[f ]] = tt) ⊃ Mσ|σ| [[fin (w)]] = tt

•
σ|σ|
w

f

•
σ4
w

f ••
σ3

••
σ2
w

f
••

σ1
••

σ0
w

f

Figure 4.1: Always-followed-by

This operator always-followed-by (7→) will be used in the scenario Chapter to

express security policy rules of general practice system (GPS).

Strong-always-followed-by (↔):

The operator strong always-followed-by, denoted by the symbol (f ↔ w) is defined

as follows:

f ↔ w =̂ 2i (f ≡ fin (w))

where f stands for any ITL formula, and w is a state formula.

iff for all k such that(0 ≤ k ≤ |σ| ∧Mσ
k→|σ|

[[h]] = tt) iff Mσ|σ| [[fin (w)]] = tt

The intuition of the operator strong always-followed-by (f ↔ w) determines in

any state the value of the state formula w. If f holds in the prefix of the reference

interval, then w must hold in that state otherwise w must not hold in that state as

shown in Figure 4.2, where each bullet represents a state.

101 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

•
σ|σ|
w

f

•
σ4
w

f ••
σ3
w

f
••

σ2
¬w

¬f
••

σ1
w

f
••

σ0
w

f

Figure 4.2: Strong-always-followed-by

This operator will be used in the Scenario Chapter to express security policy

rules of general practice system (GPS).

As we show above, the two operators always-followed-by (Figure 4.1) and strong-

always-followed-by (Figure 4.2) have been defined from the future time operators of

ITL. In the following sections and in the GPS scenario, we will use these operators

to reason about history based access control policies and compare it with the existing

work.

Syntax of SANTA with future time

In the following, we provide the syntax of access control policies.

102 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

Subjects

su ::= Si | cs
Objects

ob ::= Oi | co
Actions

ac ::= Ai | ca(e1, ..., en)

Premise of rule

pr ::= pr1 chop pr2 | pr1 and pr2 | pr1or pr2 |
always pr | sometime pr | not pr | next pr |
if be then pr1 else pr2 | exists x in se : pr |
forall x in se : pr | last(e) : pr | e : pr | be
Rules

ru ::= [rn ::] allow(su, ob, ac)when pr |
[rn ::] deny(su, ob, ac)when pr |
[rn ::] decide(su, ob, ac)when pr

Policies

po ::= (ru1...run)|po2 policy pn :: po end|
po2 chop po1|if be then po1 else po2|
aslongas be : po

Figure 4.3: Syntax of SANTA policy language

Figure 4.3 above summarizes the syntax of our policy language where e is an ex-

pression, be a Boolean expression, and se a Set expression with their usual operators

and semantics. Si is a subject variable, where i is a arbitrary name, similarly Oi is

an object variable, Ai is an action variable and pn is a name for a policy; rn is a

name for a rule (optional). Let Subjects, Objects and Actions be, respectively, the

universal set of subjects, objects and actions. These can be used as part of SANTA

expressions. Let cs ∈ Subjects be a subject, co ∈ Object be an object and ca(v) ∈
Actions be an action with interface v [69].

The syntax of policy rule will be explained informally in the next Section.

Policy rules

A rule typically expresses a single security requirement and forms the basic building

block of a policy. Rules consist of a premise and a consequence. The premise

103 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

describes a set of system behaviours, which lead to the consequence that represents

an assertion on the current system state, such as allowing or denying a particular

access. The consequence of a rule defines the decision taken by the reference monitor.

The set of system behaviours in the premise is matched against the history of the

system execution. Rules therefore can refer to sequences of previously observed

states in the system execution, allowing for the expression of history-based policies

[1] and dynamic separation of duty constraints [124]. Events that can be referred to

in the premise of rules are those defined in the computational model represented in

the Literature Review Chapter in Figure 2.11 or external events that are observable

by the RM process. Authorization defines the access to resources in the system.

With respect to the computational model they define whether the execution of an

action is permissible. An authorization rule defines the condition under which a

subject is allowed to perform an action on an object [69].

Now, we will explain the formal semantics of SANTA.

Formal semantics of SANTA with future time

As SANTA is using a compositional approach to the specification of policies, its un-

derlying formalism should therefore also express specifications of system behaviour

compositionally.

In the following we will provides the formal semantics for SANTA.

Semantics of rules:

Policy rules define the behaviour of the access control variables. The consequence of

a rule determines the type of the rule and the subjects, objects and actions the rule

applies to. The operator always-followed-by is used to capture the relation between

the premise of a rule and its consequence.

Let us first define the semantics of a premise. The syntax that is used in the premise

is actually a subset of ITL formula.

The semantics of a rule premise is then as follows:

Jpr1 chop pr2K =̂ Jpr1K ; Jpr2K
Jpr1 and pr2K =̂ Jpr1K ∧ Jpr2K
Jpr1 or pr2K =̂ Jpr1K ∨ Jpr2K
Jnot prK =̂ ¬J prK
Jsometime prK =̂ 3J prK
Jalways prK =̂ 2J prK
Jnext prK =̂ skip ; J prK

104 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

Jif be then pr1 else pr2K =̂ ((be ∧ Jpr1K) ∨ (¬be ∧ Jpr2K))
Jexists x in se : prK =̂ ∃x.x ∈ se ∧ JprK
Jforall x in se : prK =̂ ∀x.x ∈ se ⊃ JprK
Jlast(e)prK =̂ (2(empty ∧ ¬JprK) ; skip ; (empty ∧ JprK))n

Je : prK =̂ finite ; (len(e) ∧ J pr K)
The semantics of e : pr 7→ w includes t̂rue ;̂ to obtain the “history” h of length

e from the point where w holds. The operator always-followed-by ( 7→) which has

been defined in Section 5.2.4 will be used to define the semantics of individual rules.

The semantics of individual rules is defined as follows:

Jallow(su, ob, ac) when prK =̂

∀ vs ∈ Subjects. ∀ vo ∈ Objects. ∀ va ∈ Actions.
J prK 7→ Aut+(su, ob, ac)

Jdeny(su, ob, ac) when prK =̂

∀ vs ∈ Subjects. ∀ vo ∈ Objects. ∀ va ∈ Actions.
J prK 7→ Aut−(su, ob, ac)

Jdecide(su, ob, ac) when prK =̂

∀ vs ∈ Subjects. ∀ vo ∈ Objects. ∀ va ∈ Actions.
J prK 7→ Aut(su, ob, ac)

Let vs ∈ frees(r); vo ∈ freeo(r); and va ∈ freea(r) be the free variables (sub-

ject, object and action, respectively) in the rule r. The propositional state variable

Aut+(su, ob, ac) captures positive authorisations. If its value is true the policy

defines a positive authorization for the subject su to perform action ac on object

ob. Similarly Aut−(su, ob, ac) captures negative authorisations. The propositional

state variable Aut(su, ob, ac) defines the access control decision taken by the ref-

erence monitor [69].

Semantics of policies:

We first define the semantics of a policy that consists of a collection of rules. The

implication, in the semantics of an individual rule, (f ⊃ fin (w)) means that the

state formula w holds in the final state of interval if and only if the formula f holds

in some prefix of that interval.

Policies (at semantic level), define the access decision in every state of the reference

monitor and are important for its verification.

We adopt a refinement approach using the “strong-always-followed-by” operator de-

noted by (↔) to obtain a complete policy specification.

The operator strong-always-followed-by (↔) is defined as follows:

105 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

in this operator, a rule of the form (f ↔ fin (w)) determines in any state the value

of the state formula w.

If w holds in the final state of the interval, then f must hold in this interval and

if w does not holds in the final state of the interval, then f must not hold in this

interval.

The motivation of using a refinement approach is that if we can show that a system

satisfies f ↔ fin (w) then it also satisfies f 7→ fin (w).

Thus, by rewriting the policy specification using the algorithm presented below [69]

we strengthen the specification by adding default rules such that the specification

is complete.

By this, we mean that the specification defines the value of Aut+(s, o, a),Aut−(s, o, a)

and Aut(s, o, a) in each state of the system and thus can be enforced by the refer-

ence monitor.

The semantics of a policy of the form ru1....run is a semantically completely speci-

fied formula, i.e., the following formula:

∧
(f(s, o, a)↔ Aut+(s, o, a))∧

s ∈ Subjects (g(s, o, a)↔ Aut−(s, o, a))∧
o ∈ Objects (h(s, o, a)↔ Aut(s, o, a)),

a ∈ Actions

where, for each s ∈ Subjects, o ∈ Objects and a ∈ Actions,

1. f(s, o, a) =̂
∨l
i=1J priK and pri appears as a premise in an allow rule of

ru1....run. If there are no allow (s, o, a) rules in ru1....run, then f(s, o, a) =

false.

2. g(s, o, a) =̂
∨m
i=1J priK and pri appears as a premise in a deny rule of ru1....run.

If there are no deny(s, o, a) rules in ru1....run, then g(s, o, a) = false.

3. h(s, o, a) =̂
∨k
i=1J priK and pri appears as a premise in a decide rule of

ru1....run. If there are no decide (s, o, a) rules in ru1....run, then h(s, o, a) =

false.

For each triple (s, o, a) ∈ Subjects × Objects × Actions, the formula Jru1....runK
contains exactly one rule of the form f(s, o, a) ↔ Aut+(s, o, a), one rule of the

form g(s, o, a) ↔ Aut−(s, o, a) and one rule of the form h(s, o, a) ↔ Aut(s, o, a).

Therefore, it fully determines the value of Aut(s, o, a) at each state of the system.

106 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

Default rules are automatically provided. For example, if the policy po does not

contain a rule for Aut+(s, o, a), for some subject s, object o and action a, then it

defaults to a rule of the form false↔ Aut+(s, o, a) in Jru1...runK.
Similarly for Aut−(s, o, a) and Aut(s, o, a) if there are no explicit rules for them in

ru1...run. As such, Jru1...runK grants every right granted by (ru1...run) and denies

everything else [69].

4.2.5 Interval Temporal Logic with past time (ITLp)

In Chapter 3, the past time operators of ITLp have been introduced, and in the

following Section, we will use these operators to give the SANTA operators always-

followed-by and strong-always-followed-by a history based semantics, in order to

support our choice of ITLp to express history based policies.

Always-followed-by (7→):

The operator past always-followed-by(7→) is defined as follows:

h 7→ w =̂ 2̂(h ⊃ (w))

where h stands for any ITLp formula, and w is a state formula. The definition of

always-followed-by with the history semantics (7→) is as follow:

h 7→ w =̂ 2̂(h ⊃ w)

iff for all k such that(0 ≤ k ≤ |τ | ∧Mτ|τ |←τk
[[h]] = tt) ⊃ Mτk [[w]] = tt

The intuition of the operator(h 7→ w) is that w holds in the initial state of history

interval then f must hold previously in the past interval. We only know that w

holds at the first state as shown in Figure 4.4:

••
τ|τ |
w

h

• •
τ4
w

h
• •

τ3
• •

τ2
w

h

• •
τ1

• •
τ0
w

h

Figure 4.4: Always-followed-by-past

107 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

Strong-always-followed-by (↔):

The operator past always-followed-by (h ↔ w) is defined as follows:

h ↔ w =̂ 2̂(h ≡ w)

where h stands for any ITLp formula, and w is a state formula. The definition of

always-followed-by with the history semantics (h ↔ w) is as follow:

iff for all k such that(0 ≤ k ≤ |τ | ∧Mτ|τ |←τk
[[h]] = tt) iff Mτk [[w]] = tt

The intuition of the operator (h ↔ w) determines in any state the value of the

state formula w.

If w holds in the initial state of the past reference interval, then h must hold for all

the past suffix intervals otherwise w must not hold in that state as shown in Figure

4.5:

••
τ|τ |
w

h

•
w

•
τ4
w

h
• •

τ3
w

h

• •
τ2
w

h

• •
τ1
¬w

¬h
• •

τ0
w

h

Figure 4.5: Strong-always-followed-by-past

In conclusion, as we show above, the two operators always-followed-by (Figure

4.4) and strong-always-followed-by (Figure 4.5) can be given a history semantics

using the past time operators of ITLp and we will show in the Scenario Chapter that

these operators can be used to reason about history based access control policies.

Syntax of SANTA with past time

In the following, we provide the syntax of access control policies.

108 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

Subjects

su ::= Si | cs
Objects

ob ::= Oi | co
Actions

ac ::= Ai | ca(e1, ..., en)

Premise of rule

pr ::= pr1 chop pr2 | pr1 and pr2 | pr1or pr2 |
always pr | sometime pr | not pr | next pr |
if be then pr1 else pr2 | exists x in se : pr |
forall x in se : pr | last(e) : pr | e : pr | be
Rules

ru ::= [rn ::] allow(su, ob, ac)when pr |
[rn ::] deny(su, ob, ac)when pr |
[rn ::] decide(su, ob, ac)when pr

Policies

po ::= (ru1...run)|po2 policy pn :: po end|
po2 chop po1|if be then po1 else po2|
aslongas be : po

Figure 4.6: Syntax of SANTA policy language with past time

Figure 4.6 above summarizes the syntax of our policy language where e is an ex-

pression, be a Boolean expression, and se a Set expression with their usual operators

and semantics. Si is a subject variable, where i is a arbitrary name, similarly Oi is

an object variable, Ai is an action variable and pn is a name for a policy; rn is a

name for a rule (optional). Let Subjects, Objects and Actions be, respectively, the

universal set of subjects, objects and actions. These can be used as part of SANTA

expressions. Let cs ∈ Subjects be a subject, co ∈ Object be an object and ca(v) ∈
Actions be an action with interface v.

The following subsections will explain the semantics of SANTA formally [69].

Formal semantics of SANTA with past time

As SANTA is using a compositional approach to the specification of policies, its un-

derlying formalism should therefore also express specifications of system behaviour

109 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

compositionally.

In the following we will provide the formal semantics for SANTA.

Semantics of rules:

Policy rules define the behaviour of the access control variables however, the conse-

quence of a rule determines the type of rule and the subjects, objects and actions

which the rule applies to. The operator always-followed-by is used to capture the

relation between the premise of a rule and its consequence.

The syntax that is used in the premise is actually a subset of ITLp formula, so, a

definition of the premise semantics is needed. The semantics of a rule premise is

then as follows:

Jpr2 chop pr1K =̂ Jpr2K ;̂ Jpr1K
Jpr1 and pr2K =̂ Jpr1K ∧ Jpr2K
Jpr1 or pr2K =̂ Jpr1K ∨ Jpr2K
Jnot prK =̂ ¬J prK
Jsometime prK =̂ 3̂i J prK
Jalways prK =̂ 2̂i J prK
Jnext prK =̂ ŝkip ;̂ J prK
Jif be then pr1 else pr2K =̂ ((be ∧ Jpr1K) ∨ (¬be ∧ Jpr2K))
Jexists x in se : prK =̂ ∃x.x ∈ se ∧ JprK
Jforall x in se : prK =̂ ∀x.x ∈ se ⊃ JprK
Jlast(e)prK =̂ (2̂(êmpty ∧ ¬JprK) ;̂ ŝkip ;̂ (êmpty ∧ JprK))n

Je : prK =̂ t̂rue ;̂ (len(e) ∧ J pr K)
The following operators sometimep, alwaysp and nextp are the introduced oper-

ators; these operators have been given a history based semantics using past time

operators and they will help us to reason about history based access control policy

in the GPS scenario. The first introduced operator sometimep is needed if an

incident happened sometime in the past while alwaysp operator is needed if the

incident happened continuously to the end of this interval however, the operator

nextp is used to express that the incident happened in the previous state in the

historical interval.

The following operators, which has been added to SANTA language: has the fol-

lowing semantics:

Jsometimep prK =̂ 3̂J prK
Jalwaysp prK =̂ 2̂J prK
Jnextp prK =̂ ©̂J prK
The semantics of e : pr 7→ w includes t̂rue ;̂ to obtain the “history” h of length

110 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

e from the point where w holds. The operator always-followed-by ( 7→) which has

been defined in Section 5.2.4 will be used to define the semantics of individual rules.

The semantics of individual rules is defined as follows:

Jallow(su, ob, ac) when prK =̂

∀ vs ∈ Subjects. ∀ vo ∈ Objects. ∀ va ∈ Actions.
J prK 7→ Aut+(su, ob, ac)

Jdeny(su, ob, ac) when prK =̂

∀ vs ∈ Subjects. ∀ vo ∈ Objects. ∀ va ∈ Actions.
J prK 7→ Aut−(su, ob, ac)

Jdecide(su, ob, ac) when prK =̂

∀ vs ∈ Subjects. ∀ vo ∈ Objects. ∀ va ∈ Actions.
J prK 7→ Aut(su, ob, ac)

Let vs ∈ frees(r); vo ∈ freeo(r); and va ∈ freea(r) be the free variables (sub-

ject, object and action, respectively) in the rule r. The propositional state variable

Aut+(su, ob, ac) captures positive authorisations. If its value is true the policy

defines a positive authorization for the subject su to perform action ac on object

ob. Similarly Aut−(su, ob, ac) captures negative authorisations. The propositional

state variable Aut(su, ob, ac) defines the access control decision taken by the ref-

erence monitor [69].

Semantics of policies: We first define the semantics of a policy that consists

of a collection of rules. The implication, in the semantics of an individual rule,

(h ⊃ w) means that w can be true in the initial state of past interval even if h did

not hold in the suffix of that past interval.

Policies (at semantic level) define the access decision in every state of the reference

monitor and are important for its verification.

We adopt a refinement approach using the “strong-always-followed-by” operator de-

noted by (↔) : to obtain a complete policy specification.

The operator strong-always-followed-by (↔) is defined as follows:

in this operator, a rule of the form (h ↔ w) determines in any state the value of

the state formula w.

If w holds in the initial state of the past interval, then h must holds in this interval

and if w not holds in the initial state of the past interval, then h must not hold in

this interval.

The motivation of using a refinement approach is that if we can show that a system

satisfies h ↔ w then it also satisfies h 7→ w.

Thus, by rewriting the policy specification using the algorithm presented below [69]

111 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

we strengthen the specification by adding default rules such that the specification

is complete.

By this we mean that the specification defines the value of Aut+(s, o, a),Aut−(s, o, a)

and Aut(s, o, a) in each state of the system and thus can be enforced by the refer-

ence monitor.

The semantics of a policy of the form ru1....run is a semantically completely speci-

fied formula, i.e., the following formula:

∧
(f(s, o, a)↔ Aut+(s, o, a))∧

s ∈ Subjects (g(s, o, a)↔ Aut−(s, o, a))∧
o ∈ Objects (h(s, o, a)↔ Aut(s, o, a)),

a ∈ Actions

where, for each s ∈ Subjects, o ∈ Objects and a ∈ Actions,

1. f(s, o, a) =̂
∨l
i=1J priK and pri appears as a premise in an allow rule of

ru1....run. If there are no allow (s, o, a) rules in ru1....run, then f(s, o, a) =

false.

2. g(s, o, a) =̂
∨m
i=1J priK and pri appears as a premise in a deny rule of ru1....run.

If there are no deny(s, o, a) rules in ru1....run, then g(s, o, a) = false.

3. h(s, o, a) =̂
∨k
i=1J priK and pri appears as a premise in a decide rule of

ru1....run. If there are no decide (s, o, a) rules in ru1....run, then h(s, o, a) =

false.

For each triple (s, o, a) ∈ Subjects × Objects × Actions, the formula Jru1....runK
contains exactly one rule of the form f(s, o, a) ↔ Aut+(s, o, a), one rule of the

form g(s, o, a) ↔ Aut−(s, o, a) and one rule of the form h(s, o, a) ↔ Aut(s, o, a).

Therefore, it fully determines the value of Aut(s, o, a) at each state of the system.

Default rules are automatically provided. For example, if the policy po does not

contain a rule for Aut+(s, o, a), for some subject s, object o and action a, then it

defaults to a rule of the form false↔ Aut+(s, o, a) in Jru1...runK.
Similarly for Aut−(s, o, a) and Aut(s, o, a) if there are no explicit rules for them in

ru1...run. As such, Jru1...runK grants every right granted by (ru1...run) and denies

everything else [69].

112 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

Semantics of compound policies

The semantics of the other policy construct is as follows: Let Subjects, Objects, Actions

be, respectively, the universal set of subjects, objects and actions. Note the SANTA

construct policy pn : po end gives policy po a name pn, i.e. it acts as an abbrevi-

ation for po so we do not need to give a semantics to this construct.

Jpo2 chop po1K =̂ Jpo2K ;̂ Jpo1K
Jif be then po1 else po2K =̂ ((be ∧ Jpo1K) ∨ (¬be ∧ Jpo2K))
Jaslongas be : poK =̂ (êmpty ∧ ¬be) ∨ (fîn ¬be ∧ (ŝkip ;̂ (JpoK ∧ 2̂ be)))

4.3 Verification Rules

We will describe the verification of properties and show how the compositional spec-

ification of policies can be exploited using compositional proof-rules that simplify

the verification tasks.

The following definition states when a policy satisfies a property.

Definition: We say that a policy po satisfies a property f if and only if JpoK ⊃ f

is valid.

A safety property informally expresses that nothing bad will happen during exe-

cution of a program; however, Alpern and Schneider [6] have defined formally the

safety property in a future time temporal logic as:

ψ =̂ 2f

Because we proposed past time operators of ITLp we will redefine the safety prop-

erty to be informally expressed that nothing bad happened during execution of a

program using history information and that can be written formally as:

ψ =̂ 2̂ f

Before the second formula is used in our work, we want to show that it is also a

safety property.

Let us take this formula:

ψ =̂ 2f

113 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

it means that f is holds over the future interval, so this future formula looks from

the end of the future interval σ|σ| for every prefix intervals to the current state σ0,

or graphically as in Figure 4.7.

•
σ|σ|

f

•
σ4
f ••

σ3

f
••

σ2

f
••

σ1

f
••

σ0

f

Figure 4.7: Safety property always

Now, let us take this formula:

ψ =̂ 2̂i f

it means that f holds over the past initial intervals, so this past formula means that

we are looking from the current state of the past interval τ0 for every suffix interval

to the final state τ|τ |, or graphically as in Figure 4.8.

• •
τ0

f

•
τ1
f ••

τ2

f
••

τ3

f
••

τ4

f
••

τ|τ |

f

Figure 4.8: Safety property past box-i

As we see from the two figures that the two formula is equivalent and it can be

written:

ψ =̂ 2f =̂ 2̂i f

Also, we want to show the relation between the operators past always 2̂ f and the

operators 2i f and wither the two operators are equal and also a safety property.

Let us take this formula:

ψ =̂ 2̂ f

it means that f is holds over the past interval, so this past formula look from the

114 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

end of the past interval τ|τ | for every prefix intervals to the current state τ0, or

graphically as in Figure 4.9.

••
τ|τ |

f

•
τ4

f
• •

τ3

f

• •
τ2

f

• •
τ1

f

• •
τ0

f

Figure 4.9: Safety property past always

Now, let us take this formula:

ψ =̂ 2i f

it means that f holds over the future initial intervals, so this future formula

means that we are looking from the current state of the future interval σ0 for every

suffix interval to the final state σ|σ|, or graphically as in Figure 4.10.

••
σ0

f

•

w

•
σ1

f
• •

σ2

f

• •
σ3

f

• •
σ4

f

• •
σ|σ|

f

Figure 4.10: Safety property future box-i

As we see from the two Figures 4.9 and 4.10 that the two formulas are equivalent

and it can be written:

ψ =̂ 2̂ f =̂ 2i f

From above, we have shown in the two Figures 4.7 and 4.8, that we can say that

the formulas:

ψ =̂ 2f

and

ψ =̂ 2̂i f

115 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

are equal and can be used as safety property.

Also, we have shown that the two formulas:

ψ =̂ 2̂ f

and

ψ =̂ 2i f

are equal as we have shown in the two Figures 4.9 and 4.10 and can be used as a

safety property as well.

4.3.1 Proof Rules:

The following proof rule splits the proof of a property for a complete specification

of rules to proofs of individual weak rules. This rule is used when the weak rules

have enough information to deduce the property [69].

Proof Rule 1:
Jru1K ⊃ prop, ..., JrunK ⊃ prop

Jru1...runK ⊃ prop

In case the weak rules does not has enough information, we can use the following

stronger rule.

Proof Rule 2:

Let f(s, o, a), g(s, o, a) and h(s, o, a) be defined as in Section 4.4.2

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (f(s, o, a)↔ Aut+(s, o, a))∧
(g(s, o, a)↔ Aut−(s, o, a))∧
(h(s, o, a)↔ Aut(s, o, a))

 ⊃ prop

Jru1...runK ⊃ prop

116 Sami Alsarhani



CHAPTER 4. ITLP TO REASON ABOUT HISTORY-BASED ACCESS
CONTROL POLICIES

4.4 Chapter Summary

This Chapter presents a part of our contribution, which is the past time operators

and also presents a comparison of existing work.

As part of the preliminaries, we provide an informal description of the underlying

computational model of the policies specifications of our work, and put this model

into the context of the well-known PDP/PEP model. Security Analysis toolkit

(SANTA) policy language and compositions are next introduced and then formal

syntax of the language is given with an informal explanation of the syntax. Further,

we give a formal semantics to SANTA and define the semantics of individual rules

as well as the use of always-followed-by operator and the operator strong-always-

followed-by.

The verification rules which are used to verify that a system satisfies properties

are given in this Chapter, also how compositional specifications of policies can be

exploited using these proof-rules. This will simplify the verification tasks by splitting

the proof of a property for a complete specification of rules, to individual proofs of

weak rules.

The proposed past time operators of ITLp used to give the SANTA operators a

history-based semantics, and then the existing SANTA and SANTA with history

semantics will be used in the Scenario Chapter in order to show that SANTA with

past operators is an appropriate choice to reason about history based access control

policies.

117 Sami Alsarhani



Chapter 5

SCENARIO:

GENERAL PRACTICE SYSTEM

(GPS)

In this case study:

• System description.

• Access control policy specification using ITLp.

• Semantics of GPS policies using ITLp.

• Safety property with ITLp.

• Summary of proof

• Access control policy specification ITL.

• Semantics of GPS policies using ITL.

• Safety property with ITL.

• evaluation of existed SANTA and SANTA with

ITLp.

• Summary of proof

118



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

5.1 Introduction

The current and the following chapters will present two case studies related to our

work presented in the previous chapters (3,4 and 5). In this chapters the case study

presented is of a General Practice System. Past time Interval Temporal Logic ITLp

is used for defining the syntax and semantics of GPS policies and to reason about

them.

We illustrate our approach with a detailed case-study of a General Practice System

(GPS) showing the compositional verification of safety. The GPS case study is

based on Janicke et al.’s paper “Dynamic Access Control Policies:Specification and

Verification” [69]. The GPS case study consists of two sections: Specification, and

Verification. In the Specification Section, one specifies a GPS by a set of history-

based access control rules. In the Verification Section, one takes this set of rules

together with properties that need to hold and check whether this set of rules satisfies

these properties.

5.2 System description:

A General Practice System GPS is available to the public via a web interface so

users such as doctor, patient, and nurse should register before they can use the sys-

tem.

Before the first entry to the system, the patient must sign a consent form and legal

agreement to allow the General Practice to legally collect and use the personal in-

formation of the patient.

After the registration and signing of the consent form and legal agreement, the

patient can book an appointment with the chosen doctor if (s)he has not an ap-

pointment before, and (s)he can update his/her personal information stored in the

system about him/her however, (s)he cannot alter his/her medical records in the

system, (s)he can view them only.

A nurse can view the patient medical records if the patient is admitted, but she can-

not sign a legal agreement on behalf of any patient. Also (s)he cannot subsequently

alter the patient’s medical records and doctor’s notes.

A doctor can view the personal information and alter the medical records of

his patient, also he can add private notes about this patient. However, the doctor

cannot treat a patient who is not his patient unless there is a requirement to do so,

and this can only be done if the patients has agreed.

119 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

5.2.1 Subjects description table

We will list and give a description for all the subjects in the GPS:

S is a member of GPS:

SNURSE: a nurse.

SPATIENT : a patient.

SDOCTOR: a doctor.

5.2.2 Objects description table

In table 5.1, we will list all the objects in the GPS and give a description for it:

Object Description

GPS General Practice System

O any object in the system

Omedical records Patient medical records

Odoctor notes Doctor notes

Opatient personal info Patient personal information in the system

OLA Legal agreement

OCF Consent form

OAPPOINTMENT appointment with the doctor

Oprivate notes Doctors private notes

Table 5.1: Objects description table

5.2.3 Action in the GPS:

In table 5.2, we will list all the actions in the GPS system and give a description

for them:

120 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

A
ct
io
n

E
f
f
ec
t

D
es
cr
ip
ti
o
n

d
o
n
e(
S
N
U
R
S
E
,G
P
S
,a
cc
es
s)

a
cc
es
s(
S
N
U
R
S
E
,G
P
S
)

T
h
e
n
u
r
se
h
a
s
a
n
a
cc
es
s
to
th
e
sy
st
em

d
o
n
e(
S
N
U
R
S
E
,G
P
S
,v
ie
w
(O
m
e
d
ic
a
l
r
e
c
o
r
d
s
))

v
ie
w
(S
N
U
R
S
E
,O

m
e
d
ic
a
l
r
e
c
o
r
d
s
)

T
h
e
n
u
r
se
ca
n
v
ie
w
th
e
p
a
ti
en
t
m
ed
ic
a
l
r
ec
o
r
d
s

d
o
n
e(
S
P
A
T
I
E
N
T
,G
P
S
,a
cc
es
s)

a
cc
es
s(
S
P
A
T
I
E
N
T
,G
P
S
)

A
p
a
ti
en
t
h
a
s
a
n
a
cc
es
s
to
th
e
sy
st
em

d
o
n
e(
S
P
A
T
I
E
N
T
,G
P
S
,u
p
d
a
te
(O
p
a
ti
e
n
t
in
f
o
))

u
p
d
a
te
(S
P
A
T
I
E
N
T
,O

p
a
ti
e
n
t
in
f
o
)

A
p
a
ti
en
t
ca
n
u
p
d
a
te
p
er
so
n
a
l
in
f
o
r
m
a
ti
o
n
st
o
r
ed

d
o
n
e(
S
P
A
T
I
E
N
T
,G
P
S
,t
r
ea
tm
en
t)

si
g
n
(S
P
A
T
I
E
N
T
,O

L
A
)

A
p
a
ti
en
t
sh
o
u
ld
si
g
n
le
g
a
l
a
g
r
ee
m
en
t
be
f
o
r
e
tr
ea
tm
en
t

d
o
n
e(
S
P
A
T
I
E
N
T
,G
P
S
,t
r
ea
tm
en
t)

si
g
n
(S
P
A
T
I
E
N
T
,O

C
F
)

A
p
a
ti
en
t
sh
o
u
ld
si
g
n
co
n
se
n
t
f
o
r
m
be
f
o
r
e
tr
ea
tm
en
t

d
o
n
e(
S
P
A
T
I
E
N
T
,G
P
S
,b
o
o
k
(O
A
P
P
O
I
N
T
M
E
N
T
,S
D
O
C
T
O
R
))

h
a
s(
S
P
A
T
I
E
N
T
,O

A
P
P
O
I
N
T
M
E
N
T
)

A
p
a
ti
en
t
h
a
s
a
n
a
p
p
o
in
tm
en
t
w
it
h
th
e
d
o
ct
o
r

d
o
n
e(
S
P
A
T
I
E
N
T
,G
P
S
,v
ie
w
(O
m
e
d
ic
a
l
r
e
c
o
r
d
s
))

v
ie
w
(S
P
A
T
I
E
N
T
,O

m
e
d
ic
a
l
r
e
c
o
r
d
s
)

A
p
a
ti
en
t
ca
n
v
ie
w
p
er
so
n
a
l
m
ed
ic
a
l
r
ec
o
r
d
in
th
e
sy
st
em

d
o
n
e(
S
D
O
C
T
O
R
,G
P
S
,a
cc
es
s)

a
cc
es
s(
S
D
O
C
T
O
R
,G
P
S
)

A
d
o
ct
o
r
h
a
s
a
n
a
cc
es
s
to
th
e
sy
st
em

d
o
n
e(
S
D
O
C
T
O
R
,G
P
S
,v
ie
w
(O
p
a
ti
e
n
t
in
f
o
))

v
ie
w
(S
D
O
C
T
O
R
,O

p
a
ti
e
n
t
in
f
o
)

A
d
o
ct
o
r
ca
n
v
ie
w
o
w
n
p
a
ti
en
ts
p
er
so
n
a
l
in
f
o

d
o
n
e(
S
D
O
C
T
O
R
,G
P
S
,a
lt
er

(O
m
e
d
ic
a
l
r
e
c
o
r
d
s
))

a
lt
er

(S
D
O
C
T
O
R
,O

m
e
d
ic
a
l
r
e
c
o
r
d
s
)

A
d
o
ct
o
r
ca
n
a
lt
er
o
w
n
p
a
ti
en
ts
m
ed
ic
a
l
r
ec
o
r
d
s

d
o
n
e(
S
D
O
C
T
O
R
,G
P
S
,a
d
d
(O

))
a
d
d
(S
D
O
C
T
O
R
,O

p
r
iv
a
te
n
o
te
s
)

A
d
o
ct
o
r
s
ca
n
a
d
d
p
r
iv
a
te
n
o
te
s

d
o
n
e(
S
D
O
C
T
O
R
,G
P
S
,t
r
ea
t(
S
P
A
T
I
E
N
T
))

tr
ea
t(
S
D
O
C
T
O
R
,S
P
A
T
I
E
N
T
)

A
d
o
ct
o
r
ca
n
tr
ea
t
n
o
t
h
is
p
a
ti
en
t
w
h
en
th
e
p
a
ti
en
t
h
a
s
a
g
r
ee

T
ab

le
5.

2:
A

ct
io

n
in

th
e
G
P
S

:

121 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

5.3 Past time

In this Section, in order to evaluate the introduced past time operators of interval

temporal logic ITLp, it has been used to reason about general practice system GPS

to show that it is convinced choice.

5.3.1 Access control policy specification:

The specification of policy reflects the informal description of the GPS System.

We define the policy as a combination of simple policies that correspond to the

requirements of each policy. The objective of the scenario is to show how poli-

cies are composed to yield a structured specification against which the composi-

tional verification approach can be applied. The rules that refer to history such as

R1, R2, R6, R9, R10, R13 and R16 are applied in this case study.

We are going to model a GPS policy that consists of three simple policies, Nurse,

Patient, and the Doctor. The Nurse’s policy is a simple policy containing the rules

from R1 to R5. The Patient’s policy is a simple policy containing the rules from R6

to R12. The Doctor’s policy is a simple policy containing the rules from R13 to R18.

In addition, we are going to specify the policy rules using the future operators to

make a comparison between the past time operators and the future time operators.

122 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

5.3.2 Specification with past time

Explanation

Figure 5.1 shows the graphical meaning of the formula:

true chopp alwaysp(registered(SPATIENT ))

Figure 5.1: AlwaysPastChop

The meaning of this formula is that the past interval is chopped into two interval

using chopp, the first interval satisfies the formula alwaysp(registered(SPATIENT ))

and before that the second interval satisfies true with the common state in between.

Nurse Rules:

• R1 :A nurse has no access to the system before she has registered on

the system.

allow(SNURSE, GPS, access) when true chopp alwaysp( registered(SNURSE))

• R2 : A nurse can view the patient medical record when a patient is

admitted.

allow(SNURSE, GPS, view(Omedical record)) when

( true chopp alwaysp(admit(SPATIENT ))) and

123 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

medical record(Omedical record, SPATIENT )

• R3 : A nurse cannot alter the medical records and doctor’s notes.

deny(SNURSE, GPS, alter(O))when 0 : (O = Omedical records orO = Odoctor notes)

• R4 : The nurse cannot sign the legal agreement on behalf of a pa-

tient.

deny(SNURSE, GPS, sign(OLA)) when true

• R5 : Action is only granted to the nurse if there is a positive autho-

risation and no negative authorisation.

decide(SNURSE, GPS,A) when 0 : (allow(SNURSE, GPS,A) and

not deny(SNURSE, GPS,A))

124 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Patient Rules:

• R6 : A patient should be registered to the system before (s)he can

access the system.

allow(SPATIENT , GPS, access) when true chopp alwaysp(registered(SPATIENT ))

• R7 : A patient can update his/her own personal information stored

in the system.

allow(SPATIENT , GPS, update(Opatient info)) when 0 :

patient info(Opatient info, SPATIENT )

• R8 : A patient cannot alter the medical records in the system.

deny(SPATIENT , GPS, alter(Omedical records)) when true

• R9 : The patient should sign the consent form and the legal agree-

ment once before any treatment.

allow(SPATIENT , GPS, treat(SPATIENT )) when true chopp alwaysp

( sign(SPATIENT , OLA) and sign(SPATIENT , OCF ))

• R10 : The patient can book an appointment with the chosen doctor

if (s)he has not an appointment.

allow(SPATIENT , GPS, book(OAPPOINTMENT )) when

true chopp alwaysp not booking(SPATIENT , OAPPOINTMENT ) chopp skipp

• R11 : A patient can view his/her medical record in the system.

allow(SPATIENT , GPS, view(Omedical record)) when 0 :

medical record(Omedical record, SPATIENT )

• R12 : Action is only granted to the patient if there is a positive au-

thorisation and no negative authorisation.

decide(SPATIENT , GPS,A) when 0 : (allow(SPATIENT , GPS,A)

and not deny(SPATIENT , GPS,A))

125 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Doctor Rules:

• R13 : A doctor has no access to the system before (s)he is registered

to the system.

allow(SDOCTOR, GPS, access) when true chopp alwaysp (registered(SDOCTOR))

• R14 : The doctor can alter all of the medical records of his patients.

allow(SDOCTOR, GPS, alter(Omedical record)) when 0 :

doctor(SDOCTOR, SPATIENT ) and medical record(Omedical record, SPATIENT )

• R15 : Doctors can also add private notes about a patient.

allow(SDOCTOR, GPS, add(Oprivate notes)) when 0 :

doctor(SDOCTOR, SPATIENT ) and private notes(Oprivate notes, SPATIENT )

• R16 :A doctor can treat a patient who is not his/her patient if the

patient agrees.

allow(SDOCTOR, GPS, treat(SPATIENT )) when ( true chopp alwaysp

(agree(SPATIENT )))and(SDOCTOR1 6= SDOCTOR) and

alwaysp(doctor(SDOCTOR1 , SPATIENT )) and

alwaysp(not doctor(SDOCTOR, SPATIENT ))

• R17 : The doctor can view his patient’s personal information.

allow(SDOCTOR, GPS, view(Opatient info)) when 0 : doctor(SDOCTOR, SPATIENT ) and

patient info(Opatient info, SPATIENT )

• R18 : Action is only granted to the doctor if there is a positive au-

thorisation and no negative authorisation.

decide(SDOCTOR, GPS,A) when 0 : (allow(SDOCTOR, GPS,A)

and not deny(SDOCTOR, GPS,A))

126 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

5.3.3 Policies summary

Nurse policy

The nurse policy is a simple policy containing the rules from R1 to R4 with the

decision rule R5:

Policy Nurse::

R1 : allow(SNURSE, GPS, access) when true chopp alwaysp( registered(SNURSE))

R2 : allow(SNURSE, GPS, view(Omedical record)) when

( true chopp alwaysp(admit(SPATIENT ))) and

medical record(Omedical record, SPATIENT )

R3 : deny(SNURSE, GPS, alter(O))when 0 : (O = Omedical records orO = Odoctor notes)

R4 : deny(SNURSE, GPS, sign(OLA)) when true

R5 : decide(SNURSE, GPS,A) when 0 :

(allow(SNURSE, GPS,A)and not deny(SNURSE, GPS,A))

end

127 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Patient policy

The patient policy is a simple policy containing the rules from R6 to R11 with the

decision rule R12:

Policy Patient::

R6 : allow(SPATIENT , GPS, access) when true chopp alwaysp(registered(SPATIENT ))

R7 : allow(SPATIENT , GPS, update(Opatient info)) when 0 :

patient info(Opatient info, SPATIENT )

R8 : deny(SPATIENT , GPS, alter(Omedical records) when true

R9 : allow(SPATIENT , GPS, treat(SPATIENT )) when true chopp alwaysp

( sign(SPATIENT , OLA) and sign(SPATIENT , OCF )

R10 : allow(SPATIENT , GPS, book(OAPPOINTMENT )) when

true chopp alwaysp not booking(SPATIENT , OAPPOINTMENT ) chopp skipp

R11 : allow(SPATIENT , GPS, view(Omedical record)) when 0 :

medical record(Omedical record, SPATIENT )

R12 : decide(SPATIENT , GPS,A) when 0 : (allow(SPATIENT , GPS,A)

and not deny(SPATIENT , GPS,A))

end

128 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Doctor policy

The doctor policy is a simple policy containing the rules from R13 to R17 with the

decision rule R18 :

Policy Doctor::

R13 : allow(SDOCTOR, GPS, access) when true chopp alwaysp (registered(SDOCTOR))

R14 : allow(SDOCTOR, GPS, alter(Omedical record)) when 0

doctor(SDOCTOR, SPATIENT ) and medical record(Omedical record, SPATIENT )

R15 : allow(SDOCTOR, GPS, add(Oprivate notes)) when 0 :

doctor(SDOCTOR, SPATIENT ) and private notes(Oprivate notes, SPATIENT )

R16 : allow(SDOCTOR, GPS, treat(SPATIENT )) when ( true chopp alwaysp

(agree(SPATIENT )))and(SDOCTOR1 6= SDOCTOR) and

alwaysp(doctor(SDOCTOR1 , SPATIENT )) and

alwaysp(not doctor(SDOCTOR, SPATIENT ))

R17 : allow(SDOCTOR, GPS, view(Opatient info)) when 0 : doctor(SDOCTOR, SPATIENT ) and

patient info(Opatient info, SPATIENT )

R18 : decide(SDOCTOR, GPS,A) when 0 : (allow(SDOCTOR, GPS,A)

and not deny(SDOCTOR, GPS,A))

end

129 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

5.3.4 Semantics of GPS policies

The following is a mapping from the SANTA policy language used to express the

GPS policies into their formal ITLp semantics. The proofs in Section (5.6) are

using the semantic representation of policies.

Semantics of PNURSE

JPNURSEK ≡ J R1...R5 K ≡ J R′1 K ∧ J R′2 K ∧ J R′3 K ∧ J R′4 K where:

J R1 ∧ R5 K ≡ J R′1 K

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fNURSE(s, o, a)↔ Aut+(s, o, a))∧
(gNURSE(s, o, a)↔ Aut−(s, o, a))∧
(hNURSE(s, o, a)↔ Aut(s, o, a))


where fNURSE(s, o, a) is defined as:

fNURSE(s, o, a) (s, o, a) R

J true chopp alwaysp( registered(SNURSE))K (SNURSE,GPS, access) 1

and gNURSE(s, o, a) is defined as:

gNURSE(s, o, a) (s, o, a) R

J false K (SNURSE, GPS, access) 1

and hNURSE(s, o, a) is defined as:

hNURSE(s, o, a) (s, o, a) R

J0 : allow(SNURSE,GPS, access) and not deny(SNURSE,GPS, access)K (SNURSE,GPS, access) 5

130 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

and J R2 ∧ R5 K ≡ J R′2 K

where fNURSE(s, o, a) is defined as:

fNURSE(s, o, a) (s, o, a) R

J ( true chopp alwaysp(admit(SPATIENT )))

and medical record(Omedical record, SPATIENT )K (SNURSE,GPS, view(Omedical record)) 2

and gNURSE(s, o, a) is defined as:

gNURSE(s, o, a) (s, o, a) R

J false K (SNURSE,GPS, view(Omedical record)) 2

and hNURSE(s, o, a) is defined as:

hNURSE(s, o, a) (s, o, a) R

J0 : allow(SNURSE,GPS, view(Omedical record))

and not deny(SNURSE,GPS, view(Omedical record))K (SNURSE,GPS, view(Omedical record)) 5

131 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

and J R3 ∧ R5 K ≡ J R′3 K

where fNURSE(s, o, a) is defined as:

fNURSE(s, o, a) (s, o, a) R

J false K (SNURSE,GPS, alter(O)) 3

and gNURSE(s, o, a) is defined as:

gNURSE(s, o, a) (s, o, a) R

J0 : (O = Omedical records) or (O = Odoctor notes)K (SNURSE,GPS, alter(O)) 3

and hNURSE(s, o, a) is defined as:

hNURSE(s, o, a) (s, o, a) R

J0 : deny(SNURSE,GPS, alter(O)) and not allow(SNURSE,GPS, alter(O))K (SNURSE,GPS, alter(O)) 5

132 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

and J R4 ∧ R5 K ≡ J R′4 K
where fNURSE(s, o, a) is defined as:

fNURSE(s, o, a) (s, o, a) R

J false K (SNURSE,GPS, sign(O)) 4

and gNURSE(s, o, a) is defined as:

gNURSE(s, o, a) (s, o, a) R

J true K (SNURSE,GPS, sign(OLA)) 4

and hNURSE(s, o, a) is defined as:

hNURSE(s, o, a) (s, o, a) R

J0 : deny(SNURSE,GPS, sign(O)) and not allow(SNURSE,GPS, sign(O))K (SNURSE,GPS, sign(O)) 5

133 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Semantics of PPATIENT

JPPATIENT K ≡ J R6...R12K ≡ J R′6 K ∧ J R′7 K ∧ J R′8 K ∧ J R′9 K ∧ J R′10 K ∧ J R′11 K

where J R′6 K, J R′7 K, J R′8 K, J R′9 K, J R′10 K, J R′11 K
are defined in Appendix B Part 1.

Semantics of PDOCTOR

JPDOCTORK ≡ J R13...R18 K ≡ J R′13 K ∧ J R′14 K ∧ J R′15 K ∧ J R′16 K ∧ J R′17 K
where J R′13 K, J R′14 K, J R′15 K, J R′16 K, J R′17 K are defined in Appendix B Part 2.

5.3.5 Safety property:

A safety property informally expresses that nothing bad will happen during execu-

tion of a program or formally:

ψ =̂ 2̂h

We will give a specific safety property for every member of the GPS and prove that

this property holds for each member.

Nurse Safety Property:

The safety property can be defined as:

It is never the case that the nurse can use GPS without being registered in the

system.

Let ψ1 =̂ 2̂((Aut(SNURSE,GPS, a)) ⊃ true ;̂ 2̂(registered(SNURSE)))

denote the nurse safety property and let a ∈ {access , view , alter}
The proof that the GPS policy satisfies ψ1 can be done by proving that each of

the nurse rules in this policy which affect the safety property will not invalidate this

property ψ1, i.e. JR1...R5K ⊃ ψ1.

We have to prove that JR1 ∧ R5K ⊃ ψ1, JR2 ∧ R5K ⊃ ψ1, JR3 ∧R5K ⊃ ψ1.

Here JRiK denotes only the rules that affect the safety property so the rules JR4 andR5K ⊃
ψ1 are not included because they cannot affect (invalidate) ψ1.

134 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

We can prove that the nurse policy satisfies the safety property by proving that

R
′
1 and R

′
2 and R

′
3 which affect the safety property satisfies ψ1.

Rule R
′
1 states:

R
′
1 : A nurse has no access to the system before she has registered on the system.

allow(SNURSE,GPS, access) when true chopp alwaysp( registered(SNURSE))

1. From the semantics of PNURSE we have:

JR1 ∧R5 K ≡ J R′1 K ≡∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fNURSE(s, o, a)↔ Aut+(s, o, a))∧
(gNURSE(s, o, a)↔ Aut−(s, o, a))∧
(hNURSE(s, o, a)↔ Aut(s, o, a))


true ;̂ 2̂( registered(SNURSE)) ↔ Aut+(SNURSE,GPS, access)

∧ false ↔ Aut−(SNURSE,GPS, access)

∧ Aut+(SNURSE,GPS, access) ∧ ¬ Aut−(SNURSE,GPS, access) ↔
Aut(SNURSE,GPS, access)

2. from the definition of (↔) we have:

h ↔ w =̂ 2̂(h ≡ w)

3. true ;̂ 2̂( registered(SNURSE)) ≡ Aut+(SNURSE,GPS, access)

∧ false ≡ Aut−(SNURSE,GPS, access)

∧ Aut+(SNURSE,GPS, access) ∧ ¬ Aut−(SNURSE,GPS, access) ≡
Aut(SNURSE,GPS, access)

4. so, we have:

2̂(Aut+(SNURSE,GPS, access) ∧ ¬ Aut−(SNURSE,GPS, access)

≡ Aut(SNURSE,GPS, access))

5. but we know that:

false ↔ Aut−(SNURSE,GPS, access)

so, step 3 can be written as:

2̂(Aut+(SNURSE,GPS, access) ≡ Aut(SNURSE,GPS, access))

135 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

6. from above we have:

2̂(true ;̂ 2̂( registered(SNURSE)) ≡ Aut(SNURSE,GPS, access))

7. using ITLp reasoning, we have:

2̂(Aut(SNURSE,GPS, access) ⊃ true ;̂ 2̂( registered(SNURSE)))

8. and this is ψ1.

136 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Rule R
′
2 states:

R
′
2 : A nurse can view the patient’s medical records when a patient is admitted.

allow(SNURSE,GPS, view(Omedical records)) when

true chopp alwaysp((admit(SPATIENT )) and medical record(SPATIENT ))

1. From the semantics of PNURSE we have:

JR2 ∧R5 K ≡ J R′2 K ≡∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fNURSE(s, o, a)↔ Aut+(s, o, a))∧
(gNURSE(s, o, a)↔ Aut−(s, o, a))∧
(hNURSE(s, o, a)↔ Aut(s, o, a))


true ;̂ 2̂((admit(SPATIENT )) ∧ medical record(Omedical record, SPATIENT )) ↔
Aut+(SNURSE,GPS, view(Omedical record))

∧ false ↔ Aut−(SNURSE,GPS, view(Omedical record))

∧Aut+(SNURSE,GPS, view(Omedical record)) ∧ ¬Aut−(SNURSE,GPS, view(Omedical record))

↔ Aut(SNURSE,GPS, view(Omedical record))

2. from the definition of (↔) we have:

h ↔ w =̂ 2̂(h ≡ w)

3. true ;̂ 2̂((admit(SPATIENT )) ∧ medical record(Omedical record, SPATIENT )) ≡
Aut+(SNURSE,GPS, view(Omedical record))

∧ false ≡ Aut−(SNURSE,GPS, view(Omedical record))

∧Aut+(SNURSE,GPS, view(Omedical record)) ∧ ¬Aut−(SNURSE,GPS, view(Omedical record))

≡ Aut(SNURSE,GPS, view(Omedical record))

4. so, we have:

2̂(Aut+(SNURSE,GPS, view(Omedical record)) ∧ ¬Aut−(SNURSE,GPS, view(Omedical record))

≡ Aut(SNURSE,GPS, view(Omedical record)))

5. but we know that:

false ↔ Aut−(SNURSE,GPS, view(Omedical record))

137 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

6. so, we can write it as:

2̂(Aut+(SNURSE,GPS, view(Omedical record)) ≡ Aut(SNURSE,GPS, view(Omedical record)))

7. and we have:

2̂(true ;̂ 2̂((admit(SPATIENT )) ∧medical record(Omedical record, SPATIENT )) ≡

Aut(SNURSE,GPS, view(Omedical record)))

8. this is equal to:

2̂(Aut(SNURSE,GPS, view(Omedical record)) ≡
true ;̂ 2̂((admit(SPATIENT )) ∧ medical record(Omedical record, SPATIENT )))

9. we assume that view can only be after registration, so we can say that:

2̂(Aut(SNURSE,GPS, view(Omedical record)) ≡ true ;̂ 2̂( registered(SNURSE)))

10. and from it we have:

2̂(Aut(SNURSE,GPS, view(Omedical record)) ⊃ true ;̂ 2̂( registered(SNURSE)))

11. we can say that R
′
2 satisfies ψ1

138 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Rule R
′
3 states:

R
′
3 : A nurse cannot alter the medical records and doctor’s notes.

deny(SNURSE,GPS, alter(O))when 0 : (O = Omedical records or O = Odoctor notes)

1. From the semantics of PNURSE we have:

JR3 ∧R5 K ≡ J R′3 K ≡
JPNURSEK ≡ J R3 ∧ R5 K ≡ J R′3 K ≡∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fNURSE(s, o, a)↔ Aut+(s, o, a))∧
(gNURSE(s, o, a)↔ Aut−(s, o, a))∧
(hNURSE(s, o, a)↔ Aut(s, o, a))


false ↔ Aut+(SNURSE,GPS, alter(O))

∧ O = (Omedical records ∨ Odoctor notes)↔ Aut−(SNURSE,GPS, alter(O))

∧ Aut−(SNURSE,GPS, alter(O)) ∧ ¬ Aut+(SNURSE,GPS, alter(O))

↔ Aut(SNURSE,GPS, alter(O))

2. from the definition of (↔) we have:

h ↔ w =̂ 2̂(h ≡ w)

3. false ≡ Aut+(SNURSE,GPS, alter(O))

∧ O = (Omedical records ∨ Odoctor notes) ≡ Aut−(SNURSE,GPS, alter(O))

∧ Aut−(SNURSE,GPS, alter(O)) ∧ ¬ Aut+(SNURSE,GPS, alter(O))

≡ Aut(SNURSE,GPS, alter(O))

4. so, we have:

2̂(Aut−(SNURSE,GPS, alter(O)) ∧ ¬ Aut+(SNURSE,GPS, alter(O)) ≡
Aut(SNURSE,GPS, alter(O)))

5. We know that:

false ≡ Aut+(SNURSE,GPS, alter(O))

So, we can simplify it to:

2̂(Aut−(SNURSE,GPS, alter(O)) ≡ Aut(SNURSE,GPS, alter(O)))

139 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

6. this yields to:

2̂(true ;̂ (len(0) ∧ (O = Omedical records ∨ O = ODoctor notes)) ≡
Aut(SNURSE,GPS, alter(O)))

7. and from the reasoning of ITLp we have:

2̂((O = Omedical records ∨O = ODoctor notes) ≡ Aut(SNURSE,GPS, alter(O)))

8. this is equal to:

2̂(Aut(SNURSE,GPS, alter(O)) ≡ (O = Omedical records ∨ O = Odoctor notes))

9. by assume that alter can be after registration, so we can say that:

2̂(Aut(SNURSE,GPS, alter(O)) ⊃ (O = Omedical records ∨ O = Odoctor notes))

10. from it we can say that R
′
3 satisfies ψ1.

140 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Patient Safety Property:

It is never the case that the patient can alter the medical records in the system.

Let ψ2 =̂ 2̂(¬Aut(SPATIENT ,GPS, alter(Omedical records)))

denote the safety property.

A compositional proof that patient policy satisfies ψ2 can be done using proof rules

by proving that each of the rules in this policy satisfies the safety property or for-

mally:

JR′6...R
′
11K ⊃ ψ2.

We have to prove that JR′6∧R
′
11K ⊃ ψ2. Here JR′iK denotes only rules that can affect

the safety property. The rules JR′6, R
′
7, R

′
9, R

′
10 and R

′
11K cannot invalidate ψ2.

We can prove that the patient policy satisfies the safety property by proving that

R
′
8 which affect the safety property satisfies ψ2.

Rule R
′
8 states:

R
′
8 : A patient cannot alter the medical records in the system.

deny(SPATIENT ,GPS, alter(Omedical records) when true

1. From the semantics of PPATIENT we have:

J R8 ∧ R12 K ≡ J R′8 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))


false ↔ Aut+(SPATIENT ,GPS, alter(Omedical records))

∧ true ↔ Aut−(SPATIENT ,GPS, alter(Omedical records))

∧ Aut−(SPATIENT ,GPS, alter(Omedical records))

∧ ¬ Aut+(SPATIENT ,GPS, alter(Omedical records)) ↔
Aut(SPATIENT ,GPS, alter(Omedical records))

2. from the definition of (↔) we have:

h ↔ w =̂ 2̂(h ≡ w)

141 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

3. false ≡ Aut+(SPATIENT ,GPS, alter(Omedical records))

∧ true ≡ Aut−(SPATIENT ,GPS, alter(Omedical records))

∧ Aut−(SPATIENT ,GPS, alter(Omedical records))

∧ ¬ Aut+(SPATIENT ,GPS, alter(Omedical records)) ≡
Aut(SPATIENT ,GPS, alter(Omedical records))

4. and from ITLP reasoning, we have:

2̂(Aut−(SPATIENT ,GPS, alter(Omedical records))

∧ ¬ Aut+(SPATIENT ,GPS, alter(Omedical records)) ≡
Aut(SPATIENT ,GPS, alter(Omedical records)))

5. which can be simplified to:

2̂(true ≡ Aut(SPATIENT ,GPS, alter(Omedical records)))

6. which can be written as:

2̂(¬Aut(SPATIENT ,GPS, alter(Omedical records)))

7. which is ψ2.

142 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Doctor Safety Property:

It is never the case that anyone can modify the patient medical records without

being a doctor of this patient.

Let ψ3 =̂ 2̂(Aut(SDOCTOR,GPS, alter(Omedical records)) ⊃
doctor(SDOCTOR, SPATIENT ) ∧ medical records(SPATIENT ))

denote the safety property.

A compositional proof that any policy satisfies ψ3 can be done using proof rules by

proving that each of the rules in this policy satisfies the safety property or formally:

JR13...R18K ⊃ ψ3.

We have to prove that JR14 ∧ R18K =̂ JR′14K ⊃ ψ3.

Here JRiK denotes only rules that can affect the safety property. JR′13 , R
′
15... R

′
18K ⊃

ψ3 because they cannot affect ψ3 .

We can prove that the doctor policy satisfies the safety property by proving that

R
′
14 which affect the safety property satisfies ψ3.

Rule R
′
14 states:

R
′
14 : The doctor can alter all of the medical records of his/her patients.

allow(SDOCTOR,GPS, alter(Omedical record)) when 0 :

doctor(SDOCTOR, SPATIENT ) and medical record(Omedical record, SPATIENT )

1. From the semantics of PDOCTOR we have:

J R14 ∧ R18 K ≡ J R′14 K ≡∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))


doctor(SDOCTOR, SPATIENT ) ∧ medical record(Omedical record, SPATIENT ) ↔
Aut+(SDOCTOR,GPS, alter(Omedical record))

∧ false ↔ Aut−(SDOCTOR,GPS, alter(Omedical record))

∧ Aut+(SDOCTOR,GPS, alter(Omedical record))

∧ ¬ Aut−(SDOCTOR,GPS, alter(Omedical record)) ↔
Aut(SDOCTOR,GPS, alter(Omedical record))

2. from the definition of (↔) we have:

143 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

h ↔ w =̂ 2̂(h ≡ w)

3. and from the reasoning of ITLp, so we have:

2̂(Aut+(SDOCTOR,GPS, alter(Omedical record))

∧ ¬ Aut−(SDOCTOR,GPS, alter(Omedical record)) ≡
Aut(SDOCTOR,GPS, alter(Omedical record)))

4. which can be simplified to:

2̂(Aut+(SDOCTOR,GPS, alter(Omedical record)) ≡
Aut(SDOCTOR,GPS, alter(Omedical record)))

5. and we can write as:

2̂(doctor(SDOCTOR, SPATIENT ) ∧medical record(Omedical record, SPATIENT ) ≡

Aut(SDOCTOR,GPS, alter(Omedical record)))

6. so we have:

2̂(Aut(SDOCTOR,GPS, alter(Omedical record)) ⊃ (doctor(SDOCTOR, SPATIENT ) ∧

medical record(Omedical record, SPATIENT )))

7. which is ψ3.

144 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Proof summary

We can proof that any policy satisfies the safety property, this can be done using

the proof rules in (Section 4.5.1) by proving that each of the rules in this policy

satisfies the property.

NURSE

The nurse policy consists from simple policies which is from R1 to R5:

and from the semantics of PNURSE we have:

JPNURSEK = J R′1 ∧ R
′
2 ∧ R

′
3 ∧ R

′
4 K

we prove that:

JR1K ⊃ ψ1

JR2K ⊃ ψ1

JR3K ⊃ ψ1

so each rule that affect the safety property in nurse policy satisfies ψ1 and from the

proof rule 2 we have:

JR′1 ∧R
′
2 ∧R

′
3 K ⊃ ψ1

and from above, we can say that:

JPNURSEK ⊃ ψ1

PATIENT

The patient policy consists from simple policies which is from R6 to R12:

and from the semantics of PPATIENT we have:

JPPATIENT K = J R′6 ∧ R
′
7 ∧ R

′
8 ∧ R

′
9 ∧ R

′
10 ∧ R

′
11 K

we prove that:

J R′8 K ⊃ ψ2

so each rule that affect the safety property in patient policy satisfies ψ2 and from

the proof rule 2 we can say that:

JPPATIENT K ⊃ ψ2

145 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

DOCTOR

The doctor policy consists from simple policies which is from R13 to R18:

and from the semantics of PDOCTOR we have:

JPDOCTORK = J R′13 ∧ R
′
14 ∧ R

′
15 ∧ R

′
16 ∧ R

′
17 K

we prove that:

J R′14 K ⊃ ψ3

so each rule that affect the safety property in doctor policy satisfies ψ3 and from the

proof rule 2, and from it we can say that:

JPDOCTORK ⊃ ψ3

146 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

5.4 Future time

In this Section, the future time operators of ITL have been used to reason about

general practice systemGPS and compare it with the introduced past time operators

to evaluate it.

5.4.1 Specification with future time

Nurse Rules:

• R1 :A nurse has no access to the system before she has registered on

the system.

allow(SNURSE,GPS, access) when 0 : true chop always( registered(SNURSE))

• R2 : A nurse can view the patient medical record when a patient is

admitted.

allow(SNURSE,GPS, view(Omedical record)) when 0 :

( true chop always(admit(SPATIENT ))) and

medical record(Omedical record, SPATIENT )

• R3 : A nurse cannot alter the medical records and doctor’s notes.

deny(SNURSE,GPS, alter(O))when 0 : (O = Omedical records orO = Odoctor notes)

• R4 : The nurse cannot sign the legal agreement on behalf of a pa-

tient.

deny(SNURSE,GPS, sign(OLA)) when true

• R5 : Action is only granted to the nurse if there is a positive autho-

risation and no negative authorisation.

decide(SNURSE,GPS, A) when 0 : (allow(SNURSE,GPS, A) and

not deny(SNURSE,GPS, A))

147 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Patient Rules:

• R6 : A patient should be registered to the system before (s)he can

access the system.

allow(SPATIENT ,GPS, access) when 0 : true chop always(registered(SPATIENT ))

• R7 : A patient can update his/her own personal information stored

in the system.

allow(SPATIENT ,GPS, update(Opatient info)) when 0 :

patient info(Opatient info, SPATIENT )

• R8 : A patient cannot alter the medical records in the system.

deny(SPATIENT ,GPS, alter(Omedical records)) when true

• R9 : The patient should sign the consent form and the legal agree-

ment once before any treatment.

allow(SPATIENT ,GPS, treat(SPATIENT )) when 0 : true chop always

( sign(SPATIENT , OLA) and sign(SPATIENT , OCF ))

• R10 : The patient can book an appointment with the chosen doctor

if (s)he has not an appointment.

allow(SPATIENT ,GPS, book(OAPPOINTMENT )) when 0 :

true chop always not booking(SPATIENT , OAPPOINTMENT ) chop skip

• R11 : A patient can view his/her medical record in the system.

allow(SPATIENT ,GPS, view(Omedical record)) when 0 :

medical record(Omedical record, SPATIENT )

• R12 : Action is only granted to the patient if there is a positive au-

thorisation and no negative authorisation.

decide(SPATIENT ,GPS, A) when 0 : (allow(SPATIENT ,GPS, A)

and not deny(SPATIENT ,GPS, A))

148 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Doctor Rules:

• R13 : A doctor has no access to the system before (s)he is registered

to the system.

allow(SDOCTOR,GPS, access) when 0 : true chop always (registered(SDOCTOR))

• R14 : The doctor can alter all of the medical records of his patients.

allow(SDOCTOR,GPS, alter(Omedical record)) when 0 :

doctor(SDOCTOR, SPATIENT ) and medical record(Omedical record, SPATIENT )

• R15 : Doctors can also add private notes about a patient.

allow(SDOCTOR,GPS, add(Oprivate notes)) when 0 :

doctor(SDOCTOR, SPATIENT ) and private notes(Oprivate notes, SPATIENT )

• R16 :A doctor can treat a patient who is not his/her patient if the

patient agrees.

allow(SDOCTOR,GPS, treat(SPATIENT )) when 0 : ( true chop always

(agree(SPATIENT )))and(SDOCTOR1 6= SDOCTOR) and

always(doctor(SDOCTOR1 , SPATIENT )) and

always(not doctor(SDOCTOR, SPATIENT ))

• R17 : The doctor can view his patient’s personal information.

allow(SDOCTOR,GPS, view(Opatient info)) when 0 : doctor(SDOCTOR, SPATIENT ) and

patient info(Opatient info, SPATIENT )

• R18 : Action is only granted to the doctor if there is a positive au-

thorisation and no negative authorisation.

decide(SDOCTOR,GPS, A) when 0 : (allow(SDOCTOR,GPS, A)

and not deny(SDOCTOR,GPS, A))

149 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Rules comparison

The nurse policy is a simple policy containing the rules from R1 to R4 with the

decision rule R5. Next, we specify the history rules using future time operators.

In the nurse policy, we have the rules R1 and R2 which are assumed to be history

rules; we specify these using past time operators and future time operators to make

a comparison between the rules.

R1 :A nurse has no access to the system before she has registered on the

system.

Using past operators:

allow(SNURSE,GPS, access) when true chopp alwaysp( registered(SNURSE))

Using future operators:

allow(SNURSE,GPS, access) when 0 : true chop always( registered(SNURSE))

R2 : A nurse can view the patient medical record when a patient is ad-

mitted.

Using past operators:

R2 : allow(SNURSE,GPS, view(Omedical record)) when

( true chopp alwaysp(admit(SPATIENT ))) and

medical record(Omedical record, SPATIENT )

Using future operators:

allow(SNURSE,GPS, view(Omedical record)) when 0 :

( true chop always(admit(SPATIENT ))) and

medical record(Omedical record, SPATIENT )

The patient policy is a simple policy containing the rules from R6 to R11 with

the decision rule R12. Next, we specify the history rules using future time operators.

In the patient policy, we have the rules R6, R9 and R10 which are assumed to be

history rules; we specify these using past operators and future time operators to

make a comparison between the rules.

R6 : A patient should be registered to the system before (s)he can access

the system.

Using past operators:

allow(SPATIENT ,GPS, access) when true chopp alwaysp(registered(SPATIENT ))

Using future operators:

allow(SPATIENT ,GPS, access) when 0 : true chop always(registered(SPATIENT ))

R9 : The patient should sign the consent form and the legal agreement

150 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

once before any treatment.

Using past operators:

allow(SPATIENT ,GPS, treat(SPATIENT )) when true chopp alwaysp

( sign(SPATIENT , OLA) and sign(SPATIENT , OCF )

Using future operators:

allow(SPATIENT ,GPS, treat(SPATIENT )) when 0 : true chop always

( sign(SPATIENT , OLA) and sign(SPATIENT , OCF ))

R10 : The patient can book an appointment with the chosen doctor if

(s)he has not an appointment.

Using past operators:

allow(SPATIENT ,GPS, book(OAPPOINTMENT )) when

true chopp alwaysp not booking(SPATIENT , OAPPOINTMENT ) chop skipp

Using future operators:

allow(SPATIENT ,GPS, book(OAPPOINTMENT )) when 0 :

true chop always not booking(SPATIENT , OAPPOINTMENT ) chop skip

151 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

The doctor policy is a simple policy containing the rules from R13 to R17 with

the decision rule R18. Next, we specify the history rules using future time operators.

In the Doctor policy, we have the rules R13 and R16 which are assumed to be history

rules; we specify these using past operators and future time operators to make a

comparison between the rules.

R13 : A doctor has no access to the system before (s)he is registered

on the system.

Using past operators:

allow(SDOCTOR,GPS, access) when true chopp alwaysp (registered(SDOCTOR))

Using future operators:

allow(SDOCTOR,GPS, access) when 0 : true chop always (registered(SDOCTOR))

R16 :A doctor can treat a patient who is not his/her patient if the

patient agrees.

Using past operators:

allow(SDOCTOR,GPS, treat(SPATIENT )) when ( true chopp alwaysp

agree(SPATIENT )))and(SDOCTOR1 6= SDOCTOR) and

alwaysp(doctor(SDOCTOR1 , SPATIENT )) and

alwaysp(not doctor(SDOCTOR, SPATIENT ))

Using future operators:

allow(SDOCTOR,GPS, treat(SPATIENT )) when 0 : ( true chop always

agree(SPATIENT )))and(SDOCTOR1 6= SDOCTOR) and

always(doctor(SDOCTOR1 , SPATIENT )) and

always(not doctor(SDOCTOR, SPATIENT ))

Conclusion of rules comparison

As has been shown above, it can be concluded the past time operators of ITLp are

valid to reason about history based access control policy such as GPS. Also, it

can be concluded that it is not clear that the specification when using past time

operators is easier to express (simplicity) than the specification when using future

time operators. Additionally, the formula with past is not shorter (succinctness)

than the formula with future time operators, so it can be said succinctness and

simplicity are not achieved in the specification level.

152 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

5.4.2 Semantics of GPS policies using future time

The following is a mapping from the SANTA policy language used to express the

GPS policies into their formal ITL semantics. The proofs in Section (5.10) are

using the semantic representation of policies.

Semantics of PNURSE

JPNURSEK ≡ J R1...R5 K ≡ J R′1 K ∧ J R′2 K ∧ J R′3 K ∧ J R′4 K where:

J R1 ∧ R5 K ≡ J R′1 K

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fNURSE(s, o, a)↔ Aut+(s, o, a))∧
(gNURSE(s, o, a)↔ Aut−(s, o, a))∧
(hNURSE(s, o, a)↔ Aut(s, o, a))


where fNURSE(s, o, a) is defined as:

fNURSE(s, o, a) (s, o, a) R

J true chop always( registered(SNURSE)) K (SNURSE,GPS, access) 1

and gNURSE(s, o, a) is defined as:

gNURSE(s, o, a) (s, o, a) R

J false K (SNURSE,GPS, access) 1

and hNURSE(s, o, a) is defined as:

hNURSE(s, o, a) (s, o, a) R

J0 : allow(SNURSE,GPS, access) and not deny(SNURSE,GPS, access)K (SNURSE,GPS, access) 5

153 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

and J R2 ∧ R5 K ≡ J R′2 K

where fNURSE(s, o, a) is defined as:

fNURSE(s, o, a) (s, o, a) R

J ( true chop always(admitt(SPATIENT )))

and medical record(Omedical record, SPATIENT )K (SNURSE,GPS, view(Omedical record)) 2

and gNURSE(s, o, a) is defined as:

gNURSE(s, o, a) (s, o, a) R

J false K (SNURSE,GPS, view(Omedical record)) 2

and hNURSE(s, o, a) is defined as:

hNURSE(s, o, a) (s, o, a) R

J0 : allow(SNURSE,GPS, view(Omedical record))

and not deny(SNURSE,GPS, view(Omedical record))K (SNURSE,GPS, view(Omedical record)) 5

154 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

and J R3 ∧ R5 K ≡ J R′3 K

where fNURSE(s, o, a) is defined as:

fNURSE(s, o, a) (s, o, a) R

J false K (SNURSE,GPS, alter(O)) 3

and gNURSE(s, o, a) is defined as:

gNURSE(s, o, a) (s, o, a) R

J O = Omedical records) or O = Odoctor notes K (SNURSE,GPS, alter(O)) 3

and hNURSE(s, o, a) is defined as:
hNURSE(s, o, a) (s, o, a) R

J0 : deny(SNURSE ,GPS, alter(O)) and not allow(SNURSE ,GPS, alter(O))K (SNURSE ,GPS, alter(O)) 5

155 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

and J R4 ∧ R5 K ≡ J R′4 K
where fNURSE(s, o, a) is defined as:

fNURSE(s, o, a) (s, o, a) R

J false K (SNURSE,GPS, sign(O)) 4

and gNURSE(s, o, a) is defined as:

gNURSE(s, o, a) (s, o, a) R

J true K (SNURSE,GPS, sign(OLA)) 4

and hNURSE(s, o, a) is defined as:

hNURSE(s, o, a) (s, o, a) R

J0 : deny(SNURSE,GPS, sign(O)) and not allow(SNURSE,GPS, sign(O))K (SNURSE,GPS, sign(O)) 5

156 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Semantics of PPATIENT

JPPATIENT K ≡ J R6...R12K ≡ J R′6 K ∧ J R′7 K ∧ J R′8 K ∧ J R′9 K ∧ J R′10 K ∧ J R′11 K

where J R′6 K, J R′7 K, J R′8 K, J R′9 K, J R′10 K, J R′11 K are defined in Appendix C

Part 1.

Semantics of PDOCTOR

JPDOCTORK ≡ J R13...R18 K ≡ J R′13 K ∧ J R′14 K ∧ J R′15 K ∧ J R′16 K ∧ J R′17 K
where J R′13 K, J R′14 K, J R′15 K, J R′16 K, J R′17 K are defined in Appendix C part 2.

5.4.3 Safety property:

A safety property informally express that nothing bad will happen during execution

of a program or formally:

ψ =̂ 2i f

We will give a specific safety property for every member of the GPS and prove that

this property holds for each member.

Nurse Safety Property:

The safety property can be defined as:

It is never the case that the nurse can use GPS without being registered on the

system.

Let ψ1 =̂ 2i (fin (Aut(SNURSE,GPS, a)) ⊃ true ; 2(registered(SNURSE)))

denote the nurse safety property and let a ∈ {access , view , alter}
The proof that GPS policy satisfies ψ1 can be done by proving that each of the

nurse rules in this policy which affect the safety property will not invalidate this

property ψ1, i.e. JR1...R5K ⊃ ψ1.

We have to prove that JR1 ∧ R5K ⊃ ψ1, JR2 ∧ R5K ⊃ ψ1, JR3 ∧R5K ⊃ ψ1.

HereJRiK denotes only the rules that affect the safety property.JR4...R5K ⊃ ψ1 be-

cause they cannot affect (invalidate) ψ1.

157 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

We can prove that the nurse policy satisfies the safety property by proving that

R
′
1 and R

′
2 and R

′
3 which affect the safety property satisfy ψ1.

Rule R
′
1 states:

R
′
1 : A nurse has no access to the system before she has registered on the system.

allow(SNURSE,GPS, access) when 0 true chop always( registered(SNURSE))

1. From the semantics of PNURSE we have:

JR1 ∧R5 K ≡ J R′1 K ≡∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fNURSE(s, o, a)↔ Aut+(s, o, a))∧
(gNURSE(s, o, a)↔ Aut−(s, o, a))∧
(hNURSE(s, o, a)↔ Aut(s, o, a))


(true ; 2( registered(SNURSE))) ↔ Aut+(SNURSE,GPS, access)

∧ false ↔ Aut−(SNURSE,GPS, access)

∧ 0 : (Aut+(SNURSE,GPS, access) ∧ ¬ Aut−(SNURSE,GPS, access)) ↔
Aut(SNURSE,GPS, access)

2. from the definition of(↔), we have:

f ↔ w =̂ 2i (f ≡ fin (w))

3. which can be written as:

2i ((true ; 2( registered(SNURSE))) ≡ fin (Aut+(SNURSE,GPS, access)))

∧ 2i (false ≡ fin (Aut−(SNURSE,GPS, access)))

∧2i ((true;(len(0)∧Aut+(SNURSE,GPS, access) ∧ ¬Aut−(SNURSE,GPS, access))) ≡
fin Aut(SNURSE,GPS, access))

4. By definition, we know that:

true ; (len(0)∧(Aut+(SNURSE,GPS, access) ∧ ¬ Aut−(SNURSE,GPS, access)))

≡ fin (Aut+(SNURSE,GPS, access) ∧ ¬ Aut−(SNURSE,GPS, access))

5. so, we can write the first one as:

2i (true ; 2( registered(SNURSE))) ≡ fin (Aut+(SNURSE,GPS, access))

∧ 2i (false ≡ fin (Aut−(SNURSE,GPS, access)))

∧ 2i (fin (Aut+(SNURSE,GPS, access) ∧ ¬ Aut−(SNURSE,GPS, access)) ≡
fin Aut(SNURSE,GPS, access))

158 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

6. so, we have:

2i (fin (Aut+(SNURSE,GPS, access) ∧ ¬ Aut−(SNURSE,GPS, access)) ≡
fin Aut(SNURSE,GPS, access))

7. we know that:

fin (Aut+(SNURSE,GPS, access) ∧ ¬ Aut−(SNURSE,GPS, access)) ≡
fin (Aut+(SNURSE,GPS, access)) ∧ fin (¬ Aut−(SNURSE,GPS, access))

8. also, we know that:

fin (¬ Aut−(SNURSE,GPS, access)) ≡ ¬ fin (Aut−(SNURSE,GPS, access))

9. so, we have:

2i (fin (Aut+(SNURSE,GPS, access)) ∧ ¬ fin (Aut−(SNURSE,GPS, access))

≡ fin (Aut(SNURSE,GPS, access)))

10. we know that false ≡ fin (Aut−(SNURSE,GPS, access))

11. so, we can write:

2i (fin (Aut+(SNURSE,GPS, access)) ≡ fin (Aut(SNURSE,GPS, access)))

12. and from above we have:

2i (true ; 2( registered(SNURSE)) ≡ fin (Aut(SNURSE,GPS, access)))

13. using ITL reasoning, we have:

2i (fin (Aut(SNURSE,GPS, access)) ⊃ true ; 2( registered(SNURSE)))

14. and this is ψ1.

159 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Rule R
′
2 states:

R
′
2 : A nurse can view the patient’s medical records when a patient is admitted.

allow(SNURSE,GPS, view(Omedical records)) when 0 :

true chop always((admitt(SPATIENT )) and medical record(SPATIENT ))

1. From the semantics of PNURSE we have:

JR2 ∧R5 K ≡ J R′2 K ≡∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fNURSE(s, o, a)↔ Aut+(s, o, a))∧
(gNURSE(s, o, a)↔ Aut−(s, o, a))∧
(hNURSE(s, o, a)↔ Aut(s, o, a))


true ; 2((admitt(SPATIENT )) ∧medical record(Omedical record, SPATIENT )) ↔
Aut+(SNURSE,GPS, view(Omedical record))

∧ false ↔ Aut−(SNURSE,GPS, view(Omedical record))

∧ 0 : Aut+(SNURSE,GPS, view(Omedical record)) ∧
¬ Aut−(SNURSE,GPS, view(Omedical record))

↔ Aut(SNURSE,GPS, view(Omedical record))

2. from the definition of(↔) we have:

f ↔ w =̂ 2i (f ≡ fin (w))

3. we have:

2i (true ; 2((admitt(SPATIENT )) ∧medical record(Omedical record, SPATIENT )) ≡
fin (Aut+(SNURSE,GPS, view(Omedical record))))

∧ 2i (false ≡ fin (Aut−(SNURSE,GPS, view(Omedical record))))

∧ 2i (true ; (len(0) ∧ Aut+(SNURSE,GPS, view(Omedical record))

∧ ¬ Aut−(SNURSE,GPS, view(Omedical record)))

≡ fin (Aut(SNURSE,GPS, view(Omedical record))))

4. By definition, we have:

true ; (len(0) ∧ Aut+(SNURSE,GPS, view(Omedical record)) ∧
¬ Aut−(SNURSE,GPS, view(Omedical record))) ≡

160 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

fin (Aut+(SNURSE,GPS, view(Omedical record)) ∧
¬ Aut−(SNURSE,GPS, view(Omedical record)))

5. so, we can substitute it, and we have:

2i (true ; 2((admitt(SPATIENT )) ∧medical record(Omedical record, SPATIENT )) ≡
fin (Aut+(SNURSE,GPS, view(Omedical record))))

∧ 2i (false ≡ fin (Aut−(SNURSE,GPS, view(Omedical record))))

∧ 2i (fin (Aut+(SNURSE,GPS, view(Omedical record)) ∧
¬ Aut−(SNURSE,GPS, view(Omedical record)))

≡ fin (Aut(SNURSE,GPS, view(Omedical record))))

6. so, we have:

2i (fin (Aut+(SNURSE,GPS, view(Omedical record)) ∧
¬ Aut−(SNURSE,GPS, view(Omedical record)))

≡ fin (Aut(SNURSE,GPS, view(Omedical record))))

7. we know that:

fin (Aut+(SNURSE,GPS, view(Omedical record)) ∧
¬ Aut−(SNURSE,GPS, view(Omedical record))) ≡
fin (Aut+(SNURSE,GPS, view(Omedical record))) ∧
fin (¬ Aut−(SNURSE,GPS, view(Omedical record)))

8. also, we know that:

fin (¬ Aut−(SNURSE,GPS, view(Omedical record))) ≡
¬ fin (Aut−(SNURSE,GPS, view(Omedical record)))

9. so, we have:

2i (fin (Aut+(SNURSE,GPS, view(Omedical record))) ∧
¬ fin (Aut−(SNURSE,GPS, view(Omedical record)))

≡ fin (Aut(SNURSE,GPS, view(Omedical record))))

10. but we know that false ≡ Aut−(SNURSE,GPS, view(Omedical record))

11. substitute it, we can write it as:

2i (fin (Aut+(SNURSE,GPS, view(Omedical record)))

161 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

≡ fin (Aut(SNURSE,GPS, view(Omedical record))))

12. and we have:

2i (fin (true ; 2((admitt(SPATIENT )) ∧
medical record(Omedical record, SPATIENT ))) ≡
fin ( Aut(SNURSE,GPS, view(Omedical record))))

13. this is equal to:

2i (fin (Aut(SNURSE,GPS, view(Omedical record))) ≡
true ; 2((admitt(SPATIENT )) ∧ medical record(Omedical record, SPATIENT )))

14. we assume that view can only be after registration, so we can say that:

2i (fin (Aut(SNURSE,GPS, view(Omedical record))) ≡ true ; 2( registered(SNURSE)))

15. and from it we have:

2i (fin (Aut(SNURSE,GPS, view(Omedical record))) ⊃ true ; 2( registered(SNURSE)))

16. we can say that R
′
2 satisfies ψ1

162 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Rule R
′
3 states:

R
′
3 : A nurse cannot alter the medical records and doctor’s notes.

deny(SNURSE,GPS, alter(O))when 0 : (O = Omedical records or O = Odoctor notes)

1. From the semantics of PNURSE we have:

JR3 ∧R5 K ≡ J R′3 K ≡
JPNURSEK ≡ J R3 ∧ R5 K ≡ J R′3 K ≡∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fNURSE(s, o, a)↔ Aut+(s, o, a))∧
(gNURSE(s, o, a)↔ Aut−(s, o, a))∧
(hNURSE(s, o, a)↔ Aut(s, o, a))


false ↔ Aut+(SNURSE,GPS, alter(O))

∧ O = (Omedical records ∨ Odoctor notes)↔ Aut−(SNURSE,GPS, alter(O))

∧ 0 : Aut−(SNURSE,GPS, alter(O)) ∧ ¬ Aut+(SNURSE,GPS, alter(O))

↔ Aut(SNURSE,GPS, alter(O))

2. from the definition of(↔) we have:

f ↔ w =̂ 2i (f ≡ fin (w))

3. we have:

2i (false ≡ fin (Aut+(SNURSE,GPS, alter(O))))

∧2i (O = (Omedical records ∨Odoctor notes) ≡ fin (Aut−(SNURSE,GPS, alter(O))))

∧ 2i (0 : Aut−(SNURSE,GPS, alter(O)) ∧ ¬ Aut+(SNURSE,GPS, alter(O))

≡ fin (Aut(SNURSE,GPS, alter(O))))

4. So, we have:

2i (false ≡ fin (Aut+(SNURSE,GPS, alter(O))))

∧2i (O = (Omedical records ∨Odoctor notes) ≡ fin (Aut−(SNURSE,GPS, alter(O))))

∧2i (true;(len(0)∧Aut−(SNURSE,GPS, alter(O)) ∧ ¬Aut+(SNURSE,GPS, alter(O)))

≡ fin (Aut(SNURSE,GPS, alter(O))))

5. By definition, we have:

true;(len(0)∧Aut−(SNURSE,GPS, alter(O)) ∧ ¬Aut+(SNURSE,GPS, alter(O))) ≡

163 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

fin (Aut−(SNURSE,GPS, alter(O)) ∧ ¬ Aut+(SNURSE,GPS, alter(O)))

6. So, we have:

2i (false ≡ fin (Aut+(SNURSE,GPS, alter(O))))

∧2i (O = (Omedical records ∨Odoctor notes) ≡ fin (Aut−(SNURSE,GPS, alter(O))))

∧ 2i (fin (Aut−(SNURSE,GPS, alter(O)) ∧ ¬ Aut+(SNURSE,GPS, alter(O)))

≡ fin (Aut(SNURSE,GPS, alter(O))))

7. So, we have:

2i (fin (Aut−(SNURSE,GPS, alter(O)) ∧ ¬ Aut+(SNURSE,GPS, alter(O)))

≡ fin (Aut(SNURSE,GPS, alter(O))))

8. We know that:

fin ((Aut−(SNURSE,GPS, alter(O)) ∧ ¬ Aut+(SNURSE,GPS, alter(O)))) ≡
fin (Aut−(SNURSE,GPS, alter(O))) ∧ fin (¬ Aut+(SNURSE,GPS, alter(O)))

9. Also, we know that:

fin (¬Aut+(SNURSE,GPS, alter(O))) ≡ ¬ fin (Aut+(SNURSE,GPS, alter(O)))

10. So, we have:

2i (fin (Aut−(SNURSE,GPS, alter(O)))∧ ¬ fin (Aut+(SNURSE,GPS, alter(O)))

≡ fin (Aut(SNURSE,GPS, alter(O))))

11. We know that false ≡ Aut+(SNURSE,GPS, alter(O)) so we can write:

2i (fin (Aut−(SNURSE,GPS, alter(O))) ≡ fin (Aut(SNURSE,GPS, alter(O))))

12. we know that:

(O = (Omedical records ∨ Odoctor notes)) ≡ fin (Aut−(SNURSE,GPS, alter(O)))

164 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

13. so, we have:

2i ((O = (Omedical records ∨ Odoctor notes)) ≡ fin (Aut(SNURSE,GPS, alter(O))))

14. this yields to:

2i (fin (Aut(SNURSE,GPS, alter(O))) ≡ (O = (Omedical records ∨ Odoctor notes)))

15. which can be written as:

2i (fin (Aut(SNURSE,GPS, alter(O))) ⊃ (O = (Omedical records ∨ Odoctor notes)))

16. by assume that alter can be after registration, so we can say that:

2i (fin (Aut(SNURSE,GPS, alter(O))) ⊃ (O = (Omedical records ∨ Odoctor notes)))

17. from it we can say that R
′
3 satisfies ψ1.

165 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Patient Safety Property:

It is never the case that the patient can alter the medical records in the system.

Let ψ2 =̂ 2i (fin (¬Aut(SPATIENT ,GPS, alter(Omedical records))))

denote the safety property.

A compositional proof that patient policy satisfies ψ2 can be done using proof rules

by proving that each of the rules in this policy satisfies the safety property ψ2.

JR′8...R
′
11K ⊃ ψ2.

We have to prove that JR′8∧R
′
11K ⊃ ψ2. Here JR′iK denotes only rules that can affect

the safety property. The rules JR′9...R
′
11K cannot invalidate ψ2.

We can prove that the patient policy satisfies the safety property by proving that

R
′
8 which affect the safety property satisfies ψ2.

Rule R
′
8 states:

R
′
8 : A patient cannot alter the medical records in the system.

deny(SPATIENT ,GPS, alter(Omedical records) when 0 : true

1. From the semantics of PPATIENT we have:

J R8 ∧ R12 K ≡ J R′8 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))


false ↔ Aut+(SPATIENT ,GPS, alter(Omedical records))

∧ true ↔ Aut−(SPATIENT ,GPS, alter(Omedical records))

∧ 0 : Aut−(SPATIENT ,GPS, alter(Omedical records))

∧ ¬ Aut+(SPATIENT ,GPS, alter(Omedical records)) ↔
Aut(SPATIENT ,GPS, alter(Omedical records))

2. from the definition of(↔) we have:

f ↔ w =̂ 2i (f ≡ fin (w))

166 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

3. we have:

2i (false ≡ fin (Aut+(SPATIENT ,GPS, alter(Omedical records))))

∧ 2i (true ≡ fin ( Aut−(SPATIENT ,GPS, alter(Omedical records))))

∧ 2i (0 : Aut−(SPATIENT ,GPS, alter(Omedical records)) ∧
¬ Aut+(SPATIENT ,GPS, alter(Omedical records))

≡ fin (Aut(SPATIENT ,GPS, alter(Omedical records))))

4. so, we have:

2i (false ≡ fin (Aut+(SPATIENT ,GPS, alter(Omedical records))))

∧ 2i (true ≡ fin (Aut−(SPATIENT ,GPS, alter(Omedical records))))

∧ 2i (true ; (len(0) ∧ Aut−(SPATIENT ,GPS, alter(Omedical records)) ∧
¬ Aut+(SPATIENT ,GPS, alter(Omedical records)))

≡ fin (Aut(SPATIENT ,GPS, alter(Omedical records))))

5. By definition, we have:

true ; (len(0) ∧ Aut−(SPATIENT ,GPS, alter(Omedical records)) ∧
¬ Aut+(SPATIENT ,GPS, alter(Omedical records))) ≡
fin (Aut−(SPATIENT ,GPS, alter(Omedical records)) ∧
¬ Aut+(SPATIENT ,GPS, alter(Omedical records)))

6. so, we have:

2i (false ≡ fin (Aut+(SPATIENT ,GPS, alter(Omedical records))))

∧ 2i (true ≡ fin (Aut−(SPATIENT ,GPS, alter(Omedical records))))

∧ 2i (fin (Aut−(SPATIENT ,GPS, alter(Omedical records)) ∧
¬ Aut+(SPATIENT ,GPS, alter(Omedical records)))

≡ fin (Aut(SPATIENT ,GPS, alter(Omedical records))))

7. which can be written as:

2i (fin (Aut−(SPATIENT ,GPS, alter(Omedical records)) ∧
¬ Aut+(SPATIENT ,GPS, alter(Omedical records)))

≡ fin (Aut(SPATIENT ,GPS, alter(Omedical records))))

8. We know that:

fin (Aut−(SPATIENT ,GPS, alter(Omedical records)) ∧

167 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

¬ Aut+(SPATIENT ,GPS, alter(Omedical records))) ≡
fin (Aut−(SPATIENT ,GPS, alter(Omedical records))) ∧
fin (¬ Aut+(SPATIENT ,GPS, alter(Omedical records)))

9. Also, we know that:

fin (¬ Aut+(SPATIENT ,GPS, alter(Omedical records))) ≡
¬ fin (Aut+(SPATIENT ,GPS, alter(Omedical records)))

10. So, we have:

2i (fin (Aut−(SPATIENT ,GPS, alter(Omedical records))) ∧
¬ fin (Aut+(SPATIENT ,GPS, alter(Omedical records)))

≡ fin (Aut(SPATIENT ,GPS, alter(Omedical records))))

11. We know that:

false ≡ fin (Aut+(SPATIENT ,GPS, alter(Omedical records)))

12. So, we have:

2i (fin (Aut−(SPATIENT ,GPS, alter(Omedical records)))

≡ fin (Aut(SPATIENT ,GPS, alter(Omedical records))))

13. we know that:

true ≡ fin ( Aut−(SPATIENT ,GPS, alter(Omedical records)))

14. so, we have:

2i (true ≡ fin (Aut(SPATIENT ,GPS, alter(Omedical records))))

15. which can be written as:

2i (fin (¬Aut(SPATIENT ,GPS, alter(Omedical records))))

16. which is ψ2.

168 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

Doctor Safety Property:

It is never the case that anyone can modify the patient medical records without

being a doctor of this patient.

Let ψ3 =̂ 2i (fin (Aut(SDOCTOR,GPS, alter(Omedical records))) ⊃
doctor(SDOCTOR, SPATIENT ) ∧ medical records(SPATIENT ))

denote the safety property.

A compositional proof that any policy satisfies ψ3 can be done using proof rules by

proving that each of the rules in this policy satisfies the safety property ψ3.

JR13...R18K ⊃ ψ3.

We have to prove that JR14 ∧ R18K ⊃ ψ3.

Here JRiK denotes only rules that can affect the safety property. JR′13 , R
′
15... R

′
18K ⊃

ψ3 because they cannot affect ψ3 .

We can prove that the doctor policy satisfies the safety property by proving that

R
′
14 which affects the safety property satisfies ψ3.

Rule R
′
14 states:

R
′
14 : The doctor can alter all of the medical records of his/her patients.

allow(SDOCTOR,GPS, alter(Omedical record)) when 0 :

doctor(SDOCTOR, SPATIENT ) and medical record(Omedical record, SPATIENT )

1. From the semantics of PDOCTOR we have:

J R14 ∧ R18 K ≡ J R′14 K ≡∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))


doctor(SDOCTOR, SPATIENT ) ∧ medical record(Omedical record, SPATIENT ) ↔
Aut+(SDOCTOR,GPS, alter(Omedical record))

∧ false ↔ Aut−(SDOCTOR,GPS, alter(Omedical record))

∧ 0 : Aut+(SDOCTOR,GPS, alter(Omedical record))

∧ ¬ Aut−(SDOCTOR,GPS, alter(Omedical record)) ↔
Aut(SDOCTOR,GPS, alter(Omedical record))

169 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

2. from the definition of(↔) we have:

f ↔ w =̂ 2i (f ≡ fin (w))

3. we have:

2i (doctor(SDOCTOR, SPATIENT ) ∧medical record(Omedical record, SPATIENT ) ≡

fin (Aut+(SDOCTOR,GPS, alter(Omedical record))))

∧ 2i (false ≡ fin (Aut−(SDOCTOR,GPS, alter(Omedical record))))

∧ 2i (0 : Aut+(SDOCTOR,GPS, alter(Omedical records)) ∧
¬ Aut−(SDOCTOR,GPS, alter(Omedical records))

≡ fin (Aut(SDOCTOR,GPS, alter(Omedical records))))

4. so, we have:

2i (doctor(SDOCTOR, SPATIENT ) ∧medical record(Omedical record, SPATIENT ) ≡

fin (Aut+(SDOCTOR,GPS, alter(Omedical record))))

∧ 2i (false ≡ fin (Aut−(SDOCTOR,GPS, alter(Omedical record))))

∧ 2i (true ; (len(0) ∧ Aut+(SDOCTOR,GPS, alter(Omedical records)) ∧
¬ Aut−(SDOCTOR,GPS, alter(Omedical records)))

≡ fin (Aut(SDOCTOR,GPS, alter(Omedical records))))

5. By definition, we have:

true ; (len(0) ∧ Aut+(SDOCTOR,GPS, alter(Omedical records)) ∧
¬ Aut−(SDOCTOR,GPS, alter(Omedical records))) ≡
fin (Aut+(SDOCTOR,GPS, alter(Omedical records)) ∧
¬ Aut−(SDOCTOR,GPS, alter(Omedical records)))

6. so, we have:

2i (doctor(SDOCTOR, SPATIENT ) ∧medical record(Omedical record, SPATIENT ) ≡

fin (Aut+(SDOCTOR,GPS, alter(Omedical record))))

∧ 2i (false ≡ fin (Aut−(SDOCTOR,GPS, alter(Omedical record))))

∧ 2i (fin (Aut+(SDOCTOR,GPS, alter(Omedical records)) ∧
¬ Aut−(SDOCTOR,GPS, alter(Omedical records)))

170 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

≡ fin (Aut(SDOCTOR,GPS, alter(Omedical records))))

7. which can be written as:

2i (fin (Aut+(SDOCTOR,GPS, alter(Omedical records)) ∧
¬ Aut−(SDOCTOR,GPS, alter(Omedical records)))

≡ fin (Aut(SDOCTOR,GPS, alter(Omedical records))))

8. We know that:

fin (Aut+(SDOCTOR,GPS, alter(Omedical records)) ∧
¬ Aut−(SDOCTOR,GPS, alter(Omedical records))) ≡
fin (Aut+(SDOCTOR,GPS, alter(Omedical records))) ∧
fin (¬ Aut−(SDOCTOR,GPS, alter(Omedical records)))

9. Also, we know that:

fin (¬ Aut−(SDOCTOR,GPS, alter(Omedical records))) ≡
¬ fin (Aut−(SDOCTOR,GPS, alter(Omedical records)))

10. we know that:

false ≡ fin (Aut−(SDOCTOR,GPS, alter(Omedical record)))

11. so, we have:

2i (fin (Aut+(SDOCTOR,GPS, alter(Omedical records)))

≡ fin (Aut(SDOCTOR,GPS, alter(Omedical records))))

12. which can be written as:

2i (fin (Aut(SDOCTOR,GPS, alter(Omedical records)))

≡ fin (Aut+(SDOCTOR,GPS, alter(Omedical records))))

13. we know that:

doctor(SDOCTOR, SPATIENT ) ∧ medical record(Omedical record, SPATIENT ) ≡
fin (Aut+(SDOCTOR,GPS, alter(Omedical record)))

171 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

14. so, we can write it as:

2i (fin (Aut(SDOCTOR,GPS, alter(Omedical records)))

≡ doctor(SDOCTOR, SPATIENT ) ∧ medical record(Omedical record, SPATIENT ))

15. which is ψ3.

172 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

5.5 Comparison between the two proofs

In this Section, we will compare the proofs when using the past time operators with

the one when using the future time operators.

First, let us take the proof of safety property of the nurse policy with the past time

operators:

ψ1 =̂ 2̂((Aut(SNURSE, GPS, a)) ⊃ true ;̂ 2̂(registered(SNURSE))) (5.1)

Then, the proof of safety property of the nurse policy with the future time op-

erators:

ψ1 =̂ 2i (fin (Aut(SNURSE, GPS, a)) ⊃ true ; 2(registered(SNURSE))) (5.2)

The difference between the first formula (5.1) and the second one (5.2) is the

operator fin which is an additional operator in the second formula (5.2). As we see

in the Nurse Safety Property, in Section (5.6.1) with the past time operators and in

Section (5.10.1) with the future time operators, when comparing between the two

proofs, it is clear that one is shorter and contains less symbols. For instance, the

proof that rule R
′
1 satisfies the safety property, when using the proposed verification

rules with the past time operators and is much shorter (only 8 steps) than the proofs

when using the future time (14 steps). Also, the proof that the rule R
′
2 satisfies the

safety property, when using the past time operators is done with only 11 steps;

however, the same proof is done with 16 steps when using future time. In the next

table we will list the rules which we have proved satisfy the safety property and in

how many steps the proof is done.

Rules number Steps with the past Steps with the future

R
′
1 8 steps 14 steps

R
′
2 11 steps 16 steps

R
′
3 10 steps 17 steps

R
′
8 7 steps 16 steps

R
′
14 7 steps 15 steps

Table 5.3: Rules proof comparison

Table 5.3 shows that all the proofs with the past time operators have been done

173 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

with fewer steps compared to the proofs with future time.

Also, if we compare between the starting proof step, which is the third step of the

past time proof:

true ;̂ 2̂( registered(SNURSE)) ≡ Aut+(SNURSE,GPS, access)

∧ false ≡ Aut−(SNURSE,GPS, access)

∧ Aut+(SNURSE,GPS, access) ∧ ¬ Aut−(SNURSE,GPS, access) ≡
Aut(SNURSE,GPS, access)

For the future time proof, the third step is:

2i ((true ; 2( registered(SNURSE))) ≡ fin (Aut+(SNURSE,GPS, access)))

∧ 2i (false ≡ fin (Aut−(SNURSE,GPS, access)))

∧2i ((true;(len(0)∧Aut+(SNURSE,GPS, access) ∧ ¬Aut−(SNURSE,GPS, access))) ≡
fin Aut(SNURSE,GPS, access))

It can be seen that the proof with past time is much shorter and has less number

of symbols and this makes the proof easier to express (simpler) than the future

time proof. As we have said before, the reason is the additional two operators fin

and 2i which are used in the future time proof. This affects the remaining of the

proof and hence it has more steps. So, it can be said that future time uses more

operators, fin and 2i , than the past time in the verification process and this make

the verification of the safety property with the past time much shorter as it has a

less number of symbols (more succinct) than the proof with future time; also it can

be said it is easier to express (simpler) regarding succinctness. Consequently, it can

be concluded that the succinctness and simplicity are achieved in the verification

step.

5.6 Chapter Summary

In order to evaluate the past time operators of ITLp, the scenario of GPS system

is given and specified using the past time operators of ITLp as well as the existing

future time operators of ITL.

The proof rules which have been proposed in Section 4.5.1, have been used to verify

the safety property of the GPS scenario and this show the benefits of the proof

system ofITLp. Also, we have used the existing proof rules of ITL to verify the

safety property of the GPS system. A comparison between the specification and

verification when using past time operators with the specification and verification

174 Sami Alsarhani



CHAPTER 5. SCENARIO:
GENERAL PRACTICE SYSTEM (GPS)

of future time operators has been made to evaluate the past time operators. This

Chapter evaluates the work done in the contribution Chapters (3 and 4) and shows

that the past time operators of ITLp can be used to reason about history-based

access control policy. Additionally, the proposed verification rules (Section 4.3.1)

are used to prove that GPS system satisfies the safety property.

175 Sami Alsarhani



Chapter 6

CONCLUSION

In this Chapter:

• Thesis summary.

• Comparison with related work.

• Original contributions.

• Success criteria revisited

• Conclusion.

• Limitations.

• Future work.

176



CHAPTER 6. CONCLUSION

6.1 Thesis summary

The aim of this work is to contribute the development of interval temporal logic

with past time operators ITLp as formal specification and verification language and

use it to reason about history based access control policies.

Towards this goal, this research has explored in the literature review the specifi-

cation, temporal logic history including the time models and the classification of

temporal logic and finally, the access control policies where the policy languages

and models to reason about history based access control systems are discussed in

order to support our choice of ITLp. It has been shown that these languages and

models are not appropriate to reason about this class of policies except SANTA and

the proposed model.

Interval temporal logic with future time ITL and with past time ITLp have been

introduced with their syntaxes and semantics, and the proof systems. Moreover,

SANTA operators such as always-followed-by have been given a history semantics

using past time operators of ITLp to use in the Scenario Chapter. In the Sce-

nario Chapter, the specification of GPS system has been described using ITLp and

SANTA operators with the history semantics; however, the verification rules pro-

posed in Section 4.5 has been used to verify the safety property of GPS.

In order to evaluate ITLp, the specification of the GPS system has been described

using ITL and the existing SANTA operators, and the verification rules have been

used to verify the safety property of the given scenario. There has then been a com-

parison between the specification of GPS using past time operators of ITLp and

using the future time operators of ITL to show the advantages of the introduced

past time operators.

6.2 Comparison with related work

This thesis presents the past time operators of ITLp which are different from the

interval temporal logic ITL proposed by Moszkowski [98] since the past time oper-

ators such as past chop (̂;), and past chopstar (∗̂) have been proposed instead of the

future one.

Duan’s [37] and Bowman’s [19] approaches to interval temporal logic are the closest

ones to ours. However, there are many differences between these two works com-

pared to our work in this thesis. The first one is that Duan and Bowman combine

the use of past operators with the future one. This use may be accepted in the

177 Sami Alsarhani



CHAPTER 6. CONCLUSION

syntax level but in the semantics level it will lead the model to become complicated

and not clear as the current state is swinging between the future and the past. Also,

the two works have used the past time operators of ITL, but they do not have the

same semantics. To explain that, take the past chop operators proposed by Duan.

First, Duan has used the interpretation notation (σ, i, k, j) rather than an interval

in the original ITL where σ is fixed and the formula p interpreted over it. The

chop operator is used to partition the whole interval σ to some subintervals where

the sub formula p is interpreted over. The notations i, k, j are used to specify the

subintervals σ(i...j) of σ where σk is the current state and a sub formula of p. The

sub formula may involve next and previous operators in arbitrary order, so σk may

swing between σi and σj. Also, when using the chop operator in the sub interval

σ(i...j), this produces two subintervals σ(i...h) where the current position is σk, and

σ(h...j) where the current position is σh as shown in Figure 6.1.

| < —- subinterval1 —- > | < —- subinterval2 —- > |
| | | |
σi σk σh σj

• • • •
current state1 current state2

Figure 6.1: Duan Chop

However, Bowman in Multimedia in Executable Interval Temporal Logic (Mex-

itl), includes the past chop operators (̃;). To explain the chop operators in Mexitl,

assume that we have A ;̃B which is satisfied by an interval such that:

1. A holds over the larger interval resulting from moving the start of the interval

into the past, and

2. B holds over the original interval according to a past history that is truncated

at the start of the interval over which A holds.

The intervals are assumed to be line segments with three reference points. Starting

from the left hand side, the start of time is at the leftmost point, the start of the

current interval is at the next point and the end of the current interval is at the final

178 Sami Alsarhani



CHAPTER 6. CONCLUSION

point. Therefore, time is divided into a past history interval and a current interval

as shown in Figure 6.2.

σi σk σj

• < —— past —— • —— future —— > •
time start current state interval end

Figure 6.2: Mexitl Chop

In addition, Duan’s chop behaves differently to Bowman’s chop which also behave

differently to the past chop proposed in this work. As we see from above, the two

works in additional to our work has incorporated past operators, However, these

operators have different semantics as is explained above. Also, they incorporate

the uses of past time operators with the future time and this make these operators

difficult to understand and to use because the reference point is not fixed.

6.3 Original Contributions

With the massive improvement of all the systems in the science area and in computer

science in particular, this necessitates the specification languages such as Interval

Temporal Logic ITL to develop to specify history based access policies; these are

a very expressive class of policies that can define policy decisions dependent on

previously observed behaviours within the system and one of these developments

includes the past.

So far, most languages incorporate only future time operators and exclude the use

of past time operators. The reason behind this is that in various relevant cases

the addition of past operators does not increase the expressiveness power of these

temporal languages.

However, supporters reply that the succinctness is achieved whether the expressive

power is added or not according to the fact that there are many properties can

be expressed by means of much shorter formulas. What is more, when using past

operators many statements become easier to express (simplicity) because of a less

number of symbols and therefore it can be said that the use of temporal logic when

referring to the past is much easier as we will show in simple examples.

As a result, past time operators of ITLp such as past chop (̂;) and past chop star

179 Sami Alsarhani



CHAPTER 6. CONCLUSION

(∗̂) and past skip (ŝkip) were defined to enable more simplicity and succinctness in

specifications. Our research work has been to include the past time operators of

ITLp and define the syntax and semantics of these operators. Then, the complete

set of axioms and rules of ITLp are proposed and have proved sound. What is more,

the past time operators have been used to give a history semantics to the SANTA

operators always-followed-by and the strong version of it in (Section 4.3.3).

Additionally, we proposed the verification rules in (Section 4.5.1); these rules have

been used to verify that a system satisfies a property. We have used these verification

rules to prove that the GPS policies satisfy the safety property.

The past time operators of ITLp have been used to reason about history based

access control policies of GPS. A scenario of GPS is given to illustrate the use of

past time operators of ITLp in a history based access control systems where the

policy decision depends on previously observed behaviour to show the application

of these operators and the proposed proof rules.

6.4 Success Criteria Revisited

In order to measure the success of our research, success criteria were formulated in

Chapter 1. These criteria are revisited here:

• The past time operators of interval temporal logic are suitable to reason about

and express history based access control policies.

As we have shown in the GPS scenario, the past time Interval Temporal Logic

ITLp is appropriate and suitable to reason about history based access control

policies and this give us all the advantages of using ITLp, e.g., the use of the

proof rules to verify the safety property of history interval. This can be seen

in the specification of the scenario and the verification of the safety property

of the GPS policies.

• The change of numbering of states with past time operators of interval tem-

poral logic make the reasoning about history easier.

In the problem statement and research motivation (Section 1.2), it has been

discussed how the “ numbering of states” is changed when the past time op-

erators are used, also in the comparison between the two proofs (Section 5.5),

180 Sami Alsarhani



CHAPTER 6. CONCLUSION

it has been shown that this change makes the fin operator redundant and

simplify the reasoning about history.

• The formal specification and verification of history based access control policies

when using past time operators of ITL is more succinct and thus, easier to

express (simpler).

In the given GPS scenario, we have used the past time operators to proof the

safety property as it is shown in Sections 5.3.5, then, in Section 5.4.3, we have

used the future time operators to proof the same safety property.

As it has been shown in the comparison between the two proofs (Section 5.5),

it can be said that is the use of the past time operators to proof the safety

property making it much shorter (succinct) and easier to prove (simplicity)

6.5 Conclusion

The interval temporal logic with past time operators ITLp has been investigated:

past modalities, past chop (̂;), past chopstar (∗̂) and past skip (ŝkip) that allows us

to reason about the past has been introduced. Once we used the past time opera-

tors we found out that they helped us to clarify several issues. In particular they

contribute to reason about a very expressive security scenario such as history based

access control policies, where the policy decisions depend on previously observed

behaviours within the system. It is known that past time operators of interval tem-

poral logic ITLp do not increases the expressive power of interval temporal logic

ITL; that is, all the property which can be expressed using past time operators can

be expressed using future time operators. Also, the specification of the GPS policies

using the past time operators (Section 5.3.2) is the same as the specification with

the future time (Section5.4.1). However, there are classes of property proof that

can be expressed by means of much shorter formulas and also with less symbols

(succinctness), hence, the formula is easier to express (simplicity).

This is clear in the safety property with the past time (Section 5.3.4) and in the

safety property with the future time (Section 5.4.3).

Succinctness is achieved due to all the safety property proofs having been done in

fewer steps as has been shown in Table 5.3; also, all the proof formulas with past

time operators are much shorter than the proof formulas with the future time, as

is show in the comparison between the proof (Sections 5.5). Also, Succinctness and

simplicity can be achieved in the specification level as we will show in the following

181 Sami Alsarhani



CHAPTER 6. CONCLUSION

example:

If we want to express that “every request is eventually granted” one finds it natural

to write it as:

2(request ⊃ 3grant) (6.1)

But, if we would like to express that “every grant is preceded by a request”

2̂(grant ⊃ 3̂request) (6.2)

formula (6.2) can be expressed without past time operators as:

2(fin (grant) ⊃ 3 request) (6.3)

This example shows that the interval temporal logic formula with past operators

(6.2) is shorter than the future one (6.3). Thus, it can be said that the specifications

of history with the past time interval temporal logic can be more succinct and thus

simpler as has been shown in the example provided.

In conclusion, while this research is looking at the possible advantages of using

the past time operators of interval temporal logic to reason about security policies,

where the policy decisions depend on previously observed behaviours within the

system known as history based access control policy, the introduced operators can

be applied to several applications such as log file analysis (Section 6.8.2). Past time

operators of interval temporal ITLp and particularly the two operators past Chop

(̂;) and past Chopstar (∗̂) have the ability to express any system consisting of phases;

and these phases consist of sequence of states such as history based access control

policies.

This thesis has made a useful contribution to enable ITLp to be used in nontrivial

scenario such as GPS. However, the area of ITL and particularly ITLp needs

further developments and it is hoped that it will see a growing number and wider

spectrum of researchers.

6.6 Limitations

Any class of interval based temporal logic over linear orderings that contain at least

one linear ordering with an infinite ascending or descending chain of points such as

ITL is suffers from a will-known weakness that is undecidability since the formula

182 Sami Alsarhani



CHAPTER 6. CONCLUSION

of these logic are evaluated over intervals, that is, pairs of points. As a conse-

quence, formula translated into binary relation over the underlying ordering and,

respectively, the validity and satisfiability problems translate into dyadic second-

order logic [94]. This situation had discouraged attempts for practical applications

and further research on interval temporal logics. The formula is satisfiable if there

exists an interpretation of the formula as true, whereas a formula is valid if for every

interpretation the formula is true, it can be said that the presence of chop operator

makes the satisfiability of ITL formulas undecidable.

However, there are some additional limitations when using the past time operators;

one of the these limitations is that we are not combining the use of past time op-

erators together with the future time operators; according combining the past time

and future time operators are suffer from the current state problem and this is clear

in the work proposed by Duan in [37] and Bowman in [19]. Also, the executable

subset AnaTempura interpreter does not include the use of past time operators so,

we cannot execute these operators and benefits from the executability advantages.

6.7 Future Work

In the future, we plan to add the past operators to AnaTempura interpreter itself and

this give us the choice to use the past operators or not. We also hope to describe the

operational semantics of these operators in Tempura to execute the past operators

and benefit from the advantages of executing ITL formula and this will enable us

to formalize the relation between various execution strategies.

6.8 Future impact

6.8.1 Academic impact

Adding the past time operators to AnaTempura interpreter and benefiting from the

advantages of executing ITL formula has a future academic impact in the back-

tracking which is a well-known technique used when exploring logical properties. In

this technique, whenever we reach a point, we have a choices, for example between

disjuncts, and we make a selection. If we later find that our choice led to some

inconsistency or not a good choice we stop and use the past operators to revert back

to the last point where the choice has been made and select a different option. If

we find that all the choices form this point where the choice was made have been

183 Sami Alsarhani



CHAPTER 6. CONCLUSION

explored and each leads to an inconsistency, then the past operators can be used to

go back to the last choice before this one and so on. If we eventually get back to

our initial starting point, then we know that the formula is inconsistent because we

have explored all potential models. The past operators in this technique are used

instead of the normal procedure which is writing down all the possible choices and

trying them one by one; if we find that the choice is a wrong choice we go back

to the point where the choice has been made and try another one manually. If the

explored logical properties are simple then this process can be done manually, but

if the logical properties are too long and we have many choices, then this process

cannot be done manually and the past operators should be used to perform the

backtracking.

6.8.2 Industrial impact

Current software application often produces some auxiliary text files known as log

files. These files, reports all the events that have occurred during the running of

programs continuously.

Typically, log files are used by programs in the following way:

The log file is an auxiliary output file, distinct from other outputs of the program

and almost all log files are plain text files. On start-up of the program, the log file

is either empty, or contains whatever was left from previous runs of the program.

During program operation, lines (or groups of lines) are gradually appended to the

log file, never deleting or changing any previously stored information. Each record

in a log file is caused by a given event in the program, like user interaction, function

call, input or output procedure. Records in log files are often parameterized, i.e.

they show current values of variables, return values of function calls or any other

state information. The information reported in log files is the information that

programmers consider important or useful for program monitoring and/or locating

faults.

The proposed verification rules when using past time operators (Section 4.5 and

Section 4.5.1) can be applied to check that the log files records satisfy a property

such as safety property because we can use these records as execution history.

184 Sami Alsarhani



Bibliography

[1] Martin Abadi and Cédric Fournet. Access control based on execution history.

In NDSS. The Internet Society, 2003.

[2] James Allen. Maintaining knowledge about temporal intervals. Commun.

ACM, 26(11):832–843, November 1983.

[3] James Allen. Towards a general theory of action and time. Artif. Intell.,

23(2):123–154, July 1984.

[4] James Allen and Patrick Hayes. A common-sense theory of time. In Pro-

ceedings of the 9th international joint conference on Artificial intelligence -

Volume 1, IJCAI’85, pages 528–531, San Francisco, CA, USA, 1985. Morgan

Kaufmann Publishers Inc.

[5] James Allen and Patrick Hayes. Moments and points in an interval-based

temporal logic. Comput. Intell., 5(4):225–238, May 1990.

[6] Bowen Alpern and Fred Schneider. Recognizing safety and liveness. Distributed

Computing, 2:117–126, 1986.

[7] Alessandro Artale, Enrico Franconi, Milenko Mosurovic, Frank Wolter, and

Michael Zakharyaschev. Temporal description logic. In Handbook of Time

and Temporal Reasoning in Artificial Intelligence, pages 96–105. MIT Press,

2001.

[8] Arosha Bandara, Nicodemos Damianou, Emil Lupu, and Morris Sloman. Pol-

icy based management. In Jan Bergstra and Mark Burgess, editors, Handbook

of Network and System Administration, pages 507–564. Elsevier, 2008.

[9] Massimo Bartoletti. Language-based Security: Access Control and Static Anal-

ysis. PhD thesis, Dipartimento di Informatica, April 2005.

185



BIBLIOGRAPHY

[10] Moritz Becker, Cédric Fournet, and Andrew Gordon. Secpal: Design and

semantics of a decentralized authorization language. Journal of Computer

Security, 18(4):619–665, 2010.

[11] Ilan Beer, Shoham Ben-david, Dana Fisman, Anna Gringauze, and Yoav

Rodeh. The temporal logic sugar. In Computer Aided Verification, pages

363–367. Springer, 2001.

[12] David Elliott Bell and Leonard LaPadula. Secure computer systems: Mathe-

matical foundations. Technical report, MITRE Corporation, March 1973.

[13] David Elliott Bell and Leonard LaPadula. Secure Computer System: Unified

Exposition and MULTICS Interpretation. Technical Report ESD-TR-75-306,

The MITRE Corporation, 1976.

[14] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. Trbac: A temporal

role-based access control model. ACM Trans. Inf. Syst. Secur., 4(3):191–233,

August 2001.

[15] Kenneth Biba. Integrity considerations for secure computer systems. Technical

report, MITRE Corp., 04 1977.

[16] Woody Bledsoe and Donald Loveland. Automated Theorem Proving: After 25

Years. American Mathematical Society: Annual meeting. American Mathe-

matical Society, 1984.

[17] Howard Bowman. An interpretation of cognitive theory in concurrency the-

ory. Technical Report 8-98, Computing Laboratory, University of Kent at

Canterbury, October 1998.

[18] Howard Bowman, Helen Cameron, Peter King, and Simon Thompson. Spec-

ification and prototyping of structured multimedia documents using interval

temporal logic. In Howard Barringer, Michael Fisher, Dov Gabbay, and Gra-

ham Gough, editors, Advances in Temporal Logic, volume 16 of Applied Logic

Series, pages 435–453. Springer Netherlands, 2000.

[19] Howard Bowman, Helen Cameron, Peter King, and Simon Thompson. Mexitl:

Multimedia in executable interval temporal logic. Formal Methods in System

Design, 22(1):5–38, 2003.

186 Sami Alsarhani



BIBLIOGRAPHY

[20] Don Box and Chris Sells. Essential .Net: The Common Language Runtime.

Essential .NET. Addison-Wesley, 2003.

[21] Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg, editors. Advances

in Petri Nets 1986, Part I on Petri Nets: Central Models and Their Properties,

London, UK, 1987. Springer-Verlag.

[22] Antonio Cau. Compositional Verification and Specification of Refinement for

Reactive Systems in a Dense Time Temporal Logic. Bericht. Inst. für Infor-

matik und Praktische Math., 1996.

[23] Antonio Cau. Interval temporal logic, February 2012.

http://www.cse.dmu.ac.uk/STRL/ITL/.

[24] Antonio Cau, Helge Janicke, and Ben Moszkowski. Verification and enforce-

ment of access control policies. Formal Methods in System Design, 43(3):450–

492, 2013.

[25] Antonio Cau and Hussein Zedan. Refining interval temporal logic specifica-

tions. In Transformation-Based Reactive Systems Development, number 1231

in LNCS, pages 79–94. AMAST, Springer-Verlag, 1997.

[26] Edward Chang, Zohar Manna, and Amir Pnueli. Characterization of tempo-

ral property classes. In Proceedings of the 19th International Colloquium on

Automata, Languages and Programming, ICALP ’92, pages 474–486, London,

UK, 1992. Springer-Verlag.

[27] Jan Chomicki. Efficient checking of temporal integrity constraints using

bounded history encoding. ACM Transactions on Database Systems (TODS),

20(2):149–186, 1995.

[28] Jan Chomicki and David Toman. Logics for databases and information sys-

tems. chapter Temporal logic in information systems, pages 31–70. Kluwer

Academic Publishers, Norwell, MA, USA, 1998.

[29] Edmund Clarke and Allen Emerson. Design and synthesis of synchronization

skeletons using branching-time temporal logic. In Logic of Programs, Work-

shop, pages 52–71, London, UK, UK, 1982. Springer-Verlag.

187 Sami Alsarhani



BIBLIOGRAPHY

[30] Edmund Clarke, Allen Emerson, and Aravinda Prasad Sistla. Automatic ver-

ification of finite-state concurrent systems using temporal logic specifications.

ACM Trans. Program. Lang. Syst., 8(2):244–263, April 1986.

[31] Edmund Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani. Model

checking and the state explosion problem. In Tools for Practical Software

Verification, pages 1–30. Springer, 2012.

[32] Gordana Dodig Crnkovic. Constructive research and info-computational

knowledge generation. Model-Based Reasoning in Science and Technology,

pages 359–380, 2010.

[33] Dorothy Denning. A lattice model of secure information flow. Commun. ACM,

19(5):236–243, May 1976.

[34] Dorothy Denning. Cryptography and data security. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA, 1982.

[35] Antoni Diller. Z: an introduction to formal methods. John Wiley & Sons, Inc.,

1994.

[36] Clare Dixon, Mari-Carmen Fernández Gago, Michael Fisher, and Wiebe

van der Hoek. Temporal logics of knowledge and their applications in security.

Electronic Notes in Theoretical Computer Science, 186:27–42, 2007.

[37] Zhenhua Duan. An Extended Interval Temporal Logic and A Framing Tech-

nique for Temporal Logic Programming. Phd thesis, University of Newcastle

Upon Tyne, 1996.

[38] Zhenhua Duan and Nan Zhang. A complete axiomatization of propositional

projection temporal logic. In Proceedings of the 2008 2nd IFIP/IEEE Interna-

tional Symposium on Theoretical Aspects of Software Engineering, TASE ’08,

pages 271–278, Washington, DC, USA, 2008. IEEE Computer Society.

[39] Zhenhua Duan, Nan Zhang, and Maciej Koutny. A complete proof system

for propositional projection temporal logic. Theoretical Computer Science,

497:84–107, 2013.

[40] Hartmut Ehrig, Bernd Mahr, Ingo Classen, and Fernando Orejas. Introduction

to algebraic specification. part 1: Formal methods for software development.

The Computer Journal, 35(5):460–467, 1992.

188 Sami Alsarhani



BIBLIOGRAPHY

[41] Allen Emerson. Handbook of theoretical computer science (vol. b). chapter

Temporal and modal logic, pages 995–1072. MIT Press, Cambridge, MA, USA,

1990.

[42] Ronald Fagin, Joseph Halpern, Yoram Moses, and Moshe Vardi. Reasoning

About Knowledge. MIT Press, 1995.

[43] David Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-

based access control, artech house. Inc., Norwood, MA, 2003.

[44] José Luiz Fiadeiro and Tom Maibaum. Sometimes “tomorrow” is “sometime”.

In Dov Gabbay and Hans Jürgen Ohlbach, editors, Temporal Logic, volume

827 of Lecture Notes in Computer Science, pages 48–66. Springer Berlin Hei-

delberg, 1994.

[45] Marcelo Finger and Mark Reynolds. Imperative history: Two-dimensional

executable temporal logic. In Hans Jürgen Ohlbach and Uwe Reyle, editors,

Logic, Language and Reasoning, volume 5 of Trends in Logic, pages 73–98.

Springer Netherlands, 1999.

[46] Michael Fisher. Implementing temporal logics: Tools for execution and proof.

In Proceedings of CLIMA VI, LNAI 3900, pages 129–142. Springer.

[47] Michael Fisher. An introduction to executable temporal logics. The Knowledge

Engineering Review, 11:43–56, 2 1996.

[48] Michael Fisher. An Introduction to Practical Formal Methods Using Temporal

Logic. Wiley, 2011.

[49] Michael Fisher and Richard Owens. From the past to the future: Execut-

ing temporal logic programs. In In Proceedings of Logic Programming and

Automated Reasoning (LPAR), pages 369–380. Springer Verlag, 1992.

[50] Michael Fisher and Richard Owens. An introduction to executable modal and

temporal logics. In Proceedings of the Workshop on Executable Modal and

Temporal Logics, IJCAI ’93, pages 1–20, London, UK, 1995. Springer-Verlag.

[51] Cédric Fournet and Andrew Gordon. Stack inspection: Theory and variants.

SIGPLAN Not., 37(1):307–318, January 2002.

189 Sami Alsarhani



BIBLIOGRAPHY

[52] Dov Gabbay. The declarative past and imperative future. In Behnam Ban-

ieqbal, Howard Barringer, and Amir Pnueli, editors, Temporal Logic in Spec-

ification, volume 398 of Lecture Notes in Computer Science, pages 409–448.

Springer Berlin Heidelberg, 1989.

[53] Dov Gabbay, Amir Pnueli, Saharon Shelah, and Jonathan Stavi. On the tem-

poral analysis of fairness. In Proceedings of the 7th ACM SIGPLAN-SIGACT

symposium on Principles of programming languages, POPL ’80, pages 163–

173, New York, NY, USA, 1980. ACM.

[54] Antony Galton. The Logic of Aspect: An Axiomatic Approach. Clarendon

library of logic and philosophy. Clarendon Press, 1984.

[55] Narain Gehani. Specifications: Formal and informal - a case study. Software:

Practice and Experience, 12(5):433–444, 1982.

[56] Joseph Goguen. Higher Order Functions Considered Unnecessary for Higher

Order Programming. Computer Science Laboratory Menlo Park, Calif: SRI-

CSL. SRI International, Computer Science Laboratory, 1988.

[57] Rodolfo Gomez and Howard Bowman. PITL2MONA: Implementing a Deci-

sion Procedure for Propositional Interval Temporal Logic. Journal of Applied

Non-Classical Logics, 14(1-2):105–148, unknown 2004. Issue on Interval Tem-

poral Logics and Duration Calculi. V. Goranko and A. Montanari guest eds.

[58] Valentin Goranko, Angelo Montanari, and Guido Sciavicco. A road map of

interval temporal logics and duration calculi. Journal of Applied Non-Classical

Logics, 14(1-2):9–54, 2004.

[59] Orlena Gotel and Anthony Finkelstein. An analysis of the requirements trace-

ability problem. In Requirements Engineering, 1994., Proceedings of the First

International Conference on, pages 94–101. IEEE, 1994.

[60] Joseph Halpern, Zohar Manna, and Ben Moszkowski. A hardware semantics

based on temporal intervals. Technical report, Stanford, CA, USA, 1983.

[61] David Harel. Statecharts: A visual formalism for complex systems. Science

of computer programming, 8(3):231–274, June 1987.

[62] Michael Harrison, Walter Ruzzo, and Jeffrey Ullman. Protection in operating

systems. Communications of the ACM, 19(8):461–471, August 1976.

190 Sami Alsarhani



BIBLIOGRAPHY

[63] Qingfeng He. Requirements-Based Access Control Analysis And Policy Speci-

fication. PhD thesis, North Carolina State University, 2005.

[64] Yoav Hollander, Morley Morley, and Amos Noy. The e language: a fresh sepa-

ration of concerns. In Technology of Object-Oriented Languages and Systems,

2001. TOOLS 38. Proceedings, pages 41–50. IEEE, 2001.

[65] Ullrich Hustadt. Temporal logic: Mathematical foundations and computa-

tional aspects, volume 2, dov gabbay, mark reynolds, and marcelo finger.

Journal of Logic, Language and Information, 10(3):406–410, 2001.

[66] Michael Huth and Mark Ryan. Logic in Computer Science: Modelling and

Reasoning About Systems. Cambridge University Press, 2000.

[67] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrah-

manian. Flexible support for multiple access control policies. ACM Trans.

Database Syst., 26(2):214–260, June 2001.

[68] Helge Janicke. The development of secure multi-agent systems. PhD thesis,

De Montfort University, 2007.

[69] Helge Janicke, Antonio Cau, François Siewe, and Hussein Zedan. Dynamic

access control policies: Specification and verification. The Computer Journal,

2012.

[70] Helge Janicke, Antonio Cau, and Hussein Zedan. A note on the formalisation

of ucon. In Proceedings of the 12th ACM Symposium on Access Control Models

and Technologies, SACMAT ’07, pages 163–168, New York, NY, USA, 2007.

ACM.

[71] Kristofer Johannisson. Formal and informal software specifications. Citeseer,

2005.

[72] Yonit Kesten, Zohar Manna, and Amir Pnueli. Temporal verification of sim-

ulation and refinement. In J.W. Bakker, W.-P. Roever, and G. Rozenberg,

editors, A Decade of Concurrency Reflections and Perspectives, volume 803

of Lecture Notes in Computer Science, pages 273–346. Springer Berlin Heidel-

berg, 1994.

191 Sami Alsarhani



BIBLIOGRAPHY

[73] Stephen Cole Kleene. Representation of events in nerve nets and finite au-

tomata. In Claude Shannon and John McCarthy, editors, Automata Studies,

pages 3–41. Princeton University Press, Princeton, NJ, 1956.

[74] Savas Konur. A survey on temporal logics. CoRR, abs/1005.3199, 2010.

[75] Thomas Kropf. Introduction to Formal Hardware Verification. Springer, 1999.

[76] Orna Kupferman and Moshe Vardi. Synthesis with incomplete informatio. In

In Advances in Temporal Logic, pages 109–127. Kluwer Academic Publishers,

2000.

[77] Leslie Lamport. The temporal logic of actions. ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), 16(3):872–923, May 1994.

[78] Butler Lampson. Protection. ACM SIGOPS Operating Systems Review,

8(1):18–24, January 1974.

[79] François Laroussinie and Nicolas Markey. Temporal logic with forgettable

past. In In LICS02, pages 383–392. IEEE Computer Society Press, 2002.

[80] François Laroussinie and philippe Schnoebelen. A hierarchy of temporal logics

with past. In Patrice Enjalbert, ErnstW. Mayr, and KlausW. Wagner, editors,

STACS 94, volume 775 of Lecture Notes in Computer Science, pages 47–58.

Springer Berlin Heidelberg, 1994.

[81] Peter Gorm Larsen. Ten years of historical development “bootstrapping” pdm

tools vx. Journal of Universal Computer Science, 7(8):692–709, 2001.

[82] Martin Leucker and César Sánchez. Regular linear temporal logic. In Proceed-

ings of the 4th international conference on Theoretical aspects of computing,

ICTAC’07, pages 291–305, Berlin, Heidelberg, 2007. Springer-Verlag.

[83] Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The glory of the past.

In Rohit Parikh, editor, Logics of Programs, volume 193 of Lecture Notes in

Computer Science, pages 196–218. Springer Berlin Heidelberg, 1985.

[84] Orna Lichtenstein, Amir Pnueli, and Lenore Zuck. The glory of the past. In

Proceedings of the Conference on Logic of Programs, pages 196–218, London,

UK, UK, 1985. Springer-Verlag.

[85] Carsten Lutz. Temporal logic. 2006. Summer semester14 lectures.

192 Sami Alsarhani



BIBLIOGRAPHY

[86] Zohar Manna and Amir Pnueli. Verification of concurrent programs, part i:

The temporal framework. Technical report, Stanford, CA, USA, 1981.

[87] Zohar Manna and Amir Pnueli. A hierarchy of temporal properties. In Pro-

ceedings of the sixth annual ACM Symposium on Principles of distributed com-

puting, PODC ’87, pages 205–205, New York, NY, USA, 1987. ACM.

[88] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent

systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[89] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concur-

rent Systems: Specification. The Temporal Logic of Reactive and Concurrent

Systems. Springer-Verlag, 1992.

[90] Nicolas Markey. Temporal logic with past is exponentially more succinct,

concurrency column. Bulletin of the EATCS, 79:122–128, 2003.

[91] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag New

York, Inc., Secaucus, NJ, USA, 1982.

[92] Robin Milner. The polyadic π-calculus: a tutorial. In Friedrich L. Bauer,

Wilfried Brauer, and Helmut Schwichtenberg, editors, Logic and Algebra of

Specification, volume 94 of NATO ASI Series, pages 203–246. Springer Berlin

Heidelberg, 1993.

[93] Dario Della Monica, Angelo Montanari, and Pietro Sala. The importance of

the past in interval temporal logics: The case of propositional neighborhood

logic. In Logic Programs, Norms and Action, pages 79–102, 2012.

[94] Angelo Montanari. Back to interval temporal logics. In Maria Garcia de la

Banda and Enrico Pontelli, editors, Logic Programming, volume 5366 of Lec-

ture Notes in Computer Science, pages 11–13. Springer Berlin Heidelberg,

2008.

[95] Ben Moszkowski. Reasoning about digital circuits. Phd, Department of Com-

puter Science, Stanford University, Technical Report STAN-CS-83-970, Stan-

ford, CA, 1983.

[96] Ben Moszkowski. Reasoning about digital circuits. PhD thesis, Stanford, CA,

USA, 1983. AAI8329756.

193 Sami Alsarhani



BIBLIOGRAPHY

[97] Ben Moszkowski. A temporal logic for multilevel reasoning about hardware.

Computer, 18(2):10–19, 1985.

[98] Ben Moszkowski. Executing Temporal Logic Programs. Cambridge University

Press, 1986.

[99] Ben Moszkowski. Some very compositional temporal properties. In Proceed-

ings of the IFIP TC2/WG2.1/WG2.2/WG2.3 Working Conference on Pro-

gramming Concepts, Methods and Calculi, PROCOMET ’94, pages 307–326,

Amsterdam, The Netherlands, The Netherlands, 1994. North-Holland Pub-

lishing Co.

[100] Ben Moszkowski. Compositional reasoning about projected and infinite time.

In Engineering of Complex Computer Systems, 1995. Held jointly with 5th

CSESAW, 3rd IEEE RTAW and 20th IFAC/IFIP WRTP, Proceedings., First

IEEE International Conference on, pages 238–245, 1995.

[101] Ben Moszkowski. A hierarchical completeness proof for propositional interval

temporal logic with finite time. Journal of Applied Non-Classical Logics, 14(1-

2):55–104, 2004.

[102] Ben Moszkowski. Compositional reasoning using intervals and time reversal.

In Temporal Representation and Reasoning (TIME), 2011 Eighteenth Inter-

national Symposium on, pages 107–114, Sept 2011.

[103] Ben Moszkowski. A complete axiom system for propositional interval temporal

logic with infinite time. arXiv preprint arXiv:1207.3816, 2012.

[104] Ben Moszkowski. A complete axiom system for propositional interval temporal

logic with infinite time. Logical Methods in Computer Science, 8(3), 2012.

[105] Peter Øhrstrøm and Per Hasle. Temporal Logic: From Ancient Ideas to Arti-

ficial Intelligence. Mathematics and Its Applications. Springer, 1995.

[106] Sam Owre, John Rushby, and Natarajan Shankar. Pvs: A prototype ver-

ification system. In Deepak Kapur, editor, Automated DeductionCADE-11,

volume 607 of Lecture Notes in Computer Science, pages 748–752. Springer

Berlin Heidelberg, 1992.

194 Sami Alsarhani



BIBLIOGRAPHY

[107] Jaehong Park and Ravi Sandhu. The ucon abc usage control model. ACM

Transactions on Information and System Security (TISSEC), 7(1):128–174,

February 2004.

[108] Jaehong Park, Xinwen Zhang, and Ravi Sandhu. Attribute mutability in usage

control. In Csilla Farkas and Pierangela Samarati, editors, Research Directions

in Data and Applications Security XVIII, volume 144 of IFIP International

Federation for Information Processing, pages 15–29. Springer US, 2004.

[109] Sean Peisert and Matt Bishop. Dynamic, flexible, and optimistic access con-

trol. Technical report, Technical Report CSE-2013-76, University of California

at Davis, 2013.

[110] Charles Pfleeger and Shari Lawrence Pfleeger. Security in Computing (4th

Edition). Prentice Hall PTR, Upper Saddle River, NJ, USA, 2006.

[111] Amir Pnueli. The temporal logic of programs. In Proceedings of the 18th

Annual Symposium on Foundations of Computer Science, SFCS ’77, pages

46–57, Washington, DC, USA, 1977. IEEE Computer Society.

[112] Amir Pnueli. Logics and models of concurrent systems. chapter In transition

from global to modular temporal reasoning about programs, pages 123–144.

Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[113] Amir Pnueli. Applications of temporal logic to the specification and verifica-

tion of reactive systems: A survey of current trends. In Willem-Paul De Roever

Jacobus De Bakker and Grzegorz Rozenberg, editors, Current Trends in Con-

currency, volume 224 of Lecture Notes in Computer Science, pages 510–584.

Springer Berlin Heidelberg, 1986.

[114] Amir Pnueli and Eyal Harel. Applications of temporal logic to the specification

of real time systems. In M. Joseph, editor, Formal Techniques in Real-Time

and Fault-Tolerant Systems, volume 331 of Lecture Notes in Computer Science,

pages 84–98. Springer Berlin Heidelberg, 1988.

[115] Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In

Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles

of programming languages, POPL ’89, pages 179–190, New York, NY, USA,

1989. ACM.

195 Sami Alsarhani



BIBLIOGRAPHY

[116] Arthur Prior. Past, Present and Future. Clarendon Press, 1967.

[117] Nageshwar Rao Pusuluri. Software Testing Concepts And Tools. Dreamtech

Press, 2006.

[118] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of con-

current systems in cesar. In Proceedings of the 5th Colloquium on Interna-

tional Symposium on Programming, pages 337–351, London, UK, UK, 1982.

Springer-Verlag.

[119] Chandramouli Ramaswamy and Ravi Sandhu. Role-based access control fea-

tures in commercial database management systems. In In Proceedings of 21st

NIST-NCSC National Information Systems Security Conference, pages 503–

511. Citeseer, 1998.

[120] Steve Reeves and Michael Clarke. Logic for computer science. International

computer science series. Addison-Wesley, 1990.

[121] Kristin Rozier. Survey: Linear temporal logic symbolic model checking. Com-

puter Science Review Journal, 5(2):163–203, May 2011.

[122] Peter Ryan. Mathematical models of computer security. In Riccardo Focardi

and Roberto Gorrieri, editors, Foundations of Security Analysis and Design,

volume 2171 of Lecture Notes in Computer Science, pages 1–62. Springer Berlin

Heidelberg, 2001.

[123] Pierangela Samarati and Sabrina de Vimercati. Access control: Policies, mod-

els, and mechanisms. Foundations of Security Analysis and Design, pages

137–196, 2001.

[124] Ravi Sandhu. Transaction control expressions for separation of duties. In

Aerospace Computer Security Applications Conference, 1988., Fourth, pages

282–286, 1988.

[125] Ravi Sandhu, Edward Coyne, Hal Feinstein, and Charles Youman. Role-based

access control models. Computer, 29(2):38–47, February 1996.

[126] SANTA. Security analysis toolkit for agents (santa), July 2013.

http://www.tech.dmu.ac.uk/STRL/research/software/SANTA.pdf.

196 Sami Alsarhani



BIBLIOGRAPHY

[127] Fred Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur.,

3(1):30–50, February 2000.

[128] Philippe Schnoebelen. The complexity of temporal logic model checking. Ad-

vances in Modal Logic, 4:393–436, 2002.

[129] François Siewe. A compositional framework for the development of secure

access control systems. PhD thesis, De Montfort University, 2005.

[130] Peter Simons. Parts : A Study in Ontology. Clarendon Press, 1987.

[131] Morris Sloman. Policy driven management for distributed systems. Journal

of Network and Systems Management, 2:333–360, 1994.

[132] Ian Sommerville. Software Engineering. Addison-Wesley, Harlow, England, 9

edition, 2010.

[133] Alfred Tarski. Equational logic and equational theories of algebras. In

K. Schtte H. Arnold Schmidt and H.-J. Thiele, editors, Contributions to Math-

ematical Logic Proceedings of the Logic Colloquium, Hannover 1966, volume 50

of Studies in Logic and the Foundations of Mathematics, pages 275 – 288. El-

sevier, 1968.

[134] Sara Uckelman. Lecture notes: Temporal logic, spring 2010. Lecture Notes:

Temporal Logic, March 25 2010.

[135] Wil van der Aalst. Pi calculus versus petri nets: Let us eat ”humble pie”

rather than further inflate the ”pi hype”, 2003.

[136] Moshe Vardi. Branching vs. linear time: Final showdown. In Proceedings of

the 7th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems, TACAS 2001, pages 1–22, London, UK, UK, 2001.

Springer-Verlag.

[137] Yde Venema. Temporal logic. In The Blackwell Guide to Philosophical Logic.

Blackwell Philosophy Guides (2001). Basil Blackwell Publishers, 1998.

[138] Timothy Allen Wahls. On the Execution of High Level Formal Specifications.

Iowa State University, 1995.

197 Sami Alsarhani



BIBLIOGRAPHY

[139] Gerald James Whitrow. Reflections on the history of the concept of time.

In Julius Thomas Fraser, Francis Haber, and Gert Heinz Mller, editors, The

Study of Time, pages 1–11. Springer Berlin Heidelberg, 1972.

[140] Jeannette Wing. A specifier’s introduction to formal methods. Computer,

23(9):8–23, September 1990.

[141] Frank Wolter and Michael Zakharyaschev. Temporalizing description logics.

Technical report, 1998.

[142] Xinwen Zhang, Francesco Parisi-Presicce, Ravi Sandhu, and Jaehong Park.

Formal model and policy specification of usage control. ACM Trans. Inf.

Syst. Secur., 8(4):351–387, 2005.

[143] Xinwen Zhang, Jaehong Park, Francesco Parisi-Presicce, and Ravi Sandhu.

A logical specification for usage control. In Proceedings of the ninth ACM

symposium on Access control models and technologies, SACMAT ’04, pages

1–10, New York, NY, USA, 2004. ACM.

[144] Xinwen Zhang, Ravi Sandhu, and Francesco Parisi-Presicce. Safety analysis

of usage control authorization models. In Proceedings of the 2006 ACM Sym-

posium on Information, Computer and Communications Security, ASIACCS

’06, pages 243–254, New York, NY, USA, 2006. ACM.

[145] Lenore Zuck. Past temporal logic. Ann Arbor, 1001:48106–1346, 1987.

198 Sami Alsarhani



Appendices

199



Appendix A

In this appendix, the soundness proof of the propositional axioms and rules of past

time ITLp which are listed in Table 3.13 in Section(3.4.2).

PastChopAssoc

PastChopAssoc ` (h0 ;̂ h1) ;̂ h2 ≡ h0̂; (h1 ;̂ h2)

• PastChopAssoc is valid iff

for all τ . Mτ [[(h0 ;̂ h1) ;̂ h2]]= tt iffMτ [[h0 ;̂ (h1 ;̂ h2)]] = tt

at the L.H.S. we have:

• Mτ [[ (h0 ;̂ h1)̂; h2]]= tt iff exists k where 0 ≤ k ≤ |τ |, s.t.

Mτk←τ0 [[h2]] = tt andMτ|τ |←τk [[(h0 ;̂ h1)]]= tt

• Mττ←τk [[(h0 ;̂ h1)]]= tt iff exist j where k ≤ j ≤ |τ |, s.t.

Mτj←τk [[h1]] = tt andMτ|τ |←τj [[h0]] = tt and

• so we have:

Mτk←τ0 [[h2]] = tt and Mτj←τk [[h1]] = tt and Mτ|τ |←τj [[h0]] = tt.

at the R.H.S. we have:

• Mτ [[ h0 ;̂ (h1̂; h2)]]= tt iff exists j where 0 ≤ j ≤ |τ |, s.t.

Mτj←τ0 [[(h1 ;̂ h2)]]= tt and Mτ|τ |←τj [[h0]] = tt and

200 Sami Alsarhani



• Mτj←τ0 [[(h1 ;̂ h2)]]= tt iff exists k where 0 ≤ k ≤ j, s.t.

Mτk←τ0 [[h2]] = tt andMτj←τk [[h1]] = tt

We have that the R.H.S. is equal to the L.H.S., so we have prove a:

` (h0 ;̂ h1) ;̂ h2 ≡ h0̂; (h1 ;̂ h2)

201 Sami Alsarhani



PastEmptyChop

PastEmptyChop ` (h ;̂ êmpty) ≡ h

• PastEmptyChop is valid iff

for all τ Mτ [[ĥ; êmpty]] = tt iffMτ [[h]] = tt

• Mτ [[h ;̂ êmpty]] = tt iff exists k :0 ≤ k ≤ |τ |, s.t.

Mτk←τ0 [[êmpty]] = tt andMτ|τ |←τk [[h]] = tt

we have:

• Mτk←τ0 [[êmpty]] = tt

which is a past interval with only one state, so k = 0 and then

Mτ|τ |←τ0 [[h]]

which is equal to:

Mτ [[h]].

202 Sami Alsarhani



PastChopEmpty

PastChopEmpty ` (êmpty ;̂ h) ≡ h

• PastChopEmpty is valid iff

for all τMτ [[êmpty ;̂ h]] = tt iffMτ [[h]] = tt

• Mτ [[êmpty ;̂ h]] = tt iff exists k :0 ≤ k ≤ |τ | s.t.

Mτk←τ0 [[h]] = tt and Mτ|τ |←τk [[êmpty]] = tt

since we have:

• Mτ|τ |←τk [[êmpty]] = tt

which is a past interval with only one state, so k = |τ | :

and thus:

Mτ|τ |←τ0 [[h]]

which is:

Mτ [[h]].

203 Sami Alsarhani



PastNextImpNotNextNot

PastNextImpNotNextNot ` ©̂h ⊃ ¬ ©̂¬h

• we know that: ©̂wh =̂ ¬ ©̂¬h

• we need to show:

for all τ Mτ [[©̂h]] = tt implies Mτ [[¬ ©̂¬h]] = tt

• first we take the L.H.S :

Mτ [[©̂h]] = tt iff 0 < |τ | and Mτ|τ |←τ1 [[h]] = tt

• for the R.H.S. we have:

Mτ [[©̂wh]] = tt iff |τ | = 0 or Mτ|τ |←τ1 [[h]] = tt

• |τ | = 0 or Mτ|τ |←τ1 [[h]] = tt iff|τ | = 0 or (|τ | > 0 and Mτ|τ |←τ1 [[h]] =

tt)because|τ | ≥ 0

• L.H.S implies R.H.S

• so: ` ©̂h ⊃ ¬ ©̂¬ h

204 Sami Alsarhani



PastOrChopImp

` h2 ;̂ (h1 ∨ h0) ⊃ (h2 ;̂ h1) ∨ (h2 ;̂ h0)

• for all τ Mτ [[h2 ;̂ (h1 ∨ h0)]] = tt implies Mτ [[(h2 ;̂ h1) ∨ (h2 ;̂ h0)]] = tt

• On the L.H.S. we have: Mτ [[h2 ;̂ (h1 ∨ h0)]] = tt

• Mτ [[h2 ;̂ (h1 ∨ h0)]]= tt iff exists k: 0 ≤ k ≤ |τ |, s.t.

Mτk←τ0 [[h1 ∨ h0]] = tt and Mτ|τ |←τk [[h2]] = tt

• Mτk←τ0 [[h1 ∨ h0]] = tt iff

Mτk←τ0 [[h1]] = tt orMτk←τ0 [[h0]] = tt

• so we have: exsits k: 0 ≤ k ≤ |τ | s.t.

(Mτk←τ0 [[h1]] = tt orMτk←τ0 [[h0]] = tt) and Mτ|τ |←τk [[h2]] = tt

• 0n the R.H.S. we have: Mτ [[(h2 ;̂ h1) ∨ (h2 ;̂ h0)]] = tt

which is :Mτ [[h2 ;̂ h1]] = ttorMτ [[h2 ;̂ h0]] = tt

• Mτ [[h2 ;̂ h0]] = tt iff exists k :0 ≤ k ≤ |τ |, s.t.

Mτk←τ0 [[h0]] = tt and Mτ|τ |←τk [[h2]]= tt

• Mτ [[h2 ;̂ h1]] = tt iff exists k : 0 ≤ k ≤ |τ |, s.t.

Mτk←τ0 [[h1]] = tt and Mτ|τ |←τk [[h2]]= tt

205 Sami Alsarhani



• so we have:

exists k :0 ≤ k ≤ |τ |, s.t.
Mτk←τ0 [[h0]] = tt and Mτ|τ |←τk [[h2]] = tt

or

exists k :0 ≤ k ≤ |τ |, s.t.
Mτk←τ0 [[h1]] = tt andMτ|τ |←τk [[h2]] = tt

• so we have:

exists k :0 ≤ k ≤ |τ |, s.t.(
(Mτk←τ0 [[h0]] = tt orMτk←τ0 [[h1]] = tt) andMτ|τ |←τk [[h2]] = tt

)
which is equal to

exists k :0 ≤ k ≤ |τ |, s.t.(
(Mτk←τ0 [[h0]] = tt andMτ|τ |←τk [[h2]] = tt)or(Mτk←τ0 [[h1]] = tt andMτ|τ |←τk [[h2]] = tt)

)
which implies(

exists k :0 ≤ k ≤ |τ |, s.t.Mτk←τ0 [[h0]] = tt andMτ|τ |←τk [[h2]] = tt
)

or(
exists k :0 ≤ k ≤ |τ |, s.t.Mτk←τ0 [[h1]] = tt andMτ|τ |←τk [[h2]] = tt

)
which is the R.H.S.

206 Sami Alsarhani



PastChopOrImp

PastChopOrImp ` (h2 ∨ h1) ;̂ h0 ⊃ (h1 ;̂ h0) ∨ (h2 ;̂ h0)

• for all τ Mτ [[(h2 ∨ h1) ;̂ h0]] = tt implies Mτ [[(h1 ;̂ h0) ∨ (h2 ;̂ h0)]] = tt

• On the L.H.S. we have: Mτ [[(h2 ∨ h1) ;̂ h0]] = tt

• Mτ [[(h2 ∨ h1) ;̂ h0]] = tt iff exists k : 0 ≤ k ≤ |τ |, s.t.

Mτk←τ0 [[h0]]= tt and Mτ|τ |←τk [[h2 ∨ h1]]= tt

• Mτ|τ |←τk [[h2 ∨ h1]]= tt iff

Mτ|τ |←τk [[h2]]= tt or Mτ|τ |←τk [[h1]]= tt.

• so we have: exists k :0 ≤ k ≤ |τ |, s.t

Mτk←τ0 [[h0]] = tt and
(
Mτ|τ |←τk [[h2]] = tt or Mτ|τ |←τk [[h1]] = tt.

)

• now take the R.H.S., we have:

• Mτ [[(h1 ;̂ h0) ∨ (h2 ;̂ h0)]] = tt iff

Mτ [[h1 ;̂ h0]] = tt or Mτ [[h2 ;̂ h0]] = tt.

• exists k: 0 ≤ k ≤ |τ |, s.t

Mτk←τ0 [[h0]] = tt and Mτ|τ |←τk [[h1]] = tt

or exists k: 0 ≤ k ≤ |τ |, s.t

Mτk←τ0 [[h0]]= tt and Mτ|τ |←τk [[h2]]= tt

207 Sami Alsarhani



• so we have for the L.H.S.:

exists k: 0 ≤ k ≤ |τ |, s.t

Mτk←τ0 [[h0]]= tt and
(
Mτ|τ |←τk [[h2]] = tt or Mτ|τ |←τk [[h1]] = tt

)
which is equal to

exists k :0 ≤ k ≤ |τ |, s.t

(
Mτk←τ0 [[h0]] = tt andMτ|τ |←τk [[h2]] = tt

)
or(
Mτk←τ0 [[h0]] = tt andMτ|τ |←τk [[h1]] = tt

)
which implies

exists k :0 ≤ k ≤ |τ |, s.t(
Mτk←τ0 [[h0]] = tt andMτ|τ |←τk [[h2]] = tt

)
or

exists k :0 ≤ k ≤ |τ |, s.t
(
Mτk←τ0 [[h0]] = tt andMτ|τ |←τk [[h1]] = tt

)
which is the R.H.S.

208 Sami Alsarhani



PastStateImpBi

PastStateImpBi ` P ⊃ 2̂i P

• for all τ Mτ [[P ⊃ 2̂i P ]] = tt.

• Mτ [[P ⊃ 2̂i P ]] = tt iff

Mτ [[P ]] = tt implies Mτ [[2̂i P ]] = tt

• Mτ [[P ]] = tt iff Mτ0 [[P ]] = tt because P is state formula.

• Mτ [[2̂i P ]] = tt iff for all k : 0 ≤ k ≤ |τ |, s.t.

Mτk←τ0 [[P ]] = tt.

• (for all k : 0 ≤ k ≤ |τ |, s.tMτk←τ0 [[P ]] = tt) iff Mτ0 [[P ]] = tt because P is

state formula

which is the L.H.S., so

` P ⊃ 2̂i P

209 Sami Alsarhani



PastBiGen

PastBiGen ` h0 implies ` 2̂i h0

• (for all τ Mτ [[h0]] = tt) implies (for all τ Mτ [[2̂i h0]] = tt )

• take the R.H.S., we have:

for all τ, Mτ [[2̂i h0]] = tt iff

for all τ, k : 0 ≤ k ≤ |τ |Mτk←τ0 [[h0]] = tt.

• but we know from the L.H.S. that:

for all τ, Mτ [[h0]] = tt.

• Instantiate in L.H.S. for τ, τk ← τ0 so we have:

` h0 ⇒ ` 2̂i h0

210 Sami Alsarhani



PastBoxGen

PastBoxGen ` h0 implies ` 2̂h0

• (for all τ, Mτ [[h0]] = tt) implies (for all τ, Mτ [[2̂h0]] = tt )

• take the R.H.S., we have:

for all τ, Mτ [[2̂h0]] = tt iff

for all τ,k : 0 ≤ k ≤ |τ |,Mτ|τ |←τk [[h0]]= tt

• but we know from the L.H.S. that:

for all τ, Mτ [[h0]] = tt.

• Instantiate in L.H.S. for τ, ττ ← τk so we have:

` h0 ⇒ ` 2̂h0

211 Sami Alsarhani



PastChopStarEqv

PastChopStarEqv ` h∗̂0 ≡ ((h∗̂0 ;̂ (h0 ∧ m̂ore)) ∨ êmpty)

PastChopStarEqv is valid iff

for all τ, Mτ [[h
∗̂
0]] = tt iff Mτ [[(h

∗̂
0 ;̂ (h0 ∧ m̂ore)) ∨ êmpty]] = tt.

• Mτ [[(h
∗̂
0 ;̂ (h0 ∧ m̂ore)) ∨ êmpty]] = tt iff

Mτ [[h0
∗̂ ;̂(h0 ∧m̂ore )]] =tt

or Mτ [[êmpty]]= tt

• Mτ [[êmpty]]= tt iff|τ | = 0

• Mτ [[h
∗̂
0 ;̂ (h0 ∧ m̂ore)]] = tt iff exists k : 0 ≤ k ≤ |τ | , s.t.

Mτk←τ0 [[(h0 ∧ m̂ore)]] = tt and Mτ|τ |←τk [[h
∗̂
0]] = tt

• Mτk←τ0 [[(h0 ∧ m̂ore)]] = tt iff

Mτk←τ0 [[h0]] = tt and Mτk←τ0 [[m̂ore]] = tt

• Mτk←τ0 [[m̂ore]] = tt iff k ≥ 1

• Mτ|τ |←τk [[h
∗̂
0]] = tt

exists l0,....ln, such that l0 = 0 and ln = |τ | and

for all l 0 ≤ i <n, li≤ li+1 and Mτli→τli+1
[[h0]] . . . = tt

PastChopStarEqv ` h∗̂0 ≡ ((h∗̂0 ;̂ (h0 ∧ m̂ore)) ∨ êmpty)

212 Sami Alsarhani



PastBiBoxChopImpChop

PastBiBoxChopImpChop ` 2̂i (h0 ⊃ h1)∧ 2̂(h2 ⊃ h3) ⊃ (h2 ;̂ h0) ⊃ (h3 ;̂ h1)

• PastBiBoxChopImpChop is valid iff

• for all τ, Mτ [[2̂i (h0 ⊃ h1) ∧ 2̂(h2 ⊃ h3)]] = tt

implies

(Mτ [[h2 ;̂ h0]] = tt implies Mτ [[h3 ;̂ h1]] = tt)

• take the L.H.S., we have:

Mτ [[2̂i (h0 ⊃ h1) ∧ 2̂(h2 ⊃ h3)]] = tt iff

Mτ [[2̂i (h0 ⊃ h1)]] = tt and Mτ [[2̂(h2 ⊃ h3)]] = tt.

• Mτ [[2̂i (h0 ⊃ h1)]] = tt iff

for all k : 0 ≤ k ≤ |τ |,Mτk←τ0 [[h0 ⊃ h1]] = tt

• Mτk←τ0 [[h0 ⊃ h1]] = tt iffMτk←τ0 [[h0]] = tt implies Mτk←τ0 [[h1]] = tt

• for the second part:

Mτ [[2̂(h2 ⊃ h3)]] = tt iff

for all k : 0 ≤ k ≤ |τ |,Mτ|τ |←τk [[h2 ⊃ h3]] = tt

• Mτ|τ |←τk [[h2 ⊃ h3]] = tt iff

213 Sami Alsarhani



Mτ|τ |←τk [[h2]] = tt implies Mτ|τ |←τk [[h3]] = tt.

• so, we have:

for all k : 0 ≤ k ≤ |τ |, if Mτk←τ0 [[h0]] = tt then Mτk←τ0 [[h1]] = tt.

and

for all k : 0 ≤ k ≤ |τ |, if Mτ|τ |←τk [[h2]] = tt then Mτ|τ |←τk [[h3]] = tt.

• for the R.H.S. we have:

Mτ [[h2 ;̂ h0]] = tt implies Mτ [[h3 ;̂ h1]] = tt

• take the first part, we have:

Mτ [[h2 ;̂ h0]] = tt iff exists k : 0 ≤ k ≤ |τ, |

Mτk←τ0 [[h0]] = tt and Mτ|τ |←τk [[h2]]

• take the second part, we have:

Mτ [[h3 ;̂ h1]] = tt iff exists k : 0 ≤ k ≤ |τ |,

Mτk←τ0 [[h1]] = tt and Mτ|τ |←τk [[h3]]

• so on the R.H.S. we have:

exists k : 0 ≤ k ≤ |τ |, (Mτk←τ0 [[h0]] = tt and Mτ|τ |←τk [[h2]]) implies

exists k : 0 ≤ k ≤ |τ |, (Mτk←τ0 [[h1]] = tt and Mτ|τ |←τk [[h3]])

• we know that from L.H.S.

214 Sami Alsarhani



Mτk←τ0 [[h0]] = tt implies Mτk←τ0 [[h1]] = tt

and

Mτ|τ |←τk [[h2]] = tt implies Mτ|τ |←τk [[h3]] = tt

So the R.H.S. holds and therefore

` 2̂i (h0 ⊃ h1) ∧ 2̂(h2 ⊃ h3) ⊃ (h2 ;̂ h0) ⊃ (h3 ;̂ h1)

215 Sami Alsarhani



PastBoxInduct

PastBoxInduct ` h0 ∧ 2̂(h0 ⊃ ©̂wh0) ⊃ 2̂h0

PastBoxInduct is valid iff

for all τ Mτ [[h0 ∧ 2̂(h0 ⊃ ©̂wh0)]] = tt implies Mτ [[2̂h0]] = tt

• take the L.H.S., we have:

Mτ [[h0 ∧ 2̂(h0 ⊃ ©̂wh0)]] = tt iff

Mτ [[h0]] = tt and Mτ [[2̂(h0 ⊃ ©̂wh0)]] = tt

for all τ Mτ [[h0]] = tt is given (*)

• Mτ [[2̂(h0 ⊃ ©̂wh0)]] = tt iff

for all k : 0 ≤ k ≤ |τ |,Mτ|τ |←τk [[h0 ⊃ ©̂wh0]] = tt.

• Mτ|τ |←τk [[h0 ⊃ ©̂wh0]] = tt iff

Mτ|τ |←τk [[h0]] = tt implies Mτ|τ |←τk [[©̂wh0]] = tt

• Mτ|τ |←τk [[©̂wh0]] = tt iff

k = |τ |Mτ|τ |←τk [[=]]0 or Mτ|τ |←τk+1
[[h0]] = tt

so we have for L.H.S.

Mτ [[h0]] = tt and for all k,0 ≤ k ≤ |τ |,

Mτ|τ |←τk [[h0]] = tt implies

216 Sami Alsarhani



k = |τ |orMτ|τ |←τk+1
[[h0]] = tt

Mτ [[h0]] = tt and

k = 0 :

• Mτ|τ |←τ0 [[h0]] = tt implies

0 = |τ | orMτ|τ |←τ1 [[h0]] = tt

0 = |τ | orMτ|τ |←τ1 [[h0]] = tt

k = 1 :

• Mτ|τ |←τ1 [[h0]] = tt implies

1 = |τ | orMτ|τ |←τ2 [[h0]] = tt

1 = |τ | orMτ|τ |←τ2 [[h0]] = tt

.

.

.

.

.

.

k = |τ | :

• Mτ|τ |←τk [[h0]] = tt implies

|τ | = |τ | orMτ|τ |←|τ |+1[[h0]] = tt

so we have

Mτ [[h0]] = tt and

for k

• Mτ|τ |←τk [[h0]] = tt which is the R.H.S.

217 Sami Alsarhani



1 = |τ | orMτ|τ |←τ2 [[h0]] = tt

` h0 ∧ 2̂(h0 ⊃ ©̂wh0) ⊃ 2̂h0

218 Sami Alsarhani



PastChopEmptyAnd

PastChopEmptyAnd ` h ∧ w0 ≡ h ;̂ (êmpty ∧ w0)

• To prove this formula is sound, take the R.H.S. we have:

Mτ [[h ;̂ (êmpty ∧ w0)]] = tt iff exists k where

0 ≤ k ≤ |τ |, s.t.

• Mτk←τ0 [[êmpty ∧ w0]] = tt and

Mτ|τ |←τk [[h)]] = tt

• Mτk←τ0 [[êmpty ∧ w0]] = tt iff

Mτk←τ0 [[êmpty]] = tt and Mτk←τ0 [[w0]] = tt

• Mτk←τ0 [[êmpty]] = tt which is past interval with only one state, so k = 0

• from the past empty , we know that k = 0, so Mττ0
[[w0]] = tt

• because w0 is state formula, we can write:

Mτ [[h]] = tt so in R.H.S. we have:

Mτ [[h]] = tt and Mττ0
[[w0]] = tt

• for the L.H.S. we have Mτ [[h ∧ w0]] = tt

• we know that w0 is state formula, so we can write the L.H.S. as:

Mτ [[h]] = tt and Mττ0
[[w0]] = tt which the R.H.S.

• PastChopEmptyAnd ` h ∧ w0 ≡ h ;̂ (êmpty ∧ w0)

219 Sami Alsarhani



Appendix B Part 1:

In this appendix, the complete semantics of general practice system policy GPS for

the Patient and the Doctor policies are listed here.

In the first part we will give the complete semantics of Patient policy which are from

Rule R
′
6 to R

′
11.

The semantics of Patient policy

J R6 ∧ R12 K ≡ J R′6 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J true chopp alwaysp(registered(SPATIENT )) K (SPATIENT ,GPS, access) 6

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J false K (SPATIENT ,GPS, access) 6

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : allow(SPATIENT ,GPS, access) and not deny(SPATIENT ,GPS, access)K (SPATIENT ,GPS, access) 12

220 Sami Alsarhani



and J R7 ∧ R12 K ≡ J R7
′ K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J0 : patient info(Opatient nfo, SPATIENT )K (SPATIENT ,GPS, update(Opatient info)) 7

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J false K (SPATIENT ,GPS, update(Opatient info)) 7

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : allow(SPATIENT ,GPS, update(Opatient info)) and not

deny(SPATIENT ,GPS, update(Opatient info))K (SPATIENT ,GPS, update(Opatient info)) 12

221 Sami Alsarhani



and J R8 ∧ R12 K ≡ J R′8 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J false K (SPATIENT ,GPS, alter(Omedical records)) 8

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J true K (SPATIENT ,GPS, alter(Omedical records)) 8

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : deny(SPATIENT ,GPS, alter(Omedical records))

and not allow(SPATIENT ,GPS, alter(Omedical records))K (SPATIENT ,GPS, alter(Omedical records)) 12

222 Sami Alsarhani



and J R9 ∧ R12 K ≡ J R′9 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J true chopp alwaysp( sign(SPATIENT , OLA) and sign(SPATIENT , OCF )) K (SPATIENT ,GPS, treat(SPATIENT )) 9

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J false K (SPATIENT ,GPS, treat(SPATIENT )) 9

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : allow(SPATIENT ,GPS, treat(SPATIENT ))

and not deny(SPATIENT ,GPS, treat(SPATIENT ))K (SPATIENT ,GPS, treat(SPATIENT )) 12

223 Sami Alsarhani



and J R10 ∧ R12 K ≡ J R′10 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J true chopp alwaysp not booking(SPATIENT , OAPPOINTMENT )

chop skipp K (SPATIENT ,GPS, book(OAPPOINTMENT )) 10

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J falseK (SPATIENT ,GPS, book(OAPPOINTMENT )) 10

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : allow(SPATIENT ,GPS, book(OAPPOINTMENT ))

and not deny(SPATIENT ,GPS, book(OAPPOINTMENT ))K (SPATIENT ,GPS, book(OAPPOINTMENT )) 12

224 Sami Alsarhani



and J R11 ∧ R12 K ≡ J R′11 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J 0 : medical record(Omedical record, SPATIENT ) K (SPATIENT ,GPS, view(Omedical record)) 11

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J falseK (SPATIENT ,GPS, view(Omedical record)) 11

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : allow(SPATIENT ,GPS, view(Omedical record))

and not deny(SPATIENT ,GPS, view(Omedical record))K (SPATIENT ,GPS, view(Omedical record)) 12

225 Sami Alsarhani



Appendix B Part 2:

In this part we will list the semantics of Doctor policy which is a part from the GPS

policy.

The Doctor policy consists from the rules from rule R
′
13 to rule R

′
17.

The semantics of Doctor policy

J R13 ∧ R18 K ≡ J R′13 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))



where fDOCTOR(s, o, a) is defined as:

fDOCTOR(s, o, a) (s, o, a) R

J true chopp alwaysp (registered(SDOCTOR)) K (SDOCTOR,GPS, access) 13

and gDOCTOR(s, o, a) is defined as:

gDOCTOR(s, o, a) (s, o, a) R

J false K (SDOCTOR,GPS, access) 13

and hDOCTOR(s, o, a) is defined as:

hDOCTOR(s, o, a) (s, o, a) R

J0 : allow(SDOCTOR,GPS, access) and not deny(SDOCTOR,GPS, access)K (SDOCTOR,GPS, access) 18

226 Sami Alsarhani



and J R14 ∧ R18 K ≡ J R′14 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))



where fDOCTOR(s, o, a) is defined as:

fDOCTOR(s, o, a) (s, o, a) R

J0 : doctor(SDOCTOR, SPATIENT ) and medical record(Omedical record, SPATIENT )K (SDOCTOR,GPS, alter(Omedical record)) 14

and gDOCTOR(s, o, a) is defined as:

gDOCTOR(s, o, a) (s, o, a) R

J false K (SDOCTOR,GPS, alter(Omedical record)) 14

and hDOCTOR(s, o, a) is defined as:

hDOCTOR(s, o, a) (s, o, a) R

J0 : allow(SDOCTOR,GPS, alter(Omedical record))

and not deny(SDOCTOR,GPS, alter(Omedical record))K (SDOCTOR,GPS, alter(Omedical record)) 18

227 Sami Alsarhani



and J R15 ∧ R18 K ≡ J R′15 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))



where fDOCTOR(s, o, a) is defined as:

fDOCTOR(s, o, a) (s, o, a) R

J0 : doctor(SDOCTOR, SPATIENT ) and private notes(Oprivate notes, SPATIENT )K (SDOCTOR,GPS, add(Oprivate notes)) 15

and gDOCTOR(s, o, a) is defined as:

gDOCTOR(s, o, a) (s, o, a) R

J false K (SDOCTOR,GPS, add(Oprivate notes)) 15

and hDOCTOR(s, o, a) is defined as:

hDOCTOR(s, o, a) (s, o, a) R

J0 : allow(SDOCTOR,GPS, add(Oprivate notes))

and not deny(SDOCTOR,GPS, add(Oprivate notes))K (SDOCTOR,GPS, add(Oprivate notes)) 18

228 Sami Alsarhani



and J R16 ∧ R18 K ≡ J R′16 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))



where fDOCTOR(s, o, a) is defined as:

fDOCTOR(s, o, a) (s, o, a) R

J ( true chopp alwaysp(agree(SPATIENT )))and(SDOCTOR1
6= SDOCTOR)

always(doctor(SDOCTOR1 , SPATIENT ))and always(notdoctor(SDOCTOR, SPATIENT )) K (SDOCTOR,GPS, treat(SPATIENT )) 16

and gDOCTOR(s, o, a) is defined as:

gDOCTOR(s, o, a) (s, o, a) R

J false K (SDOCTOR,GPS, treat(SPATIENT )) 16

and hDOCTOR(s, o, a) is defined as:

hDOCTOR(s, o, a) (s, o, a) R

J0 : allow(SDOCTOR,GPS, treat(SPATIENT ))

and not deny(SDOCTOR,GPS, treat(SPATIENT ))K (SDOCTOR,GPS, treat(SPATIENT )) 18

229 Sami Alsarhani



and J R17 ∧ R18 K ≡ J R′17 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))



where fDOCTOR(s, o, a) is defined as:

fDOCTOR(s, o, a) (s, o, a) R

J 0 : doctor(SDOCTOR, SPATIENT ) and

patient info(Opatient info, SPATIENT ) K (SDOCTOR,GPS, view(Opatient info)) 17

and gDOCTOR(s, o, a) is defined as:

gDOCTOR(s, o, a) (s, o, a) R

J false K (SDOCTOR,GPS, view(Opatient info)) 17

and hDOCTOR(s, o, a) is defined as:

hDOCTOR(s, o, a) (s, o, a) R

J0 : allow(SDOCTOR,GPS, view(Opatient info))

and not deny(SDOCTOR,GPS, view(Opatient info))K (SDOCTOR,GPS, view(Opatient info)) 18

230 Sami Alsarhani



Appendix C Part 1:

In this appendix, the complete semantics of general practice system policy using the

future time operators are listed here.

In the first part, we will list the patient policy rules which consists from the rules

from rule R
′
6 to rule R

′
11

The semantics of Patient policy using future operators

J R6 ∧ R12 K ≡ J R′6 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J true chop always(registered(SPATIENT )) K (SPATIENT ,GPS, access) 6

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J false K (SPATIENT ,GPS, access) 6

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : allow(SPATIENT ,GPS, access) and not deny(SPATIENT ,GPS, access)K (SPATIENT ,GPS, access) 12

231 Sami Alsarhani



and J R7 ∧ R12 K ≡ J R7
′ K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J0 : patient info(Opatient nfo, SPATIENT )K (SPATIENT ,GPS, update(Opatient info)) 7

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J false K (SPATIENT ,GPS, update(Opatient info)) 7

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : allow(SPATIENT ,GPS, update(Opatient info)) and not

deny(SPATIENT ,GPS, update(Opatient info))K (SPATIENT ,GPS, update(Opatient info)) 12

232 Sami Alsarhani



and J R8 ∧ R12 K ≡ J R′8 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J false K (SPATIENT ,GPS, alter(Omedical records)) 8

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J trueK (SPATIENT ,GPS, alter(Omedical records)) 8

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : deny(SPATIENT ,GPS, alter(Omedical records))

and not allow(SPATIENT ,GPS, alter(Omedical records))K (SPATIENT ,GPS, alter(Omedical records)) 12

233 Sami Alsarhani



and J R9 ∧ R12 K ≡ J R′9 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J true chop always( sign(SPATIENT , OLA) and sign(SPATIENT , OCF )) K (SPATIENT ,GPS, treat(SPATIENT )) 9

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J false K (SPATIENT ,GPS, treat(SPATIENT )) 9

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : allow(SPATIENT ,GPS, treat(SPATIENT ))

and not deny(SPATIENT ,GPS, treat(SPATIENT ))K (SPATIENT ,GPS, treat(SPATIENT )) 12

234 Sami Alsarhani



and J R10 ∧ R12 K ≡ J R′10 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J true chop always not booking(SPATIENT , OAPPOINTMENT )

chop skip K (SPATIENT ,GPS, book(OAPPOINTMENT )) 10

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J falseK (SPATIENT ,GPS, book(OAPPOINTMENT )) 10

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : allow(SPATIENT ,GPS, book(OAPPOINTMENT ))

and not deny(SPATIENT ,GPS, book(OAPPOINTMENT ))K (SPATIENT ,GPS, book(OAPPOINTMENT )) 12

235 Sami Alsarhani



and J R11 ∧ R12 K ≡ J R′11 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fPATIENT (s, o, a)↔ Aut+(s, o, a))∧
(gPATIENT (s, o, a)↔ Aut−(s, o, a))∧
(hPATIENT (s, o, a)↔ Aut(s, o, a))



where fPATIENT (s, o, a) is defined as:

fPATIENT (s, o, a) (s, o, a) R

J 0 : medical record(Omedical record, SPATIENT ) K (SPATIENT ,GPS, view(Omedical record)) 11

and gPATIENT (s, o, a) is defined as:

gPATIENT (s, o, a) (s, o, a) R

J falseK (SPATIENT ,GPS, view(Omedical record)) 11

and hPATIENT (s, o, a) is defined as:

hPATIENT (s, o, a) (s, o, a) R

J0 : allow(SPATIENT ,GPS, view(Omedical record))

and not deny(SPATIENT ,GPS, view(Omedical record))K (SPATIENT ,GPS, view(Omedical record)) 12

236 Sami Alsarhani



Appendix C Part 2:

As a part of general practice system policies, the complete semantics of the doctor

policy rules using future time are listed here. The doctor policy consists from the

rules from rule R
′
13 to rule R

′
17

The semantics of Doctor policy

J R13 ∧ R18 K ≡ J R′13 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))



where fDOCTOR(s, o, a) is defined as:

fDOCTOR(s, o, a) (s, o, a) R

J true chop always (registered(SDOCTOR)) K (SDOCTOR,GPS, access) 13

and gDOCTOR(s, o, a) is defined as:

gDOCTOR(s, o, a) (s, o, a) R

J false K (SDOCTOR,GPS, access) 13

and hDOCTOR(s, o, a) is defined as:

hDOCTOR(s, o, a) (s, o, a) R

J0 : allow(SDOCTOR,GPS, access) and not deny(SDOCTOR,GPS, access)K (SDOCTOR,GPS, access) 18

237 Sami Alsarhani



and J R14 ∧ R18 K ≡ J R′14 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))



where fDOCTOR(s, o, a) is defined as:

fDOCTOR(s, o, a) (s, o, a) R

J0 : doctor(SDOCTOR, SPATIENT ) and medical record(Omedical record, SPATIENT )K (SDOCTOR,GPS, alter(Omedical record)) 14

and gDOCTOR(s, o, a) is defined as:

gDOCTOR(s, o, a) (s, o, a) R

J false K (SDOCTOR,GPS, alter(Omedical record)) 14

and hDOCTOR(s, o, a) is defined as:

hDOCTOR(s, o, a) (s, o, a) R

J0 : allow(SDOCTOR,GPS, alter(Omedical record))

and not deny(SDOCTOR,GPS, alter(Omedical record))K (SDOCTOR,GPS, alter(Omedical record)) 18

238 Sami Alsarhani



and J R15 ∧ R18 K ≡ J R′15 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))



where fDOCTOR(s, o, a) is defined as:

fDOCTOR(s, o, a) (s, o, a) R

J0 : doctor(SDOCTOR, SPATIENT ) and private notes(Oprivate notes, SPATIENT )K (SDOCTOR,GPS, add(Oprivate notes)) 15

and gDOCTOR(s, o, a) is defined as:

gDOCTOR(s, o, a) (s, o, a) R

J false K (SDOCTOR,GPS, add(Oprivate notes)) 15

and hDOCTOR(s, o, a) is defined as:

hDOCTOR(s, o, a) (s, o, a) R

J0 : allow(SDOCTOR,GPS, add(Oprivate notes))

and not deny(SDOCTOR,GPS, add(Oprivate notes))K (SDOCTOR,GPS, add(Oprivate notes)) 18

239 Sami Alsarhani



and J R16 ∧ R18 K ≡ J R′16 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))



where fDOCTOR(s, o, a) is defined as:

fDOCTOR(s, o, a) (s, o, a) R

J ( true chop always(agree(SPATIENT )))and(SDOCTOR1
6= SDOCTOR)

always(doctor(SDOCTOR1 , SPATIENT ))and always(notdoctor(SDOCTOR, SPATIENT )) K (SDOCTOR,GPS, treat(SPATIENT )) 16

and gDOCTOR(s, o, a) is defined as:

gDOCTOR(s, o, a) (s, o, a) R

J false K (SDOCTOR,GPS, treat(SPATIENT )) 16

and hDOCTOR(s, o, a) is defined as:

hDOCTOR(s, o, a) (s, o, a) R

J0 : allow(SDOCTOR,GPS, treat(SPATIENT ))

and not deny(SDOCTOR,GPS, treat(SPATIENT ))K (SDOCTOR,GPS, treat(SPATIENT )) 18

240 Sami Alsarhani



and J R17 ∧ R18 K ≡ J R′17 K ≡

∧
s ∈ Subjects
o ∈ Objects
a ∈ Actions

 (fDOCTOR(s, o, a)↔ Aut+(s, o, a))∧
(gDOCTOR(s, o, a)↔ Aut−(s, o, a))∧
(hDOCTOR(s, o, a)↔ Aut(s, o, a))



where fDOCTOR(s, o, a) is defined as:

fDOCTOR(s, o, a) (s, o, a) R

J 0 : doctor(SDOCTOR, SPATIENT ) and

patient info(Opatient info, SPATIENT ) K (SDOCTOR,GPS, view(Opatient info)) 17

and gDOCTOR(s, o, a) is defined as:

gDOCTOR(s, o, a) (s, o, a) R

J false K (SDOCTOR,GPS, view(Opatient info)) 17

and hDOCTOR(s, o, a) is defined as:

hDOCTOR(s, o, a) (s, o, a) R

J0 : allow(SDOCTOR,GPS, view(Opatient info))

and not deny(SDOCTOR,GPS, view(Opatient info))K (SDOCTOR,GPS, view(Opatient info)) 18

241 Sami Alsarhani


