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Fuzzy Efficiency Measures in Data Envelopment Analysis Using 

Lexicographic Multiobjective Approach 

 

Abstract 

There is an extensive literature in data envelopment analysis (DEA) aimed at evaluating the 

relative efficiency of a set of decision-making units (DMUs). Conventional DEA models use 

definite and precise data while real-life problems often consist of some ambiguous and vague 

information, such as linguistic terms. Fuzzy sets theory can be effectively used to handle data 

ambiguity and vagueness in DEA problems. This paper proposes a novel fully fuzzified DEA 

(FFDEA) approach where, in addition to input and output data, all the variables are considered 

fuzzy, including the resulting efficiency scores. A lexicographic multi-objective linear 

programming (MOLP) approach is suggested to solve the fuzzy models proposed in this study. 

The contribution of this paper is fivefold: 1) both fuzzy Constant and Variable Returns to Scale 

models are considered to measure fuzzy efficiencies; 2) a classification scheme for DMUs, based 

on their fuzzy efficiencies, is defined with three categories; 3) fuzzy input and output targets are 

computed for improving the inefficient DMUs; 4) a super-efficiency FFDEA model is also 

formulated to rank the fuzzy efficient DMUs; and 5)the proposed approach is illustrated, and 

compared with existing methods, using a dataset from the literature. 

 

Keywords: Data envelopment analysis; Fuzzy mathematical programming; Lexicographic multi-

objective linear programming; Fuzzy targets; Super-efficiency 
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1. Introduction 

Data envelopment analysis (DEA), initially introduced by Charnes et al. (1978), is a widely used 

mathematical programming technique for estimating the frontier production for peer decision 

making units (DMUs) with multiple inputs and multiple outputs. Charnes et al. (1978) model, 

commonly referred to as CCR model, assumed constant returns to scale (CRS). Banker et al. 

(1984) developed the so-called BCC model for evaluating the performance of units in the case of 

variable returns to scale (VRS). The units are assumed to operate homogenously under similar 

conditions. Based on the observed data and some preliminary assumptions, DEA is able to 

establish an empirical efficient frontier. If a DMU lies on the frontier, it is said to be efficient, 

otherwise it is said to be inefficient. Computing the distance to the efficient frontier (using some 

metric and a certain orientation) DEA provides the relative efficiency score, as well as a target 

for improving for each inefficient DMU. In practice, the efficiency score might be considered as 

a performance indicator for continuous improvement while the target informs about the amount 

(percentage) by which an inefficient DMU should decrease its inputs and/or increase its outputs 

to become efficient. Moreover, the reference set of efficient DMUs with which the target is 

constructed represents best practice models that act as benchmarks to the inefficient DMU. 

In conventional DEA models, such as CCR and BCC, the observed input and output data 

of the DMUs are often not known precisely. That may not be always the case in the real world. 

Imprecise evaluations may be the result of unquantifiable, incomplete and non-obtainable 

information. Imprecise data representation with interval, ordinal, and ratio interval data was 

initially proposed by Cooper et al. (1999, 2001a, 2001b), leading to so-called interval DEA 

(IDEA) to study the uncertainty in DEA. Numerous other researchers have also proposed and 

applied different DEA models with interval data (e.g. Despotis and Smirlis 2002, Entani et al. 

2001, Wang et al. 2005, Shokouhi et al. 2010, 2014, Hatami-Marbini et al. 2014). However, 

decision makers often prefer using linguistic phrases and expressions such as ‘‘large’’ profit or 

‘‘low’’ inventory in their communication, information that cannot be handled by IDEA. In 

general, observations are typically divided into quantitative and qualitative. Quantitative 

observed data are often exact, precise and specific values while qualitative data, such as “good”, 

“better” and “very good”, are often imprecise or vague values. The distances between qualitative 

data are not clear and it does not make sense to use the ordinal scaling to measure the preference 

linguistic terms that arise in natural language.  
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Fuzzy sets theory, initiated by Zadeh(1965), is a well-known tool to represent this type of 

data. Compared to traditional binary sets (“true” or “false”, 0 or 1) fuzzy sets are based on the 

concept of “degree of membership”, that ranges between zero and one. Natural language is not 

straightforwardly transformed into the absolute terms of 0 and 1. Fuzzy logic considers the 

membership values 0 and 1 as extreme cases but also considers possible intermediate 

membership values between 0 and 1. Hence, fuzzy sets have the capability of describing 

qualitative data as fuzzy numbers. 

Numerous fuzzy sets-based methods have been proposed in DEA in the last two decades. 

Generally, the linear programming (LP) DEA models are converted to fuzzy LP (FLP) models 

when the input and/or output data are characterized by fuzzy numbers. The existing fuzzy DEA 

(FDEA) methods can be classified into six main categories, namely, the tolerance approach, the 

α-level based approach, the fuzzy ranking approach, the possibility approach, the fuzzy 

arithmetic, and the fuzzy random/type-2 (Hatami-Marbini et al. 2011a, Emrouznejad et al. 2014). 

The tolerance approach (e.g. Sengupta1992) was the first FDEA model that used the 

concept of fuzziness in DEA modeling by defining tolerance levels on constraint violations. The 

limitation behind the tolerance approach is related to the design of a DEA model with a fuzzy 

objective function and fuzzy constraints which may or may not be satisfied (Triantis and Girod 

1998). 

The α-level approach is probably the most popular FDEA model in the literature. This 

approach generally tries to transform the FDEA model into a pair of parametric programs for 

each α-level. Kao and Liu (2000), one of the most cited studies in the α-level approach’s 

category, used Chen and Klein (1997) method for ranking fuzzy numbers to convert the FDEA 

model to a pair of parametric mathematical programs for the given level of α. Saati et al. (2002) 

proposed a fuzzy CCR model as a possibilistic programming problem and changed it into an 

interval programming problem by means of the α-level based approach. Thereupon, some fuzzy 

DEA-based extension has been done using Saati et al. (2002) method such as a four-phase fuzzy 

DEA framework based on the theory of displaced ideal (Hatami-Marbini et al. 2010)or a 

positive-normative use of fuzzy logic in a NATO enlargement application (Hatami-Marbini et al. 

2013). The α-level approach is also the one generally used in network DEA (e.g. Kao and Liu 

2011, Kao and Lin 2012, Lozano 2014a, 2014b).The fuzzy ranking approach category is 

composed of FDEA models developed based on distinctive fuzzy ranking methods. Guo and 

http://en.wiktionary.org/wiki/binary
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Tanaka (2011) was the first to develop a fuzzy CCR model based on the fuzzy ranking approach. 

Different fuzzy ranking methods may lead to different efficiency assessments. Hatami-Marbini et 

al. (2011b) proposed a fully fuzzified CCR model to get the fuzzy efficiency of the DMUs where 

the input-output data as well as their weights are characterized by fuzzy numbers. 

The ‘‘possibility approach’’ and the ‘‘credibility approach’’ to FDEA mainly stemmed 

from Lertworasirikul et al. (2003), which modeled the uncertainty in fuzzy objective function 

and fuzzy constraints with possibility measures from both optimistic and pessimistic viewpoints. 

In the fuzzy arithmetic category, Wang et al. (2009) argued that a fuzzy fractional 

programming in the dual FDEA model cannot simply be transformed into a LP model using 

conventional methods. They therefore centered on the fuzzy fractional programming form of 

CCR model and transformed the multiplier formulation of the fuzzy CCR model into three LP 

models to obtain the fuzzy efficiency of the DMUs. 

In the fuzzy random/type-2 category, Qin et al. (2009) presented a DEA model with type-

2 fuzzy inputs and outputs solved in two steps. First, they exploited a reduction method for type-

2 fuzzy variables based on the expected value of a fuzzy variable, and then they built a FDEA 

model with the obtained fuzzy variables. Qin and Liu (2010) developed a fuzzy random DEA 

(FRDEA) model where randomness and fuzziness exist simultaneously. The authors 

characterized the fuzzy random data with known possibility and probability distributions. Tavana 

et al. (2012) also introduced three different FDEA models consisting of probability-possibility, 

probability-necessity and probability-credibility constraints in which input and output data 

entailed fuzziness and randomness at the same time. 

In another category of fuzzy DEA models are those that make use of geometric 

properties. Thus, Biondi Neto et al. (2011) developed a method to generate fuzzy efficient 

frontier by the use of interval DEA frontier when a single interval input or output presents a 

certain degree of uncertainty. The authors used a geometrical and algebraic approach to obtain a 

membership degree of each DMU in lieu of its efficiency score. In the same line, several 

researchers have defined the fuzzy version of the production possibility set (PPS) in which all 

production plans have different degrees of membership (Raei Nojehdehi et al. 2011, 2012, 2013; 

Bagherzadeh Valami et al. 2013). To do so, the authors first use a geometrical approach to 

acquire the membership function of fuzzy PPS and then transform the geometrical terms into the 

algebraic expression using some basic relationships of DEA models. 
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Apart from the tolerance approach, which exploits the fuzziness concept, FDEA models are 

generally solved as FLP models with fuzzy coefficients (i.e., fuzzy input-output data) and crisp 

decision variables. Since FDEA models take the form of fuzzy LP (FLP) problems, the different 

FDEA approaches have been developed as different ways of solving the corresponding FLP 

models. In general, FLP problems can be classified into the following six categories to handle 

imprecise data:  

1) FLP models when decision variables and the right-hand-side of the constraints are 

characterized by fuzzy numbers (e.g. Mahdavi-Amiri and Nasseri 2007); 

2) FLP models when the coefficients of the decision variables in the objective function are 

characterized by fuzzy numbers (e.g. Wu 2008);  

3) FLP models when the coefficients of the decision variables in the constraints and the 

right-hand-side of the constraints are characterized by fuzzy numbers(e.g. Liu 2001); 

4) FLP models when the decision variables, the coefficients of the decision variables in the 

objective function and the right-hand-side of the constraints are characterized by fuzzy 

numbers (e.g. Ganesan and Veeramani 2006);  

5) FLP models when the coefficients of the decision variables in the objective function, the 

coefficients of the decision variables in the constraints and the right-hand-side of the 

constraints are characterized by fuzzy numbers(e.g. Mahdavi-Amiri and Nasseri 2006); 

6) FLP models when all of the parameters and variables are characterized by fuzzy numbers 

(e.g. HosseinzadehLotfi et al. 2009). 

From the FDEA literature reviewed, with exceptions like Hatami-Marbini et al. (2011b), 

existing FDEA models belonging to categories (2) and (3) by considering fuzziness only in the 

input and output data, i.e. in the coefficients of the objective function and constraints of the DEA 

model. Therefore, the fuzzy aspect of performance evaluation is partially lost and the assessment 

process is solely limited to crisp decisions. Further, in many real life cases providing a crisp 

efficiency in the presence of vagueness and imprecise data such as linguistic terms is not rational 

for a decision-maker. If the use of precise efficiencies is not appropriate due to uncertainties in 

the evaluated system, it may always be desirable to provide fuzzy efficiencies by taking into 

consideration in such situations. Using fuzzy decision variables makes sense because, as Tanaka 

et al. (2000) argued, the real-world decisions are complex and there is usually a functional 

hierarchy that involves crisp decisions at the lower level but these are derived from fuzzy 
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decisions at the upper decision levels. This happens also in FDEA, since DEA is basically a data-

driven technique and, therefore, assessing the efficiency of a set of DMUs based on uncertain 

data is a complex issue that can be approached, in the first instance, as a fuzzy decision problem. 

Our aim in this study is more in line with Stanciulescu et al. (2003), who argued that, although it 

is easier and more convenient to consider crisp variables in FLP, it is preferable from a modeling 

point of view, to consider fuzzy decision variables. We thus propose the fuzzy efficiencies within 

a FDEA frame by defining fuzzy decision variables in addition to fuzzy inputs and outputs that 

can fully reflect, not hide, the uncertainty present in the problem, which allows the decision 

maker to arrive at a more meaningful (and valid) final results. Such a fuzzy efficiency will 

provide more detailed outcomes and flexibility with a certain degree of membership to the 

decision maker. As far as we know, no study in the literature has addressed this challenging 

research gap in the existing FDEA models. 

Whereas economists are more interested in the DEA formulation in “envelopment form” 

because of estimating production technology using some axioms most FDEA models in the 

literature have been developed based on the “multiplier formulation”. In this paper, both fuzzy 

Constant and Variable Returns to Scale models in “envelopment form” are proposed to measure 

fuzzy efficiencies. The resulting fuzzy LP model, with just one fuzzy variable in the objective 

function, is converted into a multi-objective linear programming (MOLP) problem which can be 

solved using a lexicographic approach. The proposed approach classifies DMUs into three 

distinct categories based on their fuzzy efficiencies. Fuzzy input and output targets for improving 

the inefficient DMUs are also computed. In addition, a super-efficiency FDEA model is 

formulated to rank the fuzzy efficient DMUs. 

The outline of this paper is as follows. In Section 2, we provide an overview of fuzzy set 

theory and the original DEA models. In Section 3, a fully fuzzified DEA (FFDEA) approach 

based on the CRS and VRS models is proposed while in Section 4 we present the corresponding 

super-efficiency FFDEA model. Section 5 discusses the computational complexity of the 

proposed models compared with the existing methods in the literature. In Section 6, we use two 

dataset from the literature to illustrate the validity and applicability of the proposed approach, 

comparing it with several existing methods. In Section 7, conclusions are drawn and further 

research is envisaged. 
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2. Preliminaries 

2.1. Fuzzy set theory 

Since the seminal work of Zadeh(1967) the theory of fuzzy sets has advanced in multiple 

directions and in many disciplines, such as artificial intelligence, decision theory, expert systems, 

management science, and operations research, as an effective way of modeling the uncertainty 

present in the real world. In this section, we review some basic definitions of fuzzy set theory 

(e.g. Zimmerman 2001). 

 

Definition 2.1:A fuzzy set a , defined on universal set of real numbers , is said to be a fuzzy 

number if its membership function has the following characteristics: 

i) a is convex, i.e.    , , [0,1], (1 ) min ( ), ( ) ,a a ax y x y x y             

ii) a is normal, i.e., ; ( ) 1,ax x    

iii) a is piecewise continuous. 

Definition 2.2:A fuzzy number 1 2 3 4( , , , )a a a a a is said to be a trapezoidal fuzzy number if its 

membership function is given as follows: 

 

The set of all these trapezoidal fuzzy numbers is denoted by ( )TF  . A trapezoidal fuzzy 

number, 1 2 3 4( , , , )a a a a a , reduces to a real number a if 1 2 3 4   a a a a a . Conversely, a real 

number a can be considered as a trapezoidal fuzzy number ( , , , ).a a a a a  

Definition 2.3:A trapezoidal fuzzy number 1 2 3 4( , , , )a a a a a is said to be non-negative 

(respectively positive) if and only if 1 0a   (respectively 1 0a ). The sets of non-negative and 

positive trapezoidal fuzzy numbers are denoted by ( )TF   and ( )TF  , respectively. 
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Definition 2.4: Two trapezoidal fuzzy numbers 1 2 3 4( , , , )a a a a a and 1 2 3 4( , , , )b b b b b are said to 

be equal, a b , if and only if 1 1a b , 2 2a b , 3 3a b and 4 4a b . 

Definition 2.5: Let 1 2 3 4( , , , )a a a a a and 1 2 3 4( , , , )b b b b b be two non-negative trapezoidal fuzzy 

numbers and k . Then the arithmetic operations on a and b are defined as follows: 

i) 1 2 3 4( , , , )ka ka ka ka ka if 0,k  

ii) 4 3 2 1( , , , )ka ka ka ka ka if 0,k  

iii) 1 1 2 2 3 3 4 4( , , , ),     a b a b a b a b a b  

iv) 1 1 2 2 3 3 4 4( , , , ). a b a b a b a b a b  

2.2. Classic DEA model 

The purpose of production function is to transform inputs 1
m

mx ( x ,...,x )    into outputs 

1
s

sy ( y ,..., y )   . The production possibility set (PPS) or technology T represents the set of 

feasible input-output combinations as follows: 

  m nT x,y | x can produce y
   

Due to different combination of the following empirical axioms corresponding to 

distinctive characterizations of the PPS, different DEA models exist in DEA: (P.1) no free lunch; 

(P.2) boundedness; (P.3) closedness; (P.4) strong disposal of inputs and outputs; (P.5) convexity; 

and (P.6) r-returns-to-scale. The two basic DEA models are the CCR model of Charnes et al. 

(1978) and the BCC model of Banker et al. (1984) where CCR and BCC satisfies constant 

returns-to-scale (CRS) and variable returns-to-scale (VRS), respectively. In economics, returns-

to-scale or economies of scale plays an imperative role for describing the production function 

behavior when the scale of production increases (increase in output relative to the associated 

increase in the inputs) in the long run. The production function has CRS if we multiply each 

input by a positive constant and the whole production function is multiplied with an amount that 

is equal to that constant. In DEA the estimation of RTS was first investigated in Banker (1984) 

and Banker et al. (1984) where both studies proposed adding a convexity constraint to the CCR 

model as well as developing a technique for estimating RTS. The empirical reference technology 

in terms of the minimal extrapolation principle for n DMUs is 
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  1 1
( ) , | , , ( )

n nm n
j j j j jj j

T x y x x y y     
  

       . In this regard, axiom  (P.6) 

can be used to differentiate between returns-to-scale and the shape of the frontier, that is, we can 

scale production with a certain factor, i.e., t ( ) t.( x,y ) T     where 

( ) { | 0}ncrs      and ( ) { | 0,1 1}nvrs        , in which VRS is the weakest 

assumption (no rescaling possible) and CRS is the strongest assumption.  

The idea of the Farrell measures behind these radial DEA models is measuring efficiency by 

reducing all the inputs equi-proportionally without decreasing the outputs, 

     , ; ( ) min | , ( )p pE E x y T x y T        or expanding all the outputs equi-

proportionally without increasing the inputs   , ; ( )F F x y T  

  max | , ( )p px y T    . The latter case is referred as the output-oriented model while 

the former is called the input-oriented model.  

Consider a set of n DMUs, where DMUj has a production plan   T (crs)and consumes m 

inputs  ( 1,2,..., )ijx i m  to produce r outputs ( 1,2,..., )rjy r s . The relative efficiency of DMUp 

can be obtained by using the following input-oriented CCR model: 

min p  

1

. . , 1,2,..., ,



  
n

j ij i p ip
j

s t x s x i m 

 

1

, 1,2,..., ,
n

j rj r rp
j

y s y r s 



                                                                                              (1) 

0, 1,2,..., ,

0, 1,2,..., ,

0, 1,2,..., .





 

 

 

j

i

r

j n

s i m

s r s



 

In this model, an efficiency score,
p , is computed for DMUp by minimizing all the 

inputs radially (i.e. equi-proportionally) without reducing its outputs. The objective value of (1) 
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lies within 0 1 p . The non-negative slack variables

is and 


rs represent the additional i

th
 

input excess and the r
th

 output shortfall, respectively, as 

1

, 1,2,..., ,



  
n

i p ip j ij
j

s x x i m 

 

1

, 1,2,..., ,



  
n

r j rj rp
j

s y y r s  

To compute the efficiency score and the remaining input excesses and output shortfalls the 

following two-phase process is followed: 

 Phase I: Calculate the optimal objective value of model (1), denoted by
*
p .  

 Phase II: Solve the following model so as to maximize the sum of remaining input 

excesses and output shortfalls (after carrying out the radial input reduction
*
p ): 

1 1

max
s m

r i
r i

s s 

 

   

*

1

. . , 1,2,..., ,



  
n

j ij i p ip
j

s t x s x i m 

 

1

, 1,2,..., ,
n

j rj r rp

j

y s y r s 



                                                                                         (2) 

0, 1,2,..., ,

0, 1,2,..., ,

0, 1,2,..., .





 

 

 

j

i

r

j n

s i m

s r s



 

Definition 2.6: Suppose that 
*
p  is the optimal value of model (1), and 

*( 1,2,..., ,) rs i m  and 

*( 1,2,..., ) is r s  are the optimal values of model (2). DMUp can be accordingly classified into 

one of three groups: 

 DMUp is called “efficient” if and only if 
* 1p  and 

* *

1 1

0 

 

  
s m

r i
r i

s s . 
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 DMUp is called “weakly efficient” if and only if 
* 1p  and 

* *

1 1

0 

 

  
s m

r i
r i

s s . 

 DMUp is called “inefficient” if and only if 
* 1p . 

To improve the performance of an inefficient DMUp, we first define the reference set, RSp, 

based on the solution of the Phase II (i.e. model (2)) as RSp={j|
* 0j }. The target inputs of an 

inefficient DMUp can be computed in two steps: (i)its inputs are reduced proportionally by a 

factor
*
p  and,(ii) remaining input excesses 

*
is  are removed. At the same time, the outputs of 

DMUp can be increased by the output shortfalls. Thus, the DEA projection (a.k.a. DEA target) of 

an inefficient DMUp can be computed as: 

* *ˆ , 1,2,..., ,  ip p ip ix x s i m

 
*ˆ , 1,2,..., .  rp rp ry y s r s  

Note that the CCR score can be called the (global) technical efficiency (TE) since there is 

no rescaling effect while BCC under the VRS assumption can be called (local) pure technical 

efficiency  (PTE) in order to determine the source of inefficient DMU that may be due to the 

ineffective operation of the technology in transforming inputs to outputs (pure technical 

inefficiency)or its variance from the most productive scale size (scale inefficiency) or both 

(Cooper et al. 2007; Banker, 1984).In this regard, a DMU is said to be operating at optimal 

returns-to-scale or the most productive scale size when the BCC score is equal to the CCR score. 

Practically, the only difference between the BCC model and the CCR model consists in the 

inclusion, in both models (1) and (2), of the convexity constraint 

1

1
n

j

j





 . 

The above conventional DEA models, particularly BCC model, result in many efficient 

DMUs that can discern no difference between them. There have been developed a wide variety 

of methods in the literature for improving the discriminatory power of DEA, one of which is the 

super-efficiency method proposed by Andersen and Petersen (1993) to rank the efficient DMUs. 
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The super-efficiency corresponding model (1) can be defined as the optimal objective function 

value of the following model: 

min p  

1

. . , 1,2,..., ,
n

j ij i p ip

j
j p

s t x s x i m 




  
 

1

, 1,2,..., ,
n

j rj r rp

j
j p

y s y r s 




          (3) 

0, 1,2,..., ,

0, 1,2,..., ,

0, 1,2,..., .

j

i

r

j n j p

s i m

s r s







  

 

 

 

The difference between models (1) and (3) is to exclude the DMU under evaluation, DMUp, 

from the PPS in model (3). In addition, efficient DMUs have efficiency scores larger than or 

equal to 1, and inefficient DMUs have the same efficiency scores obtained from model (1). 

3. Fully Fuzzified DEA (FFDEA) Model 

In this section, we propose CRS and VRS FFDEA models to measure the relative fuzzy 

efficiency of each DMU as well as to identify the inefficiency sources that are associated with 

fuzzy inputs slacks and/or fuzzy outputs shortfalls. 

3.1. CRS FFDEA model 

The FLP analog of CCR model (1) for evaluating the efficiency of DMUp can be 

formulated as 

min CRS
p  

1

. . , 1,2,..., ,
n

CRS
j ij i p ip

j

s t x s x i m 



      

1

, 1,2,..., ,
n

j rj r rp
j

y s y r s 



            (4) 
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( ) , 1,2,..., ,

( ) , 1,2,..., ,

( ) , 1,2,..., .

j

i

r

TF j n

s TF i m

s TF r s

 

 

 

  

  

  

 

The structure of this FLP follows that of model (1). Thus, it uses an input orientation and 

computes a target fuzzy operating point is computed as a fuzzy linear combination of the 

observed data. The outputs of this target fuzzy operating point cannot be lower than those of the 

DMUp being assessed and the corresponding inputs are expressed as a fuzzy input reduction 

factor 
CRS
p  applied to the observed inputs of that DMU. The differentiating feature of this 

model, and the reason why it is labeled a fully fuzzified approach, is the fact that the coefficients 

of the linear combination j  as well as the efficiency score 
CRS
p  and the input and output 

slacks 

is  and 


rs  are all trapezoidal fuzzy numbers. The objective function is, as in (1), to 

maximize the reduction in the amount of inputs consumed by the target operating point. 

There are different types of fuzzy membership functions that can be used to model fuzzy 

numbers (see Definition 2.1). However, membership functions form is of concern to analysts, 

particularly in practice the type of fuzzy membership function considered should be either 

chosen by the experts based on their experience (Tanaka and Guo 1999, Tanaka et al. 2000) or 

constructed based on available data (see Appendix A). In the case of model (3), due to their 

special structure with more flexibility and mathematical convenience, we assume trapezoidal 

fuzzy numbers to quantify the ambiguity in the decision parameters and in the input and output 

data. The choice of trapezoidal fuzzy numbers in this study leads to simplicity in modeling and 

ease of interpretation due to their linear membership functions (see Definition 2.2).  

Therefore, 
CRS
p ,

ijx ,
rjy , ,j is 

 and rs  are all represented by trapezoidal fuzzy numbers 

 ,1 ,4 ,4 ,4, , ,CRS CRS CRS CRS
p p p p    ,  ,1 ,2 ,3 ,4, , ,ij ij ij ijx x x x ,  ,1 ,2 ,3 ,4, , ,rj rj rj rjy y y y and 

 ,1 ,2 ,3 ,4, , ,j j j j    ,  ,1 ,2 ,3 ,4, , ,i i i is s s s   
and  ,1 ,2 ,3 ,4, , ,r r r rs s s s   

, respectively. Note that 

triangular membership function is a special case of trapezoidal membership function and one can 
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be simply applied by using the following substitutions; ,4 ,4
CRS CRS
p p  , 

,2 ,3ij ijx x , 
,2 ,3rj rjy y

and 
,2 ,3j j  , ,2 ,3i is s  and ,2 ,3r rs s  .Note that fuzzy production plans can be constructed 

by a combination of both fuzzy and crisp input and output data in which crisp data has no 

uncertainty. In this paper, we assume that the production plans are only based on fuzzy inputs 

and outputs since the crisp data can be simply transformed into the fuzzy form (c.f., Definition 

2.2).By the use of trapezoidal fuzzy numbers, FFDEA model (4) can be reformulated as follows: 

 ,1 ,4 ,4 ,4min , , ,CRS CRS CRS CRS
p p p p     

     

   

,1 ,2 ,3 ,4 ,1 ,2 ,3 ,4 ,1 ,2 ,3 ,4
1

,1 ,4 ,4 ,4 ,1 ,2 ,3 ,4

. . , , , , , , , , ,

, , , , , , , 1,2,..., ,

n

j j j j ij ij ij ij i i i i
j

CRS CRS CRS CRS
p p p p ip ip ip ip

s t x x x x s s s s

x x x x i m

   

   

   



  

 


 

     

 

,1 ,2 ,3 ,4 ,1 ,2 ,3 ,4 ,1 ,2 ,3 ,4
1

,1 ,2 ,3 ,4

, , , , , , , , ,

, , , , 1,2,..., ,

n

j j j j rj rj rj rj r r r r
j

rp rp rp rp

y y y y s s s s

y y y y r s

       



  




 (5)

 

   ,1 ,2 ,3 ,4 ,1 ,2 ,3 ,4, , , , , , ,j j j j i i i is s s s       
,    ,1 ,2 ,3 ,4, , ,r r r rs s s s TF

      

Remark 3.1. It is assumed that each DMU has at least one positive fuzzy input and one positive 

fuzzy output, which can be expressed as (see Definition 2.3): 

,1 ,1

,1 ,1

0, 0, 1,2,...,

0, 0, 1,2,...,

j j

j j

X X j n

Y Y j n

  

  
    (6) 

Based on fuzzy arithmetic operations, model (5) can be rewritten as follows: 

 ,1 ,2 ,3 ,4min , , ,CRS CRS CRS CRS
p p p p     

   

 

,1 ,1 ,2 ,2 ,3 ,3 ,4 ,4 ,1 ,2 ,3 ,4
1

,1 ,1 ,2 ,2 ,3 ,3 ,4 ,4

. . , , , , , ,

, , , , 1,2,..., , ( )

n

j ij j ij j ij j ij i i i i
j

CRS CRS CRS CRS
p ip p ip p ip p ip

s t x x x x s s s s

x x x x i m i

   

   

   



 




 



 

 
15 

   

 

,1 ,1 ,2 ,2 ,3 ,3 ,4 ,4 ,1 ,2 ,3 ,4
1

,1 ,2 ,3 ,4

, , , , , ,

, , , , 1,2,..., , ( )

n

j rj j rj j rj j rj r r r r
j

rp rp rp rp

y y y y s s s s

y y y y r s ii

       



 




  (7) 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., , ( )j j j j j j j j n iii             
 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,i i i i i i is s s s s s s i m             
   

(iv)
 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,r r r r r r rs s s s s s s r s             
   

(v) 

,2 ,1 ,3 ,2 ,4 ,30, 0, 0.CRS CRS CRS CRS CRS CRS
p p p p p p               (vi)

 

Constraints (i) and (ii) in model (7) are simply obtained using the multiplication of two 

trapezoidal fuzzy numbers. To impose the non-negative  preserving its form as a trapezoidal 

fuzzy number, we have 
,4 ,3 ,2 ,1 0j j j j       , which corresponds to constraints(iii). 

Analogously, the non-negativity of is


 and rs  are imposed through constraints (iv) and (v) of 

model (6). In addition, the preservation of the form of its trapezoidal fuzzy number, 

 ,1 ,4 ,4 ,4, , ,CRS CRS CRS CRS CRS
p p p p p     leads to constraints (vi) of model (7). 

Now, based on Definition 2.4, we can rewrite the constraints of model (7) as  

, , , , ,
1

, 1,2,..., , 1,2,3,4,
n

CRS
j k ij k i k p k ip k

j

x s x i m k 



     

, , , ,
1

, 1,2,..., , 1,2,3,4,
n

j k rj k r k rp k
j

y s y r s k 



              (8) 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,j j j j j j j j n             
 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,i i i i i i is s s s s s s i m             
 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,r r r r r r rs s s s s s s r s               

,2 ,1 ,3 ,2 ,4 ,30, 0, 0.CRS CRS CRS CRS CRS CRS
p p p p p p          
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The optimal value of the objective function of model (7) computes the relative fuzzy 

efficiency of DMUp. Note that model (7) is still an FLP model with one fuzzy variable in the 

objective function. This study proposes a new method to solve model (7) using the conversion of 

this model into a multi-objective linear programming (MOLP) problem. Thus, minimizing the 

fuzzy decision variable 
CRS
p , which has four variable parameters (namely ,1 ,2 ,3, ,CRS CRS CRS

p p p    

and ,4
CRS
p ) leads to the following MOLP model with four objective functions for minimizing 

these four variables simultaneously: 

(9)) 

,1

,2

,3

,4

,2 ,1 ,3 ,2 ,4 ,3

min

min

min

min

. . 0, 0, 0.

(8).

CRS
p

CRS
p

CRS
p

CRS
p

CRS CRS CRS CRS CRS CRS
p p p p p ps t

Remaining constraints in 









          

 

It is worth noting that due to the last constraint of (8) the value of the four objective 

functions ,1 ,2 ,3, ,CRS CRS CRS
p p p    and ,4

CRS
p  always preserve the form of trapezoidal fuzzy number 

as  ,1 ,4 ,4 ,4, , ,CRS CRS CRS CRS
p p p p    throughout the optimization process. Now, to find the relative fuzzy 

efficiency of DMUp, we propose a lexicographic approach for solving MOLP model (9) so that 

one of the objectives (namely ,4
CRS
p ) is optimized first, then, maintaining the optimal value of 

that variable, a second objective (namely ,3
CRS
p ) is optimized, and then, following the same 

procedure, successively, the third ( ,2
CRS
p ) and fourth ( ,1

CRS
p ) objective functions are optimized. 

Therefore, the following LP model is solved first: 

(10) 

,4

,2 ,1 ,3 ,2 ,4 ,3

min

. . 0, 0, 0.

(7).

CRS
p

CRS CRS CRS CRS CRS CRS
p p p p p ps t

Remaining constraints in 



            
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It should be noted that if ,1
CRS
p is first minimized and takes unity, then it is possible to the 

optimal value of ,2
CRS
p , ,3

CRS
p or ,4

CRS
p  is larger than unity. 

Proposition 1. The optimal objective function value of model (10) lies within the interval (0,1]. 

Proof: The solution ,1 ,4 ,4 ,4 1CRS CRS CRS CRS
p p p p       , ,1 ,2 ,3 ,4 0, ( 1,..., )i i i is s s s i m        , 

,1 ,2 ,3 ,4 0, ( 1,..., )r r r rs s s s r s        ,
,1 ,2 ,3 ,4 1p p p p        and 

,1 ,2 ,3j j j    

,4 0,j j p     is a feasible solution of model (10). Since its objective function value is unity, 

this implies that the optimal objective function value of model (9) ,*
,4 1.CRS

p  On the other 

hand, due to non-negativity of the fuzzy outputs, 
,4 0pY  , (see Remark 3.1), and the constraints 

,4 ,4 ,4
1

n

j rj rp
j

y y



 ( 1,2,..., )r s  (equivalently ,4 ,4 ,4 ,4
1

n

j rj r rp
j

y s y 



  where ,4 0rs  ) 

some 
,4j  must take a non-zero value. Thus, for some input i ,*

,4 ,4 ,4,4
1

0
n

CRS
j ij ipp

j

x x 


  , 

which implies ,*
,4 0CRS

p  .         

  

Most likely, the optimal solution of (10) may not be unique. To handle this problem one 

method is to find the optimal solution, 
ijx ,

rjy , ,j is 
 and rs  while preserving the optimal value

,*
,4

CRS
p

 calculated from (10). Therefore, the second step in the lexicographic optimization of model 

(9) consists in solving the following LP model 

(11) 

,3

,*
,4 ,4

,2 ,1 ,3 ,2 ,4 ,3

min

. .

0, 0, 0.

(8).

CRS
p

CRS CRS
p p

CRS CRS CRS CRS CRS CRS
p p p p p p

s t

Remaining constraints in 



 

     



     

 

The first constraint of (11) ensures that the optimal solution of model (11) is also a 

feasible solution to model (10). Put differently, excluding the first constraints of (11), models 
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(10) and (11) have the same constraints and the objective function of model (11) is the margin 

minimization of model (10). 

Proposition2. The optimal value of the objective function of model (11) lies within (0, ,*
,4

CRS
p ]. 

Proof: On the one hand, from the constraints of model (11) and taking into account Proposition 

1it follows that ,*
,3 ,4 1CRS CRS

p p   . On the other hand, by a similar argument as in Proposition 1, 

the non-negativity of the fuzzy outputs, 
,3 0pY  , and the constraints ,4 ,4 ,4

1

n

j rj rp
j

y y





( 1,2,..., )r s  imply that some ,3j  must take a non-zero value. Therefore, for some input i

,*
,3 ,3 ,3,3

1

0
n

CRS
j ij ipp

j

x x 


  , which means ,*
,4 0CRS

p  .      

Corollary 1.  
,*

,3 1CRS
p   if and only if ,*

,4 1CRS
p  . 

The third and fourth steps in the lexicographic optimization of model (9) involves 

solving, successively, the following two LP models 

 

 

(12) 

,2

,*
,4 ,4

,*
,3 ,3

,2 ,1 ,3 ,2 ,4 ,3

min

. .

0, 0, 0.

(8).

CRS
p

CRS CRS
p p

CRS CRS
p p

CRS CRS CRS CRS CRS CRS
p p p p p p

s t

Remaining constraints in 



 

 

     





     

 

(13) 

,1

,*
,4 ,4

,*
,3 ,3

,*
,2 ,2

,2 ,1 ,3 ,2 ,4 ,3

min

. .

0, 0, 0.

(8).

CRS
p

CRS CRS
p p

CRS CRS
p p

CRS CRS
p p

CRS CRS CRS CRS CRS CRS
p p p p p p

s t

Remaining constraints in 



 

 

 

     







     
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It is obvious that the constraint ,4 ,3 0 CRS CRS
p p   in (12) and the constraints 

,4 ,3 0 CRS CRS
p p 

 
and ,3 ,2 0 CRS CRS

p p   in (13) are redundant. Moreover, the following statements 

can be made (proof omitted). 

Proposition3. The optimal value of the objective function of models (12) and (13) lie within (0,

,*
,3

CRS
p ] and (0, ,*

,2
CRS
p ], respectively. 

Corollary 2. 
,*

,2 1CRS
p   if and only if ,* ,*

,3 ,4 1CRS CRS
p p   . 

Corollary 3. 
,*

,1 1CRS
p   if and only if ,* ,* ,*

,2 ,3 ,4 1CRS CRS CRS
p p p     . 

Although the lexicographic optimization approach involving models (10)-(13) allows the 

computation of the relative fuzzy efficiency of DMUp

 ,* ,* ,* ,* ,*
,1 ,2 ,3 ,4, , , ,CRS CRS CRS CRS CRS

p p p pp      since this efficiency score uses a radial metric there 

may remain input and output slacks. Therefore, analogously to the CCR model, the following 

Phase II model can be used to maximize the sum of fuzzy input excesses and fuzzy output 

shortfalls, while preserving  ,* ,* ,* ,* ,*
,1 ,2 ,3 ,4, , , ,CRS CRS CRS CRS CRS

p p p pp      

   ,1 ,2 ,3 ,4 ,1 ,2 ,3 ,4
1 1

max
m s

i i i i r r r r
i r

s s s s s s s s       

 

         

,*
, , , ,,

1

. . , 1,2,..., , 1,2,3,4,
n

CRS
j k ij k i k ip kp k

j

s t x s x i m k 



                                   (14) 

, , , ,
1

, 1,2,..., , 1,2,3,4
n

j k rj k r k rp k
j

y s y r s k 



   
 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0; 1,2,..., ,j j j j j j j j n               

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,i i i i i i is s s s s s s i m               

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., .r r r r r r rs s s s s s s r s             
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Definition 3.1: Let  ,* ,* ,* ,* ,*
,1 ,2 ,3 ,4, , , ,CRS CRS CRS CRS CRS

p p p pp     the relative fuzzy efficiency of 

DMUp computed from Phase I and  * * * * *
,1 ,2 ,3 ,4, , ,i i i i is s s s s      and  * * * * *

,1 ,2 ,3 ,4, , ,r r r r rs s s s s      the 

optimal solution of Phase II calculated from model (13), then DMUp can be classified into one of 

these three groups: 

 DMUp is “FFDEA efficient” if and only if  ,* 1,1,1,1CRS
p  ,  * 0,0,0,0is i    and 

 * 0,0,0,0 .rs r    

 DMUp is called “FFDEA weakly efficient” if and only if  ,* 1,1,1,1CRS
p   and the 

optimal value of the objective function of (14) is positive (i.e. 

 * *

1 1

0,0,0,0
m s

i r
i r

s s 

 

   ) 

 DMUp is called “FFDEA inefficient” if and only if  ,* 1,1,1,1CRS
p  . 

To provide a complete ranking of FFDEA efficient DMUs, we will develop a new super-

efficiency FFDEA method in Section 4. Nonetheless, we use the following definition to rank 

FFDEA inefficient DMUs: 

Definition 3.2: Let 1 2 3 4( , , , )a a a a a  and 1 2 3 4( , , , )b b b b b  be two trapezoidal fuzzy numbers. 

According to the lexicography method, a b if and only if one of the following cases apply 

i) 4 4a b ,  

ii) 4 4 3 3,a b a b  ,  

iii) 4 4 3 3 2 2, ,a b a b a b   , 

iv) 4 4 3 3 2 2 1 1, , ,a b a b a b a b    . 

Definition 3.3: Let 1 2 3 4( , , , )a a a a a  and 1 2 3 4( , , , )b b b b b  be two trapezoidal fuzzy numbers. 

According to the lexicography method, a b if and only if 4 4 3 3 2 2 1 1, , ,   a b a b a b a b  
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Definition 3.4: Let 1 2 3 4( , , , )a a a a a  and 1 2 3 4( , , , )b b b b b  be two trapezoidal fuzzy numbers. 

According to the lexicography method, a b if and only if a b  or a b  

In addition to computing relative fuzzy efficiencies and identifying FFDEA efficient, 

weakly efficient and inefficient DMUs, the proposed approach allows the identification of 

benchmarks and the computation of fuzzy input and output targets for each inefficient DMUp. 

This can be done based on the optimal solution of model (14). Thus, the benchmarks of an 

inefficient DMUp correspond to the DMUs in its corresponding reference set 

 * * * * *
1, 2, 3, 4,( , , , ) (0,0,0,0) .p j j j j jR j         

Analogously, the fuzzy input and output targets of an inefficient DMUp can be computed 

as: 

(15) 
,* *

, , , , ,,
ˆ , 1,2,3,4

p

CRS
ip k ip k i k j k ij kp k

j R

x x s x k 



   
 

 

(16) 
*

, , , , ,ˆ , 1,2,3,4,

p

rp k rp k r k j k rj k
j R

y y s y k



   
 

3.2. VRS FFDEA model 

In this sub-section, the VRS case will be discussed. In principle, the only difference with 

respect to the CRS case presented in Sub-section3.1 is the inclusion of the convexity constraint 

 in models (4), (5) and (7) as well as labeling the corresponding relative 

fuzzy efficiency as  ,1 ,4 ,4 ,4, , ,VRS VRS VRS VRS VRS
p p p p p     .Moreover, according to definition 2.4, 

including this convexity constraint is equivalent to adding the following constraints to model (9) 

,1
1

1
n

j
j




 , ,2
1

1
n

j
j





 , ,3
1

1
n

j
j




 , ,4
1

1
n

j
j





 , 

However, since ,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,j j j j j j j j n               

it follows that, necessarily, ,1 ,2 ,3 ,4, 1,2,...,j j j j j n       . This reduces the numbers 

of constraints and variables of model (9). Thus, relabeling 
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,1 ,2 ,3 ,4 , 1,2,...,j j j j j j n          the VRS equivalent of model (9) can be formulated 

as 

,1

,2

,3

,4

min

min

min

min

VRS
p

VRS
p

VRS
p

VRS
p









 

, , , ,
1

. . , 1,2,..., , 1,2,3,4,
n

VRS
j ij k i k p k ip k

j

s t x s x i m k 



     

, , ,
1

, 1,2,..., , 1,2,3,4
n

j rj k r k rp k
j

y s y r s k 



       (17) 

1

1




n

j
j


 

0, 1,2,..., , j j n
 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,i i i i i i is s s s s s s i m             
 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,r r r r r r rs s s s s s s r s               

,2 ,1 ,3 ,2 ,4 ,30, 0, 0.     VRS VRS VRS VRS VRS VRS
p p p p p p     

 

This FLP can be transformed into a MOLP problem and solved using a lexicographic 

optimization approach just as in the CRS case. Based on the solutions of the corresponding 

models, i.e. relative fuzzy efficiency  ,* ,* ,* ,* ,*
,1 ,2 ,3 ,4, , ,VRS VRS VRS VRS VRS

p p p pp     , fuzzy input 

excesses  * * * * *
,1 ,2 ,3 ,4, , ,i i i i is s s s s      and fuzzy output shortfalls  * * * * *

,1 ,2 ,3 ,4, , ,r r r r rs s s s s      the 

classification of DMUs and the computation of fuzzy input and output targets can be similarly 

done. Thus, 
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Definition 3.5: A DMUp can be classified into one of these three groups: 

 DMUp is “VRS FFDEA efficient” if and only if  ,* 1,1,1,1VRS
p  ,  * 0,0,0,0is i    

and  * 0,0,0,0 .rs r    

 DMUp is called “VRS FFDEA weakly efficient” if and only if  ,* 1,1,1,1VRS
p   and the 

optimal value of the objective function of (14) is positive (i.e. 

 * *

1 1

0,0,0,0
m s

i r
i r

s s 

 

   ) 

 DMUp is called “VRS FFDEA inefficient” if and only if  ,* 1,1,1,1VRS
p  . 

Proposition4. 
VRS,* CRS,*
p,4 p,4    

Proof: Model (17) is equivalent to model (9) with the additional constraints ,1
1

1
n

j
j




 , 

,2
1

1
n
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1

1
n
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
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 , ,4
1

1
n

j
j





 , and 
,1 ,2 ,3 ,4j j j j j       . Therefore, because of 

this reduced feasibility region, in the first step of the lexicographic optimization approach, when 

computing ,*
,4

VRS
p , a larger optimal value would necessarily ensue, i.e. VRS,* CRS,*

p,4 p,4   .  

4. Super-efficiency FFDEA method 

In the proposed approach, especially in the VRS case, several DMUs may be assessed as 

FFDEA efficient. This is a common feature in DEA and precludes a complete ranking of the 

DMUs. There are many DEA ranking methods (see, for example, Adler et al. 2002 for a review) 

among which a simple and often used approach is super-efficiency (e.g. Andersen and Petersen 

1993). The basic idea in the super-efficiency approach is that the DMU under evaluation should 

be eliminated from DMUs that determine the reference set. In this section, a radial, input-

oriented super-efficiency FFDEA model is formulated. From model (7) we get the corresponding 

super-efficiency formulation 
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 ,1 ,4 ,4 ,4min , , ,SE CRS SE CRS SE CRS SE CRS
p p p p      
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y y y y s s s s

y y y y r s

       




 




       (18) 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,j j j j j j j j n j p              
 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,i i i i i i is s s s s s s i m             
 

,1 ,2 ,1 ,3 ,2 ,4 ,30; 0; 0; 0, 1,2,..., ,r r r r r r rs s s s s s s r s               

Although the modification is simple (note just the j p  in the first three constraints) it 

has some important implications. Thus, the equivalent to Proposition no longer holds, i.e. 

,*
,4

SE CRS
p

  can be greater than or equal to unity (see Proposition 5). Two additional remarks 

should be taken into account. One is that the super-efficiency model is solved only for the 

FFDEA efficient DMUs. For FFDEA weakly efficient and inefficient DMUs there is not any 

change because of their exclusion from the reference set. This is because only efficient DMUs 

define the efficient frontier and can thus be part of the reference set anyway. The second remark 

is that since the super-efficiency model does not project on the true efficient frontier (but on that 

which results when the DMU being assessed is removed) the super-efficiency approach is not 

aimed at computing input and output targets. This means that there is no need to carry out a 

Phase two. We apply the proposed lexicographic method to solve MOLP model (18) and obtain 

the optimal fuzzy super-efficiency score of FFDEA efficient DMUs. In addition, we can employ 

definitions 3.2-3.4 to determine a complete ranking of these DMUs. Moreover, the following 

statement can be made (proof omitted). 

Proposition 5. If DMUp is FFDEA efficient, then 
,*

,4 1.SE CRS
p

 
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Model (18) corresponds to the CRS case. The corresponding model for the VRS case just 

requires adding the convexity constraint 
1,

1
n

jj j p


 
 . It is well known, however, that this 

type of radial VRS super-efficiency models can have infeasibilities, thus preventing ranking the 

total set of efficient DMUs (e.g. Seiford and Zhu 1999). Moreover, infeasibilities can also occur, 

even in the CRS case, if an efficient DMU has zero input value (Zhu 1996). Another recent 

discussion finds the super-efficiency model unsuccessful in ranking efficient units by conducting 

simulation experiments (Banker and Chang, 2006). How to overcome all these problems has 

been the subject of much research in DEA and many alternative super-efficiency DEA models 

have been proposed to overcome them (e.g. Seiford and Zhu, 1999; Chen 2004; Cook et al. 2009; 

Lee and Zhu 2012; Chen et al. 2013; Lin and Chen 2015; Pourmahmoud et al. 2016; Aldamak et 

al. 2016). As indicated above, in this paper the basic Andersen and Petersen (1993) super-

efficiency approach is used to be consistent with the radial, input-oriented character of the 

FFDEA model (7). Although desirable, exploring other super-efficiency variants or other DEA 

ranking methods is out of the scope of this paper and is a topic for further research. 

 

5. Computational discussion 

In this section, we show that our approach is computationally economical compared to the 

existing FDEA methods involving Kao and Liu (2000), Guo and Tanaka (2001), Saati et al. 

(2002), León et al. (2003) and Lertworasirikul et al. (2003). 

Every DEA model can be represented in the envelopment form (primal model) or 

multiplier form (dual model) form by dint of a primal-dual transformation. The primal VRS 

model involves m+s+1 constraints and n+1 variables where m, s and n are the numbers of inputs, 

outputs and observations, respectively, while the dual VRS model involves n+1 constraints and 

m+n variables. Generally, in DEA the number of DMUs is considerably larger than the number 

of inputs and outputs thanks to the rule of thumb (Golany and Roll, 1989). The computational 

burden of the LP problem directly depends on the number of constraints and variables but since 

the memory size required for preserving the basis is the square of the number of constraints, the 

LP problem with less number of constraints is more appropriate in terms of memory saving 

purposes. Therefore, the primal DEA model is computationally economical contrary to the dual 

DEA model. Since the solving of FDEA models is basically based on transforming the problem 

into the crisp LP problems, the computational burden that mostly hinges on the number of 

http://onlinelibrary.wiley.com/doi/10.1111/j.1475-3995.2012.00871.x/full#itor871-bib-0028


 

 
26 

constraints can be studied.  

Kao and Liu (2000) developed a fuzzy (dual) VRS model to measure the efficiencies of 

DMUs with fuzzy inputs and outputs. They used α-level’s idea and Zadeh's extension principle 

to convert the fuzzy DEA model into a pair of crisp parametric programs with different α-level 

sets to estimate the membership function of the efficiency measure. Kao and Liu (2000)’s 

method requires solving 2nqLP models
1
 where each model involves n constraints, m+s 

nonnegative constraints and m+s+1variables that is computationally expensive. Although Kao 

and Liu considered a simple example to show the strength of their method in constructing the 

membership function of the efficiency using different α-level sets there is no guarantee that the 

monotonicity property will be generally satisfied. 

Guo and Tanaka (2001) proposed a fuzzy (dual) CRS model for estimating fuzzy 

efficiency in which fuzzy constraints (including fuzzy equalities and fuzzy inequalities) were 

converted into crisp constraints by using the comparison rule for fuzzy numbers for a given 

possibility α-level. Guo and Tanaka (2001) used the possibilistic programming to formulate a LP 

problem involving a primary objective function and a secondary objective function. This can be 

expressed with a primary objective function by introducing an added constraint based on the 

optimal objective function value of the secondary model that is independently calculated. 

Therefore, Guo and Tanaka (2001)’s method requires solving 2nqLP models where each 

secondary model involves 2constraints, m nonnegative constraints and m variables and each 

primary model involves 3+2n constraints, m+s nonnegative constraints and m+s variables. 

Furthermore, the authors generalized their method with considering the relationship between 

DEA and regression analysis (RA), which requires solving the primary model with 4n more 

variables. Despite heavy computational burden of Guo and Tanaka (2001)’s method, it is solely 

limited to the case of symmetrical triangular fuzzy variables and cannot be applied to non-

symmetrical triangular fuzzy.  

Saati et al. (2002) extended a fuzzy (dual) CRS model based on the α-level set approach 

in which they first defined a possibilistic-programming problem and then transformed it into a 

crisp linear programming model. Saati et al. (2002)’s method requires solving nq LP models 

where each model includes n(1+2m+2s)+1 constraints, m+s nonnegative constraints and 

(m+s)(n+1) variables, leading to a very high computational burden. 

                                                 
1
n and q represent the number of observations and α levels, respectively. 

http://onlinelibrary.wiley.com/doi/10.1111/j.1475-3995.2012.00871.x/full#itor871-bib-0028
http://onlinelibrary.wiley.com/doi/10.1111/j.1475-3995.2012.00871.x/full#itor871-bib-0028
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León et al. (2003) developed a fuzzy version of the primal VRS model in the frame of 

possibilistic-programming optimization by applying two ranking methods in terms of α-level 

sets. León et al. (2003) ’s method requires solving nq LP models where each model includes 

4(m+s)+1 constraints, n nonnegative constraints and n+1 variables over and above we remark 

that the zero value of the right-hand-side of 4m constraints leads to increase in degeneracy and 

the computational complexity. This method yields a crisp efficiency score for a given DMU for 

each α-level. 

As an alternative approach, Lertworasirikul et al. (2003) proposed a fuzzy (dual) CCR 

model using possibility theory and the concept of chance-constrained programming in which 

constraints are assumed to be fuzzy events at predefined acceptable levels of possibility for 

constraints. Though each constraint can have a predefined acceptable level of possibility 

Lertworasirikul et al. (2003) presumed the same possibility level for all fuzzy constraints and 

under this assumption their method requires solving nq LP models where each model includes 

3+n constraints, m+s nonnegative constraints and m+s+1 variables. 

Let us now investigate the computational complexity of the proposed approach in this 

study involving models (9), (14) and (17). Regarding the fuzzy (primal) CRS model (9), we 

require solving 4n LP models since this model for each DMU is transformed into four LP models 

to calculate the fuzzy efficiency, in which model (10) contains 7(s+m)+3(n+1) constraints, 

n+m+s nonnegative variable constraints and 4(m+s+n+1) variables. Compared to model (10), 

models (11), (12) and (13) entail one, two and three less decision variables, respectively, and 

models (12) and (13) entail one and two less constraints, respectively. Next, model (14) can be 

run n times to distinguish weakly efficient units where each model involves 7(s+m)+3(n+1) 

constraints, n+m+s nonnegative variable constraints and 4(m+s+n) variables. Similarly, we 

require solving 4n LP models for the fuzzy (primal) VRS model (9), where the primary LP 

model entails 7(m+s)+n+3 constraints, n+m+s nonnegative variable constraints and 4(m+s+1)+n 

variables. The computational complexity of the existing methods and our method is summarized 

in Table1. Obviously, in the proposed approach in this study we need much less computational 

effort in terms of the number LP models that can be solved for each unit. In addition, although 

the number of constraints and variables are generally increased in our proposed models we think 

of more fuzziness in the modelling to fully reflect the uncertainty.  

----Insert Table 1 Here---- 
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6. Numerical examples 

In this section, we present two numerical examples to illustrate the applicability and efficacy 

of the proposed method. We first consider a hypothetical example proposed by Guo and Tanaka 

(2001) followed by a second example from Azadi et al. (2015) for evaluating a real case study in 

sustainable supply chain management (SSCM).  

6.1. Example 1 

Let us first consider the dataset used by Guo and Tanaka (2001) in this subsection, in 

which five DMUs consume two fuzzy inputs to produce two fuzzy outputs under CRS (see Table 

2). Note that, in this example, all the inputs and outputs are triangular fuzzy numbers, which are 

a subset of the trapezoidal fuzzy numbers considered in this paper. Since this dataset was also 

used by Saati et al. (2002) and Lertworasirikul et al. (2003) we will be able to compare our 

results with those of these three FDEA methods. 

----Insert Table 2 Here---- 

Table 3 shows the results of the proposed approach. Note that DMUs B, D and E are 

found FFDEA efficient because their fuzzy efficiencies are (1, 1, 1, 1) and zero optimal value 

obtained for Phase II while DMUs A and C are assessed as FFDEA inefficient as presented in 

the last column of Table 2. 

----Insert Table 3 Here---- 

It may be interesting to report also the fuzzy input and output targets of the two FFDEA 

inefficient DMUs. These are shown in Table 4. 

----Insert Table 4 Here---- 

Finally, before commenting on the results of existing FDEA methods applied to this 

example, let us see the results of the super-efficiency FFDEA method proposed in Section 4. 

These are shown in Table 5, together with the corresponding ranking using definition 3.2. 

----Insert Table 5 Here---- 

Guo and Tanaka (2001) proposed a fuzzy CCR model with fuzzy constraints, including 

fuzzy equalities and fuzzy inequalities. The fuzzy constraints were converted into crisp 
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constraints by predefining a possibility level and using the ranking system for fuzzy numbers. 

They defined a DMU as -possibilistic efficient if the maximum value of the fuzzy efficiency at 

that -level is greater than or equal to 1.The set of all possibilistic efficient DMUs was called the 

-possibilistic nondominated set, denoted by S . The fuzzy efficiencies of Guo and Tanaka 

(2001) for = {0,0.5,0.75,1} are reported in Table 5. As it can be seen in Table 6, 

 0S B ,C ,D ,E ,  0.5S B ,D ,  0.75S B ,D  and  1S B ,D ,E  are the nondominated sets 

for different  values. Note that DMUB and DMUD are in the possibilistic nondominated set for 

all -levels. As for DMU E, there might me a typo in the reported results because, it is to be 

expected (and it occurs in all cases except for DMU E and =0.5 and =0.75 and for DMU B 

and =0.5), that the upper limit of the -cuts are decreasing with . 

----Insert Table 6 Here---- 

Lertworasirikul et al. (2003) developed a CCR DEA model using the possibility approach 

and they defined a DMU as -possibilistic efficient if the objective value of the model is greater 

than or equal to 1 at the specific  level. Hence, as shown in Table 6, DMUB and DMUD and 

DMUE are possibilistic efficient at all possibility levels while DMUA and DMUC are possibilistic 

efficient only at some levels. 

Finally, Saati et al. (2002) used their fuzzy CCR model with anα-level based approach to 

compute the efficiency of the five DMUs as presented in Table 6. Note that they found DMUs B, 

D and E efficient for all  values while DMUs A and C were efficient just for some  values. 

Although not shown in Table 6, the method of Saati et al. (2002) also allowed ranking the 

efficient DMUs. Their ranking is dependent on the  level considered but, in this example, their 

method ranked DMU D first, DMU E second and DMU B third for all  values. This is only 

partially consistent with the rank derived by super-efficiency FFDEA as shown in Table 5. 

Let us now compare the existing methods with the proposed models in terms of 

computational complexity. Table 7 gives the number of LP models that are solved for this 

example when α=0,0.1,0.2,...,1 as well as the number of constraints, nonnegative variable 

constraints and variables. We require solving 20 LP CRS models corresponding model (9) while 

it is necessary to solve 110, 110, 55, 55 and 55 LP models for KL., GT., S., LE. and L. methods, 

respectively. Therefore, the proposed method in this study has the capability to obtain the fuzzy 
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efficiency with less computational effort compared to the existing methods. However, we need to 

define more constraints and decision variables for each LP model so as to fully reflect the 

uncertainty. 

----Insert Table 7 Here---- 

6.2. Example2 (Case study) 

In this sub-section, we also illustrate the approach proposed in this paper with a real case 

study in sustainable supply chain management (SSCM) taken from Azadi et al. (2015). 

Evaluating the performance of suppliers in terms of the sustainability aspect plays an important 

role to establish a sustainable (i.e. green) SCM. Azadi et al. (2015) have studied the ARCIC 

Company with the aim of selecting the most sustainable suppliers among 26 potential suppliers 

for raw materials. The inputs consist of total cost of shipments (TC), and number of shipments 

per month (NS), eco-design cost (ED) and cost of work safety and labor health (CS. Note that 

TC and NS are the economic criteria while ED and CS are the environmental and social criteria, 

respectively. The outputs consist of number of shipments to arrive on time (NOT) and number of 

bills received from the supplier without errors (NB). While all inputs are precisely measured, the 

outputs are characterized by triangular fuzzy numbers (L, M, U) to handle the uncertainty as 

shown in (Azadi et al. 2015, Table 4, P. 279).  

The fuzzy efficiency scores of our proposed approach for all the suppliers are reported in 

the 2
nd

 column of Table 8. The classification of suppliers in the 3
rd

 column of Table 8 shows that 

suppliers {6, 7, 8, 9, 16, 17, 19, 22} are FFDEA efficient and serve as the “benchmark” units that 

can be used to improve the inefficient units. In addition, the fuzzy input and output targets of the 

inefficient supplier are shown in Table 8. 

----Insert Table 8 Here---- 

7. Conclusions 

This paper proposes a novel FDEA framework that handles fuzzy input and output data 

and computes fuzzy efficiency scores as well as fuzzy input and output targets. CRS and VRS 

cases are considered. DMUs are classified into three groups (namely FFDEA inefficient, FFDEA 

weakly efficient and FFDEA efficient) depending on whether all inputs, only some inputs or 
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outputs or none of the inputs or outputs can be improved. A super-efficiency model to rank 

efficient DMUs is also presented. The proposed approach has been illustrated using a dataset 

from the literature comparing the proposed approach with some existing FDEA methods. The 

results show a notable consistency with those other approaches, having as an advantage over 

them that both the efficiency scores and the computed targets are fuzzy. The proposed approach 

has also been applied to a case study, thus showing its usefulness in practical settings. 

As possible topics for further research we envisage extending the proposed approach to 

other DEA formulations, different from the radial CCR and BCC models. Also, especially in the 

VRS case, other approaches, different from super-efficiency, should be developed for ranking 

the FFDEA efficient DMUs. 
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Appendix A 

Membership functions form in practice 

In practice, constructing membership functions form is an important concern to most 

practitioners who may want to incorporate fuzzy set theory into decision support tools. In the 

experimental research, there are two main streams to construct membership functions; (i) one 

stream makes an attempt to experimentally validate the assumptions of fuzzy set theory, and (ii) 

a given interpretation for the “degree if membership” is adopted and then tries to provide its 

elicitation. Due to the necessity of eliciting both approaches, Dubois and Prade (2012) 

categorized the existing methods into six groups that can be used to subjectively interpret 

membership function in experiments (Norwich and Türkşen 1982; Chameau and Satamarina 

1978a, 1978b, Türkşen 1991) as follows: 

1) Polling studies whether fuzziness arise from interpersonal disagreements by means of 

asking the questions to various persons engaged in the process, for instance, “do you 

agree that production quality is good?”. The responses are then polled and an average is 
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taken into account to construct membership functions (e.g., Herch and Caramazza, 1976; 

Norwich and Türkşen, 1984). 

2) Direct rating as the simplest method to constructing membership function describes 

fuzziness from individual subjective vagueness. In this regard, one must meticulously 

design the experiment with the aim of being harder to retain past responses. According to 

this approach, Herch and Caramazza (1976) implemented a repetition of their experiment 

for a single subject over and over in time. The answers of one certain subject lead to 

differentiation between linguistic and logistic interpretation of membership functions. 

Alternatively, direct rating can be applied to make a comparison between a subject and a 

predefined membership function (Türkşen 1988, 1991). 

3) Reverse rating uses for individuals or a group of individuals by repeating a certain 

question for a certain membership function so that the subject is given a membership 

degree and then looked for the object. When the answer of the subjects is determined the 

conditional distributions can be normally distributed and the unknown mean and variance 

can be estimated as usual. Chameau and Satamarina (1978a) viewed reverse rating as 

powerful tool to verify the membership function estimated by another approach. 

4) Interval estimation articulates the random set-view of the membership function against its 

vagueness view. This approach is more suitable to circumstances where there is a linear 

ordering for measuring the fuzzy concept exists such as heat and time (book). In addition, 

this approach is a straightforward way to construct the membership function that is less 

fuzzy in comparison with polling and direct rating. Chameau and Satamarina (1978a) 

considers interval estimation more effective compared with polling and direct rating 

where the response essentially precise (Yes/No). Interval estimation bridges the gap 

between probability theory and fuzzy set theory using random sets and possibility 

measures (Dubois and Prade 1993). Also, Kruse and Meyer (1987) discussed the set-

values statistics methods as a likelihood interpretation of the membership function. 

5) Membership exemplification has no repetition to drop the effects of noise (Hersh and 

Caramazza, 1976). Using exemplification in Kochen and Badre (1974) resulted in a more 

precise membership function. Zysno (1981) applied this approach by inquiring 64 

subjects from 21 to 25 years old to rate 53 various statements of age by means of one of 

the following four sets: very young man, young man, old man, and vey old man, by using 
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a scale from 0 to 100. Next, he tested the earlier hypothesis on the nature of the 

membership function. 

6) Pairwise comparison is an experimental-based approach for the “precision” of 

membership function.  Kochen and Badre (1974) reported experimental results for 

expressing the precision of greater, much greater and very much greater. Oden (1979) 

argued the advantage of fuzzy set theory using comparisons: “which is a better example 

of a bird: an eagle or a pelican?”, and after saying “an eagle”, “how much more of a bird 

is an eagle than a pelican?”. Note that in pairwise comparison it is a need to provide 

many comparison experiments even in a quite simple situation.  

The techniques explained above strive to provide the subjective interpretation of the 

membership function. However, the way of constructing the membership functions form from a 

particular data set is in question, that is, a question may come to mind over and over when using 

the fuzzy sets: how to come up with the appropriate membership function form in the presence of 

the proper amount of data? Hence, one can proceed with the following steps to form the 

membership functions: 

1) Data collection includes the data sampled from the system that provides valuable 

information but three cautions be necessarily taken in the collecting data 

procedure: 

i. Checking dependency or contingency between the input and output 

variables to make sure the validity of the model. The trend analysis or 

cross-correlation analysis can be applied to identify the type of the 

relationship; non-linear or linear relationship.  

ii. Checking interrelationship between the input variables to make sure that 

those variables are independent in the data set. 

iii. Removing the highly effective noise from the model such as the major 

information preserves intact since reducing data often bring a negative 

effect on the efficiency of the results. 

2) Once the adequate partition of the output space is provided the membership 

functions form will be approximated for the entire output space. The fuzzy 

clustering algorithm by means of appropriate trapezoids is a prevalent method to 

approximate the membership grades (Sugeno and Yasukawa, 1993). After making 
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the partition the entire space, one can approximate the classified data by 

trapezoidal functions in which convex points are used for each fuzzy cluster to fit 

a trapezoid (Nakanishi et al., 1993).  

3) To opt for the significant input variables, for each input candidate pj the 

membership functions Kij(i=1,2,…,n) are constructed so that an index can be 

defined as 

1

, 1,...,
n

j ij j

i

h j l 



   where ij  is the range when the membership 

functions Kij equals to one, j  stands for the range ofpj, n is the number of rules 

and l is the number of input candidates. 
 
h j  with the small value indicates more 

dominant variable pj.  

4) The convex membership functions Kij for significant inputs pj are constructed by 

means of ij  and performing “fuzzy line clustering” (Emami, 1999). 

5) It is a need to consider a testing set on those data, which is beyond the range of all 

membership functions. 
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Table 1. Computational comparison for different existing FDEA models 

 

 

 

 

 

Table 2. Five DMUs with two fuzzy inputs and two fuzzy outputs  

DMU A B C D E 

Input 1 (3.5,4.0,4.5) (2.9,2.9,2.9) (4.4,4.9,5.4) (3.4,4.1,4.8) (5.9,6.5,7.1) 

Input 2 (1.9,2.1,2.3) (1.4,1.5,1.6) (2.2,2.6,3.0) (2.2,2.3,2.4) (3.6,4.1,4.6) 

Output 1 (2.4,2.6,2.8) (2.2,2.2,2.2) (2.7,3.2,3.7) (2.5,2.9,3.3) (4.4,5.1,5.8) 

Output 2 (3.8,4.1,4.4) (3.3,3.5,3.7) (4.3,5.1,5.9) (5.5,5.7,5.9) (6.5,7.4,8.3) 

 

 

 

Method 
Membershipf

unc. 

No. of LP 

models 

No. of 

constraints 

No. of 

nonnegativec

onstraints 

No. of 

variables 

Kao and Liu Trapezoidal 2nq n m+s m+s+1 

Guo and Tanaka 
Symmetric 

triangular 

nq (Primary 

model) 

 

nq (Secondary 

model) 

3+2n (Primary 

model) 

 

2 (Secondary 

model) 

m+s (Primary 

model) 

 

m (Secondary 

model) 

m+s (Primary 

model) 

 

m (Secondary 

model) 

Saati et al. Triangular nq n(1+2m+2s)+1 m+s (m+s)(n+1) 

León et al. Trapezoidal nq 4(m+s)+1 n n+1 

Lertworasirikul et al. Trapezoidal nq 3+n m+s m+s+1 

Model (9) 

Model (10) 

Trapezoidal 

n 7(s+m)+3(n+1) n+m+s 4(m+s+n+1) 

Model (11) n 7(s+m)+3(n+1) n+m+s 4(m+s+n)+3 

Model (12) n 7(s+m)+3n+2 n+m+s 4(m+s+n)+2 

Model (13) n 7(s+m)+3n+1 n+m+s 4(m+s+n)+1 

Model (14) n 7(s+m)+3(n+1) n+m+s 4(m+s+n) 

Model (17) 

1
st
model n 7(m+s)+n+3 n+m+s 4(m+s+1)+n 

2
nd

model n 7(m+s)+n+3 n+m+s 4(m+s)+n+3 

3
rd

model n 7(m+s)+n+2 n+m+s 4(m+s)+n +2 

4
th

model n 7(m+s)+n+1 n+m+s 4(m+s)+n +1 
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Table 3. FFDEA relative fuzzy efficiencies and classification 

DMU  
Optimal obj. func. 

value Phase II 
RSp 

CRS Classif. 

FFDEA 

A (0.911, 0.911, 0.911) 2.058 B, D inefficient 

B (1, 1, 1) 0.000 - efficient 

C (0.821, 0.873, 0.911) 0.554 B, D, E inefficient 

D (1, 1, 1) 0.000 - efficient 

E (1, 1, 1) 0.000 - efficient 

 

 

 

 

Table 4. Fuzzy input and output targets 

DMU Input 1 Input 2 Output 1 Output 2 

A (3.188, 3.497, 3.818) (1.672, 1.854, 2.036) (2.40, 2.60, 2.80) (4.016, 4.410, 4.808) 

C (3.574, 4.243, 4.882) (1.805, 2.270, 2.733) (2.70, 3.20, 3.70) (4.300, 5.197, 6.114) 

 

 

 

 

Table 5. CRS FFDEA super-efficiency for Guo and Tanaka (2001) dataset 

DMU 
,*

,4
SE CRS
p


 Rank 

B 1.503 2 

D 1.615 1 

E 1.081 3 
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Table 6. Fuzzy efficiencies computed by other existing FDEA methods 

DMU 
α Ref. 

E D C B A 

(0.61, 0.79, 1.02) (0.71, 0.93, 1.25) (0.60, 0.82, 1.12) (0.88, 0.98, 1.09) (0.66, 0.81, 0.99) 0.0 

GT 
(0.72, 0.82, 0.93) (0.85, 0.97, 1.12) (0.71, 0.83, 0.97) (0.94, 0.97, 1.00) (0.75, 0.83, 0.92) 0.5 

(0.78, 0.83, 0.89) (0.92, 0.98, 1.05) (0.77, 0.83, 0.90) (0.96, 0.99, 1.02) (0.80, 0.84, 0.88) 0.75 

(1.00, 1.00, 1.00) (1.00, 1.00, 1.00) (0.86, 0.86, 0.86) (1.00, 1.00, 1.00) (0.85, 0.85, 0.85) 1.0 

1.296 1.520 1.276 1.238 1.107 0.0 

L. 

1.226 1.386 1.149 1.173 1.032 0.25 

1.159 1.258 1.035 1.112 0.963 0.5 

1.095 1.131 0.932 1.055 0.904 0.75 

1.000 1.000 0.861 1.000 0.855 1.0 

1.000 1.000 1.000 1.000 1.000 0.0 

S. 
1.000 1.000 1.000 1.000 0.954 0.5 

1.000 1.000 0.929 1.000 0.901 0.75 

1.000 1.000 0.862 1.000 0.855 1.0 

Note: GT = Guo and Tanaka (2001), L = Lertworasirikul et al. (2003), S = Saati et al. (2002) 
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Table 7. Computational comparison for Example 1 (alpha=0,0.1,0.2,...,1) 

Note: GT = Guo and Tanaka (2001), L = Lertworasirikul et al. (2003), S = Saati et al. (2002), KL=Kao and Liu 

(2000), LE= León et al. (2003) 

 

 

Method 
No. of LP 

models 

No. of 

constraints 

No. of 

nonnegativecon

straints 

No. of variables 

KL 110 5 4 5 

GT. 

55 

(Primarymodel

) 

 

55 

(Secondarymo

del) 

13 

(Primarymode

l) 

 

2 

(Secondarymo

del) 

4 

(Primarymodel) 

 

2 

(Secondarymode

l 

4 

(Primarymodel) 

 

2 

(Secondarymod

el) 

S. 55 46 4 24 

LE. 55 17 5 6 

L. 55 8 4 5 

Model (9) 

Model (10) 5 36 9 30 

Model (11) 5 36 9 29 

Model (12) 5 35 9 28 

Model (13) 5 34 9 27 

Model (14) 5 36 9 30 

Model (17) 

1
st
model 5 30 9 20 

2
nd

model 5 30 9 19 

3
rd

model 5 29 9 18 

4
th

model 5 28 9 17 



 

 
43 

Table 8. Results for the case study (Example 2) 

 

S
u

p
p

li
e
rs

 

Efficiency ( ) 

C
R

S
 C

la
ss

if
. 

F
F

D
E

A
 

Input 1(TC) Input 2(NS) Input 1(ED) Input 2(CS) Output 1(NOT) Output 2(NB) 

1 (1,1,1)  efficient. -− − − − − − 

2 (0.920, 0.943, 0.963) efficient (258.410, 265.053, 270.568) (150.816, 154.693, 157.911) (38.929, 39.930, 40.761)  (19.312, 19.808, 20.220) (153, 173, 193) (55.929, 62.990, 70.041) 

3 (0.936, 0.936, 0.936) inefficient (289.140, 289.140, 289.140) (178.526, 178.526, 178.526) (32.668, 32.668, 32.668) (37.429, 37.429, 37.429) (203, 224.828, 246.656) (78, 85.640, 93.279) 

4 (0.836, 0.842, 0.847) inefficient (243.323, 245.110, 246.582) (149.833, 150.916, 151.808) (29.137, 29.326, 29.482) (32.538, 32.776, 32.972) (167, 187, 207) (85, 92, 99) 

5 (0.970, 0.970, 0.970) inefficient (414.410, 414.410, 414.410) (172.602, 172.602, 172.602) (50.423, 50.423, 50.423) (28.120, 28.120, 28.120) (197, 220.774, 244.548) (163, 171.321, 179.642) 

6 (1,1,1)  efficient -− − − − − − 

7 (1,1,1)  efficient -− − − − − − 

8 (1,1,1)  efficient -− − − − − − 

9 (1,1,1)  efficient -− − − − − − 

10 (0.788, 0.829, 0.863) inefficient (208.602, 218.219, 226.217) (134.906, 142.016, 147.929) (32.317, 34.002, 35.404) (12.612, 13.269, 13.816) (113, 133, 153) (88, 95.061, 102.111) 

11 (0.938, 0.952, 0.963) inefficient (288.063, 292.032, 295.304)  (113.493, 115.151, 116.518) (48.598, 49.379, 50.023) (26.504, 26.947, 27.311) (125, 145, 165) (153, 160, 167) 

12 (0.855, 0.855, 0.855) inefficient (281.237, 281.237, 281.237 (172.313, 172.313, 172.313)  (32.483, 32.483, 32.483)  (37.545, 37.545, 37.545) (195, 216.459, 237.919) (90, 97.511, 105.021) 

13 (0.782, 0.782, 0.782) inefficient (338.945, 338.945, 338.945)  (154.78, 154.78, 154.78) (25.04, 25.04, 25.040) (32.866, 32.866, 32.866) (156, 177.549, 199.097)  (139, 146.542, 154.084) 

14 (0.765, 0.788, 0.807) inefficient (198.086, 204.133, 209.115)  (124.665, 128.33, 131.35) (27.614, 28.253, 28.779) (26.667, 27.472, 28.135) (129, 149, 169)  (97, 104, 111) 

15 (0.486, 0.531, 0.568) inefficient (133.165, 145.552, 155.758)  (83.224, 90.732, 96.917) (18.468, 19.777, 20.856) (17.820, 19.469, 20.827) (85, 105, 125)  (68, 75, 82) 

16 (1,1,1)  efficient -− − − − − − 

17 (1,1,1)  efficient -− − − − − − 

18 (0.549, 0.567, 0.582) inefficient (235.506, 243.314, 249.760  (113.636, 117.403, 120.514) (31.291, 32.328, 33.185) (24.091, 24.893, 25.555) (142, 162, 182)  (46, 53, 60) 

19 (1,1,1)  efficient -− − − − − − 

20 (0.566, 0.592, 0.614) inefficient (218.040, 228.095, 236.453)  (130.470, 136.686, 141.852) (32.737, 34.469, 35.909) (12.459, 13.034, 13.512) (106, 126, 146)  (119, 126.349, 133.639) 

21 (0.895, 0.910, 0.923) inefficient (222.966, 226.672, 229.725)  (138.469, 140.715, 142.565) (28.396, 28.787, 29.110) (29.893, 30.387, 30.793) (150, 170, 190)  (90, 97, 104) 

22 (1,1,1)  efficient -− − − − − − 

23 (0.782, 0.782, 0.782) inefficient (285.335, 285.335, 285.335  (179.892, 179.892, 179.892) (40.235, 40.235, 40.235) (38.434, 38.434, 38.434) (185, 206.962, 228.924)  (143, 150.687, 158.373) 

24 (0.875, 0.894, 0.909) inefficient (258.991, 264.443, 268.975)  (136.255, 139.748, 142.651) (35.265, 36.190, 36.959) (15.749, 16.089, 16.372) (112, 132, 152)  (177, 184.133, 191.244) 

25 (0.583, 0.629, 0.667) inefficient (174.048, 185.804, 195.551)  (101.546, 109.852, 116.737) (22.743, 24.533, 26.017) (12.829, 13.839, 14.676) (94, 114, 134)  (78, 85, 92) 

26 (0.796, 0.796, 0.796) inefficient (260.226, 260.271, 260.307)  (162.315, 162.342, 162.364) (34.219, 34.224, 34.228) (34.931, 34.937, 34.941) (173, 193, 213)  (113, 120, 127) 

 


