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Abstract

Systems that utilise type-2 fuzzy sets to handle uncertainty have not been implemented in real

world applications unlike the astonishing number of applications involving standard fuzzy sets.

The main reason behind this is the complex mathematical nature of type-2 fuzzy sets which is the

source of two major problems. On one hand, it is difficult to mathematically manipulate type-2

fuzzy sets, and on the other, the computational cost of processing and performing operations using

these sets is very high. Most of the current research carried out on type-2 fuzzy logic concentrates

on finding mathematical means to overcome these obstacles. One way of accomplishing the first

task is to develop a meaningful mathematical representation of type-2 fuzzy sets that allows func-

tions and operations to be extended from well known mathematical forms to type-2 fuzzy sets. To

this end, this thesis presents a novel alpha-cut representation theorem to be this meaningful math-

ematical representation. It is the decomposition of a type-2 fuzzy set in to a number of classical

sets. The alpha-cut representation theorem is the main contribution of this thesis.

This dissertation also presents a methodology to allow functions and operations to be extended

directly from classical sets to type-2 fuzzy sets. A novel alpha-cut extension principle is presented

in this thesis and used to define uncertainty measures and arithmetic operations for type-2 fuzzy

sets. Throughout this investigation, a plethora of concepts and definitions have been developed for

the first time in order to make the manipulation of type-2 fuzzy sets a simple and straight forward

task. Worked examples are used to demonstrate the usefulness of these theorems and methods.

Finally, the crisp alpha-cuts of this fundamental decomposition theorem are by definition in-

dependent of each other. This dissertation shows that operations on type-2 fuzzy sets using the

alpha-cut extension principle can be processed in parallel. This feature is found to be extremely

powerful, especially if performing computation on the massively parallel graphical processing

units. This thesis explores this capability and shows through different experiments the achieve-

ment of significant reduction in processing time.



Summary of Notations

Table 1. Notations used in the thesis.
Notation Abbreviation Meaning

U The unit interval [0,1]. It is the universe of membership grades in fuzzy sets,

interval valued fuzzy sets, and of primary membership grades in type-2 fuzzy sets

ux PG A membership grade in U at domain value x.

It is also called the primary grade of a type-2 fuzzy set

A FS A fuzzy set including its special cases, crisp sets and intervals

Â IVFS An interval valued fuzzy set

A LMF A lower membership function of an interval valued fuzzy set Â

A UMF An upper membership function of an interval valued fuzzy set Â

Ã T2FS A type-2 fuzzy set

A(x) MG A fuzzy set membership grade of domain value x

Â(x) MG An interval valued fuzzy set membership grade of domain value x

Ã(x), Ãx VS A type-2 fuzzy set membership grade of domain value x. Also called a vertical slice

Jx PM A primary membership at domain value x

Ũ The unit interval [0,1]. It is the universe of secondary grades

ũx SG A secondary grade at domain value x and associated with primary grade ux

Ae EFS An embedded fuzzy set of type-2 fuzzy set Ã

Ãe ET2FS An embedded type-2 fuzzy set of type-2 fuzzy set Ã

FOU(Ã) FOU The foot print of uncertainty of type-2 fuzzy set Ã

PS(Ã) PS The principal set of type-2 fuzzy set Ã

PMF(Ã) PMF The principal membership function of type-2 fuzzy set Ã

Aα α-cut An α-cut of fuzzy set A

Âα α-cut An α-cut of interval valued fuzzy set Â

Ãα̃ α-plane An α-plane of type2 fuzzy set Ã
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Chapter 1

Introduction

The solution of real world problems have been the main goal of scientific research in general and

engineering and computing research in particular. These problems are characterised by different

kinds of uncertainty in which finding a solution should be able to accommodate. Probability theory

and fuzzy logic are amongst the most prominent fields of handling uncertainties in such systems.

This dissertation is concerned with uncertainties involving human perceptions of which fuzzy sets

and systems are affiliated to.

Lately, various extensions for fuzzy logic have been developed to handle extra-levels of uncer-

tainty in which the standard fuzzy logic fails to fully accommodate. Such extra-levels are inherent

in many real world systems. Type-2 fuzzy sets are unique and conceptually appealing, because

they are fuzzy extension rather than crisp. This dissertation concentrates on type-2 fuzzy sets as

means of modelling uncertainties in the real world.

The beginning of the field of fuzzy logic and its explosive growth all took off from redefining

the concept of a set. Zadeh (1965) used, fuzzy sets, to be the title of the seminal paper of this emer-

gent field. Zadeh (1983) explained that the motivation behind such a move away from classical

set theory is to be able to capture uncertainties inherent in human language. Later Zadeh (1996a)

advocated fuzzy logic as a mechanism for computing with words, and for the manipulation of

perceptions (Zadeh 2001). The main contribution of fuzzy sets is rooted in the two concepts of

graduation and granulation (Zadeh 1996b, Zadeh 1997b). The ability to categorise (granulate) ob-

jects by a soft constraint of gradual membership rather than a hard binary constraint is what Klir

& Yuan (1995) considered to be a paradigm shift.

Throughout the past four decades the field of fuzzy logic enjoyed active research in theory

and applications. In fact, new emergent fields included fuzzy logic as one of its pillars, such as

computational intelligence introduced by Bezdek (1994) and soft computing introduced by Zadeh

(1997a). Extensions to standard fuzzy sets have been developed, such as fuzzy sets with inter-

val membership grades (Zadeh 1975a), fuzzy sets with membership grades and non-membership

grades (Atanassov 1986), fuzzy sets with lattice valued membership grades (Goguen 1969), and
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fuzzy sets with different fuzzy levels (Gottwald 1979). Other concepts that are related to fuzzy

sets have also been defined such as rough sets (Pawlak 1985), vague sets (Gau & Buehrer 2002),

gray sets (Deng 1989), random sets (Goutsias et al. 1997), and bi-polar fuzzy sets (Dubois &

Prade 2008).

Many fields of research have been developed that include the fuzzification of mathematical

concepts. One can find from the dawn of fuzzy set theory the fuzzification of some fields such as

control, systems, numbers and mathematics. The result of this fuzzification process produced new

fields such as fuzzy control, fuzzy systems, fuzzy numbers, and fuzzy mathematics (Klir & Folger

1988, Dubois & Prade 1983, Zimmermann 2001). One of the important concepts being fuzzified

is the concept of a fuzzy set itself. This have been proposed by Zadeh (1975a), since a fuzzy set is

characterised by crisp membership grades, instead these fuzzy sets can be characterised by fuzzy

membership grades. Zadeh called this a type-2 fuzzy set, it is a fuzzy set with membership grades

represented as fuzzy sets themselves. The motivation behind this idea was to aid the development

of approximate reasoning systems based on linguistic variables. It is no coincidence that type-2

fuzzy sets, linguistic variables, the extension principle and α-cuts emerged in the same trilogy

(Zadeh 1975a, Zadeh 1975b, Zadeh 1975c).

The following twenty years saw lack of interest in type-2 fuzzy logic and type-2 fuzzy sets.

Only in the past fifteen years, type-2 fuzzy sets regained interest by researchers and serious re-

search activity took place (John & Coupland 2007). Mendel (2001) justified the lack of interest

to the lack of computational power at the time to be able to process such complex sets. Another

justification advocated by John (1998) is the lack of applications that require the uncertainty pre-

served by the third dimension. John argued that since fuzzy sets are well known to be able deal

with words represented by the concept of a linguistic variable, perceptions on the other have not

been investigated. John (2000) showed that such applications require type-2 fuzzy sets, and some

applications appeared to support this theme (John et al. 2000, Innocent & John 2004, John &

Innocent 2005). The above mentioned implied that the research on type-2 fuzzy sets took two

different but related directions, one that concentrate on finding methods that reduce computational

complexity, and the other concentrate on finding meaningful problems that require the complex

nature of type-2 fuzzy sets for the solution.

Researchers in type-2 fuzzy logic who concentrate on solving the computational complexity

problem, mainly developed methods and applications for a special case of type-2 fuzzy sets those

of interval membership grades (Mendel 2007). Only very recently type-2 fuzzy sets have been

considered in test applications, in which it produced reasonable performance (Coupland & John

2007, Liu 2008, Wagner & Hagras 2010).

Uncertainty, on the other hand, plays an important role in fuzzy logic theory and applications.

The amount of uncertainty inherent in a fuzzy set has been quantified using different methods.

Klir (2006) presented the foundation for a research project that unifies the theories dealing with
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uncertainty. Probability theory and fuzzy logic are central to Klir’s research project which is

called Generalised Information Theory. In this thesis type-2 fuzzy sets are utilised in the field of

generalised information theory. The contribution presented in this thesis pave the way for active

research on the relationship between type-2 fuzzy sets and different measures of uncertainty.

Type-2 fuzzy sets have been represented mathematically through five representations, namely,

Mizumoto and Tanaka’s representation, the vertical slice representation, the wavy slice represen-

tation, the geometric representation and the alpha-plane/zSlice representation. In general all of

them fail to define a justified mathematical formalism with a generalised calculus. This thesis

provides such a formalism for the first time. Mizumoto and Tanaka’s representation is first de-

scribed by Mizumoto & Tanaka (1976) and has not been influential for applications, even though

Mendel (2007) perceived it to be the starting point of all following theoretical investigation. In

reality, this is not the representation developed by Zadeh (1975a) when first defined the concept of

type-2 fuzzy sets. The importance of this representation stems from the definition of the extension

principle for type-2 fuzzy sets which is defined by Mizumoto & Tanaka (1976). The second rep-

resentation is called the vertical slice representation. It represents the original definition of type-2

fuzzy sets presented by Zadeh (1975a). Vertical slices are explained in Chapter 2 to reflect the

meaning and motivation behind type-2 fuzzy sets. The vertical slice representation is neither used

in many applications nor in theoretical investigations. It is useful for exploring and explaining

type-2 fuzzy sets, as well as being the first step to visualise a solution to a given problem. The

third is the wavy slice representation based on embedded type-1 and type-2 fuzzy sets (Mendel &

John 2002). This representation is useful for theoretical investigation, especially for interval val-

ued fuzzy sets, in which the structure of the solution can be determined immediately. It is the most

computationally expensive solution, as it involves the computation of numerous embedded sets

which requires astronomical number of calculations. The fourth representation is the geometric

representation developed by Coupland & John (2007) which uses geometric primitives to define

type-2 fuzzy sets. Although, it has shown practical potential does not have a closed form formula

for mathematical manipulation and hence has limited theoretical impact. The final representation

is the α-plane or zSlice representation of type-2 fuzzy sets developed by Liu (2008) or Wagner

& Hagras (2008) respectively. This representation decomposes type-2 fuzzy sets into a collection

of interval valued fuzzy sets. Although these two representations are developed independently,

the reason behind their development is the same, i.e., to calculate the centroid of a type-2 fuzzy

set. Interestingly, some hints to this representation can be found in the literature, and the first im-

plied definition to this representation trace back to Zadeh (1975a). The intersection of two type-2

fuzzy sets has been defined through a similar method. Till this thesis, no extension principle have

been defined for using the α-plane/zSlice representation. This thesis provides an in depth inves-

tigation on the α-plane representation theorem and its use in applications, and one of the main

contributions of this thesis is the α-plane extension principle presented in Chapter 3.
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Despite the availability of several representations for type-2 fuzzy sets, still type-2 fuzzy sets

are not fully developed as a theoretical alternative in the investigation of uncertainty-based infor-

mation theory. This can be clearly seen in the research blue print presented by Klir (2006). The

reason behind that is the lack of a mathematical formalism that allows simple manipulation of

type-2 fuzzy sets. Moreover, the applications of type-2 fuzzy sets in real world situations are not

fully accepted as a practical alternative. To this end, the novel representation presented in this

thesis is proposed to serve type-2 fuzzy sets both theoretically and practically.

In summary, this thesis presents a novel decomposition theorem along with novel methods

for manipulating type-2 fuzzy sets. These novel concepts allow meaningful theoretical investi-

gation into type-2 fuzzy sets to take place. Additionally, these novel methods permit significant

reduction in processing applications by allowing operations on type-2 fuzzy sets be processed in

parallel. The novel alpha-cut representation theorem also opens type-2 fuzzy sets to the world

of uncertainty-based information theories. This thesis is an in depth investigation into the build-

ing blocks of type-2 fuzzy sets hoping that the reader will be able to find type-2 fuzzy sets less

complex and much easier to comprehend.

The findings and contributions presented in this thesis are shown to have great impact on both

aforementioned research themes of type-2 fuzzy sets. The impact on theory and applications of

type-2 fuzzy sets not only withhold to the confines of type-2 fuzzy sets, but spin out to affect the

more general theory and applications of fuzzy sets.

1.1 Motivation

The problem of reasoning, computing, or engineering in real world environments requires the

ability to work in environments characterised with uncertainty. This is indeed a difficult task which

has been the subject of research for decades. Many methods and theories have been developed to

capture different forms of uncertainty in which probability theory and fuzzy logic play great roles.

Fuzzy logic has been for a long time advocated to solve problems in a human-like manner. This

stems from the concept of a linguistic variable which is extensively used in control applications.

To be able to accommodate extra-levels of uncertainty, many extension to fuzzy logic have been

developed. One of the motivations behind choosing type-2 fuzzy sets as a candidate for solving

real world applications is its ability to capture uncertainties about the fuzzy set itself.

The choice of type-2 fuzzy logic is backed by very interesting statements such as, “type-2

fuzzy logic model more uncertainty than type-1 fuzzy logic”. This statement raises many questions

one of the which is why is type-2 fuzzy logic not utilised in applications?

Other conclusions suggest that type-2 fuzzy systems outperformed type-1 fuzzy systems. Al-

though it is a very contentious point, but a consensus about the extra degrees of freedom a type-2

fuzzy set provide by definition supports such claims. Consequently, some other questions emerge
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such as, can the uncertainty of type-2 fuzzy sets be measured? and if so can it be compared to

type-1 fuzzy sets?

To be able to define measures of uncertainty for type-2 fuzzy sets means that a mathematical

formulation and calculus should be available (Klir 1991). Mendel & John (2002) provided a

starting point on the latest mathematical representations of type-2 fuzzy sets. Soon it was realised

that formulating a mathematical model and a methodology for applying functions and operations

that are simple and practical is needed.

In type-1 fuzzy sets this capability has been developed in a comprehensive manner. Unfortu-

nately, in the context of type-2 fuzzy sets this was not available. This was the starting point of the

research carried out on type-2 fuzzy sets. To summarise, “focusing on the uncertainty inherent in

type-2 fuzzy sets and its relationship with uncertainty theories led to the development of a novel

mathematical representation and new calculus for manipulating these type-2 fuzzy sets”.

1.2 Hypothesis and Objectives

The research hypothesis of this thesis can be stated as follows:

“Type-2 fuzzy sets are capable of capturing uncertainty about membership grades

of fuzzy sets. The ability to quantify the amount of uncertainty that a type-2 fuzzy set

captures needs a meaningful mathematical representation. This mathematical repre-

sentation can only be functional through an operational calculus for manipulation.

On the other hand, this representation should be computationally inexpensive to be

practically applicable. The alpha-cut representation theorem forms the basis for the

meaningful mathematical representation, and the alpha-cut extension principle serves

as the calculus for manipulating this representation. The independent nature of these

alpha-cuts makes them suitable for parallel processing.”

This research hypothesis can be translated into the following objectives:

• Theoretically, type-2 fuzzy sets have the capability to model uncertainty more than standard

fuzzy sets. This statement means that measures of uncertainty must be defined for type-2

fuzzy sets comparable to those of standard fuzzy sets.

• The first step for a theory to be a functional uncertainty theory, is to have a representation

that allow functions to be characterised by known axioms (Klir 2006). It is argued in this

thesis that this assertion is possible through a mathematical representation that preserves the

relationship between the different set theoretic formalisms, i.e., type-2 fuzzy sets, interval

valued fuzzy sets, standard fuzzy sets and classical sets. This means the first step is to define
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a mathematical representation for type-2 fuzzy sets that overcomes the shortcomings of the

current available representations.

• The second step in measuring the uncertainty in type-2 fuzzy sets, is to develop a calculus

to deal with these uncertainty functions (Klir 2006). It is also argued that this is possible by

developing a method for extending operations from a formalism that is already capable of

dealing with these uncertainty functions to the new formalism.

• A justification for defining each measure of uncertainty has to be defined, such justification

is essential for giving a meaning to the amount of uncertainty measured (Klir 2006). Here

an argument is followed that since the operations and functions are preserved through an

extension process, by definition it preserves the justification and meaning of the measure.

• Practically, type-2 fuzzy sets are complex by nature and their logic is characterised by ex-

pensive computational cost. Many representations are developed to overcome this obstacle,

and still the applicability of type-2 fuzzy sets industrially is very limited. This means for

the mathematical formulation should be simple to compute.

• One of the popularly growing methods for reducing computational time is parallel process-

ing. The ability to break a problem in to several independent structures is a major research

problem for many fields and disciplines. It is argued in this thesis that the newly developed

models and calculi presented throughout this thesis are parallel in nature, and this capability

could be exploited in order to provide significantly lower computational costs.

1.3 Contributions of the Thesis

To summarise this thesis contribution to the advancement of the field of type-2 fuzzy sets through

the following:

1. Novel method of decomposing type-2 fuzzy sets into classical sets.

2. Novel method of extending operations from crisp sets to type-2 fuzzy sets.

3. Novel method of extending operations from interval valued fuzzy sets to type-2 fuzzy sets.

4. New uncertainty measures for type-2 fuzzy sets using the novel methods above.

5. New arithmetic operations for type-2 fuzzy sets using the novel methods above.

6. Parallel processing operations on type-2 fuzzy sets for the first time.
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Fig. 1.1. The dependencies between chapters.

1.4 Structure of the Thesis

The thesis is organised as follows:

• Chapter 2 reviews the necessary notation and mathematical concepts essential for the devel-

opment of the novel methods of the thesis. It starts by reviewing the literature on classical

fuzzy set definitions, then interval valued fuzzy sets, and finally type-2 fuzzy sets. This

chapter forms the background material leading to the development of the alpha-cut repre-

sentation theorem of Chapter 3.

• In Chapter 3 the novel alpha-cut representation theorem of type-2 fuzzy sets is developed

which allow type-2 fuzzy sets to be defined using a collection of classical sets or intervals.

This representation theorem is the main contribution of this thesis. This chapter also presents

a generalised alpha-cut extension principle capable of extending a wide range of functions,

operations and relations from classical sets to type-2 fuzzy sets. Within this chapter all the

required mathematical derivations and proofs are provided supported with many worked

examples. Moreover, some essential operations have been defined in this chapter such as

the core, support, and containment of type-2 fuzzy sets. Furthermore, interval valued fuzzy
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sets have also been utilised in this chapter and a generalised alpha-plane extension principle

have also been defined utilising the connection between type-2 fuzzy sets and interval val-

ued fuzzy sets shown in Chapter 2. Finally, some essential concepts such as the reduction

rule and the cutworthy property condition has been defined in order to aid in theoretical

studies of type-2 fuzzy sets. Chapter 3 is the heart of this thesis and constitutes the main

topics, concepts and theorems of this dissertation. The following chapter makes use of these

concepts to define measures of uncertainty for type-2 fuzzy sets.

• Chapter 4 defines new measures of uncertainty extended to type-2 fuzzy sets using the novel

methods presented in Chapter 3. These uncertainty measures are very important in compar-

ing different aspects of type-2 fuzzy sets. The uncertainty measures chosen are the most

common measures used in applications of fuzzy sets namely, cardinality, similarity, subset-

hood, fuzziness, and non-specificity.

• In Chapter 5, the second class of functions and operations are defined, these are arithmetic

operations. A complete theory of type-2 fuzzy numbers and their arithmetic operations are

developed using methods defined in Chapter 3.

• Chapter 6 present experiments which are conducted to show the potential of the novel rep-

resentation and its extension principle in reducing computational complexity through the

highly parallel structure of the representation. GPU computing is used because of its high

speed in processing parallel structures. It is the first time for a type-2 fuzzy set operation to

be implemented on a GPU. The experiments and the results are reported in Chapter 6.

• Chapter 7 is the conclusion of the thesis. Towards the end of this thesis many research

questions are put forward for further research.

The flow and relationship between the chapters of dissertation can be seen in Figure 1.1. Through-

out this journey a plethora of concepts, methods and mathematical formulations are defined and

explained with worked examples and figures. It has to be admitted that this research project started

with many questions and despite of the many novel contributions presented in this thesis, it ended

with even more questions to be answered.
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Chapter 2

Representations of Type-2 Fuzzy Sets

The work presented in this chapter presents the foundations necessary to understand the novel

type-2 fuzzy set representation and definitions presented in the following chapter and the novel

methodology for extending operations presented later in the thesis. Type-2 fuzzy sets have widely

been accepted as capable of modeling higher orders of uncertainty than type-1 fuzzy sets (Mendel

2007, John & Coupland 2007, John 1998). This assertion has been the driving force behind much

of the advancement of type-2 fuzzy set theories and applications (Mendel 2007). One of the

important aspects of such advancement, if not the most important aspect, is finding a suitable

representation that is theoretically meaningful and practically tractable.

By being theoretically meaningful, the representation should allow mathematical operations

to be derived naturally and should have interpretable solutions. To this end, the available repre-

sentations vary in their contribution, and this chapter discusses the role of these representations in

theoretical understanding and mathematical manipulation.

For a representation to be practically tractable means, it should have the ability to reduce the

computational cost in order to allow practitioners use type-2 fuzzy sets in their applications. To this

end, the representations available are competing to be widely applied in industrial solutions. Some

representations achieve one of these goals over the other and ultimately both goals are sought to

be achieved.

Fuzzy logic features “a tolerance for imprecision which can be exploited to achieve tractabil-

ity, robustness, low solution cost and better rapport with reality” (Zadeh 1996a). This crucial

feature allowed many applications to be implemented using standard fuzzy logic, which type-2

fuzzy logic has yet to do so. This is the question behind much of the research conducted on type-2

fuzzy sets, i.e., how can type-2 fuzzy logic handle the the trade-off between precision and compu-

tational cost? This chapter serves as a starter for this discussion by reviewing the relevant type-2

fuzzy set literature. In this chapter type-1 fuzzy sets, interval valued fuzzy sets and type-2 fuzzy

sets are discussed mainly from the mathematical formulation perspective. All necessary math-

ematical conventions, notations, and definitions that are used throughout the thesis are defined
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within this chapter.

This chapter is a literature review chapter that surveys most of the mathematical foundations

for the rest of the thesis, moreover, it provides a sound contribution by unifying the many scattered

notations found in the type-2 fuzzy logic community and directly relates it to relative type-1 fuzzy

logic and interval valued fuzzy logic standard mathematical notations.

2.1 Type-1 Fuzzy Sets

This chapter begins with a discussion of the mathematical definitions of type-1 fuzzy sets (T1FS).

Throughout the thesis a T1FS is sometimes referred to as a fuzzy set (FS) for short, and the two

terms are used interchangeably. Zadeh (1965) defined fuzzy sets to be sets containing elements

that belong to the sets with grades of membership rather than the elements being members of the

set or not. Let, x ∈ X, be an element of the universe X that belongs to the fuzzy set, A ∈ X. The

grade of membership, ux, associated with each element, x, is a value in the unit interval, U = [0,1],

i.e. ux ∈ U. In general, a fuzzy set can be represented as the union of sets containing ordered pairs

associating discrete points of the domain with their corresponding membership grades, i.e.,

A = {(x,ux) | ∀x ∈ X , ux ∈ U}

=
∫

∀x∈X
ux/x , ux ∈ U

=
⋃

∀x∈X

{(x,ux) | ux ∈ U}

(2.1)

In the second line of this equation, a classical fuzzy notation that involves the integration symbol
∫

and the division / is used. The integration represents the union and not standard integration and

the division represents association and not standard division. Throughout this thesis it is believed

that this standard fuzzy notation is confusing and will not be used, instead, standard mathematical

notations are used (e.g. ∪ for set union). Since each element in a fuzzy set is assigned a distinct

membership grade (i.e. one and only one membership grade), then it is sensible and convenient

to express these sets as functions. In the literature two notations have been widely used to denote

fuzzy sets. The older and yet most widely used notation does not consider fuzzy sets as functions

and rather define a function that acts on the set and returns a membership grade. The most common

symbol, µA, is used to denote the membership function (MF) of the fuzzy set, A. In this view, the

symbol of the actual set is distinguished from the symbol of its MF. In the second notation, the

symbol used for the fuzzy set is the same as the one used for the MF, i.e. A, actually the fuzzy

set itself is a function. The fact that each fuzzy set is completely and uniquely defined by one

particular MF justifies the double use of the same symbol (Klir & Yuan 1995). In this thesis, the

second notation is used, for example, for the fuzzy set, A, the membership grade of an element, x,
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is A(x). Formally, the following functional definition is adapted∗ in this thesis.

Definition 2.1.1 (Fuzzy Sets) A fuzzy set, A, defined over universe X is a function defined as

follows:

A :X → U

x 7→ ux

where x ∈ X, U = [0,1] is the unit interval, and ux ∈ U is the membership grade of element x in FS

A.

Adapted from Zadeh (1965)

Then, F(X), is defined to be the set of all FSs in universe X. This definition is saying that A is a

function from domain X to co-domain U, and each element x ∈ X of the domain maps to element

ux ∈ U of the co-domain, which evidently means that A(x) = ux. This functional definition can

also be used to re-express Eq. 2.1 as follows:

A = {(x,A(x)) | ∀x ∈ X , A(x) ∈ U}

=
⋃

∀x∈X

(x,A(x)) , A(x) ∈ U (2.2)

Zadeh established the connection between FSs and classical sets, called crisp sets hereafter, and

showed that FSs are generalisations of classical sets by definition. Crisp sets are characterised by

functions that return only one of two values: 1, if the element belongs to the set and, 0, if the

element does not. This function is classically known as the characteristic function. In essence, a

characteristic function is a MF and a crisp set is a special fuzzy set.

Definition 2.1.2 (Crisp Sets) A crisp set, A †, over X is a function defined as follows:

A :X →{0,1}

x 7→ ux

(2.3)

Then, C(X), is defined to be the set of all crisp sets on universe X. In this definition the membership

grade A(x) = ux ∈ {0,1} still takes values in the unit interval, but only special values zero or

one. Another special fuzzy set is an interval (Moore & Lodwick 2003). In mathematics, interval

analysis has gained much importance since the seminal publication by Moore (1966).

∗Throughout the thesis whenever a definition is adapted from a reference, it means that the concept is slightly

changed from the formation it appeared in its reference in order to be suitable for the notational conventions of this

thesis.
†Since crisp sets are considered special fuzzy sets, the same notation of a fuzzy set is used for crisp sets.
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Definition 2.1.3 (Intervals) An interval, A, over X is defined by A = [x,x] where x,x ∈ X and

x ≤ x.

Adapted from Moore et al. (2009)

Then, I(X), is defined to be the set of all intervals on universe X. An interval A = [x,x] ∈ X is a

restricted crisp set on a continuous domain. It can be seen as a relation between domain values

x ∈ X, where their associated membership grades A(x) are 1 for all x ≤ x ≤ x and 0 otherwise.

In Figure 2.1 a discrete fuzzy set A = {(1,0.4),(3,1.0),(5,0.6)} and a continuous fuzzy set B

having a triangular shape are represented in a 2D coordinates. Figure 2.2 shows a one dimensional

scale of crisp set A = {1,3,5} and interval B = [2,6]. It is clear that there is no need to introduce

a second dimension to represent these sets since their membership is always at unity when their

elements are part of the set. Figure 2.3, shows a visual realisation of the fact that crisp sets and

intervals are special cases of fuzzy sets. Introducing the second dimension that represents fuzzy

set membership grades is the key modification to Figure 2.2.

0 1 2 3 4 5 6

X

0.2

0.4

0.6

0.8

1.0

0.0

U

A

B

b

b b

b

Fig. 2.1. Discrete fuzzy set A = {(1,0.4),(3,1.0),(5,0.6)} and continuous triangular fuzzy set B represented in 2D

coordinates.

0 1 2 3 4 5 6

X

A = {1,3,5}

B = [2,6]

Fig. 2.2. 1D representation of crisp set A = {1,3,5} and interval B = [2,6].

In the mathematics of fuzzy sets two main operations are of most importance, the maximum

and the minimum operations. These operations are introduced by Zadeh to define the union and

intersection of fuzzy sets, and later widely used to define other operations as will be demonstrated

later in this section.
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Fig. 2.3. 2D representation of crisp set A = {1,3,5} and interval B = [2,6].

Definition 2.1.4 Let, a and b ∈ ℜ, then,

a∨b = max(a,b)

a∧b = min(a,b)

Adapted from Zadeh (1965)

These operations can be extended to intervals in a straight forward manner.

Definition 2.1.5 Let, A = [a,a] and B =
[
b,b
]
, then,

A∨B = [a,a]∨
[
b,b
]

=
[
a∨b,a∨b

]

A∧B = [a,a]∧
[
b,b
]

=
[
a∧b,a∧b

]

Adapted from Moore et al. (2009)

Based on these basic operations, the union, intersection and complementation between fuzzy sets

may be defined.

Definition 2.1.6 Let, A and B ∈ F(X) , then,

(A∪B)(x) = A(x)∨B(x) (Union)

(A∩B)(x) = A(x)∧B(x) (Intersection)

A
′
(x) = 1−A(x) (Complementation)
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Fig. 2.4. Union of two fuzzy sets.
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Fig. 2.5. Intersection of two fuzzy sets.

Adapted from Zadeh (1965)

These operations are called Zadeh’s operations as they were first defined by Zadeh and the

union is shown in Figure 2.4, intersection in Figure 2.5 and complementation in Figure 2.6. Dif-

ferent axiomatic systems (i.e. t-norms and t-conorms) have been developed to define operations

that act in a similar manner (Mizumoto & Tanaka 1976, Mizumoto & Tanaka 1981). In this the-

sis only Zadeh’s basic definitions are applied. Some commonly used terms and definitions are

presented below.

Definition 2.1.7 (FS Height) The height of a FS is the largest membership grade attained by any

element in that set, i.e.,

h(A) = sup
∀x

A(x)

where sup is the supremum.

Adapted from Zadeh (1965)

Definition 2.1.8 (FS Support) The support of a FS is the crisp set that contains all elements of,
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Fig. 2.6. Complement of a fuzzy set.
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Fig. 2.7. Height, core, and support of Fuzzy Sets.

A, that have nonzero membership grades, i.e.,

supp(A) = {x ∈ X | A(x) > 0}

Adapted from Klir & Yuan (1995)

Definition 2.1.9 (FS Core) The core of a FS is the crisp set that contains all elements of, A, that

have membership grades equal to one, i.e.,

core(A) = {x ∈ X | A(x) = 1}

Adapted from Klir & Yuan (1995)

These three definitions are shown in Figure 2.7. Zadeh (1965) defines the core to be the set of

domain values associated with membership grades equal to the height of that set. Since the height

may be at unity as well, then Definition 2.1.9 is a special case of Zadeh’s definition.
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Fig. 2.8. Normal fuzzy set A and subnormal fuzzy set B.
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Fig. 2.9. Convex fuzzy set A and nonconvex fuzzy set B.

Definition 2.1.10 (Normal FS) A FS, A, is said to be normal if it has height equal to one, i.e.,

h(A) = 1.

Adapted from Klir & Yuan (1995)

Any FS that is not normal is called subnormal FS. Figure 2.8 shows two fuzzy sets, A is normal

and B is subnormal.

Definition 2.1.11 (Convex FS) Let A be a FS in a continuous domain, X. Then A is said to be

convex if and only if for every pair of points xi and xj in A where i 6= j, the following inequality is

satisfied:

A(λxi +(1−λ)xj) ≥ min(A(xi),A(xj)) , ∀λ

where λ ∈ [0,1].

Adapted from Zadeh (1965)

The fuzzy set which is not convex are called non-convex FSs. Figure 2.9 shows two fuzzy sets, A

is convex and B is non-convex.
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1

X

A

B

Fig. 2.10. Fuzzy set A is contained in fuzzy set B, i.e., A ⊆ B.

1

X

A

B

Fig. 2.11. Fuzzy set A is not contained in fuzzy set B.

Definition 2.1.12 (FS Containment) Let, A and B ∈ F(X), then,

A ⊆ B ⇔ A(x) ≤ B(x), ∀x

Adapted from Zadeh (1965)

Figure 2.10 shows the containment between two fuzzy sets, and Figure 2.11 shows two fuzzy sets

not contained in each other. This definition is a generalisation of the classical subsethood between

crisp sets and in some publications, e.g. (Zwick et al. 1987, Young 1996, Klir & Yuan 1995), the

name subsethood or inclusion is used for the same definition. Since there are many operations

that are deemed to be subsethood or inclusion operations the term containment is reserved in this

thesis to distinguish this particular case of a fuzzy set being totally contained within another fuzzy

set‡. Zadeh also defined the extension principle (EP) in order to extend operations and functions

from crisp sets to fuzzy sets.

‡In Chapter 3 a discussion on fuzzy subsethood will elaborate on this issue.
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Theorem 2.1.1 (FS EP) Let, X = X1 × ...×Xn, be the Cartesian product of universes, and A1

, ...,An be fuzzy sets in each universe respectively. Also let Y be another universe and B ∈ Y be

a fuzzy set such that B = f (A1, ...,An), where f : X → Y is a monotonic mapping. Then Zadeh’s

extension principle (EP) is defined as follows:

B ⇔ B(y) = sup
(x1,...,xn)∈f−1(y)

min(A1(x1), ...,An(xn))

where f−1(y) is the inverse function of y = f (x1, ...,xn).

Adapted from Zadeh (1975a)

The EP has been used extensively in the literature of fuzzy sets. It shares a resemblance to the

united extension (Moore 1966) used to extend functions from reals to intervals in interval analysis.

2.1.1 Alpha-cuts of Fuzzy Sets

One of the most important concepts in fuzzy set theory and applications is the α-cut decomposition

theorem developed by Zadeh (1971) under the name resolution identity. These cuts are crisp sets

associated with certain levels α, that represent distinct grades of membership.

Definition 2.1.13 (FS α-cut) An α-cut of a FS, A, is a crisp set defined as follows:

Aα = {x ∈ X | A(x) ≥ α , α ∈ [0,1]}

Adapted from Zadeh (1973)

What is interesting is the interpretation of these α-cuts, they are classical sets that contain ele-

ments of the domain associated with membership grades greater than or equal to a certain level α.

In Figure 2.12 a continuous triangular fuzzy set A is shown with some α-cuts, and in Figure 2.13

a discrete fuzzy set is shown. For example assume that a normal triangular FS, Tall, represented

as the triple 〈160,180,200〉. Then its α-cuts at level 0.5 is Tall0.5 = [170,190]. This means that

all domain values within this interval definitely belong to fuzzy set tall with membership grade

0.5. The idea behind the α-cut representation is to define a useful special fuzzy set that is associ-

ated with each α-cut. Klir & Yuan (1995) defined the associated fuzzy set by using an indicator

function, IAα , acting on x ∈ X such that,

IAα(x) =

{
1, x ∈ Aα

0, x /∈ Aα
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Then a fuzzy set associated with each α-cut, αIAα , is defined as follows:

αIAα = {(x,αIAα(x)) | ∀x ∈ X,αIAα(x) = α · IAα(x)}

Alternatively, since Aα is a crisp set then directly Aα(x) ∈ {0,1} and in a more direct approach the

associated fuzzy set which is hereafter called α-fuzzy set (α-FS) is defined as follows:

Definition 2.1.14 (α-FS) A special FS (α-FS), αAα ∈ F(X), can be defined as follows:

αAα ⇔ αAα(x) = α ·Aα(x) or alternatively

= α∧Aα(x)

Figure 2.14 shows a continuous fuzzy sets and three α-cuts. It also shows the corresponding α-FSs

for each α-cut. Using this definition the α-cut decomposition theorem can be defined in a straight

forward manner.

0 1 2 3 4 5 6

X

0.2

0.4

0.6

0.8

1.0

0.0

U

α

A

Fig. 2.12. The α-cuts of continuous triangular fuzzy set A.
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Fig. 2.13. The α-cuts of discrete fuzzy set A.
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Fig. 2.14. The α-FSs of fuzzy set A.

Theorem 2.1.2 (α-cut Representation Theorem) A FS, A, can be represented (decomposed) by

the union of all its α-FSs, i.e.,

A =
⋃

∀α

αAα

Adapted from Zadeh (1975a)

The membership grades of a fuzzy set can be regenerated from its decomposed α-FSs directly.

Corollary 2.1.1 It is easy to check that the following holds:

A(x) = sup
∀α

αAα(x)

Adapted from Nguyen (1978)
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x1 x2 x3 x4 x5 x6

X

α
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α

Cα = {x3,α,x4,α,x5,α,x6,α}
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α

X
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xα

U

α

X

B

x1,α x1,α x2,α

C

xα

x2,α

Fig. 2.15. The α-cuts of continuous and convex FS A, nonconvex FS B, and discrete FS C.

Another less important variant of α-cuts is the more strict version known as the strong α-cut (Klir

& Yuan 1995).

Aα+ = {x ∈ X | A(x) > α , α ∈ [0,1]} (2.4)

The set that contains all the levels α ∈ [0,1] that represent distinct α-cuts of a given fuzzy set, A,

is called a level set§ of A by Klir & Yuan (1995), i.e.,

ΛA = {α | A(x) = α for some x ∈ X} (2.5)

§In some publications e.g. (Yager 2008a) call the α-cuts by the name level sets. In this thesis Klir & Yuan (1995)

definition is adapted.
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The first use of the mathematical definition of α-cuts is rooted in Zadeh (1965), it was used to

define the convexity of fuzzy sets. It is also used to define alternative definitions to some of the

terms defined above.

Definition 2.1.15 Let A be a fuzzy set. Then,

• Convexity: A is convex if all its α-cuts are convex.

• Support: supp(A) = A0+ .

• Core: core(A) = A1.

• Normality: A is normal if A1 6= /0.

Adapted from Klir & Yuan (1995)

The support is a particular case where the strong α-cut is used in the definition of the function

rather than the α-cut. The support is all the elements that have non-zero membership grades, or

in other words all the elements with membership grades greater than zero, which is exactly the

definition of the strong α-cut at level α = 0. In situations when the domain of a FS is continuous,

and the FS is convex, then it is evident that the α-cuts of the FS are also continuous and hence are

intervals.

Definition 2.1.16 If a FS, A, is convex and continuous then Aα ∈ I(X) and Aα = [xα,xα].

Adapted from Klir & Yuan (1995)

Another situation arises when the domain of the FS is continuous and the FS is non-convex, such

situations result from performing some operations on FSs, a very popular operation is the union

operation.

Definition 2.1.17 If a FS, A, is non-convex and yet continuous then Aα is the union of distinct

intervals, i.e.,

Aα =
nα⋃

i=1

[
xi,α,xi,α

]

where nα is the number of distinct intervals for each level α.

Adapted from Yager & Filev (1999)

If the domain of the fuzzy sets is discrete, then it is easy to construct its α-cuts.

Definition 2.1.18 If a FS, A, is defined in a discrete and finite domain then Aα is a discrete crisp,

i.e.,

Aα = {x1,α,x2,α, ...,xnα,α}

where, nα, is the number of discrete elements at level α.
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Adapted from Klir & Yuan (1995)

Figure 2.15 shows these situations of α-cuts. Many properties have been defined for fuzzy sets

using α-cuts that are found useful to analyse and extend to further calculations.

Theorem 2.1.3 (α-cut properties) Let A, B ∈ F(X). Then the following hold:

1. Aα+ ⊆ Aα , ∀α

2. α1 ≤ α2 ⇒ Aα2
⊆ Aα1

3. A ⊆ B ⇒ Aα ⊆ Bα , ∀α

4. A = B ⇒ Aα = Bα , ∀α

5. (A∪B)α = Aα ∪Bα

6. (A∩B)α = Aα ∩Bα

7. A
′

α = (A(1−α)+)
′

Adapted from Klir & Yuan (1995)

Proof. The proof can be found in (Klir & Yuan 1995).

These properties are of great importance. The basic fuzzy set operations defined using the EP

are shown to be equal to those defined using the α-cut RT. This fact shows that the basic fuzzy

set operations can be calculated using basic crisp set operations. The union and intersection are

derived straight forward, i.e. the α-cut of the union or intersection of two FSs is equal to the union

of the α-cuts of both sets. The complementation is another story, it is not straight forward and

needs some manipulation. The α-cut of the complement of a FS is equal to the complement of

the strong α-cut at level 1−α of the FS. Klir & Yuan (1995) noticed that, ” This is not surprising

since fuzzy sets violate, by definition, the two basic properties of the complement of crisp sets, the

law of contradiction and the law of excluded middle”. The class of functions that can be derived

directly following the union and intersection example are called cutworthy and will be demon-

strated later in this section. The important part of this assertion is that these class of functions can

be generalised using the extension principle. Zadeh defined this form of the EP using the α-cut

RT.

Theorem 2.1.4 (α-EP) The α-cut version of the EP, (α-EP), is defined as follows:

B = f (A1, ...,An) =
⋃

∀α

αf (A1,α, ...,An,α)
(2.6)
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Adapted from Zadeh (1975a)

In general, Zadeh (1975a) was the first to point out that both forms of the EP are equal. Nguyen

(1978) studied this claim and defined the necessary and sufficient conditions to satisfy such as-

sertion. Later Araabi et al. (2001) discussed the relation between both EPs and showed that re-

strictions on the range of functions that can be extended by the α-EP is more general than that of

Zadeh’s EP (i.e. sup-min composition).

Corollary 2.1.2 In general, theorems (2.1.1) and (2.1.4) are equal (Araabi et al. 2001, Nguyen

1978, Zadeh 1975a).

Although this fact has been stated many times, Araabi et al. (2001) showed that only certain

families of functions can satisfy this assertion. The family of functions that can be extended using

α-cuts satisfy the following property:

Definition 2.1.19 (cutworthy functions) Let, A ∈ F(X), be a FS and f be a monotone function

such that

(f (A))α = f (Aα)

then f is called a cutworthy function.

Adapted from Araabi et al. (2001)

In order for f to be cutworthy it has to satisfy the following restriction.

Theorem 2.1.5 Let, A and B ∈ C(X), be two crisp sets then any function f such that

A ⊂ B ⇒ f (A) ⊂ f (B)

is a cutworthy function.

Adapted from Araabi et al. (2001)

The range of functions that are defined as cutworthy and restricted by the crisp subsethood preser-

vation are functions that result in a fuzzy set not a scalar value. Now, it is convenient to discuss

the interpretation of fuzzy set membership grades with relation to α-cuts. The fact that α-cuts are

crisp sets, allows them to be represented as restricted fuzzy sets. Let A ∈ F(X) be a FS, let also

λ,β ∈ [0,1] such that λ takes values that are always greater than any of the membership grades of

A, i.e., λ > A(x) at any x. On the other hand, β takes values that are always less than or equal to

any of the membership grades of A, i.e., β ≤ A(x) at any x. Then any FS within the support of A

with elements of the domain having membership grades that take values β are subsets of A. Also

any FS outside the support of A with elements of the domain having membership grades that take
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values λ are not subsets of A, but actually supersets of A. To explain this assertion, Figure 2.16

shows two FSs A
′
,A

′′
∈ F(X), A

′
(x) = β, ∀x ∈ X and A

′′
(x) = λ, ∀x ∈ X. Then it is clear that A

′
⊆ A

and A
′′
⊃ A. The membership grade of an element of a FS is the maximum grade attained by that

element for all its fuzzy subsets. The α-cut representation is exactly the same, it is the union of

all α-FSs of A. The only difference is that α-FSs are constrained fuzzy subsets of a FS. They are

constrained by the order of level α. It is easy to think of the fuzzy subsets of a particular FS as an

embedded fuzzy set and that the α-FSs are constrained embedded fuzzy sets. The main advantage

of this constraining operation is that it allows the α-FSs to have crisp set counterparts, i.e., α-cuts

which makes it easy to extend operations from classical mathematics to fuzzy mathematics. This

particular feature makes α-cuts theoretically meaningful and practically tractable. The main focus

of this thesis centered around the idea of α-cuts and how to extend it to more complex extensions

of FSs. Many extensions to FSs have been proposed in order to introduce more degrees of freedom

and thus accommodate extra-levels of uncertainty. Interval valued fuzzy sets are amongst the most

popular extensions of fuzzy sets. They are closely related to type-2 fuzzy sets and they are the

subject of study in the following section.

X

β

λ
1.0

U

A

A
′

A
′′

Fig. 2.16. A
′
⊆ A and A

′′
⊃ A.

2.2 Interval Valued Fuzzy Sets

Interval-valued fuzzy sets (IVFSs) are extensions of FSs. The development phases of the theory of

IVFSs took different pathways (Mendel 2007), one of which preserved the name IVFS famously

advocated by Gorzalczany (1987). Although traces of the theory dates back to 1975, some re-

searchers, e.g. (Dubois & Prade 2005, Cornelis et al. 2006), point out that the concept of IVFSs

have been introduced independently by different researchers in the same year. What is important

to the context of this thesis is the close relationship between type-2 fuzzy sets and IVFSs. To

this end Zadeh (1975a) suggested the concept of IVFSs while calculating the intersection of two

type-2 fuzzy sets. The main difference between the concept of a FS and the concept of a IVFS

is the modification to the grades of membership of the elements in the set. These grades are not
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values in U, but are closed intervals in U.
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Fig. 2.17. Discrete IVFS Â.
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Fig. 2.18. The LMF A and UMF A of continuous IVFS Â.

Definition 2.2.1 (IVFS) An interval valued fuzzy set (IVFS), Â, over X is a function defined as

follows:

Â :X → I(U)

x 7→ [ux,ux]

Let, F̂(X), be the set of all IVFSs on X. Here Â(x) = [ux,ux] ∈ I(U) is an interval representing the

grade of membership of x in Â. IVFSs can be described using the classical set representation as

follows:

Â =
{(

x, Â(x)
)
| x ∈ X , Â(x) ⊆ U

}

= {(x, [ux,ux]) | x ∈ X , [ux,ux] ⊆ U}
(2.7)
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Rxα,R xα
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α

Fig. 2.19. The α-cut of continuous IVFS Â using Kaufmann and Gupta method.

Alternatively, one can describe an IVFS using the union of the pairs containing each element x of

the set and its associated interval membership grade.

Â =
⋃

∀x∈X

(
x, Â(x)

)
, Â(x) ⊆ U

=
⋃

∀x∈X

(x, [ux,ux]) , [ux,ux] ⊆ U
(2.8)

Due to the fact that all elements of the IVFS have interval membership grades, it is a common

practice to define two fuzzy sets that represent the boundaries of the IVFS.

Definition 2.2.2 (LMF) A lower membership function (LMF) of an IVFS, Â, is a fuzzy set, A,

where A(x) = ux, ∀x.

Definition 2.2.3 (UMF) An upper membership function (UMF) of an IVFS, Â, is a fuzzy set, A,

where A(x) = ux, ∀x.

Hence, an IVFS can be represented using the LMF and UMF as follows:

Definition 2.2.4 An IVFS Â is completely determined by its LMF and UMF, i.e.,

Â =
(
A,A

)
(2.9)

which means Â(x) =
[
A(x),A(x)

]
, ∀x.

Once again IVFSs can be described using classical set representation as follows:

Â =
{(

x,
(
A,A

)
(x)
)
| x ∈ X ,

(
A,A

)
(x) ⊆ U

}

=
⋃

∀x∈X

(
x,
(
A,A

)
(x)
)

,
(
A,A

)
(x) ⊆ U (2.10)
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The fundamental set operations of fuzzy sets are extended to IVFSs by extending the single valued

membership to intervals.

Definition 2.2.5 The following fundamental operations hold between IVFSs Â and B̂ ∈ F̂(X) :

(
Â∪ B̂

)
(x) =

[
A(x)∨B(x),A(x)∨B(x)

]
(Union)

(
Â∩ B̂

)
(x) =

[
A(x)∧B(x),A(x)∧B(x)

]
(Intersection)

Â
′
(x) =

[
1−A(x),1−A(x)

]
(Complementation)

Zadeh (1975a) generalised the EP to operate with FSs with interval membership grades which can

be interpreted as an EP for IVFSs.

Definition 2.2.6 (IVEP) Let, X = X1 × ...×Xn, be the Cartesian product of universes, and Â1

, ..., Ân be IVFSs in each universe respectively where their respective LMFs are A1, ...,An and their

respective UMFs are A1, ...,An. Also let Y be another universe and B̂ ∈ Y be an IVFS such that

B̂ = f (Â1, ..., Ân), where f : X → Y is a monotone mapping. Then the interval valued EP (IVEP)

can be defined as follows:

B̂ =
(
f (A1, ...,An), f (A1, ...,An)

)

This means, to derive operations for IVFSs one only needs to derive operations for their LMF and

UMF.

2.2.1 Alpha-cuts of IVFSs

Zeng & Shi (2005), Zeng & Li (2006b) and Zeng et al. (2007) investigated the use of α-cuts for

IVFSs and how to extend arbitrary operations to such sets. They provided a host of definitions for

α-cuts for IVFSs and even FSs, all are summarised in Table 2.1.

Table 2.1. Definitions of IVFSs α-cuts.
α-cut Definition

Â
≥,≥
[α,α]

{
x | A(x) ≥ α,A(x) ≥ α

}

Â
≥,>
[α,α]

{
x | A(x) ≥ α,A(x) > α

}

Â
>,≥
[α,α]

{
x | A(x) > α,A(x) ≥ α

}

Â
>,>
[α,α]

{
x | A(x) > α,A(x) > α

}

Â
≤,≤
[α,α]

{
x | A(x) ≤ α,A(x) ≤ α

}

Â
≤,<
[α,α]

{
x | A(x) ≤ α,A(x) < α

}

Â
<,≤
[α,α]

{
x | A(x) < α,A(x) ≤ α

}

Â
<,<
[α,α]

{
x | A(x) < α,A(x) < α

}
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In this table the first column represents the α-cut notation of the IVFS, Â ∈ F̂(X), where the

definition of the α-cut is defined in the second column. For example, in the first case, Â
≥,≥
α,α , the

subscript represent the level of the α-cut i.e., [α,α], which is an interval. The use of an interval

α-cut rather than a single number is inspired by the interval membership grades of the IVFS. The

superscript in the other hand defines the type of inequality used to restrict the domain values in

relation to the LMF and UMF. A particular special case of these definitions is important. The one

that uses the first case in Table 2.1 with a the condition that α = α = α, i.e.,

Âα = Â
≥,≥
[α,α] =

{
x | A(x) ≥ α,A(x) ≥ α

}
(2.11)

This forms a generalisation of the α-cuts for FSs. Yager (2008b), also defined a closely related

definition for IVFSs defined on discrete domains, which can easily be generalised for continuous

domains. The following derivation of α-cuts of IVFSs is adapted from Yager (2008b). For an

IVFS, Â ∈ X, let, Λ
Â
, be the set that contains all the distinct membership grades in set, Â.

Λ
Â

=
{[

λ,λ
]
| Â(x) =

[
λ,λ
]

for some x
}

(2.12)

Let, H, be a subset of Λ
Â
, i.e., H ⊆Λ

Â
. Now, a derived set that contains ordered intervals is defined

as follows:

D =
⋃

∀H/⊆Λ
Â

min
∀[λ,λ]∈H

([
λ,λ
])

(2.13)

Thus, D, contains all the distinct intervals, [α,α], that are derived from set, Λ
Â
. Then an α-cut is a

crisp set that contains all domain values with membership grades greater than or equal to the level

[α,α].

Â[α,α] =
{

x | Â(x) ≥ [α,α] , ∀x
}

(2.14)

Here Â[α,α] ∈ C(X) is a crisp set. Then, the IVFS Â can be represented as follows:

Â =
⋃

∀[α,α]∈D

[α,α] Â[α,α] (2.15)

where [α,α] Â[α,α], is an IVFS with membership grade [α,α]∧ Â[α,α](x) and Â[α,α](x) = 1 if x ∈

Â[α,α] or zero otherwise. This representation is also valid for the α-cut definitions in Table 2.1 by

replacing Â[α,α] with any of the definitions provided in the first column. where ∀α : Lxα ≤ Lxα ≤
Rxα ≤ Rxα, and h(A) = sup∀x A(x) is the height of LMF. Another method of defining α-cuts for

IVFSs is the method provided by Kaufmann & Gupta (1985). It is also used by Wu & Mendel

(2007a) and Wu & Mendel (2008a) to define the aggregation operation for IVFSs¶. To explain this

¶IVFSs in those papers are called interval type-2 fuzzy sets.
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method assume that Â is a continuous and convex IVFS i.e. A and A are continuous and convex.

Furthermore, let the α-cut of the LMF be Aα =
[

Lxα,Rxα

]
, and of the UMF be Aα =

[
Lxα,Rxα

]
.

Then, Âα, is shown in Figure 2.19 and described in the following manner, i.e.,

ÂKG
α =

{ [[
Lxα,Lxα

]
,
[

Rxα,Rxα

]]
,α < h(A)[

Lxα,Rxα

]
,α ≥ h(A)

(2.16)

In this thesis a different approach is developed to define α-cuts for IVFSs. This is represented in

Section 3.1.

2.2.2 Relation to Attanassov’s Intuitionistic Fuzzy Sets

Many generalisations have been developed to extend fuzzy sets, and IVFSs are one of the famous

and well established generalisations of fuzzy sets (Klir & Yuan 1995). Other terms have been

developed such as Attanassov’s Intuitionistic Fuzzy Sets (A-IFSs) (Atanassov 1986), Grey Sets,

Vague Sets and Clouds. These sets all turned out to be representable by IVFSs (Bustince &

Burillo 1996, Deschrijver & Kerre 2003, Dubois & Prade 2005). Also there is a strong relation

between IVFSs, Fuzzy Rough Sets, Rough Fuzzy Sets which is interesting and left for further

studies. Within this thesis only A-IFSs are considered, because some important definitions and

operations, such as the measures of uncertainty in Chapter 4 of this thesis, are applied to A-IFSs

and can be equally used for IVFSs.

X

U
A∗AIF

A∗

Fig. 2.20. Intuitionistic FS AIF with membership function A∗, and nonmembership function A∗.

Definition 2.2.7 (A-IFS) Attanassov’s intuitionistic fuzzy sets are sets that are characterised by

two membership functions, one represents the degree of membership and the other represents the

degree of non-membership. This is defined as follows:

AIF = {(x,A∗(x),A
∗(x)) | ∀x ∈ X; A∗(x),A

∗(x) ∈ [0,1]}
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where 0 ≤ A∗(x)+A∗(x)≤ 1 | ∀x ∈ X, A∗(x) is the degree of membership, and A∗(x) is the degree

of non-membership.

Adapted from Atanassov (1986)

Figure 2.20 shows an IFS, it is clear that A-IFSs are another generalisation of FSs viewed as

A ≡ AIF if A∗(x) = 1−A∗(x). An important term in A-IFSs is the Intuitionistic Index defined

by πAIF(x) = 1−A∗(x)−A∗(x) which is zero in case of FSs. An important result presented in

(Atanassov & Gargov 1989) is the development of a mapping function that enables describing

any A-IFS in terms of an IVFS and vice versa. Also in a more concise manner (Deschrijver &

Kerre 2003) proved that by definition A-IFSs are equal to IVFSs ‖. These facts support the use

of definitions and operations that are basically defined for A-IFSs with IVFSs. However, the real

importance of such definition is that it provides another way of constructing IVFSs from a totally

different perspective, i.e., gives alternative semantics from the same mathematical formulation,

e.g., constructing the A-IFS from positive data (degree of membership) and negative date (degree

of non-membership).

2.3 Type-2 Fuzzy Sets

Zadeh (1975a) defined type-2 fuzzy sets (T2FS) to be sets with elements that have memberships

that themselves are fuzzy sets. Zadeh explained that this move was “motivated by the close asso-

ciation which exists between the concept of a linguistic truth with truth-values such as true, quite

true, very true, more or less true, etc., on the one hand, and fuzzy sets in which the grades of

membership are specified in linguistic terms such as low, medium, high, very low, not low and not

high, etc., on the other”. Some researchers (e.g. Chen & Kawase (2000)) call such sets, fuzzy-

valued fuzzy sets (or fuzzy-fuzzy sets) referring to their membership function being fuzzy values

(i.e. sets). In this thesis the following functional definition of T2FSs is adapted.

Definition 2.3.1 (T2FS) A Type-2 fuzzy set (T2FS), Ã, over X is defined by the following function:

Ã : X → F(U) (2.17)

where U = [0,1] is the domain of membership.

Adapted from Aisbett et al. (2010)

Let, F̃(X), be the set of all T2FSs defined on universe X. It is clear that the the grade of membership

of any element x ∈ X is a FS Ã(x) ∈ F(U). The following definitions and discussion are adapted

‖It is beyond the scope of this discussion to recall the proof.
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Ũ
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ux
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ux
′

Fig. 2.21. 3D representation of a T2FS with triangular vertical slices.

from Mendel (2001) and Mendel & John (2002), but using the standard mathematical notation

following the IVFS and FS notations of earlier sections∗∗. Using the standard set theory union a

T2FS can be represented by the following:

Ã =
⋃

∀x∈X

(
x, Ã(x)

)
(2.18)

Because the membership of the T2FS is a FS it consists of membership domain values and corre-

sponding membership grades. Each membership domain value ux is an element of the universe U

and called a primary grade (PG). Each primary grade is assigned a membership grade ũx called

a secondary grade (SG) and defined on another universe Ũ = [0,1]. Although both U and Ũ are

equal to the unit interval, they are distinguished from each other to reflect the fact that they are in

different dimensions. The same justification applies to the PGs ux and SGs ũx. Figure 2.21 shows

a 3D depiction of a T2FS with triangular vertical slices, and Figure 2.22 is a 2D representation of

the same T2FS. For clarity Figure 2.23 shows a discrete T2FS with primary and secondary grades.

The starting point of any T2FS definition is the following definition:

Ã =
{
((x,ux) , ũx) | ∀x ∈ X,ux ∈ U, ũx ∈ Ũ

}
(2.19)

∗∗This move to standard mathematical notations already advocated by Walker & Walker (2005) and Aisbett et al.

(2010). The discussion at the end of this chapter elaborates on this issue.
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′
)

1
Ũ
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Fig. 2.22. 2D representation of the T2FS with triangular vertical slices of Figure 2.21.

The function that represents the T2FS membership grade at domain value x ∈ X is denoted by Ãx

rather than Ã(x) for simplicity and defined as follows:

Ãx :U → Ũ

ux 7→ ũx

(2.20)

Clearly, ũx = Ãx(ux) ∈ Ũ represents the SG of PG ux. Because Ãx is a FS it can equally be

represented in the same manner as the FS in Eq. 2.1.

Ãx =
⋃

∀ux∈U

(ux, ũx) (2.21)

Substituting Ã(x) with Ãx in Eq. 2.18 will produce a relatively simple definition.

Ã =
⋃

∀x∈X

(
x, Ãx

)
(2.22)

consequently, substituting the value of Ãx from Eq. 2.21 in Eq. 2.22 will produce a more decom-

posed form.

Ã =
⋃

∀x∈X


x,

⋃

∀ux

(ux, ũx)


 (2.23)

In Mendel & John (2002), Ãx, is called the vertical slice (VS) because of its 2D nature and is

formally defined as follows:

Definition 2.3.2 (Vertical Slice) A vertical slice of a T2FS, Ã, is the T2FS membership at a single
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Fig. 2.23. 3D representation of a discrete T2FS with discrete vertical slices.

value x. The VS is a FS, Ãx ∈ F(U).

Adapted from Mendel & John (2002)

Eq. 2.23 is actually the VS representation Theorem (RT) defined in Mendel & John (2002).

Theorem 2.3.1 (VS RT) The vertical slice representation theorem (VS RT) of a T2FS, Ã ∈ F̃(X),

is the union of all its vertical slices, i.e.,

Ã =
⋃

∀x∈X

(
x, Ãx

)
(2.24)

Adapted from Mendel & John (2002)

Eq. 2.23 represents a decomposition of the VS RT. Some standard terms for T2FSs were defined

by Mendel & John (2002) that are found useful to communicate the complex nature of these sets.

Some of these terms are redefined in light of the VS RT.

Definition 2.3.3 (Primary Grade) A PG ux in a T2FS, Ã ∈ F̃(X), is a single domain value of the

VS, Ãx, at element x ∈ X.

Adapted from Mendel & John (2002)

Definition 2.3.4 (Secondary Grade) A SG ũx in a T2FS, Ã ∈ F̃(X), is the membership grade of a

single PG ux of VS Ãx, i.e., ũx = Ãx(ux).
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Adapted from Mendel & John (2002)

Definition 2.3.5 (Primary Membership) The primary membership (PM) Jx in a T2FS, Ã∈ F̃(X),

is the support of VS Ãx, i.e.,

Jx = supp(Ãx) (2.25)

Adapted from Aisbett et al. (2010)

In discrete T2FSs, the PM consists of exactly q PGs, i.e., Jx = {u1,x,u2,x, ...,uq,x}. In continuous

spaces the PM is bound between two PGs, i.e., Jx = [ux,ux].

Definition 2.3.6 (Footprint Of Uncertainty) The footprint of uncertainty (FOU) of a T2FS, Ã ∈

F̃(X), is the union of all the PMs of that set, i.e.,

FOU(Ã) =
⋃

∀x

(x,Jx) (2.26)

Adapted from Mendel & John (2002)

Note that normally the FOU is considered to be IVFSs, meaning that Jx is an interval (Mendel

& John 2002). In discrete spaces the FOU is constructed by redefining the PMs by taking the

infimum and supremum of the discrete PMs. This can be demonstrated by the following equation:

Jx =

[
inf
∀ i

ui,x,sup
∀ i

ui,x

]
, i = 1,2, ...,q (2.27)

This fact is implied from Mendel & John (2002), where in the definition of the FOU the primary

membership is assumed to be a bounded subset of U. What is interesting at this point is the

relationship between T2FSs and IVFSs, in which, IVFSs are special cases of T2FSs. To discuss

this fact, first the formal definition of IT2FSs is defined next.

Definition 2.3.7 (Interval T2FS) An interval type-2 fuzzy set (IT2FS) is defined to be a T2FS

where all the secondary grades are at unity, i.e., ∀ ũx = 1 , ∀ux ∈ Jx , ∀x ∈ X.

Adapted from Mendel & John (2002)

Two important facts result from this definition.

Corollary 2.3.1 The following is true:

• An IT2FS can be completely determined using its FOU (Mendel et al. 2006).

• An IT2FS is the same as an IVFS (Bustince et al. 2009, Mendel 2007).
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The first fact is discussed clearly by Mendel et al. (2006), and the second is a direct consequence

from the fact that the FOU is actually an IVFS. In practice ††, IT2FSs are treated as IVFSs.

Another term that is not used commonly in the literature, but of particular interest to this thesis

is the principal membership function. Karnik & Mendel (2001) first introduced the term as, “the

set of primary memberships having secondary membership equal to 1 ”. In a later definition by

Mendel (2001), a more restrictive form of the term is defined.

Definition 2.3.8 (PMF) Assume that each of the secondary membership functions (i.e. VSs) of

a type-2 fuzzy set has only one secondary grade that equals 1. A principal membership function

(PMF) is the union of all such points at which this occurs., i.e., the PMF is a fuzzy set defined as

follows:

PMF(Ã) = {(x,ux) | x ∈ X, ũx = 1 for only one ux ∈ Jx} (2.28)

Adapted from Mendel (2001)

In this view the PMF is advocated to reflect the certainty of a T2FS, “when all membership func-

tion uncertainties disappear, a type-2 membership function reduces to a principal membership

function”(Mendel 2001). For interval secondary membership functions, the PMF is formed by

the union of all the PM mid-points. In this thesis, the generalised view first stated by Karnik &

Mendel (2001) is found to be useful, and hence a new term is introduced below.

Definition 2.3.9 (Principal Set) A principal set (PS) is the set (either fuzzy set or IVFS) of pri-

mary grades having secondary grades equal to 1, i.e.,

PS(Ã) = {(x,ux) | x ∈ X, ũx = 1 , ux ∈ Jx} (2.29)

The PMF is a special case of the PS. It is the condition when there is only one PG having a SG

equals to unity. The PS can be a fuzzy set, or even an IVFS. It still represents the certainty of

the T2FS, and help elevate the relationship between a T2FS and special cases, i.e., IVFSs, FSs,

intervals and crisp sets.

2.4 Operations using Vertical Slices

The EP has been used by Zadeh (1975a) and Mizumoto & Tanaka (1976) to derive the intersec-

tion and union of T2FSs. Karnik & Mendel (2001) provide an in-depth investigation on these

operations.

Theorem 2.4.1 (T2 EP) Let, X = X1 × ...×Xn, be the Cartesian product of universes, and Ã1

, ..., Ãn be T2FSs in each respective universe . Also let Y be another universe and B̃ ∈ Y be a T2FS

††e.g. see (Mendel 2007, Mendel 2001, John & Coupland 2007) for a survey.
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such that B̃ = f
(

Ã1, ..., Ãn

)
, where f : X → Y is a monotone mapping. Then applying the EP to

T2FSs (T2EP) leads to the following:

B̃ ⇔ B̃(y) = sup
(x1,...,xn)∈f−1(y)

min
(

Ã1(x1), ..., Ãn(xn)
)

= sup
(x1,...,xn)∈f−1(y)

min
(

Ã1,x1
, ..., Ãn,xn

)

where y = f (x1, ...,xn).

Adapted from Mendel & John (2002)

Although it may seem straight forward, the complexity of this definition is inherent in the deter-

mination the VS of the solution. The resulting VS which is a FS is evaluated using the t-norm

operation across all possible VS combinations. To explain, using the minimum operation is com-

puted between fuzzy sets rather than real values or intervals, which is it self another sup-min com-

position. Assume A =
⋃

∀a∈X (a,A(a)) and B =
⋃

∀b∈X (b,B(b)) are two FSs, then the minimum

of these sets, i.e. C = min(A,B) can be calculated using the EP as follows:

C(c) = sup
c=a∧b

A(a)∧B(b) (2.30)

A comprehensive discussion can be found in (Mizumoto & Tanaka 1976, John 1998, Karnik &

Mendel 2001, Mendel & John 2002). Let, Ã, be a discrete ‡‡ T2FS defined as follows:

Ã =
Na⋃

ia=1

(
xia ,

Mia⋃

ka=1

(
uka

xia
, ũka

xia

))
(2.31)

where Na is the number of discrete domain values xia ; ia = 1,2, ...,Na, Mia is the number of

discrete PMs Jxia
for each domain value xia consisting of uka

xia
which represent the ka

th PG of the

ia
th domain value ; ka = 1,2, ...,Mia . Each SG ũka

xia
= Ãxia

(uka
xia

) is associated with only one PG,

meaning that there are Mia SGs for each domain value. The same interpretation is applied to

another T2FS. Let, B̃, be another discrete T2FS defined as follows:

B̃ =
Nb⋃

ib=1


xib ,

Mib⋃

kb=1

(
ukb

xib
, ũkb

xib

)

 (2.32)

where Nb is the number of discrete domain values xib ; ib = 1,2, ...,Nb, Mib is the number of

discrete PMs Jxib
for each domain value xib ,ukb

xib
represent the kb

th PG of the ib
th domain value ;

‡‡Here discrete sets are used for clarity purpose as it gives insight to the amount of computation required. Addition-

ally, they are the cases actually used in applications.
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kb = 1,2, ...,Mib , and ũkb
xib

are the SGs. A VS of Ã at point xia is Ãxia
and a VS of B̃ at point xib is

B̃xib
. Then each VS is defined as follows:

Ãxia
=

Mia⋃

ka=1

(
uka

xia
, ũka

xia

)

B̃xib
=

Mib⋃

kb=1

(
ukb

xib
, ũkb

xib

)

The following basic set operations are defined.

Definition 2.4.1 (Union)

Ã∪ B̃ =
⋃

∀x

(
x,
(

Ã∪ B̃
)

(x)
)

=
⋃

∀x


x,

Mia⋃

ka=1

Mib⋃

kb=1

((
uka

x ∨ukb
x

)
,
(
ũka

x ∧ ũkb
x

))



(2.33)

where
⋃Mia

ka=1

⋃Mib

kb=1 means the union over all admissible PGs uka
x and ukb

x .

Mizumoto & Tanaka (1976) called the operation between the T2FS membership grades (Ã∪ B̃)(x)

the Join and denoted Ã(x)⊔ B̃(x), and since these membership grades are the VSs of the T2FS

they can alternatively be denoted Ãx ⊔ B̃x.

Definition 2.4.2 (Intersection)

Ã∩ B̃ =
⋃

∀x

(
x,
(

Ã∩ B̃
)

(x)
)

=
⋃

∀x


x,

Mia⋃

ka=1

Mib⋃

kb=1

((
uka

x ∧ukb
x

)
,
(
ũka

x ∧ ũkb
x

))



(2.34)

Mizumoto & Tanaka (1976) called the operation between the T2FS membership grades (Ã∩ B̃)(x)

the Meet and denoted Ã(x)⊓ B̃(x), and since these membership grades are the VSs of the T2FS

they can alternatively be denoted Ãx ⊓ B̃x.

Definition 2.4.3 (Complement)

(Ã)
′
=
⋃

∀x

(
x,(Ã)

′
(x)
)

=
⋃

∀x

(
x,

Mia⋃

ka=1

(
(1−uka

x ), ũka
x

)
) (2.35)
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Mizumoto & Tanaka (1976) called the operation (Ã)
′
(x) the Negation and denoted ¬Ã(x) or alter-

natively ¬Ãx. A natural extension of these definitions to the special case of T2FSs, i.e. IT2FSs,

can be directly achieved through the fact that all the secondary grades of the sets involved in the

computation are at unity.

Definition 2.4.4

Ã∪ B̃ =
⋃

∀x


x,

Mia⋃

ka=1

Mib⋃

kb=1

((
uka

x ∨ukb
x

)
,1
)



Ã∩ B̃ =
⋃

∀x


x,

Mia⋃

ka=1

Mib⋃

kb=1

((
uka

x ∧ukb
x

)
,1
)



(Ã)
′
=
⋃

∀x

(
x,

Mia⋃

ka=1

(
(1−uka

x ),1
)
)

(2.36)

where
⋃Mia

ka=1

⋃Mib

kb=1 means the union over all admissible PGs uka
x and ukb

x .

2.5 The Wavy Slice Representation

Mendel & John (2002) defined operations for T2FSs without the use of the EP. Their method relies

on decomposing a T2FS to a collection of simpler embedded type-2 fuzzy sets. Each embedded

type-2 fuzzy set has only one embedded type-1 fuzzy set or simply embedded fuzzy set. The

motivation behind this work was to avoid calculating operations using the complicated EP hoping

to make them easy to formulate using already known methods from classical FSs. However, the

amount of computation required by this representation is astronomically high. To explain this

representation theorem, first the formal definitions of the embedded fuzzy sets and embedded

type-2 fuzzy sets are reviewed. In order to be consistent with the material presented in the rest of

this thesis, a functional interpretation of the original definition is provided.

Definition 2.5.1 (EFS) An embedded fuzzy set (EFS), Ae, of a T2FS Ã ∈ F̃(X) is defined as fol-

lows:

Ae :X → U

x 7→ ux | for only one ux ∈ Jx

(2.37)

For demonstration, let Ã, be a discrete T2FS. An EFS, Ae, in Ã can be seen as follows:

Ae =
N⋃

i=1

(xi,uxi
) (2.38)
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where Ae has N domain values associated with exactly one grade from each PM, i.e., J1,J2, ...,JN ,

namely ux1
,ux2

, ...,uxN
, and there are a total of n = ∏N

i=1 Mi of Ae embedded in Ã where Mi is

the number of PGs associated with domain value xi. Note that in continuous spaces there are

uncountable number of embedded sets.

Definition 2.5.2 (Wavy Slice) An embedded type-2 fuzzy set Ãe also called the wavy slice (WS)

is defined as follows:

Ãe : X → U → Ũ :

: x 7→ ux 7→ ũx | for only one ux ∈ Jx

(2.39)

A WS, Ãe, in a discrete T2FS, Ã, can be seen as follows:

Ãe =
N⋃

i=1

(xi,(uxi
, ũxi

)) (2.40)

where Ãe has N domain values associated with exactly one grade from each PM, i.e., J1,J2, ...,JN ,

namely ux1
,ux2

, ...,uxN
, and there are a total of n = ∏N

i=1 Mi of Ãe embedded in Ã where Mi is the

number of PGs associated with domain value xi. The formal definition of the WS representation

theorem can be defined as follows:

Theorem 2.5.1 (WSRT) The wavy slice representation theorem (WSRT) of a T2FS, Ã, is the

union of all the wavy slices embedded in that set, i.e.,

Ã =
⋃

∀ j

Ãj
e (2.41)

Adapted from Mendel & John (2002)

The discrete T2FS, Ã ∈ F̃(X), can be represented as follows:

Ã =
n⋃

j=1

N⋃

i=1

(xi,(uxi
, ũxi

)) (2.42)

2.5.1 Operations using wavy slices

In fact this is the easiest way to theoretically perform operations between T2FSs. Let, Ã, be a

T2FS defined as follows:

Ã =
na⋃

ja=1

Ãja
e (2.43)
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and, B̃, be another T2FS defined as follows:

B̃ =
nb⋃

jb=1

B̃jb
e (2.44)

then the following operations can be defined.

Definition 2.5.3

Ã∪ B̃ =
na⋃

ja=1

nb⋃

jb=1

Ãja
e ∪ B̃jb

e

Ã∩ B̃ =
na⋃

ja=1

nb⋃

jb=1

Ãja
e ∩ B̃jb

e

(Ã)
′
=

na⋃

ja=1

(Ãja
e )

′

(2.45)

Although the representation is direct the computation is very complex.

2.6 The Geometric Representation

Modeling T2FSs in terms of geometric primitives was introduced by Coupland & John (2007)

through the use of algorithms from computational geometry. The main idea is, “to represent a

T1FS A over a continuous domain X as a set of connected straight line segments that need not be

equally spaced across the domain”, as stated in Coupland & John (2007).

Definition 2.6.1 (Geometric T1FS) A geometric type-1 fuzzy set (GT1FS), A, is a 2D geometric

object (i.e. polygon) on the X and U axes that is constructed of a poly-line of vertices made up by

Piecewise Linear Functions (PLF). Accordingly the membership function of the FS, A, is defined

as follows:

A(x) =





0 x < x1 OR x > xn

yk x = xk

yk + x−xk

xk+1−xk
(yk+1 − yk) xk < x < xk+1

(2.46)

Adapted from Coupland & John (2007)

For T2FSs the main idea is to treat the vertical slices of a partially discrete T2FS in the same

manner to the GT1FS case. In the other hand IVFSs are described by two GT1FSs representing

the LMF and UMF. Coupland & John (2008a) provide a clear definition of a geometric type-2

fuzzy set (GT2FS).
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Definition 2.6.2 A geometric type-2 fuzzy set (GT2FS) is a collection of n triangles in 3D space

forming a polyhedron, i.e.,

Ã =
⋃

i=1...n

ti, ti =




xi
1 uxi

1
Ãxi

1
(uxi

1
)

xi
2 uxi

2
Ãxi

2
(uxi

2
)

xi
3 uxi

3
Ãxi

3
(uxi

3
)


 (2.47)

Adapted from Coupland & John (2008a)

the preference of a polyhedron is for their most simple design and processing. Other shapes may

be used rather than triangles, although their planar nature makes them advantageous, for an IT2FS

case it is clear that the third column is set to 1. Figure 2.24 shows a GT2FS taken from (Coupland

& John 2008b), where µ
Ã
(x) ≡ U and µ

Ã
(x,u) ≡ Ũ using the notations of this thesis. To perform

operations using GT2FSs, methods from computational geometry are proposed for calculating the

join and meet of T2FSs. These methods are shown to have reduced the computational complex-

ity of computing the Centroid compared to using WSRT (John & Coupland 2007, Coupland &

John 2007, Coupland & John 2008b). Mendel et al. (2009) argued that, “A limitation of the ge-

ometric and grid methods is that they do not obtain closed-form formulas for the join and meet

operations”, these closed form formulas are desired in some situations. Another disadvantage that

is particularly important for this thesis is the simplicity of extending operations. It is not easy to

define an extension mechanism in order for functions and operations to be extended directly from

known forms of classical fuzzy sets, interval valued fuzzy sets or crisp sets.

Fig. 2.24. Geometric T2FS taken from Coupland and John (2008).
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Fig. 2.25. zSlice based T2FS taken from Wagner and Hagras (2008).

2.7 Zadeh’s T2FSs: Revisited

This section revisits Zadeh’s use of the EP for T2FS operations. The reason for this is to highlight

the relationship between α-cuts of FSs and T2FSs, which in-effect gives insight to the representa-

tions defined by Liu (2008) and Wagner & Hagras (2008). It is summarised in two stages:

1. Extend the T1FS definition to fuzzy sets with interval-valued membership functions.

2. Generalise from intervals to fuzzy sets by the use of the α-cut form of the EP (α-EP).

Zadeh (1975a) demonstrated this procedure by defining the intersection of two T2FSs. First, let A

and B be two FSs on X, and the intersection of these two sets defined as follows

A∩B ⇔ (A∩B)(x) = A(x)∧B(x); ∀x ∈ X. (2.48)

Next, extend this definition as stated in stage (1) to interval-valued membership grades A(x) =

[a,a] and B(x) = [b,b] then using interval operations

[a,a]∧ [b,b] = [a∧b,a∧b] (2.49)
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Fig. 2.26. Alpha-plane representation of T2FSs taken from Liu (2008).

Second, let Ã and B̃ be two T2FSs on X, and their membership function (vertical slices) at each

domain value are defined as follows:

Ã(x) ≡ Ãx ⇔ Ãx(ax) (2.50)

B̃(x) ≡ B̃x ⇔ B̃x(bx) (2.51)

then, take the α-cuts of these vertical slices, in a continuous case this will appear as follows:

Ãx,α̃ =
{

ax | Ãx(ax) ≥ α̃
}

=
[
ax,α̃,ax,α̃

]
(2.52)

B̃x,α̃ =
{

bx | B̃x(bx) ≥ α̃
}

=
[
bx,α̃,bx,α̃

]
(2.53)

Then for each x (
Ãx ∩ B̃x

)
α̃

= Ãx,α̃ ∧ B̃x,α̃

and using the α-EP produces

(Ã∩ B̃)(x) =
⋃

∀ α̃

α̃
(

Ãx,α̃ ∧ B̃x,α̃

)
(2.54)

Up to this point Zadeh finalised his derivation. To generalise, it is clear that

Ã∩ B̃ =
⋃

∀x

(
x,
(

Ã∩ B̃
)

(x)
)
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with the understanding that x is the domain value that corresponds to (Ã∩ B̃)(x). Then

Ã∩ B̃ =
⋃

∀x


x,

⋃

∀ α̃

α̃
(

Ãx,α̃ ∧ B̃x,α̃

)



2.8 Alpha-planes and zSlices

Recently, Chen & Kawase (2000), Tahayori et al. (2006), Liu (2008) and Mendel et al. (2009), and

Wagner & Hagras (2008) and Wagner & Hagras (2010) focused their attention towards decompos-

ing T2FSs into several IVFSs. In particular, Liu (2008) defined α-planes and Wagner & Hagras

(2008) defined zSlices as part of their effort to calculate the Centroid of T2FSs.

Definition 2.8.1 (α-plane) The α-plane, Ãα̃, of a T2FS, Ã, is defined by the union of elements and

associated PGs of Ã whose SGs are greater than or equal to level α̃, i.e.,

Ãα̃ =
{
(x,ux) | Ãx(ux) ≥ α̃, ∀x, ∀ux ∈ Jx

}
(2.55)

Adapted from Liu (2008)

The text of the definition provided by Liu (2008) and Mendel et al. (2009) is slightly different,

but the equation is the same. In their definition they mention the union of PGs which is incorrect.

Then Liu defined an indicator function, I
Ãα̃

, acting on x ∈ X such that,

I
Ãα̃

(x,ux) =

{
1, (x,ux) ∈ Ãα̃

0, (x,ux) /∈ Ãα̃

(2.56)

Then a T2FS associated with each α-plane, α̃Ãα̃, is defined.

Definition 2.8.2 A T2FS associated with each α-plane, α̃Ãα̃, of a T2FS Ã is defined as follows:

α̃Ãα̃ =
{(

(x,ux), α̃ · I
Ãα̃

(x,ux)
)
| ∀x ∈ X

}
(2.57)

Adapted from Liu (2008)

Using this definition the T2FS, Ã, is represented by the union of all its associated T2FSs, i.e.,

Ã =
⋃

∀ α̃

α̃Ãα̃ (2.58)

Figure 2.26 shows a T2FS with an α-plane and the associated T2FS. This figure is taken from Liu

(2008) with x representing the domain of the T2FS, u representing the primary membership grades
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domain denoted U in this thesis notation, and µ
Ã
(x,u) represents the secondary grades domain

denoted Ũ in this thesis. Earlier in the definition of α-cuts for FSs the method that involves the

1

U

X

FOU(Ã)

PMF(Ã)
x
′

Ãx
′

1

Ũ

α̃

Ãx,α̃ = Jx,α̃

ux
′
,α̃

ux
′
,α̃

= Ãα̃(x
′
)

Ãα̃

Fig. 2.27. The α-plane Ãα̃ of T2FS Ã.

indicator function is replaced with a rather simpler and straight forward notation, and likewise

a similar trend is followed for the definition of α-planes later in the thesis. On the other hand

zSlices based T2FS representation is synonymous to the α-plane representation. The concept is

completely the same, and the zSlice based T2FS is defined with a slightly different notation of that

used by the original version provided in Wagner & Hagras (2008).

Definition 2.8.3 (zSlice) A zSlice is formed by slicing the general T2FS in the third dimension z

(representing the secondary grades Ãx(ux)) at level zi (in other words α̃). The zSlice (Z̃i) is a T2FS

with secondary membership grades fixed to zi ∈ [0,1], and defined as follows:

Z̃i =
⋃

∀x

⋃

uix∈Jix

{(x,uix),zi}

where Jix =
[
uix

,uix

]
is the bounds of the interval formed by the slice zi of the T2FS on the vertical

slice at domain value x.

Figure 2.25 shows a T2FS with three zSlices. This figure is taken from Wagner & Hagras (2008)

with x representing the domain of the T2FS, y representing the primary membership grades domain

denoted U in this thesis notation, and z represents the secondary grades domain denoted Ũ in this

thesis. This definition shares the same resemblance to the associated T2FS definition if the zSlice
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level zi is set to equate the α-cut α̃. The T2FS then is formed by the union of all the zSlices.

Ã =
⋃

∀zi∈(0,1]

Z̃i (2.59)

In this thesis only α-planes are used and the same results are valid for zSlices. The reason for

adapting the α-plane formulation is the analogy it shares with the well known concept of α-cuts

in FSs. Moreover, α-planes are developed using α-cuts of VSs.

Definition 2.8.4 Let, Ã and B̃, be two T2FSs and, Ãα̃ and B̃α̃ , be their α-planes at level α̃. Then,

1. (Ã∪ B̃)α̃ = Ãα̃ ∪ B̃α̃.

2. (Ã∩ B̃)α̃ = Ãα̃ ∩ B̃α̃.

Adapted from Liu (2008)

Mendel et al. (2010) provide a proof for the union of two T2FSs using α-planes, and also show

how to compute the intersection and Centroid. Wagner & Hagras (2008) provide an alternative

proof using VSs for the three operations. Some important facts about α-planes are also observed

in those papers:

• The FOU is equal to the α-plane at level 0̃, i.e. FOU(Ã) = Ã
0̃
.

• Each α-plane is characterised by an interval membership, in other words they are IVFSs.

Wagner & Hagras (2008) clearly state that, ” a zSlice Z̃i is equivalent to an interval type-2

fuzzy set with the exception that its membership grade Z̃i(x,ux) in the third dimension is

not fixed to 1 but is equal to zi where 0 < zi ≤ 1′′, the IT2FS in the statement are in fact

the associated T2FSs (Mendel 2010). The connection between these concepts are clarified

in the next subsection, it is used in Section 3.2 of Chapter 3 with the emphasis put on the

development of the new α-cut representation of T2FSs.

• Chen & Kawase (2000) stated that, ”the conclusion of a fuzzy-valued fuzzy reasoning is

obtained by an infinite number of interval-valued fuzzy reasoning”. In this statement fuzzy-

valued fuzzy sets are used to refer to T2FSs. Later in Section 3.2 a formula that represents

this assertion in algebraic form is developed and proved. This formula will allow the ex-

tension of more generalised operations and functions not only the reasoning operations (i.e.

the Join and Meet).

• Liu (2008) stated the following assertion as a property of α-planes α̃i ≥ α̃j ⇒ Ãα̃i
⊆ Ãα̃j

.

The nature of Ãα̃i
⊆ Ãα̃j

has not been defined by Liu. Later in Section 3.4 of Chapter 3 some

aspects of this property are investigated.
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2.8.1 A discussion on α-planes

The origin of α-planes is rooted in the definition of the intersection of two T2FSs introduced

by Zadeh (1975a). It is customary to return to Zadeh’s steps in order to decompose T2FSs to

its elementary components, i.e. crisp sets. In general, since each VS is a FS, then it can be

decomposed using the α-cut decomposition theorem. Let Ã ∈ F̃(X) be a T2FS on X, where Ãx is

its VS at x. The α-cuts of each VS are Ãx,α̃ =
{

ux | Ãx(ux) ≥ α̃
}

, ∀ux ∈ Jx. If the domain of the

T2FS membership function is assumed to be continuous then Ãx,α̃ =
[
ux,α̃,ux,α̃

]
. Since these VSs

are FSs then they can be represented by the α-cut decomposition theorem, i.e.,

Ãx =
⋃

∀ α̃

α̃Ãx,α̃ (2.60)

where α̃Ãx,α̃ is the special FS (α-FS) associated with each α-cut. It is defined as α̃Ãx,α̃(ux) = α̃∧

Ãx,α̃(ux) and Ãx,α̃(ux) = 1 if ux ∈ Ãx,α̃ and zero otherwise. Then, T2FS Ã is the union of all its

VSs, therefore,

Ã =
⋃

∀x


x,

⋃

∀ α̃

α̃Ãx,α̃


 (2.61)

This is a very important result, indeed a T2FS is represented using a collection of crisp sets (or

intervals) defined vertically. Now these crisp sets are manipulated in a meaningful way by taking

the union of all the α-cuts across all domain values for only one level, i.e.,
⋃

∀x

(
x, Ãx,α̃

)
. It is

the union of all the pairs (x,ux) such that Ãx(ux) ≥ α̃. This is exactly the same as the α-plane

definition of Eq. 2.55.

Ãα̃ =
⋃

∀x

(
x, Ãx,α̃

)

=
{
(x,ux) | Ãx(ux) ≥ α̃, ∀x, ux ∈ Jx

} (2.62)

Here it is clear that

Ãα̃(x) = Ãx,α̃ = Jx,α̃ (2.63)

Then consider the α-FSs of each VS by taking the union of all the α-FSs across all domain values

for only one level, i.e.,
⋃

∀x

(
x, α̃Ãx,α̃

)
. It is a T2FS with membership grades α̃Ãx,α̃, which are FSs

themselves, i.e., α̃Ãx,α̃ =
⋃

∀ux

(
ux, α̃Ãx,α̃(ux)

)
. This is exactly the same as the T2FS associated
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with each α-plane defined in Eq. 2.57.

α̃Ãα̃ =
⋃

∀x

(
x, α̃Ãx,α̃

)

= α̃
⋃

∀x

(
x, Ãx,α̃

)

=
{(

(x,ux), α̃Ãα̃(x,ux)
)
| ∀x ∈ X

}
(2.64)

This is called a special T2FS associated with each α-plane, (α-T2FS), following the same con-

vention used for FSs. It has to be mentioned that this same definition is called, α-FOU in (Mendel

et al. 2009), and zSlice in (Wagner & Hagras 2008). Then it is clear to see that a T2FS is decom-

posed of these α-T2FSs.

Theorem 2.8.1 (α-Plane RT) A type-2 fuzzy set, Ã, can be represented (decomposed) by the

union of all its α-T2FSs, i.e.,

Ã =
⋃

∀ α̃

α̃Ãα̃ (2.65)

Proof. Straight forward from Eq. 2.61,Eq. 2.62 and Eq. 2.64.

In most cases α-plane, Ãα̃, is considered to be an IVFS or an IT2FS (Liu 2008, Mendel et al.

2009, Wagner & Hagras 2008, Wagner & Hagras 2010). This fact is only true when the VSs are

continuous functions and hence Jx ∈ I(U), i.e. it is an interval on [0,1]. If the VSs are in discrete

domains then as mentioned earlier, the PMs must be bounded through a bounding operation. An

example of a bounding operation is taking the minimum and the maximum of the PGs of each PM.

The following worked example demonstrates how to construct IVFS α-planes for discrete T2FSs.

Example 2.8.1 Let X = {xi | i = 1,2, ...,10}, and very small(VS), small(S), medium(M), large(L),

and very large(VL) ∈ F(U) are the FSs that represent the vertical slices, Ãx, defined in Table 2.2.

Each vertical slice, Ãxi
, consist of PGs, uxi

, forming its domain and the SGs, Ãxi
(uxi

), forming

its membership grade. Let also, Ã ∈ F̃(X), be defined as in Table 2.3, with domain values, xi,

corresponding to vertical slices from Table 2.2. Table 2.4 shows how to extract the α-cuts (α̃) of

the VS Ãxi
of each domain value to form the crisp sets Ãxi,α̃. Table 2.5 shows how to construct

the interval membership grades of the α-planes, Ãα̃(xi) =
[
min

(
Ãxi,α̃

)
,max

(
Ãxi,α̃

)]
in order to

formulate the IVFS α-planes.
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Table 2.2. FSs that represent the vertical slices,Ãx, in Example 2.8.1. The horizental heading represents the SGs, Ãx(ux),
the vertical heading represents the VSs, Ãx, and the numbers in between are the PGs, ux.

Ãx 0.0 0.5 1.0 0.5 0.0

VS 0.0 0.08 0.15 0.18 0.2

S 0.15 0.17 0.35 0.42 0.45

M 0.4 0.43 0.5 0.6 0.65

L 0.55 0.62 0.65 0.75 0.8

VL 0.7 0.78 0.85 0.9 1.0

Table 2.3. T2FS, Ã, in Example 2.8.1. Each domain value, xi, along with its corresponding vertical slice from Table

2.2.
xi x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

Ãxi
VS VS S S M L L L VL VL

This example demonstrates the case when there are no gaps in the PM, i.e., all VSs are convex. If

there is a contrary case, then these sets are approximated to an IVFS using a bounding operation

such as taking the minimum and maximum (or infimum and supremum) of the PGs.

2.9 Discussion

The notations used in this thesis does not conform with the majority of publications on the topic

of T2FSs. The fact that the notations adopted in this thesis are classic mathematical conventions

support such a move. Lately, the issue of notation has been discussed by many researchers working

in the type-2 fuzzy logic community (Coupland et al. 2010). In fact some researchers such as

Aisbett et al. (2010) and Walker & Walker (2009) are advocating the use of classical mathematical

standards rather than the type-2 fuzzy logic practices.

The variety of representations of the T2FSs is motivated by the quest for a practical method of

performing operations in general and for calculating the Centroid of a T2FS in specific. To account

for this assertion, Mendel & John (2002) mentioned that their WSRT focus on overcoming one

particular difficulty of type-2 fuzzy logic:

“derivations of the formulas for the union, intersection, and complement of type-2

fuzzy sets all rely on using Zadehs Extension Principle, which in itself is a difficult

concept (especially for newcomers to FL) and is somewhat ad hoc, so that deriving

things using it may be considered problematic;...”

Mendel & John (2002) also stated another difficulty that they did not overcome using the WSRT:
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Table 2.4. The crisp set α-cuts, Ãxi,α̃, of the vertical slices ,Ãxi
, for each domain value, xi, in Example 2.8.1.

i α̃ = 0.0 α̃ = 0.5 α̃ = 1.0
1 0,0.08,0.15,0.18,0.2 0.08,0.15,0.18 0.15

2 0,0.08,0.15,0.18,0.2 0.08,0.15,0.18 0.15

3 0.15,0.17,0.35,0.42,0.45 0.17,0.35,0.42 0.35

4 0.15,0.17,0.35,0.42,0.45 0.17,0.35,0.42 0.35

5 0.4,0.43,0.5,0.6,0.65 0.43,0.5,0.6 0.5
6 0.55,0.62,0.65,0.75,0.8 0.62,0.65,0.75 0.65

7 0.55,0.62,0.65,0.75,0.8 0.62,0.65,0.75 0.65

8 0.55,0.62,0.65,0.75,0.8 0.62,0.65,0.75 0.65

9 0.7,0.78,0.85,0.9,1 0.78,0.85,0.9 0.85

10 0.7,0.78,0.85,0.9,1 0.78,0.85,0.9 0.85

Table 2.5. The interval membership grades of the α-planes, Ãα̃(xi) in Example 2.8.1.

i α̃ = 0.0 α̃ = 0.5 α̃ = 1.0
1 [0,0.2] [0.08,0.18] [0.15,0.15]
2 [0,0.2] [0.08,0.18] [0.15,0.15]
3 [0.15,0.45] [0.17,0.42] [0.35,0.35]
4 [0.15,0.45] [0.17,0.42] [0.35,0.35]
5 [0.4,0.65] [0.43,0.6] [0.5,0.5]
6 [0.55,0.8] [0.62,0.75] [0.65,0.65]
7 [0.55,0.8] [0.62,0.75] [0.65,0.65]
8 [0.55,0.8] [0.62,0.75] [0.65,0.65]
9 [0.7,1] [0.78,0.9] [0.85,085]
10 [0.7,1] [0.78,0.9] [0.85,0.85]

“using type-2 fuzzy sets is computationally more complicated than using type-1

fuzzy sets.”

Coupland & John (2007) in the other hand articulated specifically what drives their work on geo-

metric T2FSs:

“In the case of generalized type-2 membership functions where the secondary is

a type-1 fuzzy number the computational complexity is very large. This has, in our

view held back the exploitation of the real power of type-2 fuzzy systems”

Which in essence is trying to overcome that particular difficulty from Mendel & John (2002).

Wagner & Hagras (2008) stipulated their aim of defining zSlices in the abstract of their paper:

“The proposed approach will lead to a significant reduction in both the complexity

and the computational requirements for general type-2 fuzzy logic systems. Hence,

this will lead to facilitating the application of general type-2 fuzzy logic to many real

world applications.”

Liu (2008) specifically mentioned the Centroid as the motivation for defining α-planes:

51



“To date, the computation complexity of general type-2 fuzzy logic systems (T2

FLSs) is very high, which makes it very difficult to deploy them into practical applica-

tions”,..., “The objective of this paper is to develop an efficient strategy to implement

centroid type-reduction for general T2 fuzzy logic systems.”

It is clear that both computational complexity and theoretical investigation formed much of the

deriving force behind the recent developments on T2FSs. The newly developed α-plane or zS-

lice representations are yet to be used in applications, but they show a potential for reasonable

performance.

2.10 Summary

This thesis is concerned with defining a novel representation of T2FSs that is useful both theo-

retically and practically. This chapter provides the foundation for the rest of the thesis to be built

on. Specifically, this chapter discussed the terminology and notation used throughout the thesis

for the main concepts of FSs, IVFSs, and T2FSs. Furthermore, some of the basic definitions and

operations that will be utilised in the build-up of new concepts. In this chapter the different repre-

sentations of T2FSs were reviewed, some of which are recently developed, e.g., the α-plane and

zSlices representations.

In the following chapter a theoretical investigation of α-planes and IVFSs is conducted, and

a new generalised extension principle is defined utilising the α-plane RT. An alternative α-cut

representation of IVFSs is defined and some properties of these α-planes are discussed in order to

define the novel α-cut representation theorem for T2FSs. In Chapter 4 and Chapter 5 this novel

representation is shown to be useful for the theoretical investigation of measures of uncertainty

and type-2 fuzzy numbers. Chapter 6 shows that this novel representation is suitable for practical

implementations due its massively parallel nature.
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Chapter 3

Alpha-cuts for Type-2 Fuzzy Sets

The α-cut decomposition theorem is one of the fundamental concepts in the field of FSs. The

power behind this theorem lies in the capability to decompose FSs into a collection of crisp sets.

This decomposition along with the extension principle forms a methodology for extending math-

ematical concepts directly from crisp sets to FSs. In this chapter an new and novel mathematical

formulations are presented, in which many theoretical investigations and practical applications are

made possible. These novel mathematical formulations can be summarised in three main concepts:

1. The α-plane extension principle. A novel generalisation is defined and a proof is provided,

this generalisation allows functions and operations to be extended from IVFSs to T2FSs

directly.

2. The α-cut decomposition theorem for T2FSs. A novel representation theorem for T2FSs is

presented, which decomposes T2FSs into a collection of crisp sets.

3. The α-cut extension principle for T2FSs. Another novel generalisation is defined to allow

functions and operations be extended from crisp sets to T2FSs in a straight forward mecha-

nism.

Furthermore, other important definitions are presented in this chapter such as the core, support and

containment of T2FSs. The α-plane RT and the novel α-cut RT provide alternative definitions for

these particular concepts in the same manner that the α-cut RT for FSs provides alternative defini-

tions for the FS counterparts of these concepts. This chapter also introduces an alternative method

of defining α-cuts for IVFSs to those methods reviewed earlier in Section 2.9. Worked examples

are used extensively to demonstrate the usefulness of the concepts defined in this chapter. These

examples will include the use of the three main concepts listed above in defining the union and

intersection of T2FSs. This chapter contains a set of interrelated novel definitions which together

form one of the main contributions of this thesis, the derivation and proof of the α-cut of T2FSs.

Throughout this chapter all definitions and theorems are novel findings. On the other hand through-

out the rest of the thesis, whenever there is a definition that is not the sole contribution of the thesis
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it will be clearly shown in the title of the definition. Obviously if any definition or theorem is

adapted it will be clearly mentioned. In short, all the material presented in this chapter is novel

unless clearly stated otherwise.

3.1 Alpha-cuts of IVFSs: An Alternative Approach

In this section novel α-cuts of IVFSs are investigated. The methods discussed are alternative

approaches to the definitions provided in Section 2.9. The main difference is that in this chapter

the α-cuts are defined for the LMF and UMF independently. The reason behind this is, first,

to allow the involvement of direct FS computation rather than the rearrangement introduced by

Kaufmann & Gupta (1985) in Eq. 2.16. The rearrangement occurs after the α-cut of the LMF and

UMF are calculated, later in this section this difference is discussed. Second, the use of the LMF

and UMF allow a direct connection with FS α-cuts which will provide a platform for comparable

theoretical studies unlike the methods by Zeng & Shi (2005) and Yager (2008a) shown in Section

2.9. Example 3.1.1 demonstrates the difference between both methods. In the following definition

the α-cuts of IVFSs are defined using the LMF and UMF:

Definition 3.1.1 (IVFS α-cuts) The α-cut of an IVFS, Â ∈ X, is defined by taking the α-cuts of its

LMF and UMF at the same level α, i.e.,

Âα =
(
Aα,Aα

)

where Âα(x) =
[
Aα(x),Aα(x)

]
.

In Definition 2.2.4 IVFSs are completely defined using two FSs, and in Definition 3.1.1 the α-cuts

of IVFSs are completely defined using the α-cuts of these two FSs. In this case, the membership

grade of each domain value, x, in the set, Âα, is an interval, i.e.,

Âα(x) =





[0,0] , x /∈ Aα and x /∈ Aα

[0,1] , x /∈ Aα and x ∈ Aα

[1,1] , x ∈ Aα and x ∈ Aα

(3.1)

These situations are depicted in Figure 3.1. Notice that a particular impossible situation is not

included, that of Âα(x) = [1,0]. It means that there exist a domain value x
′

that belongs to the

α-cut of LMF and does not belong to the α-cut of the UMF, which is not possible. By definition

the LMF is always a subset of the UMF, A ⊆ A, i.e., A(x) ≤ A(x), ∀x. Based on Theorem 2.1.3

the α-cut of the LMF is always a subset of the α-cut of the UMF, i.e., Aα ⊆ Aα, ∀α, which makes

Âα(x) = [1,0] impossible. Definition 3.1.1 shows that the α-cuts of IVFSs are special IVFSs.

These special IVFSs are bound by two distinct crisp sets, one that includes domain values that
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Fig. 3.1. IVFS Â, its LMF A, its UMF A and their α-cuts.

belong to the α-cut of the LMF and the other contains domain values that belong to the α-cut of

the UMF. The α-cut of an IVFS is completely defined using these two crisp sets. This is actually a

significant finding, because computation for the α-cuts can be performed independently. This fact

makes it very appealing and captures the semantics of the IVFS definition. The IVFS is actually

a FS with uncertain (or unknown) membership, and this uncertainty is represented through an

interval. The LMF and UMF represents this uncertainty with the interpretation that the FS is not

exactly known, instead what is known are the FS bounds. Earlier in Definition 2.1.14, a special

FS called the α-FS is defined, which is associated with each α-cut of a FS. Following the same

convention a special IVFS is defined based on the α-FS of the LMF and the UMF.

Definition 3.1.2 (α-IVFS) A special IVFS ,αÂα ∈ F̂(X), called α-IVFS is defined as follows:

αÂα = α
(
Aα,Aα

)

=
(
αAα,αAα

) (3.2)

where αÂα(x) = α∧
[
Aα(x),Aα(x)

]
=
[
α∧Aα(x),α∧Aα(x)

]
.

Here αÂα is an IVFS, and each domain value, x, is associated with an interval membership grade,

αÂα(x) ∈ I(U). Also αAα and αAα are both α-FSs, which are respectively the LMF and UMF of

α-IVFS αÂα as seen in Figure 3.3. Now, a decomposition theorem can be defined for IVFSs based

on these α-cuts.

Theorem 3.1.1 (IVFS α-cut RT) An interval valued fuzzy set, Â, can be represented by the union
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[
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]

Fig. 3.2. Continuous IVFS Â, its LMF A, its UMF A and their α-cuts.

of all its α-IVFSs.

Â =
⋃

∀α

αÂα (3.3)

Proof. By definition any IVFS is represented using the LMF and UMF, i.e., Â =
(
A,A

)
. Since

A =
⋃

∀α αAα and A =
⋃

∀α αAα by the decomposition theorem of FSs, then,

Â =


⋃

∀α

αAα,
⋃

∀α

αAα




=
⋃

∀α

(
αAα,αAα

) (3.4)

Straight forward from Definition 3.1.2 αÂα =
(
αAα,αAα

)
, and that completes the proof.

The following worked example demonstrates how to calculate the α-cuts of discrete IVFSs.

Example 3.1.1 Let X = {xi | i = 1,2, ...,10}, and Â ∈ F̂(X) is an IVFS defined in Table 3.1. Ta-

ble 3.2 shows the α-cuts of IVFS Â calculated from its LMF and UMF. Table 3.3 shows how to

reconstruct IVFS Â knowing its α-cuts.

56



X

U

α1

α2

X

U

X

U

X

U

α1

α2
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Fig. 3.3. The α-IVFSs αÂα of IVFS Â.

Using Eq. 3.3, if Â is a continuous and convex IVFS i.e. A and A are continuous and convex as

seen in Figure 3.2, then an alternaive approach to that of Eq. 2.16 can be defined.

Definition 3.1.3 Let, Â ∈ F̂(X) be a continuous and convex IVFS with LMF A and UMF A. Let

also its α-cut at level α be Âα =
(
Aα,Aα

)
where Aα =

[
Lxα,Rxα

]
and Aα =

[
Lxα,Rxα

]
. Then, Âα,

can be calculated using the following formula:

Âα =





([
Lxα,Rxα

]
,
[

Lxα,Rxα

])
,α ≤ h(A) and α ≤ h(A)(

/0,
[

Lxα,Rxα

])
,α > h(A) and α ≤ h(A)

( /0, /0) ,α > h(A)

(3.5)

where ∀α : Lxα ≤ Lxα ≤ Rxα ≤ Rxα, h(A) is the height of LMF, h(A) is the height of UMF, and /0

is an empty set.

Earlier in Eq. 2.16 another method of defining α-cuts for continuous and convex IVFSs have

been defined. There are two drawbacks to this method, first, it does not reduce to the α-cut

of FSs directly, instead some manipulation and rearrangement must be done. To explain this

case assume that Â ∈ F(X) which means that both the LMF and UMF are equal i.e. A = A.

Then, Lxα = Lxα =L xα and Rxα = Rxα =R xα. Then according to Eq. 2.16 the α-cut Âα of Â

is
{[

Lxα,Lxα

]
,
[

Rxα,Rxα

]}
which can be simplified to

{
Lxα,Rxα

}
. This form does not reduce
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Table 3.1. IVFS, Â, in Example 3.1.1. Each domain value, xi, along with its corresponding interval membership grade,

LMF membership grade and UMF membership grade.

xi Â(xi) A(xi) A(xi)
x1 [0,0.6] 0 0.6
x2 [0,0.8] 0 0.8
x3 [0,0.9] 0 0.9
x4 [0.5,1] 0.5 1

x5 [0.7,1] 0.7 1

x6 [0.6,1] 0.6 1

x7 [0.3,0.8] 0.3 0.8
x8 [0,0.6] 0 0.6
x9 [0,0.3] 0 0.3
x10 [0,0.1] 0 0.1

Table 3.2. The α-cuts of IVFS, Â, of Table 3.1 in Example 3.1.1.

α Aα Aα

0.0 {x1,x2,x3,x4,x5,x6,x7,x8,x9,x10} {x1,x2,x3,x4,x5,x6,x7,x8,x9,x10}
0.1 {x4,x5,x6,x7} {x1,x2,x3,x4,x5,x6,x7,x8,x9,x10}
0.2 {x4,x5,x6,x7} {x1,x2,x3,x4,x5,x6,x7,x8,x9}
0.3 {x4,x5,x6,x7} {x1,x2,x3,x4,x5,x6,x7,x8,x9}
0.4 {x4,x5,x6} {x1,x2,x3,x4,x5,x6,x7,x8}
0.5 {x4,x5,x6} {x1,x2,x3,x4,x5,x6,x7,x8}
0.6 {x5,x6} {x1,x2,x3,x4,x5,x6,x7,x8}
0.7 {x5} {x2,x3,x4,x5,x6,x7}
0.8 /0 {x2,x3,x4,x5,x6,x7}
0.9 /0 {x3,x4,x5,x6}
1.0 /0 {x4,x5,x6}

in a natural manner to the α-cut of a FS represented by
[

Lxα,Rxα

]
although the end points are

preserved, but the meaning is not the same in the sense that {·, ·} 6= [·, ·]. On the other hand,

according to Eq. 3.5 the α-cut Âα of Â is
([

Lxα,Rxα

]
,
[

Lxα,Rxα

])
which is compatible with the

definition of IVFS being represented by two FSs. When these two fuzzy sets are equal the α-cut

of the resulting FS is equal to either α-cut of the LMF or the UMF. The second drawback is it does

not hold the semantics of α-cuts through out the representation. To explain this, in Eq. 2.16, what

does x ∈
[

Lxα,Lxα

]
represent? It has a rather complicated relationship to LMF and UMF. It is the

values x of the domain that belongs to Aα and does not belong to Aα except its bounds! this can

mathematically be described as follows:

Âα =
{

x | x ∈
[

Lxα,Rxα

]
and x /∈

(
Lxα,Rxα

)}

= Aα ∩A
′

α+

(3.6)

where
(

Lxα,Rxα

)
is an interval with excluded endpoints, and A

′

α+ is the complement of the strong

α-cut (α+) of the LMF A. On the other hand, using Eq. 3.5 any domain value x either belongs to
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Table 3.3. Regenerating IVFS, Â, in Example 3.1.1 from its α-cuts in Table 3.2.

i αAα(xi) αAα(xi) Â(xi)
1 0 0,0.1,0.2,0.3,0.4,0.5,0.6 [0,0.6]
2 0 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 [0,0.8]
3 0 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9 [0,0.9]
4 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 [0.5,1]
5 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 [0.7,1]
6 0,0.1,0.2,0.3,0.4,0.5,0.6 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 [0.6,1]
7 0,0.1,0.2,0.3 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 [0.3,0.8]
8 0 0,0.1,0.2,0.3,0.4,0.5,0.6 [0,0.6]
9 0 0,0.1,0.2,0.3 [0,0.3]
10 0 0,0.1 [0,0.1]

both the α-cuts of the LMF and the UMF, belongs to the α-cut of the UMF and does not belong to

the α-cut of the LMF, or does not belong to both α-cuts. Clearly, preserving the LMF and UMF

independance simplifies calculations and preserves the meaning of the operations conducted on

IVFSs. Although there are different ways to define α-cuts for IVFSs, the representation theorem

is the same. The ability to extend operations using the α-cut RT is what makes it useful, and the

following theorem defines an α-EP comparable to that of FSs keeping in mind that the LMF and

UMF are also preserved distinct from each other.

Theorem 3.1.2 (IVFS α-EP) Let, X = X1 × ...×Xn, be the Cartesian product of universes, and

Â1, ..., Ân be IVFSs in each universe respectively. Also let Y be another universe and B̂ ∈ Y be

an IVFS such that B̂ = f (Â1, ..., Ân), where f : X → Y is a monotonic mapping. Then, B̂, is equal

to the union of applying the same function to all the decomposed α-cuts of the IVFSs (Hamrawi

et al. 2010), i.e.,

B̂ = f (Â1, ..., Ân)

=
⋃

∀α

α
(

f (Â1α , ..., Ânα)
)

=
⋃

∀α

α
(
f (A1α

, ...,Anα
), f (A1α , ...,Anα)

)
(3.7)

Proof. Since A1, ...,An,A1, ...,An ∈ F(X), then from Eq. 2.6

f (A1, ...,An) =
⋃

∀α

αf (A1α
, ...,Anα

) (3.8)

f (A1, ...,An) =
⋃

∀α

αf (A1α , ...,Anα) (3.9)
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From Definition 2.2.6, the EP of IVFSs clearly states that

f (Â1, ..., Ân) =
(
f (A1, ...,An), f (A1, ...,An)

)
(3.10)

Then substitute Eq. 3.8 and Eq. 3.9 in Eq. 3.10 to arrive at

f (Â1, ..., Ân) =


⋃

∀α

αf (A1α
, ...,Anα

),
⋃

∀α

αf (A1α , ...,Anα)




=
⋃

∀α

α
(
f (A1α

, ...,Anα
), f (A1α , ...,Anα)

)

which completes the proof.

The following example shows how to perform the union and intersection of IVFSs using α-cuts.

Example 3.1.2 Let 4̂ and 8̂ be two IVFS defined in Table 3.4 and Table 3.5, respectively. The

α-cuts of both their LMF and UMF is shown in Table 3.6. The union of the α-cuts are shown in

Table 3.7. This will eventually lead to an IVFS 4̂∪ 8̂. The method used to generate the membership

grades of 4̂∪ 8̂ from its α-cuts is shown in Table 3.8. The intersection of the α-cuts are shown in

Table 3.9. This will eventually lead to an IVFS 4̂∩ 8̂. The method used to generate the membership

grades of 4̂∩ 8̂ from its α-cuts is shown in Table 3.10.

Table 3.4. IVFS, 4̂, in Example 3.1.2.

x 2 3 4 5 6

4̂(x) [0,0.2] [0.4,0.6] [0.8,1] [0.5,0.6] [0,0.4]

Table 3.5. IVFS, 8̂, in Example 3.1.2.

x 5 6 7 8 9 10 11

8̂(x) [0,0.1] [0.2,0.5] [0.6,0.8] [1,1] [0.5,0.8] [0.2,0.4] [0,0.1]
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Table 3.6. The α-cuts of IVFS, 4̂ and 8̂, in Example 3.1.2.

α 4α 8α 4α 8α

0.0 {2,3,4,5,6} {5,6,7,8,9,10,11} {2,3,4,5,6} {5,6,7,8,9,10,11}
0.1 {3,4,5} {6,7,8,9,10} {2,3,4,5,6} {5,6,7,8,9,10,11}
0.2 {3,4,5} {6,7,8,9,10} {2,3,4,5,6} {6,7,8,9,10}
0.3 {3,4,5} {7,8,9} {3,4,5,6} {6,7,8,9,10}
0.4 {3,4,5} {7,8,9} {3,4,5,6} {6,7,8,9,10}
0.5 {4,5} {7,8,9} {3,4,5} {6,7,8,9}
0.6 {4} {7,8} {3,4,5} {7,8,9}
0.7 {4} {8} {4} {7,8,9}
0.8 {4} {8} {4} {7,8,9}
0.9 /0 {8} {4} {8}
1.0 /0 {8} {4} {8}

Table 3.7. The α-cuts of IVFS, 4̂∪ 8̂, in Example 3.1.2.

α 4α ∪8α 4α ∪8α

0.0 {2,3,4,5,6,7,8,9,10,11} {2,3,4,5,6,7,8,9,10,11}
0.1 {3,4,5,6,7,8,9,10} {2,3,4,5,6,7,8,9,10,11}
0.2 {3,4,5,6,7,8,9,10} {2,3,4,5,6,7,8,9,10}
0.3 {3,4,5,7,8,9} {3,4,5,6,7,8,9,10}
0.4 {3,4,5,7,8,9} {3,4,5,6,7,8,9,10}
0.5 {4,5,7,8,9} {3,4,5,6,7,8,9}
0.6 {4,7,8} {3,4,5,7,8,9}
0.7 {4,8} {4,7,8,9}
0.8 {4,8} {4,7,8,9}
0.9 {8} {4,8}
1.0 {8} {4,8}

To summarise the overall picture, the process of deriving operations for IVFSs can be viewed as

defining these operations for two distinct FSs, i.e., the UMF and LMF. The same operations can be

defined for crisp sets (or intervals) and then extend them to FSs using the α-EP. The novel net step

presented in this theorem is to define these operations for IVFSs by taking both FSs and using the

α-EP. To derive operations for IVFSs in such a simple and elegant process is in itself a significant

result. The main motivation for defining the α-cut of IVFSs is the significance of this theorem to

the definition of the α-cut RT for T2FSs.

3.2 T2FS Alpha-plane Extension Principle

This section introduces a novel generalisation that extends operations from IVFSs to T2FSs di-

rectly using α-planes. This generalisation also plays the role of the foundation for the α-cut RT

for T2FSs, discussed later in Section 3.3. Early versions of this method has been stated without

61



Table 3.8. IVFS, 4̂∪ 8̂, in Example 3.1.2 from its α-cuts in Table 3.7.

x α(4∪8)α(x) α(4∪8)α(x)
(

4̂∪ 8̂
)

(x)

2 0 0,0.1,0.2 [0,0.2]
3 0,0.1,0.2,0.3,0.4 0,0.1,0.2,0.3,0.4,0.5,0.6 [0.4,0.6]
4 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 [0.8,1]
5 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6 [0.5,0.6]
6 0,0.1,0.2 0,0.1,0.2,0.3,0.4,0.5 [0.2,0.5]
7 0,0.1,0.2,0.3,0.4,0.5,0.6 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 [0.6,0.8]
8 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 [1,1]
9 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 [0.5,0.8]
10 0,0.1,0.2 0,0.1,0.2,0.3,0.4 [0.2,0.4]
11 0 0,0.1 [0,0.1]

Table 3.9. The α-cuts of IVFS, 4̂∩ 8̂, in Example 3.1.2.

α 4α ∩8α 4α ∩8α

0.0 {5,6} {5,6}
0.1 /0 {5,6}
0.2 /0 {6}
0.3 /0 {6}
0.4 /0 {6}
0.5 /0 /0
0.6 /0 /0
0.7 /0 /0
0.8 /0 /0
0.9 /0 /0
1.0 /0 /0

a proof by Hamrawi & Coupland (2009b), and with a proof by Hamrawi et al. (2009). Recently

Hamrawi et al. (2010) introduced some refinements that are included within the discussion below.

The new generalised α-plane EP for T2FSs is based on the α-plane RT discussed earlier in Chapter

2. These α-planes are or required to be IVFSs for practical reasons.

Theorem 3.2.1 (α-plane EP) Let, X = X1 × ...×Xn, be the Cartesian product of universes, and

Ã1, ..., Ãn be T2FSs in each universe respectively. Also let Y be another universe and B̃ ∈ Y be a

T2FS such that B̃ = f (Ã1, ..., Ãn), where f : X → Y is a monotonic mapping. Assume that all the

decomposed α-planes of all the T2FSs (i.e. Ã1, ..., Ãn) are or required to be IVFSs. Then B̃ is equal

to the union of applying the same function to all the decomposed α-planes of Ã1, ..., Ãn, i.e.,

B̃ = f (Ã1, ..., Ãn)

=
⋃

∀ α̃

α̃f (Ã1,α̃, ..., Ãn,α̃) (3.11)
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Table 3.10. IVFS, 4̂∩ 8̂, in Example 3.1.2 from its α-cuts in Table 3.9

x α(4∩8)α(x) α(4∩8)α(x)
(

4̂∩ 8̂
)

(x)

5 0 0,0.1 [0,0.1]
6 0 0,0.1,0.2,0.3,0.4 [0,0.4]

Proof. Starting from the EP for T2FSs,

B̃(y) = f (Ã1, ..., Ãn)(y)

= sup
(x1,...,xn)=f−1(y)

min
(

Ã1(x1), ..., Ãn(xn)
)

= sup
(x1,...,xn)=f−1(y)

min
(

Ã1,x1
, ..., Ãn,xn

)
(3.12)

since Ã1,x1
, ..., Ãn,xn

∈ F(X) then from Eq. 2.61,

Ãi,xi
=
⋃

∀ α̃

α̃Ãi,xi,α̃ (3.13)

where i = 1, ...,n. Then substituting this equation in Eq. 3.12 it yields to

B̃(y) = sup
(x1,...,xn)=f−1(y)

min


⋃

∀ α̃

α̃Ã1,x1,α̃, ...,
⋃

∀ α̃

α̃Ãn,xn,α̃




= sup
(x1,...,xn)=f−1(y)

⋃

∀ α̃

α̃min
(

Ã1,x1,α̃, ..., Ãn,xn,α̃

)

=
⋃

∀ α̃

α̃ sup
(x1,...,xn)=f−1(y)

min
(

Ã1,x1,α̃, ..., Ãn,xn,α̃

)

(3.14)

now, since Ã1,α̃, ..., Ãn,α̃ ∈ F̂(X), then

f (Ã1,α̃, ..., Ãn,α̃) = sup
(x1,...,xn)=f−1(y)

min
(

Ã1,α̃(x1), ..., Ãn,α̃(xn)
)

then, take the union of all α̃, i.e.,

⋃

∀ α̃

α̃f (Ã1,α̃, ..., Ãn,α̃) =
⋃

∀ α̃

α̃ sup
(x1,...,xn)=f−1(y)

min
(

Ã1,α̃(x1), ..., Ãn,α̃(xn)
)

(3.15)

observe that Ãi,α̃(xi) = Ãi,xi,α̃, ∀ i, it follows that Eq. 3.14 and Eq. 3.15 are equal, and that com-

pletes the proof.

The union and the intersection of T2FSs in Definition 2.8.4 by Liu (2008) and Wagner & Hagras
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(2008) can be derived using this theorem. Take for example the binary version of Eq. 3.11, i.e.,

f (Ã, B̃) =
⋃

∀ α̃

α̃f (Ãα̃, B̃α̃) (3.16)

and let f be the union or intersection, i.e.,

Ã∪ B̃ =
⋃

∀ α̃

α̃(Ãα̃ ∪ B̃α̃) (3.17)

Ã∩ B̃ =
⋃

∀ α̃

α̃(Ãα̃ ∩ B̃α̃) (3.18)

It is clear that the standard union and intersection operations between IVFSs can be used to cal-

culate the union and intersection between T2FSs. Example 3.2.1 shows the union of two T2FSs

using the well known union calculation between IVFSs.

Example 3.2.1 Consider the T2FSs, 3̃, in Table 3.11 ∗ and, 6̃, in Table 3.12. To perform the join, a

decomposition of each T2FS into its α-planes must be performed. The interval membership grades

of each α-plane are constructed using the bounds of the PMs Jx,α̃. Table 3.13 shows the α-planes

of T2FS 3̃ and Table 3.14 shows the α-planes of T2FS 6̃. The union and intersection between the

α-planes of each level α̃ is performed independently using Definition 2.2.5, i.e.,

(
3̃α̃ ∪ 6̃α̃

)
(x) =

[
3α̃(x)∨6α̃(x),3α̃(x)∨6α̃(x)

]

(
3̃α̃ ∩ 6̃α̃

)
(x) =

[
3α̃(x)∧6α̃(x),3α̃(x)∧6α̃(x)

]

For demonstration the union and intersection of the α-planes at level 0̃.2 is shown in Table 3.15,

then the same task is repeated for all the α-planes.

Table 3.11. T2FS 3̃, in Example 3.3.1. The numbers in between are the SGs, 3̃x(ux).

x/ux 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 1.0 0.6 0.3

2 0.1 0.6 1.0 0.7 0.2

3 1.0

4 0.1 0.6 1.0 0.7 0.2

5 1.0 0.6 0.3
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Table 3.12. T2FS 6̃, in Example 3.3.1. The numbers in between are the SGs, 6̃x(ux).

x/ux 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

4 1.0 0.8 0.4 0.2 0.1

5 0.2 1.0 0.4

6 1.0

7 0.2 1.0 0.4

8 1.0 0.8 0.4 0.2 0.1

Table 3.13. The α-planes, 3̃α̃, in Example 3.2.1.

x 1 2 3 4 5

3̃
0̃.0

(x) [0,0.2] [0.3,0.7] [1,1] [0.3,0.7] [0,0.2]

3̃
0̃.1

(x) [0,0.2] [0.3,0.7] [1,1] [0.3,0.7] [0,0.2]

3̃
0̃.2

(x) [0,0.2] [0.4,0.7] [1,1] [0.4,0.7] [0,0.2]

3̃
0̃.3

(x) [0,0.2] [0.4,0.6] [1,1] [0.4,0.6] [0,0.2]

3̃
0̃.4

(x) [0,0.1] [0.4,0.6] [1,1] [0.4,0.6] [0,0.1]

3̃
0̃.5

(x) [0,0.1] [0.4,0.6] [1,1] [0.4,0.6] [0,0.1]

3̃
0̃.6

(x) [0,0.1] [0.4,0.6] [1,1] [0.4,0.6] [0,0.1]

3̃
0̃.7

(x) [0,0] [0.5,0.6] [1,1] [0.5,0.6] [0,0]

3̃
0̃.8

(x) [0,0] [0.5,0.5] [1,1] [0.5,0.5] [0,0]

3̃
0̃.9

(x) [0,0] [0.5,0.5] [1,1] [0.5,0.5] [0,0]

3̃
1̃
(x) [0,0] [0.5,0.5] [1,1] [0.5,0.5] [0,0]

This method requires that the α-planes of a T2FS to be IVFSs. This assumption allows the use

of methods already defined for IVFSs (or IT2FSs) with each α-plane and thus extended to T2FSs.

One of the main advantages of this method is the ability to define operations independently for

each α-plane. This fact suggests the use of parallel or distributed techniques to process operations

would highly be successful as discussed in details in Chapter 6 of this thesis. In the following

section the α-plane EP is used to define α-cuts for T2FSs. The idea is to make use of the α-cut RT

for IVFSs and decompose each α-plane into α-cuts. This is key result in the field of T2FSs and

systems.

∗In these tabular views of discrete T2FSs the empty cells represnt 0.0 grades.
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Table 3.14. The α-planes, 6̃α̃, in Example 3.2.1.

x 4 5 6 7 8

6̃
0̃
(x) [0,0.4] [0.5,0.7] [1,1] [0.5,0.7] [0,0.4]

6̃
0̃.1

(x) [0,0.4] [0.5,0.7] [1,1] [0.5,0.7] [0,0.4]

6̃
0̃.2

(x) [0,0.3] [0.5,0.7] [1,1] [0.5,0.7] [0,0.3]

6̃
0̃.3

(x) [0,0.2] [0.6,0.7] [1,1] [0.6,0.7] [0,0.2]

6̃
0̃.4

(x) [0,0.2] [0.6,0.7] [1,1] [0.6,0.7] [0,0.2]

6̃
0̃.5

(x) [0,0.1] [0.6,0.6] [1,1] [0.6,0.6] [0,0.1]

6̃
0̃.6

(x) [0,0.1] [0.6,0.6] [1,1] [0.6,0.6] [0,0.1]

6̃
0̃.7

(x) [0,0.1] [0.6,0.6] [1,1] [0.6,0.6] [0,0.1]

6̃
0̃.8

(x) [0,0.1] [0.6,0.6] [1,1] [0.6,0.6] [0,0.1]

6̃
0̃.9

(x) [0,0] [0.6,0.6] [1,1] [0.6,0.6] [0,0]

6̃
1̃
(x) [0,0] [0.6,0.6] [1,1] [0.6,0.6] [0,0]

Table 3.15. The union of α-planes, 3̃
0̃.2

∪ 6̃
0̃.2

, in Example 3.2.1.

x 3̃
0̃.2

(x)∧ 6̃
0̃.2

(x) 3̃
0̃.2

(x)∨ 6̃
0̃.2

(x)

1 [0,0] [0,0.2]
2 [0,0] [0.4,0.7]
3 [0,0] [1,1]
4 [0,0.3] [0.4,0.7]
5 [0,0.2] [0.5,0.7]
6 [0,0] [1,1]
7 [0,0] [0.5,0.7]
8 [0,0] [0,0.3]

3.3 Alpha-cuts of Type-2 Fuzzy Sets

In the previous section α-cuts for IVFSs are discussed. These α-cuts can be defined in different

ways, what is important though, is that these α-cuts are defined by crisp sets and the IVFS α-

EP extends operations directly from crisp sets to IVFSs. This fact is crucial since in Section 3.2

α-planes are shown to be IVFSs, and the α-plane EP is defined in order to enable the extension

of operations from IVFSs to T2FSs. Combining these two theorems leads to the definition of α-

cuts for T2FSs. First, the UMF and LMF of α-planes are generalised. Let, Ã ∈ F̃(X), be a T2FS

and, Ãα̃ ∈ F̂(X), be a IVFS representing its α-plane at level α̃, such that Ãα̃(x) =
[
ux,α̃,ux,α̃

]
. Let,

Aα̃ ∈F(X), be the LMF of Ãα̃ and ,Aα̃ ∈F(X), be the UMF of Ãα̃. Then each α-plane is completely

determined by its LMF and UMF, i.e.,

Ãα̃ =
(
Aα̃,Aα̃

)
(3.19)

where Ãα̃(x) =
[
Aα̃(x),Aα̃(x)

]
, Aα̃(x) = ux,α̃ and Aα̃(x) = ux,α̃. It is clear that both the LMF and

UMF are FSs. Now, taking the α-cuts of each α-plane leads to the following definition:
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Definition 3.3.1 (T2 α-cuts) Let, Ã ∈ F̃(X), be a T2FS and, Ãα̃ =
(
Aα̃,Aα̃

)
, be its α-plane at level

α̃ represented by its LMF and UMF. Then, Ãα̃,α, is the α-cut of that α-plane at level α, i.e.,

Ãα̃,α =
(
Aα̃,α,Aα̃,α

)
(3.20)

where Aα̃,α and Aα̃,α are the α-cuts of the LMF and UMF of α-plane, Ãα̃, respectively.

1

U

X

FOU(Ã)

x
′

Ãx
′

1

Ũ

α̃

Ãx,α̃

Ãα̃
U

[
Lxα̃,α,R xα̃,α

]
[

Lxα̃,α,R xα̃,α

]

α

Fig. 3.4. The α-cut Ãα̃,α of α-plane Ãα̃ of T2FS Ã.

Figure 3.4 shows the α-cut of a continuous T2FS. The α-cuts of LMF and UMF are crisp sets since

the LMF and UMF are FSs. Hence, Aα̃,α(x) ∈ {0,1}, and Aα̃,α(x) ∈ {0,1}. Following Definition

3.1.2 the α-IVFS of each α-cut is defined, i.e.,

Definition 3.3.2 For each α-cut, Ãα̃,α, of the T2FS, Ã, a special IVFS (α-IVFS), αÃα̃,α ∈ F̂(X),

can be defined as follows:

αÃα̃,α = α
(
Aα̃,α,Aα̃,α

)

=
(
αAα̃,α,αAα̃,α

) (3.21)

where αÃα̃,α(x) = α∧
[
Aα̃,α(x),Aα̃,α(x)

]
=
[
α∧Aα̃,α(x),α∧Aα̃,α(x)

]
.
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It is noticeable that αAα̃,α and αAα̃,α are α-FSs. The union of all α-IVFSs constitute an α-plane.

Ãα̃ =
⋃

∀α

αÃα̃,α

=
⋃

∀α

α
(
Aα̃,α,Aα̃,α

) (3.22)

Earlier in Eq. 2.64 a special T2FS called α-T2FS which is associated with each α-plane was

defined. Substituting the α-plane Ãα̃ from Eq. 3.22 in Eq. 2.64 gives the following α-T2FS:

α̃Ãα̃ = α̃
⋃

∀α

αÃα̃,α

= α̃
⋃

∀α

α
(
Aα̃,α,Aα̃,α

) (3.23)

where 
α̃

⋃

∀α

αÃα̃,α(x)


(ux,α̃) = α̃∧


⋃

∀α

αÃα̃,α(x)


(ux,α̃)

and
⋃

∀α

αÃα̃,α(x)(ux,α̃) =

{
1, ux,α̃ ∈

⋃
∀α αÃα̃,α(x)

0, ux,α̃ /∈
⋃

∀α αÃα̃,α(x)

It is already known from the α-plane RT that a T2FS can be represented by the union of all such

α-T2FSs. Basically, these α-T2FSs are associated T2FSs which associates a given α-plane with

level α̃ on Ũ. Each α-plane is an IVFS which can be represented by the union of all α-IVFSs,

which are associated IVFS that associate a given α-cut with level α on U. Since the α-IVFSs

are completely determined by their UMF and LMF, the α-cuts of the LMF and UMF are used

instead. These α-cuts are crisp sets, and hence the overall picture is clear, and the original T2FS

can be represented using the union of all such sets. The following representation theorem is by far

the most significant result of this thesis. It is mathematically simple, semantically sound, and as

shown in the following three chapters theoretically and practically important.

Theorem 3.3.1 (T2FS α-cut RT) A T2FS, Ã, can be represented by the union of all its α-T2FSs,

i.e.,

Ã =
⋃

∀ α̃

α̃
⋃

∀α

αÃα̃,α (3.24)

Proof. Straight forward substitute Eq. 3.23 in Eq. 2.65 of Theorem 2.8.1.

The α-cut representation allows T2FSs to be decomposed into its smallest interpretable compo-

nents, i.e., crisp sets while maintaining the relationship between domain values by their degree of

membership. T2FSs can be looked upon as weighted crisp sets with the PGs and SGs as weighting
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factors. In fact, T2FSs can be represented by equivalent FSs. It also suggests that it is the same for

higher types- of fuzzy sets such as type-n fuzzy sets. The VS, α-plane and α-cut representations

are by definition related. The relationship between these representations is depicted in Figure 3.5.

Fig. 3.5. The vertical slice, α-plane and α-cut representations of T2FSs and their relationship.

The relation between domain values in the classical set theoretic manner is behind the idea of

α-cuts for FSs. This relation is maintained across IVFSs and T2FSs as they are extension of

classical FSs. Figure 3.6 shows this relationship, the α-cut RT of fuzzy sets decomposes these

sets into classical sets, the α-plane RT decomposes T2FSs into IVFSs, and the α-cut RT of IVFSs

decomposes them into classical sets. Although the α-cut decomposition of T2FSs is the most

significant result of this thesis, what makes such decomposition even more interesting is the ability

to perform operations on T2FSs in the classical set theoretic sense. A capability similar to that of

the α-cut EP for FSs, and that of the IVFS α-cut EP presented in Theorem 3.1.2. This is made

possible by extending the α-EP of FSs to IVFSs, and by the α-plane EP of T2FSs. If not for

the representation theorem that made the following extension principle possible, the following

theorem would have been the most important result of this thesis.

Theorem 3.3.2 (T2FS α-cut EP) Let, X = X1 × ...×Xn, be the Cartesian product of universes,

and Ã1, ..., Ãn be T2FSs in each universe respectively. Also let Y be another universe and B̃ ∈ Y
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Fig. 3.6. The relationship beteen T2FSs, IVFSs and crisp sets.

be a T2FS such that B̃ = f (Ã1, ..., Ãn), where f : X → Y is a monotone mapping. Then B̃ is equal

to the union of applying the same function to all its decomposed α-cuts, i.e.,

B̃ = f (Ã1, ..., Ãn)

=
⋃

∀ α̃

α̃
⋃

∀α

αf (Ã1α̃,α
, ..., Ãnα̃,α

)

Proof. From Theorem 3.2.1 operations are extended to T2FSs by the α-plane EP from operations

on its α-planes which are IVFSs. For each α-plane Theorem 3.1.2 allows the operations to be

extended from crisp sets to IVFSs. Hence, straight forward substitute Eq. 3.7 in Eq. 3.11 and that

completes the proof.

This novel theorem bares the possibility of being a fundamental theorem in the field of fuzzy sets

and indeed could be used extensively by the type-2 fuzzy logic community. This fundamental

theorem has the potential to serve as a great tool in covering the gap between uncertainty theories

and T2FSs. The following example demonstrates how to use Theorem 3.3.2 for defining operations

for T2FSs by calculating the join and meet of a T2FS using the α-cut extension principle.

Example 3.3.1 Consider the T2FSs, 3̃, in Table 3.11 and, 6̃, in Table 3.12. To perform the join, a

decomposition of each T2FS into its α-planes and each α-plane to its α-cuts must be performed.

Then, for example the union of α-planes 3̃
0̃.2

∪ 6̃
0̃.2

, is computed. The interval membership grades

of each α-plane are constructed using the bounds of the PMs Jx,α̃, i.e. Table 3.16 and Table 3.17.
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Fig. 3.7. The α-plane EP and the α-cut EP T2FSs.

The steps to perform the union is shown in Table 3.18, Table 3.19 and Table 3.20. These are the

same steps used to perform the union of IVFSs. To perform the union of the T2FSs the same task

is repeated for all the α-planes.

Table 3.16. α-plane, 3̂
0̃.2

, in Example 3.3.1.

x 1 2 3 4 5

3̃
0̃.2

(x) [0,0.2] [0.4,0.7] [1,1] [0.4,0.7] [0,0.2]

Table 3.17. α-plane, 6̃
0̃.2

, in Example 3.3.1.

x 4 5 6 7 8

6̃
0̃.2

(x) [0,0.3] [0.5,0.7] [1,1] [0.5,0.7] [0,0.3]
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Table 3.18. The α-cuts of α-planes, 3̃
0̃.2

and 6̃
0̃.2

, in Example 3.3.1.

α 3
0̃.2,α

6
0̃.2,α

3
0̃.2,α

6
0̃.2,α

0.0 {1,2,3,4,5} {4,5,6,7,8} {1,2,3,4,5} {4,5,6,7,8}
0.1 {2,3,4} {5,6,7} {1,2,3,4,5} {4,5,6,7,8}
0.2 {2,3,4} {5,6,7} {1,2,3,4,5} {4,5,6,7,8}
0.3 {2,3,4} {5,6,7} {2,3,4} {4,5,6,7,8}
0.4 {2,3,4} {5,6,7} {2,3,4} {5,6,7}
0.5 {3} {5,6,7} {2,3,4} {5,6,7}
0.6 {3} {6} {2,3,4} {5,6,7}
0.7 {3} {6} {2,3,4} {5,6,7}
0.8 {3} {6} {3} {6}
0.9 {3} {6} {3} {6}
1.0 {3} {6} {3} {6}

Table 3.19. The α-cuts of α-planes, 3̃
0̃.2

∪ 6̃
0̃.2

, in Example 3.3.1.

α 3
0̃.2,α

∪6
0̃.2,α

3
0̃.2,α

∪6
0̃.2,α

0.0 {1,2,3,4,5,6,7,8} {1,2,3,4,5,6,7,8}
0.1 {2,3,4,5,6,7} {1,2,3,4,5,6,7,8}
0.2 {2,3,4,5,6,7} {1,2,3,4,5,6,7,8}
0.3 {2,3,4,5,6,7} {2,3,4,5,6,7,8}
0.4 {2,3,4,5,6,7} {2,3,4,5,6,7}
0.5 {3,5,6,7} {2,3,4,5,6,7}
0.6 {3,6} {2,3,4,5,6,7}
0.7 {3,6} {2,3,4,5,6,7}
0.8 {3,6} {3,6}
0.9 {3,6} {3,6}
1.0 {3,6} {3,6}

This theorem has been put forward for the first time in (Hamrawi & Coupland 2009b). In this

section α-cuts for T2FSs and its associated T2FS α-EP are defined. There are now available dif-

ferent ways to extend operations to FSs and its extensions. Specifically in this chapter two of these

extension principle are defined for T2FSs, the α-plane EP and the T2FS α-cut EP. The relationship

between these two extension principles are shown in Figure 3.7. While the α-plane EP extends

functions and operations from IVFSs to T2FSs directly, the T2FS α-cut EP extends functions and

operations from crisp sets directly, both from a set-wise perspective. The α-cut RT definitely

serves great interest in practical and theoretical investigations of T2FSs. The rest of the thesis is

dedicated to highlight the effectiveness of the methods defined in this chapter, both theoretically

and practically. Theoretically in Chapters 4 and 5 uncertainty measures and type-2 fuzzy numbers

along with arithmetic operations are defined in a straight forward manner. Practically, in Chapter

6 it is shown that by definition the α-cut RT is suitable for massively parallel processing, and some

functions and operation on T2FSs are performed on a massively GPU computing device. Towards

the end of the pinnacle section of this thesis, it is worth highlighting that the α-cut RT shown in
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Table 3.20. α-plane, 3̃
0̃.2,α

∪ 6̃
0̃.2,α

, in Example 3.3.1 from its α-cuts in Table 3.19.

x α(3
0̃.2,α

∪6
0̃.2,α

)(x) α(3
0̃.2,α

∪6
0̃.2,α

)(x)
(

3̃
0̃.2,α

∪ 6̃
0̃.2,α

)
(x)

1 0 0,0.1,0.2 [0,0.2]
2 0,0.1,0.2,0.3,0.4 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7 [0.4,0.7]
3 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 [1,1]
4 0,0.1,0.2,0.3,0.4 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7 [0.4,0.7]
5 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7 [0.5,0.7]
6 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 [1,1]
7 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7 [0.5,0.7]
8 0 0,0.1,0.2,0.3 [0,0.3]

Theorem 3.3.1, and the α-cut EP shown in Theorem 3.3.2 are the main results of this thesis.

3.4 More Definitions for T2FSs

Earlier in Section 2.1, some important notions have been defined. These notions are used ex-

tensively in the literature of fuzzy sets in order to communicate about different aspects of fuzzy

sets. These notions include the height, support, and core of fuzzy sets. Moreover, some notions

describe different situations in which fuzzy sets can be categorised and classified within. These

notions include normality, convexity and containment. In this section these notions are extended

to IVFSs and T2FSs. In addition to these notions some properties and variations of the α-plane

and α-cut representations are discussed for the first time. In order to begin this investigation, an

essential rule called the reduction rule is introduced in the following definition.

Definition 3.4.1 When all uncertainties† about the membership grades of a T2FS disappear, a

T2FS reduces to a FS.

Figure 3.8 depicts this rule for a T2FS with triangular PMs and trapezoidal VSs. This rule can

actually be applied in different stages. When the uncertainties about the secondary membership

function disappears a T2FS actually reduces to an IVFS. When uncertainty about the interval

membership grades disappear an IVFS reduces to a FS. Finally, if the uncertainty disappears com-

pletely a FS reduces to a crisp set. This reduction pattern should be intact throughout any operation

performed or notion defined for T2FSs. Failure to satisfy this rule may be considered as a defi-

ciency for some operations specially if these operations are required in comparative studies or

for any practical reason. For example Mendel (2007) considered the operations defined using the

geometric representation of T2FSs, incapable of reducing to FSs when uncertainty disappear. So

this reduction rule is in fact stated implicitly by Mendel (2007), and Mendel (2001) also stated a

similar statement describing the PMF. In the definition above this rule is made more significant by

†Uncertainties about the membership grades of a T2FS are represented by a fuzzy sets.
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PS(Ã)
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PS(Ã)
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Ã ∈ F̂(X)

1

U

X

FOU(Ã)
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Ã ∈ F(X)

b

1

U

X

FOU(Ã)
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x
′

Ãx
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Fig. 3.8. Explanation of the reduction rule.

formalising it into a definition. It also formulates the basis for most of the defintions introduced in

this section. To explain this rule, consider a T2FS Ã ∈ F̃(X) where,

Ã =
{
((x,ux) , ũx) | x ∈ X, ux ∈ Jx ⊆ U, ũx = Ã(x,ux) ∈ Ũ

}
(3.25)

Here for each x, its membership grade is a FS, i.e.,

Ã(x) = {(ux, ũx) | ∀ux ∈ Jx}

Usually but not always, Jx is considered to be an interval either by definition or through a bounding

operation. For this T2FS to become an IT2FS, then the secondary grades should all be at unity,

i.e. ∀ ũx = 1 which is actually equal to an IVFS.

Ã = {((x,ux) ,1) | x ∈ X, ux ∈ Jx ⊆ U} (3.26)

Since Jx is an interval then for each x, its membership grade can be defined by an interval Ã(x) =

[ux,ux]. This situation describes the disappearance of uncertainties from the secondary member-

ship function or third dimension. If the uncertainty about the primary grades disappear in such a
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way that they become values in U rather than intervals.

Ã = {((x,ux) ,1) | x ∈ X, ux ∈ U} (3.27)

Here, Ã represents a fuzzy set, then for each x, its membership grade Ã(x) = ux. When all uncer-

tainty disappear the T2FS becomes a crisp set as follows:

Ã = {((x,1) ,1)} (3.28)

Table 3.21. The reduction rule using point-valued and set-valued definitions.

Set point-valued set-valued

T2FS Ã = {((x,ux) , ũx)} where
⋃

∀ α̃ α̃Ãα̃

x ∈ X, ux ∈ Jx ⊆ U, and =
⋃

∀ α̃ α̃
(
Aα̃,Aα̃

)

ũx = Ã(x,ux) ∈ Ũ =
⋃

∀ α̃ α̃
⋃

∀α α
(
Aα̃,α,Aα̃,α

)

IVFS Ã = {((x,ux) ,1)}
⋃

∀ α̃ α̃Ãα̃ where

where x ∈ X, ux ∈ Jx ⊆ U ∀ α̃i, α̃j ∈ Ũ, α̃i 6= α̃j, Ãα̃i
= Ãα̃j

, and Ãα̃=1 6= /0

FS Ã = {((x,ux) ,1)}
⋃

∀ α̃ α̃
(
Aα̃,Aα̃

)
where

where x ∈ X, ux ∈ U ∀ α̃i, α̃j ∈ Ũ, α̃i 6= α̃j, Aα̃i
= Aα̃i

= Aα̃j
= Aα̃j

, and Aα̃=1 = Aα̃=1 6= /0

Crisp Ã = {((x,1) ,1)} =
⋃

∀ α̃ α̃
⋃

∀α α
(
Aα̃,α,Aα̃,α

)
where

where x ∈ X ∀ α̃i, α̃j ∈ Ũ, α̃i 6= α̃j

, ∀αk,αl ∈ U, αk 6= αl

, Aα̃i,αk
= Aα̃i,αk

= Aα̃j,αl
= Aα̃j,αl

, and Aα̃=1,α=1 = Aα̃=1,α=1 6= /0

It is clear that Ã(x) ∈ {0,1}. Any function to be introduced for T2FSs should at least satisfy

the reduction rule of Definition 3.4.1. Definitions of fuzzy sets can be defined using both point-

valued and set-valued forms, making use of the α-cut RT for the latter. In the same way different

definitions for T2FSs are defined utilising the α-plane and α-cut representations in order to provide

set-valued forms. Table 3.21 shows this fact, in the first row both forms are represented and it is

clear that set-valued form contains the α-plane representation with its two variations and the α-cut
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representation. In the second row the α-plane RT is used to define an IVFS.

Ã =
⋃

∀ α̃

α̃Ãα̃ | ∀ α̃i, α̃j ∈ Ũ, α̃i 6= α̃j, Ãα̃i
= Ãα̃j

and Ãα̃=1 6= /0 (3.29)

This equation shows the condition when T2FS Ã reduces to an IVFS. It is the case when all its

α-planes are equal, and the α-plane at α̃ = 1 exists. In other words all the α-planes are equal to

the principal set‡, PS(Ã) = Ã
1̃
. It is clear that as a consequence the FOU is equal to the PS, i.e.,

Ã
0̃
= Ã

1̃
. In the third row of Table 3.21 the T2FS is reduced to a FS.

Ã =
⋃

∀ α̃

α̃
(
Aα̃,Aα̃

)
| ∀ α̃i, α̃j ∈ Ũ, α̃i 6= α̃j, Aα̃i

= Aα̃i
= Aα̃j

= Aα̃j
and Aα̃=1 = Aα̃=1 6= /0 (3.30)

This equation shows the condition when the T2FS Ã reduces to a FS. It is the case when all the

LMFs and UMFs of all its α-planes are equal, and the PS also exist. In fact the PS itself reduces

to be Mendel’s principal membership function §. In other words all the LMFs and UMFs of all

the α-planes are equal to the PMF, PMF(Ã) = A
1̃
= A

1̃
. It is also clear that as a consequence the

FOU itself is a FS that equals the PMF, i.e., A
0̃
= A

0̃
= PMF(Ã). In the fourth row of Table 3.21

the T2FS is reduced to a crisp set.

Ã =
⋃

∀ α̃

α̃
⋃

∀α

α
(
Aα̃,α,Aα̃,α

)
where

∀ α̃i, α̃j ∈ Ũ, α̃i 6= α̃j, ∀αk,αl ∈ U, αk 6= αl, Aα̃i,αk
= Aα̃i,αk

= Aα̃j,αl
= Aα̃j,αl

,

and Aα̃=1,α=1 = Aα̃=1,α=1 6= /0

(3.31)

This equation shows the condition when T2FS Ã reduces to a crisp set. It is the case when all its

α-cuts are equal, and the PMF also exist. In fact the PMF itself reduces to a crisp set. To apply

this reduction pattern to define the height, support, core, and containment of T2FSs they should

at least reduce to their respective definitions in FSs. To this end in the following a progressive

approach from FSs to IVFSs to T2FSs is used. The height of fuzzy set is defined to be the highest

membership degree attained by any domain value in the given FS. For the FS, A ∈ F(X), its height

is defined in Definition 2.1.7, and for clarity it is shown again.

h(A) = sup
∀x

A(x)

In IVFSs it is apparent that there are two heights, one represents the height of the LMF and the

other the height of the UMF. So a direct extension can be applied to IVFSs from FSs. Let Â ∈ F̂(X)

‡Refer to Definition 2.3.9.
§Refer to Definition 2.3.8.

76



be an IVFS with interval membership grade Â(x) = [ux,ux] then the height h(Â) which represents

the highest grade of membership attained by any domain value in the set can be described by the

following equation:

h(Â) = sup
∀x

Â(x) = sup
∀x

[ux,ux] (3.32)

This is a direct extension to the FS definition of height. Two problems appear by this definition,

first, mathematically in some cases the height of the LMF and the UMF may not occur at the same

point of the domain. Second, semantically the information needed when asking about the height

of an IVFS, should be a single number. Basically, the information about the height of a FS is not

about the membership grade of the FS, but about the domain value which is represented by that

height. The question is about the domain value that attains the highest degree of belonging. If

this view is adopted, then the LMF does not serve the purpose. By definition the UMF is closer to

unity than the LMF, consequently it is more appropriate to associate the height of the IVFS to the

height of the UMF.

Definition 3.4.2 Let Â ∈ F̂(X) then the height h(Â) is the highest UMF grade of membership

attained by any domain value in the set, i.e.,

h(Â) = h(A) = sup
∀x

A(x)

In T2FSs it is well understood that there are three dimensions. To be able to provide a meaningful

situation that represents the height of the T2FS, it should give the same semantics as it provides for

the FS and IVFS. Here the primary grades and secondary grades play different roles. To make this

situation clear, first, let Ã ∈ F̃(X) be a T2FS with vertical slices Ãx at each domain value x. Recall

that for every PG, ux, there exist only one SG, ũx, associated with it, i.e. Ãx =
⋃

∀ux∈U (ux, ũx),

where ux ∈ Jx ⊆ U and ũx ∈ Ũ. Second, recall the fact that a T2FS is reduced to a crisp set when

both the PG and SG are at unity, i.e. ux = ũx = 1. The third fact is that it is not always the case when

the maximum PG is attained for all domain values, the SG also attains its maximum. Also it is not

always the case when the maximum SG is attained for all domain values, the PG also attains its

maximum. The question in place is the following: which of the two adds more weight to the T2FS,

is it the PG or SG? or are they of equal weight? This question can be looked at mathematically

by the following example, assume that the maximum PG is 0.6 and its associated SG is 0̃.4, let

it be written as (ux1
, ũx1

) =
(

0.6, 0̃.4
)

. On the other hand assume that the maximum SG is 0̃.6

and its associated PG is 0.4, let it be written as (ux2
, ũx2

) =
(

0.4, 0̃.6
)

. Now, which of the two

situations is closer to be a crisp singleton? Which one is considered to have more weight the PG

or SG? Which of the two is considered the height? As a matter of fact in some publications, e.g.

(Mendel 2001, Mendel & John 2002), the T2FS is depicted with the FOU forming a geometric
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base and the SGs acting as the geometric height of the 3D shape representing the T2FS. In the

figures adapted in this thesis geometrically the PGs represent the height of the 3D shape. The

view adopted here is to define two distinct heights, one for the PG called the primary height, h(Ã),

and the other for the SG called the secondary height, h̃(Ã).

Definition 3.4.3 Let Ã ∈ F̃(X) then the primary height, h(Ã), is the highest PG attained by any

domain value in the set, and the secondary height, h̃(Ã), is the highest SG attained by any domain

value at any PG in the set i.e.,

h(Ã) = sup
∀x

ux

h̃(Ã) = sup
∀x,∀ux

ũx

In the case of a reduction from T2FSs to IVFSs or FSs, it is actually the secondary height that

is more important. Consulting Table 3.21 the secondary height must be at unity for a T2FS to

be reduced to IVFSs or FSs, and both heights must be at unity to reduce to a crisp set. This fact

will be very useful in defining normality for T2FSs and its application to type-2 fuzzy numbers.

Next, the core and support of T2FSs is defined. The core of FSs is shown in Definition 2.1.9 to be

the crisp set that contain the elements of the domain with membership grades at unity. The core

represents the elements of the domain that definitely belong to the FS. It can also be represented

as shown in Definition 2.1.15 to be the α-cut at α = 1.

core(A) = {x | A(x) = 1}

= A1

This definition can be extended directly to IVFSs considering its interval membership grade. The

following equation is a more restricted definition which considers the interval membership grade

to be at unity.

core(Â) =
{

x | Â(x) = [1,1]
}

= Â1

=
(
A1,A1

)
(3.33)

In this view, the core of an IVFS can be considered a restrictive definition. Another way of looking

at the core is in terms of the height. A more relaxed definition can be associating the core set with

the elements that belong to the UMF with height at unity as shown in Figure 3.9. It is the elements

of the domain that attain the highest membership grades when the height is at unity. Now consider

the core of IVFSs in light of the height definition.
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Definition 3.4.4 Let Â ∈ F̂(X) be an IVFS, then the core core(Â) of this IVFS is the crisp set that

contains the elements of the domain that attain upper membership grades at unity, i.e.,

core(Â) =
{

x | A(x) = 1
}

= A1

1

U

X

A

A

core(Â)

supp(Â)

Fig. 3.9. The core, core(Â), and support, supp(Â), of IVFS Â.

1

U

X

FOU(Ã)

PS(Ã)

x
′

Ãx
′

1
Ũ

core(Ã)

supp(Ã)

Fig. 3.10. The core, core(Ã), and support, supp(Ã), of T2FS Ã.

In this definition the α-cut RT is utilised to provide an alternative set-valued definition of the core.

It is the α-cut of the UMF at level α = 1. In this view, the LMF is not involved at all, it does not

have any effect on the definition of the core. This definition is a generalisation of the core provided
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in Eq. 3.33. In T2FSs the core will definitely depend on the primary and secondary grades. They

should both be at unity to give the semantics of elements that certainly belong to a set in the crisp

sense.

Definition 3.4.5 Let Ã ∈ F̃(X) then the core, core(Ã), is the crisp set that contains the elements of

the domain that attain both SGs and PGs at unity, i.e.,

core(Ã) = {x | ux = 1 and ũx = 1}

The core of T2FSs can be achieved by assigning unity to the height of T2FSs, and taking all the

elements of the domain that attain a membership grade equal to this height. The α-cut RT of

T2FSs can be used to provide an alternative definition, i.e.,

core(Ã) = Ã
1̃,1 (3.34)

In other words, the core of a T2FS is a crisp set that is represented by the α-cut of T2FS at levels

α̃ = 1 and α = 1. Another description of this equation can be that the core of a T2FS is equal to

the core of it’s principal set, i.e.,

core(Ã) = core(PS(Ã))

= core(Ã
1̃
)

= A
1̃,1

(3.35)

It is evident since the PS is an IVFS represented by an α-plane at level α̃ = 1, then the core of

this IVFS is the core of it’s UMF. After this investigation into the core, the support of the T2FS is

discussed next. In order to start this investigation, the support of FSs is shown following Definition

2.1.8 in which it is defined using membership grades, and Definition 2.1.15 in which it is defined

using the α-cut representation of FSs. Let A ∈ F(X) be a FS, then the support of A is as follows:

supp(A) = {x | A(x) > 0}

= Aα+

Here the meaning conveyed by the support is a crisp set containing all elements that have a degree

of membership to the FS. The α-cut version of the definition uses the strong α-cut at α = 0. It can

be viewed as the closure of the α-cut at level α = 0. Now consider the support of IVFSs in the

same manner the core of IVFSs is defined. Here since the support of the LMF is always a subset

of the support of the UMF, only the support of the UMF can be used in the definition.

Definition 3.4.6 Let, Â ∈ F̂(X). Then, the support, supp(Â), is the crisp set that contain the
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elements of the domain that attain upper membership grades greater than zero, i.e.,

supp(Â) =
{

x | A(x) > 0
}

= supp(A)

= Aα+

Strong α-cuts for IVFSs have not been defined before, and in this definition it is implied that since

the UMF is a FS its strong α-cut is a direct consequence. In T2FSs the support will definitely

depend on the primary and secondary grades in the same manner as the core. These grades should

both be greater than zero to give the semantics of elements that belong to the T2FS by any degree.

Definition 3.4.7 Let, Ã ∈ F̃(X). Then, the support, supp(Ã), is the crisp set that contain the

elements of the domain that attain both SGs and PGs greater than zero, i.e.,

supp(Ã) = {x | ux > 0 and ũx > 0}

In other words, the support of a T2FS is a crisp set that is represented by the strong α-cut of the

FOU of the T2FS. It is evident since the FOU is an IVFS represented by an α-plane at level α̃ = 0,

then the support of this IVFS is the support of it’s UMF.

supp(Ã) = supp(FOU(Ã))

= supp(Ã
0̃
)

= A
0̃,0+

(3.36)

The last line of this equation also has not been defined before, but it follows from the fact that the

FOU is an IVFS. The support of the FOU then follows from Definition 3.4.6. Figure 3.10 shows

the core and support of a T2FS. Up to this point three important notions have been extended from

FSs to IVFSs and T2FSs, the height, the core and the support. Next, the normality of T2FSs is

investigated. Normal FSs are used to categorise fuzzy numbers as shown later in this section. A

FS A ∈ X is normal if ∃x0 ∈ X such that A(x0) = 1. It can also be described by requiring the height

of the FS equal to unity, i.e., h(A) = 1, or by requiring the core of the FS to exist and not be an

empty set. This fact can be described using α-cuts by requiring that the α-cut at α = 1 is not an

empty set, i.e, A1 6= /0 as seen in Definition 2.1.15. In the following, two cases of normal IVFSs

are defined separately, one when both the LMF and UMF are normal, and the other when only the

UMF is normal.

Definition 3.4.8 (Perfectly Normal IVFS) An IVFS, Â, is said to be perfectly normal if both its

LMF and UMF are normal i.e. h(A) = h(A) = 1.
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This term has been used in (Kaufmann & Gupta 1985) to describe a perfectly triangular type-2

fuzzy number. This definition can be found in some publications such as Hong & Lee (2002) as

part of the definition of an interval valued fuzzy number. This case is definitely more restrictive,

and a need for a less restrictive definition is apparent in some applications.

Definition 3.4.9 (Normal IVFS) An IVFS, Â, is said to be normal if its UMF is normal i.e. h(A) =

1.

In T2FSs a differentiation is made between three cases; normal, semi-perfectly normal, and per-

fectly normal. Although more than three situations can be named, but it is believed that these three

cases are conceptually appealing.

Definition 3.4.10 (Perfectly Normal T2FS) A T2FS, Ã, is said to be perfectly normal if, ∃x0 ∈ X

such that ∀ux0
∈ Jxo

, ux0
= 1 and Ãx0

(ux0
) = 1.

This definition means that there is a point in the domain that generalises a crisp number, it is also

a generalisation of the perfectly normal IVFS.

Corollary 3.4.1 Let, Ã, be a perfectly normal T2FS, then

• Ã
0̃

and Ã
1̃

are both perfectly normal.

Indeed, if Ã
1̃

is a FS (i.e. it is a PMF) then when all the second order uncertainties diminishes a

T2FS reduces to a FS represented by its PMF (Karnik & Mendel 2001), hence, the PMF should

be normal.

Definition 3.4.11 (Normal T2FS) A T2FS, Ã, is said to be normal if, ∃x0 ∈X such that ∃u
′

x0
∈ Jxo

where u
′

x0
= 1 and Ãx0

(u
′

x0
) = 1.

This definition generalises the perfectly normal case. It still reduces to a normal IVFS when un-

certainties disappear. The difference is clear, as it only requires that the second order uncertainties

disappear in order to arrive at a crisp number in the perfectly normal case. In the normal case both

uncertainties should disappear.

Corollary 3.4.2 Let, Ã, be a normal T2FS, then

• Ã
0̃

and Ã
1̃

are both normal.

The last case is also a special case of a normal T2FS, but still not perfectly normal. It is the case

when the principal set is a normal fuzzy set and the FOU is a normal IVFS. It is useful for some

special cases of fuzzy sets such as triangular FSs introduced by Starczewski (2009).

Definition 3.4.12 (Semi-perfectly Normal T2FS) A T2FS, Ã, is said to be semi-perfectly nor-

mal if, ∃x0 ∈ Ã such that ∃uk
x0

,ul
x0
∈ Jx0

,uk
x0
6= ul

x0
where uk

x0
= 1 ⇒ Ãx0

(uk
x0

) = 1 and ul
x0
6= 1 ⇒

Ãx0
(ul

x0
) 6= 1 .
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Corollary 3.4.3 Let, Ã, be a semi-perfectly normal T2FS, then

• Ã
0̃

is normal and Ã
1̃

is perfectly normal .

Figure 3.12 depicts these three cases of a normal T2FS.

3.4.1 Containment

An important notion that is used in many theoretical investigations is the notion of containment. It

is essential in classical set theory to determine whether a set is a subset (contained) of another set

or not. As noted in Section 2.1, in this thesis a differentiation is made between containment and

subsethood for fuzzy sets and extensions. While they convey the same meaning in classical sets

they have different meanings for fuzzy sets. Zadeh (1965) defined the containment for FSs shown

in Definition 2.1.12, basically for FSs A and B ∈ F(X), then A is contained in B can be defined as

follows:

A ⊆ B ⇔ A(x) ≤ B(x), ∀x (3.37)

Accordingly the definition above satisfies the following property:

A ⊆ B ⇒ A∪B = B and A∩B = A (3.38)

This property is equally satisfied by the subsethood of crisp sets and thus generalises it. Although,

the containment between IVFSs appears to be straight forward, it has some aspects to be consid-

ered with regards to the semantics of the definition provided in the literature, e.g. (Vlachos &

Sergiadis 2007, Zeng & Li 2006a). Let, Â and B̂ ∈ F̂(X) be two IVFSs then Â is contained in B

can be described as follows:

Â ⊆1 B̂ ⇔ A(x) ≤ B(x) and A(x) ≤ B(x), ∀x (3.39)

This definition is shown in Figure 3.13, it is a direct extension to the FS definition. The subscript

1 in ⊆1 is used to differentiate between the variety of containment definition presented in the

preseding. The inequality is extended from scalar membership grades in FSs to interval member-

ship grades in IVFSs. It can also be seen as the containment between the LMFs and UMFs of

these sets, i.e.,

Â ⊆1 B̂ ⇔ A ⊆ B and A ⊆ B

this fact allow ⊆1 to also extend the property in Eq. 3.38 as follows:

Â ⊆1 B̂ ⇒ Â∪ B̂ = B̂ and Â∩ B̂ = Â (3.40)
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Another expression that could convey the meaning of containment is found in the literature, e.g.

(Burillo & Bustince 1996, Bustince et al. 2009). It depends on extending the containment opera-

tion from interval arithmetic to the interval membership grades. For example assume that A = [a,a]

and B =
[
b,b
]

are two intervals. Then,

A ⊆ B ⇔ a ≥ b and a ≤ b

This fact is used in the following equation to define containment for IVFSs. Let, Â and B̂ ∈ F̂(X)

be two IVFSs. Then,

Â ⊆2 B̂ ⇔ A(x) ≥ B(x) and A(x) ≤ B(x) , ∀x (3.41)

This situation is shown in Figure 3.14. Definitely it is not an extension to the FS definition. Using

the LMFs and UMFs of these sets, the difference between ⊆1 and ⊆2 is evident.

Â ⊆2 B̂ ⇔ B ⊆ A and A ⊆ B

this fact also implies that ⊆2 does not satisfy the property in Eq. 3.40. Semantically, since the

whole domain of support of Â is contained within B̂, it does convey the meaning of containment.

Moreover, Eq. 3.41 has proven to be useful in some definitions and operations (Burillo & Bustince

1996, Bustince et al. 2009). In Figure 3.15 a situation is introduced that can be conceived as

containment between IVFSs and violates both the above mentioned definitions. It is believed

that a more relaxed and general definition might be useful for some operations. The following

definition is a more flexible containment operation:

Definition 3.4.13 Let, Â and B̂ ∈ F̂(X) be two IVFSs. Then,

Â ⊆3 B̂ ⇔ A(x) ≤ B(x) , ∀x (3.42)

This definition assures that there is no x ∈ supp(Â) that is not contained in supp(B̂). This definition

also does not satisfy the property in Eq. 3.40. In the case of T2FSs Mizumoto & Tanaka (1976)

extended Zadeh’s containment in the following manner, let, Ã and B̃ ∈ F̃(X) be two T2FSs. Then,

Ã ⊆1 B̃ ⇔ Ã(x) ≤ B̃(x), ∀x (3.43)

since Ã(x) ≡ Ãx and B̃(x) ≡ B̃x are FSs, without defining what does the inequality mean this

formula will not make any sense. Yang & Lin (2009), defined containment to comply with Zadeh’s

definition of containment for FSs. Using the same T2FSs Ã and B̃ ∈ F̃(X), then

Ã ⊆2 B̃ ⇔ 0 ≤ Ãx(ux) ≤ B̃x(ux) ≤ 1, ∀x, ∀ux (3.44)
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Observe that Yang and Lin’s containment does not reduce to Vlachos and Sergiadis’s method

for IVFSs in case of the special situation when T2FSs reduce to IVFSs. The reason behind that

is the lack of involvement of the primary membership grades in the evaluation. Whether this

definition satisfies a similar property for those of FSs and IVFSs is an open question. In essence,

an alternative definition is proposed based on α-planes.

Definition 3.4.14 Let, Ã and B̃ ∈ F̃(X) be two T2FSs. Then,

Ã ⊆3 B̃ ⇔ Ãα̃ ⊆ B̃α̃ , ∀ α̃

One only need to find a suitable IVFS definition to use with each α-plane. Definition 3.4.13 serves

as a flexible definition with each α-plane. This definition is used with many axioms the measures

of uncertainty introduced in Chapter 4. Yet another important definition added to the list of T2FS

contributions of this chapter. Next, the important cutworthy property which is directly related to

the concept of containment is extended from FS theory to serve both the α-plane EP and the α-cut

RT.

1

U

X

A

A

1

U

X

A

A

Normal Perfectly normal

Fig. 3.11. Normal and perfectly normal IVFSs.

3.5 Cutworthy property

In Chapter 2, the cutworthy property for FSs is reviewed. It has been shown that a function is

cutworthy if it preserves the order of crisp subsethood. It has also been shown that the union

and intersection are both cutworthy functions and the negation is not cutworthy. Another issue is

recognised regarding the EP in general and the α-cut version of it. As a matter of fact the EP is
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valid for functions and operations that produce output sets of the same type as the input sets, i.e.,

f (Ai ∈ F(X)) = B ∈ F(Y) , i = 1,2, ...,n

f (Âi ∈ F̂(X)) = B̂ ∈ F̂(Y) , i = 1,2, ...,n

f (Ãi ∈ F̃(X)) = B̃ ∈ F̃(Y) , i = 1,2, ...,n

Note that the result of the union and intersection operations between FSs is another FS. In other

words, the EP for FSs, IVFSs, and T2FSs normally serve functions that result in the same type of

sets. The same observation is true for the α-EP for FSs, α-cut EP for IVFSs, and both the α-plane

EP and α-cut EP for T2FSs since they are derived using the original EP. The class of functions that

can be defined using the α-plane EP directly should satisfy the cutworthy property defined for the

α-EP for FSs. This leads to the question of how to describe such functions and when can a function

be considered a cutworthy function with respect to the α-plane EP. Another fact is that the EP for

IVFSs and T2FSs are derived from the EP of FSs. It follows that the same restrictions imposed

by the EP of FSs is extended to those functions acting on IVFSs and T2FSs. This implies that the

α-EP for FSs, IVFSs, and T2FSs share the same class of functions, i.e. cutworthy functions, those

that are monotonic and preserve the order of crisp subsethood as explained earlier in Section 2.1.

Theorem 3.5.1 Any function that is cutworthy for fuzzy sets, is also cutworthy for interval valued

fuzzy sets and type-2 fuzzy sets.

Proof. According to Theorem 3.1.2, the IVFS α-cut EP is derived from the FS α-cut EP. The

α-cuts for IVFSs are completely defined by the α-cuts of two FSs, i.e., the LMF and UMF. This

implies that, any function that satisfy the requirements of the FS α-cut EP also satisfy the FS

α-cut EP requirements. Then if the function is cutworthy for FSs is also cutworthy for IVFSs,

and that completes the first part of the proof. The second part is two fold, the first involves the

α-plane EP. To this end, according to Theorem 3.2.1 each α-plane is derived from the union of

the α-cuts of all the vertical slices, this can be seen in Eq. 2.62. These vertical slices are FSs, and

are extended using the α-cut EP for FSs. It follows that if the function satistsfy the requirements

of the α-cut EP for FSs it also satisfy the requirements for the α-plane EP for T2FSs. Hence, if

a function is cutworthy for FSs it is also cutworthy with respect to the α-planes. The second part

involves the α-cut EP for T2FSs, which is a combination of the α-plane EP for T2FSs and the

IVFS α-cut EP. Then any function that is cutworthy for the α-plane EP and the IVFS α-cut EP is

also cutworthy for the α-cut EP for T2FSs. This means that any function that is cutworthy for FSs

is also cutworthy for T2FSs, and that completes the second part of the proof.

The question now is how to define functions that need not result in output sets that are the same

type as the input sets, e.g., a function that result in a scalar. One of the most important class

of functions that result in a scalar are defuzzification functions, e.g. the centroid of FSs. In this

86



section two main questions are discussed. The first is, how to treat functions that are not cutworthy

using the α-cut RT? The second is, how to treat functions that result in scalars? To answer the first

questions, the negation operation is not cutworthy and at the same time the α-cut representation is

used to define negation operations without referring to the α-EP. In fact, (A
′
)α 6= A

′

α, which means

that the α-cut of the complement of FS A is not equal to the complement of the α-cut of that FS.

The α-cut complement is calculated differently, it is shown in 2.1.3 to be,

A
′

α = (A(1−α)+)
′

which is an α-cut interpretation of the actual point-wise definition of the complementation. To

be able to generalise a rule or method for such functions that are not cutworthy is an open ques-

tion. Meanwhile, a case by case or function by function approach is implemented such as the

complementation case. To generalise to IVFSs and T2FSs is also a function specific task. Since, a

function is defined for FSs using the α-cut RT it can easily be extended to IVFSs and T2FSs. As

an example the complement operation for IVFSs can be defined as follows:

Â
′

α =
(
A,A

)′
α

=
(

A
′

,A
′
)

α

=
(

A
′

α,A
′

α

)

=
(
(A(1−α)+)

′
,(A(1−α)+)

′
)

(3.45)

This definition can also be extended to T2FSs in the same manner using the α-cut RT.

Ã
′

α̃,α =
(
A,A

)′
α̃,α

=
(

A
′

,A
′
)

α̃,α

=
(

A
′

α̃,α,A
′

α̃,α

)

=
(
(Aα̃,(1−α)+)

′
,(Aα̃,(1−α)+)

′
)

(3.46)

There are no closed form formulas for extending functions and operations that are not cutworthy.

But as seen in the example of the complementation it is actually easy to find the function for IVFSs

and T2FSs as long as a function is present for FSs. To answer the second question, the α-plane RT

is explicitly used in the definition of the centroid of a T2FS by Liu (2008) and Wagner & Hagras

(2008). The centroid of a T2FS, Ã ∈ F̃(X), is equal to the union of the centroids of its decomposed

α-T2FSs (associated T2FSs), i.e.,

c(Ã) =
⋃

∀ α̃

c
(

α̃Ãα̃

)
(3.47)
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Practically the α-T2FS c
(

α̃Ãα̃

)
is treated as IVFS by calculating the centroid of the α-planes

c
(

Ãα̃

)
using any centroid method for IVFSs (IT2FSs) such as the Karnik-Mendel algorithm or

the collapsing method (Greenfield et al. 2009).

c(Ã) =
⋃

∀ α̃

α̃c
(

Ãα̃

)

In essence this method look very similar to the unary version of α-plane EP. The difference lie in

the nature of the result of calculating c
(

Ãα̃

)
. The result is an interval, i.e. c

(
Ãα̃

)
∈ I(X), not

an interval valued fuzzy set, and given the fact that the centroid of standard FSs is a scalar value

gives insight to to be expected as a result from T2FSs. As a matter of fact the centroid of a T2FS

is a fuzzy set which is called a type-reduced set. Liu realised this fact and showed that the result

from the union operation of all the intervals resulting from the centroid of the α-planes, is a FS.

This FS is represented by the intervals which form an α-cut representation for the type-reduced

set. Liu (2008) suggest that the type-reduced FS can then be processed to reach a real value. This

fact can be generalised for a family of functions that result in a fuzzy set rather than a precise

number or a T2FS. Hamrawi & Coupland (2009a) defined the non-specificity function using the

same concept which can be considered a direct implementation of this theorem. This operation is

shown in Hamrawi & Coupland (2010) applied the same concept to some uncertainty measures. It

is noticed that a theme is present, for example, when a function is acting on a FS and it produces a

single number as its output, its direct extension to IVFSs produce an interval. Furthermore, when

the function is extended to T2FSs, the result is a FS. This can be summarised as follows:

f (A ∈ F(X)) = Y ∈ ℜ+

f (Â ∈ F̂(X)) = I(Y)

f (Ã ∈ F̃(X)) = F(Y)

In most cases a single number is desired as an outcome, then an operation must be used to reach

that number. Popularly the average operation is used for such operations (Wu & Mendel 2007b,

Zhai & Mendel 2011). In summary, even if function or operation is not cutworthy, the α-plane

and the α-cut representation theorems can still be used. In the above investigation some themes

can be identified, but no closed formula for functions that are not cutworthy can be defined. Two

situation were studied in the aforementioned discussion, these situation will be shown to be very

popular in many theoretical and practical applications. The uncertainty measures defined in the

following chapter make great use of these class of functions.
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3.6 Summary

In this chapter, the main contributions of this thesis are presented. This chapter is considered

central to all the chapters that follow. The definitions presented in this chapter have the potential of

being central to type-2 fuzzy sets as a field, and thus a main contribution to fuzzy sets and systems

and related disciplines. The methodology followed in defining the α-cut representation theorem

serve to be followed in other fuzzy set extensions. On the other hand, the α-cut extension principle

for T2FSs have the potential to extend the applicability of the field of type-2 fuzzy logic to many

other disciplines, such as generalised information theory as shown in the following chapter. The

pattern followed in going from classical sets to intervals to fuzzy sets to interval valued fuzzy sets

to type-2 fuzzy sets can be followed to progress to higher types of fuzzy sets such as type-n fuzzy

sets. Operations can also be extended in the same progressive manner, and properties can also be

defined. This chapter, with the plethora of concepts, definitions and theorems have the potential

of being revolutionary to the field of fuzzy sets. What is offered here is not only the results stated

in Table 3.22, but a methodology of thinking about fuzzy sets and it’s different non-standard

extensions. All of these sets can break down to being a collection of classical sets related together

and restricted by certain conditions. For example, an interval is in fact a continuous classical set,

or an uncertain number bound by two values. A fuzzy set on the other hand is a collection of

nested crisp sets or intervals related together with level of belonging α. Interval valued fuzzy

sets are a collection of pairs of those nested crisp sets that formulate a bound for the actual set

or interval which is not known. Type-2 fuzzy sets represent a collection of these pairs related

together with two levels rather than one level of belonging, and vice a versa. Further extension for

this idea to other non-standard fuzzy sets may be valid and would be very interesting for further

investigation. The new alternative of the α-cut representation theorem and extension principle for

interval valued fuzzy sets are used in defining uncertainty measures in Chapter 4 of this thesis.

The following Table 3.22 shows the summary of contribution of this chapter:
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Table 3.22. Summary of contributions introduced in this chapter.

Concept Classification Reference

Main Results

α-cut representation theorem for IVFSs New alternative Theorem 3.1.1

α-cut extension principle for IVFSs New alternative Theorem 3.1.2

α-plane extension principle for T2FSs Novel Theorem 3.2.1

α-cut representation theorem for T2FSs Novel Theorem 3.3.1

α-cut extension principle for T2FSs Novel Theorem 3.3.2

Complementary Results

Reduction rule New formalisation Definition 3.4.1

Height of IVFS New alternative Definition 3.4.2

Core of IVFS New alternative Definition 3.4.4

Support of IVFS New alternative Definition 3.4.6

Normal IVFSs New alternatives Definition 3.4.9 and 3.4.8

Containment of IVFSs New alternative Definition 3.4.13

Height of T2FS Novel Definition 3.4.3

Core of T2FS Novel Definition 3.4.5

Support of IVFS Novel Definition 3.4.7

Normal T2FSs Novel Definition 3.4.11, 3.4.10, and 3.4.12

Containment of T2FSs Novel Definition 3.4.14

Cutworthy of T2FSs Novel discussion Section 3.5
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Fig. 3.12. Normal, semi-perfectly normal and perfectly normal T2FSs.
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Â

B̂

Fig. 3.15. Â ⊆3 B̂.
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Chapter 4

Measures of Uncertainty for T2FSs

The Extension Principle based on α-cuts plays a pivotal role in many applications of fuzzy sets. In

the previous chapter two α-based EPs for T2FSs are defined. One is based on α-planes in which

functions and operations defined for IVFSs can be extended to operate on T2FSs. The other is

based on the novel α-cut representation of T2FSs, in which functions and operations can be ex-

tended from crisp sets to T2FSs directly. This chapter explores applications of both the α-plane

EP and the α-cut EP to define uncertainty measures for T2FSs, in particular cardinality, similarity,

subsethood, fuzziness and non-specificity measures. These measures are used as a demonstra-

tion of when the α-plane representation can be used. The choice of uncertainty measures as a

means of demonstration is motivated by the centrality of the concept of uncertainty to fuzzy sets

in general. Fuzzy logic is advocated to be a field of study greatly involved in handling uncer-

tainties of different aspects (Klir 1991, Klir 2006, Zadeh 2005, Zadeh 2006, Walley 1991, Walley

& de Cooman 2001, Shafer 1976). Fuzzy logic’s main thesis is to incorporate uncertainty in

reasoning and making judgments, as humans do. Uncertainty is an important characteristic in hu-

man reasoning and interaction, and critical to the effective modelling of human decision making.

Different notions appear from the relation between fuzzy logic and uncertainty measures. Fuzzy

logic can be considered as a tool for quantifying uncertainty in different applications, which could

be called fuzzy uncertainty measures (Zimmermann 2001). Another approach is to quantify the

amount of uncertainty that a fuzzy set exhibits and these can be called uncertainty measures of

fuzzy sets, and the latter is the subject of this chapter. Fuzzy sets have a wide range of uncer-

tainty measures in the literature, these measures have been used in many applications (see Zhai &

Mendel (2011) for a survey). Uncertainty measures for IVFSs have been widely discussed in the

literature (e.g. (Deschrijver & Kral 2007, Wu & Mendel 2007b, Wu 2008, Wu & Mendel 2009)).

T2FSs have received less attention, only recently some measures appeared, such as, Cardinality

(Jang & Ralescu 2001), Similarity (Hung & Yang 2004, Mitchell 2005, Lin & Yang 2007), and

Fuzziness (Al-sharhan et al. 2001). Uncertainty measures for IT2FSs also have been developed by

Wu & Mendel (2007b) and Wu & Mendel (2008b) relying heavily on the WSRT. Zhai & Mendel
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(2011) defined measures of uncertainty for T2FSs including: centroid, cardinality, fuzziness, vari-

ance, and skewness. These measures are defined based on the α-plane representation of T2FSs

without using the α-plane EP already developed in its first form early in 2009.

4.1 Cardinality

Cardinality in crisp set theory represents the number of elements in a given set, and due to the

graded membership of elements to given sets in fuzzy set theory it has a different intuitive calcula-

tion. It appears many times in the literature of FSs, and there are mainly two types of cardinalities

defined: a non-fuzzy cardinality (i.e scalar or interval) and a fuzzy cardinality. The scalar cardi-

nality is a function that gives the result measure in numbers, and the fuzzy cardinality produces

a fuzzy set as the measure. Here the main interest is in scalar cardinality, because it is less com-

plicated and gives results that can be compared directly to other measures of uncerainty such as

probablistic measures. Scalar cardinalities have been addressed several times in the literature of

FSs (see Wygralak (2000) for a survey). An axiomatic approach has been formulated by Wygralak

(2000). Given fuzzy sets A,B ∈ F(X), elements x,y ∈ X and a,b ∈ [0,1], then the scalar cardinality

sc is a function sc : F(X) → ℜ+ that satisfies the following axioms:

• (SC 1): a ≤ b ⇒ sc(x,a) ≤ sc(y,b) (Singleton monotonicity).

• (SC 2): supp(A)∩ supp(B) = /0 ⇒ sc(A∪B) = sc(A)+ sc(B).

• (SC 3): A is crisp ⇒ sc(A) =| supp(A) |, where | supp(A) | is the classical cardinality defined

on crisp sets, i.e., if A ∈ C(X) is a crisp set then | A | is equal to the number of elements in A

if it is discrete, or the width of A if it is an interval, i.e., if A = [a,a] then ‖A‖ = a−a.

The postulates above proved to introduce several properties and generalise most of the definitions

of scalar cardinality presented in the literature. Deschrijver & Kral (2007) extend these axioms

to define the cardinality of IVFSs. Let Â ∈ F̂(X), and sc : F̂(X) → ℜ+, then the following are the

axioms of cardinality for IVFSs:

• (SC 1): Â ⊆ B̂ ⇒ sc(Â) ≤ sc(B̂)

• (SC 2): supp(Â)∩ supp(B̂) = /0 ⇒ sc(Â∪ B̂) = sc(Â)+ sc(B̂)

• (SC 3): Â is crisp ⇒ sc(Â) =| supp(Â) |

The support of an IVFSs is stated earlier in Section 3.4 to be the support of the UMF, i.e., |

supp(Â) |=| supp(A) |. The following definition for cardinality of T2FSs is presented in order to

extend the axiomatic systems of FSs and IVFSs to T2FSs.
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Definition 4.1.1 A real function sc : F̃(X)→ℜ+ is a cardinality measure for T2FSs, if Ã, B̃∈ F̃(X),

and sc satisfies the following properties:

• (SC 1): Ã ⊆ B̃ ⇒ sc(Ã) ≤ sc(B̃)

• (SC 2): supp(Ã)∩ supp(B̃) = /0 ⇒ sc(Ã∪ B̃) = sc(Ã)+ sc(B̃)

• (SC 3): If Ã is crisp ⇒ sc(Ã) =| supp(Ã) |

A natural way of defining this measure for T2FSs is to use the T2FS α-EP based on α-planes, i.e.,

sc(Ã) =
⋃

∀ α̃

α̃ sc(Ãα̃)

To be able to use this kind of extension one must make sure that this function is cutworthy, and

that is obvious from axiom (SC 1). A meaningful result would be to choose sc(Ãα̃) to result in a

scalar number and then take the average of all the α-planes.

Theorem 4.1.1 Given a T2FS, Ã ∈ F̃(X), then the average of the cardinality measures of its de-

composed α-planes is a cardinality measure for T2FSs called average cardinality sc(Ã), i.e.,

sc(Ã) =
∑M

j=1 sc(Ãα̃j
)

M

where M is the number of α-planes.

Proof. Check that this measure satisfies the axioms above.

SC 1: Since,

Ã ⊆ B̃ ⇒ Ãα̃ ⊆ B̃α̃, ∀ α̃

and

sc(Ãα̃) ≤ sc(B̃α̃), ∀ α̃

from SC 1 of the axioms of the cardinality of IVFSs, hence sc(Ã) ≤ sc(B̃).

SC 2: Since

Ã∩ B̃ = /0 ⇒ Ãα̃ ∩ B̃α̃ = /0, ∀ α̃

and

sc(Ãα̃ ∪ B̃α̃) = sc(Ãα̃)+ sc(B̃α̃), ∀ α̃

then

sc(Ã∪ B̃) = sc(Ã)+ sc(B̃)

SC 3: it is straight forward from the definition.

These cardinality measures are very useful for applications.
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4.2 Similarity Measures

The extent of a given fuzzy sets similarity to another fuzzy set is determined by a function called

the similarity measure. Liu (1992) defined the axioms of the distance and similarity measures

for FSs, which are widely accepted. Zeng & Li (2006a) and Wu & Mendel (2009) defined the

similarity axioms for IVFSs as follows:

• (S 1): s(Â, B̂) = s(B̂, Â)

• (S 2): s(Â, Â
′
) = 0 iff Â is crisp

• (S 3): s(Â, B̂) is maximum iff Â = B̂

• (S 4): if Â ⊆ B̂ ⊆ Ĉ, then s(Â, B̂) ≥ s(Â, Ĉ) and s(B̂, Ĉ) ≥ s(Â, Ĉ)

Hung & Yang (2004) provided the first definition of T2FS similarity measures generalising the

axioms of Liu (1992).

Definition 4.2.1 A real function s : F̃(X)× F̃(X) → ℜ+ is a similarity measure between T2FSs, if

s satisfies the following properties

• (S 1): s(Ã, B̃) = s(B̃, Ã)

• (S 2): s(Ã, Ã
′
) = 0 iff Ã is crisp

• (S 3): s(Ã, B̃) is maximum iff Ã = B̃

• (S 4): if Ã ⊆ B̃ ⊆ C̃, then s(Ã, B̃) ≥ s(Ã, C̃) and s(B̃, C̃) ≥ s(Ã, C̃)

A normalised measure will ensure that s ∈ [0,1]. Now the T2FS α-EP based on α-planes is used

to extend this definition to T2FSs.

s(Ã, B̃) =
⋃

∀ α̃

α̃ s(Ãα̃, B̃α̃)

It is obvious that s(Ãα̃, B̃α̃) is cutworthy from (S 4) of the axioms of similarity of IVFSs. It is

useful to define an average similarity as follows:

Theorem 4.2.1 Given a T2FSs, Ã, B̃ ∈ F̃(X), then the average of the similarity measures between

their decomposed α-planes is a similarity between T2FSs called average similarity s(Ã, B̃), i.e.,

s(Ã, B̃) =
∑M

j=1 s(Ãα̃j
, B̃α̃j

)

M

where M is the number of α-planes.
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Proof. Check that this measure satisfies the similarity axioms above.

S 1: it is trivial since

s(Ãα̃, B̃α̃) = s(B̃α̃, Ãα̃) , ∀ α̃

S 2: also trivial since

s(Ãα̃,(Ãα̃)
′
) = 0, ∀ α̃

if they were crisp, and hence 0
M

= 0

S 3: it is also trivial since

s(C̃α̃, C̃α̃) = max
Ãα̃,B̃α̃

s(Ãα̃, B̃α̃), ∀ C̃α̃, ∀ α̃

S 4: it is also trivial since

Ãα̃ ⊆ B̃α̃ ⊆ C̃α̃

, then

s(Ãα̃, B̃α̃) ≥ s(Ãα̃, C̃α̃)

and

s
(

B̃α̃, C̃α̃

)
≥ s
(

Ãα̃, C̃α̃

)
, ∀ α̃

and that completes the proof.

Similarity measures are used extensively in the literature.

4.2.1 Subsethood

The subsethood (or inclusion) measure is a function that determines to what extent is a fuzzy set

included in another fuzzy set. Bustince et al. (2006) studied and provided a survey of subsethood

functions including the axioms below. Let i : F(X)×F(X) → ℜ+ and A,B ∈ F(X) Then i is a

measure of subsethood if it satisfies the following axioms:

• (I 1): A ⊆ B ⇒ i(A,B) = 1

• (I 2): i(A,A) = 1

• (I 3): if A ⊆ B ⊆ C then i(C,A) ≤ i(B,A), and i(C,A) ≤ i(C,B)

Also Vlachos & Sergiadis (2007) defined measures for IVFSs and extended the work by Kosko

(1990) to IVFSs.

• (I 1): Â ⊆ B̂ ⇒ i(Â, B̂) = 1

• (I 2): i(Â, Â) = 1
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• (I 3): if Â ⊆ B̂ ⊆ Ĉ then i(Ĉ, Â) ≤ i(B̂, Â), and i(Ĉ, Â) ≤ i(Ĉ, B̂)

Rickard et al. (2009) defined subsethood measures for type-n fuzzy sets which includes IVFSs and

T2FSs based on the WSRT. Yang & Lin (2009) extended the axioms of subsethood to T2FSs as

follows:

Definition 4.2.2 A real function i : F̃(X)× F̃(X) → ℜ+ is a subsethood measure between T2FSs,

if i satisfies the following axioms

• (I 1): Ã ⊆ B̃ ⇒ i(Ã, B̃) = 1

• (I 2): i(Ã, Ã) = 1

• (I 3): if Ã ⊆ B̃ ⊆ C̃ then i(C̃, Ã) ≤ i(B̃, Ã), and i(C̃, Ã) ≤ i(C̃, B̃)

Here the T2FS α-EP based on α-planes is used to extend this definition to T2FSs.

i(Ã, B̃) =
⋃

∀ α̃

α̃ i(Ãα̃, B̃α̃) (4.1)

It is only needed to show that i(Ã, B̃) is cutworthy, and that is obvious from axiom (I 3). It is useful

to define an average subsethood as follows:

Theorem 4.2.2 Given a T2FSs, Ã, B̃∈ F̃(X), then the average of the subsethood measures between

their decomposed α-planes is a subsethood between T2FSs called average subsethood i(Ã, B̃), i.e.,

i(Ã, B̃) =
∑M

j=1 i(Ãα̃j
, B̃α̃j

)

M

where, M, is the number of α-planes.

Proof. Check that this measure satisfies the subsethood axioms above, which is as straight forward

as the similarity measure.

It is also useful to point out the relation between subsethood and similarity (Yang & Lin 2009),

i.e., the subsethood is represented as follows

i(Ã, B̃) = s(Ã, Ã∩ B̃) (4.2)

4.3 Fuzziness

One might be interested in the question of how fuzzy (i.e. uncertain) is the fuzzy set?. The first

quantification of the amount of uncertainty associated with a FS was proposed by Zadeh (1968)

using the Entropy of a probability distribution. Several proposals were presented to quantify the
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fuzziness in FSs and IVFSs, extensive surveys can be found in (Klir & Folger 1988, Al-sharhan

et al. 2001, Wu & Mendel 2007b). Some axioms have been stated by De Luca & Termini (1972)

for function fz to qualify as a fuzziness measure.

• (FZ 1): A is crisp ⇒ fz(A) = 0

• (FZ 2): fz(A) is maximum ⇒ A(x) = 0.5, ∀x

• (FZ 3): A ≤ B ⇒ fz(A) ≤ fz(B)

• (FZ 4): fz(A) = fz(A
′
)

where A ≤ B means A is sharper than B which is defined for FSs as follows

A ≤ B =

{
A(x) ≤ B(x), B(x) ≤ 0.5

A(x) ≥ B(x), B(x) ≥ 0.5
(4.3)

(FZ 1) says that when A is crisp then the fuzziness is zero (i.e. no fuzziness), (FZ 2) shows that fz

is more towards the middle which is a unique maximum (FZ 3) ensures that the further away from

0.5 the less fuzzy the set, and (FZ 4) the fuzziness of the set and its complement are equal. The

generalised class of measures of fuzziness for FSs are defined by Klir & Folger (1988) to be,

f (A) = h(∑
x∈X

gx(A(x))) (4.4)

where gx : [0,1]→ℜ+, which is monotonically increasing in [0,0.5] and monotonically decreasing

in [0.5,1], gx(0.5) is a unique maximum, and h is monotonically increasing. This definition is also

valid for a host of distance measures. For IVFSs these axioms has been modified slightly as

follows: (Vlachos & Sergiadis 2007, Zeng & Li 2006a)

• (FZ 1): Â is crisp ⇒ fz(Â) = 0

• (FZ 2): fz(Â) is maximum ⇒ A(x)+A(x) = 1 ∀x

• (FZ 3): Â ≤ B̂ ⇒ fz(Â) ≤ fz(B̂)

• (FZ 4): fz(Â) = fz(Â
′
)

where Â ≤ B̂ means Â is sharper than B̂ , i.e.,

Â ≤ B̂ =

{
A(x) ≤ B(x) and A(x) ≤ B(x), B(x)+B(x) ≤ 1

A(x) ≥ B(x) and A(x) ≥ B(x), B(x)+B(x) ≥ 1
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Wu & Mendel (2007b) defined a fuzziness measure for IVFSs making use of the WSRT, the

fuzziness fz(Â) is defined as follows:

fz(Â) =
[
fz(A∗), fz(A∗)

]
(4.5)

where

A∗(x) =

{
A(x), A(x) is further away 0.5 than A(x)

A(x), Otherwise

and

A∗(x) =





A(x), if both A(x) and A(x) are below 0.5

A(x), if both A(x) and A(x) are above 0.5

0.5, Otherwise

and fz(A) defined by equation (4.4). Intuitively Yager (1979) defined the distinction between a

fuzzy set and its complement to be a fuzziness measure, this conception relates distance measures

and cardinality to fuzziness. The axioms of fuzziness for T2FSs can be defined as follows

Definition 4.3.1 A real function fz : F̃(X) → ℜ+ is a fuzziness measure for T2FSs, if fz satisfies

the following properties

• (FZ 1): Ã is crisp ⇒ fz(Ã) = 0

• (FZ 2): fz(Ã) is maximum ⇒ Ã(x) is maximum fuzzy, ∀x.

• (FZ 3): Ã ≤ B̃ ⇒ fz(Ã) ≤ fz(B̃)

• (FZ 4): fz(Ã) = fz(Ã
′
)

In this definition the second and third axioms need further investigation. Axiom (FZ 2) is suggest-

ing a situation where Ã attains maximum fuzziness and thus the measure fz reaches its maximum

(e.g. 1 if it is normalised). In T2FS context a set will attain its maximum fuzziness when all the

memberships are maximum fuzzy, in other words, all the vertical slices are maximum fuzzy, this

can be represented mathematically as follows. Let Ã ∈ F̃(X), and maximum fuzziness be fzmax,

then

fzmax(Ã(x)) ≡ fzmax(Ãx) (4.6)

since Ãx ∈ F([0,1]), then

fzmax(Ã) ⇒ Ãx(ux) = 0.5, ∀ux, ∀x (4.7)

Now it is straight forward to extend the definition of sharpness
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Definition 4.3.2 A T2FS Ã is said to be sharper than B̃ if the following is true

Ã ≤ B̃ =

{
Ãx(ux) ≤ B̃x(ux), B̃x(ux) ≤ 0.5

Ãx(ux) ≥ B̃x(ux), B̃x(ux) ≥ 0.5
, ∀ux, ∀x

It is clear that fuzziness can not be defined directly because by definition this measure is not

cutworthy. This is clear from the axioms, as there is not an axiom that indicates the fuzziness is

cutworthy. It is also useful to point out the relation between fuzziness and similarity discussed

by Zeng & Li (2006a), i.e., the fuzziness is represented as the similarity between a set and its

complement. Which is true for all fuzzy sets by definition. This definition can be extended to

T2FSs directly as follows:

fz(Ã) = s(Ã, Ã
′
) (4.8)

The similarity can be calculated as demonstrated in the previous section, but the complement is

surely not cutworthy (Klir & Folger 1988). The easiest way is to calculate the complement using

another method then take the similarity of the two sets.

4.4 Non-specificity Measures

Klir & Folger (1988), identified that uncertainty is categorised into two main streams, Ambiguity

and Vagueness. Ambiguity results from the lack of distinction among alternatives of the accepted

or genuine alternative which leads to two types, Non-specificity, describing lack of certain distinc-

tions characterising an object, and Strife, describing conflicting distinctions. Vagueness results

from the lack of sharp boundaries of relevant alternatives. Within the frame work of fuzzy set

theory measures of two of these kinds of uncertainty are defined, non-specificity, which relates to

sizes (cardinalities) of relevant sets of alternatives, and fuzziness (vagueness), which relates to the

imprecise boundaries of fuzzy sets. Non-specificity and its counterpart, specificity, are thoroughly

discussed in the FS literature (Klir & Folger 1988, Klir & Yuan 1995, Klir 2006, Yager 1982,

Yager 2008a), and they are used in many applications including computing with words (CWW)

(Klir 2006, Yager 2004).

4.4.1 Non-specificity for Fuzzy Sets

Non-specificity for a FS, A ∈ F(X), has been discussed in (Klir & Folger 1988, Klir & Yuan 1995,

Klir 2006) as a natural generalisation of the Hartley function for crisp sets.

H(A) = log2 ‖A‖ (4.9)
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where A ∈ C(X) is a crisp set, ‖A‖ is the cardinality or simply the length if A is an interval, and

log2 gives the result in bits. The Generalised Hartley (hereafter called non-specificity) measure

for convex FSs can be found in Klir & Yuan (1995), and defined in equation (4.10).

ns(A) =
1

hA

∫ hA

0
log2 [1+‖Aα‖] .dα (4.10)

where Aα is the α-cut of FS A ∈ F(X), ‖Aα‖ is the cardinality of the α-cut, hA is the height of the

FS, and
∫

is a Lebesgue integral. This measure is shown to be unique and satisfies the following

requirements:

• (NS1): ns(A) ∈ [0,∞+)

• (NS2): A = {x}⇒ ns(A) = 0

• (NS3): A ⊆ B ⇒ ns(A) ≤ ns(B)

The first and second requirements are boundary conditions that shows that the measure of non-

specificity produces positive reals and that the only set that with a non-specificity of zero is the

singleton. The third requirement is monotonicity. Other properties of this non-specificity measures

proved to be unique which is out of the scope of this study (for more details refer to Klir (2006)).

A normalised version, given in equation (4.11) taken from Martin & Klir (2006), will ensure

ns(A) ∈ [0,1] and axiom (NS1) will be:

• (NS1): ns(A) ∈ [0,1]

The following equation satisfies this property:

ns
K
(A) =

1

hA

∫ hA

0 log2 [1+‖Aα‖] .dα

log2(1+‖X‖)
(4.11)

This normalised form of the non-specificity measure has been used in CWW context by Martin &

Klir (2006) to measure the amount of information in a FS.

i(A) = 1−ns
K
(A) (4.12)

Dubois & Prade (1999) noticed that 1−nsK(A) satisfy the specificity (certainty) axioms, put for-

ward by (Yager 1982).

• (SP1): ∀A,sp(A) ∈ [0,1]

• (SP2): sp(A) = 1 iff A = {x}

• (SP3): A ⊆ B ⇒ sp(A) ≥ sp(B)
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(Yager 1982) and Yager (2008a) discussed different functions that satisfies these requirements for

FSs, e.g.

sp
Y
(A) = hA −

1

‖X‖

∫ hA

0
‖Aα‖dα (4.13)

and Garmendia et al. (2003) generalised these measures using a T-specificity measure as given in

equation (4.14).

sp
G
(A) = T1(µA(x1),N(Sj=2,...n(T2(µA(xj),wj)))) (4.14)

where T1,T2 are t-norms, Sj=2,...n is an n argument t-conorm, N, is the negation, and , wj, is

a weighting vector. It is also noted that 1 − sp(A) satisfies axioms (NS1-NS3) and hence are

measures of non-specificity. The non-specificity measure, ns
K
, is a measure of how much a set,

A, lacks to be fully informative, in other words, how much is needed for this set to be specific

(certain) with reference to its singleton. In figure (4.1), FSs A and B are both normal. Intuitively,

it is clear that the most specific state would be at the singleton, C, and its non-specificity should

be zero. It is also clear that A is more non-specific than B. The specificity measure, sp
Y
, also

compares the set to the singleton by measuring how close the set is from being a singleton.

1

U

X
0 1 2 3 4

A
BC

Fig. 4.1. A and B are FSs and C is a crisp singleton

4.4.2 Non-specificity for IVFSs

To examine the extension of the measures of non-specificity to IVFSs, the axiomatic requirements

of non-specificity are themselves extended to IVFSs. A non-specificity measure for an IVFS

should satisfy the following

• (NS1): ns(Â) ∈ [0,∞+)

• (NS2): Â = {x}⇒ ns(Â) = 0
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• (NS3): Â ⊆ B̂ ⇒ ns(Â) ≤ ns(B̂).

These basic requirements provide the same intuitions as the FS non-specificity axioms. There is a

particular importance of axiom (NS2) that need to be emphasised. This restriction states that the

only case which is totally specific is the singleton. Some may consider in the case of IVFSs that

a specific case is when these sets reduce to FSs. Frankly speaking this assertion is semantically

incorrect. Indeed, the FS is still non-specific to some degree and the crisp singleton can be the

point of reference. Turksen (1996) defined a non-specificity measure for IVFS at a domain value,

x
′
, as follows:

ns
T
(x

′
) =

(
− log10(‖Â(x

′
)‖)
)−1

(4.15)

where Â(x
′
) =

[
A(x

′
),A(x

′
)
]

and hence, ‖Â(x
′
)‖ = A(x

′
)−A(x

′
). This is not a measure for non-

specificity on set, Â, but only on one domain value, x
′
. This concept can be used to define non-

specificity for the complete domain. At each domain value, xi, i = 1,2, ...,n,

ns
T
(xi) =

(
− log10(‖Â(xi)‖)

)−1

(4.16)

then the accumulation of the non-specificity for, Â, can be seen as the summation of the non-

specificity for all domain values

ns
T
(Â) =

n

∑
i=1

(
− log10(‖Â(xi)‖)

)−1

(4.17)

and for a continuous domains

ns
T
(Â) =

∫ xn

x1

(
− log10(‖Â(x)‖)

)−1

.dx (4.18)

Turksen’s function will not provide the results in a standard well known format such as the con-

venient bits used by Klir. Using the Generalised Hartley function Turksen’s measure of non-

specificity can be redefined as follows:

ns
H
(Â) =

1

xn − x1

∫ xn

x1

log2(‖1+ Â(x)‖).dx (4.19)

The non-specificity measures , ns
T
(Â) and ns

H
(Â), measure how much is a domain value’s interval

membership function is non-specific, hence, this function does not distinguish between a FS case

and a singleton one, which clearly violates the second requirement. Consider Figure 4.2 which

shows an interval membership grade with a non-specificity which does not relate to the non-

specificity of the overall set. Instead, an extension of the Hartley based non-specificity measure,

ns(A) or nsK(A), to IVFSs which gives a non-specificity measure which satisfies axioms NS1,
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NS2, and NS3. Early versions of these definitions are defined in a conference paper by Hamrawi

& Coupland (2009a).

Theorem 4.4.1 Given a IVFS, Â∈ F̂(X), then the following is a non-specificity measure for IVFSs,

i.e.,

ns(Â) ≡
⋃

∀Ae

ns(Ae) = [ns(Ae),ns(Ae)] (4.20)

where,

ns(Ae) = min
∀Ae

ns(Ae) = ns(A) (4.21)

and

ns(Ae) = max
∀Ae

ns(Ae) = ns(A) (4.22)

Proof. Check if the function (measure) satisfies the axioms as follows:

Axioms NS1 and NS2:

By definition, ns(Â) =
[
ns(A),ns(A)

]
, since A and A are FSs, then from (NS1) ns(A) ∈ [0,∞+)

and ns(A) ∈ [0,∞+), and hence,
[
ns(A),ns(A)

]
∈ [0,∞+). From (NS2),

A = A = {x}⇒ ns(A) = ns(A) = 0

hence,

Â = {x}⇒
[
ns(A),ns(A)

]
= 0

The proof of axiom NS3 follows directly from axiom NS3 for FSs.

There is a very interesting observation, which is the fact that the non-specificity of IVFSs is an

1

U

X
x1 x2 x3 x4 x5

α3

α2

α1

A A

A(xi)

A(xi)

Fig. 4.2. IVFS Â

interval. This gives an insight to the uncertainty in the non-specificity measure itself, it is not
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precise. A single number may be needed in some situations, therefore, either an average non-

specificity or a summation can be used. The average non-specificity is defined in equation (4.23)

and a cumulative non-specificity is defined in equation (4.24).

nsav(Â) =
ns(A)+ns(A)

2
(4.23)

nssum(Â) = ns(A)+ns(A) (4.24)

The summation is more intuitive in the sense that there is non-specificity in each of the upper and

lower memberships and an average will be less non-specific than the upper membership function.

The summation on the other hand shows clearly that non-specificity is an accumulation of the

non-specificity of both membership functions.

4.4.3 Non-specificity for T2FSs

Now an extension of the axiomatic definition of non-specificity to T2FSs is provided. A non-

specificity measure for a T2FS should satisfy the following:

• (NS1): ns(Ã) ∈ [0,∞+)

• (NS2): Ã = {x}⇒ ns(Ã) = 0

• (NS3): Ã ⊆ B̃ ⇒ ns(Ã) ≤ ns(B̃)

Again these axioms are direct extensions of those for FSs and carry the same semantics. It is

important to stress on the fact that the only specific situation is the singleton. Now the non-

specificity for T2FSs can be defined using the concept of an α-plane.

Theorem 4.4.2 Given a T2FS, Ã ∈ F̃(X), then the union of all the non-specificity measures of its

decomposed α-planes is a non-specificity measure for T2FSs, i.e.,

ns(Ã) =
⋃

∀ α̃

α̃ns(Ãα̃) (4.25)

Proof. Check if the function (measure) satisfies the axioms as follows:

Axioms NS1 and NS2:

Since Ãα̃ is an IVFS, then from (NS1) of IVFSs ns(Ãα̃) ∈ [0,∞+) then

⋃

∀ α̃

α̃ns(Ãα̃) ∈ [0,∞+)

and from (NS2) of IVFSs

Ãα̃ = {x}⇒ ns(Ãα̃) = 0

106



hence, ⋃

∀ α̃

α̃ns(Ãα̃) = {x}

The proof of axiom NS3 follows from NS3.

Considering the outcome of this function, based on the non-specificity measure of the decomposed

α-planes the result may be a distribution of intervals, a distribution of numbers, or even a single

number if an average or a summation is used. The average non-specificity can be defined as

follows:

nsav(Ã) =
1

n

n

∑
i=1

nsav(Ãα̃i
) (4.26)

where n is the number of α-planes. The summation non-specificity can be defined as follows:

nssum(Ã) =
n

∑
i=1

nssum(Ãα̃i
) (4.27)

this function is mostly useful when comparing different types of fuzzy sets as will be shown later

in this section. Here the importance of the measure of non-specificity and the α-plane representa-

tion of fuzzy sets in understanding T2FSs is emphasised. In a discussion by Niewiadomski (2007),

a subjective comparison between IVFS and IT2FSs is formulated. It is well known that IT2FSs

equate to IVFSs at a set definition level (Niewiadomski 2007, Mendel et al. 2006, Mendel 2007,

Wu & Mendel 2007b). Some arguments in (Niewiadomski 2007) suggest that in some situations

IVFSs are not equal to IT2FSs. An underlying fault in the arguments presented in that paper

hindered further investigation on the suggestion. The fault occurred on the event of defining mea-

sures that has different interpretations for each model. Moreover, no single measure or function

that span across these fuzzy sets has been used to support such claims. Now the relationship be-

tween IT2FSs, IVFSs and T2FSs is discussed using non-specificity measures. It is believed that in

certain circumstances the non-specificity measure supports Niewiadomski’s arguments and sub-

stantiates them with a measure which has the same interpretation across all representations. First,

as stated in (Mendel et al. 2006) “the FOU is a complete description of an IT2FS”, this is due

to the absence of new information conveyed by the secondary grades as they are all equal and at

unity. Geometrically, observe that the FOU is a 2D plane and IT2FSs are 3D shapes as shown in

figure (4.5). The non-specificity by definition, measures how an observation or a statement is spe-

cific e.g. “John’s age is between 30 and 35” is crisp, but not specific. This set is mathematically

represented as follows A1 = [30,35]. The only specific statement is the singleton e.g. “John’s

age is 32” represented as A2 = {32}. Let us consider the following triangular normal fuzzy set

that represents “John’s age is about 32”, A3 = 〈30,32,35〉. This set is fuzzy and non-specific.

A comparison between the three sets is found in figure (4.3). The non-specificity for the three

sets are shown in table (4.1). Observe that the non-specificity of the crisp interval is greater than
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1

U

age (years)
30 32

A1

A3A2

35

Fig. 4.3. John’s age example where A1 is a crisp interval, A2 is a singleton and A3 is a FS.

1

U

age (years)
30 31 32 33 34

A
4

35

0.75
A4

Fig. 4.4. John’s age example where Â4 is an IVFS.

the non-specificity of the fuzzy set. It is also apparent that the crisp interval has the maximum

non-specificity over all the normal fuzzy sets defined within the boundaries of the same support

and core, i.e.,
1

hA
∑
∀α

log2 (1+‖Aα‖) ≤
1

hA
∑
∀α

log2 (1+‖A0‖) (4.28)

Semantically, when informed by A2, the perception one conceives of the age of John is equally dis-

tributed between 30 and 35, and it can be anywhere within this interval. On the other hand, when

informed by A3, the perception of the age of John is more specific. Of course it depends totally on

the perception of the word “about”. Now, define an IVFS Â4 = 〈30,32,32,35,31,32,32,33,0.75〉

constructed from a host of FSs representing different people’s opinions about John’s age (e.g. us-
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ing the Interval Approach in Liu & Mendel (2008)) as seen in Figure 4.4. In table (4.1), an interval

non-specificity measure is used based on equation (4.20). This shows that the non-specificity itself

is non-specific. This appears to be analogous to the term, higher order vagueness, used by some

philosophers ((Williamson 1996, Keefe & Smith 1999)). The question asked here is whether the

non-specificity in this case is an accumulation, an average, or can be interpreted in another way.

The interval non-specificity measure can be interpreted as an accumulation of the two end points

of the interval it will ensure that this measure is greater than the maximum non-specificity of any

embedded FS defined within the boundaries of this set. An average will not have this property,

indeed an average will always be less than the maximum non-specificity of any of these embedded

sets. Viewing the complete IT2FS in Figures 4.5 and Figure 4.6, their vertical slices are intervals

meaning that they are the most non-specific sets within their supports. When looking at an IT2FS

from a different view, as a special case of a T2FS, it is actually the most non-specific case of a

T2FS within its support. Mathematically, this fact can be described as follows

⋃

∀ α̃

α̃ns(Ãα̃) ≤
⋃

∀ α̃

α̃ns(Ã
0̃
) (4.29)

Clearly, the amount of information within the IT2FS is the minimum unless all the rest of α-planes

are considered negligible and only the FOU is considered for calculation. To summarise, if the

third dimension is negligible and in some applications it is, an IT2FS should be considered as

an IVFS and all the results obtained in the literature for IT2FS can be considered for IVFS and

vise versa. Consequently, new semantics for constructing the IT2FS that make use of this third

dimension should be utilised. Wu & Mendel (2009) compared different uncertainty measures

Table 4.1. John’s age non-specificity analysis

Bits

ns(A1) 2.58

ns(A2) 0

ns(A3) 1.72

ns(A4) [0.96,1.72]

for IVFSs and concluded that “Cardinality is the most representative uncertainty measure for an

IVFS: its centre is representative intra-personal uncertainty measure, and its length is a represen-

tative inter-personal uncertainty measure”. In the following the correlation between the cardinal-

ity and non-specificity using the same dataset presented in (Wu & Mendel 2008a) is discussed.

The same cardinality measures are used which are given in equations 4.30 and 4.32.

cardav(Ã) =
cardn(Ãe)+ cardn(Ãe)

2
(4.30)
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1

U

age (years)
30 31 32 33 34

Ã5

0̃

35

0.75

Ã5

1̃

Ã33

Ũ

1

Fig. 4.5. John’s age example where Ã5 is an IT2FS, and Ã33 is the vertical slice at 33.

and

cardlen(Ã) = cardn(Ãe)− cardn(Ãe) (4.31)

where

cardn(A) =
| X |

N

N

∑
i=1

µA(xi) (4.32)

Two proposed measures of non-specificity for IVFSs are used nsav(Â) and nssum(Â). Taking in

consideration that non-specificity measures are cardinality-based measures, they are expected to

result in high correlation. The correlation defined in equation (4.33) is used.

corr(f1, f2) =
∑n

i=1 f1(Âi)f2(Âi)√
∑n

i=1 f 2
1 (Âi)∑n

i=1 f 2
2 (Âi)

(4.33)

where n is the number of entries, which is 32 words in the data set taken from (Wu & Mendel

2008a). Table 4.2 shows the results, that shows a strong correlation of (1.00) between both average

and sum non-specificity and average cardinality, and a (0.96) correlation between the length of

the cardinality and both these measures. Based on these results it is clear that cardinality and

non-specificity are good representatives of each other and can be used to measure intra-personal

uncertainty. Fuzziness is another way of measuring intra-personal uncertainty, its axioms and

properties are studied extensively in the literature. In their comparative study Wu and Mendel
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1

Fig. 4.6. 2D representation of John’s age example in figure (4.5) where Ã5 is an IT2FS, and Ã33 is the vertical slice at

33.

found that the cardinality is a good representative of fuzziness, however, by definition cardinality

and fuzziness are different kinds of uncertainty, and the same applies to non-specificity. It is clear

that a set could have low fuzziness or even zero fuzziness (crisp) and still have high non-specificity

and indeed high cardinality, this is clear in John’s age example. Fuzziness and imprecision are two

quite different kinds of uncertainty, where fuzziness examines the extent of distinction between

the crisp and fuzzy sets, the non-specificity examines the amount of imprecision or information

contained in a set whether it is fuzzy or crisp (Klir & Folger 1988, Klir 2006). In the end of this

Table 4.2. Correlation between non-specificity and cardinality measures of IT2FS

nsav(Â) nssum(Â)

cardav(Â) 1.00 1.00

cardlen(Â) 0.96 0.96

investigation the simplicity of defining uncertainty measures lies on the procedure for defining

these operations. Two distinct but related procedures are presented, one that relies on the α-plane

RT through the novel α-plane EP presented in Chapter 3. The other relies on the novel α-cut RT

through the α-cut EP, both presented in Chapter 3 for the first time. The first procedure can be

summarised as follows:

1. Find if the function is cutworthy.

2. Extend the function (and/or axioms) to IVFSs (The literature of IVFSs is rich with functions

an operations).

3. Determine the α-planes.

111



4. Use the function in step (2) with each α-plane.

5. Use any averaging function to produce a scalar result if required.

The second procedure, does not differ greatly and can be summarised as follows:

1. Find if the function is cutworthy.

2. Extend the function (and/or axioms) to T2FSs, directly.

3. Determine the α-cuts.

4. Use the function in step (2) with each α-cut.

5. Use any averaging function to produce a scalar result if required.

4.5 Summary

In this chapter an investigation is formulated on some uncertainty measures including cardinality,

similarity, subsethood, fuzziness and non-specificity for type-2 fuzzy sets. The question of how

can the α-EP based on α-planes and α-cuts be used to define operations in a simple and straight

forward manner is discussed. In particular, decomposing T2FSs into α-cuts provides a very sim-

ple way of looking at these T2FSs. The main argument of this chapter is that the mathematical

formalism presented in Chapter 3, i.e., the α-cut representation theorem along with the calculus

for manipulating this formalism, i.e., the α-cut extension principle are suitable for defining mea-

sures of uncertainty for T2FSs. This has been shown to be true by the five concepts defined in this

chapter and listed in Table 4.3. The other objective is to provide evidence of the elegant nature of

both α-based extension principles (i.e. α-plane and α-cut), that can be seen in simple and straight

forward manner in which functions, operations and even axioms are extended. The measures cho-

sen in this chapter are used in many applications, and the ability to define many other measures are

straight forward following the procedures presented above. The next step would be to use these

measures in applications, which is out of the thesis scope. The applications of the uncertainty

measures presented in this chapter are already well documented in the literature of fuzzy sets. To

summarise, the following table shows the contributions presented in this chapter:
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Table 4.3. The contributions presented in this chapter.

Concept Contribution Reference

Cardinality of T2FSs using α-planes New alternative Theorem 4.1.1

Similarity of T2FSs using α-planes New alternative Theorem 4.2.1

Subsethood of T2FSs using α-planes Novel Theorem 4.2.2

Fuzziness of T2FSs using α-planes Novel Eq. 4.8

Non-specificity of IVFSs using α-planes Novel Definition 4.4.1

Non-specificity of T2FSs using α-planes Novel Definition 4.4.2
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Chapter 5

Type-2 Fuzzy Numbers and Arithmetic

In this chapter type-2 fuzzy numbers are defined and some basic arithmetic operations are investi-

gated. Type-2 fuzzy numbers are the first step in the definition of type-2 fuzzy mathematics. One

can never imagine solving for example type-2 fuzzy equations without being able to define a type-

2 fuzzy number. The uncertainty layer surrounding a real number is extended in the same pattern

followed throughout this thesis. The hierarchy of uncertain numbers start with the definition of

an interval as a first conception about the uncertainty about a number, then fuzzy numbers come

to add extra layer of uncertainty about the value of the number. Interval valued fuzzy numbers

and type-2 fuzzy numbers form higher levels of uncertainty about a number. in fact it is a num-

ber which can be described linguistically. Many applications in the literature of standard fuzzy

numbers are used (Martin & Klir 2006, Yager 2004, Wang & Li 1998). In reality all the control

applications of standard fuzzy sets are fuzzy numbers. Type-2 fuzzy numbers and their associated

arithmetic operations have not received the same attention, only two main contributions appear

in the literature that apply arithmetic operations. One makes use of the wavy slice representation

theorem and the other uses the extension principle through the vertical slice representation the-

orem (Coupland & John 2003, Blewitt et al. 2007). In this chapter α-cuts for type-2 fuzzy sets

are used as the basis for defining and manipulating type-2 fuzzy numbers. The examination of

type-2 fuzzy arithmetic through α-cuts for both discrete and continuous domains are discussed.

Also arithmetic operations for interval valued fuzzy sets are considered as a stage before full type-

2 fuzzy sets. Quasi type-2 fuzzy numbers first identified by Hamrawi & Coupland (2009b) are

further refined. It is considered a step on the journey between interval valued fuzzy numbers and

type-2 fuzzy numbers.

5.1 Type-2 Fuzzy Numbers

A fuzzy number (FN) is defined to be a fuzzy set that is both normal and convex (Dubois &

Prade 1980, Kaufmann & Gupta 1985). Normality is required in order to capture the concept
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of a number within the framework of fuzzy sets. A fuzzy number can be interpreted as a set of

real numbers close to a specific crisp number (Klir & Yuan 1995). In other words when all the

uncertainty about a fuzzy number disappears, it reduces to a crisp number or in some cases an

interval number. Let, A, be a FS that is subnormal (i.e. h(A) 6= 1), then it is evident that the FS will

not reduce to a crisp number at all. This class of FSs does not provide any arithmetical meaning.

Convexity in the other hand is required to allow meaningful arithmetic operations to be performed

on fuzzy sets. For example the well established methods from interval analysis can be utilised by

using the α-cut RT and requiring the FSs to be continuous (Klir & Yuan 1995). It is also apparent

that a FN which is non-convex have not been used in the literature, it is actually very hard to find an

account of non-convex FSs useful in applications despite some plausible arguments by Garibaldi

& John (2003), and Garibaldi et al. (2004). The formal definition of a fuzzy number is as follows:

Definition 5.1.1 (Fuzzy Number) A fuzzy set is said to be a fuzzy number if and only if, it is

normal and convex.

Adapted from Klir & Yuan (1995)

The importance of being normal is illustrated by the fact that ∃x0 ∈ A such that A(x0) = 1. When

uncertainty disappears there will exist at least this x0 to represent a crisp number. It might even

be convenient to restrict a fuzzy number to have only one element of the domain that has a mem-

bership grade at unity. In this case intervals are not considered as uncertain crisp numbers, but

different entities and their extension to fuzzy theory is called fuzzy intervals (Martin & Klir 2006).

Mathematically, this distinction is not very significant as both situations are subsumed in the FNs

definition, thus the FN definition is maintained to represent fuzzy numbers or fuzzy intervals.

Whenever a FS is not normal it is called subnormal, whenever a FS is subnormal and convex it

said to be called a sub-number.

Definition 5.1.2 (Fuzzy sub-number) A fuzzy set is said to be a fuzzy sub-number if and only if,

it is subnormal and convex.

The convex nature of FNs or FsNs can be described using the α-cut RT by requiring that all the

α-cuts be convex sets, i.e., ∀α, Aα is convex. Coupland & John (2003) defined a type-2 fuzzy

number (T2FN) to be a type-2 fuzzy set having a numerical domain. There were no assumption

about normality defined for T2FNs at that point. Despite this fact, the examples used by Coup-

land & John (2003) assume having a domain value that has a primary membership grade at unity

associated with a secondary grade at unity. This is in-effect an assumption of normality, see Def-

inition 3.4.10. In the framework of IVFSs, interval-valued fuzzy numbers (IVFNs) are defined to

be convex and normal (Hong & Lee 2002, Wang & Li 1998). The following definition of IVFNs

is defined by Hong & Lee (2002).
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Definition 5.1.3 An IVFS, Â = (A,A), is said to be an interval valued fuzzy number if and only if,

1. Â is normal, i.e., ∃x0 ∈ Â such that Â(x0) = [1,1], in other words A and A are both normal.

2. Â is convex, i.e., A and A are both convex.

Adapted from Hong & Lee (2002)

This definition means that Â is an IVFN if and only if A and A are both fuzzy numbers. This

definition is intuitive but somewhat restrictive. Requiring both the LMF and UMF to be FNs

eliminates a wide range of sets from being considered as IVFNs. A more general definition of the

normality property is desired. A class of normal IVFSs are implied by the work of Kaufmann &

Gupta (1985) in which the LMFs are found to be in some examples subnormal. In this situation

the uncertainty about the crisp number deludes when uncertainties about both the LMF and UMF

disappear, and hence it generalises the concept of normal FSs. Note that there is a point in which

a crisp number can be achieved that depend on the UMF and LMF. To explain this point, let Â be

a normal IVFN defined on the domain of real numbers. It means that in order for a crisp number

to be represented using an IVFN then,

Â ∈ C(X) ⇔ Â(x) = [1,1] , x ∈ X

which translates to A(x) = 1 and A(x) = 1. A less restrictive definition is needed that make use

of the second normality definition, i.e., the normal IVFS of Definition 3.4.9. This less restrictive

condition is widely used in applications (e.g. computing with words (Mendel & Wu 2008)), and at

the same time it is a generalisation of the perfectly normal IVFS as explained earlier in Definition

3.4.8. The two situations are distinguished in order to make it simple to communicate about each

situation. Then IVFNs can be defined utilising the concept of normality and convexity.

Definition 5.1.4 (IVFN) An IVFS is said to be an interval valued fuzzy number (IVFN) if,

• it is convex, i.e., its LMF and UMF are both convex.

• it is normal, i.e., its UMF is normal.

Based on the definition of normal IVFSs, a special class of IVFNs can be described. It is based on

the perfectly normal IVFS definition. This special is called perfect IVFN, and these IVFNs can be

described using FNs as follows:

Definition 5.1.5 An IVFN can be described as having a UMF which is a FN, and LMF which is

a FsN as described in Definition 5.1.2. A special case called perfect IVFN occurs when both its

LMF and UMF are FNs, in this case it is called a perfect IVFN.
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This classification helps communicate about different situations where an IVFS is considered an

IVFN. Earlier in Figure 3.11 both sets are IVFNs, in fact the perfectly normal IVFS is a perfect

IVFN and the normal IVFS is an IVFN. Another less important classification are the class of

IVFSs that reduce into a FsN, i.e. the condition in which the LMF and UMF are both FsNs.

Definition 5.1.6 (IVFsN) An IVFS defined on real numbers is called an interval valued fuzzy sub-

number (IVFsN) if both its LMF and UMF are fuzzy sub-numbers.

From these two definitions it is obvious that the classification of IVFNs is determined by the IVFS

membership grades represented by the UMF and LMF. Note that these definitions are determined

using the definition of a fuzzy number rather than using the membership grades. The reason

behind this attempt is, first, make use of already available definitions. Second, it gives insight to

the reduction rule in which IVFSs are reduced to FSs. On the other hand, the classification of

T2FSs is determined by its membership grades represented by the primary and secondary grades.

In the same manner one can utilise the already available definitions of IVFNs to define T2FNs.

Definition 5.1.7 (T2FN) A T2FS defined on real numbers is said to be a type-2 fuzzy number

(T2FN) if,

• it is convex, i.e., its FOU, PS, and all VSs are convex.

• it is normal, i.e., its FOU and PS are both normal IVFSs.

The different classes of normal T2FSs carry over to T2FNs and allow them to have different

classes. These classes can also be described in terms of IVFNs.

Definition 5.1.8 (T2FN) A T2FN can be described by having both its FOU and PS as IVFNs.

Two special cases can be distinguished,

• perfect T2FN, if both its FOU and PS are perfect IVFNs, and

• semi-perfect T2FN, if its FOU is an IVFN and its PS is perfect IVFN.

These conditions reduce to IVFNs, FNs, and crisp numbers when uncertainties disappear. Earlier

in Figure 3.12 these sets are T2FNs, in fact the perfectly normal T2FSs is a perfect T2FN, the

semi-perfectly normal T2FS is a semi-perfect T2FN, and the normal T2FS is a perfect T2FN. The

final situation that can be defined is the situation in which the T2FS reduces to an IVFsN or a FsN.

Definition 5.1.9 (T2FsN) A T2FS defined on real numbers is said to be a type-2 fuzzy sub-number

(T2FsN) if its FOU its PS are IVFsNs.
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These sub-numbers are sometimes useful to describe convex sets that are used for or result from

some operations. In some situations the sub-normality condition can be uplifted to a normal

set by applying a function (Klir 2006). Convexity also can be achieved by applying a function

that translates any non-convex set to a convex set (e.g. interpolation), such a function can be

called a convexifying function. Walker & Walker (2005) and Walker & Walker (2009) applied a

convexifying function to their investigation without calling it this name, indeed it is a convexity

assumption in an algebraic setting. The normalising and convexifying functions are beyond the

scope of investigation of this thesis and considered as a goal for further research. Thus, all sets

involved in arithmetic operations are assumed to be convex and normal. The other important

consideration of all the types of fuzzy sets involved in this investigation is continuous vs discrete

sets. In continuous domains a FN can be defined using piecewise functions which can be linear or

non-linear.

Definition 5.1.10 Let, A, be a FS with height, h(A) = hA, defined on real numbers. If there exists

a closed interval, [m1,m2] 6= /0, such that,

A(x) =





hA x ∈ [m1,m2]

l(x) x ∈ [s,m1)

r(x) x ∈ (m2,e]

0 x ∈ (−∞,s); x ∈ (e,∞)

(5.1)

where l(x) ∈ [0,1] is monotonically increasing and continuous from the right, and r(x) ∈ [0,1] is

monotonically decreasing and continuous from the left. Then A is a FN if hA = 1 and a FsN if

hA < 1.

Adapted from Klir & Yuan (1995)

If, l(x) and r(x), are linear functions then, A, is trapezoidal and can be totally represented by the

quintuple, 〈s,m1,m2,e,hA〉, furthermore, if, m1 = m2 = m, then, A, is triangular and can be fully

represented by the quadruple, 〈s,m,e,hA〉. If A is a FN then hA in these parameters can be dropped

since it is always at unity. Notice also that if, A, is a FN defined on a continuous domain, then it

can be represented as a set of nested intervals using their α-cuts, i.e.,

A =
⋃

∀α

α
[

Laα,Raα

]

=
⋃

∀α

α
[
l−1(α),r−1(α)

] (5.2)

where, Aα =
[

Laα,Raα

]
, is the α-cut of FN, A, and l−1 and r−1 are inverse functions. For examples,

let A = 〈s,m1,m2,e,hA〉 be a FN with linear functions applied to Eq. 5.1. Then, the linear functions
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are defined as:

l(x) =
hA(x− s)

m1 − s
and r(x) =

hA(e− x)

e−m2

(5.3)

It is clear since A is a FN then hA = 1 and the α-cuts may be used:

Aα =

[
s+

(m1 − s)α

hA

,e−
(e−m2)α

hA

]
(5.4)

All these concepts are extended in order to define IVFNs, since these IVFNs are represented by

their UMFs which are FNs, and LMFs which are either FNs or FsNs. Let, Â =
(
A,A

)
, represent a

perfect IVFN defined by its LMF and UMF. Using Eq. 5.2 individually for each of the LMF and

UMF result in the following equation for the LMF:

A =
⋃

∀α

α
[

Laα,Raα

]

=
⋃

∀α

α
[
l−1(α),r−1(α)

]

,and the following equation for the UMF:

A =
⋃

∀α

α
[

Laα,Raα

]

=
⋃

∀α

α
[
l
−1

(α),r−1(α)
]

combining the LMF and UMF under the same α-levels result in the α-cut representation of IVFSs

in Definition 3.1.1, i.e., Âα =
(
Aα,Aα

)
. The following representation of IVFNs uses the α-cut

intervals:

Â =
⋃

∀α

α
(
Aα,Aα

)

=
⋃

∀α

α
([

Laα,Raα

]
,
[

Laα,Raα

]) (5.5)

If the value of α is greater than the hight of the LMF, h(A), then the α-cuts of the LMFs are empty

sets. In order to reflect the different kinds of IVFNs, the α-cut of an IVFN can be represented as

shown in Eq. 3.5.

Âα =

({ [
Laα,Raα

]
,
[

Laα,Raα

]
,α ≤ h(A)

/0,
[

Laα,Raα

]
,α > h(A)

)
(5.6)

The two situations can be formulated using this equation. For example if Â is a perfect IVFN then

the α-cut of the LMF will not be an empty set at all. The next step is to define T2FNs using these
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methods. The idea is to use the α-cut RT of T2FSs, i.e.,

Ã =
⋃

∀ α̃

α̃


⋃

∀α

αÃα̃,α




where, Ãα̃,α =
(
Aα̃,α,Aα̃,α

)
. To explain, Aα̃,α represents the α-cut of LMF, Aα̃, of α-plane, Ãα̃.

Also, Aα̃,α, represents the α-cut of UMF, Aα̃, of α-plane, Ãα̃. If, Ã, is defined on a continuous

domain then the α-cut of any LMF of any α-plane can be described using an interval as follows:

Aα̃,α =
[

Laα̃,α,Raα̃,α

]

, and the α-cut of any UMF can be described as follows:

Aα̃,α =
[

Laα̃,α,Raα̃,α

]

Then a T2FN can be described using the collection of all these intervals using the α-cut represen-

tation theorem.

Ãα̃,α =

({ [
Laα̃,α,Raα̃,α

]
,
[

Laα̃,α,Raα̃,α

]
,α ≤ h(Aα̃)

/0,
[

Laα̃,α,Raα̃,α

]
,α > h(Aα̃)

)
(5.7)

where, h(Aα̃), is the height of the LMF, Aα̃, of α-plane, Ãα̃. In some applications one may need to

restrict a fuzzy set to a specific form, e.g. in computing with words Martin & Klir (2006) and Klir

& Sentz (2006) defined a procedure to convert any given convex fuzzy set to a fuzzy interval which

is expressed in some standard form using some specific criteria. Another special form is discussed

by Mendel & Wu (2007) in their perceptual reasoning framework, a restricted IVFS is used as a

model for a word. Some observations about the shape of the centroid led Mendel & Liu (2008)

to the proposition of a quasi type-2 fuzzy logic system, in which the output of the reasoning stage

of the system is restricted to a T2FS represented only by its FOU and PS. Starczewski (2009) in

the other hand, also defined a triangular type-2 fuzzy systems in which the result of the reasoning

stage is restricted to three FSs. Hamrawi & Coupland (2009b) defined a quasi T2FN (QT2FN),

and in this thesis more elaboration and investigation into QT2FNs are conducted. First, Let Ã be a

T2FS satisfying the following propositions:

P1 All the VSs of the T2FS are FNs, i.e. ∀xh(Ãx) = 1.

P2 All the VSs of the T2FS are piecewise functions of the same type (e.g. linear).

The first proposition assures that the T2FS contains an FOU and a PS. This fact is clear since all

the VSs are normal which makes it clear that for all the domain values there is at least one primary
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grade with secondary grade at unity. The second property assures that that only a set parameters

are needed to define the T2FS which is directly related to the FOU and the PS. These propositions

allow a T2FS be completely determined using its FOU and PS.

Definition 5.1.11 (QT2FS) A T2FS is called a quasi T2FS (QT2FS) if it can be completely deter-

mined using its FOU and PS.

What this definition means is that using some simple of parameters a T2FS can be defined. Al-

though it is a restricted form of a T2FS, but useful in some applications that require these restricted

forms in order to consolidate for computational complexity. It is a 3D restriction resembling the

FS definition of fuzzy intervals completely determined by its core and support. Now, this QT2FS

can be restricted to be a special T2FN if both the FOU and PS are restricted to be IVFNs.

Definition 5.1.12 (QT2FN) A T2FN is called a quasi type-2 fuzzy number (QT2FN) if it is com-

pletely determined by its FOU and PS.

QT2FNs satisfy the same conditions required to be T2FNs with the extra restriction of propositions

P1 and P2. One of the most popular sets are triangular T2FSs, which can be described by linear

piecewise functions representing the vertical slices and both FOU and PS are triangular IVFSs.

5.2 Type-2 Fuzzy Arithmetic

In Kaufmann & Gupta (1985), a comprehensive discussion on fuzzy numbers and arithmetic oper-

ations is formulated. Most of the sets used in the investigation are continuous fuzzy numbers, and

the arithmetic operations developed mostly utilise the α-cut RT. Because these α-cuts are assumed

to be intervals, interval arithmetic is used to define these operations for FSs. First, let
[

La,Ra
]

and[
Lb,Rb

]
be two interval numbers, then according to Moore et al. (2009) the arithmetic operations

on intervals are described by the following equation:

[
La,Ra

]
◦
[

Lb,Rb
]
=
[
min

(
La◦ Lb,La◦ Rb,Ra◦ Lb,Ra◦ Rb

)
,max

(
La◦ Lb,La◦ Rb,Ra◦ Lb,Ra◦ Rb

)]

(5.8)

where ◦ ∈ {+,−,×,div} and 0 /∈ B if ◦ = div. Second, let

A =
⋃

∀α

α
[

Laα,Raα

]
, and B =

⋃

∀α

α
[

Lbα,Rbα

]
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be two FNs represented in the interval α-cut form. Then according to Kaufmann & Gupta (1985),

interval operations are extended to FNs as follows:

A◦B =
⋃

∀α

α
([

Laα,Raα

]
◦
[

Laα,Raα

])
(5.9)

where ◦ = {+,−,×,div}. It is clear that FN arithmetic is calculated directly using interval arith-

metic. These arithmetic operations can be extended from FNs to IVFNs using the IVFS α-EP of

Theorem 3.1.2. For clarity the IVFS α-EP is customised for binary arithmetic operations, then it

can easily be extended to any number of sets. Let, Â =
(
A,A

)
and B̂ =

(
B,B

)
be two IVFNs then:

Â◦ B̂ =
⋃

∀α

α
(

Âα ◦ B̂α

)

=
⋃

∀α

α
((

Aα,Aα

)
◦
(
Bα ◦Bα

))

=
⋃

∀α

α
(
Aα ◦Bα,Aα ◦Bα

)
(5.10)

This is generalised form and can equally be used for continuous and discrete domains. Now if the

domain is continuous, and at the same time be able to directly extend interval arithmetic to IVFNs,

then using Eq. 5.5 let the continuous IVFN, Â be represented by the interval α-cuts of the LMF

and UMF.

Â =
⋃

∀α

α
([

Laα,Raα

]
,
[

Laα,Raα

])

Let also the second IVFN, B̂, be represented in the same manner, i.e.,

B̂ =
⋃

∀α

α
([

Lbα,Rbα

]
,
[

Lbα,Rbα

])

Interval arithmetic can be extended from FNs by substituting these sets in Eq. 5.10, i.e.,

Â◦ B̂ =
⋃

∀α

α
(([

Laα,Raα

]
,
[

Laα,Raα

])
◦
([

Lbα,Rbα

]
,
[

Lbα,Rbα

]))

=
⋃

∀α

α
([

Laα,Raα

]
◦
[

Lbα,Rbα

]
,
[

Laα,Raα

]
◦
[

Lbα,Rbα

]) (5.11)

This equation works fine with both cases of IVFNs, it is clear for perfect IVFNs because it is a

direct application of the definition. In case that either or both IVFNs are not perfect in the sense

that either or both have LMFs as FsNs, i.e., h(A) 6= 1 or/and h(B) 6= 1. Then simply the α-cuts of

the LMFs that exceeds its LMF height is an empty set as shown in Eq. 5.6, and the normal crisp
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arithmetic that involves empty sets hold. the reason this fact is mentioned and moreover explained

in the preceding, is that such IVFNs have caused problems when the α-cuts were defined differ-

ently. Later in this section these problems are highlighted, and for the time being the computation

of these sets are explained. Using the same sets Â and B̂, let them be represented using Eq. 5.6

which is more convenient in reflecting any kind of IVFNs.

Â =
⋃

∀α

α

({ [
Laα,Raα

]
,
[

Laα,Raα

]
,α ≤ h(A)

/0,
[

Laα,Raα

]
,α > h(A)

)

and also the second IVFN is represented in the same manner, i.e.,

B̂ =
⋃

∀α

α

({ [
Lbα,Rbα

]
,
[

Lbα,Rbα

]
,α ≤ h(B)

/0,
[

Lbα,Rbα

]
,α > h(B)

)

Assume that hmin = min(h(A),h(B)) and hmax = max(h(A),h(B)). Also recall that for any crisp

set C ∈ C(X), the basic arithmetic operations between that crisp set and an empty set result in an

empty set, i.e., /0◦C = /0. Also recall that for any interval I ∈ I(X), the basic arithmetic operations

between that interval and an empty set result in an empty set, i.e., /0◦ I = /0. With this fact on mind

performing arithmetic operations between IVFNs produce the following:

Â◦ B̂ =
⋃

∀α

α








[
Laα,Raα

]
◦
[

Lbα,Rbα

]
,
[

Laα,Raα

]
◦
[

Lbα,Rbα

]
,α ≤ hmin

/0,
[

Laα,Raα

]
◦
[

Lbα,Rbα

]
,hmax ≥ α > hmin

/0,
[

Laα,Raα

]
◦
[

Lbα,Rbα

]
,α > hmax




Observe that conditions hmax ≥ α > hmin and α > hmax have the same results due to the properties

of empty sets. Then it can be further reduced to the following form.

Â◦ B̂ =
⋃

∀α

α

({ [
Laα,Raα

]
◦
[

Lbα,Rbα

]
,
[

Laα,Raα

]
◦
[

Lbα,Rbα

]
,α ≤ hmin

/0,
[

Laα,Raα

]
◦
[

Lbα,Rbα

]
,α > hmin

)
(5.12)

The height of the LMF of the result is equal to the minimum height among all LMFs involved.

In the view accepted in this thesis, the α-cuts of IVFSs does not require any extra attention. In

contrary, the α-cuts of continuous IVFNs developed by Kaufmann & Gupta (1985) and widely

accepted in the literature is somewhat problematic. These α-cuts are shown in Eq. 2.16, and ap-

plying arithmetic operations to these sets as noted by Wu & Mendel (2008a), ”[this method]result

in discontinuous or non-convex sets which are neither desirable nor technically correct“. Wu &

Mendel (2008a) used these sets for aggregation operation using weighted averages, which depends

on arithmetic operations. The problems provoked the corrections to their method originally pub-

lished in Wu & Mendel (2007a). Havens et al. (2010) also used Kaufmann and Gupta’s method
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to define the Choquet Integral over IVFSs, and faced the same problem not knowing Wu and

Mendel’s corrections. To solve the problem Havens et al. (2010) restricted their method to per-

fect IVFNs, although they did not call it this name but it is implied from their restriction. The

next step is to extend interval arithmetic to continuous T2FNs with the aid of the T2FS α-cut

EP shown in Theorem 3.3.2. For clarity the T2FS α-cut EP is customised for binary arithmetic

operations, then it can easily be extended to any number of sets. Let, Ã =
⋃

∀ α̃ α̃
⋃

∀α αÃα̃,α and

B̃ =
⋃

∀ α̃ α̃
⋃

∀α αB̃α̃,α be two T2FNs represented by the T2FS α-cut RT. These α-cuts can be

represented using Eq. 5.7, i.e., it breaks down to a pair of distinct crisp sets as follows:

Ãα̃,α =

({ [
Laα̃,α,Raα̃,α

]
,
[

Laα̃,α,Raα̃,α

]
,α ≤ h(Aα̃)

/0,
[

Laα̃,α,Raα̃,α

]
,α > h(Aα̃)

)

and the same applies to T2FN B̃, i.e.,

B̃α̃,α =

({ [
Lbα̃,α,Rbα̃,α

]
,
[

Lbα̃,α,Rbα̃,α

]
,α ≤ h(Bα̃)

/0,
[

Lbα̃,α,Rbα̃,α

]
,α > h(Bα̃)

)

Then the arithmetic operations between these set can be performed as follows:

Ã◦ B̃ =
⋃

∀ α̃

α̃
⋃

∀α

α
(

Ãα̃,α ◦ B̃α̃,α

)
(5.13)

where the arithmetic between each T2FS α-cut can be calculated as follows:

Ãα̃,α ◦ B̃α̃,α =

({ [
Laα̃,α,Raα̃,α

]
◦
[

Lbα̃,α,Rbα̃,α

]
,
[

Laα̃,α,Raα̃,α

]
◦
[

Lbα̃,α,Rbα̃,α

]
,α ≤ hmin

/0,
[

Laα̃,α,Raα̃,α

]
◦
[

Lbα̃,α,Rbα̃,α

]
,α > hmin

)

and hmin is the minimum of the heights of the LMFs of each α-plane, i.e.,

hmin = min(h(Aα̃),h(Bα̃))

This derivation subsumes all kinds of T2FNs i.e. perfect or semi-perfect as well. Finally, consider

the special case of QT2FNs where only two α-planes are involved in the computation, the FOU at

α̃ = 0 and the PS at α̃ = 1. Then we can use for perfectly normal T2FNs or equation for normal

T2FNs. Let Ã =
〈

Ã
0̃
, Ã

1̃

〉
and B̃ =

〈
B̃

0̃
, B̃

1̃

〉
be two QT2FNs completely determined by their FOU

and PS. Then the result of basic arithmetic operations between them is another QT2FN shown as

follows:

Ã◦ B̃ =
〈

Ã
0̃
◦ B̃

0̃
, Ã

1̃
◦ B̃

1̃

〉
(5.14)
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it has to be noted that to perform these operations the methods applied to IVFNs is used, i.e., Eq.

5.11.

Example 5.2.1 In this example a QT2FN is considered, it also gives sufficient insight on more

general T2FN arithmetic. Let the following triangular QT2FN 3̃ =
〈

3̃
0̃
, 3̃

1̃

〉
depicted in Figure

5.1 with parameters derived from Definition 5.1.10, i.e.,

3̃
0̃
= 〈1.5,2.25,3,3.45,4.75,0.6〉 , and 3̃

1̃
= 〈1.75,3,4.25〉

Notice that 3̃ is a semi-perfect T2FN with h(3
0̃
) = 0.6 and 3̃

1̃
is a perfect IVFN, in fact it is FN.

Let also another triangular QT2FN 1̃2 =
〈

1̃2
0̃
, 1̃2

1̃

〉
depicted in Figure 5.2 with parameters:

1̃2
0̃
= 〈10.25,11.5,12,12.5,14,0.7〉 , and 1̃2

1̃
= 〈0.75,12,13.5〉

Notice that 3̃ is a semi-perfect T2FN with h(12
0̃
) = 0.7 and 3̃

1̃
is also a FN. When computing the

addition 3̃+ 1̃2, first, determine a suitable number of α-cuts along U for both FOU and PS∗. For

the sake of clarity U is discretised into 25 α-cuts. Then, applying Eq. 5.14 to these T2FNs gives

the result QT2FN 1̃5 and depicted in Figure 5.3 with the following parameters:

1̃5
0̃
= 〈11.75,13.75,15,15.95,18.75,0.6〉 , and 1̃5

1̃
= 〈12.5,15,17.75〉

The result is as expected from this addition, 3̃+ 1̃2 = 1̃5.

X

U

1 2 3 4 5

0.2

0.4

0.6

0.8

1

Fig. 5.1. QT2FN 3̃ with discretised α-cuts of the FOU(3̃), and the dashed line is PS(3̃)

The following example shows how to perform addition of IVFNs using α-cuts.

∗In the case of T2FN, first discretise along Ũ in order to determine a suitable number of α-planes, then discretise

along U for each of the α-planes.
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Fig. 5.2. QT2FN 1̃2 with discretised α-cuts of the FOU FOU(1̃2), and the dashed line is PS(1̃2)
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Fig. 5.3. QT2FN 1̃5 with discretised α-cuts of the FOU FOU(1̃5), and the dashed line is PS(1̃5).

Example 5.2.2 Let 4̂ and 8̂ be two IVFS defined in Table 5.1 and Table 5.2, respectively. The

α-cuts of both their LMF and UMF is shown in Table 5.3. The addition of the α-cuts are shown in

Table 5.4. This will eventually lead to an IVFS 1̂2. The method used to generate the membership

grades of 1̂2 from its α-cuts is shown in Table 5.5.

Table 5.1. IVFS, 4̂, in example (5.2.2).

x 2 3 4 5 6

4̂(x) [0,0.2] [0.4,0.6] [0.8,1] [0.5,0.6] [0,0.4]
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Table 5.2. IVFS, 8̂, in example (5.2.2).

x 5 6 7 8 9 10 11

8̂(x) [0,0.1] [0.2,0.5] [0.6,0.8] [1,1] [0.5,0.8] [0.2,0.4] [0,0.1]

Table 5.3. The α-cuts of IVFS, 4̂ and 8̂, in example (5.2.2).

α 4α 8α 4α 8α

0.0 {2,3,4,5,6} {5,6,7,8,9,10,11} {2,3,4,5,6} {5,6,7,8,9,10,11}
0.1 {3,4,5} {6,7,8,9,10} {2,3,4,5,6} {5,6,7,8,9,10,11}
0.2 {3,4,5} {6,7,8,9,10} {2,3,4,5,6} {6,7,8,9,10}
0.3 {3,4,5} {7,8,9} {3,4,5,6} {6,7,8,9,10}
0.4 {3,4,5} {7,8,9} {3,4,5,6} {6,7,8,9,10}
0.5 {4,5} {7,8,9} {3,4,5} {6,7,8,9}
0.6 {4} {7,8} {3,4,5} {7,8,9}
0.7 {4} {8} {4} {7,8,9}
0.8 {4} {8} {4} {7,8,9}
0.9 /0 {8} {4} {8}
1.0 /0 {8} {4} {8}

We show here how convenient it is and how to use it by examining the following arithmetic exam-

ple.

Example 5.2.3 Coupland & John (2003) and Blewitt et al. (2007) used an example of T2FS ad-

dition 3̃ + 1̃2. We interpret the same sets in Table 5.6 and Table 5.7. To perform this addition we

need to decompose each T2FS to its α-planes and each α-plane to its α-cuts. We take for example

the addition of α-planes 3̃
0̃.2

+ 1̃2
0̃.2

, we construct the interval membership grade of each α-plane

using the bounds of the PMs Jx,α̃, i.e. Table 5.8 and Table 5.9. The steps to perform the addition

is shown in Table 5.10, Table 5.11 and Table 5.12. These are the same steps used to add IVFSs.

To perform the addition of the T2FSs we have to perform the same task to all α-planes. The final

result is shown in Table 5.13.
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Table 5.4. The α-cuts of IVFS, 1̂2 = 4̂+ 8̂, in example (5.2.2).

α 12α = 4α +8α 12α = 4α +8α

0.0 {7,8,9,10,11,12,13,14,15,16,17} {7,8,9,10,11,12,13,14,15,16,17}
0.1 {9,10,11,12,13,14,15} {7,8,9,10,11,12,13,14,15,16,17}
0.2 {9,10,11,12,13,14,15} {8,9,10,11,12,13,14,15,16}
0.3 {10,11,12,13,14} {9,10,11,12,13,14,15,16}
0.4 {10,11,12,13,14} {9,10,11,12,13,14,15,16}
0.5 {11,12,13,14} {9,10,11,12,13,14}
0.6 {11,12} {10,11,12,13,14}
0.7 {12} {11,12,13}
0.8 {12} {11,12,13}
0.9 /0 {12}
1.0 /0 {12}

Table 5.5. IVFS, 1̂2, in example (5.2.2) from its α-cuts in table (5.4)

x α12α(x) α12α(x) 1̂2(x)
7 0 0,0.1 [0,0.1]
8 0 0,0.1,0.2 [0,0.2]
9 0,0.1,0.2 0,0.1,0.2,0.3,0.4,0.5 [0.2,0.5]
10 0,0.1,0.2,0.3,0.4 0,0.1,0.2,0.3,0.4,0.5,0.6 [0.4,0.6]
11 0,0.1,0.2,0.3,0.4,0.5,0.6 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 [0.6,0.8]
12 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 [0.8,1]
13 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 [0.5,0.8]
14 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6 [0.5,0.6]
15 0,0.1,0.2 0,0.1,0.2,0.3,0.4 [0.2,0.4]
16 0 0,0.1,0.2,0.3,0.4 [0,0.4]
17 0 0,0.1 [0,0.1]

5.3 Summary

In this chapter an investigation on type-2 fuzzy numbers and some operations that include such

numbers are discussed including basic arithmetic operations. The basic arithmetic operations pre-

sented in this chapter include addition, subtraction, multiplication and division. These basic oper-

ations pave the way for many other operation, in fact the complete field of mathematics of classical

numbers can be extended to even higher levels of uncertainty such as interval valued fuzzy sets

and type-2 fuzzy sets. These numbers are presented In this chapter only the α-cut representation

theorem and the α-cut extension principle are used in defining these novel operations. The appli-

cations of the arithmetic operations presented in this chapter are already well documented in the
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Table 5.6. T2FS 3̃, in Example 5.2.3. The numbers in between are the SGs, 3̃x(ux).

x/ux 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 1.0 0.6 0.3

2 0.1 0.6 1.0 0.7 0.2

3 1.0

4 0.1 0.6 1.0 0.7 0.2

5 1.0 0.6 0.3

Table 5.7. T2FS 1̃2, in Example 5.2.3. The numbers in the body of the table are the SGs, 1̃2x(ux).

x/ux 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10 1.0 0.8 0.4 0.2 0.1

11 0.2 1.0 0.4

12 1.0

13 0.2 1.0 0.4

14 1.0 0.8 0.4 0.2 0.1

literature of fuzzy sets. To summarise, the following table shows the contributions presented in

this chapter:
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Table 5.8. α-plane, 3̂
0̃.2

, in Example 5.2.3.

x 1 2 3 4 5

3̃
0̃.2

(x) [0,0.2] [0.4,0.7] [1,1] [0.4,0.7] [0,0.2]

Table 5.9. α-plane, 1̃2
0̃.2

, in Example 5.2.3.

x 10 11 12 13 14

1̃2
0̃.2

(x) [0,0.3] [0.5,0.7] [1,1] [0.5,0.7] [0,0.3]

Table 5.10. The α-cuts of α-planes, 3̃
0̃.2

and 1̃2
0̃.2

, in Example 5.2.3.

α 3
0̃.2,α

12
0̃.2,α

3
0̃.2,α

12
0̃.2,α

0.0 {1,2,3,4,5} {10,11,12,13,14} {1,2,3,4,5} {10,11,12,13,14}
0.1 {2,3,4} {11,12,13} {1,2,3,4,5} {10,11,12,13,14}
0.2 {2,3,4} {11,12,13} {1,2,3,4,5} {10,11,12,13,14}
0.3 {2,3,4} {11,12,13} {2,3,4} {10,11,12,13,14}
0.4 {2,3,4} {11,12,13} {2,3,4} {11,12,13}
0.5 {3} {11,12,13} {2,3,4} {11,12,13}
0.6 {3} {12} {2,3,4} {11,12,13}
0.7 {3} {12} {2,3,4} {11,12,13}
0.8 {3} {12} {3} {12}
0.9 {3} {12} {3} {12}
1.0 {3} {12} {3} {12}

Table 5.11. The α-cuts of α-planes, 1̃5
0̃.2

= 3̃
0̃.2

+ 1̃2
0̃.2

, in Example 5.2.3.

α 15
0̃.2,α

= 3
0̃.2,α

+12
0̃.2,α

15
0̃.2,α

= 3
0̃.2,α

+12
0̃.2,α

0.0 {11,12,13,14,15,16,17,18,19} {11,12,13,14,15,16,17,18,19}
0.1 {13,14,15,16,17} {11,12,13,14,15,16,17,18,19}
0.2 {13,14,15,16,17} {11,12,13,14,15,16,17,18,19}
0.3 {13,14,15,16,17} {12,13,14,15,16,17,18}
0.4 {13,14,15,16,17} {13,14,15,16,17}
0.5 {14,15,16} {13,14,15,16,17}
0.6 {15} {13,14,15,16,17}
0.7 {15} {13,14,15,16,17}
0.8 {15} {15}
0.9 {15} {15}
1.0 {15} {15}
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Table 5.12. α-plane, 1̃5
0̃.2

, in Example 5.2.3 from its α-cuts in Table 5.11.

x α15
0̃.2,α

(x) α15
0̃.2,α

(x) 1̃5
0̃.2

(x)

11 0 0,0.1,0.2 [0,0.2]
12 0 0,0.1,0.2,0.3 [0,0.3]
13 0,0.1,0.2,0.3,0.4 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7 [0.4,0.7]
14 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7 [0.5,0.7]
15 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1 [1,1]
16 0,0.1,0.2,0.3,0.4,0.5 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7 [0.5,0.7]
17 0,0.1,0.2,0.3,0.4 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7 [0.4,0.7]
18 0 0,0.1,0.2,0.3 [0,0.3]
19 0 0,0.1,0.2 [0,0.2]

Table 5.13. The final result of 3̃+ 1̃2 = 1̃5 in Example 5.2.3.

x/ux 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

11 1.0 0.6 0.3

12 1.0 0.8 0.4 0.2 0.1

13 0.1 0.6 1.0 0.7 0.2

14 0.2 1.0 0.4

15 1.0

16 0.2 1.0 0.4

17 0.1 0.6 1.0 0.7 0.2

18 1.0 0.8 0.4 0.2 0.1

19 1.0 0.6 0.3

Table 5.14. The contributions presented in this chapter.

Concept Contribution Reference

Interval valued fuzzy numbers New alternative Definition 5.1.5

Type-2 fuzzy numbers Novel Definition 5.1.7 , 5.1.8 and 5.1.12

Arithmetic of IVFNs using α-cuts New alternative Eq. 5.12

Arithmetic of T2FNs using α-cuts Novel Eq. 5.13
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Chapter 6

Parallel Computation and T2FSs

In Chapter 3, the α-cut decomposition theorem was presented. This representation decomposes

T2FSs into a collection of independent classical sets. Each of these crisp sets are associated with

the original T2FS by two levels, α̃ and α. These levels can be seen as an address of the α-cut in

the original set. It has also been shown in Chapter 3 that functions and operations on T2FSs can be

achieved by applying the crisp version of these operations on all the α-cuts of the T2FS. Chapter 4

showed this fact by defining measures of uncertainty for T2FSs, and Chapter 5 defined arithmetic

operation in the same manner. This chapter explores the capability of processing operations using

the α-cut EP in parallel.

It is argued in this chapter that since these α-cuts are crisp sets, and at the same time independent

of each other, they have the potential of being successfully applied to massively parallel process-

ing units such as Graphical Processing Units (GPUs). Computing functions and operations on

T2FSs is a computationally expensive task due to the complex 3D nature of the T2FS. This high

computational cost have been blamed for hindering the progress of the field of T2FL. The extra

degrees of freedom offered by the T2FSs did not compensate for the high cost of computation

to justify the implementation of T2FSs in practical applications. Recently the development of

new high speed technologies in the microprocessors industry renewed the interest on the extra

dimension provided by T2FSs. New algorithms are developed to aid in processing T2FS opera-

tions, and still no dramatic improvements have been reported that allow T2FSs be applicable on a

large scale. One of the main advancements in technology is the utilisation of parallel processing

both in multi-core CPUs and even more the massively parallel GPU capabilities. To be able to

make use of this emergent and growing field of application, the input structure to these parallel

processing units should be independent parallel structures (NVIDIA 2010). Recently GPU manu-

facturer giant NVIDIA released a new family of general purpose GPUs (GPGPUs), which targets

applications other than graphics rendering. It is a highly parallel architecture with large number

of multithreaded processors, which can significantly accelerate the performance of data-parallel

applications (Wen-mei 2011). It is gaining popularity amongst various deciplines, ranging from
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biology, physics, cosmology, medicine and etc. (see (Kirk & Wen-mei 2010) for a survey.) The

boost in applications that involve GPU computing is due to the parallel programming model put

forward by NVIDIA to aid the development of applications using NVIDIA’s GPUs. The Compute

Unified Device Architecture (CUDA) integration with C language provided an easy to use devel-

opment tool that encourage researchers and developers to make use of the powerful computing

power of the GPUs.

6.1 The Parallel Nature of the T2FS Alpha-cut RT

This section investigates mathematically the parallel nature of the α-cut RT of T2FSs. The idea is

to show that operations using α-cuts are typically suitable for parallel processing. This suitability

can be shown by examining the characteristics of typical parallel processing solutions. First, the

optimum situation for parallel processing data on a GPU is having a Single Instruction Multiple

Data (SIMD) structure (NVIDIA 2010). This means that the data units are independent of each

other, and the single instruction is applied to all the data units as shown in Figure 6.1. This ar-

chitecture is an exact description of the α-cut extension principle for type-2 fuzzy sets defined in

Chapter 3. Once each α-cut is defined then operations on these α-cuts are calculated indepen-

dently. For example the addition of two T2FSs using the α-cut RT require calculating the addition

of the α-cuts of the two T2FSs of the same level. This fact can be seen in Figure 6.2, which

shows that it is a direct implementation of the SIMD architecture of Figure 6.1. On the other hand,

examining the same capability for the α-planes yields an introduction of an extra level. This is

shown in Figure 6.3, this extra level is required to perform the iterative procedure for the addition

of the IVFS α-planes using the point-wise extension principle. This extension principle requires

for each point computing the supremum of the points and the minimum of the corresponding sec-

ondary grades. This extra level of operations are not needed for the α-cut RT of T2FSs. The

introduction of an iteration procedure makes computation very difficult for the GPUs. If this is the

case with the some what parallel α-plane RT, it is even more difficult to apply the point-wise EP

for T2FSs, in fact it is a waste of time to compute all the iterations involved for this operation. Any

function or operation is either a single instruction or can be divided in to several single instruc-

tions applied to or between the independent α-cuts. The α-plane representation theorem and the

α-plane extension principle defined in Chapter 3 also have a level of independence between the

α-planes. The structure of the α-planes themselves is complicated, they are IVFSs. The operations

on the α-planes themselves, in most cases, require the use of the extension principle for IVFSs.

To explain this issue, assume that two T2FSs Ã and B̃ are both decomposed into M α-planes, and

M×N α-cuts. Let also f be a binary crisp function that takes two values and produces one value.
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Using the α-plane extension:

f (Ã, B̃) =
⋃

i=1...M

α̃i(f (Ãα̃i
, B̃α̃i

))

then the extension of f to a function between IVFSs is performed M times, and the extension of f

to IVFSs is calculated using the classical extension principle or by using the embedded standard

fuzzy set extension. On the other hand, using the α-cut extension principle:

f (Ã, B̃) =
⋃

i=1...M

α̃i

⋃

j=1...N

αj(f (Ãα̃i,αj
, B̃α̃i,αj

))

then f is performed M×N times on the pair of classical sets, which turn out to be 2×M×N times.

It is clear that the α-cut extension principle is highly parallel in nature, and given the volume of

data to be processed using a single instruction makes it suitable for GPU computing. The following

section gives some basic insight on the GPU computing architecture.

Data 1

Data 2

Data 3

Data 4

Instruction

Fig. 6.1. SIMD architecture.

6.2 Experimental Design

The experiment presented in this chapter is designed to evaluate the performance of a GPU im-

plementation of T2FS operations compared to a CPU implementation. The CPU, GPU and soft-
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α-cut 4
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Fig. 6.2. The addition of two T2FSs using the α-cut RT.

ware/hardware specifications of the test environment is summarised in Table 6.1. Appendix A is

a primer on GPU architecture and CUDA parallel programming model. The details regarding the

technical specifications and software considerations have been explained in the Appendix and in

this chapter only the experiments, result and analysis are discussed. Four different comparisons

are performed with different aims.

• Experiment 1: The performance of the GPU is compared against the CPU using the α-

cut representation theorem. The addition of two type-2 fuzzy sets are chosen for this test

because it is simple and straight forward. The idea behind this test is to evaluate the perfor-

mance of the α-cut representation theorem and exploit its parallel nature with a very simple

function such as addition which does not require high processing power.

• Experiment 2: The performance of GPU processing is compared against the CPU using

the α-cut representation theorem. The addition of two type-2 fuzzy sets is used again. The

difference between this test and the first test is the measure of performance of the GPU.

The time calculated in this test is the time of processing only. The time of data transfer is

excluded from measurement. The aim of this test is to evaluate the effect of data transfer on

the GPU performance.

• Experiment 3: The same test is performed as the first test, but this time the simple addition
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Fig. 6.3. The addition of two T2FSs using the α-plane RT.

operation is replaced with more than one arithmetic operation. The following arithmetic

operation is calculated for three type-2 fuzzy set, (Ã+ B̃)× C̃, using the the α-cut represen-

tation theorem. The α-cut representation theorem is also chosen, and are processed through

the GPU and the CPU. The aim of this test is to visualise the effect of raising the complexity

of operations on the performance gain between the GPU and CPU.

• Experiment 4: The following operation is calculated, (Ã∩ B̃)∪ C̃, it involves the union

and intersection of three type-2 fuzzy sets. This time the α-cut representation theorem is

compared against the α-plane representation theorem. The α-cut version is processed on

the GPU and the α-plane version is processed on the CPU. The aim of this test is to evaluate

the performance of α-cut implementations against α-plane implementations.

In all the above, the evaluation is kept simple and clear. The time elapsed difference is calculated,

and mean of 30 runs of each calculation is recorded and compared. The parameters of the type-2

fuzzy sets are generated randomly with sensible constraints. These type-2 fuzzy sets are Quasi

T2FNs∗, and the generated parameters are described by Eq. 6.1 and shown in Figure 6.4.

〈FOU,PS〉 = 〈s0,m0,e0,h0,s0,m0,e0,s1,m1,e1,h1,s1,m1,e1〉 (6.1)

∗see Definition 5.1.12 for details.
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The discretisation rate across the primary axis, U, and secondary axis Ũ is calculated according to

Table 6.2. The number of α-cuts equals (2× the number of discrete points in U× the number of

discrete points in Ũ) because the α-cuts are calculated from the LMF and UMF. On the other hand

the number of α-planes is equal to the number of discrete points in Ũ. The evaluation is calculated

by the following formula:

E =
CPU Time − GPU Time

CPU Time
×100 (6.2)

where E is the percentage of gain in performance made by the GPU over the CPU, obviously if E

is negative it shows a gain for the CPU over the GPU. A simple and clear criteria is followed in

order to carry out these tests, and is summarised as follows:

1. Type-2 fuzzy set parameters are generated at random. The parameters are described as

〈FOU,PS〉 which is defined in Eq. 6.1 and shown in Figure 6.4. It represents the FOU and

the Principal Set of the T2FS.

2. Then each T2FS is discretised for each test according to Table 6.2. This method of discreti-

sation is similar to the grid method presented by Greenfield et al. (2009).

3. The α-cuts and α-planes are determined and stored into appropriate vectors.

4. Depending on the operation, the vectors are passed for processing to the GPU and CPU. At

this stage the time elapsed are measured and recorded.

5. The above are repeated 30 times, and the mean of the 30 measured processing times is

calculated.

Note that the α-plane implementation uses a discretisation across the domain of the type-2 fuzzy

set. The discretisation level used for the domain valued is equal to the number of α-cut discretisa-

tion. Next, the evaluation of the results are presented and discussed.

6.3 Results

The main purpose behind carrying out the aforementioned tests is to highlight the potential of

practical application of T2FS. This is shown by taking advantage of the parallel nature of the

novel α-cut representation of T2FSs presented earlier in Chapter 3 of this thesis. The discussion

in this section follows from the sequence presented in the previous section.
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Table 6.1. Hardware and software specifications of the experiments.

OS Windows Vista Home Premium, service pack 2

NVIDIA CUDA Technology Toolkit 4.0

CUDA capability 1.1

Development environment Microsoft Visual C++ 2008 SP1

Software libraries Thrust v 1.4.0

CPU Intel Core 2 Quad CPU

CPU Speed 2.66 GHz

CPU No of cores 4

RAM 4 GB

System type 32-bit

GPU NVIDIA GeForce 9800 GX2

Graphics Clock 600 MHz

Processor Clock 1500 MHz

Texture Fill Rate 76.8 billion/sec

Memory Clock 1000 MHz

Max No of Threads per Block 512

Warp size 32

No of Multiprocessors 16

No of GPU devices 2

No of CUDA Cores 256 (128 per GPU device)

Table 6.2. Discretisation across the primary axis U and secondary axis Ũ.

U Ũ No of α-cuts No of α-planes

8 8 128 8

16 8 256 8

16 16 512 16

32 16 1024 16

32 32 2048 32

64 32 4096 32

• Experiment 1 calculates the addition of two type-2 fuzzy sets. Addition is a simple and

straight forward operation, and the performance is measured by evaluating the addition of

two vectors. The two vectors vary in length according to the level of discretisation. For

example the 128 α-cuts involves 128× 2 = 256 addition operations. This is because each

α-cut is represented only using two numbers as the T2FS is assumed to be continuous for

simplicity. The GPU is compared against the CPU using only the α-cut representation the-

orem. The idea behind this test is to evaluate the performance of the α-cut representation

theorem and exploit its parallel nature with a very simple function such as addition which

does not require high processing power. The results are shown in Figure 6.5 and Table 6.3.

Figure 6.5 clearly shows significant increase in the performance gain of the GPU as the

number of α-cuts increase. This is an expected behaviour of GPU/CPU comparisons. The

CPU outperforms the GPU when the number of operations are considerably low. The GPU

begin to outperform the CPU as the number of operations increase. It is a matter of fact that

in a continuous domain as the number of discretisation increase the finer and more accu-
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1

Ũ
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Fig. 6.4. The parameters of the T2FSs used in experiments.

rate the result is. The trade-off between accuracy and computational complexity is always

a decisive issue, in real applications one must make a decision on whether accuracy or effi-

ciency (computational) is of more importance. What the GPU in this test offers reasonably

efficient alternative preserving reasonable accuracy represented by the greater number of

discretisation points.

• Experiment 2 calculates the addition of two type-2 fuzzy sets using the α-cut representation

theorem. The only difference between this test and the first test is the performance measure

part. In this test the time the GPU takes in the addition operation is calculated without

the time it takes to transfer the data from the CPU memory to the GPU memory. It is

documented in the literature of GPU computing, e.g. (Nickolls & Dally 2010, Sanders &

Kandrot 2010, Wen-mei 2011), that the bottle neck in GPU performance is caused by the

delay in data transfer from CPU memory to GPU memory. The aim of this test is to evaluate

the effect of this issue in the performance gain of the GPU over the CPU. The results of this

test are presented in Figure 6.6 and Table 6.4. Figure 6.6 shows great GPU performance gain

over that of the CPU. This is an expected behaviour since the addition is only performed
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once on every thread. Consulting Table 6.4 also assures the same trend of proportional

increase in performance gain with respect to the increase in the number of α-cuts. This

trend is expected to be valid for all tests that compare GPUs to CPUs. The main objective

of this test is that if the bottle neck of data transfer is reduced the gain of performance of the

GPU over the CPU is significantly high even with small number of data i.e. α-cuts. This is

clear from the first row of Table 6.4 which reported 92 % gain in performance in favour of

the GPU with only 128 α-cuts.

• Experiment 3 calculates the following formula, (Ã + B̃)× C̃, between three type-2 fuzzy

sets using the α-cut representation theorem. The objective is to measure the performance of

the GPU and CPU with a more complex operation. This calculation involves the addition

and multiplication of the three type-2 fuzzy sets. The addition between Ã and B̃ is calculated

and the the result is multiplied to C̃. The implementation of this function on the GPU

involves invoking the GPU two times, one to calculate the addition operation and the other

for computing the multiplication operation. The result is shown in Figure 6.7 and Table 6.5.

Figure 6.7 verifies the same trend of proportional increase in performance gain of the GPU

over the CPU with respect to the increase in the number of α-cuts. The interesting part of

this test is comparing Table 6.5 with Table 6.3. There is an increase in the performance gain

of the GPU over the CPU in all the rows. This shows that the increase in the number of

operations conducted in parallel using the GPU gives it increased performance gain over the

CPU.

• Experiment 4 calculates the following,(Ã∩ B̃)∪ C̃, which involves also three type-2 fuzzy

sets. The α-cut representation theorem over the GPU and the α-plane representation the-

orem over the CPU are used as the basis for comparison. The objective is to compare the

performance of the α-cut representation theorem against the α-plane representation theo-

rem. The result is shown in Figure 6.8 and Table 6.6. Figure 6.8 shows the huge difference

in performance gain between the GPU over the CPU. This is because the operations that

involved the α-plane representation theorem involved the use of the union and intersection

of IVFSs. It has to be mentioned that the number of discretisation of the domain of the α-

planes is chosen to be the same number of α-cuts for each run. Table 6.6 clearly shows that

the α-cut representation theorem outperforms the α-plane representation theorem signifi-

cantly. The fact that implementing this α-plane require revisiting the memory which slows

down the GPU performance.
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Table 6.3. Adding two T2FSs using alpha-cuts in GPU and CPU.

Alpha-cuts CPU Time GPU Time GPU gain %

128 0.00483 0.009468 -97

256 0.009827 0.015484 -58

512 0.020123 0.01898 6

1024 0.039842 0.031107 22

2048 0.078865 0.056751 29

4096 0.1613 0.092105 43

Table 6.4. Adding two T2FSs using alpha-cuts in GPU and CPU (GPU Time, processing only).

Alpha-cuts CPU Time GPU Time GPU gain %

128 0.008908 0.005433 40

256 0.009688 0.005148 47

512 0.020284 0.005291 74

1024 0.047659 0.005512 89

2048 0.077672 0.006614 92

4096 0.156965 0.008136 95

6.4 Discussion

This chapter presented an investigation on the significant improvement in performance the the α-

cut representation theorem presented in this thesis can provide. The reason behind the improved

performance is the ability to process type-2 fuzzy sets using graphical processing units for the

first time. Four experiments are carried out to explore this capability and can be summarised as

follows:

1. Experiment 1: The GPU is compared against the CPU using the α-cut representation theo-

rem to add two type-2 fuzzy sets.

2. Experiment 2: The GPU processing time only is compared against the CPU using also the

α-cut representation theorem to add two type-2 fuzzy sets.

3. Experiment 3: The GPU is compared against the CPU using the α-cut representation the-

orem to calculate an operation that involves addition and multiplication, and three type-2

fuzzy sets.

4. Experiment 4: The α-cut representation theorem on GPU is compared against the α-plane

on CPU to calculate an operation that involves union and intersection, and three type-2 fuzzy

sets.
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Table 6.5. The operation (Ã+ B̃)× C̃ using α-cuts processed on GPU and CPU.

Alpha-cuts CPU Time GPU Time GPU gain %

128 0.01127 0.018877 -68

256 0.017758 0.019235 -9

512 0.035078 0.028526 19

1024 0.067378 0.045793 33

2048 0.136509 0.080956 41

4096 0.270125 0.150206 45

Table 6.6. The operation, (Ã∩ B̃)∪ C̃, using α-cuts on the GPU and α-planes on the CPU.

Alpha-cuts CPU Time GPU Time GPU gain %

128 0.258035 0.021578 92

256 0.466861 0.021678 96

512 0.934989 0.029733 97

1024 1.864581 0.048964 98

2048 3.737532 0.078377 98

4096 7.441693 0.145887 99

These four tests in general showed the potential of the α-cut representation of type-2 fuzzy sets

for practical implementations. Overall, the α-cut representation can be easily implemented on

GPUs, in fact, it is natural and straight forward for α-cuts to be processed in parallel. The results

investigated in the previous section can be summarised as follows:

1. The performance gain of the GPU will always increase as the number of α-cuts increase.

This is shown across all the tests, and there has always been a threshold where the GPU will

outperform the CPU.

2. The number of operations that can be processed in parallel also affects the performance gain

of the GPU. Increasing the number of parallel operations increases the performance gain of

the GPU over the CPU. This can be seen by comparing Experiment 3 and Experiment 1, in

which percentage of performance gain in Experiment 3 is more than Experiment 1.

3. The processing time of the GPU is massively quicker than that of the CPU, and the delay in

processing is only caused by the data transfer. This is clearly shown by comparing the results

of Experiment 2 to the results of Experiment 1. The importance of this information comes

from the fact that the increase in bandwidth and memory speed is the most significant factor

in the overall processing time, something of a bottle neck. The bandwidth of the NVIDIA

GTX 590 is 328320 MB/sec compared to 128000 MB/sec of the NVIDIA 9800 used in this

thesis. This will prove to be pivotal to the increase in performance gain.

4. The comparison between any other representation and the α-cut representation in terms of

the speed of processing using the GPU proved to be extremely significant. The α-plane

representation is chosen because it also has some degree of parallelisation, but not much as
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Fig. 6.5. Adding two T2FSs using alpha-cuts in GPU and CPU.

the α-cut representation theorem. Each α-plane may be processed independently, but still

the algorithms used for interval valued fuzzy set calculations are not fully in parallel.

6.5 Summary

This chapter showed that the α-cut representation theorem is extremely parallel. This fact makes

the α-cut extension principle extremely useful for practical applications, specially if a GPU can be

used. To date no implementations of type-2 fuzzy sets on the GPU are found in the literature. To

date the α-cut representation of type-2 fuzzy sets is the only representation implemented on a GPU.

In Chapter 3 a novel representation for type-2 fuzzy sets have been defined, along with a powerful

extension principle that makes manipulating this representation very simple and straight forward.

In Chapter 4 and Chapter 5, uncertainty measures and type-2 fuzzy numbers and arithmetic have

been defined using the extension principles presented in this thesis. Finally, in this chapter the

independent nature of the α-cuts is proved to be useful for parallel processing in the massively
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Fig. 6.6. Adding two T2FSs using alpha-cuts in GPU and CPU (GPU Time, processing only).

parallel GPUs, which shows great potential for practical applications. Overall, in Chapter 3, the α-

cut decomposition theorem was presented, and also shown that functions and operations on T2FSs

can be extended from crisp sets directly.These definitions formed the basis for the theoretical and

practical investigation presented in the rest of the thesis. In Chapter 4 measures of uncertainty

for T2FSs was defined, and in Chapter 5 arithmetic operations were defined in the same manner.

These two chapters demonstrated the theoretical advantage, i.e., the ease of defining operations

for T2FSs using the α-cut representation theorem. Finally, in this chapter massive computation

performance provided by the α-cut representation theorem was explained.

144



Fig. 6.7. The operation (Ã+ B̃)× C̃ using α-cuts processed on GPU and CPU.
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Fig. 6.8. The operation, (Ã∩ B̃)∪ C̃, using α-cuts on the GPU and α-planes on the CPU.
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Chapter 7

Conclusion

This Chapter concludes the thesis by summarising the key points and outcomes of the research

and discussing the directions for future work.

This thesis first started by discussing the notion of reasoning under uncertainty and its central-

ity for real world applications. It has been argued in Chapter 1 that uncertainty has many facets

such as probability theory and fuzzy logic. The choice of fuzzy logic stems from the capability

of fuzzy logic to model reality in human-like terms, which can be seen by the introduction of

linguistic variables. On the other hand, it has been shown that extensions of fuzzy logic such as

type-2 fuzzy logic model extra-levels of uncertainty. In general the role of type-2 fuzzy sets and

its current state-of-the-art was discussed. Also Chapter 1 provided the objectives and motivation

behind investigating type-2 fuzzy sets and its mathematical representation. It has been shown

that type-2 fuzzy sets are not as popular as type-1 fuzzy sets in applications. The reason behind

this was shown to be the complex mathematical nature of type-2 fuzzy sets compared to standard

fuzzy sets. In order to overcome this obstacle, it has been argued that a suitable mathematical

representation that is simple to manipulate with low computational cost is required.

This assertion was the starting point for Chapter 2 by the overview of the literature of standard

fuzzy sets and its extensions. Concentration have been made towards type-2 fuzzy set representa-

tions in order to thoroughly study its mathematical structure. throughout this investigation careful

emphasis has been put on the mathematical notations and definitions with an attempt to identify

different relations and connections between different extension to fuzzy sets. The relation between

classical sets, fuzzy sets, interval valued fuzzy sets and type-2 fuzzy sets has been highlighted.

Chapter 3 constituted the main outcomes of this thesis, namely, the α-cut representation theo-

rem of type-2 fuzzy sets. This representation theorem allowed the mathematical representation of

type-2 fuzzy sets using a collection of classical sets. This significant step provided type-2 fuzzy

logic with a powerful tool for mathematical manipulation. This α-cut representation theorem

made possible the direct extension of functions and operations from classical sets to type-2 fuzzy

sets through the α-cut extension principle. This principle made possible the definition of several
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mathematical concepts for type-2 fuzzy sets.

In Chapter 4 different uncertainty measures have been defined utilising the α-plane extension

principle presented in Chapter 3. Cardinality, similarity, subsethood, fuzziness and non-specificity

measures have been defined for type-2 fuzzy sets. Mathematical proofs and axioms has been

identified for type-2 fuzzy sets and interval valued fuzzy sets. This methodology has been shown

to have the possibility to generalise to other functions and axioms.

The α-cut representation theorem has been found very useful to define different kinds of type-

2 fuzzy numbers. It also has been used to extend arithmetic operations from classical numbers to

type-2 fuzzy numbers in a straight forward manner. The investigation in Chapter 5 has included

some worked examples in order to show the usefulness of these arithmetic extensions. Also the

new concept of Quasi type-2 fuzzy sets and numbers has been investigated.

Finally, in Chapter 6 the independent nature of each α-cut of type-2 fuzzy sets allowed parallel

processing be applied for type-2 fuzzy set operations for the first time. Various experiments has

been used to demonstrate the ability and impact of the α-cut representation theorem on type-2

fuzzy sets. Computational cost has been measured by the time required to process and produce

results.

7.1 Conclusions

This thesis presented a novel α-cut representation for type-2 fuzzy sets. This thesis has mainly

been centered around this representation and then in an onion-like manner has expanded on this

idea.

The main conclusions of this thesis can be summarised as follows:

1. The α-cut representation of type-2 fuzzy sets is defined. It has been proven in Chapter

3 that the α-cut representation of type-2 fuzzy sets is a mathematical representation that

universally preserves the relationship between the different set theoretic formalisms, i.e.,

type-2 fuzzy sets, interval valued fuzzy sets, standard fuzzy sets and classical sets.

2. The α-cut extension principle of type-2 fuzzy sets is defined. It has been proven in Chapter

3 that the α-cut representation of type-2 fuzzy sets is functional through an operational

calculus for manipulation. The α-cut extension principle is the basis for this calculus, it can

extend operations directly in a simple and elegant manner from classical sets to type-2 fuzzy

sets.

3. The α-plane extension principle is defined. It has been proven in Chapter 3 that the α-plane

extension principle can be defined and can extend functions and operations from interval

valued fuzzy sets to type-2 fuzzy sets, directly.
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4. The α-cut representation of type-2 fuzzy sets quantifies uncertainty. It has been proven in

Chapter 4 that the α-cut extension principle can extend measures of uncertainty to type-2

fuzzy sets.

5. The α-cut representation of type-2 fuzzy sets defines arithmetic. It has been proven in Chap-

ter 5 that the α-cut extension principle can extend arithmetic operations from classical sets

to type-2 fuzzy sets, directly.

6. Type-2 fuzzy set operations are processed in parallel. It has been proven in Chapter 6 that the

α-cut representation theorem allow type-2 fuzzy set functions and operations be processed

in massively parallel GPUs. Which lead to significant reduction in processing time.

Each of these points will now be explored in greater detail.

7.1.1 The Alpha-cut representation of type-2 fuzzy sets is defined

The α-cut representation for standard fuzzy sets plays a fundamental role in extending functions

and operations. These operations are extended through the α-cut extension principle. The ad-

vantage the α-cut extension has over the original extension principle is that it is set-wise rather

than point wise. A comparable representation and extension principle for type-2 fuzzy sets prior

to this research work was not available. The α-cut representation theorem presented in Chapter

3 is a natural extension to the α-cut representation theorem for fuzzy sets. The main objective of

this representation is that it universally preserves the lower order uncertainty semantics across the

any uncertainty reduction process. In fact a reduction rule is presented in Chapter 3 that shows

that the α-cut representation reduces to the α-cut representation of interval valued fuzzy sets when

secondary uncertainties about the grade of membership disappears.

This α-cut representation of interval valued fuzzy sets is also defined in Chapter 3 as an alter-

native for other attempts that fall short of this reduction rule. If the uncertainty about the member-

ship grade totally diminishes, the α-cut of a type-2 fuzzy set reduces to the α-cut definition of a

classical fuzzy set. And if all uncertainty about a type-2 fuzzy set disappears it reduces to a crisp

defined by the α-cut at any level. this very important feature of the α-cut representation for type-2

fuzzy sets makes it universally applicable to all the sets under discussion.

7.1.2 The Alpha-cut extension principle of type-2 fuzzy sets is defined

The universality of the α-cut representation theorem will not be of any use if not for a meaningful

calculus for manipulating operations on these sets. This made possible by the α-cut extension

principle for type-2 fuzzy sets presented in Chapter 3. To date no comparable result have been

presented for type-2 fuzzy sets. The reduction rule is also satisfied through the α-cut extension
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principle for type-2 fuzzy sets. This particular property makes it very easy to extend the same

operation across al the α-cut extension principles of standard and interval valued fuzzy sets.

The range of functions and relations that can be extended through the α-cut extension principle

is shown to be the same class of functions and relations extended by the α-cut extension principle

of standard fuzzy sets. This cutworthy property allow any function applied to classical fuzzy sets

through its α-cut extension principle can equally be applied to type-2 fuzzy sets.

7.1.3 The Alpha-plane extension principle is defined

The α-plane representation theorem has recently been proposed as a tool for developing a method

of defining the Centroid for a type-2 fuzzy set. In Chapter 3 this representation is used to define

an extension principle that allow functions and operations be extended from interval valued fuzzy

sets to type-2 fuzzy sets, directly. No comparable results the α-plane representation theorem have

been defined prior to this thesis.

The main value this extension principle add, is the capability to extend operations whether

point-valued or set-valued which have been defined for interval valued fuzzy sets to type-2 fuzzy

sets. This feature shown to be useful in Chapter 4 to define some of the uncertainty measures for

type-2 fuzzy sets.

7.1.4 The Alpha-cut representation of type-2 fuzzy sets quantifies uncertainty

In Chapter 4, uncertainty measures for type-2 fuzzy sets have been defined using the both the

α-plane extension principle and the α-cut representation theorem for type-2 fuzzy sets. No com-

parable results using these α-based extension principles have been defined prior to this thesis. In

fact the axioms of these measures have been extended before defining the operations. This was

made possible by defining some of the important concepts such as the height, core, support and

containment of fuzzy sets in Chapter 3.

The cardinality, subsethood and similarity are all considered comparative measures that in fact

calculate some features of the type-2 fuzzy set that are useful in some applications. The fuzziness

and non-specificity are uncertainty measures that are unique in the standard fuzzy set theory, and

widely used in measuring the uncertainty-based information within the set. These measures are

significant to the field of generalised information theory, and the methodology presented allow

comparative studies between different kinds of sets under study in thesis.

7.1.5 The Alpha-cut representation of type-2 fuzzy sets defines arithmetic

In Chapter 5, type-2 fuzzy numbers and associated arithmetic have been presented. It is a direct

implementation of the α-cut extension principle for type-2 fuzzy sets. Different kinds of interval
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valued and type-2 fuzzy numbers have been defined in order to describe different practical situ-

ations. It has been shown how to deal with continuous type-2 fuzzy numbers in detail as it need

more attention. It makes use of interval analysis, for example the arithmetic operations can be

defined using interval arithmetic. In the discrete case which can directly be implemented a worked

example showed how to perform its arithmetic calculations.

The importance of the definition of type-2 fuzzy numbers and arithmetic is that it is a new

beginning for a completely new area. Prior to this thesis no formal definition of type-2 fuzzy num-

bers comparable to that of Chapter 5 is available. The arithmetic operations satisfy the reduction

rule, and can be equally used to define operations for standard and interval valued fuzzy sets.

7.1.6 Type-2 fuzzy set operations are processed in parallel

In Chapter 6, the independent nature of the α-cuts of type-2 fuzzy sets have been investigated.

This independent nature allows operations on type-2 fuzzy sets to be processed in parallel. The

operation of type-2 systems on massively parallel devices (GPUs) are shown to be successfully

applied. It is well known that for a continuous type-2 fuzzy set, the increase on the number of

α-cuts gives a more accurate solution. At the same time the increase in the number of α-cuts gives

increased performance on the GPUs.

The performance gain of the GPU has been proven to always increase as the number of α-cuts

increase. This is shown across all the experiments. The second important conclusion showed that

the increase in the number of parallel operations increases the performance gain of the GPU over

the CPU. The second experiment showed that the increase in bandwidth and memory speed affects

the overall processing time very significantly. This proved that the α-cut representation is ideal for

the current trends in GPU technology development.

The comparison between the α-cut and α-plane representations of type-2 fuzzy sets showed

that the difference in speed of processing using the GPU is extremely significant. The discussion

also demonstrated that performing the addition using the point-wise methods such as the vertical

slice representation and the wavy slice representations are very difficult to implement on the GPUs

because of their iterative nature. Overall, Chapter 6 demonstrated without further doubt that the

α-cut representation is suitable for parallel processing using GPUs, and allowed for first time the

implementation of a full blown type-2 fuzzy set on a GPU. This is expected to be crucial for the

future of type-2 fuzzy applications.

7.2 Future work

This thesis has presented the novel α-cut representation theorem for type-2 fuzzy sets. Although

several questions have been answered, but many areas of further work can be explored and needs
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more investigation. The following areas of future work can be identified:

Generalisation The relation between the different extensions of fuzzy sets has been identified, namely,

between type-1 fuzzy sets, interval valued fuzzy sets and type-2 fuzzy sets. This relation

has been associated with classical sets through the concept of α-cuts. These relations may

as well be extended to more generalised type-n fuzzy sets and interval type-n fuzzy sets in a

progressive manner. Another generalisation may affect other non-standard fuzzy sets such

Intuitionistic fuzzy sets, vague sets, Grey sets, and so on.

Relationship The α-cut representation theorem of type-2 fuzzy sets involves defining a number of crisp

set pairs that bare close relation to the concept of rough sets. The α-planes on the other hand

bare close relation to fuzzy rough sets. This connection between rough sets and type-2fuzzy

sets is definitely worth further investigation. It has the potential of introducing new ideas

for both fields.

Extensions The concept of a type-2 fuzzy number opens a new area of type-2 fuzzy mathematics. Many

mathematical functions can be developed such as the square, square root, logarithm, equa-

tions, etc. All of which can be extended directly from classical set theory. The mathematics

allow the concepts and functions from the fields of probability for example be extended to

type-2 fuzzy probabilities. A range of averaging functions and aggregation operation can be

extended such as the Choques integral, which is popular n many applications.

Applications The massively parallel nature of the α-cut representation theorem has the potential of real

time applications to be explored. Further work would be to develop real time systems that

can make use of GPUs. The implementation of type-2 fuzzy sets on GPUs also introduces

new fields of application which GPUs are already powerful such as image processing.

7.3 Summary

In this thesis, the foundation for the theory and applications of type-2 fuzzy alpha-cuts is presented.

A theory that is expected to have great implications on the progress and advancement of both

the theoretical and practical aspects of type-2 fuzzy sets. This theory opens a wide range of

opporunities for active research in type-2 fuzzy sets and generalised information theory. Whether

this can lead to type-2 fuzzy sets being implemented and applied largely in the industry is an open

question. However, with number of functions and operations provided buy this dissertation it will

definitly lead to more theoretical investigation.
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Appendix A

GPU Computing using CUDA C

In the following a primer on the memory management and architecture of the GPUs is provided.

GPUs are massively parallel processing units mainly designed for graphics rendering. Only re-

cently GPUs have been used for general purpose computing That span many disciplines. NVIDIA

released a line of GPUs that support both graphics rendering and general purpose computing.

Their support of GPU computing have culminated by the release of a software toolkit and SDK

called CUDA, that made it possible to easily develop applications. Now, CUDA technology is

getting more popular amongst academia and the number of publications that are using this tech-

nology is growing. A comparison between the architecture of the GPU and CPU can be found in

Figure A.1. All the material of this primer is taken from NVIDIA (2010) and Kirk & Wen-mei

(2010).

• In this thesis the NVIDIA CUDA programming model is used. This model provides exten-

sions to the C programming language in order to make use of NVIDIA GPUs.

• The CUDA model allows C/C++ functions to be executed in parallel on the GPUs, which

at the same time give low learning curve. These functions within the CUDA development

environment are called kernels. These kernels when executed in the GPU are running as

threads on the multiprocessors provided by the GPU.

• The threads differ in their numbers from one GPU to the other. They are arranged in a

hierarchy such that there are a fixed number of threads that form a block of threads. These

blocks are also arranged independently, and there are fixed number of blocks that form a

grid.

• The independence of these blocks are shown through their memory, which can only be

accessed by the threads of that particular block. The block memory is relatively small and

only shared by the threads in that block only, which makes it as fast as register access.

• There is also a global memory for the whole GPU which is relatively large. This memory is
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accessible by all threads of all the blocks. The problem with this memory is that it has very

high latency.

• Another type of memory available for each thread individually and not shared by any other

is called the local memory. This local memory also has high latency, but there is also a

constant memory available for all threads. This constant memory is readable for all the

threads with relatively fast access and low latency.

• Figure A.2 shows a schematic diagram of the CUDA programming model. It is very impor-

tant to stress on the issue of memory access optimisation. The memory should be accessed

in such a way that the kernels will make the best use of the limited shared memory.

• It is obvious that the best practice is to send the data in full and then send the instruction

to process the data. Iterations and recursive algorithms cause delay to the GPU processing

time because of their high demand for shared memory.

Fig. A.1. GPUs compared to CPUs, taken from Nvidia (2010).

From the year 2010 some textbooks and simplified books for CUDA programming has been pub-

lished. The number of papers that involve CUDA programming is growing significantly. This

powerful tool for general purpose computing is proving to be crucial for future processing.
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Fig. A.2. CUDA programming model, taken from Kirk and Wen-mei (2010).

165



Appendix B

List of publications by the author

The following is a list of publications by the auther which is related to the thesis:

• Hamrawi, H., Coupland, S. and John, R. (2009), Extending operations on type-2 fuzzy sets,

in Computational Intelligence (UKCI), 2009 UK Workshop on, Essex, UK.

• Hamrawi, H. and Coupland, S. (2009a), Non-specificity measures for type-2 fuzzy sets, in

Fuzzy Systems, 2009. FUZZ-IEEE 2009. IEEE International Conference on, Korea, pp.

732737.

• Hamrawi, H. and Coupland, S. (2009b), Type-2 fuzzy arithmetic using alpha-planes, in

Fuzzy Systems, 2009. IFSA/EUSFLAT 2009. IFSA International Congress on, Portugal,

pp. 606611.

• Hamrawi, H. and Coupland, S. (2010), Measures of uncertainty for type-2 fuzzy sets, in

Computational Intelligence (UKCI), 2010 UK Workshop on, pp. 16.

• Hamrawi, H., Coupland, S. and John, R. (2010), A novel alpha-cut representation for type-2

fuzzy sets, in Fuzzy Systems (FUZZ), 2010 IEEE International Conference on, Barcelona,

Spain, pp. 18.

• Coupland, S., John, R. and Hamrawi, H., eds (2010), Type-2 Fuzzy Logic: State of the Art

and Future Directions, De Montfort University, Imperial College, London.

• Hamrawi, H., Coupland, S. and John, R. (2010), Type-2 Fuzzy Alpha-cuts, Submitted for

Publication in Information Sciences.

166


	Introduction
	Motivation
	Hypothesis and Objectives
	Contributions of the Thesis
	Structure of the Thesis

	Representations of Type-2 Fuzzy Sets
	Type-1 Fuzzy Sets
	Interval Valued Fuzzy Sets
	Type-2 Fuzzy Sets
	Operations using Vertical Slices
	The Wavy Slice Representation
	The Geometric Representation
	Zadeh's T2FSs: Revisited
	Alpha-planes and zSlices
	Discussion
	Summary

	Alpha-cuts for Type-2 Fuzzy Sets
	Alpha-cuts of IVFSs: An Alternative Approach
	T2FS Alpha-plane Extension Principle
	Alpha-cuts of Type-2 Fuzzy Sets
	More Definitions for T2FSs
	Cutworthy property
	Summary

	Measures of Uncertainty for T2FSs
	Cardinality
	Similarity Measures
	Fuzziness
	Non-specificity Measures
	Summary

	Type-2 Fuzzy Numbers and Arithmetic
	Type-2 Fuzzy Numbers
	Type-2 Fuzzy Arithmetic
	Summary

	Parallel Computation and T2FSs
	The Parallel Nature of the T2FS Alpha-cut RT
	Experimental Design
	Results
	Discussion
	Summary

	Conclusion
	Conclusions
	Future work
	Summary

	GPU Computing using CUDA C
	List of publications by the author

