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ABSTRACT 

Assembly operation plays an important role in the industry due to the fact that:­

(a) it accounts for a substantial proportion of production cycle time and, 

(b) it requires high precision. 

Recently, the replacement of the human function in assembly operation by robots 

has been considered, since:-

(a) it is difficult for human being to perform high precision and high speed . 

assembly operation, 

(b) the cost of human labour is increasing rapidly, 

(c) due to the automation of other production steps, reliable and automated 

assembly operation is necessary and, 

(d) people need to be libra ted from this repetitive work. 

Because of the above, research into precise and fast robotic assembly operations is 

becoming an important subject. Furthermore the peg-hole insertion operation, which 

is the widest used simplified industrial application model, has special prominence. 

The basic research includes hardware design, control method, geometric analysis and 

strategy analysis. In terms of the hardware, various complex six-component force 

sensors, passive compliance and vibration systems have been designed for this 

purpose. In the control area, a disturbance filter and real-time control have been 

applied to the system to enhance performance. Techniques using geometric concepts 

such as pre-images and back-projections, models of contact configurations, pattern 

recognition and fine motion analysis have been studied. Based on this research, the 

assembly operation can be achieved with a clearance varying from 0.01 mm to 0.5 

mm. The operational time is 2 seconds to 5 seconds. 

The remaining basic problems are:-
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(a) whether it is reliable to achieve the assembly operation with the current 

hardware design such as force sensors or RCC (Remote Centre Compliance) 

and, 

(b) whether there is any possibility to simplify the hardware design. 

In this thesis, an important problem of interpretation of the contact configuration 

between the peg and the hole is presented. It is pointed out that it is difficult to use 

the signals from the force sensors to present the positional relationship between the 

peg and the hole and to guide the adjustment of the system. One set of the signals 

from the force sensor can present various positional relationships between the peg 

and the hole. It can be concluded from this that the assembly operation with a force 

sensor is not always· possible. It is also found that, if the peg is in a certain area, 

information can be obtained from the signals of the force sensor which can probably 

be used to achieve one step adjustment. Based on this analysis, a strategy to 

perform a precise assembly operation, with the ambiguity ofthe contact configuration 

through the force sensors, is provided. Furthermore it is found that it is possible to 

achieve the assembly operation without force sensors or RCC. As a conclusion, the 

general principles to investigate the strategies are provided. To prove the reliability 

of the strategies, a simulation of the assembly operation is also presented. The focus 

of this thesis is the presentation of a strategy for reliable, fast and precise robotic 

peg-hole insertion operation. The experiments using UMI-RTX robot are carried 

out with the clearance of 0.02 mm and the operational time of 2.5 seconds. 
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NOTATION 

The notation in this thesis can be divided into five sections, see Fig. I and Fig. II: 

(a) The basic parameters of the system: for example, the dimensions of the peg and 

hole, the mass and inertia of the peg, etc. These should be prior knowledge. 

(b) The designed parameters: the input forces (including torques) to the peg and 

their duration for every step. These should be designed according to the known 

basic parameters (a). 

(c) The parameters for the movement of the peg: the velocities and accelerations 

of the peg during each step. 

(d) The parameters for the contact forces and errors between the peg and hole: the 

parameters which indicate the state of the process. In this paper, they can be 

predicated and analyzed according the first two types of parameters. 

(e) The parameters for the equations concerning about the pre-images. 

For the sake of distinguishing, in what follows, letters with a subscript "IJ" and ''p'' 

refer to as the parameters measured in the coordinate system of the hole and peg 

respectively. Letters with a subscript "/zw" and ''pw'' refer to the parameters along 

the "Wh"-axis and "Wp"-axis, respectively, where w=x, y, z and W=x, Y, Z. Letters 

with a subscript "i" (i= 1, 2, 3, 4, 5, 6) refer to parameters at the ith event for the 

peg-hole insertion process. Letters with the subscript "n" and "m" refer to their 

minimum and maximum values, respectively. The definitions for the letters can be 

divided into: 

Definitions for the basic parameters of the system: 

O~hYhZh is the frame fixed with the hole, where 0h is defined as the centre of 

the upper surface of the hole, 0hYh is defined as the line from Oh to 

the base of the robot, 0hZh is along the axis of the hole upwards, and 
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00h is perpendicular to 0hYh and 0hZh' 

is the frame fixed with the peg, where Op is the centre of the end­

~urface of the peg, OpYp is parallel to the projection of the 0hYh on 

the end surface of the peg, O~p is along the axis of the peg upwards, 

and O;Cp is perpendicular to OpYp and O~p, 

Op;CppYp~pp is the frame formed by the rotation of O;CpY ~p around Zp axis with 

angle arctan(8h/8;), 

Oh;ChpYh~hp is the frame formed by the rotation of O,;xhYhZh around Zh axis wi!h 

angle arctan(8h/8;) 

I 

is the radius of the peg (mm), 

is the radius of the hole (mm), 

is the length of the peg (mm), 

is the mass of the peg (Kg), 

is the inertia of the peg (Kg.m2), 

is the centre of the peg, 

is the frictional coefficient, 

is the angle between force sensor system and the system according to 

the locations of the strain gauges in tube-design force sensor (rad), 

ith output from the force sensors, 

Definitions for the designed parameters: 

t is the specified time (s), 

F is the force acting on the peg (N), 

M is the torque acting on the peg (Nm), 

B is a damping matrix, 
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Definitions for the ~1ovement of the Peg: 

w is the rotational velocity of the peg (rad/s), 

v is the velocity of the centre of the mass of the peg (m/s), 

a is the acceleration of the centre of the mass of the peg (m/s'1), 

~2 is the translational movement along the Xh axis during the first step 

(m), 

~ Y2 is the translational movement along the Yh axis during the first step 

(m), 

~ 8hx2 is the rotational movement around the Xh axis during the first step 

(rod), . 

Yo· is the translational movement along the Yh axis caused by the rotation 

around the X h axis (m), 

s i is a node in state space, Si = (P, C, I,Q), where P is the position of the 

peg in the configuration space, C is a set of contact points, S is a set of 

potential motion, I is qualitative signal based on the associated physical 

situations; and Q is a heuristic assessment of the "quality" of the conatct 

situations, 

Definitions for the Contact States and Errors Between the Peg and Hole: 

8 is the angle between the axes of the peg and the hole which can be 

considered as a vector whose direction is defined by the right hand law 

(rod), 

are the projections of vector 8 along Xh and Yh axes, respectively. 

These are in the YhOhZh and XhOhZh planes, respectively (rad),(rad), 

is the directed line segment from Oh to Op (m), 

is the directed line segment from the axis Zh axis to the centre of the 
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e 

cc 

co 

C 

G 

a 

· upper surface of the peg (m), 

is the constant used to define the ranges of (Oh0pJhx and (Oh0pJhy (m), 

is the constant used to define the ranges of 8hx1 and 8hyl (,ad), 

is the value used to define the ranges of UhxI and UhyI' 

is the contact force acting on the peg (N), 

is the centre of contact points, 

is the centre of overlap of the contact surfaces, 

is contact point when there is one contact point between the peg and 

hole, 

are two contact points respectively when there are two contact points 

between the peg and hole, 

is the projection of the lowest point of the end-surface of the peg on 

the XhOhYh plane, 

is the angle between the Xh axis and the projection of 0hOp on the 

XhOhYh plane (,ad), 

is the angle between the Xh axis and 0hCI (,ad), 

is the angle between the Xh axis and 0hC2 (,ad), 

is the distance between the side-surface contact point to end-surface 

of the peg (mm), 

~I is the angle between the Yh axis and the projection of 0hOp on the 

XhOhYh plane (,ad), 

PmI is the angle between projection of 0hOp on theXhOhYh plane and 0hCI 

(,ad) 

A is the point whose projection is on the overlap between the projections 

of the contact surfaces, 
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is the angle between the projection of vector 8 on the XhOhYh plane 

and 8hx (rad), 

8· mm ~s the maximum 8 for the insertion (rad), 

flP) is the distance between Oh and C (m), 

are the angles in triangle OhOpC (rad), 

are the angles from OhOp to OhCl and OhC2' respectively (rad), 

o are the contact forces and the direction of their sum is ® or 0 (rad), . 

are the contact forces and the direction of their sum is one of 

following cases: +-®, @'+, +-0, 0-+ (N), 

I is the distance between Oh and any point in the sectioned area (m), 

s is the area of the overlap of the end-surface of the peg and the area 

surrounding the hole (m2), 

is the output from the one of eight groups of the strain gauges of the 

sensor, 

pp is the coefficient between the maximum angle between the axes of the 

peg and the hole in the initial state and the rotational angle in the first 

step, 

Parameters in the equations concerning the pre-images: 

is the connection between a variable and its description, 

E is the description of the relationship between an element and a subset 

which the element belongs to, 

is a symbol which denotes "arbitrary", 

is the pre-image of goal a related to set b, 

is the pre-image of goal a related to a set b and nominal velocity ve·, 
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is the back-projection of goal a related to set b, 

is the back-projection of goal a related to a set b and nominal velocity 

is the forward projection of a with commanded velocity vb·' 

is used to denote the polyhedral environment, 

is the trajectory of the moving object versus time t, 

is the velocity of the moving object versus time t, 

T is the vector including Tit) and Tit), and T = [Tit)~ T.,(t)TJ, 

T is the set of all the possible vectors T, 

1rX is the projection of vector X on the positional space, 

o is the goal of whole procedure operation, 

P*iO) is the weak pre-image which is the set of points which could possibly 

enter the goal recognizably, given sensing and control event, 

is the set difference of the forward projection minus the weak pre-

image, 

are all regions where sticking is possible in the weak minus strong pre-

images, 

Z(HJ is the zero velocity over Hs' 

H is the error detect and recovery range, 

O· . , is the sub-goal with i steps to 0, 

is the pre-image of 0i-l' 

is the time for the end of the ith step in the procedure. 

is the commanded velocity to achieve 0 from 0 1, 

• 
V~i+1 is the commanded velocity to achieve 0i from 0i+l' 

is the angle between the contact force and m axis in ZhpO,Jrfhp plane, 

xvii 



* x 

C; 

SCi 

Ie 

~1 

F* 
$ 

p 

n 

where m = x or y, and M = X or Y, 

is the displacement of the variable x, 

is the nominal value of x, 

is the ith contact point which the peg-hole system obtains between the 

bottom of the peg and the upper-surface of the hole, 

is the ith side-surface which the peg-hole system obtains on the side-

surfaces of the peg and hole 

is the frictional force on the peg from the hole, 

is the contact force acting on the peg, 

is the angle between the commanded velocity v IU and Xh axis, 

is the angle between the commanded velocity va; and Xh axis, 

is the set including all the commanded velocities va1 to achieve G from 

is the set including all the commanded velocities vai to achieve G;.1 

is the nominal value of variable X, 

is the transpose of the vector X, 

f . I * - [* * F* * * * T are orce sensor SIgna sand F$ - Fx, Fy , z' Mx, My , Mz J , 

is actual position, 

is the positional uncertainty ball with p as the centre of the ball, 

is an integer that a sequence of n motions can be found such that each 

motion terminates by the utilization of the environment or the force 

signals, and the final motion terminates in the goal, 

is the unitary vector j along the YQ axis in the a coordinate system, 

is the unitary vector i along the XQ axis in the a coordinate system. 
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Lab is an unitary vector which is along the projection of the vector a on the 

plane b, 
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1.0 Introduction 

Robots play an important role and are widely used in industry. They can be used to 

replace people in dangerous or hard environments and to li?erate people from 

repetitive work. From an industrial point of view, robots can also be used to 

increase production quality, reduce operation time, make a process reliable and 

reduce manufacturing prices. However in most cases, it is difficult to achieve all of 

these demands in one go. 

For example, it is common to think that the use of robots reduces the number of 

jobs for people. However to liberate people from hard physical and mental work is 

one of the purposes of science and technology and is one important sign of the 

development of a society. As science and technology develop, the labour prices 

increase allowing people to have more freedom in life and spend more time on 

research and less time on essential work. Since the use of human labour in 

dangerous areas such as nuclear power plants is immoral and the use of human 

labour in the repetitive situations in the long run brings a lowering of morale, the use 

of robots is a vital pari of the society's development and is widely accepted. 

The high precision provided through the use of robots instead of humans is widely 

acknowledged and warmly welcomed. In most cases, a new technology like robotics 

which provides lower operation times, high quality and high reliability leads to high 

costs to begin with. To achieve a wider application, it is necessary to reduce costs 

to a range which can be accepted by industry. 

In almost all manufacturing processes, the assembly is an essential step and also one 

of the most difficult. Manual assembly operation increases the operation time, 

reduces the reliability and prohibits the process of automation. So machinery or 

robotic assembly operation research is widely needed. The robotic peg-hole insertion 
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operation is the most widely used assembly operation model and heavily researched. 

If a precise peg-hole insertion operation can be achieved through cheap robots, many 

practical assembly problems can be solved. 

Robotic assembly can provide high reliability and high· precision in the 

manufacturibng . process and liberate people from repetitive and sometimes 

dangerous work. 

In this chapter, tl}e following problems are addressed:­

(a) what is the purpose of robotic peg-hole insertion? 

(b) what are the basic current research directions? 

(c) what is the extent of this research? 

(d) what is the contribution of this thesis? 

The applications of assembly operation in life and industry is described in Section 

1.1. The basic research directions including hardware design, control input design, 

geometrical analysis and strategy investigation through pre-image and back-projection 

concepts are studied in Section 1.2. The current extent of major research areas are 

presented in Section 1.3. The organization of this thesis is shown in Section 1.4. 

1.1 Application and motivation 

So far the most advanced level of robotic assembly operates with clearance of 0.02-

0.06 mm, while the accuracy of the end-effector of the robot is about 0.2-0.4 mm. 

Some people are trying to increase the accuracy of the robot to achieve this more 

precise assembly operation, but at the same time, the price is also increased. 

Basically, the objective is to achieve high accuracy assembly operations with limited 

cost increase. 

The importance of this project can be seen in several ways. Firstly, from the logical 
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point of view, it can be found that almost everything is a unit which needs to be 

assembled by bringing different pieces together. For example, tables, chairs, indeed 

any items whi~h are not single parts. If a ~orker is manufacturing. a table, he 

manufactures pieces which can be used to be assembled into a table rather than 

making a table in one go. So assembly operations are an essential step for industrial 

processes. 

In industry worldwide plenty of assembly robots are used. There are 16 thousand 

robots in Japan, and 8 thousand robots in America (1-4). These robots are widely 

used. In Japan, there are some associations from which companies can rent very 

expensive assembly robots. In America, IBM, for example, has used assembly robots 

to replace people and obtain 100 percent success in the quality requirements. 

In research the robotic peg-hole insertion operation is very interesting and 

challenging. It is considered as the most difficult robotic task due to its high 

requirement on accuracy. MIT takes the leading role in the world (1-4). 

1.2 Research issues 

The current research can be divided into four parts:-

(a) The basic research is about hardware design. Assuming there is a person who 

is trying to insert a key into a lock:-

(i) Firstly he would determine the neighbourhood of the lock, 

(ii) Secondly he would move the key to touch the neighbourhood of the lock, 

and 

(iii) Thirdly he would sense the forces acting on his hand rather than bending 

over to stare at the lock, and adjust the state of the key to achieve the 

insertion according to the force signals. 
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At the same time, it can be found that no one would insert the key with a stiff 

wrist. People relax the wrist in the insertion procedure. So the hardware design 

includes two parts: the force sensor design and flexible wrist design, a typical 

design is Remote Centre Compliance. The problem in using a force sensor is 

that it is too expensive and easily damaged. The problem of the usage of RCC 

is that it can not be controlled like a human, and it decreases the accuracy of the 

end-effector of the robot. It would look like a weak person with a shaky hand. 

(b) In practice, people can open the door just by randomly moving the key (Fig. 1). 

So vibration can be considered as one method in the assembly operation. 

People in the control area are studying the best vibration trajectories and 

frequencies. 

A PERSON IS TRYING TO OPEN THE DOOR 

Fig. 1 A trajectory of a key in the 
approach operation 

(c) The symbolic presentation of the contact parts and the contact configuration 

have been obtained and can be used to efficiently present the system. 

(d) In strategy investigation, concepts such as pre-images and back-projections have 

been provided (Fig. 2). 

How to structure the pre-images which eventually include the initial area is a 

very complex problem. 
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1.3 Review of previous work 

During the last twenty years, a great deal of attention has been focused on robotic 

peg-hole insertion (1-4). Recently, there are four major research parts:-

(a) passive accommodation used in the robotic peg hole insertion operation (5-23) 

(i) compliant wrist and work station (5-14) 

(ii) vibratory motion (15-19) 

(iii) air and gas steam (20-21) 

(iv) magnetic force (22-23) 

(b) active accommodation used in the robotic peg-hole insertion operation (24-54) 

(i) position feedback based upon force information (24-47), 

(ii) learning control algorithm (48-52), and 

(iii) a nUllifying strategy (53-54) 

( c) Contact dynamics analysis (55-67) 

(i) The generalized damper models with sliding (55-59) 

(ii) Friction (60-61) 

(iii) Compliant Motion (62-67) 
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(d) Fine motion strategies (68-100) 

(i) Pre-images (68) 

(ii) back-projection and forward-projection (69) 

(iii) error-recovery-detection (70) 

(iv) sensorless (71-75) 

1.3.1 Passive accommodation used in the robotic peg hole insertion operation (5-23) 

A number of methods have been developed using the passive accommodation 

concept. These can be divided into the four different categories (1): 

(a) Compliance method (5-14) 

A degree of compliance can be put into the assembly system which deforms under 

the influence of the assembly forces, thus reducing the misalignment (30). Early 

devices developed to assist the alignment of components used 'floating heads'. 

Several authors (2,3,5, 9, 10 and 12) at the Carles Stark Draper Labs (USA) have 

proposed the utilization of passive compliance in parts mating applications. They 

used the peg-in-hole operation to model a typical assembly task and advocated the 

use of chamfers to reduce the accuracy required to position a peg over a hole. This 

work led to the development of a device called the Remote Centre of Compliance 

(RCC), which was the first commercially available and most successful passive device 

for peg-into-hole type assembly operation. 

The RCC strategy can be summarised schematically as in Fig. 3: 
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Fig. 3 The block diagram of assembly system using Remote Centre Compliance 
(RCC) 

However, the use of RCC can cause some problems (1,20): 

(a) RCC would cause vibration of the peg, 

(b) RCC would cause large displacements to be generated by a small force, 

(c) Permitted initial position error of the peg would be restricted by the width of 

the chamfer, 

(d) The robot must produce great power to press the peg into the hole, 

(e) RCC would cause some uncertainty in the positioning of the peg and 

(t) The approaches using RCC do not consider the effects of uncertainty on the 

resulting assembly strategies. 

The assembly of the chamfered peg-hole has been performed using an RCC device, 

most successfully when the peg is in, or partly in, the hole (48). When the peg 

approaches the chamfer of the hole, the contact forces make RCC provide the 
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necessary displacement and rotation of the peg for insertion. In this case, RCC can 

be regarded as a mechanically executed mapping which transfers the force/moments 

signals to the desired motion. 

(b) Vibratory motion method (15-19) 

The idea of utilizing vibratory equipment to absorb the positional error between the 

peg and hole, by giving one of them a planar random movement, has been exploited. 

Since the robot ~olding the peg has limited sensing ability, the direction of the 

vibration cannot be prior knowledge. Correct insertion is thus difficult to obtain in 

a short process time (1). 

1.3.2 Active accommodation used in the robotic peg-hole insertion operation (24-

54) 

The sensors most often used for this accommodation include visual sensors, force or 

torque sensors and proximity sensors (1 and 35). The typical hardware used in the 

robotic insertion system includes HI-T-HAND EXPERT robot (26, 27 and 28), 

programmable force controlled wrist and active sensory table. 

Along with the hardware developments a variety of insertion strategies have been 

proposed. These include position feedback based upon force information (24-47), 

learning control algorithm (48-52), and a nUllifying strategy (53-54). 

Among all the software methods, position feedback based upon force information is 

the most popular. In this field, only a few methods have been successfully applied. 

The technique block diagram can be summarised as Fig. 4: 
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Fig. 4 The block diagram of assembly system using a force sensor 

This method also has some constraints (1): 

(a) The hardware is very expensive. 

(b) It takes a long time to collect the data. 

( c) The measurement devices are easily damaged. 

(d) It is difficult to achieve fine position control due to the high inertia of the 

robot. 

1.3.3 Contact dynamics analysis (55-67) 

The basic study includes generalized dampers (55), compliance and force hybrid 

control (56 and 57) and stiffness control (58 and 59). The complete exploration is 

proposed (66). 

(a) TIle generalized damper models with sliding:(55-59) The generalized damper, 

proposed by Whitney (55), is the model of sliding motion: 
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F = B(v - v·) (1) 

where:-

F: is the vector of forces and torques acting on the moving object relative to 

its reference point, 

v·: is the commanded velocity vector, 

v: is actual velocity, and 

B: is a damping matrix. 

(b) Friction: (60-61) A constant representation of friction in the real space is the 

frictional cone which defines the range of reaction forces. 

(c) ComplialZt Motion: (62-67) There are three basic contact motions in the 

assembly operation: sensor based motion, pushing motion and compliant motion. 

Compliant motion occurs when the trajectories of an Object are modified by 

contact forces or tactile stimuli. In practice, every element in a robot is 

compliant to some extent and this compliance is in universal use (66). 

To avoid assembly states that cause premature termination of planned motion, 

the friction must be accounted for the compliant movement and guarded 

movement strategies. There are several viewpoints (11, 53, 54 and 67) on the 

state where jamming and wedging can be avoided. The impact on RCC methods 

(11, 53 and 54) have also been examined. 

1.3.4 Fine motion strategies (68.100) 

(a) Pre-images: (68) The pre-images, which were proposed by Lozano, Mason and 

Taylor (68). 

(i) Non-directional pre-images: A pre-image of a collection of goals {Gcr} related 

to a set R is: 
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(2) 

where 

is a symbol which denotes "aribtrary", 

p is the actual position, 

• Po is the measured position, 

is the positional uncertainty ball with p as the centre, 

is a collection of goal sets, 

S(Po·, R {Gcz}) is the set of all commanded control velocities vo·, such that the 

termination predicate is guaranteed to signal success of 

operation, knowing that the initial measured position Po· 

corresponds to actual position p in R, . 

The strategy recursively constructs pre-image collections until one pre-image 

includes the initial area of the process. 

(ii) Directional pre-images: A pre-image of a collection of goals {Gcz} relative to a 

set R and nominal control velocity v 8· (where 8 is the angle between the velocity 

and x axis) is: 

Here v 8· is the velocity vector that in the planar case making angle 8 with the 

x-axis. 

(b) Back-projection and forward-projection: (69) 

(i) Back-projection: 

The back-projection concept was firstly used by Erdmann (69). The basic 

difference between pre-images and back-projections is the use of termination 

predicates. A back-projection region should be a zone from which any motion 
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· commanded along the desired direction is certain to satisfy the goal. The simple 

non-directional back-projection of a collection of goal sets {G crl related to a set 

R is given by: 

- -
P R({G .}) = {p € R I S(p,R,{G .}) " 0 } (4) 

The simple directional back-projection of a collection of goal sets { Gill under 

the commanded velocity v 1)* is given by: 

(S) 

s (p, R. {G crl) is the set of all commanded control velocities v 1)* that are 

guaranteed to move any point in the pre-image R into one of the goal sets {Gill. 

These definitions capture the notion that a back-projection should consist of 

those points which are guaranteed to satisfy the positioning goal. 

(ii) Forward-projection: 

For a measured position Po *, which is known to correspond to an actual position 

p in the set R, the forward-projection at time t under the command velocity v IJ* 

is given by: 

(6) 

where Tit) and Tit) are trajectories and velocities which satisfy the damper 

equations with uncertainties relative to the commanded velocity v 1)*. T is the set 

of all vectors T which include Tit) and Tit). In practice, the back projection 

can be used to choose the subgoals, and the forward projection can be used to 

judge the achievement. 

(c) Error detection and recovery (EDR): (69) 

The weak pre-image is the set of points which possibly enter the goal 
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recognizably, given sensing and control events. Ho is the set difference of the 

forward projection minus the weak pre-image. Then H 0 can be presented as 

follows: 

(7) 

H, can be defined as all regions where sticking is poss~ble in the difference of 

weak pre-image minus strong pre-image: 

H. = {x € P*e(G) - Pe(G) Isticking is possible at xl 

Then error detect and recovery range can be defined as: 

H = 1t(HJ U Z(H) 

(8) 

(9) 

where Z(H) denotes the zero velocities over H" 1T(Ho) denotes the projection 

of Ho in the positional state space. 

(d) Sensorless motion: (71-75) 

The possibility for the robot to plan and execute some simple tasks without 

sensors was analysed. The motion strategy is, in most cases, simpler and faster 

than the sensing strategies. 

So the remaining tasks are: 

(a) to see if the existing methods for the robotic peg-hole insertion operation are 

reliable and, 

(b) based on the understanding of the feature of presently existing force sensors and 

passive accommodation and the understanding of the contact dynamics, using 

pre-image, back-projection, forward-projection and error-detection recovery, to 

develop a fast and reliable strategy for the precise robotic peg-hole insertion 

operation. 
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1.4 Organization of this thesis 

Here is an outline of the remainder of this thesis. The force sensors which are being 

widely used in others work on robotic assembly operations are analysed in' Chapter 

2. The common features in the design of force sensors are identified. Assembly 

operations can be divided into two parts: the identification of the positional 

relationship between the peg and the hole, and the adjustment of the peg-hole 

system. The positjonal relationship can be obtained from the contact configuration. 

The presentation of the contact configurations between the peg and hole are also 

described in Chapter 2. If one piece of equipment can be used to present the 

contact configuration, it can be used to obtain the positional relationship between the 

peg and the hole, the correct adjustment can be obtained. The question is, what 

kind of information the force sensors can provide. Is it possible to identify the 

contact configuration, or at least the positional relationship through the signals from 

the force sensors? Uncertainties caused by sensory errors, model errors and control 

errors are presented in Chapter 3. Also, an important, but widely ignored problem 

in the interpretation of the force sensory signals in the positional space is proposed. 

This practical problem is due to the fact that the two concepts -the centre of the 

contact area and the centre of the overlap between the contact surfaces- are 

different because of the angle between the axes of the peg and hole and the defects 

between the contact surfaces. This implies that it is difficult to identify the peg-hole 

configuration by the signals from the force sensors. A strategy to perform the peg­

hole insertion, overcoming the difficulties caused by the angle between the axes of 

the peg and hole and the defects of the contact surfaces, is proposed in Chapter 4. 

A strategy to perform the precise robotic peg-hole insertion without force sensors is 

proposed in Chapter 5. This method makes clever use of the environment. The 
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systematic development of the strategies for the precise robotic peg-hole insertion, 

based on the fine motion theory, is addressed in Chapter 6. To prove the feasibility 

of the strategies, simulations of the assembly operations are provided in Chapter 7. 

The experiments with clearance of 0.02 mm are described in Chapter 8. Conclusions 

and suggestions for further work are contained in Chapter 9. 

The main achievements of this thesis can be presented as follows: 

(a) The current six-component force sensors have been analysed and common. 

features of the six component force sensors have been found, which can be 

used to guide new force sensor design. 

(b) The ambiguities in the presentation of the peg-hole contact configurations using 

force sensors are analysed. These ambiguities exist widely and greatly influence 

the judgement of the relative positions of the peg and the hole, so it is not 

always possible to identify the positional relationship through the signals from 

the force sensors. 

(c) It is firstly pointed out that in certain areas, the force sensor can partly provide 

some information about the peg and the hole, which can be used in the 

adjustment to some extent. 

(d) A strategy to overcome the difficulty caused by ambiguous presentation of the 

contact configuration of the peg-hole system is provided. 

(e) A strategy to achieve precise assembly operation without force sensors or RCC 

is provided .. 

(f) The allowed initial range and the applied force design are analysed. 

(g) The assembly operation is simulated, and does not require specific robot to be 

used. 

(1) The experiments with a clearance of 0.02 mm without force sensors are carried 
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out by UMI-RTX robot. 

From this chapter it is clear:-

(a) why robotic peg-hole insertion operation should be analysed, 

(b) what the major current work is, 

(c) how about the eXtent of the major research and, 

(d) what will be reported in this thesis. 

To begin with, it is necessary to analyse six-component force sensors which are the 

most used as pieces of hardware in the robotic peg-hole insertion operations. There 

are several questions raised by six-component force sensor design: 

(a) whether the force sensors used in the robotic peg-hole system can be used to 

measure six-component forces and what are the features of the six-component 

force sensors, 

(b) how should six-component force sensors be designed? 

(c) whether six-component force sensors can provide the positional relationship 

between the peg and the hole in the assembly operation and, 

(d) what kind of information the six-component force sensor can provide? 

The first two questions will be studied in Chapter 2. 
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2.0 Introduction 

As mentioned before, the six-component force sensors play an important role in 

robotic peg-hole insertion operations. The major feature of these sensors is that they 

can measure the forces and moments in three directions. In Sections 2.1 and 2.2, the 

working principles of the force sensors are analysed through two typical force sensors 

which were designed by other people. In Section 2.3, common aspects of six­

component force sensors are studied. In Section 2.4, the basic problems in six­

component force sensor design is studied. Sections 2.1 and 2.2 are the analysis of 

others' work, Sections 2.3 and 2.4 are new work in this thesis. 

In general, the assembly operation can be divided into two steps: identifying the 

states of the peg-hole system, and adjusting the peg to achieve the insertion 

operation. If feedback hardware, such as force sensors, can provide the identification 

of the contact configuration, the right adjustment can be obtained. This raises the 

question: what is the contact configuration between the peg and hole system? The 

contact configurations can be presented by: 

(a) the rotational and translational errors which can be directly used to design the 

adjustment movement of the end-effector of the robot, or 

(b) the locations of the contact points. 

The general presentation of the contact configuration between the peg and the hole 

is analysed in Section 2.5. 

2.1 Tube-design six-component force sensor 

There are several popular six-component force sensor configurations. The tube 

design six-component force sensor is presented in Fig. 5 (24). 
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Fig. 5 The tube-design six-component force sensor 

For this sensor: 

(a) 81 the angle as shown in Fig. 5, 

(b) e; (i=1,2, ... ,8) outputs from the eight groups of the strain gauges of the 

sensor, respectively. 

This sensor is very complex in structure providing sensitivity. The relationship 

between the forces, torques exerted on the sensor and the outputs of the force 

sensors can be shown as follows: 
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Forces or torques to be location of main measured process 
measured corresponding deformed 

strain gauges 

Fzr t~ t6 average of deformation 
is proportional to Fr 

FlY t.,. ts average of deformation 
is proportional to F. 

FIZ tp t~ t, t4 average of deformation 
is proportional to F, 

Atzr t~ t4 difference of 
deformation is 
proportional to Atr 

AtlY t, t/ difference of 
deformation is 
proportional to At. 

AtlZ t, ttl t.,. t8 average of deformation 
is proportional to At, 

Table 1 Forces, torques and locations of corresponding deformed strain gauges 
in the tube-design six-component force sensor 

2.2 Celular-deslgn six-component force sensor 

The sensor, shown in the Fig. 6 is a direct force sensor, i.e., the forces and torques 

can be calculated directly from the outputs of the force sensors (28). 
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• 

Fig. 6 The celular-deign six-component force sensor 

The forces, torques and the deformation of corresponding strain gauges can be 

shown in the following table: 

Forces or torques to be location of measured process 
measured corresponding deformed 

strain gauges 

Fa side surfaces of 2 and 4 average of deformation 
is proportional to Fx 

Fsy side surfaces of 3 and 1 average of deformation 
is proportional to ~ 

Fsz upper and end surfaces average of deformation 
of 1, 2, 3 and 4 is proportional to Fz 

Msx upper and end surfaces difference of 
of 2 and 4 deformation is 

proportional to Mx 

Msy upper and end-surfaces difference of 
of 3 and 1 deformation is 

proportional to ML 

Msz upper and end-surfaces average of deformation 
of 1, 2, 3 and 4 is proportional to Mz 

Table 2 Forces, torques and locations of corresponding deformed strain gauges 
in the celular six-component force sensor 
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There are also other six-component force sensors shown in Fig. 7. 

strain gauge 

.......• y h 

Fig. 7 . Other six-component force sensors 

2.3 Common aspects of six-component force sensor design 

In general, the coordinate system for the force sensors can be established as shown 

in Fig. 8: 

Fig. 8 General coordinate system for 
the force sensor 
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It is found that for the six-component force sensors, the strain gauges are always 

distributed in the planes which are parallel to the coordinate planes, X,O,Y, rrO~, 

and XsO~, if the coordinate system is established in a suitable way. The result is 

that forces in three directions can be measured. To measure the torques in different 

directions, the strain gauges must be used in pairs. To measure MSI (1=)(, Y, Z), the 

distribution of the pair of the strain gauges must satisfy the following conditions: 

(a) The pair of strain gauges should be in planes parallel to the coordinate plane 

1,0/, (I can be)(, Y, or Z, and J is not equal to I), 

(b) The strain gauges should be distributed in the line which is parallel to J and 

symmetric to the corresponding centre. 

The location of the strain gauges to measure the torques acting on the force sensor 

can be shown as follows: 

The torques to be The connection line of The plane in which the 
measured the corresponding strain strain gauges located is 

gauges is parallel to parallel to . 

Msx Y, axis or X,O,Y, plane 
X, axis X,O 7-, plane 

Msy X, axis or X,O,Y, plane 
Z, axis Z,O,Y, plane 

·M sz X, axis or X,O 7-, plane 
Ys axis YsO 7-s plane 

Table 3 The general locations of strain gauges with corresponding torques 
Using the table, a variety of six-component force sensors can be designed. 

2.4 New Practical Force Sensor Design 

Two force sensor concepts shown in Fig. 9 satisfy these requirements. 
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Fig. 9 New practical force sensor designs 

These force sensors were only based on the design rule described in ~2.3. Other 

factors, such as, strength, sensitivity, rigitidy, weight, accuracy, nonlinearity, hysteresis, 

conformance, resolution, repeatibility and scatter, were not considered. 

2.5 Presentation of contact configurations between the peg and hole 

The presentation of the peg-hole contact configurations, which is based on Luh, J.Y 

S. and Krolak, R. J. (64) will be discussed here. For a complete description of the 

contact configuration, the node concept can be used. A node Sj=(P' C, S, l, Q), 

where P is the position of the peg in the configuration space, C is a set of contact 

points, S is a set of potential motion, I is qualitative signal based on the associated 

physical situations, and Q is a heuristic assessment of the "quality" of the contact 

situations. 
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(a) If the hole is fIxed, the contact confIguration of the peg-hole system is 

determined by the configuration of the peg, which can be denoted by a six-

where: 

component vector P. In this case, the contact configuration can also be 

represented by the angular and translational errors which are needed for the 

direct adjustment of the peg. 

Fig. 10 

hole 

Translational and angular 
errors between the peg and 
hole 

8 is the angle between the axes of the peg and hole, 

€ is the deviation' between the centres of the end-surface of the peg and the 

upper-surface of the hole. 

The aim of the assembly motions is to reduce the translational and angular 

errors. 

(b) If the translational and rotational errors are known exactly, the assembly 

operation can be translated through motion control. In practice, the signals 

which are used to detect the configurations are those from force sensors. The 

force signals are related to the contact configuration, rather than the 

translational and angular errors. These contact points can be divided 

according to the contact elements, i.e. the contact modes (vertex, edge or 
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plane): 

Contact elements Degree of contact Contact types Degree of 
elements contact types 

vertexlvertex (1)/(1) point (1) 

vertex/edge (1)/(2) point (1) 

vertex/plane (2)/(3) point (1) 

edge/vertex (2)/(1) point (1) 

edge/edge (2)/(2) point (1) 
line (2) 

edge/plane (2)/(3) point (1) 
line (2) 

plane!vertex (3)/(1) point (1) 

plane/edge (3)/(2) point (1) 
line (2) 

plane/plane (3)/(3) point (1) 
line (2) 
plane (3) 

Table 4 Contact types and contact elements 

The maximum contact degree corresponds to minimum degree of contact type, such 

as the maximum contact degree of the Edge/Plane is two and the minimum degree 

of the contact type is two. 

For the peg-hole system, the basic contact configurations can be presented as follows: 

Contact Peg-hole Peg-hole contact diagrams 
element contact 

types 
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edge/edge edge of 
peg Z h Z 
contacts P1JpP edge of 
hole 

. / /",'e 

of 

peg

r hole 

'\ ,,/ Yp 

"-< lJ 
Yh 

Xp X h 

28 



edge/plane edge of the 
peg 
contacts 
the upper­
surface of 
the 
area 
surroundin 
g the hole 

hole 

peg 
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edge of the 
peg 
contacts 
the side­
surface of 
the hole 

peg hole 

Yp 

----~+-~~------- Yh 
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edge of the 
peg 
contacts 
bottom of 
the hole 

31 

Zh 

hole 

peg hole 

Yp 



side-
plane/edge surface of 

the peg 
contacts 
the edge of 
the hole 
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plane/plan bottom-
e surface of zp 

the peg Zh 

contacts peg 

upper- ['. 

surface of 
hole 

area 
surroundin .. 
g the hole 

peg? 
b~ 

hole 

~ Y 
~ )( \ p 

\.. ~ Yh 

Xp 
X h 
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bottom 
surface of 
the peg 
contacts 
upper­
surface of 
area 
surroundin 
g the hole 
and edge 
of the hole 
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peg 

1~",/,e Yp 



side-
surface of 
the peg Zh 

contacts 
side- zp 

.-- t--
surface of peQ 

hole 
the hole r- 1/ 

'-- t--

pe9

7t 
hole 

~ Yp 

~ ~ 
Yh 

Xp Xh 

Table 5 Peg-hole basic contact configurations 

( C) Potential motion S 

Sometimes, a contact configuration can only be identified by its possible 

potential motions. Two types of translation motion, namely separation motion 

and compliance motion are defined. Any differential motion that results in 

breaking the contact between the objects is referred to as separation motion. 

Any differential motion that does not result in breaking the contact between 

the objects is termed compliant motion. Both motions are permitted. The 

separation cone of a contact is defined as the set of all separation motions for 
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that contact mode. The compliance cone of a contact is defined as the set of 

all compliance motions for that contact mode. 

This chapter can be divided into two parts. The major aim of the first part including 

Sections 2.1,2.2,2.3 and 2.4, is the analysis of the common aspects of six-component 

force sensors. According to these common features, it would be easy to design any 

form of six-component force sensor. 

The second part, Section 2.5, shows the application of the contact configuration 

concept to the peg-hole system. From that, it is clear how many contact 

configurations the peg-hole system can have. The next question to be addressed is 

what kind of information six-component force sensors can provide in the presentation 

of the contact configuration of the peg-hole system. 
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CHAPTER 3 THE USE OF FORCE SENSORS IN THE ROBOTIC 

PEG·HOLE SYSTEM 

3.0 Introduction 

3.1 Uncertainty in the robotic peg-hole system with force sensors 

3.1.1 Sensory errors 

3.1.2 Model errors 

3.1.3 Control cone 

3.2 Two practical problems 

3.3 Relationship among "co", "cc" and "Oh0," and force sensory signals 

3.3.1 Relationship between (OhOp) and location of "co" 

3.3.2 Relationship between force signal and location of "cc" 

3.3.3 Relationship between force signals and (OhOp) 

3.3.3.1 Signal point contact 

3.3.3.2 Two point contact 

3.3.3.3 Side-surface contact 

3.4 Classification of the fine motion 
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3.0 Introduction 

The uncertainty in the robotic peg-hole system is analysed in Section 3.1. The major 

problem of using force sensors in the robotic peg-hole insertion operation is explained 

in Sections 3.2-3.5. Since the purpose of using the force sensor in the robotic peg-hole 

system is to identify the positional relationship between the peg and hole, the problem 

is whether the positional relationship can be obtained through the signals from the force 

sensor. In Section 3.3, through two examples, it is found that the force sensor cannot 

provide the information needed to identify the contact configuration. It cannot even 

provide the information to identify the positional relationship between the peg and hole 

which is often needed for the adjustment. In these examples, the positional relationships 

are different, while the force sensory signals are the same. In Section 3.3, two concepts 

are provided, one is the centre of contact area and the other is the centre of overlap 

area. It is found that: 

(a) the force sensor can only provide information about the centre of the contact area, 

(b) the positional relationship can be only obtained from the location of the centre of 

the overlap. 

In most cases, the centre of contact area is different from the centre of the overlap. So 

in theory this explains why the positional relationship can not be obtained from the force 

sensory signals. In Section 3.4, through the motion analysis, the contact configurations 

which share one set of signals from the force sensors are analysed. 
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3.1 Uncertainty in the robotic peg-hole system 

3.1.1 Sensor errors 

Due to the structure of the sensors and the noise in the system, the nominal physical 

value may be different from the actual value. The actual and nominal force signals can 

be presented as an error sphere: 

Fig. 11 Sensor error ball 

where Be/f} represents the sensory error zone which represents the range of actual 

physical values, and F,· denotes the nominal physical value. For a six-component force 

sensor, the nominal and actual forces can be presented as follows: 

F * - [F * F * F * M * M * M *]T 
, - ;a' 81' n' ;a' 81' n 

(10) 

(11) 

3.1.2 Model errors 

The insertion can only be completed when the diameter of the peg is smaller than that 

of the hole. 
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3.1.3 Control cone 

Yb 
---+~~--, 

the diameter of 
the peg I n any 
direction must be 

5"-1 I .... than the 

d lerneter of the 
hole in this direction 

Fig. 12 The tolerance between the peg 
and hole 

The actual velocity may be different from the nominal velocity on both direction and 

magnitude. The actual velocity of the centre of the peg will then be in a velocity cone 

with the nominal velocity as the axis of the cone. 

Fig. 13 The control cone for the 
peg centre velocity 
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3.2 Two practical problems 

(a) In the case of the wrist force sensor and non-zero a (see Fig. 14) 

case 1 case 2 

wrist force 
wrist force 4 .. . 
seDsor ;Z " . .rc~ 

p~ .J 

x 
p 

Fig. 14 Contact configuration with wrist force sensor 
and non-zero I a I 

The letters with subscript "1" refer to that in case 1 configuration, and the letters with 

subscript "2" refer to that in case2. It follows that: 

while 

(CC)px1 < 0 
(cc)p) > 0 

(b) In the case of the table force sensor and non-zero e (see Fig. 15) 
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case 3 

x 
p 

x" 

table 
force 

x" 

x 
p 

Fig. 15 Contact configuration with table force sensor 
and non-zero I a I 

Similarly, the letters with subscript "3" refer to the letters in case 3 configuration and the 

letters with subscript "4" refer to the letters in case 4 configuration. It follows that: 

while 

(cc)/u:3 < 0 
(cc)/u:4 > 0 

(14) 

(15) 

Here the angle between the axes of the peg and the hole makes the centres "co" and 

"cc" misaligned. 

In Fig. 16 and Fig. 17, the two centres, the centre of the overlap of the projections of 

the end-surface the peg and the area surrounding the hole on the XhOhYh and the centre 

of the contact area do not coincide due to the defects of the contact surfaces. 

In the case of wrist force sensors (see Fig. 16), 
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while 

case 5 
• 
: (cc) S 
: px .. wrist loree 

~...;......;.... 
sensor 

.. 

~:~ 
1;1" 

(qop)u s r 

peg 

bole 

case 6 
~ wri 5t force 

(cc) pz' : 

1;1". 
1;1' , 

;.........t 

(~Op)u': : 

sealor 

ptl 

bole 

Fig. 16 Contact configuration with wrist force sensor 
and defects of contact surfaces 

Likewise, in the case of table force sensors (see Fig. 17), 

table 
force 

case 7 

~ (00, 7 
.: ", Iu 

(<<) hz7 -: 

table 
force 
se.1O 

:~ (Oh°.,)i.r' 

(cc) J.r' 

Fig. 17 Contact configuration with table force sensor 
and defects between the contact surfaces 
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3.3 Relationship among "co", "ee" ,"OhO," and force sensory signals 

3.3.1 Relationship between HObO," and location of "co" 

It is found that the projections of a deviation "OhOP" between the peg and the hole on 

XhOhYh can be calculated from the coordinates of the centre of the overlap "co" of the 

projections of the end-surface of the peg and the area surrounding the hole. This is 

shown in Fig. 18, 

in which 

"C' 

"C" "c" l' 2 

peg 

x , 
Fig. 18 Projections of contact surfaces 

on XhOhYh plane 

is the point on the circumference of the end-surface of the peg outside 

the hole, 

are the common points of the projections of the circumference of the end-

surface of the peg and the upper-surface of the hole, 

li/3) is the distance between 0h and C, 

/3, /31 and /32 are the angles in triangle OhOpC, 

The location of "co" is established through very complex calculation. It should be 

located on the line through both Op and 0h' and, 

44 



(18) 

where I is the distance between 0h and any point in the sectioned area, S is' the area of 

the overlap of the end-surface of the peg and the area surrounding the hole, 10h(co) I 

is the length of the directed line Oleo), and limits for integration are given as below. 

10110 I 
A = -arccos p 
t'/I 2R 

II 

·100 I ~ = arccos II p 
m 2R 

II 

(19) 

If the angle between the axes of the peg and hole is zero, 

(20) 

sin~l = 10AOpi 

sin~ Rp 
(21) 

1001 
~1 = arcsin( p II sin~) 

Rp 
(22) 

(23) 

Then: 

45 



R
p
sin[(3 +arcsin( 101l0p I sin (3)] 

Rp 
h«(3) = ----sin-p-'"---

where PI' P~ P" Pm andflp) are expressed in Fig. 18. 

(24) 

Similarly, the location of "co" can also be obtained with a known angle between the axes . 

of the peg and hole. The point "co" can be considered to be approximately at the centre 

of the projections of the circumferences of the end-surface of the peg and the upper-

surface of the hole. Then the relationship between the deviation of the peg and hole· 

and the projection of the centre of the overlap "co" can be determined. The angle 

between Xh and OhOp satisfies: 

tanIX = 
[(CO)OIl]1ry 

[(co)Ollh% 

= [(eo)Oplpy 

[(eo)OplP% 

The magnitude of the deviation can be calculated according to I (co)Op I: 

or according to I (CO)Oh I: 

3.3.2 Relationship between force signal and location of "ee" 

The general equations for the force sensor can be expressed as follows: 

(25)· 

(26) 

(27) 

(28) 

So ees; can be obtained from Fsi and Msi! where i=x,y, and z. Fsi and Msi can be obtained 
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from the signals from the force sensor. If the angle between the axes of the peg and 

the hole is zero, then the location of the centre of the contact surfaces can be easily 

obtained as shown in Fig. 19 and the relationship among them can be expressed as 

follows: 

z '" z p : ~ h 

'" p>c 

F •• F 
pZ 

-.J+,-...-.:".l...r--_
Y 

n 
pz 

o 
n 

.. 0 

P .: flO'. 
:': If'" 

o~.: .. 
.::: :.:;::: ::::~""Hh 

. . y 
. P 

peg X P: ~ X h .. 
Fig. 19 cc and force sensor signals 

M 
(ec) =-!l.. 

u F 
~ 

Mu 
(ec) =­

sy F 
~ 

3.3.3 Relationship between force signals and 0,,0, 

h 

(29) 

The deviation between the peg and hole can be calculated from the outputs of a six-

component force sensor if the relationship between the centre of the overlap "co" and 

·the centre of the contact surfaces "ee" can be obtained. These two concepts are often 

oversimplified and treated as one. It is found that if and only if : 

(a) the angle between the axes of the peg and the hole is zero, 

(b) and the contact surfaces are absolutely smooth, 
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will these two measures coincide (see Fig. 20): 

2,. Z 
: ~ " 
:: M 
~ pz . . hole 

~ 
.. :o, 
:: 0/ 

Fpz ...... ;. : ............... f, 
--:~r.:,.-4---Y' "«' .: .. :..... .... y 

o , 
co , 

PI: : ... x; x,. 

Fig. 20 Configuration when angular error is 
zero and contact surfaces are 
smooth 

In these cases, the deviation between the peg and hole can be obtained from the signal 

of the force sensor (for example, a wrist force sensor): 

M 
= [Ria + Rp - 21 (cc)Op I]cosa: = [Ria + RpJcosa: - 2--1Z 

Fpr. (30) 
(OIaO)py = [Ria + Rp - 2 1 (co) 0]1 Ilsina: 

1 I 
Mp% = [Ria + Rp - 2 (cc)Op ]sina: = [Ria + RpJsina: - 2-
Fp% 

If there is an angle error (Fig. 21) or defects on the contact surfaces, then the deviation 

has an unclearly defined relationship with the force sensor signals: 
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hole 
tt"" 

Y II : ; : ~ : :: ::::~ ...•• r II 
--~~+o---- y 

'0 , . co I' 

PI 

., • X AI' n 

Fig. 21 Configuration when angular error 
is not zero 

(31) 

In the peg-hole insertion operation, the force signal is used to judge the state of the peg 

which is in five degrees of freedom if the peg is considered to be symmetric about Zp 

axis. The location of the centre of the contact points in the peg coordinate system can 

be written as: 

(32) 

The mapping between the location of the contact point centre in the peg coordinate 

frame and the signals from the force sensor can be presented as follows: 

(33) 

where [FC] is the mapping matrix from Fs· to (Opcct. 

The key problem is to obtain the map between the deviation of the peg and hole and 
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the force signals or the location of the contact point in the sensor coordinate frame. 

Here the situations before insertion, i.e., Chz = 0 are analysed. 

·3.3.3.1 In single poilZt contact 

The only contact point c should be on the end-surface of the peg and the upper-surface 

of the hole: 

(34) 

Furthermore, it can be proven that the contact point must be on the circumference of 

the end-surface of the peg (38), so: 

C {c C I C 2 +c 2 = R 2 n c 2 +c 2 ... R 2} = p:c' py p:c py p It:c hy" h 

The contact point must be a point on the top-surface of the hole, so: 

1'101& 

peQ '. 

YI'I 

...• y p 

.. 

x 
p • 

Fig. 22 Projections of the end-surface of 
the peg and the upper-surface of 
the hole with one point contact 

(35) 

The location of the contact point in the peg coordinate frame can be presented by the 

deviation and angle between the axes of the peg and the hole. 
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where 0, is the angle between 0hC and the direction of the projection of 0 on XhOhYh 

plane. LO is the unitary vector along the direction of the projection of the vector 0 on 

the XhOhYh plane and L(0+9r1) is obtained through 9r1 rotation of the unitary vector 

LO in XhOhY" plane. In practice, the location of the contact point in the peg coordinate 

frame (for the wrist force sensor), rather than the relationship between the contact point 

C and 0, can be clearly obtained from the force signals. So the above equation can be 

further presented as follows: 

10"cl = 10 ,,0, + R,cos(8a - a.~ixIPJarJa + R,sin(8a + a.s)sin8Jx.o.r..l 

= R" 
(38) 

where 0,,0, is the vector from 0h to 0P' as is the angle between the direction of e and 

Yh axis, which can be presented as follows: 

81u 
CX s = arctan(-) 

8hy 

(39) 

The mapping relationship from 0", to OhOp can be presented according to Equ. (38): 
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Clt 

(a) 
................................... : ........................................... . 

Rpcos(8n -~c). -Rpcos(8Cl[ -ac ) 

-t:: -~ possible' 
x" --;-+ projection 

Rpsln(6n +~ c )s I n6hX ~ ..... : ..... of 0 
. p 

Y" : .Y" 

(c) 
(d) 

Fig.23 Mapping relatiori between acx and OhOp 

The conclusion of the relationship between the force signals and deviation is: 

(a) From Equ. 38, it can be obtained that 8h has a nonlinear influence over the 

mapping projection. The direction of 8, which is defined by Q(II plays a 

substantial role. The magnitude of 8 would only influence one projection of 

force signal which is normal to that of 8 (see Fig. 23(c)), 

(b) From Equ. 38, it can be obtained that, for the same 80 and 8, only the 

magnitude of OhOp is determined. So Op is on the circle with the centre related 

to 8w 8ey and 8 and the radius Rh• This means that even with the same force 

signal and same angle between the axes of the peg and hole, the locations of the 

centre of the end-surface of the peg can be different (see Fig. 23(d)). 

3.3.3.2 In two point contact 

The general projection of the end-surface of the peg and the upper-surface of the 

hole with two contact points on the XhOhYh plane can be presented as follows: 
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hole 

~eQ. '. 

Fig. 24 General projections of the end­
surface of the peg and the upper­
surface of the hole on XhOhYh plane 
with two point contact 

It has been proven that (37): 

(a) the projection of the end-surface of the peg on the XhOhYh plane is an ellipse, 

and 

(b) the short axis of this ellipse would go through the point 0h' 

(40) 

and 

(41) 

It is clear that in two point contact situation, the mapping between the force sensor 

signals and the contact state is more straight forward . 

. 3.3.3.3 In side-sUlface contact 

The direction of the contact force is opposite to that of Opc. Opc is normal to the 

direction of 8. 

3.4 Classification of the fine motion 

The movements can be classified according to their influences on the positions of the 
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contact points. These influences would be detected by force sensors. According to 

the combination of the contact movement on each object, the contact motion can be 

categorised into four types (97): 

(a) The contact positions on both mobile part· and immobile part keep their 

positions, 

(b) Only the contact points on the mobile part maintain their positions, 

(c) Only the contact points on the immobile part maintain their positions and, 

(d) The contact points on both objects move. 

For the robotic peg-hole system, the motion to maintain the position of the contact 

point static in hole are rotations about the contact point on the hole and the 

translation along a specified feature of the peg: 

Contact configurations of the peg hole Motions to maintain the static contact 
system point on the hole 

edge of the peg contacts the edge of rotation around rotate the peg to 
the hole the contact point make each point 

on the hole on the edge of 
the peg to 
contact the same 
point of the hole 

edge of the peg contacts the upper- as above as above 
surface of the area surrounding the 
hole 

edge of the peg contacts side-surface as above as above 
of the hole 

edge of the peg contacts the bottom as above as above 
of the hole 

side-surface of the peg contacts of the as above rotate and move 
edge of the hole the peg to make 

each point on the 
side-surface of 
the peg to 
contact the same 
point of the hole 
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bottom of the peg contacts upper- as above rotate around the 
surface of the area surrounding the axis of the peg 
hole 

bottom of the peg contacts upper- as above 
surface of the hole 

bottom of the peg contacts bottom of as above rotate around the 
the hole axis of the peg 

side-surface of the peg contacts side- as above rotate the peg to 
surface of the hole make each 

straight line on 
the side-surface 
of the peg to 
contact the same 
position of the 
hole 

Table 6 The motion to maintain a static contact point on the hole 

The motion to make the contact point static on the peg can be presented as follows: 

Contact configurations of the peg hole Motions to maintain the static contact 
system point on the peg 

edge of the peg contacts the edge of rotation around move the peg 
the hole the contact point around the 

on the hole surface of the 
hole with the 
same contact 
point on the edge 
of the peg 

edge of the peg contacts the upper- as above as above 
surface of the area surrounding the 
hole 

edge of the peg contacts side-surface as above as above 
of the hole 

edge of the peg contacts the bottom as above as above 
of the hole 

side-surface of the peg contacts of the as above rotate around the 
edge of the hole edge of the hole 

with the same 
point on the side-
surface of the 
hole 
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bottom of the peg contacts upper- as above rotate around the 
surface of the area surrounding the axis of the peg 
hole 

bottom of the peg contacts upper- as above rotate around the 
surface of the hole upper-surface of 

the hole to make 
same part of the 
bottom surface of 
the peg contact 
the upper-surface 
of the hole 

bottom of the peg contacts bottom of as above rotate around the 
the hole axis of the peg 

side-surface of the peg contacts side- as above rotate the peg 
surface of the hole with same 

straight line on 
the side-surface 
of the peg 

Table 7 The motion to maintain a static contact point on the peg 

In this chapter:-

(i) From Section 3.2, it is found that the force sensor cannot provide the 

positional relationship between the peg and hole which is necessary in general 

robotic assembly operations. 

(ii) From Sections 3.2 and 3.3, it is found that there are two concepts, one being 

the centre of the contact area, the other being the centre of the overlap area. 

They do not coincide with each other. This explains why the relationship 

between the peg and the hole cannot be provided by the force sensory signals. 

(iii) based on the others' researching work in fine motion analysis, the contact 

configurations which share one set of signals from the force sensors are 

analysed. 

This chapter pointed out that the"force sensor cannot provide the total information 
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to identify the positional relationship between the peg and the hole. The information 

necessary in the assembly operation may not be as much as that necessary to identify 

the positional relationship. This means that even though the force sensor cannot 

provide the information necessary to identify the positional relationship, it is still 

possible for it to provide the information necessary to guide the adjustment. The 

question now is whether the force sensor can provide sufficient information to the 

robotic assembly operation. 
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CHAPTER 4 ASSEMBLY OPERATION STRATEGY \VITH 

Al\IBIGUOUS INTERPRETATION OF FORCE 

. SIGNALS 

4.0 Introduction 

4.1 Definition of the range for initial state of the peg , 
4.2 Gross movement of the peg from the initial state and the second state . 

4.3 The range for the second state of the peg 

4.4 Two point conta~t between the peg and the hole 

4.5 Achievement of the side-surface contact between the peg and the hole 

4.6 Peg-hole insertion operation 
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4.0 Introduction 

In Chapter 3, it was pointed out that the force sensor can not provide the 

information with which to judge the contact configurations. The problem is whether 

the force sensor can provide sufficient information for robotic peg-hole insertion 

operation. 

The information that the force sensor can provide is the location of the contact 

point. The location of the contact point depends on the positional error, the angular 

error between the peg and the hole and the defects of the contact surfaces. As 

analysed in Chapter 3, even if the angle between the axes of the peg and the hole 

and the defects on the contact surfaces are known, the positional error can not be 

obtained from the signals from the force sensors. Additionally it is difficult to know 

how large the rotational error is. 

In the approach step, the value of the force sensor provides sampled data. So, only 

the direction of the deviation, i.e. the signs of (OhOpJlW and (OhOpJhy are essential. 

The problem then is reduced to how to obtain these signs from the force signal. 

If the sign of the rotational error 8hx is known, the relationship between the sign of 

the positional error (OhOpJhx and the sign of the location of the contact point (OhC)hx 

can be obtained. So it is possible to obtain the sign of (OhOp)hx from the sign of 

force sensory signals. The first step, therefore, is designed to rotate the peg to make 

the sign of the angle 811x unitary from any initial situation. The new 8hx can also be 

used to eliminate the influence of the defects of the contact surfaces on the 

identification of the direction of the positional relationship. Since the direction of 

the projection (OhOp)hx of the positional error is known, the direction of the 

adjustment to eliminate the projection of the positional error is known. The state 

where the projection (OhOp)hx is eliminated can be identified by the force sensor. 
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Afterwards, the robot starts to eliminate the other projection (OhOp)hy of the 

positional error. In this chapter, a strategy is proposed to perform the precise 

robotic peg-hole insertion operation in the presence of ambiguous interpretations of 

force signals in the positional state. 

The basic idea is to divide the insertion process into the following steps: 

(a) Approach. 

(b) Moving the peg into the new area. 

(c) Obtaining (OhOpJlv& = 0, or eliminate the projection of the distance between 

the centre of the end-surface of the peg and the centre of the upper-surface 

of the hole along the Xh axis. 

(d) Obtaining side-surface contact in the YhO~h-plane. 

( e) Insertion adjustment. 

(f) Insertion. 

From the above analysis, it is clear that "co" and "ce" would not coincide if there is 

an angle between the axes of the peg and the hole or the contact surfaces are not 

absolutely smooth, no matter how small these quantities are. Axes alignment and 

surface defects cause severe practical difficulties in calculating the deviation between 

the peg and hole, and furthermore influence the insertion operation. In practice, the 

angle between the axes of the peg and hole and defects of the contact surfaces 

always exist in varying quantities. The magnitude and even direction of the deviation 

would be difficult to obtain from the outputs of the force sensors. 

60 



4.1 Definitions of the range for initial state of the peg 

The initial range for the axis of the peg can be expressed as follows: 

parameter ranges in state 1 

8hx [8hxln, 8hxlm] 

8hv [8hvln' 8hvlm] 

(OhOp)hx [(OhOp)hxln, (OhOp)hxlm] 

(OhOp)hv [(OhOp)hvln, (OhOp)hylm] 

Table 8 An desired range for the initial state of the peg 

Furthermore, because this envelope must be symmetric about the hole coordinate 

axes (Xh' Yh and Zh) and the projection of Op on the hole surface can be defined as 

a circle, the following definition can be made: 

(Op0,.)Iut],. = (Op0,.)"y]" = -E1 

(Op0,.)lullll = (O,O,.)hyl. = El 

10,0,,1 <t1 
UIutJII = UnYIII = -K1 

U luI". = Unylm = Kl 
aluI,. = a"yl,. = -a"l 

Slutlm == ahyl". = all] 

(42) 

where &]' 8hl, and K] are constants. The magnitudes of &]' 8hl and KI depend on the 

location errors of the peg and the hole generated by the robot. For the insertion 

process to be successful, there is a requirement for these parameters to be 

constrained. The insertion can then be realized when the actual values are smaller 

than required values. 

The peg-hole configuration at the initial state can be described in the XhOhZh and 
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Zh 

Fig. 25 Initial configuration of peg and 
hole system 

The peg axis location envelope can be presented in 3_D space: 

range of 
peg .)(1. 

Fig. 26 Envelope of peg axis uncertainty 
in the initial state 
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4.2 Gross movement of the peg from the initial state to the second 

state 

At this· stage the peg is established as being close to the hole inside an envelope 

described by angular and lateral errors. The next step is to move and rotate the peg 

to a new area. Combining the conditions for the second state and the character of 

the first state, the conditions of the first state and the adjustment from the first state 

to the second state for successful assembly can be generated. 

The general description for the second state is that: 

(a) The end-surface centre of the peg must be in one quadrant of the coordinate 

which is fixed on the hole, no matter· where it exactly is. 

(b) The lowest point of the peg must be inside the hole. 

If the projection of the lowest point of the peg in XhOhYh plane is defined as "G", 

then: 

(43) 

where OhO/, 8, and OhG are three vectors and 0/ is the projection of Op on the 

horizontal plane. If the length of OhG is less than Rh, i.e. 

(44) 

the lowest point must be inside the hole. 

If the peg is rotated ~ 8h'C2 around Xh axis and satisfies: 

(45) 

and 

(46) 

then there are two possibilities for the lowest point of the peg in the hole: 
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(a) 

(Op0/t)w ~ 0, (47) 

ehZ ~ 0 

(b) 

(Op0/t)w ~. 0, (48) 
6w ~ 0 

The relationship between the first and the second states can be presented as follows: 

(O,0/t)w = (O,Oh)hl 
(Op0/t)1ry2 I: (OpOh)IryI + AYl + LgsinA6Ju2 

ew = 6hI + A6w 
6hyZ :: 6hy1 

(49) 

where ~ Y2 is the translational movement along Yh axes, and ~ 8hx2 is the rotation 

around Xh axis. So the extreme values of the second state can be presented 

according the extreme value of the first state and the adjustment: 

(O,Oh)hZ1I = -E. 
(O,Oh)hZ", :: E. 

(O,0/t)IryZ1I III -E. + AY2 + L,sinA6w 
(O,0/t)hy2". 11# El + AY2 + L,sinA6h2 

eh211 = -6h1 + ~ew 

ehZ". = eh1 + Aeh2 

61ry211 = -eh1 
6 hyZ", = e hI 

(SO) 

If the first possibility of the peg location, described in Eq. 47, is selected, then: 

(O,0/t)IryZ". = 0 
(O,O/t)2 + (O,0/t)2 ~ R/tl 

W ltyZ 
-Tt/2 < 6hZ1I < -61t1 

6hZ". < 0 
6lryZ1I = -6h1 
61tyZ", :: 6/t1 
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The corresponding area for the peg axis is shown in Fig. 27 below: 

Ie 

--~-+~~-----+---, 

". 

Fig. 27 

• 

Required range for the peg axis 
in the second state 

The rotational angle ~ 8~ (Eq. 49) is a designable parameter, 

(52) 

where pp can be selected from a value around 10. Here pp is designed as 12, which 

causes the peg to lean at a great angle in the YhOhZh plane. If the initial state range 

of the projection of Op on XhOhYh is assumed to be a circle with radius of el (see 

Fig. 26), 

(0 ° ,1 + (0 ° ,1 S E 1 
II ty Ad II ty 1Iy1 1 

(53) 

then the second state range is also a circle with the same radius, but different 

locations: 

[(O,O,,)W]2 + [(O,O/l)"y2 - aY2 - L,sina6w12 ~ E~ (54) 
E2 = El 

The location of the centre of the end-surface of the peg Op in the second state, 

shown in Fig. 27, must satisfy the quadrant identified in Fig. 28: 
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ran<;j9 of 

projection 

of Op hole 

~----+--y 

x . . 

.. 

Fig. 28 Range of projection of Op in the 
second state 

So the maximum value of £2' is unchanged from the first state and, is related to the 

hole size: 

(55) 

This establishes the initial state conditions for successful assembly: 

(a) The projection of the end-surface centre of the peg, 0P' must lie within a 

circle of radius: 

R/t 
E =-

1m 2 
(56) 

(b) The projection of the upper-surface centre of the peg must lie within a circle 

of radius: 

(57) 

(c) 8hl must satisfy the limits: 

o < SAl < 1t/26 (58) 

where the angle is given by: 
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eWn = -eM + ~ew = -ell - 12eM = -13eM 
. eWn < -n/2 

elWm = eu + AeAx2 = e1l1 -12elll = -11elrl 

eAx2111 < 0 

The condition for the adjustment can be concluded as follows: 

The translation along Y" axis caused by the angle A 8hx2 is: 

Yo = L,[sin(elll + Aew ) - sinelll ] 

JI L,sinAew 

(59) 

(60) 

The movements along XII and Y" axes to realize the second situation can be in a 

range of: 

R" 
El - L,sinAew < -AY2 < -- - L sinAe 

2 ' 1u2 

This can be concluded in the following figure: 

-y 

r 
-x 

suitable area 

Fig.29 Relation among R", tl' A8hx2' AX2 
and AY2 

(61) 

So, the smaller tl is, the greater is the range for AY2• The general envelope for the 

peg axis in the second state can be presented as follows: 
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y 
h 

Fig. 30 Orientation of the peg axis 
envelope after the second state 

4.3 The range for the second state of the peg 

The range for the second state is in the following table: 

ranges in state 2 

8hx 
[8hx2n, 8hx2m] 

8hv [8hv2n' 8hv2m] 

(OhOp)hx [(OhOp)hx2n' (OhO,,)hx2m] 

(OhOp)hv [(OhOp)hv2n' (OhOp)hv2m] 

Table 9 A designed range for the second state of the peg 

At this stage, the peg-hole configuration satisfies: 

-1t/2 < 6w < -6h1 

-6h1 < 611y2 < 6hI 

law I :. 19h72 I 
(Op0,)hx2 + (OpOh)1ry2 s; R/ 

(OhO)1ry2 < 0 

(62) 

The key problem reduces to identifying the sign of (OhOp)hx in the new situation. 

The projections of the end-surface of the peg and the area surrounding the hole on 
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• 
x 

p 

x 

" 

y 

" 

. Fig. 31 Projection of contact surface on 
Xh 0h Y h plane 

The projection of the contact area of the end-surface of the peg and the area 

surrounding the hole must belong to the sectioned area. The equation for a point 

in the sectioned area is: 

(AJu)2 + (A~2 ~ R.2 

sin2elu(AJu - (O)hz)2 + (Ally - (0)11)2 ~ R/sin26hz 
(63) 

where 'j4" is the arbitrary point whose projection is in the sectional area, as 

presented in Fig. 31. Then: 

(64) 
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Fig. 32 Point whose projection in sectioned line 
area 

The contact point must be the point in the sectioned area with the minimum 

projection along Zh axis, i.e 

(CC)hz = minAhz (65) 

So the contact point must be the point in the sectioned area with the maximum 

projection along Yp axis, 

(66) 

--+"v-~_--+-- Y, 
~-~~--+-~--~ 

XII 

Fig. 33 The projections of the contact surfaces with different locations 

For any point in the sectioned area and not along the circumference of the hole, the 
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line joining G and ~ where G is the lowest point of the peg, must be through a 

point whose projection is on the circumference of the hole. This point must be lower 

than point A along the Zh axis. So the contact point must be along the 

circumference of the hole. For the arc CIC~ because the lowest point is inside the 

hole, so the contact point must be points C1 or C2 or both of them. 

If the peg is imagined as being rotated to make 8hx = 0, then the projections of the 

peg and the hole can be expressed as follows:-

--~-+~---+------~ 

r, 

Fig. 34 The projections of the contact surfaces with imagined rotation 

Yp 

X h 

Fig.3S Common points C1 and c; 
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then: 

cz 1 = CZ - PM 
CZ2 = CZ + PM 

where Pm is the angle between OhOp and 0hCl and Pm E {OJ fr/2J. 

The coordinates of C1 and C2 along Yp axis can be obtained as follows: 

Because 

If (O,Jhx2 < 0, 

(C1}py2 = (C1)hy2 - (O)1ry2 = Rhsincz1 - (O)hy2 
= RIt(sincz cosp", - cos« sinP

M
) - (O)1ry 

(C2}py2 = (C2}1ry2 - (O)hy2 = Rltsin«2 - (O)hy2 
'"' Rh(sina: cosP III + cos« sinP .. ) - (O~1ry2 

(O)hy2 < 0 

3 7t < a: < -7t 
2 

cos« < 0 

Then (C1)py2 > (C:JJpy2. So, C1 is the contact point. 

If (Op)hx2 > 0, 

3 -7t < « < 27t 
2 

coscz > 0 

(67) 

(68) 

(69) 

(70) 

(71) 

Then (C:z}pyz > (C1)py2· So, Cz is the contact point. Because Op must be in the 

following circle, 

R R2 
(72) x2 + (y + -.!)2 ~ _It 

2 4 
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pec;) 

Yp 

Fig. 36 <PI and f3 m 

If the angle between Yh axis and OhOp is defined as <PI' then: 

cos4>l< = IOItOpl 
RIt 

cos~m = IOItO!!1 
2RIt 

(73) 

so cos<Pl >.cos Pm' 

Due to, 

o <4>1 < Tt/2 
o < Pm < Tt/2 

(74) 

t/Jl is always smaller than Pm' So the following equation is always satisfied that: 

(75) 

or 

(76) 

Similarly, it can be proven that: 

(77) 
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So, if (OpJhx2 < 0, 

(78) 

(79) 

Because the rotation around the Xh axis does not change the coordinates along Xh 

and Xp axes and the orders of the coordinates along Yp and Yh axes, all the 

conclusions are true in the case when 8hx " O. 

4.4 Two point contact between the peg and hole 

The next step is to move the peg parallel to Xh-axis. The movement begins with one 

contact point and ends when there are two. Two point contact configuration can be 

depicted as follows: 

Ie 

X
h 

M 
43 

Fig.37 Two point contact configuration 
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where Fe] is the contact force between the peg and hole, L4 is the projection of 

connection line joining the contact point and the base of the robot parallel to the Yh 

axis and M4J is the torque developed by the robot base actuator. FzpJ must be 

provided by a combination of linkages which may influence the peg location. 

This motion can be accomplished in two steps: 

Step 1: The base of the robot is rotated to move the centre of the peg towards Yh 

axis. 

Fig. 38 

X h 

Rotate the base of the robot to 
approach to Y h axis 

The sign of the (OhOp)hx' which is same as that of (cc)px can be obtained from the 

force sensor. Then the control to make (OhOphx small is available. 

When I (OhOpJhx I gets small, the absolute value of the torque Mpy exerted through 

the centre of the force sensor would get bigger. This phenomenon arises when the 

centre of the end-surface of the peg moves to Yh axis, the contact point on the end-

surface of the peg moves a great distance from Yp. 

Step 2: Rotation would cease when there are two contact points, 
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Fig. 39 Rotation ceases when there are 
two contact points 

where Cz and Cz are two contact points between the end-surface of the peg and 

upper-surface of the hole. When the two contact points Cz and Cz are symmetric to 

Yh axis, the torque exerted through the wrist force sensor would drop to zero. The 

robot is then controlled to be fixed at that point. 

The goal of this step is to move Op towards the Yh axis. The problem is the size of 

(OhOp)ke when there are two contact points. If 8hy = 0, and 8ke is not equal to zero, 

Op touches the Yh axis in this step. In most cases, 8hy is not zero. If projections of 

e on the XhOhZh and Y,IOhZh planes 811y and 8hf are presented as vectors, the angle 

8 can be expressed as: 

e 
I hy 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

e 

Fig. 40 Angle between contact surfaces 
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The angle between the vector 6 and 611% is 

The magnitude of angle 6 is 

61u 
«a = arctan-

6" 
(80) 

(81) 

The projecti~ns of the end-surface of the peg and the upper-surface surrounding the 

hole with an angle of 8 can be expressed as follows: 

Fig. 41 

Y
h 

Projections of contact surfaces 
with two point contact 

where x is the distance between Oh and line segment C1C2• The projection of the 

end-surface of the peg is an ellipse, where the major axis is along the direction of 6 

with length of 2Rp' and the length of the minor axis is 2Rp cos 6. The key feature 

of the two-contact point state is that, the minor axis of the ellipse must pass through 

the upper-surface hole centre. This conclusion can be explained as follows. Both 

(82) 

or 
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(83) 

On the other hand, (C1C~ belongs to XhOhYh plane, which can be obtained from Eq. 

83 that: 

(84) 

So C1 and C2 are symmetric about the minor axis of the ellipse. They are also 

symmetric about one radius of the hole. As a result, the minor axis of the ellipse 

coincides with a radius of the hole. The minor axis of the ellipse is through the 

upper-surface centre of the hole. 

If the distance between the line joining C1, C2 and 0h is defined as X, then: 

(85) 

Expressing these as a ratio: 

(86) 

Since 

(87) 

and 

(88) 

then the range for the deviation of the centre of end-surface of the peg can be 

expressed as follows: 
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· _ 611yl 
(O,O,,)/W - -(O,O,,)IryJ 

6W 

[(0,0.)"'3 - ~Y2 - L,Sin~6hx2]l + [(O,Oh)W]l S E12 

(89) 

The range for the centre of the end-surface of the peg can be shown in the following 

figure:-

Here 

and 

where 

Y h 

Fig. 42 Area ofOp in XhOhYh-plane with 
two contact points 

« = arctan[max( I 611yl I] 
16w I 

= arctan( max 16 IIyl I ) 
min16/W1 

6w = 6Ad +~alu2 

-6u S 6hyl S 6Al 

-eu S 61Lt1 sa.\} 
~alu2 = 126hl 

79 

(90) 

(91) 

(92) 

(93) 



Substituting Eq. 93 into Eq. 91, then: 

-136111 ~ 6w ~ 110A1 
136M ~ lOw ~110Al 

Substituting Eq. 94 and Eq. 92 into Eq. 90: 

1 « = arctan(-) 
11 

(94) 

(95) 

4.5 Achievement of side-surface contact between the peg and hole 

At this stage in the process, (OhOp)hxJ is nearly zero and (OhOp)hy3 is uncertain. 

Achieving peg side surface contact in YhOhZh plane with the edge of the hole, by 

moving along the Yh-axis, wiII enable the final insertion to be completed. 

This can be depicted in Fig. 43: 

Fig. 43 Side surfaces contact 

where: the angles between the links are given by: 

81 the link 1 and the hole surface, 

82 axes of link 1 and link 2, 

83 axes of link 2 and link 3, 

84 link 3 and hole surface. 
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and: 

M
14

, M 24, M34 and M44 are the moments supported by link 1, link 2, link 3 and link 

4, respectively. 

FC4 is the contact force between the peg and the hole. 

When I (OhOpJhyl gets small, the two contact points between the peg and hole, which 

are symmetric to the axis Yp' would drift away from the centre of the hole Oh' so the 

torque around the Xh axis is increased. The torque around Xh axis drops' to zero 

when a third contact point C3 is created. 

F 
rx 

~==~~--k-----~Yh 
C

3 

Fig. 44 Configuration of the peg and hole when there 
are three contact points 

The most suitable adjustment is to rotate the last link of the robot to reduce I ehx I 

and leave other links free from the control. Small forces F nand F rx are necessary 

to maintain the three contact points. When I Olvc I is small enough, Fpz drops to zero. 

At this time, insertion starts. 

4.6 Peg-hole insertion operation 

After the peg is inside the hole, the way to realize the insertion is to push down the 
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peg and at the same time rotate the peg around Xh axis in YhOhZh plane according 

to the signal from the force sensors. 

In this chapter, a strategy with a limited initial state was achieved, which was based 

on the Cartesian coordinate system. The strategy was to move the initial envelope 

of the axis of the peg into a new area where the signal from the force sensor is 

related to the deviation of the peg and the hole. There are several points in 

common with other researcher's method. However it was shown for the first time 

that the force sensor can not provide the positional relationship between the peg and 

the hole due to the influences of the rotational errors and the contact surface 

defects. It was also the first time that the initial rotation was set up to eliminate the 

influences of the initial rotational error and the defects. Finally, it was the first time 

that (OhOp)hx = 0 was achieved by using two point contact state. The first part of 

this thesis has now been completed. 
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5.0 

5.1 

5.2 

5.3 

5.4 

5.5 

CHAPTER 5 ASSEMBLY OPERATION STRATEGY 

~THOUTFORCESENSORS 

Introduction 

Initial inherited state definition 

Movement of peg to a new area 

Moment to the two point contact phase (moving the centre of the 

end-surface of the peg close to the Yh axis) 

Obtain the peg side-surface contact in YhOhZh-plane (obtain three 

point contact) 

Insertion operation without force sensor 
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5.0 . Introduction 

In the first part of this thesis:-

(1) the problem in the presentation of the positional relationship between the peg 

and the hole using force sensors was pointed out, 

(2) the factors which influence the identification of the positional relationship 

between the peg and the hole using force sensors were provided, while 

(3) a strategy which performs precise assembly operation with the problem in 

using force sensors was provided. The allowed initial range for the peg was 

obtained and the applied forces and moments from the robot to the peg were 

designed. 

If the first strategy is analysed deeply, it can be found that the force sensor was 

seldom used:-

(a) It was used at the beginning of the second step to identify the sign of the 

projection (OhOpJhx of the displacement between the peg and the hole along 

the X h axis, 

(b) It was used to identify whether the system is in the state where (OhOpJhx = 0 

where Miry changes to be zero, 

( c) It was used to identify whether the side-surface of the peg touches that of the 

hole where M hx changes to be zero and, 

(d) It was used to identify if the peg has been inserted into the hole. 

If all of these functions can be replaced through the use of the environment and 

time, it is possible to perform precise insertion operation without force sensor or 

RCC. In this chapter, a strategy to achieve the precise assembly operation without 

force senors or RCC is provided. 
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The basic strategy can be divided into the following states (see Fig. 45): 

(a) Initial inherited state, 

(b) Moving the peg towards one quadrant where the lowest point of peg must be 

in the hole, 

(c) Obtaining two contact points and Op close to YhOhZh plane, 

(d) Moving to get side-surface contact in YhOhZh-plane, 

(e) Insertion adjustment, 

(f) Final insertion. 
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Step 1: Initial inherited 
state 

-++f-+~-Yft 

Step 3: Two point 
contact 

ZII Zp Zp 

Yn 

~ 
_-f!-J4---'-- Y" 

Step 5: Insertion 
adjustment 

Zn 

XII 

XII 

Step 2: New area 

Z ZII 

--\t-Hi--- Y n 

Step 4: Side contact 

Z" Zp Zp Z" 

Yn 

~ 

x 
p X" 

Step 6: Final insertion 

Fig. 4S States in the strategy without force sensors 

Xn 

XII 

xn 

The initial inherited state expressed in Fig. 45 is only one of the many possibilities 

for the initial state. 
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5.1 Initial inherited state definition 

The uncertain lateral and angular errors «(OhOpJI' U1, 8hxl and 8hyl') establish a 3-

dimensional envelope for the peg axis in the initial state which can be defined as 

follows: 

I(O"OJ11<t 1 

IUtl<K1 
6h.d:$:6hl 

611y1:$:6hl 

(96) 

where E1, 8hl, and KI are constants, and where (OhOp)1 is the directed line from Oh 

to Op at the first step. The magnitudes of EI' 8hl and K1 depend on the initial 

location errors of the peg and the hole. For the insertion process to be successful, 

there is a requirement for these parameters to be constrained to predetermined 

limits. The insertion can then be achieved when the actual values are smaller than 

these values which are carefully selected to ensure success. 

The envelope of the peg axis can be presented in 3_D space (see Fig. 46). 

range of 
peg axis 

Fig. 46 Envelope of peg axis uncertainty in the initial state 

87 



S.2 l\1ovement oC peg to a new area 

At this stage the peg is established as being close to the hole inside an envelope 

describing angular and lateral errors. The next step is to move and rotate the peg 

into a new area. The adjustments rely on the nature of the first state. 

The demands for the second state can be described as follows: 

(OhO)Wf.O 

(OhO)"y2 f.O 
I(OhO)21~RII 

-1t/2f.61u2 f. -6hl 
I 611y21 f.6111 

The corresponding area for the peg axis is shown in Fig. 47. 

Z h 

X h 

Fig. 47 Allowable range for the peg axis in 
the second state 

(97) 

The relationship between the first and the second states can be presented as follows: . 

(OIlO)W=(OhO)IuI+AXh2 
(OIlO)lIy2=(OIlO)hyl+AYh2+L,sinA61u2 

61u2 =61u1 + A 61u2 

6"y2=6"yl 

(98) 

where &Xh2 and ~ Yh2 are the translational movements along the Xh and Yh axes, 

respectively, and ~ 8"xl is the rotation around the Xh axis. Substituting Equ. 98 into 
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Equ. 97 and using Equ. 96, the conditions for the adjustment (~h2t .d Yhy2t .d 8/zx2) and 

for the initial inherited state (e1, K1, 8h1 ) can be obtained as follows: 

(1) The conditions for the first state: 

(a) The projection of the end-surface centre of the peg, 0p' must lie within a circle 

of radius (see Appendix 1): 

R 
.. ~ It 
"'I --

.fi,+1 
(99) 

(b) The projection of the upper-surface centre of the peg must lie within a circle of 

radius: 

(100) 

(c) 8h1 must satisfy the inequality according to Equs. 96, 97 and 98: 

0<6 < 1t 
Itl 2(k

41 
+ 1) 

(101) 

where kG is an constant with ka> > 1. ka should be at least 4, so, 

(102) 

The initial error range of this method which can achieve the peg-hole (diameters 

are about 32 mm) insertion with 6 mm initial error range compares favourably with 

other methods, utilizing RCC and force sensors, which offer between 0.2 mm and 

3 mm (8). 

(2) The condition for the adjustment: 

(a) The rotational angle .d8Ju2 is a designable parameter, which can be: 

89 



(103) 

This causes the peg to tilt at a great angle in the YhOhZh plane. 

(b) The movements along the Xh and Yh axes to realize the second situation can be 

in a range of: 

This can be summarised in Fig. 48. 

.... 
.a. , 

'" - 4 y tl2 E 1 .-{2 + 1 

/ 

~ _ rela~~ .. ~~:~ehx2 
I----+..,....n.,o+---*-~ 

region 

Fig. 48 Relation among Rh, £1' 49hx2, 4Xh2 
and 4 Y2 giving the solution to 4Xh2 
and 4 Yh2 

(104) 

So, the smaller Ohl' K} and &} are, the greater is the range for Ow, 4Xh2 and dYh2. 

The general envelope for the peg axis in the second state, which is inside the 

demands for the second state and has the same uncertainties as the first state, can 

be presented as in Fig. 49. 
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Fig. 49 Orientation of the peg axis 
envelope after the second state 

5.3 Movement to the two point contact phase (moving the centre of 

the end-surface of the peg close to the Yb axis) 

At this stage, the peg-hole configuration satisfies: 

(O"O~w < 0 
(OhO~1ry2 < 0 

[(O"O~w - ~XIa2]2 + [(O"O~hYZ - ~YIa2 - L,sin~6hxZ]2 ~ E22 (105) 
-1t/2 <6w <-6h1 

16lryz i < 16"11 

The next step is to move the peg parallel to Xh-axis to reduce (OhOp)hy2' The 

movement begins with one contact point and ends when there are two. The angle 

between the axes of the peg and hole 8hxJ and (OhOp)hy3 are held by the robot. A 

. force F hz3 is supported by the robot to keep the peg in touch with hole. This step 

can be accomplished in two periods. 
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Period 1: The peg would be moved along the positive direction of X" axis (see Fig. 

50), 

Fhx3 

U ..... FhZ3 
.... F 

................... cpz3 
II.F 3./'~ : r cpz :: : 

F ... 
hz3 

/LFcpz3 : 

!LFcpz3 

peg"'cW<,;hO::h 
, . -'F ... :-.' hz3 

F : 
hx3~ 

j movement 

x h 

Fig. SO Peg is moved along the positive direction of Xh axis 

The forces along the X" axis can be obtained as follows: 

(106) 

and forces along Zh axis can be obtained as follows: 

IFep:J Icos leep] I +11 IFepuisinl6w I = IF I&z3I (107) 

Period 2: Movement would cease when there are two contact points (see Fig. 51), 
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FhX7)3-- -F
hZ3 

---F ........... . ....... cpz3 
/ . '...... : II.F. / : ...... : 

r cpz3 ~ ~FCpx3 . 
. . 

Fig. 51 Movement ceases when there are two contact points' 

Since 

(108) 

the provision of Fcpx3 would inhibit further movement beyond that needed for two 

contact points. In the static situation, 

(109) 

The contact force Fcp.tJ is used to compensate F IW' no matter what the size of F IW' 

The required force FIW and the time for this step, t3, can be obtained from Eq. 106 

and Eq. 107 as follows: 
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2mR" (110) 

where use has been made of the fact that: 

(111) 

The range for the centre of the end-surface of the peg can be shown in the Fig. 52 

(see Appendix 2): 

where 

93 
area olOp Y

k 

aO l 

hole 

Fig. S2 Area of Op in XhOhYh-plane with 
two contact points 

(112) 

and the sectional area represents the area in which Op may lie in the third state. 

5.4 Obtain the peg side surface contact in YhOhZh-plane (obtain 

three point contact) 

At this stage in the process, (OhOphB is nearly zero and (OhOp)hy3 is uncertain. 

Achieving peg side surface contact in YhOhZh plane with the edge of the hole, by 
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moving along the Yh-axis, will enable the final insertion to be completed. The angle 

8hx4 is held by the robot. A force along Zh axis F hz4 is applied to the peg to keep it 

in touch with the hole. The motion along the Xh axis and the rotation around the 

Yh axis, 8hy4, are free from the control of the robot and influenced by the contact 

force. 

The applied forces acting on the peg from the robot can be shown in Fig. 53. 

F

hY4 gJ Fhz4 -

a.............. . ....... . 
> • • . . 

movement 

Fig. 53 Forces acting on the peg from two-point contact phase 

The forces along the Yh axis are obtained as follows: 

where 

(114) 

and the forces along the Zh axis are obtained as follows: 
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(115) . 

After the side surface of peg touches the hole, F Cf4 would prevent further movement 

(see Fig. 54). 

peg 

'F 
chy4 

-fB
. . ..... hole 

, , '. Fh 4 ~ .. :', ...... y y .,.,.. n 
, , .oF 

" .,:" chy4 
FhZ4 : 

. I 
F I 
chy4 

Fig. 54 Forces acting on the peg when it touches the hole with side 
surface 

Because the assembly operation is quasi-static movement, the designed force along 

Yh axis, Fhy4 and time, 14, can be obtained as follows: 

2mR" (116) 

This is based on the fact: 

(117) 

Through analysis, it is found that the small (OhOp)hx4 and 8hx4 are eliminated during 
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this step. At this instant (see Appendix 3), 

(118) 

5.5 Insertion operation without force sensor 

So far, peg-hole insertion problem has been reduced to a geometry problem in the 

YhOhZh plane, which is defined by the axis of the hole and the base of the robot. 

The geometry of the peg-hole configuration can be found in Appendix 3. 

As a conclusion, if the forces and moments applied to the peg are kept as constants 

before and after insertion, they must satisfy [see Appendix 4]: 

After the peg is inside the hole, the way. to realize the insertion is to push the peg 

down and the at the same time rotate the peg around the Xh and Yh axes in two 

directions alternately. In the period when the robot rotates the peg, in the direction 

increasing the value of the angle between the axes of the peg and the hole, the peg 

would be fIXed by the hole. In the period when the robot rotates the peg, in the 

direction to decrease the angle between the axes of the peg and the hole, the peg 

would be pushed down. 

The process for the tracking of Op and 8hx for all the process can be concluded as 

in Fig. 55 and Fig. 56: 
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Fig. SS Tracking of the centre of the end surface of the 
peg 

1,2, ... ,6 refer to event numbers 

1 
5 6 

5 6 time 

2 3 

2 3 4 

Fig. S6 ehx in the process 

where numbers "1", "2", ... , "6", refer to the event numbers defined in Fig. 45. 

The flow chart of the process can be presented as in Fig. 57. 
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Fhx Fhy L1tJx peg moved to 
new area 

! -+-
Fhz • Fhx 

move along X h 
fixed by the hole 

.1 ! 
Fhz~hy without Fhx 

move along Y h 
fixed by the hole 

J. -* 
M hx Fhy Fhz rotate the peg 

~ j. 

"/Ix t.4 F insertion 
hy hz adjustment 

! 
end 

Fig. 57 The flow chart of the process 

In this chapter, a novel strategy for the robotic peg-hole insertion was proposed:-

(a) With this strategy, the peg-hole insertion with limited initial state conditions can 

be easily achieved without a force sensor or RCC. 

(b) The basic conditions for the initial state and successful adjustment are described. 

(c) The principle of the strategy is related to RCC technique because of the side-

surface contact, but without the need for additional compliance or a chamfer. 

(d) The strategy also shares features of force sensor techniques but without force 

sensor feedback. 

(e) The nature of the strategy enables application to other assembly operations. 
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6.0 Introduction 

The strategies to perform precise assembly operation with force sensor and without 

force sensor have been developed in Chapter 4 and Chapter 5, respectively. The 

remainder problems are: How are these strategies developed? Are there general 

methods to develop the strategies? Are there any other strategies which can be used 

in the robotic peg-hole insertion operation? In this chapter, these problems will be 

studied in detail. If there is a range from which any point can achieve a goal through 

the movement with sensors, this range is called a pre-image of the goal (68). If there 

is a range from which any point can achieve a goal through the movement without 

sensors, this range is called as a back-projection of the goal. Considering this pre­

image or back-projection as a new subgoal, the new pre-image or back-projection can 

be found for this subgoal. If one of the pre-images or back-projections totally includes 

the initial range of the system, a strategy to drive the system from the initial state to 

the goal is found. If each subgoal is a back-projection of the last subgoal, a strategy 

to guide the system without sensors is found. How to find a strategy is a complex 

problem because the pre-images or the back-projections of one subgoal can be 

different according to the directions of the movements. In this chapter, the strategies 

in the robotic peg-hole insertion operations are investigated through the concepts of 

the pre-image and back-projection which are provided by other people (68, 69). For 

example, the pre-images which were selected as the subgoals in the robotic peg-hole 

insertion operations can be:-

(1) the range where the translational error is zero, 

(2) the range where the angular error is zero, 
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The pre-image of the first subgoal can be: 

(la) the range where the projection (Oh0plhx of the displacement between 0h and 

Op along the Xh is zero, 

(lb) the range where the projection (Oh0plhy of the displacement between 0h and Op 

along the Yh axis is zero, 

The pre-image of (ta) can be: 

(laa) the range where the sign of the projection (OhOp)hx can be identified and the 

state when the system enters (la) can be identified. 

The back-projection of (la) can be: 

(lab) the range where the sign of the projection (OhOp)hx is known and when the 

system is moved into (la), it would be fIXed in (la). 

Comments on the strategy investigation are presented in Section 6.1, the analysis of the 

pre-image of the insertion operation investigation is presented in Section 6.2 and the 

analysis of the pre-images of the assembly operations is presented in Section 6.3. 

6.1 Comments on strategy investigation 

The strategy for the insertion is a loop including movement, identification and 

classification. The block diagram for the strategy with the force sensors can be 

presented as follows: 
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where 

n 

Fig. 58 The basic concept of identification and planing 

is the integer that a sequence of n motions can be found such that each 

motion terminates by the utilization of the environment or the force 

signals, and the final motion terminates in the goal, 

~, n-1'; is the ith set of the force signals during the second step, 

Rn-1, ; is the intersection between ~ ~, n-1' ; and Rn_1 and, 

v·e n-1'; is the commanded velocity applied to any point in the range Rn-1, ;. 

The initial state of the peg is in the range Rn' The commanded velocity for the peg 

with any state in the set Rn is van' The identification of the state is according to the 

forward projection FaiR,J and force sensor signal ~s,n-l' Some contact character can 

be identified according to these signals. Then the contact configuration can be 

classified into Rn-1,;. Each class shares some common points about the contact 

characters. A unitary movement is applied to one class. There are several points to 
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note at this stage of strategy development: 

(a) One class (for example Rn-1,j) must include several sets of identifications. As 

analysed before, one identification can indicate several contact configurations 

(some movements would maintain the static position of the contact point on the 

peg and some movements would maintain the static position of the contact point 

on the hole). The relationships among one class, one identification and several 

contact configurations can be presented as follows: 

one contact 
configuration 

ne class 

identification 

Fig. S9 Oassification, identification and contact configuration 

The sets of the force sensor signals in one class should share some common points 

on the contact characters. 

(b) One class (for example Rn-1,j) must lead to one kind of motion (ven_J1j, for 
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example). The smallest class can be one identification. As analysed before, all the 

contact configurations among the motion where the positions of the contact points 

on the peg would share the same set of signals from wrist force sensors. All the 

contact configurations among the motion where the position' of the contact points 

are static on the hole would share the same set of signals from table force sensors. 

With the same set of force signals, there are plenty of contact configurations. So 

it is difficult .to classify the system only according to the signals from the force 

sensor. 

(c) The back-projection and pre-image concepts can be used to choose some of the 

subgoals. 

(d) The forward projection would be used to check that if these subgoals are easily 

recognized and can be considered as the start state for the next stage. The 

construction of the strategies can be concluded as follows: 

If the force sensor signal is used to detect the completion of the subgoals and 

further recognize which of the subgoal is achieved to decide the direction of the 

motion, then: 

FaiR,) n 7tFs• = RIl - 1 

Fa,ll-l(R,.-l) n 7tF,· = R"_1 

until 
Fe.1(R1) n 7tF; !: G 

If the time and environment are used to achieve the subgoal, then: 
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Fe,1l(R", t) n ",E = R,.-t 
Fe,1l-1(R,,-1' t) n ",E = R"_2 

until 
Fe.1(R1, t) n 'JtE c G 

6.2 The pre-image for insertion 

The goal of assembly operation can be presented as follows: 

(121) 

{G} = fany position and orientation of the peg I (122) 
the peg is inserted into the hole} , . 

= {Op,a I IO"Oplxp,y, ~ (R" -R) n IO"Oplx.o,y, ~ (R" -R)} 

The state of the goal for the assembly operation can be presented as follows: 

peg 

hole 

Fig. 60 The normal situation of the goal for 

peg-hole insertion 

The pre-image for the insertion can be presented as: 
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{G.} = P ~ e ({G}) = {any position and orientation of the peg I 
I' 1 

end surface 0/ the peg is inside the hole n 
S.(P, R., (G}) p O} (123) 

• {O"a I «0)./ + (0,),,/ = £2) ~ (RJa - R,sinla 1)2 
n (0):/1 ~ 0 n SI(P, Rl' {G}) p O} 

This suggests that it is possible to decrease the difficulties in the insertion operation by 

tilting the peg. In the range [0, "'/2], if 181 is increased, (Rh-Rp sin 181) would 

increase. So the permitted initial range for Op increases. The set including all the 

commanded velocities can be presented as follows: 

SI(P, Rl , (G}) • {ve •• elve .• 
e can make the peg achieve the insenion (124) 

from any point of Gl } 

If force sensor is used, it is easy to identify when Slp, R1, {G}) is not zero. If there 

is no force sensor, the insertion can be achieved by avoiding jamming and wedging (11, 

47). 

Fig. 61 The pre-image P{G} for the peg­

hole insertion 
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6.3· The pre-image for the assembly operation 

There are eight strategies proposed here. The strategies and their subgoals are 

presented as follows: 

1 

E-IJ 
161.,tl ~-

18 \-0 
e-/o 

Fig. 62 The strategies of robotic peg-hole insertion operation 

6.3.1 Method 1 

Method 1 is to adjust the peg to eliminate the translational and rotational error 

simultaneous, and the subgoal of this method can be presented as follows: 

where S 2 includes all the commanded velocities to move the peg from the initial area 

to the insertion state. The achievement of Sl includes: 
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(a) the calculation of applied force, and 

(b) the design of termination predicate. 

The block diagram of the first method can be presented as follows: 

6.3.2 Method 2 

E and e caD be 

Idcotified . 

E" J E-' 
161" 

"\. 

161-' 

Fig. 63 The block diagram 

of the first method 

Method 2 can be divided into two discrete steps: 

(a) reduce the translational error, and 

(b) reduce the rotational error. 

The subgoals of this method can be presented as follows: 

(Gzl a p~.ez«(Gl}) = (O"el 10hO,1 = 0, lei ~ 0, 

Sz(p, ~, {Gl}, F, e) P O} 
(126) 

S2 is the set including all the commanded velocities to move the peg from I OhOp 1=0 

to the state G 1 in which the peg is inside the hole. 

S 3 is the set including all commanded velocities to move the peg from the initial area 

to the area where I OhOp I =0. 
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The block diagram of the second method can be presented as follows: 

E can be 

identified 

E=o 

• can be 

identified 

1'1=0 

Fig. 64 .The block diagram of the second 

method 

The'main difficulties of these two methods are: 

(a) The directions and magnitudes of the translational and rotational errors must be 

measured precisely. As analysed previously, the measurement of the translational 

error is influenced by the rotational error 8, 

(b) The accuracy of the assembly operation is restricted by the sensory uncertainty and 

control uncertainty. 

6.3.3 Method 3 

To release the demands for the measurements of the translational error directions 

I OhOp I , the event to eliminate I 0hOp I can be subdivided to eliminate its projections 

in the cartesian coordinate systems (OhOp)1ve and (Oh0,)hy, separately. If both of the 

directions of the projections of the translational errors, and the state where one of the 

projection is eliminated can be easily identified, method 3 can simplify the insertion 

procedure greatly. The subgoals of this method can be presented as follows: 
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{Gl } ~ p~.~({GI}) ... {O"Ollo"o,1 = 0, 101 ¢ 0, 

Sl(P, Rz, {GI }, F. e) .. O} 

{G3} = P ~8,({Gl}) = {O,.0I(o.O,)b ... 0, (o.o,)ky ¢ 0, Ie I ¢ 0, 

S3(P, ~, {Gi, F. e) .. O} 

{G.} ... PR.,8.({G3}) ... {o" 0 I 10,,0,1 .. 0, lei" 0, 

s.(P, R., {G,}, F. e) .. O} 

identify the sign of 

(aha P1,x and 

(OhOp)hX =0 

e\o (Ob°plhx=O 

(ObOplby~O ~ 
161\0 

161\0 

J (Ob°plbx=O 

(Ob°plby=O "-

! 101\0 

e=o 

lei =0 

identify the sign of 

(aha P)hY and 

(OhOp~y =0 

i dent i f>-8 

Fig. 6S The block diagram of the third method 

(128) 

(129) 

(130) 

The remaining problem is that the initial angle, even with very small magnitude, would 

influence the identification of: 

(a) the signs of (O"Oplh:c and (O"Oplhy with the nonzero angle between the axes of the 

peg and the hole and the defects on the contact surfaces, and 

(b) the situation when 
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(131) 

or 

(132) 

6.3.4 Method 4 

To reduce the influence of the angle between the axes of the peg and the hole, method 

4 is used to eliminate the angular error at the beginning of the procedure. The peg is 

moved away from the mouth of the hole, and is rotated along the Xh and Yh axes until 

MIvc and Aflry become zero respectively. The subgoals of this method can be presented 

as follows: 

{Gl } • p~.~({GI}) = to"~ e I Ie I == O. (0.0)1vc = 0, (°11,°)11, ~ 0, 

Sz(P. ~, {G I}' Fe) .. O} 

{G3} = PR,.8,({GZ}) • to,. el. E +R" > 10,,0,1 > Rh, lei = 0, 

S3(P, ~, {Gz}, Fe) .. O} 

{G.} -= PR.,8.({G3}) = to"~ el, E + R" > 10,,0,1 > Rh, lei ¢ 0, 

Sip, R., {G3l, F.e) .. o} 

{G,} = PR,.8,({G.}) = {o"el 10ho,I = E .. O. 

s,(P, R" {G.}, F. e) .. O} 

The block diagram of the fourth method can be presented as follows: 
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E \. h' E+ .. >lo,.OPI>"1 E+ .. >lo"o,l>" -
lei ;0 - 181;0 181-0 

(O~op>u-o 

(Ob°P>by~O 

~ 

/ 1'1-0 

Ident Ify Sion of (OhO~hx 
and state (Oh0pJhx-O 

ideality. 

(O~°P>h.-O 

"'- (OhO~b1=0 

r lel-o 

Identify sion Of(OhOp)hy 
and state (OhOphy=o 

) 

Fig. 66 The block diagram of the fourth method 

The problems with this method are: 

(a) The initial angle is difficult to eliminate completely, 

(b) The influence of the defects of the contact surfaces on the identification of the 

contact states according to the force sensors are difficult to eliminated. 

6.3.5 l\fethod 5 

The idea in method 5 is to increase one projection of the angular error to reduce the 

influence from:-

(a) the projection of another angular error, and 

(b) the defects of the contact surfaces. 

1bis method obtains the benefit from the fact that the magnitudes of projections 8
hx 

and 8hy have a minimal effect on the adjustment of (Oh0pJhx and (OhOp)hy respectively. 
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As analysed above, the projection of Op on the XhOhYh plane is on the circle with same 

one contact point (which is related one set of force signals) and nonzero 8. So the 

projection of the force sensor signals and the Op initial positional area can be prese"nted 

as follows: 

So: 

Fig. 67 Mapping of the force sensor signal 

and the initial area 

TtF: n R" = R,. (137) 

This means that the static force sensor signals would not provide positional information 

when the peg is in the initial state. So it is only possible to use the force signal in some 

of the forward projection of the initial state. The subgoals of this method can be 

presented as follows: 

{Gl } • P8z~({Gl}) • {Op,e I (OhO) = 0, ehy Ii: 0, 

eAr .. 0, ve,2 - = wiu until F sz. - = O} 

{Gl } • P R,.8,({G2l) = {Op,e I (OhO)1u = 0, (OhO)hy <0, 

Tt/2 > lelryl > leArI, ve~ = viry until Msz- = O} 
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It can be proven that in this case, when M~· = 0, (OhOp)hy = 0 

{G4} • P/4.e.({G3}) • top's I(OhO~u < Ot (0It0~1ry < Ot 

1t/2 :> leAlI :> lellyl, ve/ = vAl until Msy· = O} 
(140) 

It can be proven that in this case, when Msy· = 0, (OhOplhx = 0 (Appendix S), i.e. 

(141) 

{Gs} = PRs.epG4}) = {peg is in the initial area which can be moved to the new 

area where (0lt0~u < 0, (0It0~1ry < 0, ~ :> 18A1 1 :> ISul} ~ RII 

(142) 

The block diagram of the fifth method can be presented as follows: 
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E\' (O.O">.s<O 

lel,o 
(0.0">.,<0 

~ »18hsl >~ 8b11 

(0 .. O">"It-o E-O 

~ 
(O.O">b,<O 

~ 
--t 

~ »19b11»~bl 181,0 

identify sign or (OhO~bx 

and state (Obq.lbx =0 

.~ 
identify sign or (OhO~hy 

and state (Ohq.lhy =0 

Fig. 68 The block diagram of the fifth method 

6.3.6 Method 6 

E=o 

lel=o 

To simplify the procedure, it is also possible to move the peg along the Yh axis after 

Op touches the Y" axis (OJ in the method 5). The side-surface contact between the peg 

and hole can be easily achieved recognizably. The rotation and translation can be 

performed according to the wrist force sensor to achieve the insertion through three 

point contact. Because this is a combined motion the sensor signal is used either to 

detect phase termination or to guide the adjustment motion. The subgoals of this 

method can be presented 'as follows: 

{Gl } - p~.~({Gl}) • {O",elPeg has three contact points with Z"O"Y" plane &143) 

symmetric plane, ve,z· keeps three point contact until F;=O ) 
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{GJ} = P R,.e, ({G2}) .. {O pt6 1(0"0,)",, = 0, (0,,0,)1ry < 0, 

~ > 16",,1 > le",l, Ve,3· = vlry' until M·u = O} 
(144) 

It can be proven that the intersection of the forward projection of G3 with the direction 

along Y,. axis and the projection of M~=O on the positional space is that the peg has 

three contact points with the hole, i.e., 

Fe,,(GJ.n n(M·u = 0) = {Op,e I peg and hole have three contact (145) 
points } 

G -I and G 5 are same as that in method S. 

The block diagram of the sixth method can be presented as follows: 

E\O 

I-I ~o 

(O~O'>b·· 

~ 
(O~O"bJ<' 

-+ »!8I1J»~II,1 
\ 

l 
Identify.ign 01 (<>t.Oplbx 

and .tate (Ohq,lbx-O 

\ 

'-

(O~O'>bs<O 

(0 lao,> .. , <0 

~ »10 ... 1 >~ Blayl 

three 
point 
contact 

Identify sign 01 (<>t.Oplby 

and state (<>t.q,lby =0 

E=O 

lel=o 

Fig. 69 The block diagram of the sixth method 
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6.3. 7 ~fethod 7 

It is possible to use the constraints of the environment and the compliance produced 

by the structure to avoid the use of the ~orce sensors. The nominal applied force from 

the robot can be calculated. The problem caused by the model error, control error can 

be compensated by the compliance during the procedure. 

The difference is that every subgoal termination is achieved by utilizing the process 

time and' the constraints of the environment. The subgoals of this method can be 

presented as follows: 

{GI } .. PR
1
.8

1
({G}).:& {0,,6.1 when the end-surface of the peg 

is inside the hole, Sl({G}, RI , t) .. O} (146) 
-= {0,,6 I 10 •0 ,1 < R. - Rpsinl6 I n (O,)/u. ~ 0, 

Sl(P, R1, {G}, t) .. 0 until t=t,.} 

where n = 5 for this method. The applied forces to achieve the insertion without force 

sensor and RCC have been studied (11, 39 and 53). 
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r 

{G2} ... P'-l.~({Gl}) = {Op,O\peg and hole have three contact points, 

rotating and pushing the peg until t = t
A

- 1} 

{G3} = PR,.e,({G2}) = {0,,61(OAO,)1u = 0, (DAD,)'" < 0, 

; > 101Lt1 > 10A,1, va)· = v"" until t = t,,_2} 

{G,} = P R,.8
s
({G4}) ... {Op,O \peg is i n the initial area, 

va,!· = Vu + v", + wlu' until t = t"-4} 

E\O (Oh°plhs<O 

I e I \0 -i (Oh0plby <0 

+»18hxl >~ ebyl 

(O.°pllax-O 
three E=O 

(°la°plby<O point r---
-} »18bxl»18 byl contact 

\81-0 

~ 
fix \l'hen (0 0 = II phx 0 fix wit 00 =0 

Fig. 70 The block diagram of the seventh method 

6.3.8 Method 8 
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After Op touches the hole, the peg is moved along Yh axis. If the peg is pushed down, 

the peg would be on the point where (Oh0pJhy = O. The peg can be rotated to be 

inserted into the hole. The subgoals of this method can be presented as followS: 

{G3} • P R,.8,({Gl }) .. {Op,61(0,0,)", SiS 0, (0,0,)", < 0, Tt/2 :> 16",'1 :> 16",1(152) 

va)· = v'" with constant F,.;., until t = tll _l } 

{G4} ... PR.-s.({G3}) = {0p'6110.0pl < t, 161 < a, 
va4• ... w'" to make 2: :> lelal :> leJ.../l . 2 . AT 

(153) 

. where e is a definition for the range of the initial angle between the axes of the peg 

and the hole. 

In this" chapter, various strategies for the robotic peg-hole insertion operation were 

analysed. The strategy provided in Chapter 4 with a force sensor an~ the strategy 

provided in Chapter 5 without a force sensor are regarded as the most reliable 

methods. The movement of the peg insertion operation with the strategy presented in 

Chapter 5 will be simulated in the next Chapter. It will show how the peg is inserted 

into the hole with constant applied forces from the robot. The experiments of the 

assembly operation will be presented in Chapter 8. 
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CHAPTER 7 SIMULATION OF ROBOTIC PEG-HOLE 

INSERTION OPERATION 

7.0 Introduction 

7.1 The simulation method used in this thesis 
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7.5.2 The applied forces in the fourth step 
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and hole in the fourth step 

7.6 Insert the peg into the hole deeply 
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7.0 . Introduction 

In previous chapters, the strategy investigation has been studied. The strategies 

provided in Chapter 5 and Chapter 6 are considered to be the most reliable 

methods, especially the method presented in Chapter 6 which can perform precise 

assembly operation without force sensors or RCC. Avoiding the use of a force 

sensor brings many advantages:-

(a) operational time is reduced, 

(b) operational cost is reduced, 

(c) problems caused by damage to the force sensors are avoided and, 

(d) the assembly system is simplified. 

The remainder problems can be presented as follows:-

(a) whether strategy works in practice or how the peg moves with the input forces 

and contact forces, 

(b) whether the contact forces are small enough to avoid damage to the system 

and, 

( c) how should the input forces be designed? 

(d) what is the initial area for the system? 

It is easy to think that there is no need for the simulations if the experiments can be 

done. However the simulation can provide the location of contact point in the 

insertion operation and the contact force. The values of the contact forces can be 

used to judge the performance of the strategy. Particular useful is that the 

simulation program can be used to analyse the general insertion operation without 

the specific requirements to the types of the robots. 
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7.1 The simulation method used in this thesis 

The block diagram of the simulation of the movement of the peg can be presented 

as follows: 

input forces the design 
of the 

movement 
types 

F hx • Fhy F hz . 
and M hx 

contl:lct 
force 

F = m a 

M = I 9 

nominal movement 

location and 
size of 

I:lctua I 
movement 

Fig. 71 The block diagram of the 
simulation of the movement 
of the peg 

The diagram means that the nominal movement of the peg can be calculated through 

the input forces, the design of the movement types, the mass of the peg and the 

inertial mass of the peg. Through that the nominal state of the peg is determined. 

While this nominal state must be constrained by the location of the hole. Then the 

actual state of the peg is decided by the nominal state of the peg and the location 

of the hole. The contact forces can be calculated, too. 
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7.2 Rotate and move the peg from the initial area to a new area 

7.2.1 Nominal movement 

During [0 s, 0.5 s], the peg is rotated around the Xh axis with the angle ~ Ok'd • 

and moved along the Xh and Yh axes with the displacements a/ and ~Y/: 

where Ohl is the maximum value of the variables 8hx,1 and 0hy,l: 

The nominal movement of the peg Op can be presented as follows: 

:' : ~ ~ : .••. ~~ ..... ......... 
A,9 " ,':,' 

hX.1~ .... ~ .... 

Fig. 72 

,: ~.:: 
~::;):::/ .......... . 

The peg nominal movement 
in the first step 

The types of the movements in the first step can be described as follows: 

ah,1 ~Yh,1 ~Zh,l AOhx,l ~Ohv,l 

types guided guided guided guided fixed 
motion motion motion motion 

Table 10 The types of the movement in the first step 
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The simulation ofthe input to the peg and the movement of the peg in the first step 

can be presented in Fig. 103-106. 

7.3 Push the peg to the hole with F hz and move the peg along the Xhp 

with Fbx 

7.3.1 Nominal movement 

During [0.5 s, 1.0 s], the peg is pushed to touch the hole and is moved along 

the Xh axis after half the time has elapsed. The nominal movement of the 

peg in the second step can be presented as follows: 

+'<' 

Fig. 73 The peg nominal movement 
in the second step 

The movement types can be presented in the following table: 
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time 4th, 2 .dYh,2 &'h,2 .d 81u;2 .d8hv,2 

the first free or free or guided or fixed free or 
half of compliant compliant compliant compliant 
the 
second 
step 

the guided compliant guide apd fIXed compliant 
second and compliant 
half of compliant 
the 
second 
step 

Table 11 The types of the peg movement in the second step 
7.3.2 Applied forces in the second step 

The design of the applied forces should satisfy the following conditions: 

.d 8hz,2 

fIXed 

fIXed 

(1) Fhz,2 is big enough to push the peg to touch the hole in half of the duration 

of the operation time in this step, 

(2) F hx,2 is big enough to move the peg from any point in the possible initial range 

for the second step to achieve the two point contact state and, 

(3) A better design is to make F hz,2 and F 1u;2 as small as possible to reduce the 

contact forces between peg and hole. 

During the first half of the second step, only constant force F hz,2 acts on the peg. 

During the second half, both Fhz,2 and Fh~2 act on the peg. The applied forces in the 

simulation can be presented in Fig. 103-106. 

7.3.3 The location of the contact points 

To analyse the movement of the peg, it is necessary to analyse the contact state and 

contact forces between the peg and hole. The contact force analysis is also useful 

for the strategy performance study. 
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7.3.3.1 One point contact state 

In general, when the peg is pushed by F hz to touch the hole, there is one contact 

. point between the peg and hole. The projections of the end-surface of the peg and 

the upper-surface of the hole on XhOhYh plane can be presented as follows: 

Op 0h 
-~~~"---YP 
-~~::"""""'+---Yh 

Fig. 74 Projections of end-surface of 
peg and upper-surface of hole 
with one contact point 

To discuss the coordinates of the contact point, it. is better to analyse the system in 

the XhpOhpY hp coordinate frame. The projection of the contact point: 

(a) is one of two common points between the projections of the circle of the end-

surface of the peg and of the circle of the upper-surface of the hole, 

(b) is a greater distance from Xpp compared with the other common point, 

(c) is on the same side of Yhp axis as the centre of the end-surface of the peg. 

Or, the distance between the contact point and Ypp is smaller than that 

between the contact point and Yhp: 

(156) 

The location of the contact point can be calculated according to: 
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(C)Itp/+(C)1tpy2 =R,,2 

(C)ppx2 + (C)p",2 =R/ 
(157) 

(158) 

According to these equations, the coordinate of contact point can be calculated in 

simulation program. After that the coordinates can be transferred to that in the 

7.3.3.2 Two point contact state 

The state with two point contact can be represented as follows: 

Fig. 75 

y 
pp 

Projections of end-surface of 
peg and upper-surface of hole 
with two contact points 

The contact force through the new contact point prohibits the movement along Xh 

axis. The direction of the contact force is similar to that in the one point contact 

state. If the value of F hpz is big enough to keep the peg from jumping out of the 

hole, 

(159) 

the peg is flxed in the two point contact state. At this moment, the short axis of the 
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elliptical projection of the circle of the end-surface of the peg is through 0h because 

the two contact points are symmetrical along the short axis. (Ophpx can be calculated 

as follows: 

(160) 

The purpose of this step is to reduce the value of I (Op)M I which is calculated 

through (OpJhpx" 

The simulation of the coordinates of the contact point can be presented in Fig. 115-

118, where (cJppx = 0 or (cJppy = 0 means that Ci does not exist, i = 1, 2. 

From the simulation results, it is clear that: 

(a) When 0.5 s < t < 0.9 s, the peg is moved along the X h axis: 

(i) there is one contact point between the peg and hole and, 

(161) 

(162) 

(ii) It is clear that when the peg is moved along the X h axis, the value of 

I (Opc)hp.t I is increased and the value of I (Opc)hpy I is reduced. 

(b) When 0.9 s < t < 1 s, the peg is fIxed with two contact points. The peg-hole 

system is in the two-point contact state: 

(163) 

(164) 
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7.3.4 The direction of the contact force 

The direction of the contact force can be analysed as follows. The direction of the 

contact force should be perpendicular to the contact lines which are tangential lines 

of the circle of the end-surface of the peg and of the circle of the upper-surface of 

the hole at the contact point. Since XhpOhpY hp is a plane including the tangential line 

of the circle of the upper-surface of the hole, the projection of the contact force and 

the tangentialline of the circle of the upper-surface of the peg are perpendicular to 

prOject Ion OfC ........ . 
Contact for : : 

. F (! :. 

(C)h 
py 

Fig. 76 Projection of contact force in 
Xhp0hpYhp plane 

The projection of the contact force in XppOppYpp plane is perpendicular to the 

tangentialline of the circle of the end-surface of the peg: 

Fig. 77 

prOjection Of 

Contact force 
Fe 

:c 

Projection of contact force in 
XppOppYpp plane 
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The projection of" the contact force in XppOpp~p plane is through 0pp. 

If the length of the projection of the contact force in XhOhYh plane is Rh, the length 

of the contact force along Xhp and Xpp is: 

(165) 

The length of the projection of the contact force along Y hp axis is: 

(166) 

The length of the projection of the contact force along ~p axis is: 

IF I Ie epPY).1 
'1'PY). = ",,,). e 

ppx). 

(167) 

The projections of the contact force on Zhp0hpY hp plane and on ZhpO~hP plane can 

be presented as follows: 

Fig. 78 Projections of the contact 
force on Zhp0hpY hp and 
ZhpOh;Xhp planes 

cos( a. pm) = 
cos( a./tpyz) 

(e )ppyx(e) lip" 

(c)pp"x(c)hpy 

So the angles chpyz' cppyz' Chpzx and cpprx can be calculated as follows: 
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· C xc I PP'I hpz I +cos 16 I 
_ (c)ppzx(c)hpy 

a.llm -arctan( . I I ) sm 6 

(170) 

(171) 

(172) 

_ « ) (c)ppz 
a.pptz-arctan tan a.ppy:. x--) 

(C)PP1 

(173) 

During the movement of the peg along Xh axis, I (c)ppx I and I (c)hpy I increase and 

I (c)ppy I and I (c)hpy I decrease. That means during that period, Qhpyz decreases. The 

minimum value of Qhpyz occurs when the peg-hole system is in the two-point contact 

state. If 

(O,)ppy=O (174) 

or 

(c)hpz=O (175) 

then 

1t (176) a. =--6 
11m 2 

The angles Qhpyz,2 and Qhpzr,2 can be simulated as follows: 
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Fig. 79 The angle Qhpzx,2 versus time 
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Fig. 80 The angle Qhpzy,2 versus time 

From the simulation, it· is clear that: 

(1) during the movement of the peg along the Xh axis, both of the angles Qhpyz and 

Qppyz decrease until the peg-hole system is in two point contact state, which 

occurs at t = 0.9 s in the simulation, 

(2) Qhpyz and Qppyz have their minimum values when the peg-hole system is in the 

two point contact state. 

The contact forces along the Xhp axis can be presented as follows: 
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Fig. 81 The .projection (Fc1)hpx,2 of the contact force on the first contact pointin 
the second step 
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Fig. 82 The projection (FC~IIPX,2 of the contact force on the second contact 
point in the second step 

From the simulations of the contact forces during the movement of the peg along the 

Xh axis, it is clear that: 

(1) If 0.5 s < t < 0.9 s, there is one contact point, 

(177) 

Fchpx,l increases. 

(2) if 0.9 s < t < 1 s, there are two contact points, 

(178) 

so the peg is fIxed at this point. 

The values of the contact forces are similar to those in the strategy using force 
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sensors. So the contact forces are small enough to avoid damage to the peg-hole 

system. 

7.3.5 Frictional force 

The major problem in the study of the frictional force is about their directions. 

The frictional force is: 

(1) in the plane which includes the tangential line of the circle of the end-surface 

of. the peg and the tangential line of the circle of the upper-surface of the . 

hole. This plane is called as tangential plane. 

(2) opposite to the projection of the velocity of the contact point of the peg on 

the tangential plane. 

The tangential plane can be presented as follows: 

Fig. 83 

where: 

Tangential plane in 
Oh;XhpY~hp 

Qphprx: is the angle between the common line of the tangential plane and Xhp0h7-hp 

and -Xhp axis and, 

Qp.hpyz: is the angle between the common line of the tangential plane and Y hpO~hp 

and -Y hp axis: 

The frictional force along the Xhp axis can be presented as follows: 
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Fig. 84 The projection !chpx,2 of the frictionid force in the second step 

It is clear that: 

(1) the frictional force exists when there is one contact point between the peg and 

the hole, and 

(2) the value of the frictional force is much smaller than that of the contact force 

along Xhp axis. 

7.3.6 The movement of the peg in the second step 

The simulation of the movement of the peg along Xh axis can be presented in Fig. 

106-111. 

From the simulation of the movement of the peg in the second step, it is clear that: 

(1) during the movement of the peg along the Xhp axis, both of I(OhOplhz I and 

I (OhOplhx I decrease and, 

(2) when the peg is fixed with two contact points, it is at its lowest point in this 

step. I (OhOpJhx I is small. 
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7.4 Movement 'of the peg along the Yb axis 

7.4.1 Nominal movement 

During [1.0 s, I.S s1, the peg is moved along the YJa axis. The nominal movement of 

the peg can be presented as follows: 

Fig.8S 

ZI'I 

... 1.:: . . ". 
'. . ' .. : ..... ~ 

The peg nominal movement 
in the third step 

The peg would be fIxed when there are three contact points between the peg and the 

hole. The movement types can be presented as follows: 

~3 .iY3 .iZ3 .i81Jx3 .i8hy3 .i8hz3 

types compliant guided guided compliant compliant fixed 
and and 
compliant compliant 

Table 12 The types of the peg movement in the third step 

7.4.2 Input forces 

The design of the applied forces should satisfy the following conditions: 

(1) Fhz,3 is big enough to push the peg to touch the hole in half the time of the 

total operation time in this step, 

(2) F Jay,3 is big enough to move the peg from any point in the possible initial range 

of the second step to achieve two point contact state and, 

(3) A better design is to make Fhz,3 and F hy,3 as small as possible to reduce the 
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contact forces between the peg and the hole. 

The applied forces Fhpy,3 and Fhpz,3 in simulation can be presented in Fig. 103-106. 

7.4.3 The contact state during the movement of the peg along the Y"p axis 

7.4.3.1 Vze movement of the peg along the Y" axis 

At the beginning of this step, the contact state is in two-point contact. When the peg 

is moved along the Y" axis, the short axis is not through 0". Then there is one 

contact point between the peg and the hole. The contact force through this point 

helps the adjustment of the peg along the X" axis and the rotational movement 

around the X" axis until there are two contact points between the peg and the hole. 

The direction of this adjustment changes after the two point contact state. So the 

peg-hole system changes between one-point contact state and two point contact state: 

Fig. 86 One point contact state whilst 
the peg is moved along Y" axis 

139 



7.4.3.2 

Fig. 87 

y 
pp 

Two point contact state when 
the peg is moved along Yh axis 

77ze fIXation of the peg with the bottom and side-surface contact 

This step achieves a three point contact state. In this state, because the applied 

force is along the Yh axis, (0 p) hx and Bhx decrease. 

Fig. 88 

Yhp 

Three point contact state of 
peg-hole system 

The position of the peg in the three point contact state can be calculated using Blipx' 

(181) 
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The locations of the contact points can be presented in Fig. 115-118. 

From the simulation, it is clear that: 

(a) during the movement of the peg along the Yh axis which occurs in the situation 

when t < 1.33 s, there is one contact point between the peg and the hole. (c1)ppy 

decreases, 

(183) 

(184) 

(b) when the peg fIxed with the hole which occurs when t > 1.33 s in the simulation, 

there are three contact points between the peg and the hole. 

(185) 

(C2)ppy = (c1)ppy (186) 

7.4.4 The contact force during the peg is moved along the YII axis 

The contact forces can be presented in Fig. 111-114. 

7.4.5 The movement of the peg along the YII axis 

The simulation of the movement of the peg can be presented in Fig. 107-110. 

From the simulation, it is clear that: 

(1) During the movement of the peg along the Yh axis, (OhOpJhzt (OhOpJhx and 8hy 

are reduced, 

(2) When the peg contacts the peg with its bottom and side-surfaces during [1.34 

s, 1.51 s), (OhOplhx is almost zero. The peg is fIxed at its lowest point during 

the movement of the peg along the Yh axis. 
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7.5 Rotate peg into the hole 

7.5.1 Nominal movement of the peg 

During [1.5 5, 2.051, the peg is rotated into the hole. The nominal movement of the 

peg can be presented as follows: 

Fig. 89 

z" 

The peg nominal movement 
in the fourth step 

The types of the movement can be presented as follows: 

paramete """4 ~Y4 ~Z4 ~8hx,4 
r 

types compliant compliant guided compliant 
and 
compliant 

~8hy,4 

guided 
and 
compliant 

Table 13 The types of the peg movement in the fourth step 
7.5.2 The applied Corces in the fourth step 

~8hz,4 

fixed 

The peg is inserted into the hole using the three point contact. If the applied forces 

and moments remain the same before and after the insertion: 

(187) 
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Fig. 90 The contact configuration for 
the adjustment phase 

the peg can then be inserted into the hole. The applied forces in the simulation can 

be described in Fig.103-106. 

7.5.3 The movement of the peg and the contact forces between the peg and hole in 

the fourth step 

(1) Before the peg is inserted into the hole, 

(189) 

the contact forces F chpz,4' F'hpy,4 and acceleration 8hx,4 can be calculated. If the peg 

contacts the hole with the side-surface and the bottom-surface of the peg, the 

relationship between (0plhpZ,4 and 8hpx,4 can be described as follows: 

(190) 

The contact configurations can be divided into three: 

(a) the peg contacts the hole with the bottom-surface and the side-surface of the 

peg. Both of FChpZ,4 and Fchpy,4 exist, 
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Fig. 91 The contact configuration 
when the contact points are 
on the bottom and side­
surfaces of the peg before the 
insertion operation 

(b) the peg contacts the hole with the bottom-surface of the peg. Only FchpZ,4 

exists in this case, 

Fig. 92 

ZI'I 

The contact configuration 
when the contact points are 
on the bottom surface of the 
peg before the insertion 
operation 

(c) the peg contacts the hole with the side-surface of the peg, only Fchpy,4 exists 

in this case, 
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Fig. 93 The contact configuration 
when the contact point is on 
the side-surface of the peg 
before the insertion 
operations 

(2) the peg is inserted into the hole, and 8hx,4 <0 

The contact forces and the movement of the peg can be simulated. The contact 

configurations of the peg-hole system can be divided into four: 

(a) there is one contact point between the peg and the hole, and (c) hy,4 < 0: 

(b) 

contact poln 

hOle 

Fig. 94 The contact configuration 
when (chy,,J < 0 after the peg 
is inserted into the hole and 
8hx,4 < 0 

there is one contact point between the peg and the hole, and (C)h 4 > 0: !Y, 
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peg 

Fig.9S The contact configuration 
when (chy,.J > 0 after the peg 
is inserted into the hole and 
8hx,4 < 0 

(c) there are two contact points between the peg and the hole, and (C1)hy,4 > 0, 

(C~hy,4 < 0 

Fig. 96 The contact configuration 
when (Cl)hy,4 < 0 and (C~hy,4 
> 0 after the peg is inserted 
into the hole and 8hx,4 < 0 

(d) there is no contact point between the peg and the hole 
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Zh 

p eg 

le~ 
~ 

hO 

Fig. 97 The contact configuration 
without contact points after 
the peg is inserted into the 
hole and 8hx,4 < 0 

(3) the peg is inserted into the hole, and 8hx,4 > 0 

The contact forces and movement of the peg can be simulated.· The contact 

configurations can be divided into three: 

(a) there is one contact point between the peg and the hole, and (C)hpy,4 < 0, 

peg 

1.----- Y h /II....--f--'I 
cont.act. point. 

hole 

Fig. 98 The contact configuration 
when (c) hy,4 < 0 and 8hx,4 > 0 
after the peg is inserted into 
the hole 

(b) there is one contact point between the peg and hole, and (C)hpy,4 > 0, 
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contact pOfn 

hole 

Fig. 99 The contact configuration 
when (C)hy,4 > 0 and 8hx,4 > 0 
after the peg is inserted into 
the hole 

(c) there are two contact points between the peg and the hole, and (C1)hpy,4 > 0 

and (c:J hpy,4 < 0: 

peg 

Fig. 100 The contact configuration 
when there are two contact 
points between the peg and 
the hole when 8hx,4 > 4 after 
the peg is inserted into the 
hole 

(d) there is no contact point between the peg and the hole 
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peg 

hole 

Fig. 101 The contact configuration 
when there is no contact point 
when 8hx,4 > 0 and the peg is 
inserted into the hole 

The simulation of the movement of the peg can be presented in Fig. 107-109. 

7.6 Insert the peg into the hole deeply 

In this step, the peg is inserted into the hole. The applied force F hz,5 as designed is 

to insert the peg deeply into the hole. 

Fig. 102 Insertion operation 

The applied forces in the simulation can be presented in Fig. 103-106. 
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The types of the movement of the peg in this step can be shown as follows: 

names JXs ~Ys jZs j8~s ~8hv.S j8hz,5 

types compliant compliant guided compliant compliant fIxed 
and 
compliant 

Table 14 The types of the peg movement in the fIfth step 

The contact forces and the movement of the peg can be simulated in the method 

similar to step 4. 

7.7 Simulation of peg-hole assembly operation 

Rp· = 15.99 mm, 

mp· = 1 kg, 

ip = 0.65 kgm2, 

Rh = 12mm, 

Rp = 11.99 mm, 

mp = 1.1 kg, 

maximum(noise/applied force) = 0.1, 

time for each step is 0.5 second. 

The applied forces to the peg during the assembly operations in the simulation can 

be presented as follows: 
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Fig. 103 The input force Fhz along Zh axis 
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Fig. 104 The input force F hx along Xh axis 
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Fig. lOS The input force Fhy along Yh axis 
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Fig. 106 The input moment Mhx around the Xh axis 

The movement of the peg in the assembly operation in the simulation can be 

presented as follows: 

· . · . 
-1 ........................................................................ , ................ . · . . · . · . . 

f: -2 ........................................................................ , ................ . · . . · . 
1 -3 

-" 
................................... : ................... : .................. ! ................. . · . . 

.' . ................................. :- ................. -: .................. : ................ . 
· . . · . 

-0 ................................... :- ................. -: .................. : ................ . · . . 
-e 

-'7 
0 o.~ , .0 a.s 

tl""" •• 

a~--------~----------,---------~~--------~--------~ · . . · . . 
o ....... ··· .... ···i .................. : ................... : .............. ~.~;.-----------l · . . · . . · . . .... ................................................................................... . .............................. . 

.. .. .. .. -2 

.. .. .. . 

.. .. .. .. . .. . . .. . .......... ~ ..................... ~ ................... "'.. . ............... ~ ................. . ! -" ., . 

.. .. .. .. 
........ ········i··················:··········· ....... : .................. ; ................. . 

.. . .. .. .. · . . 1 -e 

.. .. I I 

-e ............................................................................................. 
I I • .. .. .. .. .. · . . 

-'0 . . . . . .. .. . . . . . .. . .. ... .. .. . .. .. .. .. .. .... .', ................ ~ ........................... ~ ....................... .. · . · . 
-'2 0 0.5 1.5 2.5 
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Fig.Hl The projection 8hy 

The contact forces between the peg and the hole in the assembly operation in the 

simulation can be presented as follows: 
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.Fig. 112 The projection Fchpx of the contact force along Xh axis 
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Fig. 113 The projection Fchpy of the contact force along Yh axis 
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Fig. 114 The projection Fchz of the contact force along the Zh axis 

2.S 

The location of the contact points on the bottom of the peg can be presented as 

follows: 
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Fig. 115 The projection (C1)ppx of the first contact point along Xpp axis 
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Fig. 116 The projection (C~ppx of the second contact point along Xpp axis 
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Fig. 117 The projection (C1)ppy of the first contact point along Ypp axis 
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Fig. 118 The projection (c~ppy of the second contact point along Ypp axis 

In this chapter, the method not requiring force sensors or RCC has been simulated . 

. The simulation includes the applied forces, the movements of the peg, the locations 

of the contact points, contact forces and frictional forces. The purposes of the 

simulations are: 

(1) to prove the validity of the insertion methods, 

(2) to improve the analysis of trends of the locations of the contact points, the 

contact forces and frictional forces, 

(3) to study the movement of the peg, 

(4) to study the allowable initial range of the position of the peg for the strategy 

and, 

(5) to study the input designs. 

In the next chapter, the experiments using UMI-RTX robot without force sensors will 

be described. 
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CHAPTER 8 EXPERIMENTS 

8.0 Introduction 

8.1 UMI-RTX robot 

8.2 The experiments environment 

8.3 The peg-hole system 

8.4 The robotic peg-hole insertion operation without force sensors 
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8.0 Introduction 

The strategy investigation has now been completed. The insertion operation using 

the strategy where the use of the force sensors or RCC was avoided were simulated 

in the last chapter. In the simulation programs, 

(1) the input forces from the robots are assumed to include the nominal designed 

input forces and noises, 

(2) the types of the robots in the system were not defined. The links of the 

robots were assumed to be rigid and, 

(3) the peg and hole were assumed to be cylindrical. 

In practice, the actual input forces are exactly the same as those in the simulation 

program. The links of the robot are not rigid and would be deformed by the forces 

between the robot and the peg. The peg and the hole are not strictly geometrically 

cylindrical. All of these slight differences would make the movement of the peg in 

practice differ from that in the simulation although they would not influence the 

feasibility of the strategy in practice. 

In this chapter, the exPeriments using UMI-RTX robot will be presented. 

8.1 UMI-RTX robot 

8.1.1 The Geometry of the UMI·RTX robot: 

In UMI-RTX robot, there is a column, shoulder, upper arm, lower arm, wrist and 

gripper. The height of the robot is 1251 mm, the total movement radius is 1010.4 

mm. The diagram below shows the RTX-robot: 
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robot arm 

linear slideway 

wrist and grip 

Fig. 119 The diagram of UMI-RTX robot 

8.1.2 Drivers in tbe UMI·RTX robot 

There are seven precision 24 V DC motors in RTX robot. One with 20 W output 

power, is used to control the vertical motion. Six others with 30 W output power are 

used to control other axes. 

The shoulder motor and elbow motor drive the upper-arm and lower-arm, 

respectively. Both of them drives the arms through a gearbox and a two-stage belt 

reduction. The final pulley is fixed to the arms. The intermediate combined pulley 

is on an eccentric spindle that allows the secondary belt tension to be adjusted. The 

shoulder motor is fixed on a slotted plate which is used to allow the primary belt 

tension to be adjusted. 

The wrist unit is fixed to the lower arm through a plate. This wrist mounting plate 

is driven by the wrist yaw motor located in the upper-arm through a gearbox and a 
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series of pulleys. 

The wrist unit is fIxed by four screws to the lower arm's wrist plate. This means that 

the wrist unit can be taken off, and some other piece of equipment, such as the peg 

attached. There are two gear motors, called wrist 1 and wrist 2 in the unit. Each 

drives a spiroid bevel gear, which in tum drives an output bevel gear. 

The gripper consists of two identical moulded jaws, each linked to a tip. 

In each motor, a two-phase optical incremental encoder is fitted. The software can 

monitor the movement and the direction of the motors. 

8.1.3 Encoders 

In each encoder, there is a small printed circuit board, attached to the motor, and 

a moulded plastic disc pressed on the extended motor spindle. 

The disc has vanes which pass between the two slotted opt-switches mounted on the 

pcb. A square wave arranged to be 9r1 degrees out of phase to the other is 

generated by each of the switches. 

8.1.4 Torques to the arm joint 

The motors are driven using pulse width modulation. The width of the pulse of 

current, which is supplied to the motor every 16 ms, regulars the torques to the arm 

joints. The amount of current drawn by the motor is dependent on:-

(1) the speed of the motor, 

(2) the current-limiting circuitry the motor drive circuits. 

The current that. can be drawn by the motor decreases in a linear way with an 

increase in motor speed. Motor torque is proportional to motor current. 

8.1.5 Repeatability 

The repeatability of the RTX's movement is +/-0.5 mm at the wrist pivot. 

8.1.6 RTX's electronics 
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Behind the column, the control unit electronics are mounted. The main controller 

card is fIxed by nuts in the T -slots on the column. The main controller in an IP 

(intelligent peripheral) board which consists of IP 0, IP 1 and the motor-driving 

circuitry. There is also an external motor driver (EMO board), mounted on the side 

of the column, which powers the zed motor, and a power supply behind the column 

main support bracket. Each IP is an Intel 8031 micro controller and includes an 

Intel 8156· 256-byte· RAM with input/output, a 27128 EPROM, and a 8243 

input/output expander. In each IP, proportional, integral and differential (PIO) 

control algorithm is fitted. 

The motor drivers are Sygnetics L293E chips, each supplying a nominal third of an 

amp to each motor. 

S.1.7 How the IPs control the motors 

When one of the RTX's motors is programmed to move to a new position, the 

processor in the IP controlling that motor computes a velocity-versus-time curve for 

the motion. This processor, called velocity profiling, is performed by software. The 

servo control of the motors is proportional, integral and differential terms which can 

be fIXed by the controlling computer. Offset is needed to overcome the friction of 

the motor and the deadband is needed to give a range within which RTX will assume 

it has achieved its destina tion. 

The output of the servo loop to the motor is a pulse of current,of fIXed amplitude 

and with a width from 0 to 64 units. 

The current supplied to the motor depends on the five control parameters, and also 

on the error returned from the previous cyeles. 

S.l.S The RTX library 

As mentioned previously, RTX is driven by seven motors which are controlled jointly 

161 



by two processing'units called intelIigent peripherals. The intelligent peripherals are 

refereed to as IPQ and IP 1, and each one has responsibility for specific motors. The 

intelligent peripherals are controlled by a communications protocol called IPe-­

Intelligent peripheral communications. 

The basic commands in the library can be presented as follows: 

(a) preparing the arm at the start of an operation, keyword including INIT 

eOMMS, VERSION, RESTART, DEFINE ORIGIN, 

(b) defining how the arm will move, keyword including READ, WRITE, SET 

MODE, 

(c) initiating movement of the arm, including GO, INTERPOLATE, 

(d) getting reports on the arm's current status, including MOTOR STATUS, 

GENERAL STATUS, 

(e) stopping the arm, keyword including STOP, 

(f) using IPe directly, keyword including RAW COMMAND, RAW RESPONSE. 

There are two sets of parameters used to define the arm movement:- . 

(a) the control parameters, which use the keyword READ and WRITE, 

(b) the motor modes, which use the keyword SET MODE. 

There are three pairs of options in the motor mode:-

(a) force and position mode, 

(b) absolute or relative motion (in position mode only), 

(c) user input and output. 

In force mode, the motor uses a constant force to the part of RTX that is being 

driven. If RTX robot meets an obstacle, the motor does not try to drive the RTX 

to push any harder. If that amount of force can move the obstacle, then it moves; 

otherwise, the arm of the robot will stop. 
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In position mode, the force increases when the arm meets an obstacle: RTX keeps 

pushing with more and more force up to the maximum force defined. 

8.2 The peg-hole system 

The picture of the peg is presented as follows: 

Fig. 120 The picture of the peg used in the experiments 

The material of the peg i 45# steel. The diameter of the peg is 31.99 mm. The 

length of the peg is 60 mm. 
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The picture of the hole is presented as follows: 

Fig. 121 The picture of the hole used in the experiments 

The material of the hole is 45# steel. The diameter of the hole is 32.01 mm. The 

depth of the hole is 31 mm. 

8.3 The Experiments environment 

The experiment are simply set up, which can be described as follows: 
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robot arm 

linear slideway 

link peg 

hOle

dD 
Fig. 122 The robotic peg-hole system 

Both of the robot and the hole are fixed. The peg is connected with the wrist of the 

robot. 

8.4 The robotic peg-hole insertion operations without force sensors 

The robotic peg-hole insertion operation has been achieved reliably in the 

experiments. The assembly operation has been recorded in the video. The following 

series of pictures illustrates the intermediate steps. 
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Steo 1: Initial inherited state 

Step 3: Obtaining two contact 

points 

Step 2: Movin,g to new area 

Step 4: Getting side-surface 

point 
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Step 5 and 6: Insertion adjustment and start 

Fig. 123 Intermediate steps in experiments 

The operation time was 2.5 s. The maximum contact force was 0.5 N. With the use 

of enhanced SCARA UMI-RTX robots, there are some comments worth to be noted 

as follows: 

(a) The rotation of the peg around Iu: is achieved by the combination of the 

movements of the motors for the wrist. 

(b) In step (c), the movement of the peg along the Yh axis is achieved by the 

rotation of the shoulder. The values of I (OhOphx I and IOhy I are further 

reduced through the free controller of the elbow and the wrists. For the robots 

which cannot provide free movement about two axes, the strategy would still be 

valid. In that case, I (OIlOp)/1X I is reduced when the peg is moved to approach 

three point contact state and lOlly I is reduced in the insertion process. 

(c) There were 10 trials of assembly operations for a selected range of pegs and 

holes giving a perfect success rate. 

(d) The operational time for each step is a selectable parameter. Here the 
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operational time for each step was 0.5 seconds. Then the input forces from the 

robot were designed to guarantee to move the peg from any point in the last 

sub-goal to achieve the new sub-goal. If the operational time is re-designed, the 

input forces must be re-designed. The less the operational time is, the greater 

the input forces and contact forces must be provided. 

(e) If the axis of the hole is slightly off-vertical, the free-control of the'wrist and the 

internal compliance of the robot would help the insertion process. However, if 

the angle between the nominal and actual axes of the hole is great, there is 

difficulty to use this strategy. 

(f) In the first phase of step (d) [13- 14], the peg is rotated back to reduce the value 

of 18m I and pushed into the hole. The rotational angle J 8hx is bigger than all 

the possible angle 18/1X I in the side-surface contact state. During the rotation, 

the peg is pushed down to the hole to keep three-point contact state. Therefore 

when 8m = 0, the end-surface of the peg is already in the hole. The further 

rotation is prohibited by the hole. In the second phase of step (d) [14 -15]' the 

peg is pushed into the hole. 

(g) There is no additional compliance in the experimental assembly operations using 

UMI-RTX robot. In the insertion process, the free control of some links and. 

the internal compliance in the UMI-RTX robot help the insertion process. 

In this Chapter, the successful experiments of peg-hole insertion operation were 

described. The clearance of the assembly is 0.02 mm. The length of the peg is 60 

mm. The operational time is about 2.5 seconds. These experiments prove the 

feasibility of the strategy without force sensors using the UMI-RTX robot. 
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9.0 Introduction 

The objective of this thesis is to achieve the robotic peg-hole insertion operation with 

high-precision, high-speed and low-cost. 

9.1 Six-component force sensor design analysis 

At the beginning the six-component force sensors, which were popularly used in the 

robotic peg-hole insertion operation, were selected as the feedback devices. Many 

force sensors, used in previous assembly research, have been heavily studied and the 

general rules in the six-component force sensor design were concluded. 

9.2 The force sensor signals and the location relationship 

between the peg and the hole 

The main problem was if the signals from the force sensors were used to identify the 

location relationship between the peg and the hole, which could guide the 

elimination of the tran.slational and rotational errors between the peg and the hole. 

This problem was often over-looked. In this thesis, it was found that the validity of 

the location relationship identification between the peg and the hole using force 

sensors depended on: 

(a) if the force sensory signals could be used to obtain the magnitudes and the 

directions of the c.ontact forces and the moments between the peg and the 

hole and, 

(b) if the magnitudes and the directions of the contact forces· and the moments 

could be used to identify the location relationship between the peg and the 

hole. 

The first item could be easily achieved and the algorithm describing the relation 
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between the force sensory signals and the contact forces and the moments between 

the peg and the hole was decided by the structure of the force sensors. 

The second item if the location relationship between the peg and the hole could be 

identified according to the magnitudes and the directions of the· contact forces and 

the moments between the peg and the hole remained a serious problem, ~hich was 

often over-simplified. To illustrate this problem clearly, two concepts--the centre of 

the overlap of th~ projections of the contact surfaces and the centre of the contact 

area were provided. The former one was always related to the location relationship 

between the peg and the hole. The later one was certainly related to the values of 

the contact forces and the moments. Therefore if the centre of the overlap of the 

projections of the contact surfaces and the centre of the contact area coincide with 

each other, the location relationship between the peg and the hole could be obtained 

from the values of the contact forces between the peg and the hole and the second 

item could be easily achieved. In this thesis, however, it was found that these two 

measures would coincide if and only if that: 

(a) the angle between the axes of the peg and the hole was zero and, 

(b) the contact surfaces were absolutely smooth. 

In practice, the non-zero angle between the axes of the peg and the hole and the 

defects of the contact surfaces always exist, so the centre of the overlap of the 

contact surfaces and the centre of the contact area do not coincide with each other. 

In a conclusion, the location relationship between the peg and the hole cannot be 

obtained directly from the signals from the force sensors. The problem then was 

how the translational and rotational errors between the peg and the hole could be 

eliminated and the peg could be eventually inserted into the hole if the location 

relation between the peg and the hole could not be identified according to the force 
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sensor signals? 

9.3 The requirement of the identification of the peg-hole system 

In this thesis, it was further pointed out that the major point of the insertion 

operation is whether the required information about the peg and the hole can be 

obtained from the signals from the force sensor and other knowledge of the system, 

rather than whether the whole location relationship between the peg and the hole 

can be identified from the signals of the force sensors. 

9.4 A strategy provided to achieve precise robotic peg-hole 

insertion with force sensor feedback 

The key points of the strategy could be presented as follows: At the beginning, one 

set of the force sensory signals corresponded to a range for the system to lie within. 

Combined with the prior knowledge of the system, the range for the system to lie 

within can be further reduced. The first command was designed which could 

perform the system to achieve the first sub-goal from any point in this range. This 

sub-goal could be considered as the new initial range and the new command could 

be found to perform the system to achieve the new sub-goal recognizably 

reccursively. Eventually, a sub-goal was found to be included in the goal where the 

peg was inserted into the hole. 

9.5 A strategy provided to achieve robotic peg-hole insertion 

without the use of force sensor 

Furthermore, it was found that the function of the force sensor signals could be 

replaced through the use of the environment. In other words, the peg from any 
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point in the initial area could be moved by first unitary command and fixed by the 

hole in the first sub-goal. This sub-goal could be considered as a new initial range 

and the new command to perform the system to achieve the new sub-goal 

reccursively and eventually a sub-goal was found to include the final goal. 

9.6 Experiments and simulation work 

These two strategies have been carried out with experiments and further verified 

through the simulation. The movement of the peg, the location of the contact points, 

the direction and magnitude of contact forces during the assembly operation can be 

obtained in the simulation. Because there was no definition of the robot type in the 

simulation, the potential of the use of these strategies with various types of the 

robots was recognized. 
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CHAPTER 10 CONCLUSIONS 
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In this thesis, the robotic peg-hole insertion operation was investigated. The 

assembly operation, as an important production link, plays an important role in the 

modern industry. The most widely used assembly operation model, the peg-hole 

insertion operation, has been heavily studied. 

At the beginning of this thesis, it was pointed out that the robotic peg-hole insertion 

operation with force sensor signals as feedback does not always work. This is due 

to the fact that:-

(a) the force sensory signals can only be used to calculate the location of the 

centre of the contact area, 

(b) the translational error between the peg and the hole can only be calculated 

from the location of the centre of the overlap area, 

(c) in most cases, the centre of the contact area and the centre of the overlap 

area do not coincide. 

It is difficult, then to calculate the positional relationship between the peg and the 

hole according to the force sensory Signals. It brings the difficulty in the robotic peg­

hole insertion operation. 

A strategy to perform the robotic peg-hole insertion operation, by overcoming the 

difficulty analysed previously, has been proposed. The peg is moved to a new area 

where the direction of the projection of the centre of the end-surface of the peg with 

respect to the centre of the hole along the line normal to that which is through the 

centre of the hole and the base of the robot can be obtained from the the sign of the 

force sensor signals. Then the movement of the adjustment to reduce the amount 

of the absolute value of the projection of the centre of the end-surface of the peg 

with respect to the centre of the hole along the line normal to that which is through 

the centre of the hole and the base of the robot can be obtained. The state where 
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the projection of the centre of the end-surface of the peg on the top-surface of the 

hole is on the line which is through the centre of the hole and the base of the robot 

can be identified when the moment around the line connecting the centre of the hole 

and the base of the robot suddenly changes to zero. Afterwards the peg is moved 

along the line which is through the centre of the hole and the base of the robot and 

stops when the moment around the line normal to the line which is through the 

centre of the hole and the base of the robot suddenly changed to zero. The peg is 

rotated and inserted into the hole with the feedback from the force sensor. 

The input forces design and the allowed initial range for the axis of the peg were 

analysed. Next, the attention focused on the possibility to reduce the demands on 

the force sensors. A strategy to achieve the precise assembly operation without the 

force sensors or RCC was proposed. 

The peg is moved to a new area where the direction of the projection of the end- . 

surface of the peg with respect to the centre of the hole along the line normal to that 

which is through the centre of the hole and the base of the robot is known and from 

which any point can be'moved to a state where the projection of the centre of the 

end-surface of the peg on the top surface of the hole is along the line which is 

through the centre of the hole and the base of the robot and fixed there. Afterwards 

the peg is moved to reduce the absolute value of the distance between the projection 

of the centre of the end-surface of the peg and the centre of the hole along the line 

which is through the centre of the hole and the base of the robot and stopped where 

this value is at its minimum value under the angle between the axes of the peg and 

the hole. Then the peg is rotated and inserted into the hole. The input force design 

and the allowed initial area for the axis of the peg were analysed. After the 

strategies were provided, the principles of strategy investigation were analysed 
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through the use of the concepts of pre-images and back-projections. The strategies 

provided in Chapter 4 with the use of the force sensor and in Chapter 5 without the 

use of the force sensor were considered as the most reliable methods. 

The strategy provided in Chapter 5 was the best method since there is no need for 

the use of the force sensors. To analyse its feasibility, the assembly operation 

insertion was simulated. The location of the contact points and the directions of the 

contact forces can pe obtained from the positional relationship between the peg and 

the hole. The movement of the peg can be determined by the input forces from the 

robot and the locational relationship between the peg and the hole. The value of the 

contact forces can be obtained according to the movement of the peg, the location 

of the contact point, the direction of the contact forces and the input forces. The 

feasibility of the strategy was also proven. In the simulation program, no particular 

type of robot was assumed. So the strategy provided in Chapter 5 was not limited 

to any particular type of robots. The input force design, and the allowed initial area 

for· the axis of the peg were analysed. 

The experiments of the robotic peg-hole insertion operation with the clearance of 

0.02 mm using UMI-RTX robot were carried out. 

In this thesis, the basis for robotic peg-hole insertion operation has been investigated. 

The assembly operation using the strategy provided in this thesis is precise, reliable, 

fast, cheap and requires force sensors or no force sensors. To our knowledge, it is 

the first time these precise assembly operations with clearance of 0.02 mm have been 

achieved with cheap robot and without precise feedback. This strategy can also be 

used for assembly operations with other shaped objects which may be required in 

industry. When the strategy is widely used in industry, assembly operation with 

cheap robots may be available and more human-free factories may be established at 
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Furthermore, the strategy investigation method used in this thesis can also be useful 

in other research. 
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CHAPTER 11 RECOl\1l\1ENDATIONS FOR THE FUTURE WORK 

11.0 Introduction 

11.1 The application of the new strategies with other types of the robots 

11.2 The application of the new strategies in other shaped objects assembly 

operation 

11.3 The theoretical approach in the general strategy investigation 

11.4 The application of the strategies in industry 
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11.0 . Introducation 

The robotic peg-hole insertion has been simply achieved with high-precision, high­

spee~ Jow-cost and without the requirements of the use of the force sensors. The 

experiments have been carried out with SCARR UMI-RTX robot. The validity of 

the strategies has also been verified through the simulation where the robot types 

have not been speciaJJy defined. 

11.1 The application of the new strategies with other types of the 

robots 

The simulation results provide the potential of the use of these strategies with 

various types of robots. However, to use these methods with other kinds of the 

robots still needs a lot of experimental and research work such as the analysis of: 

(a) the influences of the flexibility of the robotic links, 

(b) the maximum forces which can be provided by the robots, 

(c) the maximum errors between the nominal force and the actual force from the 

robot and between the nominal and actual coordinate frames. 

11.2 The application of the new strategies in other shaped 

objects assembly operation 

It has already been noticed that these new strategies can be used in other shaped 

objects assembly operation with slight improvements. The simulation work about this 

research is in process. If these methods can be successfully used in various shaped 

objects assembly operation, many practical assembly problems can be solved with 

high precision, high speed and low-cost. 
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11.3 The theoretical approach in the general strategy 

Investiga tion 

Furthermore, much research work in the strategy investigation for the robotic peg­

hole insertion, such as the sub-goal selection and the use of the compliant motion to 

achieve the defined sub-goal, can be useful in the general strategy investigation. It 

is necessary to conclude these works using a more theoretical approach. 

11.4 Application of the strategies in industry 

A lot of time and effort is also needed to transfer these strategies from the 

laboratories to the industry. 
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APPENDIX 1 

THE RANGE OF PROJECTION OF (Op) IN THE NEW AREA 

Since the initial state range of the projection of Op on XhOhYh is a circle with radius 

of e J (see Fig. 46), 

(0 0 ,2 + (0 0 ,2 ~ E 2 " r Ax] A r IayJ 1 
(191) 

then the second state range is also a circle with the same radius, but different 

locations: 

[(0"O)1u:2 ~ AXA2]2 + [(0"O)1ay2 - AYla2 - LgsinA61u:2]2 ~ E~ (192) 
E2 = El 

The location of Op in the second state, shown in Fig. 49, must satisfy the quadrant 

identified in Fig. 124: 

Fig. 124 

y 
h 

Actual maximum range of Op 
in the second state 

So the maximum value of e2' is unChanged from the first state and, is related to the 

radius of the hole: 

(193) 
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APPENDIX 2 

PROJECTION OF RANGE OF (Op) WITH TWO CONTACT 

POINTS 

The projections of the end-surface of the peg and the upper-surface surrounding the 

hole with an angle of 83 can be expressed as in Fig. 125: 

where 

Y
h 

Fig. 125 Projections of contact surfaces 
with two point contact 

(1) aaJ is the angle between Xh axis and angle 83, which is considered as a vector 

here, 

o 
a 83 = arctan IryJ 

°IW 
(194) 

The magnitude of the angle 83 is 

(195) 

and x is the distance between 0h and line segment C1C2 

(2) The projection of the end-surface of the peg is a ellipse, where the major axis 

is along the direction of 8 with length of 2Rp' and the length of the minor axis 

is 2Rp cos I 8J I· 
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(3) The key feature of the two-contact point state is that, the minor axis of the 

ellipse must pass through the upper-surface centre of the hole. 

This conclusion can be explained as follows. Both of C1 and C2 are onXhOhYh plane, 

so (CIC~ is parallel to the planeXhOhYh. (CIC~ is parallel to the major axis of the 

ellipse and CI and C2 are symmetric about the minor axis of the ellipse.. On the 

other hand, CI and C2 are on the circle of the hole, so they are also symmetric about 

one radius of the. hole. As a result, the minor axis of the ellipse coincides with a 

radius of the hole. 

(4) If the distance between the line joining CI , C2 and 0h is defined as x, then: 

(196) 

Expressing these as a ratio: 

(197) 

then the range for the deviation of the centre of end-surface of the peg can be 

. expressed as follows: 

(198) 
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APPENDIX 3 

GEOMETRY OF THE PEG·HOLE CONFIGURATION WITH 

THREE CONTACT POINTS .BEFORE INSERTION AND WITH 

TWO CONTACT POINTS AFTER THE INSERTION OPERATION 

(a) For the three contact point phase before the insertion starts, the general 

configuration can be presented as in Fig. 126. 

C 3 

--==*=ii=#=""':"'- Y h 

Fig. 126 Three point contact phase 

where cp is the centre of the peg, and zd5 is the distance between the side contact 

point to the end-surface of the peg. The locations of the contact points and the 

centre of the peg must be the functions of the angle 81u5 as follows: 

From Equ. 199, these equations can be obtained: 

and 

R" + (Ct)1ry5 = Rp - (Ct)PY5 

Rp + (C1)py5 R,. - (Ct)"yj 
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(199) 

(200) 



(Ct)IryS + R" 
--.,;~-.....;.;. = cos6

1W 
(C1)pyS + Rp 

Combining Equ. 198, 199 and 200, 201, it can be shown that: 

so 

z = _ 2R" - 2Rpcos6 IW 
dS sin6 

Jaxj 

(O"O~1ry4 = Rh + z~6IW - Rpcos6Jaxj 
= -Rh + Rpcos6Jaxj 

(b) After /8hxJ / is smaller than 8mm which is defined as in Fig. 127. 

Fig. 127 8mm and the start of insertion 

R 
6min = arccos(2) 

RII 

(201) 

(202) 

(203) 

(204) 

the insertion operation starts. Then the basic positional relationships can be 

presented as follows (C1 and C2 coincide with each other): 

2Rpcos6w - z~in6w = 2RIa 

(c~pzj = -Rpsin6Jaxj + (~ L, - zdS)cos6Jaxj (205) 

(c~pys = Rh + Rpcos6w - (~ L, - zdj)sin61rxS 
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Fig. 128 Peg-hole configuration when 
I 8hd I < I Bmin I 

The relationship between the angle Bhd and zd5 remains the same before and after 

the peg enters the hole if it touches the hole with both end-surface and side-surface 

(see Fig. 128) which is same as Equ. 233. Similarly, the relationships between (C,JhyS 

and Bhd and between (C,Jhz5 and ~rx5 are also kept the same. 
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APPENDIX 4 

FORCES ANALYSIS DURING THE ADJUSTMENT AND 

INSERTION WHEN THE PEG AND HOLE HAVE THREE 

CONTACT POINTS 

The forces acting on the peg during three point contact can be presented as in Fig. 

129. 

M hx5 

M hx5 

Fig. 129 Forces acting on t~e peg with three point contact 

The equations can be presented as follows: 

IFllysl - IFcpyslcos6w - JlIFcpysisin l6w l - JlIFcp:5lcos6w + IFcptS Isin l6w I 
= mallys 

-IFIlzSI + IFepysisinl6wl - JlIFepyslcos6w + IFepzSlcos6w - JlIFcp:5l sin l6w l 
= maltV 

Mw - IFcpysl(L, - 4dj) - JlIFepyslRp - IFepzS"(C1)pys I - JlIFcpzSIL, 
= law 

(206) 

Mw must be big enough to rotate the peg. It should be noted that the directions of 
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If the peg can be controlled to touch the hole with three contact points before 

insertion and with two contact points after insertion when 18hx5 1 decreases, the 

assembly operation can be achieved. The way to ensure these touch is to make Fepys 

and Fepd positive in the specified direction with assumption that a hyS =ahzS =0. Due 

to the fact that in this case, 

sinl6wl III 0 
cosl6wl III 1 

The contact forces can be approximated as follows: 

1 + J.l2 

= IFlty51 - IF1t:JI~ 
1 + J.l2 

(207) 

(208) 

To make both of the contact forces positive, the forces FhyS and F hzS must satisfy: 

(209) 

Here F hz5 is a designabJe value. The Mw must satisfy the following condition to 

rotate the peg during the three point contact state: 

These conclusions can be reached as in Fig. 130: 
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· Fig. 130 Forces applied to the peg 
from the robot during three 
point contact phase 

After the peg inserts the hole, the dynamical situation can be presented as in Fig. 

131. 

Fig. 131 Forces acting on the 
peg after the peg 
inserts the hole 

where ~l and ~2 are two contact forces between the peg and hole after the peg 

enters the hole. The dynamic equations can be presented as follows: 

IFltysl = 1ft I - 1121 
IFltysl = J.L( 1ft I + It; I) (211) 

IMwl = !f11(L, - l.dS) - J1!fI IR, - It;IL, + J1I12IRp 

From this, the two contact forces between the peg and hole can be obtained and 
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presented as follows: 

and 

To make the contact forces positive, FhyS and FluS must satisfy that: 

To rotate the peg, the moment around the Xh axis must satisfy: 

1
M I = IF 1

2L, - ztlS - 2J.LRp _ IF I ztlS 
IW 1ry5 2 IIz5 2 J.L 

(212) 

(213) 

(214) 

(215) 

If the forces and moments applied to the peg are kept as constants before and after 

insertion, they must be in the range illustrated in Fig. 133. 

. Fig. 133 Forces from the robot for the 
insertion adjustment 
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APPENDIX 5 

THE FORWARD PROJECTION OF THE PEG WHEN Msv· =0 

If Op is on the YII axis and the direction of 8 is along the XII axis, the peg-hole system 

is with two contact points. The projection of the centre of these two contact points 

is along 1j, axis. In this case the projections of the end-surface of the peg and upper­

surface of the hole can be presented as follows: 

Fig. 133 

hole 

Projections of contact surfaces 
on XhOhYh plane when Op is 
along Yh axis and 8 is along 
Xia axis 

At this time, the measured moment is along the XII axis. If the moment around the 

force sensor is along the Xh axis and 18,IX I > > 18hy I, the possible projection of Op 

on XhOhYh plane can be presented as follows: 

7t{F':IM.:=MJ n 1t(16hz l < 16hy l> = {0P'61(Oh0 ;>Jax = 0, 'It/2 :> 16hzl :> 1611y1 U 
1t/2 :> I aJax I :> 16hyP 

(216) 

where 

{Op,al(I(OhOpl>Rh), ~ :> 16hzl :> 1611y1> = {0P'6 Ithe lowwest point the peg is out 

(217) 
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If the projection of initial area for the centre of the end-surface of the peg on the 

(218) 

then the forward projection with the movement Rh /2 along the -Xh axis can be 

presented as follows: 

In this case, the lowest point of the peg is in the hole, i.e. 

so, 

R,,_l = FS,1I(R,,) = {Op,S /(OPh)2 + (OPhy + ~ Rh)2 ~ R,,2,the lowwest 

point of the peg is below the top sUrface of the hole} 

n{F//M/ = M.sJ n {Op,S/ ~ :> ISII%I :> IShyl} n R,,_l= 

fOp'S 1(0,,0,)11% = 0, ~ :> ISII%I :> IShyl} 

furthermore, 

(221) 

That means that combined with the range of the forward projection of the initial 

area, when M·s is only along the Xh axis, Op touches Yh axis. 
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