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Abstract

Consensus group decision making (CGDM) allows the integration within this area of study of
other advanced frameworks such as Social Network Analysis (SNA), Social Influence Network
(SIN), clustering and trust-based concepts, among others. These complementary frameworks
help to bridge the gap between their corresponding theories in such a way that important el-
ements are not overlooked and are appropriately taken into consideration. In this paper, a
new influence-driven feedback mechanism procedure is introduced for a preference similarity
network clustering based consensus reaching process. The proposed influence-driven feedback
mechanism aims at identifying the network influencer for the generation of advices. This pro-
cedure ensures that valuable recommendations are coming from the expert with most similar
preferences with the other experts in the group. This is achieved by adapting, from the SIN
theory into the CGDM context, an eigenvector-like measure of centrality for the purpose of: (i)
measuring the influence score of experts, and (ii) determining the network influencer. Based
on the initial evaluations on a set of alternatives provide by the experts in a group, the pro-
posed influence score measure, which is named the σ-centrality, is used to define the similarity
social influence network (SSIN) matrix. The σ-centrality is obtained by taking into account
both the endogenous (internal network connections) and exogenous (external) factors, which
means that SSIN connections as well as the opinion contribution from third parties are per-
mitted in the nomination of the network influencer. The influence-driven feedback mechanism
process is designed based on the satisfying of two important conditions to ensure that (1) the
revised consensus degree is above the consensus threshold and that (2) the clustering solution
is improved.

Keywords: Consensus, Preference Similarity, Agglomerative Hierarchical Clustering, Social
Influence Network, Centrality, Feedback Mechanism.

1. Introduction

Experts in consensus group decision making (CGDM) aim to achieve a common solution
with acceptable group agreement. Among the factors that may difficult the required group
agreement or consensus level are the experts’ background, culture, expertise and motivation.
This is because each expert aspires to get his/her opinion to be appropriately considered by the
group [1]. New CGDM proposals have been introduced in recent years to deal with this issue,
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among which it is worth mentioning the following: stochastic optimization cost based CGDM
[2], multi-stage fluctuation utility consensus procedure [3], correlation consensus measure [4],
hesitant based fuzzy CGDM [5], bipolar consensus approach [6], preferential voting consensus
models [7], consensus modeling with cost chance constraint under uncertainty [8], multi-stage
fluctuation utility consensus measure [3] and consensus approaches with utility preferences and
limited budget [9].

An interesting approach of recent development to deal with the CGDM problem is based
on the application of clustering methodologies and derived definitions of useful concepts aiming
at presenting homogeneity of experts preferences as a whole: internal and external cohesions,
cluster consensus, level consensus and global cluster consensus of the group of experts. Within
this approach we can highlight the clustering-based consensus reaching processes proposed by
Garcia-Lapresta and Perez-Roman [10, 11], and the partition technique applied by Abel et al.
[12] that use experts’ opinion similarities and dissimilarities in grouping a set of experts into
subgroups to reach a compromise in determining the final group solution. Kamis et al. [13, 14]
also advanced the use of preference similarity in deriving a clustering-based CGDM by building
an undirected weighted preference similarity network between the group of experts based on
the ‘structural equivalence’ concept and the agglomerative hierarchical clustering algorithm.

Recently, researchers have shown an interest in developing CGDM frameworks to effec-
tively cater for decision making problems with large-scale users and real-time communications,
analysing structure of opinion exchange, users interaction pattern and trust relations formation.
A systematic review of existing approaches on CGDM within a social network context [15–18]
was carried out by Herrera-Viedma et al. [19]. The evolution of CGDM in social networks has
led to the development of another relevant area of study, Social Influence Network (SIN). The
influence element in SIN plays an important role in CGDM as a key representation of network
connection strengths [20], and it has been applied in estimating missing preferences [21], in the
evolution of preferences [22] and in the estimation of experts’ importance degrees [23, 24].

Most CGDM methods include a feedback mechanism when the group consensus level is
not acceptable. This mechanism simulates a discussion medium where experts revisit their
evaluations based on the recommendations provided by a ‘moderator or leader’. Usually, experts
who contribute low to consensus are identified and each of them will get an advice on how to
change his/her opinion in order to increase the group consensus level, and eventually to achieve
an acceptable group agreement. There exist numerous proposed procedures on implementing a
feedback mechanism and advice generation in CGDM. Wu and Chiclana [25] introduced a visual
information feedback mechanism by providing graphical representations of experts’ current
status and simulation of future consensus status after their initial evaluations were replaced
with the provided recommendation values. The idea of visualizing consensus state before and
after the feedback mechanism was also adopted by Liu et al. [26], where advices were generated
by means of the implementation of a trust-based induced feedback recommendation system.
Similar feedback approaches and advice generation systems in CGDM can be found in Wu et
al. [27] and Gong et al. [28].

This study contributes to consensus generation within a social network framework by intro-
ducing a new influence-driven feedback mechanism. The concept of eigenvector-like centrality
measure from Social Influence Network (SIN) is proposed to be used and implemented within a
preference similarity network clustering based consensus group decision making model. A new
centrality influence score measure is developed for the purpose of identifying the network influ-
encer, who will act as the leader in a new Similarity Social Influence Network (SSIN) feedback
mechanism. The proposed influence-based concept is also utilized in an IOWA [29] based fuzzy
majority dominance resolution process [30] of the CGDM problem to guarantee that the best
alternative of consensus is selected by the majority of the experts as a whole.

The rest of the paper is organized as follows: Section 2 introduces the concept of reciprocal
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fuzzy preference relation and its associated intensity preference vector, while Section 3 presents
the preference similarity network clustering based consensus reaching process. Section 4 de-
scribes the background of social influence theory in decision making context and presents in
detail the development of the proposed influence-driven feedback mechanism with its practical
implementation steps within a CGDM. An influence-driven resolution process of a CGDM and
the general research flow of the proposed model for the influence-based feedback preference
similarity network clustering based consensus group decision making problem are provided in
Section 5. Conclusions are drawn in Section 6.

2. Preliminaries on reciprocal fuzzy preference relations

In solving a consensus decision making problem with a finite set of feasible alternatives,
A = {A1, A2, . . . , An} (n > 2), a group of experts E = {e1, e2, . . . , em} uses their knowledge,
experience and expertise to express their opinions with the aim of achieving a final decision with
sufficient agreement from every group member. When pairwise comparing alternatives, experts
assign to each alternative an intensity of preference degree towards any other alternative [31].
Mathematically, this preference representation is modelled using a reciprocal fuzzy preference
relation (RFPR) on A, i.e. a fuzzy binary relation µP : A × A −→ [0, 1] that associated
each pair of alternatives (Ai, Aj) a value µP (Ai, Aj) = pij verifying the reciprocity property
pij + pji = 1 (∀i, j) and the following interpretation:

pij = 0.5 if Ai and Aj are equally preferred (indifference)
pij ∈ (0.5, 1) if Ai is slightly preferred to Aj
pij = 1 if Ai is absolutely preferred to Aj

(1)

An RFPR on a set of alternatives A can therefore be represented using a matrix of dimension
n× n, P = (pij). The set of RFPRs of dimension n× n will be denoted as Pn×n. Reciprocity
property allows the representation of an RFPR in terms of its intensity preference vector (IPV)
[4], V ∈ Rn(n−1)/2:

V =
(
p12, p13, . . . , p1n, p23, . . . , p2n, . . . , p(n−1)n

)
=
(
v1, v2, . . . , vr, . . . , vn(n−1)/2

)
. (2)

The set of IPVs from all experts E on the set of alternatives A will be denoted by V =
{V 1, V 2, . . . , V m}.

Example 1. “For the purpose of demonstrating our proposed model, we utilize the existing
hypothetical example in [22] where eight (8) experts, E = {e1, e2, . . . , e8}, express their initial
evaluations over six (6) alternatives, A = {A1, A2, . . . , A6}. The RFPR of expert e1, P 1, and
its associated IPV, V 1, are:

P 1 =


1 0.27 0.64 0.89 0.74 0.82

0.73 1 0.80 0.92 0.85 0.89
0.36 0.20 1 0.85 0.62 0.74
0.11 0.08 0.15 1 0.20 0.27
0.26 0.15 0.38 0.80 1 0.64
0.18 0.11 0.26 0.73 0.36 1


V 1 = (0.27,0.64,0.89,0.74,0.82,0.80,0.92,0.85,0.89,0.85,0.62,0.74,0.20,0.27,0.64).
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The IPV of the rest of experts {V 2, V 3, . . . , V 8} are:

V 2 = (0.80, 0.85, 0.73, 0.92, 0.89, 0.62, 0.36, 0.85, 0.74, 0.26, 0.80, 0.64, 0.89, 0.82, 0.27);

V 3 = (0.69, 0.13, 0.20, 0.36, 0.89, 0.06, 0.10, 0.20, 0.78, 0.63, 0.79, 0.98, 0.69, 0.97, 0.94);

V 4 = (0.10, 0.36, 0.69, 0.16, 0.27, 0.83, 0.95, 0.63, 0.76, 0.79, 0.25, 0.39, 0.08, 0.14, 0.65);

V 5 = (0.56, 0.15, 0.62, 0.69, 0.93, 0.18, 0.85, 0.60, 0.82, 0.82, 0.93, 0.97, 0.54, 0.82, 0.81);

V 6 = (0.17, 0.18, 0.33, 0.45, 0.59, 0.47, 0.61, 0.71, 0.82, 0.60, 0.70, 0.61, 0.62, 0.46, 0.31);

V 7 = (0.30, 0.40, 0.45, 0.51, 0.66, 0.53, 0.45, 0.73, 0.68, 0.40, 0.54, 0.66, 0.44, 0.60, 0.37);

V 8 = (0.75, 0.75, 0.72, 0.77, 0.82, 0.55, 0.62, 0.59, 0.65, 0.60, 0.46, 0.67, 0.20, 0.44, 0.50).”

3. Preference similarity network clustering based consensus measurement

In this section, the preference similarity network clustering based consensus decision making
procedure used in [14] is referred to, which is described in detail in [13]. Using V, the preference
similarity between any pair of experts can be measured and a network structure between the
experts in the group E can be created. Formally, a preference similarity measure can be defined
as follows:

Definition 1. “Let V be the set of IPVs of the group of experts E over the set of alterna-
tives A. A preference similarity measure on E is a fuzzy subset of V × V with membership
function S : V × V → [0, 1] verifying both the reflexive [S (V a, V a) = 1] and the symmetric[
S
(
V a, V b

)
= S

(
V b, V a

)]
properties.”

As per Definition 1, an indirect preference similarity network, N = 〈E, T,S〉, between the
experts (nodes) in E can be created with the preference similarity degree between experts,
S =

(
S1, S2, . . . , Sm(m−1)/2

)
, as the set of weights attached to the set of ties between nodes,

T =
(
t12, t13, . . . , t1n, t23, . . . , t2m, . . . , t(m−1)m

)
, to express the strength of the similarity relation

between the network nodes (experts’ preferences). In Social Network Analysis (SNA), two
nodes are structurally equivalent if they have the same neighbors and similar characteristics
in their social environments [32]. The cosine similarity function can be used to achieve the
structural equivalence preference similarity network:

Sab = S
(
V a, V b

)
=

n(n−1)/2∑
i=1

(
vai · vbi

)
√√√√n(n−1)/2∑

i=1

(vai )
2 ·

√√√√n(n−1)/2∑
i=1

(
vbi
)2 . (3)

For the purpose of categorizing structurally equivalence experts in the undirected weighted
preference similarity network, the agglomerative hierarchical clustering approach is applied as
per Algorithm 1 below.
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Algorithm 1: Agglomerative hierarchical clustering procedure for preference similar-
ity network

begin
1 Apply individual partition for each expert in E:

Pm = {{e1} , {e2} , . . . , {em}} = {{C1} , {C2} , . . . , {Cm}};
i←− m;
while i > 1 do

2 Form cluster Ca and Cb in P i = {C1, . . . , Ci} with maximal Sab;
3 Merge cluster Ca and Cb to cluster Ck;
4 Form new partition P i−1 by removing Ca and Cb and adding cluster Ck;

i←− i− 1;

end while

end

A dendogram is a convenient visualisation of the hierarchical clustering generated by Algo-
rithm 1. Using horizontally cuts at particular αl-levels (l = 2, . . . ,m − 1) in a dendogram, a
partition of the experts into a number of clusters (Cl), with respect to the cosine preference
similarity matrix S, is obtained (see Example 2 ending this section).

This implementation of the structural equivalence concept means that experts in the same
cluster have strong connections between them and, therefore, they are expected to reach higher
cohesiveness among them than with outsider experts. Thus, as described below, measure-
ments of experts’ cluster homogeneity according to the internal and external cohesions can be
computed and combined to derive a cluster consensus measure.

Let L = {αl ; l = 2, . . . ,m− 1} be the set of all different αl-levels and Cl = {Clk ; k = 1, . . . , l}
the set of clusters at the αl-level, with cardinality ]Clk.

• The αl-level cluster internal cohesion degree of cluster Clk:

δint (Clk) =

∑
i∈Clk

∑
j∈Clk

Sij

(]Clk)
2 (4)

• The αl-level cluster external cohesion degree of cluster Clk:

δext (Clk) =

∑
i∈Clk

∑
j /∈Clk

Sij

]Clk (n− ]Clk)
(5)

• The αl-level cluster consensus degree of cluster Clk:

δCC (Clk) =
]Clk · δint (Clk)

n
+

(n− ]Clk) · δext (Clk)

n
(6)

• The αl-level average cluster consensus degree of the group of experts E measures the
agreement index between experts of all clusters at that αl-level:

δLC (l) =

l∑
k=1

δCC (Clk)

l
. (7)
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• The global cluster consensus degree of the group of experts E is δLC

(
l̂
)

with αl̂-level

having the maximum of all αl-level average cluster consensus degrees, which is referred
to as the optimal consensus agglomerative hierarchical clustering level.

Let the threshold value of sufficient group consensus be set at the value ϕ. The preference
similarity network clustering based consensus reaching procedure is summarised in Algorithm
2 below.

Algorithm 2: Preference similarity network clustering based consensus reaching pro-
cedure

begin
1 At each αl-level, identify experts belong to its corresponding clusters;
2 For each cluster in Cl, determine δint (Clk) and δext (Clk);
3 Combine the values of δint (Clk) and δext (Clk) for each cluster in Cl to obtain the

value of δCC (Clk);
4 For all αl-level in L, compute δLC (l);
5 Identify optimum level of the agglomerative hierarchical clustering: αl̂-level;

6 if δLC

(
l̂
)
≥ ϕ then

proceed to resolution process (Section 5);
else

proceed to feedback mechanism (Section 4.2);
end if

end

Example 2 (Continuation of Example 1). “Applying (3), the following cosine preference sim-
ilarity matrix is obtained:

S =



1 0.868 0.742 0.937 0.906 0.926 0.945 0.957
0.868 1 0.817 0.704 0.876 0.896 0.954 0.932
0.742 0.817 1 0.609 0.925 0.840 0.854 0.803
0.937 0.704 0.609 1 0.797 0.844 0.834 0.840
0.906 0.876 0.925 0.797 1 0.944 0.942 0.912
0.926 0.896 0.840 0.844 0.944 1 0.970 0.883
0.945 0.954 0.854 0.834 0.942 0.970 1 0.945
0.957 0.932 0.803 0.840 0.912 0.883 0.945 1


Figure 1 shows the complete graph representation of the undirected weighted preference similarity
network between the set of experts, with only a few link weights showed for simplicity reason.
The experts’ cluster pattern according to the dendogram (Figure 2)) is generated by Algorithm
1 at the optimal αl-level identified by Algorithm 2 as detailed in Table 1. The optimum global
consensus of 0.883 is unique and achieved at the α7-level. If the consensus threshold were above
0.883 (say ϕ = 0.945), then group consensus would be not sufficient and a second round of
the consensus process would be required, which is to be preceded by the activation of a feedback
process to increase the group consensus. It is noticed that the optimum cluster level results in
only 2 experts being grouped in a cluster while the rest are on their own cluster, respectively.”
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Figure 1: The undirected weighted preference simi-
larity network with experts clustering pattern

Figure 2: Dendogram generated by Algorithm 1 with
the optimal αl-level from Algorithm 2

Table 1: Cluster internal and external cohesions degrees, cluster consensus and average cluster consensus degrees

α C E δint δext δCC δLC

2 1 e1, e2, e4, e5, e6, e7, e8 0.911 0.799 0.897 0.860
2 e3 1 0.799 0.824

3 1 e1, e2, e5, e6, e7, e8 0.937 0.828 0.909 0.851
2 e4 1 0.795 0.821
3 e3 1 0.799 0.824

4 1 e2, e5, e6, e7 0.948 0.871 0.909 0.866
2 e1, e8 0.979 0.887 0.910
3 e4 1 0.795 0.821
4 e3 1 0.799 0.824

5 1 e5, e6, e7 0.968 0.889 0.919 0.871
2 e2 1 0.864 0.881
3 e1, e8 0.979 0.887 0.910
4 e4 1 0.795 0.821
5 e3 1 0.799 0.824

6 1 e5, e6, e7 0.968 0.889 0.919 0.877
2 e2 1 0.864 0.881
3 e1 1 0.898 0.910
4 e8 1 0.896 0.909
5 e4 1 0.795 0.821
6 e3 1 0.799 0.824

7 1 e6, e7 0.985 0.901 0.922 0.883
2 e5 1 0.900 0.913
3 e2 1 0.864 0.881
4 e1 1 0.898 0.910
5 e8 1 0.896 0.909
6 e4 1 0.795 0.821
7 e3 1 0.799 0.824
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4. Social influence theory in the CGDM context

We begin this section by reviewing related social influence studies implemented in CGDM
frameworks. Our proposed influence-guided feedback mechanism methodology is presented and
the second consensus round is then elaborated.

4.1. Review on existing influence methodologies in CGDM

Social influence network (SIN) has been developed continuously since the 1950s by French
[33], Harary [34], DeGroot [35] and Friedkin and Johnsen [36]; it is one of the important fields
directly linked to group decision making and SNA.

Leading to this correlated direction, recent studies on CGDM with incorporation of social
influence theory, derived from social networks, have been introduced. Brunelli et al. [16]
addressed consensus evaluation by considering experts’ influence strengths in a social network
via an eigenvector centrality measure with a fuzzy m-ary adjacency relation approach. In [17],
a leadership-based consensus reaching procedure was developed where opinion managers are
allowed to give advices and influence the opinion formation from a social network towards
achieving consensus. Another study worth mentioning was carried out by Liang et al. [20],
where the authors modelled the social influence in terms of experts’ tie strengths in a social
network, with the number of common members’ connections were combined with the number
of their direct interactions.

The influence factor is necessary to be implemented in CGDM frameworks in order to
ensure the acceptance by the experts of the recommendation advices produced by a feedback
mechanism algorithm to increase consensus. By doing so, advices can be generated from the
most influential person in the network, which implicitly brings attached a trust statement with
it. It has been argued that a feedback mechanism guided by trust relationships is more realistic
than the traditional feedback mechanism because the generated advices are more persuasive
and acceptable by a group of experts [18, 24, 26, 37].

Perez et al. [22] and Capuano et al. [21] modelled influence processes in GDM by utilising
the recursive approach presented in Friedkin and Johnsen [38]. Let E be a set of experts,
W = (wij)m×m a fuzzy adjacency matrix representing experts’ relative importance on others’
preferences including themselves, and y1 the initial experts’ preferences. After t iterations, the
influenced generated preferences will be

yt = AWy(t−1) + (I − A) y1, (8)

where A = diag (a11, a22, . . . , amm) is the susceptibility of experts to interpersonal influences
and I is the m × m identity matrix. Significantly, the above expression allows to estimate
the evolution of experts’ preferences iteratively until the process reaches an equilibrium, i.e.
y∞ = limt→∞ y

t exists and it is expressed as follows:

y∞ = (I − AW )−1 (I − A) y1. (9)

Capuano et al.’s work [21] provided greater flexibility compared to Perez et al.’s [22]. Ca-
puano’s proposed model proved that the complication of defining a numerical level expressing
the susceptibility of experts towards influence can be avoided with the estimation of missing
preferences been successfully operated and the convergence of experts’ preferences achieved.

An alternative influence measure, known as alpha-centrality, was introduced by Bonancich
and Lloyd [39]. The alpha-centrality, denoted here by x, is an eigenvector-like measure that
determines expert’s status in a network by considering their influence pattern; it is expressed
as follows:

x =
(
I −ΥA

T
)−1

e (10)
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where A = (aij) is an adjacency matrix that represents the group’s influence pattern, i.e. aij

represents the degree of influence of expert i by expert j; Υ is a scalar describing the relative
importance degree of endogenous (internal) versus exogenous (external) effects of experts in
a group. Bonacich and Lloyd suggested that Υ should approach 1/λ1 from below in order to
achieve convergence of the solution, with λ1 being the largest eigenvalue of A. Notice that the
endogenous factor emerges from connections in the network itself while the exogenous factor,
e, is external to the network of experts, such as from third party involvements, and that it
can affect or change the experts’ status. For example, the selection of the best employer will
involve peer reviews, which can be presented as a relationship network in a workplace and this
criteria is considered as an endogenous effect. In some situation, the selection process involves
evaluation from company’s top management, which can be seen an exogenous factor in the
nomination of the best employer.

4.2. A new social influence-based feedback mechanism

Social influence models focus on the development of interpersonal influence processes, where
experts are allowed to manage the conflicting influential preferences by revising and inducing it
to behave in a similar way to others for the purpose of achieving group consensus. There exist
two main aspects to be explored in social influence theory [38]: (1) how experts change their
preferences and influence the other experts; and (2) how to develop structure of social influence
models with better configuration and strengthen the interpersonal influence processes.

In a group decision making context, social influence is clarified by changes of attitudes,
thoughts, feelings, characters or behaviors of expert(s), if there exists interaction from another
expert in the group [20]. This situation allows modification of experts’ preferences due to the
social influence factor during interactions, discussions or opinion exchange in a network. Experts
with strong knowledge, experience, background, trustworthy and motivation are able to act as
‘leaders’ in the network, in such a way that they can influence the others to move in the similar
direction towards group consensus. This can be done by implementing a specific procedure
in CGDM, known as ‘feedback mechanism module’. Practically, a feedback mechanism must
have flexible acceptance of the recommendation advices according to the affordability of the
adjustment cost and experts guidance in order to choose the optimal feedback parameter for
the purpose of balancing the individual adjustment cost with the group consensus [40].

The proposed novel influence-based feedback mechanism comprises three main phases:
(1) identification of expert(s) with low consensus contribution; (2) identification of a network
influencer; and (3) generation of advice. It is implemented in two different situations: (a) with-
out exogenous effect; and (b) with exogenous effect. Explanations on this feedback process are
presented below.

4.2.1. Identification of expert(s) with low consensus contribution

The global cluster consensus degree, δLC

(
l̂
)

, is the average cluster consensus degree of

the experts at the optimal consensus agglomerative hierarchical clustering αl̂-level. At this
level, those experts in a cluster Cl̂k with αl̂-level cluster consensus below the global cluster
consensus degree will be identified as contributing low to consensus (below the average). This
is formulated as follows:

elow = {eo ∈ E | eo ∈ Cl̂k ∧ Cl̂k ∈ Clow} , (11)

Clow =
{
Cl̂k | δCC (Cl̂k) < δLC

(
l̂
)
∧ k = 1, . . . , l̂

}
. (12)

Experts in elow will be adviced on how to change their opinions in order to increase the consensus
level. This is proposed to be done by identifying the network influencer using influence-driven
concepts from SIN theory.
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4.2.2. Identification of the network influencer

For the purpose of ensuring recommendations or advices perform well in decision making
process, we adapt a ‘memory-based collaborative filtering’ idea [41] into SIN, where histori-
cal/initial data of a group of users are used to provide ‘valuable recommendations coming from
someone who has shared similar history with other people in a group’ [42]. According to this
concept, we utilize the experts’ initial evaluations (Section 2) as historical data to obtain the
experts’ preference similarity matrix, S, as a criterion to be composed in our proposed SIN,
which is constructed by a digraph that links the set of experts E (nodes) with edge connecting
expert ei and ej, (ei, ej), with the influence strength weight of the jth expert over the ith expert.

In our case, the SIN comprises a set of experts, E = {e1, e2, . . . , e8}, and a row normalized
preference similarity matrix, Sη =

(
Sijη
)
n×n, where Sijη is the proportion of overall group influ-

ence on i that comes from j. Notice that Sη is obtained by taking a row normalization step on
the preference similarity matrix (Section 3), S, so that the following property

∑n
j=1 S

ij
η = 1 for

all i ∈ (1, . . . , n) [21] is verified. This property ensures the influence of each expert towards all
of his/her peers is 1 in total. Formally, we name our SIN as Similarity Social Influence Network
(SSIN), which is visualised for a simple case of 3 expert nodes in Fig. 3 and defined below:

Definition 2. “A Similarity Social Influence Network (SSIN) is an ordered 3-tuple, G =
〈E,L, Sη〉, comprising a set of nodes (E), a set of edges (L) or ordered pairs of experts in
E, and a set of row normalized preference similarity weights (Sη) attached to L.”

Figure 3: The general representation of SSIN consisting 3-expert nodes

In this study, we make use of the previously described influence measure by Bonacich and
Lloyd [39]. It is adapted to our preference similarity network clustering based consensus group
decision making model in order to identify the most influential expert of the network. The
identified influencer will act as the ‘leader’ in designing feedback rules with the aim to increase
the group consensus level when this is below a satisfactory threshold value. We name our
proposed influence measure the σ-centrality and defines it formally below:

Definition 3. “Let Sη be a set of row normalized preference similarity weights in SSIN G, σ
the relative importance of endogenous (network connections) versus exogenous (external) effects,
and Z = (z)m×1 a set of individual expert exogenous effect values. Then, the influence score or
σ-centrality of experts E, Y = (y1, . . . , ym), is:

Y =
(
I − σ STη

)−1
Z.

In the absence of exogenous effect, Z is set as the unity vector, i.e. the vector with all compo-
nents equal to 1.”
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The combination of these two factors, endogenous and exogenous, produce stability in gen-
erating experts’ influence scores because it is dependent on internal contributions to consensus
from the generated preference similarity network and third-party importance evaluations over
experts when available. Indeed, the value of Y represents the influence score of each expert, in
such a way that both endogenous (internal) and exogenous (external) factors are considered.

Experts who fall in clusters having higher cluster consensus degrees than or equal to the
global cluster consensus degree of the group can be classified as belonging to the group of most
influential experts in the network. Let C∗

l̂k
be set of clusters at the optimum clustering αl̂-level

with cluster consensus indexes, δCC (k), above the global cluster consensus degree of the group

of experts, δLC

(
l̂
)

, and ey
∗

l̂k
be the experts belonging to the clusters in C∗

l̂k
. The identification

of possible network influencers can be formally written as:

ey
∗

l̂k
=
{
ey | ey ∈ Cl̂k ∧ Cl̂k ∈ C

∗
l̂k

}
, (13)

C∗
l̂k

=
{
Cl̂k | δCC (k) ≥ δLC

(
l̂
)
∧ k = 1, . . . , l̂

}
(14)

Thus, the network influencer, e∗, is the expert with highest influence score among those in ey
∗

l̂k
:

e∗ = max
ey∈C∗

l̂k

Y (ey) . (15)

The identified network influencer, e∗, will act as the advisor for the experts who contribute low
to consensus on how to change their opinions with the aim to increase and, subsequently, to
reach the group consensus threshold level. This is elaborated in the following section.

4.2.3. Generation of advice

As mentioned in Section 4.2.1, for the purpose of increasing the consensus level of the group,
an expert eo in elow is provided (feedback) the following new intensity preference vector Ṽ o:

Ṽ o = (1− β) · V o + β · V ∗ (16)

where V o is the current IPV of eo, V ∗ is the IPV of the network influencer, e∗, and β ∈ [0, 1] is
a control parameter that can be used to adjust the extent of the change of preferences feedback
to the experts in elow.

This section concludes with the below algorithmic representation of the proposed influence-
based feedback mechanism procedure.

Algorithm 3: Influence-based feedback mechanism

begin

1 At αl̂-level, identify Clow, a set of clusters having less δCC than δLC

(
l̂
)

;

2 List all experts belong to Clow, denoted as elow;
3 Construct row normalized preference similarity matrix, Sη;
4 Decide the individual exogenous effect, Z: (Assume Z as a vector of ones if no

exogenous effect involved);
5 Determine σ-centrality, Y using Equation (3);
6 Rank experts according to Y scores in descending order: R (Y );
7 Identify C∗

l̂k
as in Equation (14);

8 List all experts belonging to C∗
l̂k

(Equation (13));

9 Identify the network influencer, e∗, by Equation (15);

10 Generate advice preferences, Ṽ o, using Equation (16).

end

11



4.3. Consensus reaching procedure with optimal parameter of control

If β = 0 no changes are recommended and the original preferences of the expert remain
unchanged. If β = 1 then the expert’s preferences are completely substituted by those of
the network influencer. For the influence-based feedback mechanism to be effective, a control
parameter β ∈ [0, 1] should be selected to guarantee that the following two conditions are
verified:

• the global cluster consensus degree of the group of experts of the second consensus round,

δ2LC

(
l̂
)

must be greater than or equal the consensus threshold, ϕ and;

• the optimal agglomerative hierarchical clustering level in second round of consensus pro-
cess, α2

l̂
must be less than the optimal agglomerative hierarchical clustering level of first

round, αl̂.

The advice generation with β = 0 produces the first round of consensus solution, and therefore
it is not implemented if group consensus is to be achieved. For simplicity, we use discrete values
of β from the set {0.1, . . . , 0.9, 1}. The first condition above states that sufficient consensus
level will be achieved, while the second one is purposely introduced to achieve a better clustered
solution (lower number of clusters) after the implementation of the feedback process. Without
imposing restrictions to the parameter of control, the above two conditions will be achieved
at some extent because when the feedback advices are implemented, the experts will be more
similar because the preferences will be closer the network influencer’s preferences, which also
will have a positive effect on the cohesiveness within clusters. These two conditions are formally
presented in the following definition.

Definition 4. “The revised global cluster consensus degree, δ2
(
l̂
)

, of the group of experts, E,

for the second round of the consensus reaching process satisfies:
(
δ2LC

(
l̂
)
≥ ϕ

)
∧
(
α2
l̂
< αl̂

)
.”

The algorithm to find the optimal parameter of control, within the discrete set of values
{0.1, . . . , 0.9, 1}, with respect to Definition 4 is presented below:

Algorithm 4: The second round of consensus reaching procedure

begin

1 At β = 0.1, replace V o with Ṽ o for all elow in Clow;
2 Run Algorithm 1 and 2;

3 Identify α2
l̂
-level and its corresponding δ2LC

(
l̂
)

;

4 if
(
δ2LC

(
l̂
)
≥ ϕ

)
∧
(
α2
l̂
< αl̂

)
then

end second round consensus procedure;
else

repeat this algorithm with next discrete β-level;
end if
Run next round of consensus procedure;

end

Example 3 (Continuation of Example 2). “By referring to Table 1, the global consensus de-
gree of the group of experts is 0.883, which is lower than the pre-determined consensus threshold
(0.945). It means that the consensus level is insufficient, thus the feedback mechanism is acti-
vated. In phase 1 of the proposed influence-based feedback mechanism (Algorithm 3, Step 1 and
2) the experts with low consensus contribution are identified:

12



• Clusters having less cluster consensus degrees than 0.883 are C3, C6 and C7.

• Thus, elow = {e2, e3, e4} .

In phase 2 of the proposed influence-based feedback mechanism (Algorithm 3, Step 3 until 9),
the network influencer is identified by computing the influence score or σ-centrality associated
to each expert.

• The row normalized preference similarity matrix, Sη, is computed and its corresponding
SSIN is presented in Figure 4 with only some of the row normalized preference similarity
weights displayed for simplicity reason.

Sη =



0.137 0.119 0.102 0.129 0.124 0.127 0.130 0.131
0.123 0.142 0.116 0.100 0.124 0.127 0.135 0.132
0.113 0.124 0.152 0.092 0.140 0.127 0.130 0.122
0.143 0.107 0.093 0.152 0.121 0.128 0.127 0.128
0.124 0.120 0.127 0.109 0.137 0.129 0.129 0.125
0.127 0.123 0.115 0.116 0.129 0.137 0.133 0.121
0.127 0.128 0.115 0.112 0.127 0.130 0.134 0.127
0.132 0.128 0.110 0.116 0.125 0.121 0.130 0.138



Figure 4: The generated similarity social influence network (SSIN)

• From Sη, the σ value is determined. As mentioned in Section 4.1, the convergence of the

solution is assured if σ is selected subject to the constraint σ <
1

λ1

, where λ1 is the unique

largest eigenvalue of Sη. The eigenvalues of Sη are

{0.998, 0.0726, 0.0313, 0.0158, 0.0055, 0.0021, 0.0007, 0.0013}

and λ1 = 0.998. The value σ = 0.9 is selected to fulfil the above boundary constraint.

• Whether exogenous (external) effect plays a role in the SSIN is to be established. The
following two cases (refer to Table 2) are discussed:

– Without exogenous effect case with Z set as the unit vector. In this case it is

Y = [0.128, 0.124, 0.117, 0.117, 0.128, 0.128, 0.130, 0.128] .

The network influencer would be e7.
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– Exogenous effect case with following vector Z = [1, 0.7, 0.4, 0.8, 0.9, 0.3, 0.5, 0.1]. In
this case it is

Y = [0.137, 0.126, 0.113, 0.121, 0.135, 0.122, 0.129, 0.117].

The network influencer would be e1.

Table 2 provides a complete comparative view of the results obtained after the feedback mecha-
nism is implemented with and without exogenous effects, respectively.

Table 2: Comparative results of feedback mechanism with and without exogenous effects in σ-centrality measure

Without Exogenous Effect With Exogenous Effect

Network Influencer e7 e1

Ṽ P
2

= (0.50, 0.58, 0.56, 0.67, 0.75,

0.57, 0.41, 0.78, 0.70, 0.34,

0.64, 0.65, 0.62, 0.69, 0.33)

V̂ P
2

= (0.54, 0.75, 0.81, 0.83, 0.86,

0.71, 0.64, 0.85, 0.82, 0.56,

0.71, 0.69, 0.55, 0.55, 0.46)

Feedback preferences
Ṽ P

3
= (0.46, 0.29, 0.35, 0.45, 0.75,

0.34, 0.31, 0.52, 0.72, 0.49,

0.64, 0.79, 0.54, 0.75, 0.60)

V̂ P
3

= (0.48, 0.39, 0.55, 0.55, 0.86,

0.43, 0.51, 0.53, 0.84, 0.74,

0.71, 0.86, 0.45, 0.62, 0.79)

Ṽ P
4

= (0.22, 0.38, 0.55, 0.37, 0.50,

0.65, 0.65, 0.69, 0.71, 0.56,

0.42, 0.55, 0.30, 0.42, 0.48)

V̂ P
4

= (0.19, 0.50, 0.79, 0.45, 0.55,

0.82, 0.94, 0.74, 0.83, 0.82,

0.44, 0.57, 0.14, 0.21, 0.65)

Preference similarity network

Dendogram

Revised global consensus 0.949 0.946

Optimum β-level 0.6 0.5

Optimum α-level Level 3 Level 4

The feedback preference values in the case of exogenous effect are in general greater than in the
case without exogenous effect. Obviously, the experts preference similarity degrees increase after
the feedback mechanism, which is reflected in the higher revised global cluster consensus of the
group of experts. In fact, the consensus threshold set in Example 2, ϕ = 0.945, is reached in
both cases after the feedback process (in the second consensus round): 0.949 with an optimum
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parameter of control β = 0.6 for the case without exogenous effect; and 0.946 with optimum
parameter of control β = 0.5 for the case with exogenous effect.
Table 3 provides the computations for the optimal global consensus degrees and their correspond-
ing optimal cluster α-levels at each β-level for the second round of consensus reaching process
for both with and without exogenous effects.

Table 3: Optimal global consensus degrees and their corresponding optimal cluster solutions (α-levels) at each
β-level for the second round of consensus reaching process, consisting with and without exogenous effects in
σ-centrality influence measure

β-levels Without exogenous Effect With exogenous Effect

Global Consensus Optimal α-level Global Consensus Optimal α-level

0 0.883 Level 7 0.833 Level 7
0.1 0.895 Level 7 0.899 Level 7
0.2 0.908 Level 7 0.914 Level 7
0.3 0.920 Level 6 0.930 Level 7
0.4 0.933 Level 7 0.939 Level 7
0.5 0.942 Level 6 0.946 Level 4
0.6 0.949 Level 3

The above results show that in the second consensus round the experts form closer relations
with each other than in the first consensus round, and consequently a lower number of clusters
are obtained with the optimal clustering level decreasing from the original α7 to α3 and α4

for without and with exogenous effect, respectively. These results confirm the advantage of
implementing the proposed σ-centrality influence measure in (i) generating feedback preference
values based on the network influencer to enable the group reaching consensus; and (ii)the the
nomination of a network influencer does not necessarily rely only on the network connections
constructed in SSIN but also on external evaluations from third parties that can be available or
desirable to be taken into consideration.”

5. Influence-driven resolution process

This section describes the two required phases of the influence-driven resolution process
associated to the CGDM problem described in the paper: (1) the fusion phase; and (2) the
exploitation phase.

5.1. Fusion phase

The feedback individual preferences derived from the consensus reaching process are ag-
gregated to obtain the group consensus preference relation. Among the many aggregation
operators available, the Ordered Weighted Average (OWA) operator, introduced by Yager [43],
has become one of the well-known fusion techniques applied in decision making area. The
definition of an OWA operator is presented below:

Definition 5. “An OWA operator of dimension n is a mapping φ : Rn −→ R, associated with

a weighting vector, W = (ω1, . . . , ωn), such that ωi ∈ [0, 1] and
n∑
i=1

ωi = 1, with following

expression:

φ (p1, . . . , pn) =
n∑
i=1

ωi · p%(i)

where % : {1, . . . , n} −→ {1, . . . , n} is a permutation function such that p%(i) ≥ p%(i+1), ∀i =
1, . . . , n− 1, i.e., p%(i) is the i-th highest value in the set {p1, . . . , pn}.”
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The implementation of the concept of majority is desirable when deriving the final group
solution to the CGDM problem. An interesting methodology for doing this was developed by
Yager [44] with the quantifier guided linguistic OWA operator. This methodology allows to
implement natural language terms such as ‘most of ’, ‘some of’, ‘at least one’, ‘as many as
possible’ and ‘all’ by means of their representation as fuzzy sets on the domain [0, 1] with
corresponding appropriate increasing monotonic quantifier membership functions Q : [0, 1] →
[0, 1] verifying Q (0) = 0, Q (1) = 1 reflecting in general the proportion of criteria/experts
satisfied by an acceptable solution [43]. A quantifier guided linguistic OWA operator weights
are computed as follows:

wi = Q

(
i

n

)
−Q

(
i− 1

n

)
, i = 1, . . . , n. (17)

Yager [44] further extended the above approach to allow for different importance degrees
associated to criteria or experts to be implemented. In this case, the quantifier guided linguistic
OWA operator are computed using the following expression:

wi = Q


i∑

k=1

µ% (k)

Z

−Q


i−1∑
k=1

µ% (k)

Z

 (18)

where Z =
n∑
k=1

µk is the total sum of importance and % is the permutation utilized for the

purpose of obtaining the ordering of the values to be fused.
Yager and Filev [29] introduced a more general type of OWA operator, the Induced OWA

(IOWA) operator, by inducing the reordering step of the first argument variable upon the
magnitude of the second variable, the order inducing variable, which is mathematically defined
as below:

Definition 6. “An IOWA operator of dimension n is a function ΦW : (R× R)n −→ R, to
which a weighting vector is associated W = (ω1, . . . , ωn) such that ωi ∈ [0, 1] and

∑
i

ωi = 1,

with following expression:

ΦW (〈u1, p1〉 , . . . , 〈un, pn〉) =
n∑
i=1

ωi · p%(i)

being % : {1, . . . , n} −→ {1, . . . , n} a permutation where p%(i) ≥ p%(i+1), ∀i = 1, . . . , n − 1, i.e.,〈
u%(i), p%(i)

〉
is the 2-tuple with u%(i) the i-th highest value in the set {u1, . . . , un} .”

The influence score of each expert, Y , obtained using Definition 3 is proposed in this context
as the order inducing variable of the experts’ preference evaluations to fuse,

{
p1ij, . . . , p

m
ij

}
, which

leads to the following σ-IOWA operator :

Definition 7. “The σ-IOWA operator of dimension m, Φσ
W , is an IOWA operator with the set

of influence score of experts in the network, Y = (y1, . . . , ym), as the order inducing variable.”

Thus, denoting by W the weighting vector calculated using Equation (18) with Q a fuzzy
linguistic quantifier representing the concept of soft majority desired to implement, the collective
preference relation derived using the σ-IOWA operator, Φσ

W , will be

pcij = Φσ
W

(〈
y1, p1ij

〉
, . . . ,

〈
ym, pmij

〉)
. (19)
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Cleary, the higher the influence score, the more influence an expert has in the network, and
consequently the higher the contribution (weight value) of that expert in the fusion process.
Indirectly, the implication of less influential experts can be mitigated. This can be achieved
by implementing the concept of fuzzy majority via an increasing concave linguistic quantifier
Q [45, 46]. Yager [44] proposed the following parameterized family of RIM quantifiers Q(r) =
ra, a ≥ 0 to model the majority concept ’most of ’, which is concave when a ∈ [0, 1]. For
illustrative purpose, the value a = 1/2 will be used, and the collective preferences represent the
degree of “preference of one alternative over another for ‘most of ’ the influential experts” in
the network.

5.2. Exploitation Phase

The exploitation phase of the CGDM process aims to rank the alternatives so that the
best one can be identified. The OWA Quantifier Guided Dominance Degree (QGDD) [30] is
proposed to be applied, which is formally defined as:

Definition 8. “Let P c =
(
pcij
)

be the collective preference relation of the set of alternatives
A = {A1, A2, . . . , An}. The quantifier guided dominance degree that alternative Ai has over the
others, in a fuzzy majority sense, is expressed as below:

QGDD (Ai) = ΦQ

(
pcij, j = 1, . . . , n, j 6= i

)
(20)

being ΦQ an OWA operator guided by the linguistic quantifier Q representing the fuzzy majority
concept.”

The set of alternatives with maximum QGDD will be the solution to the influence-based
CGDM problem;

AQGDD = {A | A ∈ A, QGDD (A) = supA∈A QGDD (A)}. (21)

Algorithm 5 shows the consecutive steps of the proposed influence-driven resolution process.

Algorithm 5: Influence-driven Resolution Process

begin
1 Rank Y = (y1, . . . , ym) in descending order, R (Y );
2 Find IOWA weighting vector (Equation (18));

3 Construct the collective preference relation, P c =
(
pcij
)

(Equation (19)) using

σ-IOWA operator (Definition 7);
4 Compute QGDD (Ai) (Definition 8);
5 Rank the alternatives and choose the best one (Equation (21)).

end

Example 4 (Continuation of Example 3). “Table 4 presents the results obtained after the
influence-driven resolution process is implemented without and with exogenous effects. The
values obtained for the influence scores (in normalized form), IOWA weighting vectors, collective
preferences, maximal dominance degrees and final ranking of alternatives are included. The
values obtained without exogenous effect are slightly different to the ones obtained with exogenous
effect, which indicated that the exogenous effect absolutely affects the resolution procedure final
ranking of alternatives.”

Figure 5 provides the general research flow of the proposed influence-driven feedback system
for preference similarity network clustering based consensus group decision making model.
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Table 4: Exogenous effects on influence based resolution process

Without exogenous effect With exogenous effect

Influence score Y = (0.128, 0.124, 0.117, 0.117, 0.128, 0.128, 0.130, 0.128) Y = (0.137, 0.126, 0.113, 0.121, 0.135, 0.122, 0.129, 0.117)

IOWA Weighting Vector W = (0.361, 0.147, 0.113, 0.096, 0.084, 0.074, 0.065, 0.060) W = (0.370, 0.151, 0.112, 0.093, 0.080, 0.072, 0.064, 0.058)

Collective Preferences


1 0.379 0.396 0.534 0.573 0.723

0.582 1 0.497 0.586 0.696 0.740
0.574 0.510 1 0.555 0.623 0.710
0.461 0.394 0.427 1 0.443 0.577
0.430 0.371 0.406 0.556 1 0.483
0.346 0.343 0.356 0.474 0.502 1




1 0.371 0.495 0.710 0.662 0.787

0.589 1 0.605 0.764 0.744 0.821
0.539 0.472 1 0.724 0.655 0.741
0.395 0.326 0.362 1 0.355 0.458
0.398 0.359 0.400 0.597 1 0.593
0.329 0.325 0.346 0.523 0.455 1


Maximal Dominance Degrees QGDD = (0.593, 0.665, 0.635, 0.499, 0.487, 0.441) QGDD = (0.676, 0.749, 0.673, 0.406, 0.519, 0.441)

Ranking of Alternatives A2 � A3 � A1 � A4 � A5 � A6 A2 � A1 � A3 � A5 � A6 � A4

Figure 5: A research flow of the proposed influence-driven feedback system for preference similarity network
clustering based consensus group decision making
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6. Conclusion

The incorporation of Social Influence Network (SIN) in consensus group decision making
(CGDM) models provide new avenues to researchers within this area of study with respect
to the introduction of new advanced research decision-making frameworks. We proposed an
influence-driven feedback system to be implemented in a preference similarity network cluster-
ing based group decision making procedure. Inspired by the introduction of the alpha-centrality
eigenvector-like measure by Bonancich and Lloyd [39], we proposed to use this measure in a
group decision making context by building an SIN adjacency matrix, based on the preference
similarity matrix obtained from the experts’ initial evaluations, with the aim of providing feed-
back and generating advices to experts in a group to support the reaching of consensus. The
proposed approach is built on a new influence score measure, called σ-centrality, and the con-
vergence of the solution is confirmed when there exists a unique highest eigenvalue in the set of
eigenvalues from the row normalized preference similarity matrix. This approach ensures in the
first place that valuable recommendations are coming from expert with similar preferences. In
addition, both endogenous and exogenous factors are comprised in order to express experts’ im-
portance weights based on the internal SSIN connections and third parties evaluations, in such
a way that a fair nomination of the network influencer is achieved. This influence-driven feed-
back mechanism positively contributes towards the achievement of sufficient consensus state,
with experts with low contribution to consensus being successfully moved closer to each other,
following the recommendations that are built from the network influencer’s preferences. The
feedback process is designed based on the satisfying of two important conditions to ensure that
(1) the revised consensus degree is above the consensus threshold and that (2) the clustering
solution is improved. Summarizing, the proposed model is an effective CGDM model that
considers important elements that are usually overlooked by other existing frameworks.
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