
Conceptual Modelling of Adaptive Web
Services based on High-level Petri Nets

PhD Thesis

BASSAM ZAFAR

Software Technology Research Laboratory

Faculty of Computing Sciences and Engineering

De Montfort University

2008

Declaration

I declare that the work described in my thesis is original work undertaken

by me between December 2004 to September 2008 for the degree of Doctor of

Philosophy, at De Montfort University, United Kingdom. This thesis is written

by me and produced using LATEX.

Acknowledgements

This thesis is dedicated to my family, friends and colleagues whose support

has proved invaluable to my research. Most importantly, I would like to express

my sincere thanks to my supervisor, Professor Hussein Zedan , without his

support, encouragement and guidance this thesis would have been an impossible

undertaking. I wish to thank Dr. Monika Solanki, who helped me in getting

started in the initial years of my research and provided helpful suggestions

during many varied discussions.

Also, I wish to express my sincere and deepest gratitude to my parents,

without whose love, care and support, it would have been very difficult for me

to achieve my goals. My father made sure that I was never bothered with any

responsibilities other than my research and for which I would like to express my

heartfelt thanks. My parents have been a constant source of moral and financial

support for most part of my life. They gave me the hope and support that made

this work possible. If this thesis were worth the time spent away from them,

each letter on every page would be priceless. For their love, generosity, and

understanding, my gratitude is inexpressible. I could not possibly give back to

my parents what they have lost in their efforts to support me - I try to honour

their sacrifice. I have dedicated this thesis to them with love and respect.

I would like to express my deepest love and gratitude for my wife, who stood

3

by me like nobody else in all these difficult years and has offered me her constant

support,patience, encouragement, unconditional love and life. I dedicate this

thesis to her too, with all my heart.

Last but not least I would like to thank all my colleagues at the Software

Technology Research Laboratory - De Montfort University for their constant

support and for making STRL such a stimulating and friendly place for research.

Publications

[1] Bassam Zafar, Hussein Zedan, Monika Solanki. Towards A Service-

Driven Petri Nets-Based Conceptual Model for Web services. IADIS Inter-

national Conference e-Society, volume 2, pages 338–343, 2006.

Abstract

Service technology geared by its SOA architecture and enabling Web services is

rapidly gaining in maturity and acceptance. Consequently, most worldwide

(private and corporate) cross-organizations are embracing this paradigm by

publishing, requesting and composing their businesses and applications in the

form of (web-)services. Nevertheless, to face harsh competitiveness such service-

oriented cross-organizational applications are increasingly pressed to be highly

composite, adaptive, knowledge-intensive and very reliable. In contrast to that,

Web service standards such as WSDL, WSBPEL , WS-CDL and many others

offer just static, manual, purely process-centric and ad-hoc techniques to deploy

such services.

The main objective of this thesis consists therefore in leveraging the de-

velopment of service-driven applications towards more reliability, dynamically

and adaptable knowledge-intensiveness. This thesis puts forward an innovative

framework based on distributed high-level Petri nets and event-driven business

rules. More precisely, we developed a new variant of high-level Petri Nets for-

malism called Service-based Petri nets (CSrv-Nets), that exhibits the follow-

ing potential characteristics. Firstly, the framework is supported by a stepwise

methodology that starts with diagrammatical UML-class diagrams and business

rules and leads to dynamically adaptive services specifications. Secondly, the

6

framework soundly integrates behavioural event-driven business rules and state-

ful services both at the type and instance level and with an inherent distribution.

Thirdly, the framework intrinsically permits validation through guided graphical

animation. Fourthly, the framework explicitly separates between orchestration

for modelling rule-intensive single services and choreography for cooperating

several services through their governing interactive business rules. Fifthly, the

framework is based on a two-level conceptualization: (1) the modelling of any

rule-centric service with CSrv-Nets; (2) the smooth upgrading of this service

modelling with an adaptability-level that allows for dynamically shifting up and

down any rule-centric behavior of the running business activities.

CONTENTS 7

Contents

1 Introduction 4

1.1 Motivation and Research Scope 4

1.2 Research Questions . 10

1.3 Original Contributions . 14

1.4 Reader’s Guide: Organisation of the Thesis 19

2 Preliminaries and Service Background 22

2.1 SOA and Web services: Overview 23

2.1.1 Services-Oriented Architecture 31

2.2 Business Rules and Web Services 37

2.2.1 Business Rules Concepts 38

2.2.2 Adapting Web Services through Rules 40

2.3 Formalisms for Modeling Service Behaviour 42

2.3.1 Interval Temporal Logic (ITL) 44

2.3.2 Finite State Process Models (FSP) 44

2.4 Petri-Nets (PN) . 45

2.5 Algebraic Specification: An Overview 48

2.5.1 High-level Petri Nets (HLPN): An Overview 51

2.6 Summary . 56

CONTENTS 8

3 High-Level Petri Nets and Web services: Overview and Com-

parison 57

3.1 Web Services and (High-Level) Petri Nets 58

3.2 Conceptual Models for Web services Based on Petri Nets 59

3.2.1 Web services Models Based on Place/Transitions Petri Nets 60

3.2.2 Web Services Models Based on High-Level Petri Nets . . 64

3.2.3 High-Level Petri Nets for WS-Adaptivity 70

3.3 A Comparison of Web Service Models Based on Petri Nets . . . 73

3.3.1 Web Service Criteria for Comparison 73

3.4 Summary . 81

4 Service-based Petri Nets: Foundation and Methodology 82

4.1 Motivation on the Conceptual Framework and Methodology . . 84

4.1.1 Potentials and Shortcomings of High-Level Petri Nets . . 84

4.1.2 Stepwise Supporting Methodology 87

4.2 The Semi-Formal Phase Applied to the Agency Application . . . 90

4.2.1 Travel Agency: Informal Description 90

4.2.2 Travel Agency : UML Diagrams and Business Rules . . . 92

4.3 CSrv-Nets: Structural Aspects Modelling of Service Interfaces 98

4.3.1 Service States and Messages Structure 98

4.3.2 Application to the Travel Agency 104

4.4 CSrv-Nets: Behavioural Modelling of Services 108

4.4.1 CSrv-Nets: Service Net Structural Features 108

4.4.2 CSrv-Nets: Service Net Behaviour Using Business Rules 113

4.5 CSrv-Nets: Semantical Aspects 117

4.6 Summary . 119

CONTENTS 9

5 Extensions of Service-based Petri Nets: Harmonious lo-

cal/global Compositions 121

5.1 Choreographical Composite Services with CSrv-Nets: Further

Motivation . 124

5.1.1 Choreographical Composition within the Travel-Agency . 128

5.2 Business-Rules Pattern for Behavioural Choreography 129

5.2.1 Cross-Services Business Rules in the Agency Application 131

5.3 Leveraging CSrv-Nets to Choreographical ECA-Driven Busi-

ness Rules . 138

5.3.1 Structural Features in CCSrv-Nets 139

5.3.2 Behaviourally Composing Services with CCSrv-Nets . 142

5.4 Application of the Approach to the Running Example (Travel

Agency) . 143

5.5 Summary . 145

6 Extending CCSrv-Nets for Dynamic Adaptability 147

6.1 Runtime Adaptability in CCSrv-Nets: Principles 151

6.1.1 CCSrv-Nets Transitions (Meta-)Representation 152

6.1.2 Towards PN-Based Manipulation of Transition-

Behaviours as-Tuple . 156

6.1.3 Connecting the Adaptability-Level to the Conceptual

Base-Level . 158

6.1.4 Mechanisms for Shifting Down/Up Business Rules 161

6.2 A Dynamically Adaptable CSrv-Nets Airline Specification . . 166

6.2.1 Upgrading the CSrv-Nets Airline Towards

Adaptability-Awareness 167

CONTENTS 10

6.2.2 Building and Illustrating the CSrv-Nets Airline

Adaptability-Level . 168

6.2.3 The Emerging of the Three (Rules-As-)Tuples at the

Adaptability-Level . 171

6.2.4 The Dynamic Shifting Down/Up of these New Rules on

the Base-Level . 172

6.3 Summary . 173

7 Conclusions and Future Work 176

7.1 Thesis Contribution . 176

7.2 Future Work . 180

7.2.1 Deployment Using Advanced Web Standards 180

7.2.2 Supporting Tools For the Approach 180

7.2.3 Extensions Towards Formal Verification 181

References 182

LIST OF FIGURES 11

List of Figures

1.1 The service-based Petri Nets-based methodology for reliable and

adaptable development of complex service applications 18

2.1 Web services stack . 26

2.2 Web services Architectur (W3C Architecture Working Group) . 33

2.3 The dining philosopher problem as a P/T-net. 47

2.4 The dining philosopher problem as an algebraic Petri net 55

4.1 A disciplined approach for service rule-centric adaptive business

applications. 88

4.2 A Overview of the Travel Agency UML Use-Case 93

4.3 The Travel Agency with a SteroTyped UML Class-diagram for

Services. 95

4.4 The Behavioural Specification of flight Service Interface. 116

5.1 An Illustrative Complementarity of Orchestration and Choreog-

raphy in the CSrv-Nets Approach 126

5.2 Behavioural Choreographical Specification of Travel Agency Service144

6.1 The general pattern of CSrv-Nets transitions 154

6.2 The Behavioural Specification of Flight Service Interface. 156

LIST OF FIGURES 12

6.3 The Runtime Adaptability of CSrv-Nets flight service 174

6.4 (Shifted) Runtime Adaptability of CSrv-Nets flight service . . 175

LIST OF TABLES 13

List of Tables

3.1 Comparison of (High-Level) Petri Net-Based Models for Web ser-

vices . 80

List of Acronyms

API Application Programming Interface

BPEL4WS Business Process Execution Language For Web Service

CORBA Common Object Requesting Broker Architecture

DAML-S Darpa Agent Markup Language for Services

DCOM Distributed Component Object Model

ECA Event Condition Action

FTP File Transfer Protocol

HTTP Hyper Text Transfer Protocol

HTTPR Reliable Hyper Text Transfer Protocol

J2EE Java Platform, Enterprise Edition

MIME Multipurpose Internet Mail Extensions

OCL Object Constraint Language

OWL-S Web Ontology Language for Services

RPC Remote Procedure Call

RuleML Rule Markup Language

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SOA Service Oreiented Architecture

SOC Service Oriented Computing

UDDI Universal Description Discovery and Integration

UML Unified/Universal Modeling Language

URI Uniform Resource Identifier

W3C World Wide Web Consortium

WSBPEL Web Service Business Process Execution Language

(was earlier BPEL4WS)

WS-CDL Web Service Choreography Description Language

WSCI Web Service Choreography Interface

WSDL Web Service Description Language

WSFL Web Service Flow Language

WSMO Web Service Modeling Ontology

WWW World Wide Web

XML Extensible Markup Language

Glossary

The following glossary terms are taken from the Open Distributed Process-

ing Reference Model [40], and various Web service specification including:

[33, 28, 56].

Term Applied To Web service Definition

Interface
A service interface is the abstract boundary that a service express. It

defines the types of messages and the message exchange patterns that are

involved in interacting with the service.

Problem Domain
The functional area of interest , or under control, by individual

or groups of (web) services hosted on the interest and accessible either

locally or globally (to other service groups) to fulfill a task or a series

of tasks within a function area

Composition
A web service composition consists of an orchestration of web service

interactions defined in a local process (itself potentially a service). Static

web service compositions are those which use services known at

design time and are bound to a composition at design time. Dynamic

web service compositions those which define web service interactions

where the services are not known at design time, and which are

discovered or their properties resolved based upon a criteria process

set at design time.

Orchestration
Describes the definition and the implementation of processes that

drives the message exchanges between one or more web services. The

BPEL4WS standard refers to participating services as composition

Partners. Interaction is seen between one process and many services

(i.e. one to many).

Choreography
Choreography describes the collective message exchange

among interacting Web Services, providing a global, message-oriented

view of the interactions (observing and controlling a many to many

relationship)

Service
A web service is a software application identified by a URI,

whose interfaces and binding are capable of being defined, described and

discovered by XML artefacts and supports direct interactions with other

software applications using XML based messages via Internet-based

protocols

Chapter 1

Introduction

The objectives of this introductory chapter are fourfold. Firstly, this chapter

motivates the general context and research scope of this thesis within the service

paradigm field, and then motivate the topical research challenges we have been

focussing on. Secondly, we go into detail about the main research questions

tackled in this thesis and its ramifications, as driving forces in reshaping the

thesis contributions. Thirdly, in accordance with set up research questions and

objectives, we enumerate the main original contributions of this thesis. Finally,

this chapter highlights the content of the remaining chapters.

1.1 Motivation and Research Scope

Over recent years there were an increasingly dominating market globalisation,

geared by highly unpredictable volatility and fierce competition. In parallel,

the advances and confluence of computation and wireless communications have

been boosting the omnipresence and pervasiveness of the internet and the World

Wide Web (WWW) [11], anywhere, anytime and through any communication-

1.1. MOTIVATION AND RESEARCH SCOPE 5

aware devices and channels. As a consequence, on the one hand, to stay

competitive most organisations (public and private) are intensively collaborat-

ing their know-how by dynamically building loosely-coupled networked cross-

organisational giants. On the other hand, the internet has been leveraged from

just a glue of (syntactical) information to an unavoidable complex scene for net-

working and composing such as cross-organisational, knowledge-intensive and

interaction-centric cooperations; mainly enabled through the so-called service-

oriented architectures and Web services.

Service-oriented computing (SOC) presently represents one of the emerging

technological innovations in accurately (semi-)automating these new business

requirements [33]. Indeed, as a new computing paradigm, this technology treats

distribution, loose-coupling and heterogeneity as driving first class principles

and mechanisms. Service technology principles are thus centered on the unlim-

ited capabilities and pervasiveness of internet technologies and the World Wide

Web.

Web services enabled by service-oriented architectures (SOA) in this tech-

nology are platform-independent, self-contained software entities with explicit

interfaces, adequately instantiate to be described, published, discovered and de-

ployed on the Web. Besides that is undoubtedly the capability of Web services

to be composed with other basic or composite Web services to form large scale

evolvable business applications, that dynamically fulfil more realistic require-

ments of private or public requesters (i.e. P2B and B2B). As a service technol-

ogy, Web services can thus be manipulated (e.g. described, published, discov-

ered and composed) using adequate standards described in terms of XML-based

languages, such as WSDL [7], UDDI [92], WSBPEL [87] and WSCI [38]. These

standardised languages have been rapidly gaining in maturity and becoming

1.1. MOTIVATION AND RESEARCH SCOPE 6

widely adopted, thereby increasingly attracting worldwide cross-organisations

to embrace this service technology for (semi)-automating their business and

inherent networked information systems.

This significant technological shift towards the wide adoption of service-

oriented architecture and computing enable Web services at this large organi-

sational scale at a rapid pace. Web services have been pressing for more ad-hoc

deployment techniques to cope with an ever growing demand on complex yet

realistic composite services. Beyond the originally process-centric, rigid and

static compositions of services using mainly the orchestration-driven WSBPEL

and partially the global choreography-driven WS-CDL [1] and WSCI. There-

fore, there is a need for more ad-hoc technology-driven development techniques

of non-traditional advanced services characterised in particular by their:

Persistency and Conversation: Complex realistic service-driven business

applications (i.e. applications aimed to be deployed using service stan-

dards and architectures), are required to be conversational and highly

persistent as they are mostly long-lived term systems. Tackling persis-

tency means providing advanced abstraction mechanisms , such as those

provided by the Object paradigm for example classification, inheritance

and roles around the de facto standard UML method [32].

Unfortunately, even at the technological level no contemporary composi-

tion standard is able to intrinsically address persistency and conversation.

The widely adopted WSBPEL, for instance, uses very restricted data vari-

ables that automatically vanish after execution.

Knowledge-intensiveness: Service-driven applications such as E-commerce,

E-banking, E-Government or E-health are overwhelmingly governed by

1.1. MOTIVATION AND RESEARCH SCOPE 7

huge knowledge described mostly in terms of business rules regulating how

to do business at the intra- and cross-organisational levels alike. Restrict-

ing business activities to just exchanging messages as intended in Web

standards like WSDL and WSBPEL, thus represents serious obstacles

to cope with the inherent rich knowledge encompassing such activities.

Although, several ad-hoc deployment techniques are starting to emerge

ranging from XML rule-based languages such as reactive RuleML [91, 23],

DAML-S [5], OWL-S [60] or aspect-oriented techniques [19, 51, 50]; the

handling of such knowledge is still not satisfactory.

Required Complementary local/global Composition: As a realistic ser-

vice application is usually composed of numerous interacting services,

both service-focussed and global inter-service are deemed necessary. Un-

fortunately, with the popularity of WSBPEL composition-like language,

the single service-focussed orchestration remains the only dominating per-

spective, whereas the global inter-service interactions among compos-

ite Web services, the so-called choreography is getting less attention or

treated independently from the orchestration vision. We claim that har-

moniously addressing both local and global visions, while composing ser-

vices, in a complementary and uniform manner represents an important

step towards more realistic composite services.

High Distribution: Most current standards for service composition do not

cope with decentralised architectures, where different business process ac-

tivities can reside in different locations. As benefits of distribution we may

cite, on the one hand, the intrinsic support of concurrent activities within

a business process.On the other hand, distribution enhances the migrate of

1.1. MOTIVATION AND RESEARCH SCOPE 8

services and their activities in accordance with the target (user’s) location

and computational resources.

Dynamic Adaptivity and Evolution: To stay competitive, today’s services

must cater for high flexibility and adaptability as business markets dynam-

ically and rapidly change and opportunistic alliances are highly favored.

Particularly composite services are required to be highly and dynamically

adaptable to cope with different variants of requesters and their evolving

requirements. Moreover, when the composition of services is flexible and

dynamically adaptable, the number of application (cross-organisation)

business processes significantly decrease as they become mostly reusable.

Consequently, development efforts, costs and (process) size-complexity are

being more mastered.

The direct technological ad-hoc realisation of such intractable advanced

services is unfortunately not without serious pitfalls, limitations, unneces-

sary costly and risky investments by organisations acquiring them. Indeed,

even without referring to such advanced services, the promise of service tech-

nology in delivering by its own adaptive composite process-centric services

is still a far-off objective. Adding such multi-concern requirements (e.g.

knowledge-intensiveness, distribution and harmonious local/global composi-

tion) just means more inflexible and spaghetti-like hard-coded services, im-

possible to build let alone to compose and adapt. Moreover, the difficulties

of uniformly and coherently addressing the afore-mentioned service advanced

characteristics, has resulted in deployment architecture focussing mostly on one

or two issues while ignoring the others.

In response to this unsatisfactory state-of-affairs, we are thus witnessing a

1.1. MOTIVATION AND RESEARCH SCOPE 9

strong consensus that this technology must be embolden and steered by prior,

deep understanding and handling of most advanced service requirements at the

business and foundational levels, and only afterwards addressing a deployment

to accurately and progressively mirror that domain-level understanding, while

taking benefits and reshaping available service technology as a consequence.

Indeed, most of the above crucial service requirements such as multi-concern

knowledge and adaptability as well as their explicit and balanced separation of

concerns are excellent domain-level issues.

Instead of vainly attempting to disparately enforce these advanced service

features through syntactical ”codification” and thus loosing their essence, we

endeavour in this thesis first to faithfully elicit, understand and validate them at

the business-foundation levels, where all stakeholders (e.g. managers, analysts,

developers, users and finally programmers) may take a lions share in these

activities, and where tailored semi- and formal techniques ensure a high-level

of flexibility and reliability (through validation and verification).

Therefore, this thesis objective concerns the leveraging of the service para-

digm from its dominating technology-dependency towards more stepwise service

engineering life-cycle development, where early phases of business requirements

such as elicitation, modelling and validation become the driving force. Further-

more, besides the loose-coupling through interfacing and composition, the for-

mal framework we are envisioning must intrinsically support the above advanced

service features, namely persistency, knowledge-intensiveness, distribution and

adaptability. Besides that, in complementing the substantial current efforts

aimed at backwardly formalising service deployment standards, we instead pur-

sue in this thesis a forward methodology that keeps the domain level completely

independent of any specific service-technology solutions, which opens the quest

1.2. RESEARCH QUESTIONS 10

for best deployment alternatives with respect to all available service technology

and related proposals. Moreover, Our research method is a typical theoreti-

cal research technique in which we built a model, formalise it and then prove

properties about it. It is not empirical and not qualitative.

1.2 Research Questions

In light of the above motivated research direction and scope we are pursuing

during this thesis, we formulate in the following, in a more precise manner, the

main research questions we are tackling. Furthermore, to explicitly motivate

for the methodology we have been undertaking to resolve this main thesis’s

research question, we refine it into several manageable sub-questions.

Why to Discuss Conceptual Modelling:

A conceptual model is a visual method that describes ’concepts’ (entities) of

the proposed system and relationships between them. Also, it is a well known

technique of data modelling which can be independent of the implementation

detail. However, modelling are used to analyse, understand and prove desirable

properties of the system before it belt.

Thesis Research Questions

How to leverage the development of realistic service-driven business applica-

tions, so that it becomes progressive, comprehensible and yet rigorous, and where

distribution, persistency, knowledge-intensiveness, validation/certification and

adaptability as well as the harmonious complementarity between local and global

1.2. RESEARCH QUESTIONS 11

perspectives represent the governing driving forces.

Towards effectively tackling this main driving research question in a disci-

plined and progressive way, we clearly require to further refining it into more

manageable sub-questions. These ramified sub-questions could be summarised

as follows:

(1) At the business level, how best can we cope with adaptability and be-

havioural knowledge, so they can further be aligned with the business

goals of the to-be developed service-driven applications? In other words,

which business mechanisms are the most suitable to promote adaptability

and behavioural knowledge, in an event- and interaction-driven manner

as service-orientation strives for?

(2) At the foundation level, among the plethora of available formalisms in

software-engineering, which (multi-paradigm) formalism scores minimal

criteria to be a candidate for formalising and reasoning about the above

advanced service requirements? More specifically, towards coping with the

above enumerated features/requirements in advanced services, we impose

on any (multi-paradigm) formalism to be a candidate at least the following

minimal conceptual criteria.

Understandability Through Visualisation: Experience shows that

formalisms endowed with graphical descriptions are more accepted

by cross-organisation stake-holders (not just designers and program-

mers). Furthermore, understandability is essential in bridging the

gap with the business-level, where first intuitive description of the

1.2. RESEARCH QUESTIONS 12

service-driven application, at hand, is given in terms of global goals

and processes.

Concurrent and Distributed Behaviour: As we pointed out distri-

bution is one of the main characteristics of (advanced composite)

services. Consequently, the targeted formalism intrinsically supports

concurrency and distribution.

Type- and Instance-Level Support: We argue that one of the short-

comings of Web standards, such as WSDL, WSBPEL and WSCI, is

their inability to intrinsically cope with the instance-level, where one

may directly address and reason about specific services. Moreover,

coping with both the type- an instance-level thus represents a critical

requirement to tackle service states, and thereby explicitly dealing

with persistency and conversation.

Validation and Verification: As we are endeavoring bridging the gap

between the business-level and the conceptual level, requirements

validation are thus essential. The validation should thus include: re-

quirements missing, misconception, misunderstanding, conflicts and

so on. Graphical validation in this respect is highly requested. Be-

sides such validation, the formal verification of crucial properties are

also to be taking into account.

Advanced Abstraction Mechanisms: On the one hand, we argue

that current monolithic interfacing is not sufficient to offer tai-

lored features to different customers and/or focussed compositions.

Object-oriented advanced mechanisms such as classification and ag-

gregation seems to be very beneficial for supporting any promising

1.2. RESEARCH QUESTIONS 13

candidate formalism. On the other hand, the ability of addressing

componentisation and explicit inter-component interactions repre-

sent prerequisites to cope with service compositions via (structurally

and behaviourally) rich interfaces.

Semi-Formal Standards Compliance: Since UML is the de facto

standard while developing complex (cross–organisational) informa-

tion systems, it is highly beneficial that some features of the en-

visioned formalism could be smoothly derived from specific UML

diagrams and/or supporting OCL constraints [81].

(3) Once a candidates general-purpose formalism has been selected, following

as much as possible the above criteria. Further research questions directly

related to advanced specificities of service orientation should be addressed.

These sub-questions should include:

(a) How to leverage such (basic general-purpose candidate) formalism so

that it can explicitly cope with service interfaces specification and

validation?

(b) How to adapt it so that it can explicitly integrate knowledge-

intensiveness, and in particular business rules.

(c) How to leverage such adopted formalism, so that behaviour-intensive

service composition, at the local orchestration-level can be formalised

and reasoned about?

(d) How to bridge the gap between the informal (UML-driven) level with

related business rules and the formalised service composition?

(e) How to extend/adapt the formalism, so that one can achieve a harmo-

1.3. ORIGINAL CONTRIBUTIONS 14

nious and complementary interaction between such service-focussed

orchestration-driven composition and more global and collaborative

choreography-driven composition?

(f) Last but not least, how to leverage this resulted service-driven for-

malism for knowledge service-oriented applications, so that we can

dynamically adapt and evolve different requirements, specifically

behaviour-intensive.

1.3 Original Contributions

Towards the envisioned approach, we have thus been focussing on these research

questions. This aimed approach will consequently be in a form of an integrated

stepwise conceptual framework composed of the following:

At the intuitive business-level, we are proposing to capture service require-

ments through tailored UML-based class-diagrams and event-based business

rules. At the foundation-level, we are proposing an innovative variant of adap-

tive high-level Petri Nets, intensively worked out to adequately tackle the

emphasised challenges in complex service-driven applications. Referred to as

CSrv-Nets, this innovative adaptive high-level Petri Nets conceptual model

enjoy most of the above set out requirements and thereby positively fits all the

detailed research questions.

Firstly, as a main software engineering formalism, we are adopting a Petri

Nets-based conceptualisation. In light of the above service requirements and de-

tailed research questions, the main reasons for such conceptual decisions include

the following. Petri Nets [15, 78, 74] are intrinsically graphical, visual and thus

highly understandable. Besides being formally defined, on the basis of different

1.3. ORIGINAL CONTRIBUTIONS 15

operational semantics (e.g. graph-theory [13, 97, 25], logic [98, 6, 8], etc). Petri

Nets are inherently concurrent and distributed. They allow reasoning about the

generic model as well as its running instances. They permit validation through

graphical animation using intrinsic simulations (e.g. token games). They are

endowed with several analysis and verification techniques (e.g. place/transition

invariants [9] and siphon/trap [85]). Last but not least, since service composi-

tions are business process-driven, Petri nets represent one of the best formalisms

to graphically address business processes, concrete workflows , modelling and

validation.

Secondly, as first extension of the place/transition nets do not cope with the

structural complexity of services, we propose to benefit from high-level Petri

nets, such as algebraic [80] and colored Petri nets [47]. More precisely, we first

propose to integrate most object-oriented mechanisms (e.g. classification, in-

heritance and aggregation) into P/T Nets. Moreover, and because the service

paradigm is based on explicit interfaces and transient interconnections, we pro-

pose a service driven Petri nets variant that involves an object-oriented concept.

Thirdly, since business rules represent the best driving forces for coping

with knowledge-intensiveness, we explicitly and soundly integrate ECA (Event-

conditions-actions) business rules [41] in the service driven Petri nets variant.

On the basis of such explicit integration we demonstrate how process-oriented

composition of such behaviour-intensive service interfaces can be progressively

conceptualised using the proposed formalism. More precisely, while compos-

ing service we explicitly distinguish between service-focussed composition, the

so-called orchestration-based composition, and between the global collaborative

service composition, the so-called choreography-based composition. We demon-

strate how such two compositions are indeed complementary, when the focus

1.3. ORIGINAL CONTRIBUTIONS 16

are behavioural issues. Thereby, we are leveraging most of the existing ap-

proaches for (pure process-centric) service composition, which considers them

as two completely independent means of composing services.

Fourthly, by integrating event-driven business rules into the conceptual

service-driven Petri nets model, we achieve adaptation but only at the design-

time. With the aim of coping with dynamic adaptability of business rules, we

finally propose to smoothly and soundly upgrade that conceptual model to allow

a dynamic adaptability of its knowledge, based on business rules. We achieve

this by endowing each composite service driven Petri nets with an adaptability

level, where transition inscriptions can be updated at run-time (i.e. dynamically

shifting up/down business rules as advices).

To recapitulate on the achieved contributions, Figure 1.1 illustrates this

progressive approach we are putting forwards in this thesis. As we emphasised,

the proposed approach is methodologically perceived as being composed of four

phases.

UML/Business-rules Requirements Phase: In this preliminary phase, the

informal description of the business-driven application at-hand is semi-

formally and diagrammatically expressed in terms of UML tailored class-

diagrams. Besides that, all related intra- and inter-organisational business

rules governing the behavioural features of different basic and composite

services are to be clearly described, following in particular the well-known

Event-Condition-Action (ECA) paradigm.

Concurrent Services Nets Specification/validation Phase: As we al-

ready emphasised, this phase is decisive as it allows to define in a precise

and concise way all functionalities and behaviours of different services and

1.3. ORIGINAL CONTRIBUTIONS 17

their interaction (i.e. service interfaces, elementary and composite ser-

vices) and validate them against misconception, misunderstandings, con-

ceptual mistakes, etc. For this crucial phase we are proposing a tailored

variant of high-level Petri nets, that reflects all structural and behavioural

features of elementary or composite services, such as distribution, persis-

tency (stateful), conversation and complex structuring mechanisms (e.g.

classification, aggregation). Moreover, we are enhancing the practicability

of this conceptual model we refer to as CSrv-Nets, by hiding as much

as possible its tedious mathematical side.

Synergetic Complementarity Orchestration/Choreography Phase:

Once any CSrv-Nets service behaviour has been specified and validated

independently, we give the designer the ability to compose such validated

services. This composition is achieved at the global choreographical level

yet with a harmonious complementarity with the involved orchestrated

CSrv-Nets services. In contrast to the existing process-centric, our

composition is knowledge-intensive, thus driven by business rules at the

intra- and inter-service levels. In such manner, we are enhancing one

step further the behavioural adaptability both for elementary services

and complex composite services.

Runtime Adaptive Service Nets Phase: This phase allows endowment of

the conceptual model CSrv-Nets with an adaptability-level so that adap-

tivity of different services behaviour can be achieved at-runtime and in a

consistent and incremental manner. At that adaptability-level any busi-

ness rules can be dynamically updated (i.e. added, removed and/or ad-

justed) independently of the conceptual level. Then, such adaptable busi-

1.3. ORIGINAL CONTRIBUTIONS 18

ness rules are dynamically superposed on the conceptual-level.

Extended WSBPEL for Implementation Phase: Although the thesis

does not tackle this phase, we judge it very beneficial to insist that once

the conceptual model is specified, validated and dynamically adapted

at need, we can straightforwardly derive the corresponding XML-based

WSBPEL-like code for orchestration and choreography, namely WSBPEL

and WSCI [44, 14]. The corresponding business rules are to be codified

using RuleML-like programs. At different stages during this thesis,

we give some necessary hints on how such translations could be easily

derived. Nevertheless, we should again emphasise that this thesis is

about the conceptual level, and thus we do not devote any chapter for

that implementation; though we are aware of its crucial importance.

Petri−Nets Framework for business rules
runtime adapability

Environment
− changing of business rules
− changing of context
− changing of services properties

− changing of services interactions

. . .
Certified abstract services
(interaction) behavior

(extended) X
M

L
−based

certified services

. . .

C
oncrete running services

. . .

Event−driven Business rules Description
A Service−based (high−level) Petri nets for specification
and validation of service−driven knowledge−intensive
evlving composite service−driven applications

O
rc

he
st

ra
tio

n−
 a

nd

C
ho

re
og

ra
ph

y−
le

ve
l

 The Approach
 A

da
pt

ab
ili

ty
−

le
ve

l

Stereotyped−UML Description of services structures

C
ro

ss
−

or
ga

ni
za

tio
n

in
fo

rm
al

re

qu
ir

em
en

ts
 (

pr
oc

es
se

s,
 g

oa
ls

, r
ul

es
, .

.)

Runtime

adaptation

Design−time semi−formal desciption and adaptation
of complex service−driven applications

A (meta−)extension of the service−based

 Output

Figure 1.1: The service-based Petri Nets-based methodology for reliable and

adaptable development of complex service applications

Following the proposed conceptual framework and its supported stepwise

1.4. READER’S GUIDE: ORGANISATION OF THE THESIS 19

approach, we demonstrate how we are able to intrinsically and formally address

different local and cross-organisational and services business rules. Moreover, to

promote competitiveness geared by such business rules, we propose to dynam-

ically adapt such rules depending on the customer profiles, seasons, emerging

attractive new regulations, and so on.

1.4 Reader’s Guide: Organisation of the The-

sis

In accordance with the objectives and targeted contributions of this thesis, we

overview in the following the remaining chapters with a summarised content of

each one.

Chapter 2: Preliminaries and Service Background

This chapter aims at paving the road for both the topic of this thesis, namely

service technology, and at providing the reader with all required basic concepts

and background to smoothly follow the subsequent main chapters in a self-

contained manner. Precisely, on the one hand, we survey current Web service

standards and architectures. On the other hand, as we are pursuing high-level

rule-intensive Petri Nets-based conceptualisation.

1.4. READER’S GUIDE: ORGANISATION OF THE THESIS 20

Chapter 3: High-Level Petri Nets and Web services: Overview and

Comparison

Since we are envisioning to formalise and validate complex knowledge-intensive

and an adaptive services application using an innovative high-level Petri Nets

model, this chapter brings the reader closer to the recently developed approach

for formalising Web services using high-level Petri nets. Moreover, after sum-

marising such recent proposals, we put forward a set of criteria for classifying

and comparing such proposals.

Chapter 4: Service-based Petri Nets: Foundation, Illustration and

Methodology

This chapter of this thesis motivates and puts forward an innovative variant

of Service driven Petri Nets for specifying and validating knowledge-intensive

service-driven applications (referred to as CSrv-Nets), with particular focus on

business rules, distribution and understandability. With respect to scalability

and understandability, we demonstrate using the running example, i.e. the

travel agency case, how starting from a UML-based informal description, we

smoothly shift to CSrv-Nets formalisation of the service-driven application

at-hand.

1.4. READER’S GUIDE: ORGANISATION OF THE THESIS 21

Chapter 5: Extensions of Service-based Petri Nets: Harmonious lo-

cal/global Compositions

This chapter proposes to leverage the introduced CSrv-Nets to cope with the

global choreographical perspective. The objective of this chapter consists thus

in forwarding a suitable framework based on a sound extension of CSrv-Nets

that allows a harmonious complementarity between the local service-focussed

orchestration perspective and unified global inter-service perspective while com-

posing knowledge-intensive and adaptive services.

Chapter 6: Extending CCSrv-Nets for Dynamic Adaptability

The purpose of this chapter is to go beyond the design-time adaptability of

behavioural features governed by event-driven business rules. This soundly

extend the conceptual model by endowing its constituents (e.g. interfaces, local

and global composite services.) with adaptability level, where rules can be

dynamically manipulated. For the dynamic shifting up/down of such business

rules of services, we propose inference operational mechanisms.

Chapter 7: Conclusions and Future work

This last chapter first recapitulates on the achieved contributions of this thesis.

Secondly, it discusses different possible extensions of this work both at the

conceptual and deployment levels.

Chapter 2

Preliminaries and Service

Background

This chapter introduces in a self-contained manner the main topics that will

be the focus of during this thesis, specifically Web services, as well as all the

concepts on which our envisioned approach will be based, mainly Algebraic

specification, Petri nets and Business rules. More precisely, in the first section

we will overview the main concepts and mechanisms underlying the service-

oriented architecture (SOA) and its enabling Web services. In the second section

we recall definitions and concepts around business rules and the state-of-art

towards adapting Web services using such rules. In the third section we present

some formalisms that have been applied to specify service-oriented applications.

In the fourth section we present and illustrate the principles of Petri nets and

High-level Petri nets. In the last section we recall some of the main concepts of

algebraic specifications.

2.1. SOA AND WEB SERVICES: OVERVIEW 23

2.1 SOA and Web services: Overview

Web services are a collection of protocols and standards that are capable of

exchanging data and messages between applications and heterogeneous systems,

etc. They provide a structural way to handle transactions and standard means

to describe what the services do and how to make them available to others.

Moreover, it uses HTTP by default as a transport protocol to allow messages

to be exchanged over the net. Web services are being used as a solution to

many of the distributed computing problems and as the future of the electronic

business.

Web services in real life can be used in many different applications including,

but not limited to: online stores, hotel and airline -booking package, real-time

stock market information and banking. Basically, Web Services are very in-

dependent, which means ;operating system independent, hardware independent

and programming language independent. On other words, it allows applications

written in different languages (such as Java, C++, etc) on different platforms

such as Microsoft.NET [68], J2EE [46], etc)to be used and invoked by appli-

cations running on a remote computer in a standard-based way regardless of

differences between the application server technology running on the remote

and local machines.

The basic Web service protocol stacks include, i.e. WSDL the descriptions,

represented in XML based description languages [83], UDDI which is the entries

for describing web services and SOAP [61] messages for actual Web Service

invocation and reply.

As the number of available Web services is steadily increasing, there is a

growing interest for reusing basic Web Service in a new, composite way. There-

2.1. SOA AND WEB SERVICES: OVERVIEW 24

fore, many languages for Web services composition have been proposed recently,

including WSFL [82], XLANG [93], WSCI [38], and WSBPEL [87].

What are Web services?

As defined by the World Wide Web Consortium [20], a Web service is a software

system identified by a URI which designed to support interoperable machine-to-

machine interaction over a network. It has an interface that is capable of being

described in a machine-processable format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by its description using

SOAP messages, typically conveyed using HTTP with an XML serialisation in

conjunction with other Web-related standard.

In another definition [27], a web service describes a collection of electronic

operations that are network accessible through standardised XML messaging.

It provides a set of functionalities to business and individual and enables uni-

versal to accesses to these functionalities. Web services has moved from tightly

coupled system to loosely coupled system using existing web protocols,such as

HTTP, SMTP, etc. The development of web services follow similar philosophy

to traditional software system. However, web services need to be self contained

component that are able to communicate with each other via the web service

stack. see Figure 2.1.

The main advantages of using Web services is to allow and perform elec-

tronics operations without need for human intervention (software-to-software

interaction) and that provides opportunities including but not limited to: re-

ducing the number of employees and the time of integration.

It uses XML document because it has many advantages such as improved

data typing and structure, greater flexibility and extensibility. Moreover, XML

2.1. SOA AND WEB SERVICES: OVERVIEW 25

documents are easy to understand because it was designed as text so that,

anyone can always read and configure out the content since it is not in binary

data format. To put it in a simple way, web service is a software service that

exposed on the web through SOAP, described using WSDL and registered in

UDDI.

The Underlying Technologies for SOC

In this section of the thesis, we will discuss Extensible Markup Language (XML)

since SOA is an XML-based document. Furthermore, Web services protocol

stack will be explained and finally, languages that are used for describing and

compositing of Web services will be outlined.

Extensible Markup Language (XML). XML [39] is an extensible mark

up language for documents containing structured information. It provides a

way to define, store, transmit and a standard way to tag information and the

format for data exchanged via web service. It is important to realise that XML

is not really a ”language” at all, but a standard for creating languages that

meet the XML criteria. In other words, XML describes a syntax that users

use to create their own languages. XML schema language provides a way to

describe, validate the structure and the contents of XML documents. An XML-

document is a structured document containing a top element which is enclosed

by a start tag and end tag. Each elements can contain child elements as well as

an attributes. XML is a framework for defining markup languages. However,

XML allows authors of documents to define their own tags and own document

structure for the specific purpose.

2.1. SOA AND WEB SERVICES: OVERVIEW 26

Web Service Protocol Stack. Web services stack is a collection of stan-

dardised protocols and application programming interfaces (APIs) that let in-

dividuals and applications define,locate, implement and utilise Web services [5].

Web services applications are built on an architecture or software system design

which can be illustrated as a ’stack’of processing layers. The software compo-

nents in theses layers are loosely coupled components that interact with one

another via standard protocols which have standard interfaces.

The web service stack mainly comprises four areas: communication proto-

cols, service description and service discovery as shown in Figure 2.1

Figure 2.1: Web services stack

(Service) Communication Protocol

Communication protocol is the foundation layer of the Web services stack

which is responsible for transporting messages between network applications.

2.1. SOA AND WEB SERVICES: OVERVIEW 27

Web services has to be available over a network to be invoked by a service

requester. The network is often based on an HTTP protocol,however this does

means that HTTP is the only protocol that can be used.In fact there are other

transport protocols that may be used such as SMTP, FTP and HTTPR, etc.

(XML) Messaging Protocol: Simple Object Access Protocol:

(XML) Messaging protocol is responsible for encoding messages in a common

XML format so that they can be understood at either end of a network con-

nection. SOAP is an XML-based message protocol, which is specified in a

W3C specification. Moreover, the likely technology to provide communica-

tion framework for transport XML-based messages anywhere across the net is

the SOAP. which facilitate the communication between Web services and their

clients. SOAP is the chosen XML messaging protocol for many reasons:

• It is simple; it can be used in combination with or re-enveloped by a variety

of network protocols such as HTTP, FTP and SMTP. It is basically an

HTTP POST with an XML envelope as payload.

• It is the standardised enveloping mechanism for communicating

document-centric messages and remote procedure call (RPC).

SOAP is an XML protocol that facilitate Publish, find, bind, and invoke

operations as described previously and its structure consists of the following

parts:

• Structure of a SOAP Message: which consists of the following elements:

– A required envelope element that identifies the XML document as a

SOAP message. it contains an optional header and mandatory body.

2.1. SOA AND WEB SERVICES: OVERVIEW 28

– An optional header element that contains meta-information about

the message, such as routing, security ,transaction management etc.

– A required body element that contains the actual payload of the

message. (e.g. call and response information) encoded as XML.

– An optional fault element that provides information about errors

that occurred while processing the message

• SOAP Encoding Mechanism: Is another important area of SOAP that is

dealing with a set of rules and mechanisms for encoding data in SOAP

messages. The SOAP specification’s encoding/serialisation portion de-

fines how objects are to be encoded or serialised into a common XML

syntax when transmit over SOAP. Having an encoding standard for SOAP

messages means that objects can be encoded in SOAP messages in a stan-

dard way, and then on the receipt side the message will be decoded. The

SOAP library found on the client and the server performs the encod-

ing/decoding. SOAP’s encoding/serialisation features are mainly used in

conjunction with the RPC mechanism, as explained next.

• Remote Procedure Call on SOAP: RPC stands for remote procedure calls

[4] which is the most common messaging pattern in SOAP. RPC is used

for making a request message (procedure) or function calls to a server

node, and receiving the responses back,both over the network. In other

words, SOAP RPC defines the ability to use the SOAP protocol to execute

a specific procedures on the server side of a SOAP message. The RPC

mechanism builds on the encoding portion by allowing encoded objects to

pass as arguments to a remote procedure. The only thing that has to be

known before invoking a remote procedure, is the name of the procedure

2.1. SOA AND WEB SERVICES: OVERVIEW 29

that intend to call and the arguments to that method.

(Service) Description Protocol (WSDL)

(Service) Description protocol used for describing the public interface to a spe-

cific web service . Web Service Description Language (WSDL) is the layer

above XML-based messaging protocol which is a specification that describes

available Web services to requesters. These descriptions written in XML form

and describe the public interface and implementation of Web services.Business

can use WSDL to advertise and then expose its services by publishing them in

the registry. The reasons why WSDL details have been divided up into two parts

(interface and implementation) is to allow each part to be define separately and

independently and then reused by other parts.

A WSDL document defines services as collections of network endpoints

ports. In WSDL, the service definition is divided up into two parts: the service

interface definition and the concrete network definition for data binding. This

enables the reuse of abstract definitions: messages, which are the data typed

elements, and port types which are abstract collections of operations.

The concrete protocol and data format specifications for a particular port

type constitutes a reusable binding. A port is defined by associating a network

address with a reusable binding, and a collection of ports define a service. Hence,

a WSDL document uses the following elements in the definition of network

services:

Types: a container for data type definitions using some type system (such as

XSD).

Message: an abstract, typed definition of the data being communicated.

2.1. SOA AND WEB SERVICES: OVERVIEW 30

Operation: an abstract description of an action supported by the service.

Port Type: an abstract set of operations supported by one or more endpoints.

Binding: a concrete protocol and data format specification for a particular

port type.

Port: a single endpoint defined as a combination of a binding and a network

address.

Service : a collection of related endpoints.

In addition, WSDL defines a common binding mechanism with SOAP,

HTTP and MIME This is used to attach a specific protocol or data format

or structure to an abstract message, operation, or endpoint. It allows the reuse

of abstract definitions. Finally, WSDL provides the foundation on which Web

Service Composition Languages build up on.

(Service) Discovery Protocol

UDDI is a XML-based global, public or private online directory which enables

business or individuals to list businesses that they provide as a service provider

and to be discovered by other services around the global.

UDDI is extensible data model that designed to work with any service de-

scription language such as WSDL. Services in the registry have to be well clas-

sified according to their functionality in order to allow easily requesters to find

services that satisfy their needs.The UDDI specification consists of an XML

schema [96] for SOAP messages and a description of the UDDI APIs specifi-

cation.The UDDI XML schema defines four types of information in order to

use a partners‘s Web service, these are: business entities, business services,

2.1. SOA AND WEB SERVICES: OVERVIEW 31

binding templates and tModels. Business entities describes information about

businesses including their name, description, services offered and contact infor-

mation. Business services provides more details on each service being offered.

Each service can have multiple binding templates, each describing a technical

entry point for the service(e.g. HTTP, SMTP, etc). Finally, tModel describes

the particular protocol or standards a service uses.

A registry can run by a various vendors such as IBM and Microsoft. Reg-

istration allow business’s publisher to obtain an authentication token and to

log onto an operator‘s site to post its information via SOAP.By doing so it will

allow businesses to find each other.

Publication of a services is the action that performed by a service providers

to allow the description of the services available to a potential service requesters.

Also, publication refers to advertising the WSDL in a UDDI registry. Like

publishing web service descriptions, discovery of any service is the action that

gives the service requester access to WSDL for a service.requesters are able to

query the registry to view and retrieve information regarding to a specific service

that fulfill their needs and depending on some criteria they decide whether to

invoke the service or not.

2.1.1 Services-Oriented Architecture

Traditionally, there are a number of architectural styles that have proposed to

build and enhance the performance of distributed systems, such as DCOM [67]

or CORBA [71]. Nowadays, the current trend in the application development is

shifted towards loosely coupled and browser-based applications, due to the fact

that, such clients eliminate the high costs of deploying an applications to the

2.1. SOA AND WEB SERVICES: OVERVIEW 32

desktop. Desktop applications are costly to deploy partly due to the issues of

instation and configuring the application and partly due to the issues of com-

municating between the client and the server. Therefore, HTTP is one of the

communication transport protocols that is used as a solution to many of the

distributed computing problems and as the future of the electronic business.

HTTP is a good choice because any machine that can use a web browser is by

definition running HTTP. The latest evolution in this new category of systems

is a new paradigm, called Service Oriented Architecture(SOA). SOA is an ar-

chitectural style which has been proposed recently that has promising functions

to internet based business applications. This represents software functionality

as services which can be described ,located and invoked over the network.

Web service architecture describes three basic roles: service provider, service

requester and service broker; and three basic activities: publish, discover, bind

and invoke [36]

Service Provider: From a business perspective, this is the owner of the service

and from an architecture perspective; this defines the service details and

then publishes it to one ore more repositories (service registry) based on

standard called UDDI for potential users to locate.

Service Requester: From a business perspective; this is a business that re-

quires a certain functions that satisfy it needs. From an architecture

perspective, this application will discover, bind and initiate an interaction

with a specific service. The Service requester could fall down into differ-

ent categories such as a human user requesting a service via browser-based

interface or an application program or it could be another web service.

Service Broker: This provides a searchable repository of service description

2.1. SOA AND WEB SERVICES: OVERVIEW 33

where service providers publish their services descriptions. service re-

quester find services and request access to those services by creating bind-

ing to the service provider.

Figure 2.2: Web services Architectur (W3C Architecture Working Group)

Languages for Web services Specification and Composition

Originally, Web services provide the basic technical platform required for ap-

plication interoperability. They do not, however, provide higher level control,

such as which Web services need to be invoked by an application programs or

other services, which operations should be executed and in what order. Nor

do they provide ways to describe the semantics of interfaces, the workflows, or

business processes.

2.1. SOA AND WEB SERVICES: OVERVIEW 34

Since the interaction model that supported by WSDl is essentially a stateless

model because the language is not aware of states in-between operation, and

business collaborations require long running interaction driven by an explicit

process model. Therefore, there is a need for a formal ,richer description lan-

guages to fill the gap between mere interface definition language (e.g. WSDL

that do not support any complex and flow process).

Moreover, Web services composition languages have to support a set of min-

imal requirements before the full potential of Web Service Composition reliased.

The five basic control patterns described by Aalst in [3, 88] are:

Sequence : Which defines the activities execution order.

Parallel Split: Which is a point in the work flow process where a single activity

splits into a multiple of activities which can be executed in parallel.

Synchronisation: Where multiple parallel execution paths joins together by

waiting for all of them to finish before flow continue.

Exclusive Choice: A point in the work flow process where, based on a decision

or workflow control data, one of several activities is chosen.

Simple Merge: will only wait for the first out of many execution paths to

finish, before flow continue.

Recently, many specification languages have been proposed for the past

years,which are aimed to support different aspects of web service interactions.

including WSFL, XLANG, WSCI and WSBPEL, etc.This section discusses

briefly a number of Web services Description and Compositional languages along

with a brief comparison between them.

2.1. SOA AND WEB SERVICES: OVERVIEW 35

Web Service Flow Language (WSFL): This Language was created by

IBM. It is an XML-based language which provides the mechanism to deal with

complex interactions between one or more services that act both as clients and

servers,Thus provides a support for a business process. WSFL represents a

business process as graphical-oriented model (flow model), which is a visual

representation that make it easy for the end-users to understand and communi-

cate. Graphs defined using a set of activities(tasks. A flow model is an abstract

definition of the work flow process. It describes a usage pattern of a collection of

a available service, so that the composition of those services provides the func-

tionality needed to achieve a business tasks,that is, the composition describes

a business process.

A flow model contains Activity elements, which define a sets of an individ-

ual business tasks that have to be performed as a part of a business process.

Control Link specifies the execution order of the individual business tasks to

be performed.Data Link specifies the flow of data from one activity to another.

Service Providers are abstractions for the concrete business partners with which

the flow model interacts.Service Provider type is defined by a WSDL portTypes,

which represents a service(s) that a service provider(s) will participate in the

flow. Next to the flow model there is a global Model which defines how a given

business process is implemented. Such as identity, location and the implemen-

tation of the service provider that implement a specific task. once the global

model and the flow model for a given business process are defined, the completed

business process can be exported as single Web service , that is, by making them

available for direct interactions by other business process or service clients.

2.1. SOA AND WEB SERVICES: OVERVIEW 36

Web services Business Process Execution Language (WSBPEL). It

is a modified version of Business Process Execution Language for Web services

(BPEL4WS),which has been recently defined to describe compositions of ser-

vices based on the business process model. WSBPEL specification builds on

IBM‘s WSFL (Web Service Flow Language) and Microsoft‘s XLANG (Web

service for Business Process design) which allows a mixture of Block structured

and graph structured process model.

WSBPEL supports sequencing of peer-to-peer message exchange, both asyn-

chronous and synchronous, within a stateful interactions involving two or more

parties..However, Business processes can be described in two ways:

• Business protocols (Abstract Process), in contrast, use process descrip-

tions that specify the mutually visible message exchange behaviour of each

of the parties involved in the protocol, with the hiding of their internal

behaviour.

• Executable business processes (invocable Process) that models actual

behaviour of a participant in a business interaction. In other words, A

business process defines how a process instance coordinate the interactions

with its partners.

WSBPEL is used to model the behaviour of both executable and abstract

processes. The scope includes:

• Sequencing of process activities, especially Web Service interactions.

• Correlation of messages and process instances.

• Recovery behaviour in case of failures and exceptional conditions.

2.2. BUSINESS RULES AND WEB SERVICES 37

WSBPEL fits into the core Web service architecture since it depends on

the following XML-based specifications, XML Schema, WSDL and XPath. In

this sense, a WSBPEL process definition provides and/or uses one or more

WSDL services, and provides the description of the behaviour.WSBPEL process

definition, defines data variables, partners and process flow construct. A partner

link type characterised the conversational relationship between two services by

defining the ”roles” played by each services in the conversation and specifying

the port types provided by each roles.

It is worth to finally mention that current web content is designed primely

for human to read and not for machine to understand. Moreover current Web

services standards such as WSDL, UDDI and WSFL are not semantic-Oriented,

therefore, there is a need to remedy this disadvantages and to bring more mean-

ingful information embedded into the web content by combining semantic [12]

to the Web services. The realisation of the so-called Semantic-Web services is

underway with the development of new AI-inspired content markup languages,

such as DAML-S ,WSMO [45], etc. These languages have a well-defined seman-

tics and enable the markup and manipulation of complex taxonomic and logical

relations between entities on the Web. By doing so will enable automated ma-

chine data processing such as discovery, negotiation, interaction and to minimal

human intervention.

2.2 Business Rules and Web Services

Although service-orientation strives for flexible composition of complex Web

services from simple ones, the current technology and standards simply does

not allow such adaptable composition. In WSBPEL, for instance, as one of the

2.2. BUSINESS RULES AND WEB SERVICES 38

most representative language for composing services, the corresponding business

process (inter-related business activities, operations, conditions and messages)

must be predefined in advance at the specification time and remains static (i.e.

non adaptive) during time execution.

This inability of automatically1 adapting Web services behaviour induces

severe problems for this technology to deliver all its promise.

• The lack of adaptation prevents modifying composition behaviour (e.g.

activities ordering, operations, conditions, etc) at runtime as customers

or other participating partners change or introduce new requirements.

• As Web services functionalities unpredictability and rapidly change to stay

competitive, static composition implies very often working on obsolete and

out date version of statically selected Web services.

• Static composition makes very difficult dealing with optimal composition,

as quality of services and optimal performance implies runtime assessment.

In the rest of this section, first, we report on business rules as one of the

main means to address adaptability. We then present some ongoing approaches

for adaptable Web services using business rules.

2.2.1 Business Rules Concepts

Business rules [84, 48, 52, 55] have been recognised as the main driving means

towards adaptable information systems. Business rules can be defined as ”pro-

jections of organisations’ constraints and declarations of (internal/external) pol-

icy/conditions that must be satisfied for doing business”. They plays a crucial

1Due to the huge complexity of service applications any static adaptation is hard, error

prone and too slow to be effective.

2.2. BUSINESS RULES AND WEB SERVICES 39

role in determining how operational decisions within or between organisations

must be made. In particular, business rules specify actions on the occurrence

of particular business events, including ’state of being’ changes concerning indi-

viduals and groups of individuals, infrastructure, informational resources, and

business activities. They inform about guidelines and restrictions with respect

to states and processes in an organisation. Therefore their collection, expres-

sion, structuring and organisation have been acknowledged as central activities

within any business/software model.

The Pionner work of M. Loucopoulos [49] distinguishes between ’Intentional’

and ’operational’ business rules. Intentional rules are expressions of business

rules seen from a business context perspective. They express laws, external reg-

ulations, or principles and good practices specifying the way an organisation

conducts business and are usually expressed in the form of natural language

statements. ’Operational rules’ are expressions of business rules approached

from a business process perspective. They prescribe action on the occurrence

of some business events, or describe valid states of an organisation’s informa-

tion entities. Operational rules generally derive from the translation of informal

intentional rules to formal rule statements developed in accordance with a con-

venient rule language and conceptual schema, also making reference to other

enterprise knowledge concepts (e.g. actors, activities, activity enablers, infor-

mation objects and attributes).

Business rule-driven business models enjoin, therefore, very determinant

advantages for coping with dynamically evolving complex business processes.

First, they are specified independently of processes so they are intrinsically

evolvable. Second, they focus on more primary business-driven requirements

are thus need to be tackled at early phases of business applications. Last but

2.2. BUSINESS RULES AND WEB SERVICES 40

not least, they respect declarative descriptions rather than specific operational

ones, which opens different way of abstractly conceiving and validating them.

2.2.2 Adapting Web Services through Rules

Business rules are thus generally conceived to be evolving. Unfortunately, with

respect to service-driven business applications, they remain almost unexplored

preventing this paradigm from all these business processes modelling potential-

ities. Nevertheless, very recently there have been a growing interest to business

rules for endowing Web services compositions languages (specifically WSBPEL),

in particular, with the required agility to leverage them to the promised dynamic

and automatic composition. In the following we sketch these investigations

while pointing out some of their strengths to benefit from and some of their

shortcomings to be overcome.

• Papazoglou et al. [65] were the first to yield the potential of business

rules in service-orientation to endow BPEL with dynamism. This ap-

proach proposes a complete business rules-driven life cycle for dynami-

cally composing Web services. Business rules are classified based on the

requirements of service composition, instead of general usual classification

appeared in [48]. In this approach, starting from a very general specifica-

tion, the composition is scheduled, constructed and finally executed with

the assistance of business rules judiciously classified in a repository. By

raising the level of abstraction compositions developed in our approach

are flexible and agile in the face of change. Besides basic elements such as

events, conditions, and messages, this classification includes rules dealing

with the activity flows, the data required for their composition and the

2.2. BUSINESS RULES AND WEB SERVICES 41

constraints to be respected. The direct construction and subsequent, ex-

ecution of the composition from the business rules is performed in terms

of XML-like descriptions.

• In [19], the authors present a more pragmatic hybrid approach for realising

the integration of business rules (modeled as aspects) with a BPEL or-

chestration engine by using aspect-oriented programming techniques [26].

Their approach, called AO4BPEL, is an extension to BPEL by aspect-

oriented concepts which allow to model business rules as aspects and

weaving them into the BPEL code by using an aspect-aware orchestration

engine. The idea is thus to split BPEL into business-flow and business

rules. This approach allows business rules to be specified/evolved inde-

pendently of the (reduced) BPEL descriptions. The integration of both

business rules and business-flow is achieved using aspect-oriented pro-

gramming . This vision fits well with our ideas and can be exploited for

further concretisation or implementation of our approach.

• As stated in [21], context is any information that can be used to charac-

terise the situation of an entity. An entity is a person, place, or object that

is considered relevant to the interaction between a user and an application,

including the user and applications themselves.

Despite these interesting business rules-driven proposals, we argue that the

exploitation of business rules potentials for achieving new degrees of dynamism

and abstraction in Web Services composition remains largely unexplored. More

particularly for Web services adaptivity, we argue that a more rigorous setting

that integrates business rules in the service (interface) behaviour, as the one we

are striving to put forward, seems still to be overwhelmingly needed.

2.3. FORMALISMS FOR MODELING SERVICE BEHAVIOUR 42

2.3 Formalisms for Modeling Service Behav-

iour

Service Composition refers to the process of creating complex services from a set

of simpler, easily executable and lightweight service components. It is similar

to component or object based software design and implementation, however dif-

fers in its approach of composing and binding services. A typical example of an

integrated service is an e-learning system that uses content management system

for delivering the courses and tutorials, discussion forums, message boards and

voice interactive applications as components. The component services maybe

outsourced to various universities and these universities can in turn outsource

part of all the activity invoked by delivery of services to different tutors. Web

services aim at replacing large monolithic applications with modules of smaller

services that can be coupled together to meet the functionality and interpreta-

tions desired by the user.

Some of the major artifacts of software engineering that need to be consid-

ered while composing services are:

• Problem Domain: This encompasses knowledge of the environment. The

domain knowledge must be consistent or satisfiable

• User Requirements: This states what the stakeholders need from the sys-

tem in terms of desired effects on the environment. A description of the

system in conjunction with the environment must satisfy the expected

requirements.

• System Description: This includes description of the behaviour of the

system. For every possible behaviour of the environment, there must be

2.3. FORMALISMS FOR MODELING SERVICE BEHAVIOUR 43

a behaviour of the system that is consistent with the system description.

The main reasons to use formal modeling techniques for modeling Web Ser-

vices behaviour, can be pointed as follows [73]:

• They provide us with a fully understanding of the behaviour of any service

of interest.

• Analysing requirements by introducing tools to analyse protocol models

and find out facts and errors (validation, verification) both at the specifi-

cation level and the implementation level.

• Justifying design decision and result by construction in a correct and

flexible Web services implementation.

Formal techniques to Web service composition can be broadly classified as:

• AI Planning

• Process Algebra

• Logic Based

• Petri Nets

• Workflow Techniques

In the following sections, we introduce of some techniques that are currently

proposed for formally modelling software-intensive systems behaviour in general

and Web services more particularly.

2.3. FORMALISMS FOR MODELING SERVICE BEHAVIOUR 44

2.3.1 Interval Temporal Logic (ITL)

Interval Temporal Logic(ITL) [16] is a flexible notation for both propositional

and first-order reasoning about periods of time found in descriptions of hardware

and software systems. Unlike most temporal logics, ITL can have many features

such as the capability of handling both sequential and parallel composition,

offer extensible specification and proof techniques for reasoning about properties

involving safety, liveness and projected time. Timing constraints are expressible

and furthermore most imperative programming constructs can be viewed as

formulas in a slightly modified version of ITL. Tempura provides an executable

framework for developing and experimenting with suitable ITL specifications.

Also, ITL and its mature executable subset Tempura have been extensively

used to specify the properties of real-time systems where the primitive circuits

can directly be represented by a set of simple temporal formula. In addition,

various researchers have applied Tempura to hardware simulation and other

areas where timing is important.

In [89] a very promising formalisation of Web services and semantic Web

have proposed using an appropriate variant of ITL. Without going into detail

about this interesting approach, first (basic) service behaviour is capturing as

an ITL specification. Then, using the strong compositionality of ITL complex

service are specified and verified using existing tool of this ITL formalism.

2.3.2 Finite State Process Models (FSP)

As Introduced in [28], The FSP notation is designed to be easily machine read-

able, and thus provides a preferred language to specify abstract workflows. FSP

is a textual notation (technically a process calculus) for concisely describing and

2.4. PETRI-NETS (PN) 45

reasoning about concurrent programs. The constructed FSP can be used to

model the exact transition of workflow processes through a modeling tool such

as the Labeled Transition System Analyser(LTSA), which provides compilation

of an FSP into a state machine and provide a resulting LTS. LTSA is a tool

which provides a means to construct and analyse complex models of finite state

process specifications. This tool provides the opportunity to model workflows

prior to implementation and deployment testing, and with the message sequence

chart extensions to easily model workflow scenarios.

In this [29] these capabilities of FSP have been extensively exploited, where

service composition using BPEL were first specified and validated using a suit-

able variant of FSP. An advanced FSP-based tool have been implemented for

supporting an automated checking of different properties of the composed ser-

vices using BPEL.

2.4 Petri-Nets (PN)

In 1962, Petri Nets was first created by a mathematician named Carl Adam

Petri in his PhD thesis ”Kommunikation mit automaten” [75]. Here are many

reasons that make Petri nets one of the leading framework for describing and

analysing behavioural aspects in different kinds of systems.

• They have been used to model and analyse complex applications in a

wider variety of domains such as distributed software systems for model-

ing (business) process, telecommunication for designing and analysing

protocols,banking system, etc.

• They sharply distinguish between states and activities (the latter defined

2.4. PETRI-NETS (PN) 46

as state changes), through the distinction between places (local states)

and transitions (local activities).

• Depending of the chosen interpretation different semantics can be assign-

ment to the behaviour of a Petri net ranging from sequential, interleaving

to true concurrent ones.

• While being formal, Petri nets also come with graphical representation

(i.e. states can be modeled as circles, operations as boxes, and flow rela-

tions as an arcs).

Place/Transitions Petri Nets:

Place/Transitions nets is a Petri net comprising a net graph with positive

number associated with arcs and an initial marking function which asso-

ciate a natural number of simple tokens’black dot’ with places. The de-

finition of (Place/transition-Petri nets) can be represented by a tuple

N = (P, T, F, M, W) where :

(i) P and T are nonempty, finite, disjoints sets (the places and transitions of

N , respectively),

(ii) F ⊆ (P × T) ∪ (T × P) is a set of directed arcs (flow relation),

(iii) W : F → N/0, attached a weight to each arc of the net,

(iv) M : S → N , is the initial marking.

Places, transitions, and arcs will graphically be modeled by circles, boxes

and arrows, respectively. We also mention that for some practical cases, capac-

ities may be attached places. Each capacity represent a natural number as a

maximum number of tokens to be hold in such place.

2.4. PETRI-NETS (PN) 47

� Example 2.4.1 (the dining philosophers) Figure 2.3 shows the well-

known example of the five dining philosophers. In the left hand side of the

net each philosopher Pi (with i ∈ {1, .., 5}) may be in one of the two states,

either eating or thinking, corresponding respectively to (presence of a token in)

the places Pi E and Pi T . Each fork is modeled by a corresponding place,

where the presence of a token indicates the availability of the fork. When

philosopher’s state changes from thinking to eating (resp. eating to thinking),

the two forks on its left and right become no more available (resp. available

again). Initially, all philosophers are thinking and thus all forks are available.

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��
��

E
at

5

Fork1

P5_E

P5_T

Fork4
P4_E

P4_T

Fork3

P3_E

P3_T

Release1

R
el

ea
se

5

R
el

ea
se

3

E
at

3

Eat4

Release4

Fork2

P1_E P1_T

Eat2

P2_E

P2_T

Release2

Eat1

Fork5

Fork1

P5_E

P5_T

Fork4
P4_E

P4_T

Fork3

P3_E

P3_T

Release1

R
el

ea
se

5

R
el

ea
se

3

E
at

3

Release4

Fork2

P1_E P1_T

Eat2

P2_E

P2_T

Release2

Eat1

Fork5

Eat4

Figure 2.3: The dining philosopher problem as a P/T-net.

Definition 2.4.2 (Transition enabling and next marking)

(i) Given a transition t, its input places are represented by •t while its output

places are represented by t•. They are formally defined by:

•t = {p | (p, t) ∈ F}
t• = {p | (t, p) ∈ F}

(ii) A transition t is M-enabled (i.e. it can be fired under the marking M) iff

∀s ∈ •t : M(p) ≥ W (p, t).

2.5. ALGEBRAIC SPECIFICATION: AN OVERVIEW 48

(iii) An M-enabled transition t ∈ T may yield after its firing a follower or next

marking M ′ of M which is such that for each p ∈ P ,

M ′(p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

M(p) − W (p, t) iff p ∈ •t/t•

M(p) + W (t, p) iff p ∈ t•/ •t

M(p) − W (p, t) + W (t, p) iff p ∈ •t ∩ t•

M(p) otherwise

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

� Example 2.4.3 By applying these firing rules to the initial marking of the

dining philosopher net in the left-hand side of Figure 2.3, we may for instance

result in the marking depicted in the right hand-side. This net is resulting from

firing the transition Eat1 and Eat3, that is, the first and the third philosophers

enter the eating state while their left and right forks (i.e. f1, f2, f3, f4) become

no more available.

Finally, it is important to point out that in the next chapter, we will go

in detail about the application of the (high-level) Petri nets for the formal

specification and validation of Web services.

2.5 Algebraic Specification: An Overview

Abstract data types are ubiquitous in different programming and specification

paradigms. They allow describing a class of data domains. It is therefore desir-

able to find away of characterising their semantics. The most widely accepted

methods of describing abstract data types use many-(order-)sorted algebras.

This section introduces some standard definitions and results of many-order-

sorted algebras and algebraic specifications. Most of these definitions are bor-

rowed from [24, 30].

2.5. ALGEBRAIC SPECIFICATION: AN OVERVIEW 49

Definition 2.5.1 (Order-Sorted Signature) An order-sorted signature

Sig = (S,≤, F) consists of a set S of sort names, a partial order ≤ on S, and a set

F of declarations of function symbols with arity in S∗×S. The elements of S∗ are

often denoted by
→
s . If there are several declarations (f : s1× ...×sn → s0) ∈ F

for the same symbol f and different arities s1 × ... × sn → s0 then f is called

overloaded in Sig. If ≤ is the flat ordering (i.e. for no s1, s2 ∈ S, s1
= s2, we

have s1 ≤ s2), then Sig is called many-sorted.

� Example 2.5.2 Throughout this thesis, we follow the OBJ syntax language

[31]. The following algebraic signature, for instance, defines the syntax of

stacks.

obj Stack is .

sort Item .

subsort Empty-Stack NonEmpty-Stack < Stack .

op : i0 : → Item .

op ∅ : → Empty-Stack .

op next : Item → Item .

op push : Item Stack → NonEmpty-Stack .

op pop : NonEmpty-Stack → Stack .

op top : NonEmpty-Stack → Item .

endo .

Definition 2.5.3 (Order-Sorted Algebras) Let (S,≤, F) be an order-sorted

signature. Then a universe order-sorted algebra consists of a carrier A together

with an indexed set {As | s ∈ S} of subsets of A such that A =
⋃

s∈S As, with

an interpretation of each operator (f : s1 × .. × sn, s) ∈ F as a partial function

fA : As1 × .. ×Asn → As such that:

- As ⊆ As′ for s ≤ s′, and

2.5. ALGEBRAIC SPECIFICATION: AN OVERVIEW 50

- if (f :
→
s1 → s0) ∈ F and (f :

→
s′1 → s′0) ∈ F and

→
s1 ≤

→
s′1 then fA :

→
As′1 → As′0

restricted to
→
As1 equals to fA :

→
As1 → As0.

- the class of all Sig-algebras is denoted by Alg(Sig).

Definition 2.5.4 (Variables) We assume an infinite set X of variables. A

metavariable over X is denoted by x. All variables are typed when used. The

type of a variable is made known by a declaration of the form: x : s the sort of

x is denoted sort(x).

Definition 2.5.5 (Terms and Term-Algebra) Let Sig = (S,≤, F) be a

signature.

(1) A term of sort s ∈ S is either a variable x with sort(x) ≤ s or it has the

form f(t1, ..., tn), where (f : s1 × .. × sn → s0) ∈ F and ti is as term of

sort si and s0 ≤ s. A term over Sig is a term of sort s ∈ S.

(2) A term is called closed (or ground) if it contains no variables, otherwise it

is open (or simply a term).

(3) The set of all open terms over Sig with variables from a variable set X is

denoted TSig(X). The set of open terms over Sig of sort s with variables

from X is denoted T s
Sig(X). The set TSig(∅) of all closed terms is denoted

TSig, and the closed terms of sort s are T s
Sig.

(4) TSig is a Sig-algebra that takes: (TSig)s := T s
Sig, fTSig(t1, .., tn) :=

f(t1, .., tn). TSig is called the term algebra of Sig.

Term algebras seem trivial but are fundamental because they reduce the uni-

verse to things that are nameable by the closed terms of the signature.

2.5. ALGEBRAIC SPECIFICATION: AN OVERVIEW 51

Definition 2.5.6 (Assignment and Substitution) Let A be a Sig-algebra

and X be a set of variables.

(1) An assignment ass : X → A is a function with ass(x) ∈ Asort(x).

(2) Let t be a Sig-term containing only variables from X. The denotation

ass(t)A is defined by induction on the structure of t:

(a) ass(x)A = ass(x),

(b) ass(f(t1, ..., tn))A = fA(ass(t1)
A, ..., ass(tn)A). If t is a ground term

we write tA instead of ass(t)A.

(c) A substitution is an assignment θ : X → TSig(Y) for a set Y of

variables.

Definition 2.5.7 (Equations) Let Sig = (S,≤, F) be a signature. An equa-

tion over Sig has the form (D, C, e), where:

D = {x1 : s1, ..., xn : sn} for si ∈ S is a set of typed variables declarations,

e is a pair of terms tl and tr, written : tl = tr, and

C is a set of pairs of terms of the same form as e called conditions.

All variables occurring in C and e must be declared in D. If C is empty, the

equation is called unconditional, otherwise it is called conditional. e and each

of the element of C are called open equations. If the set of variables declared in

D is X, then we also write D(X) instead of D.

2.5.1 High-level Petri Nets (HLPN): An Overview

Basically, one of the main drawback of using petri-nets is the explosion of the

size of their graphical elements when describing complex systems. Therefore,

2.5. ALGEBRAIC SPECIFICATION: AN OVERVIEW 52

High-level Petri nets were developed to overcome this problem by introducing

higher-level concepts, such as the use of complex structured data as a tokens

with information attached to them. High level is the standard term that used

in the Petri nets forum. Also, High Level Petri Nets is formal because they

are mathematically defined, with the possibilities of different semantics (e.g.

interleaving, steps, concurrency) depending on the specificities of modelled ap-

plications.

Algebraic Petri Nets

High-level Petri nets [43] and algebraic Petri nets [79] in particular have been

mainly introduced to significantly reduce the size explosion of Place/Transition

nets when dealing with real complex systems. Algebraic Petri nets thus support

the construction of consice, but nevertheless comprehensible and transparent

models of real-world systems. The main ideas consist in gathering different

places referring to a same kind (or sort) of entities, where instead of black

dots tokens we result rather in algebraically structured ground terms. Given a

Place/ Transition net this operation returns to factor out all common similar

subnets also called a folding operation. With such structured tokens also arc

inscriptions have to be adapted in consequence; they are in general multiset of

terms with a same sort corresponding to their input/output places. Transitions’

firing involves different notions of term substitutions.

The purpose of this subsection is to recall the main concepts of algebraic

Petri nets as introduced in [79]. First, the notion of multiset of terms which

represents the key element in algebraic Petri nets is introduced. Then, we recall

the formal definitions of algebraic Petri nets.

2.5. ALGEBRAIC SPECIFICATION: AN OVERVIEW 53

Given a specification SPEC = (S, OP, E)2 , we denote the specification

m SPEC by (Ŝ, ÔP , Ê), respectively. Following the OBJ notation, m SPEC

can be described as follows:

obj m SPEC is

extending SPEC .

sort ms .

op ϑs : → ms .

op MAKEs : s → ms.

op +s : ms ms → ms.

op -s : ms → ms.

var t1, t2, t3 : ms

eq t1 + sϑs = t1

eq t1 + st2 = t2 + st1 /* the commutativity of +s */

eq (t1 + s(t2 + st3)) = ((t1 + st2) + st3) /* the associativity of +s */

eq t1 + s(−st2)) = ϑs

endo.

For sake of simplicity, in the following with multiset terms we will drop the

sort indices s of operations symbols, and write ϑ instead of ϑs. As an example,

with constant symbols a and b of some sort s, a−b for instance will stand for the

multiset terms MAKEs(a) +s (−MAKEs(b)). Nonnegative multisets can be

specified using (besides the operation symbols of the underlying specification)

only the operation symbols ϑs, MAKEs and +s. This motivates the following

concepts.

Definition 2.5.8 (Algebraic Petri nets) Let N = (P, T, F) be a net, let

SPEC = (S, OP, E) be an algebraic specification, and let X be a family of

Sig-variables—with Sig = (S, OP).

2We are using (S, OP, E) instead of (S, F, E) as previous due to the use of F as arc relation.

2.5. ALGEBRAIC SPECIFICATION: AN OVERVIEW 54

(i) A mapping s : P → S is called a sort assignment of N. Assuming s, for

places p ∈ P let
∼
p denote the multiset sort ms(p).

(ii) A mapping M0 : P → TOP+ with M0(p) ∈ T
OP+,

∼
p

for each p ∈ P is called

a s-respecting initial marking of N.

� Example 2.5.9 (The dining philosophers as an algebraic net) A simple look

at the dining philosophers modelling in Figure 2.3 using P/T-nets shows that

this net is composed of five similar subnets that could not be reduced in a

one subset due to the indistinguishability of the tokens as black dots. The

corresponding algebraic net of this problem as shown in Figure 2.4 achieves

such a folding, where all (available) forks are gathered into a single place while

philosophers may be either in a ‘thinking’ place or in a ‘eating’ place.

To result in a such compact and very comprehensive net depicted in the left-

hand side of Figure 2.4 , an associated algebraic specification has to describe the

existence of five philosophers denoted by pi, i = 1..5 and five forks denoted by

fi, i = 1..5 with phils and forks as sorts respectively. It defines also two unary

operators Lf and Rt representing respectively the left- and the right-hand side

forks of a given philosopher; this correspondence is made explicit using two

equations. Finally, we note that the sort assignment s to each place is given

by s(P eating)= s(P thinking) = phils, and s(Forks) = forks. M0 and λ are

directly depicted in Figure 2.4.

obj Phil is

sort phils forks .

op f1, f2, f3, f4, f5 : → forks .

op p1, p2, p3, p4, p5 : → phils.

op Lf : phils → forks.

op Rt : phils → forks.

2.5. ALGEBRAIC SPECIFICATION: AN OVERVIEW 55

var pi, x : phils, fi : forks

eq Rt(pi) = fi, for i ∈ {1, .., 5}
eq Lf(pi) = fi−1, for i ∈ {1, .., 5} with f0 = f5

endo.

Forks
Eat

Release

P_Eating

P_Thinking

True
Lf(p) + Rt(p)

p

True

p

Lf(p) + Rt(p) p

f1 +

f4 + f5

p1 + p2p

Forks
Eat

Release

P_Eating

P_Thinking

True
Lf(p) + Rt(p) p

p

True

p4 + p5

p

Lf(p) + Rt(p) p

p1 + p3

f4f2 + f3 + +p3 + p4
+p5

 p2+

Figure 2.4: The dining philosopher problem as an algebraic Petri net

� Example 2.5.10 In the right-hand side of Figure 2.4 we depicted a next

state of the philosophers, where the philosophers p1 and p3 enter the eating

state; which implies their left and hand-side forks are no more available. To

result in this marking, the transition Eat has to be fired twice. This first

(resp. the second) firing is achieved by substituting the variable p inscribing

the input arc relating the place P Thinking to the transition Eat by the closed

constant term p1 (resp. p3). By doing so, the input arc relating the place

Forks to this transition, namely Lf(p) + Rt(r) is systematically substituted

to Lf(p1) + Rt(p1) (resp. Lf(p1) + Rt(p1)), which using the equation in the

specification it corresponds to the forks f5 + f1 (resp. f2 + f3).

Finally, it is worth to mention that there are many different variants of Petri

nets extensions, including Time [10], Cooperative object [86], Object Petri Nets

[53, 54], etc.

2.6. SUMMARY 56

2.6 Summary

This chapter aims at paving the road for both the topic of this thesis, namely

service technology, and at providing the reader with all required basic con-

cepts and background to smoothly follow the subsequent main chapters in a

self-contained manner. More precisely, current Web service standards and ar-

chitectures have been surveyed followed by Algebraic specification, Petri nets

and Business rules.

Chapter 3

High-Level Petri Nets and Web

services: Overview and

Comparison

The purpose of this chapter is twofold. Firstly, an overview of most existing

conceptual modelling techniques for Web services based on High-Level Petri

nets to be presented in detail. This review is enhanced with the proposition

of some exhaustive criteria for assessing and comparing these frameworks with

each other, and also to exhibit their strengths and shortcomings (we aim to

overcome with our research proposal). Secondly, we present most of the current

research investigations for coping with adaptive Web services, and demonstrate

how High-Level Petri nets could be a promising alternative for addressing the

challenges in modelling adaptivity in Web services (besides distribution, reac-

tivity and conversation, etc.)

3.1. WEB SERVICES AND (HIGH-LEVEL) PETRI NETS 58

3.1 Web Services and (High-Level) Petri Nets

There are currently several ongoing proposals dealing with this crucial area of

research and practice, namely the rigorous specification/validation/verification

of adaptive composite Web services. Therefore, any attempt toward an exhaus-

tive comparison of such proposals in this area seems to be premature. Moreover,

due to the usual divergence in their objectives, formal setting and to the main

application domains they are devoted to, it remains very hard to find a common

basis for comparing them.

Nevertheless, it is more or less possible to assess existing formal frameworks

of Web services with respect to some adequately selected criteria. However, due

to the huge number of ways in bringing formalisation to the service-orientation

paradigm, we restrict ourselves only to those which are very close to our aimed

proposal. More precisely, as the approach is striving to stem from the integra-

tion of the component-based paradigm with high-level Petri nets, we will carry

out our comparative study with respect to this direction, namely (high-level)

Petri-net-based conceptual models for Web services.

In the light of these motivating choices, the rest of this chapter is organised

as follows. First, we present an overview of most existing proposals to Web

services based on Petri nets, by distinguishing those based on Place/transitions

Nets from those based on high-level Petri nets. Secondly, we put forward a set of

”Web service” criteria that we argue allows assessing the degree of adequacy of

any conceptual model as formal setting for service-orientation. Finally, we will

apply these criteria to all investigated Petri nets-based models to Web services.

This comparison will yield us all limitations and strengths of different existing

models, with the ultimate aim to introduce a new form of conceptual model

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 59

to Web services that overcomes most of their shortcomings and takes profit of

their advantages.

3.2 Conceptual Models for Web services Based

on Petri Nets

The purpose of this section is to present state-of-the-art existing frameworks

based on Petri nets and to address one or more aspects related to Web services

modelling and composition. In this study, we distinguish between models based

on simple Place/transition Petri nets and high-level Petri nets, which offer more

expressiveness and capabilities for intrinsic reasoning more than current Web

services technology-based languages.

The first conceptual model using Place/Transition Petri nets has been pro-

posed in [34]. It permits specifying the main Web services composition opera-

tions. We will also summarise a more specific Place/Transition Nets introduced

in [64] for E-service orchestration. Another model based on Place/Transition

Petri net was proposed recently in [58, 57] with more emphasise on compatibility

of services composition with respect to independent service specification.

Concerning the high-level Petri nets category, the first conceptual model

was put forward in [70]. It is based on Predicate Nets and allows modelling

semantics Web services languages such as DAML-OIL. A second model based

on high-level Petri nets for modelling the flow in Web services was put forward

in [69] is based on the so-called Nets in Nets [94]. Finally, the most promising

and expressive approach for Web services is the one recently put forward in

[99, 100] and is based on Coloured Petri Nets [42].

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 60

3.2.1 Web services Models Based on Place/Transitions

Petri Nets

In [58, 57], the work is concerned with the application of Web services to distrib-

uted, cross-organisational business processes. Each business process is conceived

as open Petri nets. Open Petri nets are simple Petri nets with three classes of

places: Input places allowing messages to get in the process, output places to

go out from the process, and internal places allowing for the modelling of the

process behaviour. Each process net is named by the author a module net.

From such separate module nets, to capture the composite business processes

workflow the authors use the fusion of similar input/output places. They also

add an extra transition at the beginning to allow running composite modules

in parallel. Similarly, to get a unique final state from the composition they add

an extra transition at the end relating all final places from each process.

On the basis of this module and composite module nets, the authors in-

troduce two properties called compatibility and usability. The compatibility

property allows checking whether another service module net (named here en-

vironment) is composable with a given module net. In other words, for each

input place there should correspond an output place (from the environment

module); otherwise the composition could not take place (i.e. incompatibility).

The usability checks whether the composite module net is weak (i.e. each ini-

tiated process comes to a proper final state). Although the authors mention

that composite module nets could be translated to WSBPEL, we argue that it

is no obvious task because input/output places fusion could not be regarded

as invocation or receive messages. Besides that simple place/transition nets do

not consider complex data modelling such as message arguments and advanced

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 61

business rules. Subsequently, we will abbreviate this model as BPW-PN (i.e.

Business Process WebService with Petri N ets).

Place/transition Petri Nets-based model for Web services [34] proposes an

expressive net-based model that allows capturing in a declarative way different

service combinations and their respective specificities. Moreover, the proposed

algebra caters for the creation of dynamic and transient relationships among

services.

Authors define first what they called Services Net, which is just a P/T Nets

with one starting place (without input arcs) and one final output place (without

output arcs) and labels (as operation names) associated to arcs. On the basis

of this Service net notion, they define Web services as a tuple (NameS; Desc;

Loc; URL;CS; SN) with Names as the service name, Desc as the description of

the service functionalities, Loc and URL for services location and URL, CS as

the name of the service components (if being composite composed) and finally

SN as the service behaviour expressed in terms of a service net.

With this Web service description as tuple, they built a rich algebra that

combines several Web services in different ways (sequence [S1

⊙
S2], alternative

choice [S1

⊕
S2], arbitrary sequence [S1♦S2], iteration μS, parallelism with

communication [S1‖CS2], discriminator operator [(S1|S2) � S3], refinement

[(Ref(S1; a; S2)], selection [S1(p1, q1) : Sn(pn, qn)]).

Using usual Petri Net’s flow capabilities, they semantically interpret each of

these syntactical constructs. The most noticeable effort was about the interpre-

tation of the selection, where a specific part of the service should concern the

request for a selection.

As they have opted for simple Petri nets, techniques for analysis of different

properties such as deadlock or liveness can be achieved using techniques like

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 62

place/transition invariants and siphon/trap in Petri nets. Also, they suggest

the use of bi-simulation techniques.

Although the proposed algebra and the contribution as a whole is very rich

and significant, we may point out some limitations related to the practicability

of the approach. The first shortcoming is the lack of relating this work with

the capabilities available Web service technology such as BPEL and WSDL.

Indeed, on the one hand, the proposed algebra seems to be highly expressive

that this technology in terms of its richness in operators. That is, apart from

the usual operators such as sequence and parallelism, no available Web-based

language uses the so-called advanced operators like arbitrary sequence, refine-

ment or parallelism with communication. However, on the other hand what is

clearly missing is the handling of data, such as message parameters, conditions,

etc which are among the main keystones of Web service languages like BPEL.

Subsequently, we will abbreviate this model as PN4WS.

It is worth mentioning that very recently, the authors of this proposal have

partially tackled the adaptability. In fact, in the extension called self-adapting

recovery net [35], they propose how to dynamically handle exceptions, errors and

dynamic changes of the structure of the net (i.e. by dynamically deleting, adding

and removing places and transitions). What is out of scope in this adaptability is

the runtime modification of existing arc-inscriptions and conditions (governing

business rules) as we are intending to achieve in the coming chapters. Indeed,

the structure of a given Petri nets can be dynamically updated without the

business rules changing: A fact that we aim to overcome.

[64] proposes a specific form of place/transition net for specifying business

to business (B2B) composition. Instead of usual Web services terminology,

the authors used the equivalent concept of E-service. An E-service is specified

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 63

both in its static interfaces and in its behaviour. Specifically, an E-service

communicates through messages, including both the ones E-service receives

and the messages it produces. So it is more close to BPEL description but

with reactive behaviour. In this approach, each E-service is formally specified

by the so-celled E-service net, which is a Petri nets with three categories of

places. Input messages are drawn using rectangles as places. Output messages

are drawn using bold rectangles. Any of the places for capturing the internal

behaviour are modelled as usual circles and named control places. Transitions

model the behaviour using these places as input/output.

Using this E-service net construction, the authors then proposed the notion

of E-service orchestration net. This form of net allows composing of several E-

services net, which is a specific net connecting at least two E-service nets, and

specifying the routing of messages and the act of passing the task of the orches-

tration from one organisation to another. For such composition they introduce

a new type of places called orchestration places and is drawn as hexagonal. Such

orchestration places allow indication of the current organisation performing the

different E-service composition, which may change as the composition goes on

over time.

This E-service orchestration model provides thus a mechanism for support-

ing control of E-services process evolution in terms both of control and data

flows, and for distributing and assigning process responsibilities. To enhance

the practicability of their approach, the authors show how a significant part of

an E-government could be specified using an E-service orchestration net. They

also mention the application of usual analysis techniques such as deadlock free-

ness of the overall process and reachability of the final configuration of the

involved E-services, which can be verified by analysing the configuration graph

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 64

of the net.

This work is very interesting from a practical point of view, as it permits to

easily understand E-service behaviour and its orchestration (e.g. specific place

form of input/output messages, organisations, etc). However, one of the missing

important issues is the relationship to current web service composition languages

such as BPEL and WSCI. The approach also uses just black-dot tokens without

advanced data structure as the later web-languages (BPEL, WSCI, etc) require.

Subsequently, we will abbreviate this model as E-SvPN.

3.2.2 Web Services Models Based on High-Level Petri

Nets

This approach [70] aims at enriching the semantical capabilities of semantic web

languages such as DAML-S and DAML-OIL. For that purpose, the authors first

adopt the situation calculus for enriching conditions and effects using the rules

of this calculus. Situation calculus are more or less similar to first-order logic

with modality operations like possibilities.

Having expressed such advanced first-order formulas using an extension of

DAML-S, the authors propose to interpret them using Petri nets. The benefits

here are to graphically animate and do some property analysis of this enriched

semantic web language.

The translation is very intuitive and could be highlighted as follows. Each

formula captures a specific transition. Input place types of such transitions

correspond to different atomic processes or predicates. The post-conditions

are captured as output places. From these basic transitions, different forms of

service flow can be easily modeled using Petri nets. Such flow includes sequence,

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 65

parallel, if-then-else, etc.

Although situation calculus is very rich, it remains still very hard to be

understood by non-experts. This makes the translation to Petri nets more

harder. Subsequently, we will abbreviate this model as SmWbPN

[69] proposes to model Web-engineering by adopting the strengths of the

high-level Petri nets variant based on Nets in Nets. This variant allows tokens

from places to be themselves place/transition nets. That means by firing a

transition, a new instance of a net could be created as output inscriptions and

another net is destroyed from input places.

The authors exploit these advantages for modelling Web services. They

put forward a four-layered refinements based approach. First, giving a complex

web-application composed of several interconnected Web services, they conceive

it as a net called service network. Each place of this (network) Petri net is then

itself conceived as a Petri net called Web service container. This corresponding

net allows managing the creation and deletion of service instances of this type.

Places from this service container Petri net are then at their turn regarded as

a net called Web service. This net allows for requesting/responding to differ-

ent external invocations and for possibilities of delegating tasks to other Web

services. Finally, some places in this net correspond the flow of elementary

operations reflecting the proper behaviour of such service.

Important to emphasise here is that this four-layerd based approach to web-

engineering modelling is inspired by the authors previous work based specifying

multi-agents using Nets in Nets approach. This approach allows more flexibility

and adaptation, besides separation of concerns. That is, the composite Web

service of abstractly conceived, then its details (service contain, behaviour, etc.)

are further specified in incremental way.

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 66

The philosophy of nets in nets approach still remains very hard to under-

stand, let alone apply it in complex domains such as Web-engineering. More-

over, although the authors mention that their work could be easily combined

with existing Web service languages such as BPEL4WS, it seems to be a non-

obvious task. Indeed, as BPEL is based on a one layer-based methodology,

where all messages and conditions and their flow are explicitly described, the

proposed approach makes it very hard to obtain this whole and global model in

a tractable. Besides that, the inter-relations between messages from different

Web services as BPEL explicitly describes become impossible to capture fol-

lowing this layered approach. In other words, the composition as understood in

Web service technology is missing. Subsequently, we will abbreviate this model

as 2NetsWS

In [99, 100] very promising approach for Web service modelling has been

recently put forward. This approach is based on Coloured Petri Nets [42], one

of the mostly accepted and widely adopted variants of High-level Petri Nets both

in academia and industry. Coloured Petri nets enhance standard Petri nets with

the primitives for the definition of the data types and the manipulations of data

values. Moreover, CPNets propose advanced structuring mechanisms including

Place/Transition fusion and Nets hierarchy.

This CP-Nets-based approach for Web services aims to achieve at least three

objectives:

• The composition of Web services incorporating partners with complex

conversation protocols, and;

• The automatic derivation of conversation protocols from the composition

for each involved Web service;

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 67

• Validation/Verification of a Web services composition and its conformance

to component services conversation protocols.

The Web service composition proposed in this approach is an orchestration

one, specifically based on a form of reactive stateful BPEL4WS. This extension

of reactivity to BPEL is very important as most real-size service composition

are long-term transactions with instance playing different roles. More precisely,

the process aspect of a Web services composition specified in BPEL4WS can

be represented with CP-nets. This CP-nets-based process composition model

is defined as follows:

• The process of the composite service is represented by a CP-net (denoted

by NetS); each partner is represented with the CP-net model for its con-

versation protocol (denoted NetP); NetS interacts with NetP through arcs

connecting the in- and out-places of NetP. Each arc must be labeled with a

token variable that matches the coloured set declared for the in-place/out-

place.

• Messages (events) and process variables are represented by tokens. Since

the concrete content of the messages (variables) is not known at design

time, abstract colour sets are declared for the messages and variables.

Therefore, each colour set is kept small to speed up the analysis.

• A BPEL4WS activity is usually mapped to a CP-nets transition. A

<receive> activity is represented by a transition which has an in-place.

A <reply> activity is represented by a transition which has an out-place.

An <invoke> activity is represented by a pair of transitions, one of them

may fire a request token to NetP, and the other may wait for a token

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 68

from NetP. A structured activity is represented by a substitution transi-

tion. The control flow between activities is captured by connecting the

activity-related transitions with arcs, places, and transitions purely used

for control flow purpose. More refined control flow can be expressed with

arc inscriptions and transition guard expressions.

• At this time, certain aspects of the composite service are ignored, such as

compensation handling, fault handling, and message correlation.

This composition is illustrated with a travel agency example. For instance,

airline operations like CheckSeat, ReserveSeat, BookSeat or CancelSeat

should be logically ordered and more importantly synchronised or triggered

by corresponding TravelAgency operations such as FindBestIterinary and

BuildIterinary. These Agency-AirLines operations have also to be synchro-

nised with the customer operations such as TripOrder, ReserveReq, BookReq

and CancelReq. The synchronisation is captured by adequate transitions. The

order between different operations within each service (as conversation model)

are modelled using appropriate transitions and places.

The CPNets proposal for WS allows also for conceiving the conversation

protocol as a WSPNet, where:

• Each operation is represented by a transition. An input Place (if exists)

connects to the transition, and represents the reception and buffering of

inbound messages for the operation. The transition also connects to an

output Place (if exists), which represents buffering and transmission of

outbound messages for the operation.

• Each WSDL operation is represented by a CP-net transition. The tran-

sition also has one input place which stands for the pre-condition of the

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 69

operation, and one output place which stands for the post-condition of

the operation.

• Messages exchanged by the service and its clients are modeled by tokens.

Small-sized colour sets are used to capture the protocol-relevant feature

of a message.

• The synchronisation rules of the conversation protocol are captured by

connecting the transitions (each of them representing an operation) with

places, arcs, and dummy transitions used only for control flow purposes.

This so-called service conversation model is automatically generated from

the composition, using a deterministic algorithm that the authors propose.

As we just emphasised, this approach is very expressive and more close to

the current investigations within Web services such as reactive complex com-

position and rich conversation models. Nevertheless, we may point out the

following crucial shortcomings that we aim at overcoming using our approach.

Firstly, although CP-Nets is a very expressive formal framework, the fact that

the authors where completely bounded with the limited capabilities of compos-

ite BPEL, business rules governing different operations are completely missing.

This is a very severe drawback as business rules are omnipresent and may change

over time, and should be present in the modelling of service composition. Sec-

ondly, the fact of associating with each operation in several places (and several

transitions), the modelled service composition could easily become untraceable

and confusing (place explosion). In this respect, advanced CP-Nets structuring

mechanisms such as place/transition fusion and hierarchy could be very helpful.

Thirdly, the proposed Web service composition model tackles just the orches-

tration. That is, the interaction between Web services as a choreographical

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 70

manner is completely missing. Subsequently, we will abbreviate this model as

CpN-WS

3.2.3 High-Level Petri Nets for WS-Adaptivity

Petri nets are among the leading specification frameworks for complex distrib-

uted systems. They enjoin several determinant characteristics.

• They introduce few concepts such as places for holding system states and

transitions for capturing system functionalities such as actions, operations

and their behaviour.

• They are graphical promoting more understandability (for non academic)

and allowing system animation through the tokens game.

• They are mathematically founded, with the possibilities of different se-

mantics (e.g. interleaving, steps, concurrency) depending on the specifici-

ties of modelled applications.

• They allow system analysis to check properties such as deadlocks, liveness,

safety, etc. Among the well established analysis techniques we may cite

Place- and Transition-invariants to siphons and traps.

• With the development of High-level Petri nets, different structured com-

plex data can be dealt with leading to the specification/animation and

verification of real-size complex applications.

All these qualities have made High-Level Petri nets one of the prominent can-

didates for specifying and validating and analysing Web services applications.

Confirmation of the claim is the growing interest and numbers of approaches

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 71

put forward for specifying Web services as we have seen in the previous sections.

In particular, the benefits of adopting High-Level Petri Nets for Web services

modelling may recall the following.

• As Web services are by nature distributed applications, the concurrency

behaviour that characterises High-Level Petri nets put them among the

most suitable conceptual framework for Web services

• As Web services composition is driven mainly by business processes, the

natural ability of High-Level Petri nets in capturing different activities

ordering (e.g. parallel, sequential, and-join, or-join, choice, etc.) promotes

their modelling.

• The explicit states in terms of places in High-Level Petri nets enhance the

specification of reactive Web services applications, which are omnipresent

and represent one of the challenging classes of Web services to specify and

reason about. Indeed, reactive Web services are stateful which require

conceptual models able to combine composition and conversation features.

• The advanced structuring mechanisms (such as the object-oriented ones

with inheritance, composition, aggregations), that propose some variants

of Object-Petri nets (see the reviewed models), permit expressing complex

constraints and conditions about the Web services behaviour. These con-

straints can easily be expressed in terms of business rules and be changed

semi-automatically (using specific patterns).

Nevertheless, as we demonstrated in our extensive survey about current

High-Level Petri nets-based Web services modelling techniques, not all poten-

3.2. CONCEPTUAL MODELS FOR WEB SERVICES BASED ON PETRI

NETS 72

tials of the Petri nets-based formalisms have been exploited and more investi-

gation is required to cope with Web services adaptivity and agility.

However adaptivity with respect to workflows have been largely explored

using different extensions to Petri nets. Although workflows in contrast to Web

services are mostly centralised, ideas from such proposals could always be help-

ful to understand solutions to adaptivity in business processes in general. In this

respect two approaches remain dominant. The first approach was introduced

by Van Aalst in [95, 2]. This approach is based on a particular class of ordi-

nary Petri nets called Workflow-Nets, and it uses object-oriented behavioural

inheritance as the main vehicle to cope with adaptivity. The second recently

introduced in [76] is based also on simple Petri nets but it adopts the concepts

of region and recovery principles to achieve adaptivity.

Due to lack of extensions of such approaches to adaptivity in Web services,

and as we motivated in the introduction of this report the objective of this

thesis is to deeply foster all potentialities of High-level Petri nets for coming

up with an adequate conceptual model that promotes automatic adaptivity in

reactive distributed Web services.

For that ultimate objective we are endeavoring to achieve the following.

Firstly, we aim in promoting object-oriented mechanisms with concepts from

componentisation (e.g. explicit interfaces, separation of concerns, modularity,

etc) to express business rules in High-level Petri nets in a satisfactory way. This

will represent the first milestone towards adaptivity. Secondly, we aim in relat-

ing the proposed conceptual model with UML-based diagrams and this to ease

the modelling and pinpoint the volatile parts (business rules) in a straightfor-

ward way. Thirdly, to fully manipulate such business rules at runtime we plan

to adopt reflection techniques [63, 18].

3.3. A COMPARISON OF WEB SERVICE MODELS BASED ON PETRI

NETS 73

3.3 A Comparison of Web Service Models

Based on Petri Nets

3.3.1 Web Service Criteria for Comparison

Recapitulating from our investigations on many issues related to the modelling

of Web services, in the following we introduce a list of fairly exhaustive criteria

for assessing the adequacy of any conceptual model as foundation for Web

services. For sake of clarity, these criterion are classified into five categories:

Composition, Service modelling, Practicability/Expressiveness and Adaptability

aspects. In the following, first we explain in general the purpose of each category,

and then for each one we propose a set of criterions that we argue as required.

Composition

As widely recognised, composition is the main essence in Web service and

service-oriented architecture. Composition is the ability to bring together the

functionalities of more than one service (interfaces) to build complex service and

achieve the expected complex customer requirements and demands. Generally,

Web services Composition tackles inter-organisational services.

• Composition criteria:

Choreography/Orchestration: This criterion means the explicit abil-

ity to distinguish between orchestration and choreography. Orches-

tration means the ability of specifying a specific service that interacts

(i.e. be composed) with other services through messages invocation,

reception and replication. This part of restricted single-view com-

position is promoted by languages like BPEL4WS, DAML-S. Also,

3.3. A COMPARISON OF WEB SERVICE MODELS BASED ON PETRI

NETS 74

orchestration deals with the business flow of services composition.

Choreography in contrast allows interacting or composing several

services through their interfaces and in a balanced way.

Stateful Orchestration: The ability to conceive the services orchestra-

tion instances in a persistent and reactive way.

Stateful Choreography: The ability to conceive the services choreog-

raphy instances in a persistent and reactive way.

Stateful Conversation: To allow composition of complex web-

applications, service interfaces (e.g. invoke, receive)is not sufficient;

instead a complex conversation is mostly required between different

invoked and received operation services. Such conversation should

also be modelled in a stateful way to cope with different instances

and their states.

Dynamic Composition: Although Web services aims to generate com-

posite services in a runtime way, existing Web services languages still

achieve it statically and manually. As pointed out in [72] business

rules may significantly contribute to make such composition more

dynamic.

Stepwise Composition: Web services composition involves several ac-

tivities including: interface definition, interface behaviour specifica-

tion, orchestration, conversation and choreography. To master this

complexity a clear stepwise methodology is required to optimally

organise and coordinate such activities.

3.3. A COMPARISON OF WEB SERVICE MODELS BASED ON PETRI

NETS 75

Service Modelling

Under this crucial category, we refer to the capabilities of the adopted con-

ceptual model for specifying service behaviour satisfactorily. This includes, for

instance, the different abstraction mechanisms for coping with service complex-

ity, the capability for dealing with stateful specification, etc.

• Service Modelling:

Abstract/Concrete Interfacing: Differentiating abstract interface de-

scription from a concrete one is a very beneficial. Indeed, this sepa-

ration allows at the abstract level to concentrate more on the main

functionalities of the service, whereas at the concrete level more de-

tail including qualities of of selected service, its location, etc have to

be considered.

Service Interface Behaviour: It is the ability to capture the behaviour

of the abstract service description in an expressive and stateful way.

Concrete Service Behaviour: We argue that a good conceptual model

should also allow modelling the behaviour of a concrete service with

all its qualities of services and implementation details.

Service Data Abstraction: In modelling abstract or concrete (compos-

ite) services, the ability of explicitly dealing with data such as (

message parameters, operation conditions, etc) is very crucial for a

conceptual model to be acceptable.

Service Data Structuring: To cope with complex data-intensive ser-

vices, more advanced structuring mechanisms are required such as

3.3. A COMPARISON OF WEB SERVICE MODELS BASED ON PETRI

NETS 76

inheritance (i.e. service classes and subclasses) and service aggrega-

tion.

Service State Intra-concurrency: First, we argue that an explicit

modelling of each service state in the service behaviour specifica-

tion or in its composition is very relevant. Besides that, the ability

of concurrently applying more than one operation on different parts

of such state enhance the service performance.

Service Inter-concurrency: Concurrency should also be supported be-

tween different service state instances.

Practicability/Expressiveness

Formal methods of any sort remains still very hard to use, in complex applica-

tions such as Web services, even those based on Petri nets. To enhance such

practicability, we argue that associated criteria should be set. These crite-

rions include, for instance, the capabilities of: stepwise construction of model,

methodological support with semi-formal diagrammatical models such as UML,

and hiding the formal technicalities and semantics.

• Practicability/Expressiveness:

Expressiveness: As we just mentioned an adequate conceptual model

for Web services has to allow explicitly specifying service data, mes-

sages, states, etc.

Compactiveness: To absorb the huge complexity of real-size Web ser-

vices at the modelling phase, the model has to be compact enough

to represent complex web-applications. Refinement steps may be

3.3. A COMPARISON OF WEB SERVICE MODELS BASED ON PETRI

NETS 77

necessary to incrementally deal with all service details. With re-

spect to Petri nets, Place/transition-based models could easily lead

to place/transition explosion. Even high-level Petri nets need more

structuring mechanisms to cope with service complexity.

Relationship to Current WS Technology: As XML-based Web ser-

vices languages such as (BPEL, WSCI, WSDL, ect). are becoming

the de-facto standards, any adequate conceptual model should be

able to intuitively and automatically be translated into such lan-

guages. Also, foundation and enrichment capabilities of such lan-

guages is very important.

Semi-formal Diagrammatical support: As diagrammatical-based in-

formal methods like UML is gaining more and more acceptance in

software-engineering, we argue that a suitable conceptual model for

Web services should include some UML-diagrams in its earlier mod-

elling phases.

Hiding of Formal Semantics: The previous criterion is an important

step towards hiding formal details when clear translation steps are

proposed to automatically generate the conceptual models from its

UML-diagrammatical descriptions

Tools for Validation/Properties Analysis: Tools are a determinant

factor to enhance the practicability of any conceptual model for Web

services. It allows generating rapid-prototyping for validation pur-

pose and the verification of essential properties of the system.

3.3. A COMPARISON OF WEB SERVICE MODELS BASED ON PETRI

NETS 78

Adaptability

Another urgent aim of Web services is to achieve a dynamic adaptation of com-

posite services. Requirements on conceptual models to be adaptable include the

following criterions: the ability to explicitly conceive business rules as the main

volatile part in any (composite) service; the ability of reasoning and dynamically

changing its behaviour through reflection capabilities.

• WS Adaptability:

Business Rules Modelling: Business rules are the most volatile part

of any organisation [49]. It describes the functionalities/policies and

rules for doing business. The ability of explicitly modelling such

business rules is therefore determinant for making services adaptable.

Runtime Adaptability: This ability implies explicitly separating be-

tween the adaptability-level and the conceptual ”base-level” model.

This allows shifting up/down at runtime any emerging business from

the adaptability-level to the conceptual model, and thus adapting

and evolving it as needed. In the literature it is referred to as reflec-

tion techniques.

Comparison and Comments

After sketching the main features of the each of the recently proposed formal

Petri Nets-based conceptual models to Web services, that we followed by

a rich set of criteria that we argue should characterise any widely-accepted

formalisms for Web services, we assess these criteria with respect to the

features of each of the above-described models for Web services, that are based

3.3. A COMPARISON OF WEB SERVICE MODELS BASED ON PETRI

NETS 79

on different variants of Petri nets. The table below summarises the result of

each approach with respect to the afore-described criteria categories. The used

legends are: ‘
√

’ standing for Yes (i.e. the criterion is supported by the model)

; ‘×’ standing for No (i.e. the criterion is not supported by the model) and

‘+/−’ for a non satisfactory fulfillment of the criterion (i.e. the criterion is

only partially supported by the model).

3.3. A COMPARISON OF WEB SERVICE MODELS BASED ON PETRI

NETS 80

BPW-PN PN4WS E-SvPN SmWbPN 2NetsWS CpN-WS

Composition Criteria

Choreography/orchestration × × +/− × × ×
Stateful Orchestration +/− +/− +/− +/− √ √

Stateful Choreography × × × +/− × ×
Stateful Conversation +/− +/− +/− × +/− √

Dynamic composition × +/− × × +/− +/−
Stepwise composition × × × × +/− +/−
Service modelling

Abstract/concrete interfacing × × × × × ×
Service interface behaviour +/− +/− +/− √ √ √

Concrete Service behaviour × × × × × ×
Service data abstraction × × × √ √ √

Service data structuring × × × × × ×
Service state intra-concurrency × × × × × ×
Service inter-concurrency +/− √ √ √ √ √

Practicability/Expressive.

Expressiveness +/− × × +/− √ √

Compactiveness × × +/− +/− √
+/−

Relationship to WS technology +/− × × +/− +/− √

Diagrammatical support × × × × × ×
Hiding of formal semantics +/− × +/− +/− +/− +/−
Tools for validation/verification +/− × +/− +/− √ √

WS Adaptability

Runtime adaptability × +/− × × × ×
Business rules modelling × × × × × ×

Table 3.1: Comparison of (High-Level) Petri Net-Based Models for Web services

3.4. SUMMARY 81

As depicted in this comparative table, it can be easily notice that all con-

ceptual models fail in coping with adaptivity. Apart from these shortcomings

for all models, the other criteria are supported by some and absent from oth-

ers. Besides that, as expected High-level Petri nets-based approach are more

expressive and respond positively to more criteria than those based on simple

Place/Transition nets. The objective of setting criteria that are not supported

by any of these conceptual models is to prepare the path toward the model we

are working on, and which will cope positively with all the criteria including

adaptivity.

3.4 Summary

This chapter brings the reader closer to the recently developed approach for

formalising Web services using high-level Petri nets. Moreover, after summaris-

ing such recent petri nets and High Level Petri Nets based proposals, a set

of criteria has been put forward for classifying and assessing such proposals.

This comparison will allow us in particular to pinpoint different shortcomings

of these proposals with respect with what we are aiming for, namely business

rule-centricity, harmonious complementarity between orchestration and chore-

ography and runtime adaptability.

Chapter 4

Service-based Petri Nets:

Foundation and Methodology

In this first main chapter, we are putting forward an innovative foundation en-

dowed with a supporting methodology for rigorously modeling and validating

distributed, knowledge-intensive, adaptive service-driven applications. More

precisely, at the foundation-level, as we pointed out in the introductory section,

a new variant of high-level Petri nets will be motivated and progressively, rig-

orously defined and illustrated with the non-trivial agency case-study. That is,

instead of coping with just structural aspects in defining service interfaces and

statically composing them in purely process-centric manner as currently the

case with different XML-Based Web standards.The variant of Service-driven

High-Level Petri Nets (we refer to as CSrv-Nets) we are proposing allows

for intrinsically addressing behavioural features in a rule-centric, concurrent,

adaptive and compositional manner.

On the methodological side, and because formalisms such as high-level Petri

nets still remain hardly understandable and accepted by (cross-)organisation

83

stakeholders (e.g. managers, users, customers and even programmers), we are

going to promote the practicability and the wide-usability through the early

adoption of semi-formal diagrammatical and standardised artifacts both for

structural and behavioural features in service-driven applications. More pre-

cisely, all structural features of service-driven business applications are first de-

scribed using stereo-typed UML 2.0 use-cases and class-diagrams. Behavioural

aspects are captured through event-driven business rules, which are inherently

understandable, evolving and process-independent. Only after such widely ac-

ceptable and accessible semi-formal descriptions, of any service-driven applica-

tion at hand, we then forward a smooth and semi-automatic shifting towards

the proposed rigorous service-driven Petri Nets formalism. In the next section,

we present further motivations and wider insights for both the forwarded for-

malism and its supporting methodology for developing complex adaptive and

rule-intensive service-driven applications. In the second section, we develop

on the earlier preparatory semi-formal phases for capturing the structural and

behavioural features in service applications, namely the UML2.0 enriched use-

cases and class diagrams as well as the event-driven business rules, respectively.

Since such artifacts and mechanisms are widely-known, we concentrate on their

application to the running case study. In the third and first main section within

this chapter, we progressively motivate and rigorously define the structural fea-

tures of our ”concurrent” Service-driven High-Level Petri Nets (CSrv-Nets)

formalism. We further present how all the defined CSrv-Nets concepts are

incrementally and smoothly derived from the semi-formal phase, and illustrate

them using the Airline service. In the second main section, we focus on leverag-

ing such CSrv-Nets structural features with corresponding behavioural ones

on the basis of agile business rules. In the fifth section we briefly report on

4.1. MOTIVATION ON THE CONCEPTUAL FRAMEWORK AND

METHODOLOGY 84

possible operational semantics for validating the resulting CSrv-Nets-based

conceptual model, which may boost any algorithmic graphical animation. Fi-

nally, to demonstrate the practicability of the approach and how it can cope

with any complex service applications, we address the other services related to

the Agency case-study, that is, in addition to tackling the Airline service we

apply the approach to the other services, namely hotels, customer and banking

services.

4.1 Motivation on the Conceptual Framework

and Methodology

The purpose of this section is twofold. Firstly, we revisit the arguments and

the potential of opting for leveraging high-level Petri nets to formalise, validate

and reason about adaptive distributed knowledge-intensive service-driven ap-

plications. Secondly, we review the different incremental steps of the proposed

methodology, we are bounded to while developing such adaptive service-driven

applications.

4.1.1 Potentials and Shortcomings of High-Level Petri

Nets

As we reported in the previous chapter, several ongoing approaches are being

proposed for formalising and reasoning about service-driven applications and

Web services in particular. In the following we first enumerate some of the main

advantages and arguments in favor of our decision of opting for High-level Petri

nets. As achieved in chapter 3, we emphasised some of the main shortcomings

4.1. MOTIVATION ON THE CONCEPTUAL FRAMEWORK AND

METHODOLOGY 85

of existing similar Petri nets-based proposals for service applications. These

argumentations will allow us to pave the way for leveraging high-level Petri nets

towards overcoming such limitations , and result thereby in the new variant we

are proposing in this chapter referred to as CSrv-Nets.

Understandability via Visualisation: Experience shows that formalisms

endowed with graphical descriptions are more accepted by cross-

organisation’s stake-holders (not just designers and programmers). Un-

derstandability is further essential in bridging the gap with the business-

level, where first, intuitive description of the service-driven application, at

hand, is given in terms of global goals and processes.

Concurrent and Distributed Behaviour: As we pointed out distribution

is of one of main characteristics of (advanced composite) services. Conse-

quently, the targeted formalism requires to intrinsically support concur-

rency and distribution.

Type- and Instance-level Support: We argue that one of the shortcomings

of Web standards, such as WSDL, BPEL and WSCI, are their inability to

intrinsically cope with the instance-level, where one may directly address

and reason about specific services. Moreover, coping with both the type-

and instance-level represents thus a critical requirement to tackle service

states, and thereby explicitly dealing with persistency and conversation.

Validation and Verification: As we are going to bridge the gap between the

business-level and the conceptual level, requirements validation are thus

essential. The validation should thus include: requirements missing, mis-

conception, misunderstanding, conflicts and so on. Graphical validation

4.1. MOTIVATION ON THE CONCEPTUAL FRAMEWORK AND

METHODOLOGY 86

in this respect is highly requested. Besides such validation, the formal

verification of crucial properties are possible.

Advanced Abstraction Mechanisms: On the one hand, we argue that cur-

rent monolithic interfacing are not sufficient to offer features to different

customers and/or focussed compositions. Object-oriented advanced mech-

anisms such as inheritance and aggregation are thus deemed necessary to

be supported by serious candidate formalism. On the other hand, the

ability of addressing componentisation and explicit inter-component in-

teractions represent prerequisites to cope with service compositions via

(structurally and behaviourally) rich interfaces.

Despite these important potentials, we argue and demonstrate in this chap-

ter that at least the following additional features must be soundly integrated in

any traditional high-level Petri Nets variant.

Explicit Representation of Service States: To cope not only with short

static and stateless service interactions, we propose to promote long-

running service interactions with conversational and thus stateful features.

For that purpose, an advanced and flexible form of service state is pro-

posed for our CSrv-Nets.

Handling of Event-driven Business Rules: This has the most potential

and benefit of the proposed CSrv-Nets variant. Indeed, to our best

knowledge no existing high-level Petri nets variant can explicitly and in-

trinsically deal with business rules, which are essential when it comes

to adaptability and evolution. We thus propose how to inherently and

soundly integrate event-driven business rules within our CSrv-Nets for-

malism.

4.1. MOTIVATION ON THE CONCEPTUAL FRAMEWORK AND

METHODOLOGY 87

Separation Between Imported/Exported Messages and Event Triggering:

Though some existing high-level Petri nets differentiate between

input/output places, no existing similar formalism devoted to service-

driven applications allow for explicitly and semantically separating

between imported/exported (that is, requested/offered messages). Be-

sides achieving such distinction, we also capture the notion of triggering

event to reflect event-driven business rules.

Incremental Behaviour from Structural Features and Business Rules:

Most of existing high-level proposals do not support the designer for sys-

tematically constructing the behavioural features of the net, which leave

too much confusion and room for different behavioural interpretations.

We circumvent this serious problem by supporting the designer with

explicit clear steps on how to conceive the behavioural issues, i.e. net

places and transitions and their inscriptions, from the already defined

structural aspects and related business rules.

4.1.2 Stepwise Supporting Methodology

As illustrated in Figure 4.1, the proposed approach is methodologically com-

posed of the following phases.

• Phase One :

UML/Business-rules Requirements Phase: In this preliminary phase, the

(English) informal description of the business-driven application at hand

is semi-formally and diagrammatically expressed in terms of UML Use-

Cases and Class-diagrams. Besides that, all related intra- and inter-

organisational business rules that come from business people(manger,

4.1. MOTIVATION ON THE CONCEPTUAL FRAMEWORK AND

METHODOLOGY 88

reify

reflect

reify

C
oncrete running services

. . .

. . .
Certified abstract services
(interaction) behavior

bu
si

ne
ss

 s
ta

ke
ho

ld
er

s

requirements

Organisations
 (service−driven)

C
us

to
m

er
s

re
qu

es
ts

 o
r

P
ro

vi
de

rs
 o

ff
er

s

(extended) X
M

L
−based

certified services

. . .

Environment

Design−time (static) adaptation

− changing of business rules
− changing of context
− changing of services properties

− changing of services interactions

Runtime (dynamic) adaptation

of business rules

<<serviceN>>

Interaction1

<<service1>>

properties1

operations1

propertiesN

operationsN

. . . .

− Services Interaction functionalities

− Service functionalities

Business rules Description (OCL+ECA)

UML Description of services structures

mechanisms
Reflection (reification)

Meta−services behavior
framework

Evolutionary and
validation rules

Runtime adaptation of agile Web Services

. . . .

.

. . . .

.

Services behavior (as CSrv−Nets)

Services composition behavior (as interactive CCSrv−Nets)

O
rc

he
st

ra
tio

n−
le

ve
l

C
ho

re
og

ra
ph

y−
le

ve
l

 The Approach
 Output

Reported changes in running services

Figure 4.1: A disciplined approach for service rule-centric adaptive business

applications.

stakeholder, etc) governing the behavioural features of different basic and

composite services are to be clearly described, following in particular the

well-known Event-Condition-Action (ECA)paradigm which can be inte-

grated in the CSrv-Nets as a transition. The derivation from Phase one

to Phase two can be achieved informally as follows:

• The places of the net are precisely defined by associating with each

service message generator from UML class diagram one ‘message’

place.

• With each service state sort a ‘state’ place is associated.

• Transitions, which may include conditions (business rules), reflect

4.1. MOTIVATION ON THE CONCEPTUAL FRAMEWORK AND

METHODOLOGY 89

the effect of messages on service states to which they are addressed.

• Phase Two:

Concurrent Services Nets Specification/Validation Phase: This phase

is decisive as it allows to define in a precise and concise way all functional-

ities and behaviours of different service components and their interaction

(i.e. service interfaces, elementary and composite services) and validate

them against misconception, misunderstandings, conceptual mistakes, etc.

For this crucial phase we are proposing a variant of high-level Petri nets,

that reflects all structural and behavioural features of elementary or com-

posite services, such as distribution, persistency (stateful), conversation.

Moreover, we are enhancing the practicability of this conceptual model

we refer to as CSrv-Nets, by hiding as much as possible its tedious

mathematical aspects.

• Phase Three :

Adaptive Service Nets for Runtime Evolution: This phase allows us to

endow the conceptual model CSrv-Nets with a an adaptability-level so

that runtime evolution and adaptivity of different services behaviour can

be achieved at run time and in a consistent and incremental manner.

The purpose of this chapter is to develop on the first two phases, with a

special emphasis on the second crucial and decisive rigorous conceptual phase.

More precisely, the following will be developed:

(1) We formally define the main structural ingredients of the variant of

Concurrent Service-Driven High-Level Petri Nets (CSrv-Nets) we are

4.2. THE SEMI-FORMAL PHASE APPLIED TO THE AGENCY

APPLICATION 90

proposing. That is, in the first part we present how structural aspects

of service interfaces including service states and messages are formally

specified, and how they can be directly derived from UML Use-Cases and

”Service”-diagrams (regarded as stereo-typed class-diagrams).

(2) We then define the behavioural aspects of service interfaces using CSrv-

Nets, and we demonstrate how (intra-organisational) business rules can

contribute to the construction of this concurrent and statefull conversa-

tional behaviour (unlike static stateless XML-languages like BPEL for

orchestration).

(3) The approach is further applied to the non-trivial version of the agency

case-study.

4.2 The Semi-Formal Phase Applied to the

Agency Application

This section presents an informal description of a simplified form of a realistic

case study dealing with travel agency systems, which is a typical illustration in

Web services.

4.2.1 Travel Agency: Informal Description

In analysing a medium-size case-study, we are considering in this thesis the

widely adopted travel-agency service-driven application. Indeed, this applica-

tion at least at the research level, is considered as one of the benchmarks for

assessing the capabilities of any proposal.

4.2. THE SEMI-FORMAL PHASE APPLIED TO THE AGENCY

APPLICATION 91

In its simplistic variant, this case-study could be formulated as follows. User

or customer, may log in to any travel agency service, and formulate his/her

request for simple travel/accommodation or a complete sophisticated package

(e.g. travel, accommodation, attractions, car rental, sight seeing, etc). The

agency then contracts the related services including the payment institution

(e.g. banking, credit-card). A conservation business process will be created

between all these services and the customer, can in the middle cancel such

request (under business rules).

Most of the service-oriented research tackling this case-study (or any others

like auctions, E-shopping) restrict their investigations to the modelling (and

partly verification/validation) of pure process-centric compositions. That is,

for instance, first the request from the customer is received, their the agency

accordingly dispatch messages to associated services (e.g. airlines, hotels, at-

tractions, etc.). Once receiving a reply from such services, the customer is again

approached for accepting/rejecting the proposed offers. Once confirmed, flight

tickets, rooms reservations and so on will be booked and payment via credit

card or bank transfer will be performed. At this level, if the customer asks to

cancel, he must pay a penalty depending on different regulations and so on.

In other words, what has been so far tackled is mostly how to model and

reason about rigid and process-centric service compositions. As we pointed out

in our motivation, realistic composite services are more complex and regarded

to be highly flexible, and thus go far beyond such simplistic rigid and process-

centricity. More concretely, with respect to the travel agency case-study, we aim

to tackle the following aspects. Firstly, the agency being a service for airlines, ac-

commodation or any other involved service, they are all governed by knowledge

behaviour-intensive regulations, that is, by policies or simply business rules.

4.2. THE SEMI-FORMAL PHASE APPLIED TO THE AGENCY

APPLICATION 92

Moreover, to stay competitive and increasingly attract more customers, such

business rules are designed to such customers and more importantly are rapidly

and unpredictably evolving and changing to face fierce market globalisation.

For instance, airlines propose reductions on the basis of number of persons,

their ages, their destinations, durations in case of two-way tickets, the seasons,

and so on. Ignoring or postponing such rules till the deployment, means simply

putting a huge gap between the realistic world and automated services (which

become more than impractical). Besides such service-focussed business rules,

there are those crossing-(organisational) services, which are decisive while com-

posing complex services. For instance, the agency through a negotiation with its

partners (e.g. specific airlines, hotels, etc) proposes different vacation packages

governed by attractive business rules.

4.2.2 Travel Agency : UML Diagrams and Business

Rules

To illustrate this simplified variant of vacation arrangement, Figure 4.3 presents

its corresponding use case diagram.

Travel Agency Scenario:

• The travel agency provides an online system for customers that offer

the widest possible range of vacation packages depending on environ-

mental situations (i.e seasons, events, year, short/long vacation, etc) as

well as customers preferences and situations (i.e. individual/group, com-

plete/partial packages, etc.)

• Service providers (flights, accommodations) publish their services on the

repository by making them available using current Web services.

4.2. THE SEMI-FORMAL PHASE APPLIED TO THE AGENCY

APPLICATION 93

Figure 4.2: A Overview of the Travel Agency UML Use-Case

• Banking services (i.e. credit cards services) enable customers to use their

credit cards to make payments via Web services.

All operations between services are perform automated without need for a

human intervention. However, only customer in this case are humans being.

Steps for the scenario can be summarised as follows:

(1) The user enters the targeted URL address of a travel agency service.

(2) The customer enters some essential information in the required field such

as destination, dates, number of adults/kids, etc and submit the informa-

tion to the the travel agency service.

(3) The travel agency service inquires airlines, hotels or both depends on the

customer preference about deals and presents them to the customer.

4.2. THE SEMI-FORMAL PHASE APPLIED TO THE AGENCY

APPLICATION 94

(4) The travel agency service presents the obtained results of the queries to

the customer letting him/her to choose the best available deal.

(5) If the customer accept the offer , the the travel agency service interact with

the payment services , and builds a list of options for the customer(i.e.

pay full amount, buy now pay later, pay by instalment, etc)

As we emphasised above, our objective is not to present yet another

WSDL/WSBPEL or even a UML description for this example, but instead we

aim at discussing the importance of dynamic adaptivity and evolution in this

application and the best way to tackle them. More precisely, in order to justify

the main milestones of the strived proposal, with the support of this example

this discussion focusses on the clarification of the following insights:

• What are business rules and how do they cope with adaptivity and evo-

lution in Web services?

• What are the differences between adaptivity and evolution in Web ser-

vices?

• Why is it crucial to distinguish between design-time and run-time changes

and to have both in Web services specifications?

• What best available conceptual ingredients exist in software-engineering to

tackle dynamics of adaptivity and evolution and how to suitably combine

these conceptual ingredients?

Clearly this case study is one of the most requested and at the same time

the most volatile. In addition to that this case study contain all the ingredient

needed to demonstrate my work such as imported messages, exported messages,

business rules and service properties.

4.2. THE SEMI-FORMAL PHASE APPLIED TO THE AGENCY

APPLICATION 95

B
oo

kR
oo

m
(R

oo
m

In
fo

s)

F
in

d_
ro

om
(R

oo
m

In
fo

s)

C
on

fi
rm

R
oo

m
(R

oo
m

In
fo

s)

N
ot

if
y(

R
oo

m
In

fo
s)

C
an

ce
l(

R
oo

m
In

fo
s)

P
ay

R
oo

m
(R

oo
m

In
fo

s)

H
ot

el
St

ar
 :

 [
1.

.6
]

H
ot

el
L

oc
 :

 A
dd

re
ss

H
ot

el
N

m
 :

 S
tr

in
g

H
ot

el
−S

er
vi

ce
−I

nt
er

fa
ce

<<
Se

rv
ic

e
In

te
rf

ac
e>

>

<<
Se

rv
ic

e
In

te
rf

ac
e>

>
B

an
k−

Se
rv

ic
e−

In
te

rf
ac

e

B
an

kN
am

e
:

St
ri

ng
C

ar
dI

nf
os

 :
 R

ec
or

d(
H

ol
de

r,

N
um

be
r,

 E
xp

ir
eD

at
e

C
ar

dV
al

id
(b

oo
le

an
).

.

D
eb

it
_A

m
ou

nt
(M

on
ey

,C
ar

dI
nf

os
)

C
re

di
t_

A
m

ou
nt

(M
on

ey
,C

ar
dI

nf
os

)
D

eb
it

ed
_A

m
ou

nt
(M

on
ey

,A
cc

ou
nt

)
C

re
di

te
d_

A
m

ou
nt

(M
on

ey
,A

cc
ou

nt
)

AgencyLoc : Address
AgencyNm : String

<<Composite Service>>

CustAdr : Address

CusName : String

CusAge : Date

CustOccupation : String

Requst_travel(Iterinary, Preferenc)

TravelCancel(OfferInterinary)

TravelPay(OfferInterinary)

Travel_Requsted(Iterinary, Budget)

Travel_Reserv(FoundInterinary)
Travel_Book(FoundInterinary)
Travel_Confirm(FoundInterinary)

Travel2Accept(OfferInterinary)

TravelAccepted(OfferInterinary)

TravelPay(OfferInterinary)
TravelCancel(Interinary)

<<
pa

rt
ic

ip
at

e>
>

AgencyLoc : Address

AirLineNm : String

<<Service Interface>>
Customer−Service−Interface
<<Service Interface>>

Airline−Service−Interface

Agency−Composite−Service

<<participate>>

FlightInfos : Record(DepartCity,

DestCity,Date, Time,Price,..
AvailableSeat : Hidden
ConfmPassg : [PassengerId,ResRef]

Flight_Requst(CustInfos, Flight−Infos)
Flight−Resrv(FlightDate)

Flight_book(FlightInfos, DateRes)

Flight_Pay(FlightInfo)
Flight_Cancel(FlightInfo)

<<
pa

rt
ic

ip
at

e>
>

<<participate>>

Figure 4.3: The Travel Agency with a SteroTyped UML Class-diagram for

Services.

To specify such service-driven business applications, as with any complex

reactive distributed system we have to cope with structural as well as behav-

ioural requirements. With the de facto standardisation of UML diagrams for

structural aspects (i.e. class- and object-diagrams), we argue that UML class-

diagrams with slight profiled extensions allow capturing for each service, the

operations and properties descriptions. The challenging problem remains the

modelling of behavioural aspects, where reactivity, distribution, compositional-

ity and more especially evolution and adaptivity has to be the heart of any

accepted conceptual model.

4.2. THE SEMI-FORMAL PHASE APPLIED TO THE AGENCY

APPLICATION 96

At the early requirement stages, business rules represent the best available

modelling ingredients in organisstions to cope with competitiveness and evo-

lution. Business rules reflect regulations and conditions for the functioning of

any (inter-)organisation internally as well as externally, and thus as regulations

change/evolve the rules change [48, 49]. Business rules are mostly expressed in

terms of Event-Conditions-Actions (ECA) forms.

The travel agency functioning has to be governed by business rules, and each

service composing this application (i.e. flight service, hotel service, car rental,

attraction service, etc.).

BRs for the composite vacation service: Examples of such composite

business rules we may cite:

Rc1:A vacation for X persons in a family to location Y costs

C1 in case ... The vacation include ... Reservation must

two weeks before

Rc2:The refund system is as follows

BRs for the flight service: : Examples of business rules regulating flight

services we include:

Rf1: The fare we propose for a return ticket to location C

is P1 for adult. For a family there a reduction for each

child under ... Booking before ... cost just ...

BRs for the hotel service: Business rules regulating flight services include:

Rh1: Single rooms costs X1, and double rooms cost X2 for

the period between ... For those staying more than D days,

there is a reduction of ...

4.2. THE SEMI-FORMAL PHASE APPLIED TO THE AGENCY

APPLICATION 97

With respect to business rules change, we distinguish between adaptivity

and evolution. Both are effects that are caused by changes in the environment.

For adaptivity the changes are made at run time and are seamless whilst in evo-

lution changes happen over a long period of time and statically. For instance,

we may assume refund system to change according to changes in the environ-

ment in this case delay in flight, sudden bankruptcy or change in the stock

market . In contrast to that, evolution is more concerned with the introduction

of new rules, the establishment of new service operations or even new complete

services with their regulating function. For instance, the possibility of changing

the iterinary as new rule for specific offers. We can also imagine that the travel

agency proposes a new service like visiting historic sites and attractions,etc.

Besides adaptivity and evolution, distribution remains one of the essential fea-

tures of service-orientation computing. It includes in our case the possibility

of requesting vacation services from anywhere as well as the possibility of serv-

ing simultaneously several requests (i.e. concurrency). Related to distribution

is the reactivity feature. Reactivity implies stateful modelling, where a given

transaction could be long-running (especially when we require history). For in-

stance, a customer should have the opportunity to change at any time some of

the information and requirements. To cope with that, service states instances

have to be explicitly represented in the model. Last but not least, while it

is easy to conceive at design-time new services, it is more beneficial to adapt

existing rules at runtime without stopping the system or decreasing its degree

of distribution.

For all these considerations (i.e. distribution, reactivity, runtime adaptivity and

design-time evolution), the next section presents the approach we are working

4.3. CSRV-NETS: STRUCTURAL ASPECTS MODELLING OF SERVICE

INTERFACES 98

on that is based on a form of high-level Petri nets. This formal conceptual model

will be automatically derived from UML-class diagrams and business rules.

4.3 CSrv-Nets: Structural Aspects Modelling

of Service Interfaces

4.3.1 Service States and Messages Structure

The first step towards formalising service-driven applications consists of pre-

cisely defining different states and messages accepted by basic service inter-

faces as well as composite services. In the approach we are proposing, as we

already emphasised we are going to benefit from advanced structuring mecha-

nisms of the object-orientation (i.e. classification, aggregation). Also facilitate

the derivation of formal service interface structures from UML class-diagrams

and business rules we described in the previous section. So, in our approach

besides the description of messages structure (as most of XML-technology lan-

guages offer), the precise description of service states enables us afterwards to

specify the statefull concurrent behaviour of service interfaces: a capability com-

pletely missing in XML-based languages (e.g. WDSL, BPEL, etc.) and only

partially addressed in recent formalisms to service specification (e.g. Petri Nets

[59] Graph-Transformation [37], Temporal Logic [90], Process Algebras [22].

More precisely, we propose to specify service states as algebraic terms in

the form of specific tuples. These service states as tuples although inspired by

the structure of the OBJ language [66] object states, they enjoin very specific

properties reflecting at the most the main characteristics of service interfaces.

More precisely, the structure of service states we are following can be informally

4.3. CSRV-NETS: STRUCTURAL ASPECTS MODELLING OF SERVICE

INTERFACES 99

explained as follows:

• Any service state is conceived as a tuple composed off

〈SvId | sv pr1 : vl1, .., sv prp : vlp, svh1(SvId), .., svhq (SvId)〉

where

− SvId is interpreted as an observed service state identity where its val-

ues correspond to an appropriate abstract data type ADT (that we

assume denoted as STId);

− sv pr1,. . . , sv prk are the observed identifiers for service state prop-

erties, which we assume having at a given time as current values

respectively vl1,. . . ,vlm. We assume both service states identifiers

and values to be algebraically defined (elsewhere), by denoting their

respective ADT as SPId and SP Value (as abbreviation for Service

Properties Identifiers and Service Properties Values).

− To enhance privacy, we allow the hiding of values of specific service

state properties when required. To declare such hidden service state

properties we adopt the notation of ”properties-as-functions”; so if

for instance the value of an property identifier, denoted by svh1 , is

to be hidden, we denote it as a function svh1(SvId), with SvId the

corresponding service state identity.

• To promote concurrency within a same service state (i.e. simultaneously

performing more than one operation on different service state properties),

we propose a deduction rule that splits/ recombines the service state at

need, so that we can select at any time just the properties which are

4.3. CSRV-NETS: STRUCTURAL ASPECTS MODELLING OF SERVICE

INTERFACES 100

involved in the operation. This rule informally explained as follows:

〈SvId | Sv prs1, Sv prs2〉 = 〈SvId | Sv prs1〉 〈SvId | Sv prs2〉

Sv prsi is an abbreviation of ”sv pri : vli, ..., sv prm :

vlm, svhn(SvId), ..., svhm(SvId)”

• Messages involved in a given service interface are also specified as algebraic

operations. Since messages act on service state instances, they should

include as parameters at least one state identifier. Moreover, in a given

service interface some messages may be declared to act only on states

within this interface; other messages may be exported to participate in a

composite service interaction (as a choreography) or take part in another

service interface description (as an orchestration), and finally messages

may be imported from other interfaces to constrain the messages flow

in such service interface (as allowed by BPEL orchestration). In other

words, in a given service interface three categories of messages may be

distinguished.

Local messages: These are messages that are declared and exclusively

exchanged within a given service interface. They either act for state

changes in such service interface and/or allow participating and con-

trolling the flow (i.e. the business process) of such service interface.

Imported: These messages are declared in other service interfaces and

used by the given service interface in the message flow for orchestra-

tion purpose (as BPEL proposes for instance).

Exported: These messages are declared within a given service interface

and used by other service interfaces or by composed services.

4.3. CSRV-NETS: STRUCTURAL ASPECTS MODELLING OF SERVICE

INTERFACES 101

To bring more understandability and expressivity in our service interface

formal structure, we thus explicitly distinguish between these three types of

messages. This allows us afterwards to address their corresponding specific

behaviour adequately. To formally capture this intuitive description of CSrv-

Nets service interface structure , first we define the notion of (CSrv-Nets-

)service state.

Definition 4.3.1 (Service-state structure) A service state is defined as a

pair (SvD ∪ STSv, {Op}STSv
) with:

• SvD is a set of (service data) sorts with at least: {STId, SPId, SP V alue} ⊂
SvD. To allow aggregate service states, that is, service states with some

properties being themselves service state identities, we define STId as subsort

of SP V alue (i.e. STId < SP V alue).

• STSv is a set of service state sorts (different from SvD), which we assume

contains at least one service state sort (so we can speak about statefull service

interface).

• {Op}STSv
is a set of service state operations indexed by STId × (SPId ×

SP V alue)+ × STSv. With each service state sort from STSv a service state

operation is associated reflecting the corresponding tuple of such service state

sort.

� Remark 4.3.2 As we emphasised, for the sake of understandability each

service state operation indexed by STId × (SPId × SP V alue)+ × STSv is

represented as a service state tuple of the form:

〈SvId | sv pr1 : vl1, ..., sv prp : vlp, svh1(SvId), ..., svhq(SvId)〉

Where SvId ∈ STId and {sv pr1, .., sv prp, svh1, .., svhq} ⊂ SPId and

4.3. CSRV-NETS: STRUCTURAL ASPECTS MODELLING OF SERVICE

INTERFACES 102

{vl1, .., vlp, svh1(SvId), .., svhq(SvId)} ⊂ SP V alue

The following presents a precise description of this service state as tuple in

terms of notations inspired by the algebraic OBJ language [31].

State Service-state is

importing SP Value STId SPId .

subsort Svr state < STSv .

subsort STId < SP Value .

subsort SP Value < St Property .

subsort St Property < St Properties .

subsort Obsv part Hidn part < Svr state .

op : : SPId SP Value → St Property .

/* observed state properties */

op () : SPId : STId → St Property .

/* hidden state properties */

op , : St Property St Properties →
St Properties [associ. commu. Id:nil].

op 〈 | 〉 : STId St Properties → Svr state .

EndState.

In this description, the operator , is defined in a recurrent way using the

subsort property. Svr state is regarded as a specific instance of the service

state sorts set STSv. As we described, service state properties may be observed

or hidden . We can gather all observed (resp. hidden) properties together in

new sort we call Obsv part (resp. Hidn part).

This important concept of service state structure leads to the concept of

CSrv-Nets structure specification by extending it with different categories of

service message sorts and service operations.

4.3. CSRV-NETS: STRUCTURAL ASPECTS MODELLING OF SERVICE

INTERFACES 103

Definition 4.3.3 (Service-structure) The structure specification of a given

service is defined as a pair (SvD∪STSv∪MsgSv, {Op}STSv
∪{Op}MsgSv

) with:

• (SvD ∪ STSv, {Op}STSv
) is a service state structure as defined above.

• MsgSv is a set of ‘message generator’ sorts different from SvD ∪ STSv.

We assume that MsgSv is composed of three sets of message sorts:

{Meslo1 , ..., Meslol
} for local message sorts, {Mesim1 , ..., Mesimm} for im-

ported ones and {Mesex1 , .., Mesexm} for exported ones.

• The message operations, {Op}MsgSv
is a set of message operations, that is,

operations indexed by STId+ ×Sv∗
D ×MsgSv. Thus, with each message sort

Mesij from MsgSv a message operation (denoted msij) is associated.

� Remark 4.3.4 For syntactically describing any CSrv-Nets-structure

specification we also adopt an OBJ-like language [31] as a well-known expres-

sive (order-sorted) algebraic language. The translation into the OBJ language

of the general form of such specification reflected by the above definition could

be formulated as follows:

Service Service-Structure is

extending Service-state

subsort Spr1 ... Sprn Sprh1 ... Sprhm < SP Value .

subsort Sarg11,1 .. Sargl1,l1 .. Sargi1,1 .. Sargi1,i1 < SvD

subsort Mesl1, Mesl2,...,Mesll < Local Messages .

subsort Mese1, Mese2,...,Mesee < Exported Messages .

subsort Mesi1, Mesi2,...,Mesii < Imported Messages .

(* observed properties *)

op 〈 | sv pr1 : , . . . , sv pr1 : 〉 : STId Spr1 ...Sprk → Obsv part .

(* hidden properties or as functions *)

op 〈 | svh1(STId), ..., svhl
(STId) : 〉 : STId Sprh1 ...Sprhl →

Hidn part .

4.3. CSRV-NETS: STRUCTURAL ASPECTS MODELLING OF SERVICE

INTERFACES 104

(* local messages *)

op msl1:STId ...Sargl1,1 ...Sargl1,l1 → Mesip .

... ...

(* import messages *)

op msi1:STId ...STId ...Sargi1,1 ...Sargi1,i1 → Mesip .

... ...

(* export messages *)

op mse1: STId ...STId ...Sarge1,1 ...Sarge1,e1 → Mese1 .

... ...

EndService.

In this service description, with the notation Spri we refer to the specific sort

of the i-th-state property. Similarly, we denote by Sargi) the sort associated

with the i-th-argument of a given service message.

4.3.2 Application to the Travel Agency

Following this CSrv-Nets- service structure, the corresponding service struc-

ture to the flight service interface, for instance, can be straightforwardly derived

from the semi-formal UML service-diagram description we presented in section

2. More precisely this description is as below, where first we have to specify all

imported abstract data types allowing to specify different properties and para-

meters of service states and their messages. These data-types should include,

for instance, the city of departure and of destination (we abbreviate by Dest

and Depart both sorts are string). Reservation and confirmation codes have to

be specified (abbreviated by RsvRef and CfrmRef). Date of departure and of

return, the maximal cost, as well as the flight fare have to be declared. Infor-

mation about any customers (package), such as names, addresses, ages, number

of adults, child and infants we gathered in one sort denoted CUST INFO.

4.3. CSRV-NETS: STRUCTURAL ASPECTS MODELLING OF SERVICE

INTERFACES 105

Such information and more similar are crucial for expressing different business

rules later in the service net behaviour. Additionally, to keep track of different

passenger reservations and bookings we have previewed a list composed of the

customer ID and an identifier indicating whether its reservation or booking (e.g.

”Rsv” for reservation and ”Bk” for booking). All this data level specification

for the service flight could be declared as follows:

obj Airline-Data is

protecting nat string date money Time CustId

subsort RQFLG INFO RSFLG INFO < FLG INFO

subsort CUST INFO < CUST INFOS

sort StateRSV

subsort PSSG RSV PSSG CMFR PSSG < PSSGS

subsort Dest Depart RsvRef CmfrRef FlgRef CmfrRef < string .

subsort DtDepart DtReturn < date .

subsort Nb Adult Nb Child Nb Inf < nat .

subsort Cost Max Fare < money .

op [.] : FlgRef Depart Dest DtDepart DtReturn Cost Max →
RQFLG INFO

op [. . . .] : RsvRef Depart Dest DtDepart DtReturn Fare → RSFLG INFO

op [. . . .] : CustNames CustAdrs CustAges Nb Adult Nb Child Nb Inf →
CUST INFO

op < , > : CustId RsvRef → PSSG RSV

op < , > : CustId CmfrRef → PSSG CMFR

op [.] : PSSG PSSGS → PSSGS

(* These variables will be used in the behavioural part of the service net specification *)

vars Fg : FlghtId ; Cs:CustId ; Gc:AGCYId .

Ag : nat ; Fr, To : String ; Dt:Date ; Tm:Time

Rs, Fm: PSSGS ; Mx, Cx, Py, Pn : Money

CsInf : CUST INFO ; RqFlg : RQFLG INFO ; RsFlg : RSFLG INFO

4.3. CSRV-NETS: STRUCTURAL ASPECTS MODELLING OF SERVICE

INTERFACES 106

endo.

Using this flight data level specification as well as the general service state

description and being bounded to the general form of service structure, the

corresponding service structure of the flight interface could be presented as fol-

lows. That is, first for referring service state flight sort we introduce a state sort

we are denoting by Flight St. Instances of flights are identified by the sort

FlghtId. Secondly, for each message declared in the corresponding UML class-

diagram, we associate a corresponding sort and an operation. For instance,

for the message FlightRequest we declared the sort FLGHT RQ and an (im-

ported) operation we abbreviate by FlgRq, and which should have parameters

like information about the customer, the agency ID, and clearly all detail about

his/her flight iteranry and preferences. The same reasoning is to be applied

to all other messages. The service state is constructed by gathering in tuple-

like all properties of the flight from the UML class-diagram specification. The

flight state is identified by the FlightId and is composed of the Airline name,

all information about the flight (e.g. departure city, destination city, DepDate,

DepTime, ArrDate, ArrTime),and the number of available seats (Denoted by

AvSeat(FlghtId)1), the list of customers (IDs) reserved or booked.

Service Flight-Service is

extending Service-state

protecting AirLine-Data.

subsort FlghtId AirLId< STId .

subsort Flght St < Srv State

subsort CHK SEAT < local Msg.

subsort FLGHT RQ FLGHT RSV FLGHT BK FLGHT CL < imported Msg.

1As a hidden property just to be checked.

4.3. CSRV-NETS: STRUCTURAL ASPECTS MODELLING OF SERVICE

INTERFACES 107

subsort FLGHT RQSTD FLGHT BKD FLGHT CLD PAY FLGHT PAY PNLY < exported Msg.

(* AirLine State Properties *)

op 〈 | AirLId : , F lInf : , AvSt(FlighId), RsvP : , CmfP : , DlRs : 〉 :

FlghtId string FLG INFOS nat PSSGS PSSGS Date→ AirLine State.

/* Local messages */

op ChkSt : FlgId Bool → CHK SEAT .

/* Imported i.e. received messages */

op FlgRq : CustId CUST INFO AGCYId AirLId RQFLG INFO → FLGHT RQ .

op FlgRs : CustId CUST INFO AGCYId AirLId RQFLG INFO → FLGHT RSV .

op FlgBk : CustId RsvRef CUST INFO BK INFO → FLGHT BK .

op FlgCl : CustId AGCYId ClRef → FLGHT CL .

/* Exported i.e. invoked messages */

op FlgRqsd : CustId FLG INFO AGCYId AirLId RsvRef → FLGHT RQSTD .

op FlgBkd : CustId AGCYId AirLId BkRef → FLGHT BKD .

op FlgCld : CustId AGCYId AirLId BkRef → FLGHT CLD .

op Payflg : CustId AGCYId BkRef money → PAY FLGHT .

op PayPnlt : CustId AGCYId BkRef money → PAY PNLTY .

(* These variables will be used in the behavioural part of the service net specification *)

vars Dy : Date ; Gc:AGCYId .

endo.

4.4. CSRV-NETS: BEHAVIOURAL MODELLING OF SERVICES 108

4.4 CSrv-Nets: Behavioural Modelling of Ser-

vices

In the previous section we presented how a given service structure description

denoted by TSrv captures the structural aspects of a given service interface.

In this section we address the behavioural concerns by incrementally construct-

ing it from the structure description and the business rules. We refer to such

behaviour issues as CSrv-Net as the behaviour is a form of high-level Petri

nets tight to this service modelling and service structure descriptions. A service

specification as a whole is hence a pair composed of ServSP =≺ TSrv,CSrv-

Net�.

4.4.1 CSrv-Nets: Service Net Structural Features

Informally speaking, the net to be associated with a given service structure

description is constructed as follows.

• The places of the net are precisely defined by associating with each service

message generator one ‘message’ place.

• With each service state sort a ‘state’ place is associated.

• Transitions, which may include conditions, reflect the effect of messages

on service states to which they are addressed.

� Remark 4.4.1 To graphically, explicitly distinguish between local messages

and external ones we draw the later with bold lines. To result in more compact-

ness and enhancing understandability, when the effect of given messages with

service states in a given transition results in more than one output—denoted by

4.4. CSRV-NETS: BEHAVIOURAL MODELLING OF SERVICES 109

CsvT1, .., CsvTp (Created Service Tokens) we use boxes within such a transition

to differentiate different outputs and put inside the associated condition. For

instance, in most cases as depicted in flight net we will have two boxes within

a given transition: one for capturing the effect of applying conditions and the

second box for reporting errors and exception (i.e. the Else case).

Before we present the formal definition of CSrv-Nets reflecting this

intuitive construction, some preliminary notations are required.

� Notation 4.4.2 (1) We denote by TSpri
(XSpri

) the set of algebraic terms

associated with each sort Spri (i.e. service state property, and where XSpri

is assumed to be a set of variables declared for that sort (i.e. XSpri
is a

set of Spri-indexed variables).

(2) Given such service state property algebraic terms, we can now build alge-

braic terms for the whole service state. We denote such service state terms

as TSTSv
(XSt), where XSt is regarded as the union of all above indexed

sets of variables.

(3) In the same we denote by TMsgSv
(XSarg) the algebraic terms associated

with the state message sorts, with XSarg as a union set of variables for

different message argument sorts.

(4) For the sake of simplicity, we denote by X the union of all these (indexed-

state properties and -message arguments) sets of variables when the dis-

tinction is not specifically required.

(5) TSTSv
(∅) (resp. TMsgSv

(∅)) denotes the ground algebraic terms (i.e. with-

out variables) for the service states and messages (as service state and

4.4. CSRV-NETS: BEHAVIOURAL MODELLING OF SERVICES 110

message instances). In this sense, Tsv(∅) for instance represents all service

state instances belonging to the sort sv with sv ∈ STSv.

(6) In order to capture different multi-terms (as arc-inscriptions or tokens in

service places), we denote by MTSTSv
(X) (resp. MTMsgSv

(X)) the mul-

tiset (i.e. set with the possibility of element repetitions) of terms over

TSTSv
(X) (resp. TMsgSv

(X)), with as the union (associative and com-

mutative) operation, and ∅M as the identity element. The two multiset

forms will be subsequently referenced by [TSTSv
(X)] and [TMsgSt

(X)] .2

(7) Finally to capture the whole marking (as a composition of different

tokens multi-terms) of a given service specification we require another

multi-terms over the above multi-terms. We denote such multi-terms as

BTSv(X) (resp. BTMsg(X)) which are multisets over SvP l× [TSTSv
(X)]

(resp. P × [TMsgSv
(X)]). We assume such composite multi-terms as

generated by a multi-set union operator we denote by (with ∅B as iden-

tity). As will be precisely defined, SvP l denotes a set of places in a given

service behaviour specification. Elements of this multi-terms form will be

referenced by [SvP l × ([TSTSv
(X)] ∪ [TMsgSv

(X)])] .

Definition 4.4.3 (CSrv-Nets specification) Given a structure specifica-

tion as previously defined, a Csrv-Net(-structure specification) is a structure

(SvP l, SvTr, Inp SvT, Out SvT, s, SvTC) where:

• SvP l is a set of (service) places such that |SvP l| = |STSv|+ |MsgSv|. That

is, the service place number corresponds exactly to the cardinality of sorts in

StSv plus those in MsgSv.

2As we detail in a later state (resp. message) tokens correspond to ground multi-terms

MTSTSv(∅) (resp. MTMsgSv (∅)).

4.4. CSRV-NETS: BEHAVIOURAL MODELLING OF SERVICES 111

• s : SvP l −→ STSv ∪MsgSv is a bijection associating with each place identi-

fier in SvP l a corresponding sort from STSv ∪ MsgSv as we informally com-

mented.

• SvTr is a set of (service) transitions different from the place identifiers

(SvP l ∩ SvTr = ∅) .

• Inp SvTr : SvTr −→ [SvP l × ([TSTSv
(X)] ∪ [TMsgSv

(X)])] . That is,

Inp SvTr(t) can be written as
i
(pi, mti), where pi are input service places

in the transition t, and mti are the associated (multisets of) tokens anno-

tating arcs from pi to t. Additionally, each (pi, mti) must fulfill the sort

coherence condition (of the place sort with the related input inscriptions):

mti ∈ [Ts(pi)] .

• Out SvTr : SvTr −→ [SvP l × ([TSTSv
(X)] ∪ [TMsgSt

(X)])] . That is,

Out SvTr captures the output tokens with their corresponding places, and

has to fulfill the above sort coherence condition (of the place sort with the

related output inscriptions).

• SvTC : SvTr −→ (TSTSv
(X) ∪ TMsg(X))bool is a function associating a

boolean expression over (TSTSv
(x(t)) ∪ TMsg(x(t))) with every transition t ∈

T ; where x(t) is the set of variables occurring in Inp SvTr(t) (which as usual

should include those in Out SvTr(t)).

The concept of a CSrv-Nets component as a society of instances of ser-

vice states and (local/input/output) messages derived from a given structure

specification, is captured by the notion of a marked Csrv-Net.

Definition 4.4.4 (marked Csrv-Net) A marked Csrv-Net is an Csrv-

Net with a function SvM : SvP l −→ [TStSv
(∅) ∪ TMsg(∅)] , such that if

sv ∈ STSv then M(s−1(sv)) ∈ [Tsv(∅)] . That is, each service state place

4.4. CSRV-NETS: BEHAVIOURAL MODELLING OF SERVICES 112

contains current service states of the service specification. Otherwise, for each

Mesij ∈ MsgSt, M(s−1(Mesij)) ∈ [TMsgij
(∅)] . Thus, such places contain

message instances waiting for their firing by corresponding transitions.

From this notion of marked CSrv-Nets, it is now possible to define the

notion of CSrv-Nets state which captures the distribution of markings over

different (state and message) places of a given CSrv-Net.

Definition 4.4.5 (CSrv-Nets-states) Given a marked Csrv-Net as defined

above, a CSrv-Net state is an element of [SvP l× ([TStSv
(∅)] ∪ [TMsg(∅)])] .

More precisely, by denoting such state by Mst, it can be written as follows:

Mst =
pi∈SvP l

(pi, M(pi)).

The Flight CSrv-Nets Service Structure Specification

With respect to the above flight service structure specification, the applica-

tion of these behavioural constructions result in the following flight CSrv-Net

behavioural interface model as depicted in Figure 4.4.

As defined above, for each service state and message sort a corresponding

(typed) place is conceived. That is, to the service state sort Flght corresponds

a service state place we denote by Flight-St. This service place regroups

thus all flight state instances in accordance with the flight service structure

specification. On the other hand, with each service message a correspond-

ing message place is constructed. So, for the three received (i.e. imported)

messages (from the agency composite service as will be detailed later) namely

Flight-Request, Flight-Book, Flight-Cancel correspond three associated

sort messages places. Also, for the five invoked (exported) messages places,

namely Flight-Requestd, Flight-Booked, Flight-Canceld, FlightPay and

4.4. CSRV-NETS: BEHAVIOURAL MODELLING OF SERVICES 113

Flight-Refund correspond five messages. Besides that, in order to capture all

different exceptions and errors related to different behaviour, we have added

another message place we denote by FlghtOP-Err. As we will explain subse-

quently this place receives all attempts for violating the business rules related

to different message functionalities.

4.4.2 CSrv-Nets: Service Net Behaviour Using Business

Rules

The crucial contribution and added-value of our approach to the service par-

adigm concerns thus the concurrent behaviour that we are able to assign to

different messages and services states. Such behaviour will be clearly captured

by different transitions, with their inherent inscriptions and conditions. For

that purpose, that is, for the conception of different transitions, we mainly rely

on the business rules governing at this stage the (intra-)organisation at hand,

which is the flight company in our case.

More precisely, first we propose to follow the widely dominating forms of busi-

ness rules, that is, the Event-Conditions-Actions pattern. With respect to the

formal definition of CSrv-Nets, a transition in its general pattern allows in-

teracting some triggering messages with service states, leading to the change

of invoked states, absorption of the triggering messages and apparition of new

invoked messages; all this reaction is of course to be allowed under valid condi-

tions.

For this similarity, it becomes very straightforward how a given ECA busi-

ness rule can be translated into a CSrv-Nets transition that correctly reflects

its behaviour. That is:

4.4. CSRV-NETS: BEHAVIOURAL MODELLING OF SERVICES 114

event-part: It corresponds to different input messages inscriptions involved in

this event part of the rule.

condition-part: it has to be translated into a compatible transition condition.

Information related to service states have to translated into input arcs

inscriptions from the service state place

action-part: It is to be expressed in terms of exported messages and changes

in the involved service states.

For the flight service interface, we have associated three transitions to reflect

the (business) semantics of the three received messages, namely: The transi-

tion Tfligh rq for capturing the request activity with the offered flights (i.e.

flight requested) as output result; the transition Tflight bk for capturing the

booking activity and finally the transition Tflight cl to govern the cancel

activity if any.

In the following, we detail the rigorous inscriptions of each of these transi-

tions with respect to very simple business rules (BR). Afterwards, we hint how

any complex business rule governing these transitions can be straightforwardly

reflected into formal inscriptions in the CSrv-Nets formalism.

The Flight CSrv-Nets Service Behavioural Business Rules

A typical business rule for flight-request activity in this flight service could

formulated as follows.

4.4. CSRV-NETS: BEHAVIOURAL MODELLING OF SERVICES 115

Rule (for flight)”On a customer request for a flight, the offered flights

have to exactly match the departure and destination cities, the dates and

the time of the customers wish. The flight cost should not exceed what

the customer tolerates and finally if the customer is a minor (less than

eighteen years old) a reduction of 2% is granted”.

Following the above guidelines, from this informal rule description the con-

struction of the corresponding transition (Tflight rq) inscriptions could be

summarised as follows:

(1) To reflect the events part of this business rule, the transition

Tflgh rq must have one input inscription from the request message

place Flight Requst and one from the state flight place Flight St.

By respecting the structure message description and declared vari-

ables, the inscription of the request message place takes the form:

F lgRq(Cs.Ag, Fr.To.Dt.Tm.Mx), that is, the parameters are ”CusName,

Age, From city, To city, Date, Time flight and max cost to bear. The

selected (abstract) flight should have the same information (i.e. same

variables). That is, the inscription from the flight state place could be:

〈Fg|FgInf : [R.Fr.To.Dt.Tm.Cx], AvSt(Fg), Rsv : Rs, DlRs : Dy〉,
with R as the flight reference, Cx as the (normal) ticket price, and Dy

the date limit for booking and losing the reservation.

(2) To reflect the rule conditions, the transition condition should have the

form: AvSt(Fg)−1 ≥ 1∧Rs.[Cs.R]∧((Cx ≤ Mx)∧(Py := Cx)∨((Ag ≤
18) ∧ (Py := Cx ∗ 08))).

That is, the available seats has to be decreased by one and be still positive;

The reserved list has to be updated to include the new customer and the

4.4. CSRV-NETS: BEHAVIOURAL MODELLING OF SERVICES 116

flight reference, the ticket price Cx has to be less than customer max, and

finally if the age is less than 18, the payed amount will be just 80 percent

of the price.

(3) Finally, the output message to report back the founded reservation with

the flight references, the computed price and the date limit. This is re-

flected by the inscription: F lgRqd(Cs, Fg, R, Py, Dy)

E
xp

or
te

d
(i

nv
ok

ed
)

m
es

sa
ge

s

. . .

. . .

. . .

. . .

FlgRq(Ann,...)

Flight_Cancel

FlgCl(anni,.....)

. . .

FlightOP_Err

FlgRqErr(Cs,...)

FlgBkErr(Cs,...)

Im
po

rt
ed

 (
re

ce
iv

ed
)

m
es

sa
ge

s
A

N
D

/O
R

 (
tr

ig
ge

ri
ng

)
ev

en
ts

The Flight Service Interface Behavioural Specification

FlgBk(...)

Flight_Book

Flight_Requst

Tflight_rq

ChkSeat

. . .

Flight_St

. . .
ChSt(...)

. . .

FlgCl(Cs,...)

. . .

. . .

. . .

Flight_Bookd

. . .

Flight−Rsrvd

Flight_Refund

Flight_Pay

Flight_Cancld

FlgRfnd(Cs,...)

FlgPay(Cs,...)

PlgPnt(Cs,...)

Tflight_cl

Tflight_bk

FlgRsv(fl1,..)

Flgbkd(Cs,..)

〈F g1|F gInf : [K89.Uml.P aris.12306.1430.230], AvSt(F g)..〉
〈F g2|F gInf : [I24.London.DC.02606.2245.817], AvSt(F g)..〉

F lgRq(Cs.Ag, F r.To.Dt.Tm.Mx)

〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉

RsSt(Cs, F g)

(AvSt(F G) − 1 ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (P y := Cx)

∧((Ag ≤ 18) ∧ (P y := Cx ∗ 08)))
Else

F lgRqd(Cs, F g, [R.F r.To.Dt.Tm], Py, Dy)

F lgRsvErr(Cs,′ F lightRequestError′)

F lgBk(Cs, R, Dy, Py)

〈F G|F gInf : [R.F r.To.Dt.Tm.Cx], Rsv.Rs, Cmf : F m〉

(Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (P y = Cx) ∧ (P n = 0)∧

(Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (P n := Py ∗ 0.1))
Else

F lgBkd(Cs, R.F r.To.Dt.Tm, Py)

F lgPay(Cs, R, Py) ∧ F lgPnl(Cs, R, Pn)

F lgBkErr(Cm,′ F lightBookErr′)

F lgCl(Cs, R, Py, Dt)

〈F g|F gInf : [R.Dt],Rsv : Rs, Cmf : F m〉

((Cs ∈ Rs) ∧ (Rfnd := Py)) ∨ ((Cs ∈ F m) ∧ (Dc ≤ Dt)∧

(Rfnd = P y ∗ 0.85)) ∨ ((Cs ∈ F m) ∧ (Rfnd = P y ∗ 0.45))
Else

F lgRfnd(Cs, R, Rfnd)

F lgCld(Cs, R)

F lgClErr(Cs,′ F lgCancelErr′)

Figure 4.4: The Behavioural Specification of flight Service Interface.

4.5. CSRV-NETS: SEMANTICAL ASPECTS 117

In the same spirit, we can formulate any business rules for the booking as

well as the cancellation activities and construct consequently the associated net

transitions (i.e. Tflight bk and Tflight cl). The reservation business rule

should reflect the respect of the reservation deadline (ie reservation information

should be still in the corresponding flight state); otherwise a penalty is to be

paid beside the ticket price. The corresponding transition is easily conceived as

depicted. The cancellation after a booking incur the payment of a penalty.

Following the same reasoning, the behavioural specifications of the hotel

service interface, the customer service interface and the bank service interface

are given in the appendix.

4.5 CSrv-Nets: Semantical Aspects

The crucial advantage of choosing High-Level Petri nets as a semantical frame-

work for behavioural service applications is of course its ability to provide

us with executable graphical animated specification, which can further by

analysed. Thus the validation by rapid-prototyping at the specification level

is possible against possible mistakes, misconception, inconsistency, etc.

There are a plethora of ways for interpreting the behaviour governing tran-

sitions (e.g. interleaving, process-based, operational, denotational, etc.) with

respect to a given (algebraic high-level) Petri nets variant.

The operational semantics we are proposing is mainly inspired by the al-

gebraic semantics in [79]. Informally speaking, given a transition, we have to

find the right substitutions (i.e. the replacement of variables by corresponding

complex terms for a given term t—such substitution is usually denoted by σ(t))

that show that all required tokens from the input places are available and the

4.5. CSRV-NETS: SEMANTICAL ASPECTS 118

transition condition is evaluated to be true. In such case the marking of all

involved (input/output) places is accordingly updated, that is, deletion of con-

sumed tokens from input places and addition of newly created tokens to output

places3.

In the following we develop a more formal operational semantics for govern-

ing transition behaviour. First, to make these semantics easy and understand-

able, we start with an intuitive representation of any CSrv-Nets transition as

a general tuple of the form:

〈Transition Label | input inscription, output inscription, condition〉

With respect to our CSrv-Nets definition and for a given transition de-

noted t, this general tuple takes the form:

〈t | Inp SvTr(t), Out SvTr(t), SvTC(t)〉

As we already detailed in CSrv-Nets definition, we can represent

Inp SvTr(t) as a multiset of the form:
i

(pi, mti) . The same for the output-

inscription Out SvTr(t) which can be captured as
i

(qj , ntj). Finally we denote

the condition SvTC(t) by its corresponding boolean multiterm.

With these details, we result in the following CSrv-Nets transition firing

inference rules as the operational semantics.

Definition 4.5.1 (CSrv-Nets-transition semantics) We assume given

a marked CSrv-Nets net, with its marking state denoted by Mst =

k
(pk, M(pk)) as defined in definition:4.4.4. Further, we assume as above that

transitions are represented as a tuple:

3Of course test and inhibitor arcs do not involve any deletion or creation as usual

4.6. SUMMARY 119

〈t |
i

(pi, mti),
j

(qj , ntj), [T (X)]bool〉

The firing conditions and outputs are formally expressed through the fol-

lowing inference rule:

∃ σ x(t) → [Tpi
(∅)] | σ(Inp SvTr(t)) =

i
(pi, σ(mti)) ∈ Mst ∧ (σ([T (∅)]bool) = True)

M′
st = Mst − σ(Inp SvTr(t)) + σ(Out SvTr(t))

With σ(Out SvTr(t)) =
j

(qj , σ(ntj))

4.6 Summary

This chapter defines formally a new variant of high-level Petri nets specifically

designed for specifying and validating complex interacting services by focussing

on their distributed and adaptive behavior. That is, instead of dealing (at

design-time) with just the structural aspects in defining and composing services

as currently offered by XML-Based Web technology, the variant of Service-

oriented High-Level Petri Nets (we refer to as CSrv-Nets) we are proposing

allows also addressing behavioral features in concurrent, adaptive and com-

positional way. As specific characteristics of CSrv-Nets we mainly cite the

following. Firstly, CSrv-Nets is endowed with a methodology based on UML

Use-Cases and class-diagrams enriched by business rules at an early stages. Sec-

ondly, CSrv-Nets allows incrementally and formally specifying and validating

distributed statefull behavior of service interfaces, that we semi-automatically

construct from UML-diagrams and business rules. Thirdly, interacting services

are specified by composing involved service interfaces Nets, while respecting ap-

propriate interaction patterns.Finally, the travel agency case study is followed

4.6. SUMMARY 120

for illustrating all CSrv-Nets aspects.

Chapter 5

Extensions of Service-based

Petri Nets: Harmonious

local/global Compositions

In the previous chapter, we demonstrated how service interfaces and elemen-

tary services can be progressively and rigorously leveraged to cope with concur-

rent rule-intensive behavioural features. We achieved that first by informally

describing service structural features using stereo-typed UML class-diagrams.

Then, we captured behavioural features as event-driven business rules. After

constructing such informal structural-behavioural features of any service and/or

interface, we then proposed for the crucial phase of rigorous formalisation an

innovative service-based high-level Petri nets framework, we cleansed the CSrv-

Nets conceptual model. As we incrementally introduced, CSrv-Nets allowing

for precisely defining structural features with explicit service interfaces, and then

smoothly capturing behavioural features.

The formalism and the whole methodology have been extensively illus-

122

trated through the Airline case-study. To recapitulate on that chapter, we may

again emphasise that in contrast to Web services standards such as WSDL and

BPEL, we demonstrated that instead of the very restricted static and purely

process-centric service descriptions, the forwarded approach permits for for-

mally specifying and validation services and interfaces, which are behaviourally

rule-intensive, distributed and evolving.

This important achievement encouraged us to coherently push the scope of

this approach one step further, so that complex composite services can be har-

moniously tackled on top of already specified and validated individual services

and interfaces using CSrv-Nets. More precisely, in terms of Web services

terminology, in the previous chapter we presented how individual services (like

Airlines, Hotels, etc) can be orchestrated in a behavioural conversational and

stateful manner. Orchestration offered by Web standards such as WSBPEL

means that the emphasise is put on a single specific service (interface) which

may send/ receive messages from others. As illustrated, the behavioural specifi-

cation of the Airline service using CSrv-Nets captures just the airline service,

though several messages have to be exchanged with at least the customer and

bank services.

In this chapter, we instead concentrate on the choreographical composition

of several participating (elementary or complex) services to produce new com-

plex composite added-value services. Web standards propose for the choreog-

raphy purely static and structural descriptions through the XML-based stan-

dards such as WSCI and WS-CDL. These standards, when dealing with com-

plex composite decentralised services are thus well-known for their limitations

for coping with behavioural, adaptive and/or concurrent features characterising

today’s complex services. Besides that, such standards by their implementation-

123

centricity do not provide any means for formal specification and certification,

as crucial for delivering correct and reliable composite services. A typical il-

lustration is the description of a travel-agency that requires the composition

and coordination of several independent services such as: Airlines (and/or

trains/taxis/car rental), Accommodation (hotel/hostel/private), financial in-

stitutions (bank/credit-card) , etc; where each of these participating are them-

selves very complex, conversational, stateful and adaptive.

Besides these serious deficiencies, existing proposals to Web services explic-

itly differentiate between orchestration and choreography and focus therefore

strictly on either BPEL- or WSCI-related descriptions, where more investiga-

tions are being carried on BPEL-like orchestration than on choreography. This

orchestration trend is mainly due to the availability of variety of advanced

BPEL-driven engines, among other technological and business reasons. Indeed,

choreography is surprisingly neglected with the strong belief that BPEL-like

descriptions of (elementary and composite) services seem quite satisfactory in

most cases. Unfortunately, with the current limited static and structural charac-

terisations of Web standards (e.g. WSBPEL and WSCI), the striking necessity

of choreography in complementing orchestrated descriptions and vice-versa have

just been further confused and obscured.

The remaining sections of this chapter are structured as follows. In the next

section, we bring more motivation with insights and illustration towards lever-

aging and complementing our approach for behavioural and adaptive service

orchestration with complex choreographical compositions by extending CSrv-

Nets. As first step towards conceptualising the forwarded intuitive ideas of the

strived handling of choreographical composite services, the second section is de-

voted to the proposition of an adequate generic pattern for cross-organisational

5.1. CHOREOGRAPHICAL COMPOSITE SERVICES WITH

CSRV-NETS: FURTHER MOTIVATION 124

or inter-service event-driven business rules. In the third main section, we for-

mally defined the extension of CSrv-Nets, we referred to as CCSrv-Nets,

for coping with the informally developed choreographical composite behavioural

and adaptive services in harmony with the orchestration of individual services.

In the last section, we illustrate this sound and progressive extension of CSrv-

Nets using the Agency composite service.

5.1 Choreographical Composite Services with

CSrv-Nets: Further Motivation

One of the main purposes of this section consists thus in demonstrating that,

when the emphasis is put on behavioural features rather than structural ones,

such strict distinction between service orchestration and choreography and/or

the focus on just one (e.g. orchestration mostly) is not only unwished but may

also lead to incomplete service design and thereafter non-conformist service

deployment. To cater for such essential complementation, we propose thus to

optimally benefit from both service orchestration and choreography through a

harmonious synergy.

Before delving into the formalisation details about how choreographically

composing services as a necessary complement and sound extension to the

presented behaviour-intensive orchestration, let us motivate further, from

a methodological point of view, this synergy stepwise complementarity be-

tween orchestration and composite choreography, while developing knowledge-

intensive service-driven applications, through the following main clarifications.

(1) By following a business rule-driven approach as we are pursuing with

5.1. CHOREOGRAPHICAL COMPOSITE SERVICES WITH

CSRV-NETS: FURTHER MOTIVATION 125

CSrv-Nets, we consider that both independent elementary services as

well as their composition are governed by suitable business rules. That

is, on the one hand, we should cope with (intra-service) business rules

governing (elementary/ basic) service interface behaviours, by exclusively

focussing on the service at-hand. For instance, while specifying the Air-

line service, there are no links whatsoever to business rules about Banking,

Hotel or any other services. In other words, orchestration-driven business

rules are local to their respective services and interfaces. In contrast to

that, (inter-services) business rules governing composite services involve

different regulations, policies and strategies for correctly collaborating in-

volved services. In this sense, the Travel-Agency composite service, for

instance, has to be governed by functioning policies for optimally and

legally collaborating different involved (elementary) services such as ho-

tels, airlines, banks, etc.

(2) Having explained the existence of such two complementary categories of

business rules, namely those governing intra-service behaviour and those

for inter-cooperatively composing these services, the remaining central

question consists in establishing the behavioural relationship between

these intra- and inter-service business rules governing respectively par-

ticipating services and their composition. In Figure 5.1, we projected

this intrinsic relationship on the already formalised orchestration using

CSrv-Nets and the to be addressed at choreographical level. On the ba-

sis of this graphical illustration, this synergic orchestration-choreography

behavioural relationship, may thus be explained and motivated as follows:

5.1. CHOREOGRAPHICAL COMPOSITE SERVICES WITH

CSRV-NETS: FURTHER MOTIVATION 126

RqMs_Sv1 PrvMs_Sv1 RqMs_Sv1 PrvMs_Sv1

Choreographical composition of different services

through ECA−driven cooperative business rules

. . .

In−msgN_Sv1

in−msgN−sv1,...)

.
in−msg1−sv1,...)

.

.

. . .

. . .

Out−msg1−Sv1(..)

Out−msgM−Sv1(..)

.

.

.
.

. . .
in−msgN−sv1,...)

In−msgN_SvK

In−msg1_SvK

Behavioural Specification/ Validation Service K

R
ec

ep
tio

n
of

 (v
al

id
at

ed
) m

es
sa

ge
s

fr
om

 S
er

vi
ce

 I

. . .

In
vo

ca
tio

n of
 (I

nput)
m

es
sa

ge
s o

n Ser
vic

e I

Invocation of (Input) m
essages on Service K

Reception of (validated) m
essages

from
 Service K

Requested / (valid) Provided messages from involved services

. . .

Behavioural Service Composition/ Validation

. . .

Behavioural Specification/ Validation Service I
In−msg1_Sv1

in−msg1−sv1,...)

.

.

Im
po

rt
ed

 m
es

sa
ge

s
/ e

ve
nt

s
 o

f
Se

rv
ic

e
I

. . .

. . .

Out−msg1−Sv1(..)

Out−msgM−Sv1(..)

.

.

.
.

.
.

ORCHESTRATION
of different incoming
messages to valid
outcoming ones
with ECA− rules driven
Transitions

ORCHESTRATION
of different incoming
messages to valid
outcoming ones
with ECA− rules driven
Transitions

E
xp

or
te

d
(v

al
id

)
m

es
sa

ge
s

of
 S

er
vi

ce
 I

Out_msgM−Sv1

Out_msg1−Sv1

Im
po

rt
ed

 m
es

sa
ge

s
/ e

ve
nt

s
 o

f
Se

rv
ic

e
K

Out_msgM−SvK

Out_msg1−SvK

E
xp

or
te

d
(v

al
id

)
m

es
sa

ge
s

of
 S

er
vi

ce
 K

Figure 5.1: An Illustrative Complementarity of Orchestration and Choreogra-

phy in the CSrv-Nets Approach .

• As the Figure explicitly illustrates, we have been so far focussing on

the lower part of this two-level based approach, namely the intra-

service orchestration level. With respect to the running example,

we have been specifying and validating the behaviour-driven (intra-

)business rules of different independent services such as the airlines,

the banks and hotel services. Due to the required full independency

of such service interfaces from each other, at the orchestration level

5.1. CHOREOGRAPHICAL COMPOSITE SERVICES WITH

CSRV-NETS: FURTHER MOTIVATION 127

we could not report on how requested/provided (events and) mes-

sages in such service interfaces are to be coordinated, neither could

we be able to describe the from/to where (i.e. which services) such

messages are invoked or provided and for what purpose.

• With the explicit conceptualisation of this composite choreographi-

cal level over the orchestrated involved service interfaces, it becomes

imperative to clarify how incoming/received and respective outgo-

ing/provided messages (from/to different participating interfaces)

are semantically invoked, produced and coordinated in order to ful-

fil the expected rule-based choreographical global behaviour in such

composition. It also becomes meaningful why we have to label and

identify the resulting outgoing/provided messages from such involved

service interfaces as behaviourally-certified messages, and thereby em-

phasising again the necessity and benefits of such certification which

as we pointed out could not be discerned with the structural limited

capabilities of Web standards like WSBPEL and WSCI.

• More precisely, as depicted in Figure 5.1 by collaborating more

than one service in a composite choreography, different messages

have to be accordingly requested by such composite level from the

participating service interfaces level. Once such messages are re-

ceived by the corresponding interfaces, they have to be certified

against the associated intra-service business rules (using correspond-

ing CSrv-Nets-driven transitions). That is, invoked messages at

different services can either result in a behaviourally-certified out-

going messages or result in non-conforming incorrect exception mes-

5.1. CHOREOGRAPHICAL COMPOSITE SERVICES WITH

CSRV-NETS: FURTHER MOTIVATION 128

sages. Only behaviourally-certified (through service interfaces or-

chestration) messages can further be invoked at the choreographical

composition level to realise the expected added-value collaborative

business activities with respect to the business process at hand.

• Another benefit of this two-level rule-driven approach to service ap-

plications development is that besides usual functional rule-based

requirements, at the composite choreographical level, non-functional

rules and policies can also be straightforwardly applied and enforced

on the participating services. For instance, we may impose a response

time on a given activity (request for flight or accommodation, etc.)

or invoke only specific airlines depending on reputation, trust, etc.

5.1.1 Choreographical Composition within the Travel-

Agency

Concretely with our vacation running case study, the composite Travel-Agency

once receiving a validated request from the customer (i.e. can ask for a vacation

with validated conditions such as the age, etc.), depending on general agencies

regulation and policy rules (besides context-aware incentive offers specific to

each particular agency), the agency dispatches then different request messages

to involved services to get Tickets, Accommodation, etc. In contrast to usual

(WSBPEL or WSCI) Web standards, with our two-level behaviour-intensive

service approach there are no assumed systematic ”positive” replies from such

invoked service interfaces, even when fully available. That is, to get Tickets,

Accommodation, etc, different current local behavioural business rules put in

place have to be checked and validated, and only in the positive case, the

5.2. BUSINESS-RULES PATTERN FOR BEHAVIOURAL

CHOREOGRAPHY 129

Agency can proceed further (with the check-out of bank in the same way, etc).

Towards a more conceptualisation of this rule-based choreographical behaviour

in composing services, we first propose a general pattern for required cross-

organisational choreographical level business rules. Then, we formally extend

the CSrv-Nets framework to rigorously reflect such interaction-driven business

rules, which are more close to transient architectural connectors [77]. Finally,

we illustrate this crucial behavioural conceptualisation of choreography with

our running travel agency.

5.2 Business-Rules Pattern for Behavioural

Choreography

For capturing cross-organisational composite business rules, unlike intra-service

business rules, we have to take into consideration besides the ECA rule itself

several other clauses with the following determinant ingredients:

Participant services: In this clause, we have to precisely set different ser-

vice (interfaces) types (with some of their instances when needed) taking

part in the composition. Once a (behaviourally specified) service inter-

face is stated to be part of a given composition, all its incoming/outgoing

messages can be requested /provided by the composite level; they all par-

ticipate in formulating any inter-service choreographical business rules.

Besides that, specific properties from participating states, such as iden-

tities and other properties, may be part of the composition. In terms

of architectural techniques [77], this part of the cross-organisational rules

corresponds to the concept of roles in architectural connectors.

5.2. BUSINESS-RULES PATTERN FOR BEHAVIOURAL

CHOREOGRAPHY 130

Extra proper properties for interacting: Depending on the composition

of behavioural semantics, additional extra composition-driven properties

such as messages, (stateful) property are to be declared for expressing the

intended composition.

ECA-like effects on services: This main part formulates the rule itself,

where we have first to express the events triggering such rules, then the

conditions to be observed by the composition (in terms of constraints on

the participating service properties and proper ones as well as messages

to be exchanged between involved services). Finally, actions in terms of

messages to perform on different partners and on the composition itself

have to be explicitly defined following the intuitive semantics of the rule

at-hand.

Towards expressing this behaviour-driven choreography in a disciplined but

still intuitive way while explicitly coping with the above constituents, we pro-

pose a general pattern for such cross-organisational behavioural business rules

as event-driven architectural connectors. This general pattern respects the fol-

lowing form.

Choreographical ECA-behaviour <Service-Composition-Identifier>

participant interfaces <list-of-service interfaces>

invariants <possible extra-interaction constraints>

properties/messages <possible extra ingredients for interaction>

interaction rule: <Rule-Name1>

at-trigger <(set-of-)events>

under <cross-partner conditions>

acting <set-of-actions-and-events to perform and trigger>

As we emphasised, important in this behaviour-driven services composition

is above all the name of participating service interfaces. Secondly, when re-

5.2. BUSINESS-RULES PATTERN FOR BEHAVIOURAL

CHOREOGRAPHY 131

quired we have to specify additional invariants and constraints to be observed

during the interaction. Thirdly, besides exchanged messages, stateful data and

events from the participants, to express complex interaction patterns we can

define at need additional properties such as constants and messages at the com-

position level. The ECA-based interaction rule itself starts by describing the

event(s) triggering the interaction, then which conditions have to be fulfilled

and finally what are the cooperative actions to be performed. Notice that in

some cases, among the actions we may have triggering events to direct, initi-

ate other semantically related composite rules. This behavioural business rules

pattern requires of course from different participating entities explicit interfaces

including different events, messages and other properties (such as constants,

variables ,etc). Such participating service interfaces, as we already motivated,

need thus to be already specified and certified (i.e. orchestrated) in order to

take part in a given choreographically-driven cross-service business rules.

5.2.1 Cross-Services Business Rules in the Agency Ap-

plication

To stay competitive, travel agencies are steadily offering different incentive

packages for their customers. For instance, depending on the customer profiles

(e..g trust, frequency, status, individual or group, etc) different attractive

offers can be provided. These vacation packages represent in fact the main

cross-organisational business rules regulating the cooperate behavioural

functioning of travel agencies, with respect to participating services such

as: Accommodation (hotels, hostels, apartments, etc), transportation (e.g.

airlines, trains, car rental, etc), attractions (visiting sights, attraction places)

5.2. BUSINESS-RULES PATTERN FOR BEHAVIOURAL

CHOREOGRAPHY 132

and financing (credit cards, banking, etc), among other participants. A typical

rule governing a given travel agency functioning, could be expressed as follows:

Travel-Rule1 ”For a group of persons taking a vacation, different for-

mulas are proposed to them. If more than two persons, traveling to

Location-X and booking T-weeks before their departure (with T ≥ 2 for

instance), they are eligible to a specific percentage reduction, we denote

by P with 10 ≥ P ≤ 30 as an illustration. When they decide for specific

accommodation they get extra A reduction percent, and when they pay

with credit cards, they get more C-percent. Finally, if they stay more

than W weeks, they get extra K-percent”.

In order to describe this simple cross-organisational rule in compliance with

the above general rule pattern, we further require more specific information from

the composing travel agency service. First, besides its name and address, an

agency should have usually favoured airline partners, favoured accommodation

hotels (series), and not least favoured destination locations with corresponding

basic prices for specific periods (for individual customers). For the sake of

exhibiting more behaviours, we assume that customer requests can only be

processed for such privileged partners and destinations; otherwise there will

be for instance no discounts and promotion . Taking this agency knowledge

into play as well as the capabilities of the three involved services (e.g. airlines,

accommodations, banks and also the user service), the above agency rule could

be enforced in fact through three steps and thus has to be split in some sense

into three ”sub-”rules.

(1) The first sub-rule concerns the request activity, where the agency by re-

ceiving the event Request Travel from the customer service, has to check

5.2. BUSINESS-RULES PATTERN FOR BEHAVIOURAL

CHOREOGRAPHY 133

whether the destination belongs the privileged ones, and more importantly

whether the ”spending-threshold” amount set by the customer is within

the range of the expected total costs. In the affirmative case, the agency

submit a corresponding request like Find Travel. This composite request

message should involve different request messages for tickets, accommo-

dation and other involved services (e.g. attraction visits, car rental, etc.)

depending on the wish of the customer.

(2) The next sub-rule has to capture the acceptance/refusal of best offers

(from these participating services). That is, once receiving different offers

from the involved services (e.g. airline booking, accommodation book-

ing, etc), the agency asks the customer service to confirm or inform the

composite complete offer, which also has to take into account the afore-

described reductions and promotions. That is, the main core of the afore-

described business rule has to be enforced at this stage, resulting in the

effective booking of air-tickets, hotel-rooms, etc by respecting the local

business rule at each corresponding service interface.

(3) The final phase in establishing this rule-driven vacation composite service

consists in positively receiving the final booking from different requested

services. In such case, the customer has to proceed to the payment. Once

such payment is accepted (i.e. by credit-card or through bank-transfer,

etc) the travel is enabled through the handing of tickets, etc.

(4) Finally, it is worth pointing out that the customer even after endorsing the

acceptance of the proposed travel offer, can still cancel it. Nevertheless,

customer must pay in this case an accordingly rule-driven penalty amount.

Choreographical ECA-behaviour Travel Agency

5.2. BUSINESS-RULES PATTERN FOR BEHAVIOURAL

CHOREOGRAPHY 134

participant services

Flg: Airlines

Acom: Accommodation

Cust: Customer

Bank: Bank

constants

Prc1, Prc2: [0..1]

properties

PvgTRP:List[Dest,{Cost Range.Duration}, ValidTil]

PvgFLG:List[AirL, Dest, Fare Range, ValidTil]

PvgACM:List[Dest, {Star.Fare Range},ValidTil]
messages

Trip ToFind Trip Found Trip Book Trip Booked

Trip Pay Trip Paid Trip Cancel Pay Penality

interaction rule : Found Trip (sub-rule1)

at-trigger Cust.Trip Reqstd(CsInf,TrInf, Mx Cst)

under (TrInf.Typ=’TRIP’)

if (TrInf.Dest ∈PvgTRIP.Dest) and (Mx Cst ≤PvgTRIP.Cost Range)

and (TrInf.DepDt ∈PvgTRIP.ValidTil)
let (var P = [TrInf.ReturnDt-TrInfo.DepDt])

if (PvgTRIP.{CxT.P}) and (TrInf.DepDt-DtNow≥30))

acting Flg.Flg Requst(CsInf, FlgInf, 3/4*Prc1*CxT) and

Acom.Hotel Requst(CsInf, HotlInfo, 1/4*Prc1*CxT)

and "Trip ToFind(AgInf, DtNow)"

under (TrInfo.Typ=’FLIGHT’)

if (TrInfo.Dest ∈PvgFLG.Dest) and (Mx Cst ≤PvgFLG.Fare Range)

and (TrInf.DepDt ∈PvgFLG.ValidTil) and (TrInf.DepDt-DtNw≥14))

acting Flg.Flg Requst(CsInf, FlgInf, Prc2*PvgFLG.Fare Range) and

interaction rule: Choose Trip (sub-rule2)

5.2. BUSINESS-RULES PATTERN FOR BEHAVIOURAL

CHOREOGRAPHY 135

at-trigger Cust.Trip Choosed(FlgRefi,HtlRefj) and

{Flg Rsvd(Cust, FgRsv Info)} and {Htl Rsvd(Cust, HtRsv Info)}
under (FlgRef=Min(allFgRsv Info.Fare) and (HtlRef=Min(allHtRsv Info.Price)

acting Cust.Trip2Confirm(Flg Rsvd(FlgRefi), Htl Rsvd(HtlRefj))

interaction rule: Confirmed Trip (sub-rule3)

at-trigger Cust.Trip Confrimd(CsI, FlgRefi,HtlRefj)

under (True)

acting Cust.Trip2Book(Flg2Bk(CsI, FlgRefi), Htl2Bk(CsI, HtlRefj))

interaction rule : Booked Trip (sub-rule4)

at-trigger Cust.Trip Booked(CsI, FlgRefi,HtlRefj)

under (True)

acting Cust.Trip2Pay(Flg2Bk(CsI, FlgRefi), Htl2Bk(CsI, HtlRefj), Cost)

end Std-withdraw interaction rule: Cancel Trip (sub-rule5)

at-trigger Cust.Trip Cancel(CsI, FlgRefi,HtlRefj)

under Trip Booked(CsI, FlgRefi,HtlRefj) = True

acting TripCancelled(CsI, TrRefi)and Cust.Penalty2Pay(CsI, TrRefi,

Cost-Penalty(formulas))

end Std-withdraw interaction rule: Pay Trip (sub-rule6)

at-trigger Cust.Trip Pay(CsI, TrpRefj, Cost(Trip))

under Trip Booked(CsI, FlgRefi,HtlRefj) = True

acting Bank.TripPaid(CsI, Cost(Trip))

end TravelAgent Rules

As depicted in the top of the choreography-driven cross-service business

rules, four partners are involved namely the airlines, accommodation, customers

and the banking services (besides the agency itself). In order to allow explicitly

5.2. BUSINESS-RULES PATTERN FOR BEHAVIOURAL

CHOREOGRAPHY 136

manipulating (i.e. invoking/receiving) messages from these partners, we declare

any required instances. In our case, we declared the service Flg for airlines,

Acom for accommodation, Cust for Customer and finally Bank as an instance

of the bank service.

As we emphasised, usually within each Travel agency there are seasonal

offers such as a list of privileged trips with attractive prices, list of selected ac-

commodation and/or list of privileged flights and airline partners. Each element

in these lists is composed with all necessary information; so, for instance, for a

given privileged trip one may find the destination, a range of costs depending

of the duration and the date limit of such offers. The same is to be observed for

the privileged flights and accommodation. We have regrouped all this specific

information as properties at the composite service level. In addition to these

variables, to capture the different discount percentages, we have defined some

constants (e.g. Prc1, Prc2) those values ranging over the internal [0..1], that is

real values between 0 and 1.

Besides these stateful static properties, with the aim to promote the adapt-

ability, we conceived a set of messages that allow factoring out different in-

voked/received messages from the participating services. In this sense, for in-

stance, through the (generic abstract) the message ”Trip ToFind” we are fac-

toring out all involved requested messages (from different changing partners)

such as: Find flight, Find accommodation, and so on. In such a way, we

can thus add any other respective message when incorporating another service

such as Find RentingCar or Find TouristSite without modifying this generic

message Trip ToFind.

Towards modelling business rules for trips as choreographical service com-

position, as motivated we propose to proceed in a conversational process-centric

5.2. BUSINESS-RULES PATTERN FOR BEHAVIOURAL

CHOREOGRAPHY 137

way, where the behaviour of each involved business activity is captured through

associate cross-service business rules. These business activities consist of: (1)

Look for candidate trips (e.g. associated flights, accommodations, etc); (2)

choose the best trip from the found candidates; (3) Confirm the selected trip ;

(4) Pay for that trip or Cancel it.

The principled (architectural) description of the first business rule governing

the business activity ”Look for candidate trips” may be explained as follows.

This business rule has to be triggered through a ”successful” request from cus-

tomer service, where information about this requester, the desired trip details

as well as the maximal cost that can be spent on such a trip. In this context the

”successful”, request event from the customer, means that constraints and con-

ditions required from any customer have been already checked at the customer

service level (such as the age, address, etc using our CSrv-Nets framework).

Please, note that to explicitly indicate that such message is to be received from

the customer service, we have prefixed it with the variable Cust, which refers

to an instance of a customer service. Once such triggering trip-request message

has been recognised by the agency, the first element to check from the trip in-

formation is the type of the trip, that is: is it just a flight?, accommodation?

or a complex composite trip?. Afterwards, we have to check whether the re-

quested trip (in case of a requested trip) belongs to a privileged trip that is still

valid. In that case, we have also to ensure that the proposed customer threshold

budget is not surpassed. Under such minimal required constraints, we can now

discuss different forms of possible discounts so that we set the maximal fares to

be enforced while requesting candidate flights and accommodation (by sending

messages to respective services). We have depicted one of such discount com-

putations. That is, if the trip request is made four weeks before traveling (i.e.

5.3. LEVERAGING CSRV-NETS TO CHOREOGRAPHICAL

ECA-DRIVEN BUSINESS RULES 138

30 days), then the threshold fare to be enforced while requesting flights should

be 3/4 ∗ Prc1 percent of the normal cost of such privileged trip (i.e. CxT).

The price for the requested accommodation should in consequence not be more

than the 1/4 ∗ Prc1 of that price.

In the spirit of such modelling, one can further define any possible busi-

ness rules for imposing different discount regulations depending not only on the

duration and date of request, but also on the period such as during the sum-

mer,christmas and so on. For the case of just a flight instead of a complete trip

(i.e. no accommodation) a similar discount formula has been suggested (i.e.

when requested before two weeks then a discount of Prc2 of the suggested fare

has to be observed while requesting candidate flights).

In the way we have described the corresponding business rules for the

other business activities such as: Trip Selection, Trip Confirmation,

Trip Booking, Trip Cancelling and/or Trip Paying. We skip their descrip-

tions here and let them be a simple exercise for the reader.

5.3 Leveraging CSrv-Nets to Choreographical

ECA-Driven Business Rules

After motivating and intuitively presenting how composing services in coop-

erative cross-organisations on the basis of behavioural-intensive ECA-driven

business rules, and once this individual involved services interfaces have been

specified and validated, the purpose of the following is to leverage these intuitive

descriptions to a more rigorous level. As we pointed out, we aim at achieving

that by soundly extending the so far CSrv-Nets framework so that it can ex-

5.3. LEVERAGING CSRV-NETS TO CHOREOGRAPHICAL

ECA-DRIVEN BUSINESS RULES 139

plicitly specify and validate such dynamically interacting services. In the same

spirit as we proceeded for the CSrv-Nets presentation, first we address the

structural features in composing different CSrv-Nets interface specifications,

then we formalise the behavioural features and finally illustrate this compos-

ite CSrv-Nets formalism (we refer to as CCSrv-Nets) with the same travel

agency example by incrementally translating the above motivated ECA cross-

organisational business rules to this new choreography-driven formalism.

5.3.1 Structural Features in CCSrv-Nets

As explained, in most cases, to achieve a conversational and behaviour-driven

composition we require proper properties, besides requested/received messages

from the participating services. These proper properties may be (observed) mes-

sages and events to be declared at the composition level. As for the specification

of CSrv-Nets interfaces, we propose to adopt the same algebraic specification

pattern for formally specifying them. That is, all proper properties are gathered

in a tuple form, we refer to as the composition state type, while each message

or event is explicitly specified as an algebraic operation.

All participating service interfaces (i.e. their algebraic specifications) have

to be explicitly included in the composition specification, using for instance,

either the usual primitives such as including or more expressively the key-

word participants, to explicitly highlight them as services participating in

this choreographical knowledge-based composition.

A further crucial enrichment with respect to the usual CSrv-Nets struc-

tural specification concerns what we may refer to as the ”gathering” or integra-

tion of several requested/provided message types into a single new (composite

5.3. LEVERAGING CSRV-NETS TO CHOREOGRAPHICAL

ECA-DRIVEN BUSINESS RULES 140

and flexible) message type. To motivate and then define this notion of a uni-

fied message, let us consider again the the Travel-Agency case with in mind

the choreography general form we depicted in Figure 5.1. We clearly observe

that typical agency activities such as ”Request-Trip”, ”Trip confrim” and/or

”Trip-Select” all consist in accordingly (e.g. conforming to corresponding

business rules) dispatching or sending requesting messages to corresponding

participants (e.g. airlines, accommodation, attractions, car-rental, etc.) or

collecting/receiving certified provided messages. More precisely, participating

requested messages such as request4flight, request4hotel, request4car,

etc, are intrinsically and semantically meaningful only together in that they

all concern the ”Request4Trip” activity, in the same way unified messages

apply to Select4Trip, etc. In terms of algebraic concepts, we declare such

unified message types as super-sorts of respective detailed service-related

messages. So for instance, the unified message type for request4Trip will

be a super-sort for all message types concerning service requests such as:

request4flight, request4hotel, request4car, etc. In this way, we are pro-

moting by further adaptability and flexibility at the choreography composition

level. This high flexibility comes from the fact that, for instance, Request4Trip

or Trip2Confirm unified composite message now depend directly on the cus-

tomer’s wishes. For instance, for customers requesting just flights, the compos-

ite message Request4Trip will include just the request4flight, and so on. In

this way, we are indeed dynamically reshaping this composite message depend-

ing on the participants services. At this syntactical structural level, we use the

symbolic notation � instead of the usual subset symbol < to distinguish this

notion of a composite message. At the behavioural Petri Nets composition level,

there are many fold benefits and semantics of this notion of unified messages as

5.3. LEVERAGING CSRV-NETS TO CHOREOGRAPHICAL

ECA-DRIVEN BUSINESS RULES 141

will be detailed later.

The Agency Structural Aspects in CCSrv-Nets

Capitalising on the discussed cross-service rules governing the composite Agency

service, we conceive here the formal structure of the resulting CCSrv-Nets.

We should mention that for sake of more clarity we are adopting some extra-

notations such as: (1) Instead of the obj-primitive ”include” we are using the

keyword ”participating” to emphasise the interaction-centricity of that structure

(compared to our previous CSrv-Nets); (2) instead of the usual subsort < we

are using the super-sort �; and (3) of the keyword ”obj”, we are using the new

expressive keyword ”Composite-Service”. Moreover, we should recall that as

usual all required Data as assumed to be defined elsewhere. For that purpose,

we have gathered them in a data-level data type named ”AGENCY-Data”, we

just import (in a protected mode) to that CCSrv-Nets structure specification.

Composite-Service Agency-Service is

extending Service-state

protecting AGENCY-Data.

participants Customer, Airline, Acommodation, Bank < Service .

supersort Trip ToFind � Flg Requst Room Request .

supersort Trip Found � Flg Reservd Room Rservd .

supersort Trip ToBook � Flg2Book Room2Book .

supersort Trip Booked � Flg Bookd Room Bookd .

supersort Trip Cancel � Flg2Cancel Room2Cancel.

subsort TRP CHOS TRP CFRM TRP BOK TRP PAID TRP PENALTY TRIP START

(* Agency State Properties *)

op 〈 | AgcNm : , P rvT rip : , P rvFLG : , P rvACOM : , RsvList : , CmfList : ,

CanclList: 〉 :

AgcID string LIST-PrvTrip LIST-PrvFLG LIST-PrvACOM RsvLIST

5.3. LEVERAGING CSRV-NETS TO CHOREOGRAPHICAL

ECA-DRIVEN BUSINESS RULES 142

CfmLIST CancelLIST

/* messages */

op Trip Choose : AgcId CustRef FlgRef → TRIP CHOS .

op Trip Confrm : AgcId CustRef FlgRef → TRIP CFRM .

op Trip Book : AgcId CustRef FlgRef → TRIP BOK .

op Trip Pay : AgcId CustRef FlgRef Cost → TRIP PAID .

(* These variables will be used in the behavioural part of the service net specification *)

vars Tpv : PrvTRP; Fgv : PrvFLG ; CsI : CustID .

fgi : FlgRef ; hti : HotRef ;

Dt, DepDt, Now : Date

MxC, Cxt, CsTT : Money

Composite-Service.

5.3.2 Behaviourally Composing Services with CCSrv-

Nets

With CSrv-Nets capabilities in capturing stateful service interfaces behav-

iour, we present in the following how such choreographical ECA-driven be-

havioural rules enhance these potentials towards more dynamic adaptivity and

evolution. Following the same intuitive guidelines for constructing CSrv-Nets

service interfaces behaviour from informal service applications, the modelling

steps for integrating such choreographical architectural behaviour on top of in-

volved CSrv-Nets service interfaces could be sketched in the following. First,

we have to derive from a given ECA-based architectural connector description,

a more precise corresponding service description specification by algebraically

specifying different properties (messages, events, etc.) as we did exactly for

CSrv-Nets. Secondly, by gathering different composite service properties and

participants into states, we then associate it a type as we explained above and

5.4. APPLICATION OF THE APPROACH TO THE RUNNING

EXAMPLE (TRAVEL AGENCY) 143

a corresponding place. In the same way for each (non-unified) declared message

in the composite service, we associate a corresponding message place. For the

so-called unified messages (i.e. those followed by the super-sort symbol � as

described above) we associate a fusion place (as defined in Coloured Petri Nets

for instance [42]). A Fusion place is a place that contains more than other

places. The enclosed places are those corresponding to the sub-sort message

names (from other services).

Before illustrating this intuitive translation towards CCSrv-Nets, let us

present a more rigorous definition of this formalism of CCSrv-Nets. For that

purpose, we present how to syntactically define the concept of composite service

from participating CCSrv-Nets behavioural service interfaces.

5.4 Application of the Approach to the Run-

ning Example (Travel Agency)

Following the above informal guidelines on how to construct any choreographical

CCSrv-Nets as well as the detailed cross-service business rules governing the

travel agency, we bring here further explanations on the resulting CCSrv-Nets

travel-agency conceptual model as depicted in Figure 5.2.

First for each message we are associating a place. In this sense, for instance,

for the message type TripRqtd we are associating the place Trip Reqstd. More-

over, as we defined in the structural part some places are considered as unified

(i.e. Trips Found), gathering more than one message place (ie the flight and

room request message places). For each business rule, a corresponding transi-

tion governing a business activity is conceived. For instance, with the business

5.4. APPLICATION OF THE APPROACH TO THE RUNNING

EXAMPLE (TRAVEL AGENCY) 144

. . .
FindTrv(...)

. . .

RomFnd(...)

.

Agency_St

. . .

. . .
HtlRq(fl1,..)

. . .

. . .

. . .
FlgRq(fl1,..)

. . .

Hotel_Requst

Flight−Requst

Flight_Book

Hotel_Book

. . .

TripRqtd(...)

. . .

TripRqtd(...)

. . .

FlgFnd(...)

The Agency Composite Service Behavioural Specification

FlgBook(...)

FlgCancl(...)

TrpPaid(...)

TrpStrt(..)

Rom2Bk(..)

C
er

ti
fi

fi
ed

 r
ec

ei
ve

d
m

es
sa

ge
s

fr
om

 p
ar

ti
ci

pa
ti

ng
 s

er
vi

ce
s

(t
o−

be
 c

er
tf

ie
d)

 in
vo

ke
d

m
es

sa
ge

s
to

 p
ar

ti
ci

pa
ti

ng
 s

er
vi

ce
s

Trp2Cmfr(...)

Flg2Bk(..)

. . .
PayTrv(..)

PayPnl(..)
. . .

TrvRqErr(Cs,...)

TrvBkErr(Cs,...)

. . .

TravelStart

Trip_Cancld

Trip_Paid

AgcOP_Err

T
rip_A

gc

Flg_Rsved

Room_Rsved

Trip_Reqstd

Trip_Choose

Trips_Found

Trip_Booked

Penalty_ToPay

Trip_ToPay

Trip_ToBook

Trip_ToConfirm

Trip_ToFind

Flg_Bookd

Flg_Cancld

Room_Cancld

. . .

Rsv(...)
. . .

. . .

. . .

RmBok(...)
. . .

Room_Bookd

Ttrp_cmf

Ttrv_Rsvd

Ttrp_pay

Ttrp_Rqd

Ttrp_paid

Ttrp_cancl

Trip_Accpt(..)
. . .

Trip_Comfrmd

〈Agc1|P rvT P : [algar, 138.2wk, July], ..〉

〈Agcn|AgcNm : T our, PrvF LG : [Dubai, ..], ..〉

Cust.T rip Reqstd(CsI, T rInf, MxC)

T rip ToF ind(AgI)

〈AG|PrvTR : Tpv, PrvF LG : F gv〉

(T rInf.T yp =′ TR′)∧(MxC ≤ Cst)∧(T rInf.Dt ∈ Til)

(T rInf ∈ T pv)∧(T rInf.Dt − Now ≥ 30)

(T rInf.T yp =′ F LG′)∧(MxC ≤ Cst)∧(T rInf.Dt ∈ Til)

(T rInf.Dt − Now ≥ 14)∧(T rInf ∈ Tpv)

E
ls

e

F lg.F lg Requst(CsI, F lgInf, 3/4 ∗ Prc1 ∗ CsTT)∧
Acom.Hotel Requst(CsI, HtInfo, 1/4 ∗ Prc1 ∗ CsTT)

F lg.F lg Requst(CsI, F lgInf, .9 ∗ Cst)

{F lg.F lg Rsvd(CsI, F gRsI)} ∧ {Acom.Hotl Rsvd(CsI, HtRsI)}

C
u

s
t
.T

r
i
p

C
h

o
o

s
(
C

s
I

,
f

g
i
,

h
t
j
)

〈AG|RsvLs : Rsv〉
〈AG|RsvLs : Rsv.[CsI.fgi.htj]〉

(fgi = Min{FgRsI.F ar})∧(htj = Min{HtRsI.Prc}Else

Cust.Trip2Cfrm(CsI, F gRsI(fgi), HtRsI(Htj))

Cust.T rip Cnfrm(CsI, fgi, htj)

〈AG|RsvLst : Rsv.[CsI.fgi.htj], CmfLst : Cfm〉
〈AG|RsvLst : Rsv, CmfLst : Cfm.[CsI.fgi.htj]〉

(fgi ∈ F gv)∧(htj ∈ Acv)

F lg.F lg2Bk(CsI, fgi)∧Acom.Hotel2Bk(CsI, htj)

Cust.T rip Bookd(CsI, fgi, htj)

〈AG|CmfLst : Cfm.[CsI.fgi.htj], BkdLst : Bkd〉
〈AG|CmfLst : Cfm, BkdLst : Bkd.[CsI.fgi.htj]〉

(fgi ∈ F gv)∧(htj ∈ Acv)Else

Else

Cust.Trip2Pay(CsI, fgi, htj, Cxt)

Cust.T rip Canclkd(CsI, fgi, htj)

〈AG|BkdLst : Bkd.[CsI.fgi.htj], CslLst : CsL〉
〈AG|BkdLst : Bkd, CslLst : CsL.[CsI.fgi.htj]〉

(fgi.Dt ≤ DepDt)Else

Cust.Penalty2Pay(.1 ∗ Cxt)

Penalty Err()

Cust.T rip Paid(CsI, fgi, htj , Cxt)

〈AG|BkdLst : Bkd.[CsI.fgi.htj], ArchvLst : AchvL〉
〈AG|BkdLst : Bkd, ArchvLst : AchvL.[CsI.fgi.htj]〉

True

Cust.Start2Travel()

Trip Requst − Err()

Trip Choose − Err()

Trip Confirm − Err()

Trip Booking − Err()

Figure 5.2: Behavioural Choreographical Specification of Travel Agency Service

5.5. SUMMARY 145

Trip Find, we are deriving the transition Ttrp Rqd. The conditions of this

transition are exactly the different conditions from these business rules. The

input arc-inscriptions are all the required messages and service state parts from

the place Agency St. For our transition Ttrp Rqd, the first alternative concerns

the request for just travel (i.e. (TrInf.Typ ="TR") and thus only a flight. In

this case, as stated in the business rule, if the date is valid, the flight belongs the

privileged ones and its fare is less than the customer budget, a request for the

flight is made with a discount of 10 percent. The second alternative concerns a

complete trip, in which case both flight and hotel are requested. In the same

spirit all the other transitions are constructed.

We should note again that each time messages are sent the other services

such as the airlines, hotels, banks and so on, the corresponding intra-services

business rules at the level of such services are to be applied. In this way all

received messages such as Ttrp Found, Ttrp Confrmd are already certified with

respect to such intra-services business rules.

5.5 Summary

Web standards propose a purely static and structural descriptions for the Web

services choreography through the XML-based standards such as WSCI and

WS-CDL. These standards, when dealing with complex composite services are

thus well-known for their limitations for coping with behavioural, adaptive

and/or concurrent features characterising today’s complex services. This chap-

ter concentrates on the choreographical composition of several participating (el-

ementary or complex) services to produce new complex composite added-value

services. Therefore, this chapter pushes the scope of the proposed approach one

5.5. SUMMARY 146

step further, so that complex composite services can be harmoniously tackled

on top of already specified and validated individual services and interfaces us-

ing CSrv-Nets. Also, an adequate generic pattern for cross-organisational or

inter-service event-driven business rules has been proposed.

Chapter 6

Extending CCSrv-Nets for

Dynamic Adaptability

In the two previous chapters, we proposed a stepwise formal approach for devel-

oping knowledge-intensive adaptive composite services. The proposed approach

harmoniously brings together both orchestration and choreography, and it cap-

tures knowledge-intensiveness through event-driven business rules both at the

intra- and cross-service levels. The forwarded Service-based Petri Nets Formal-

ism and its choreographical extension CCSrv-Nets allows for intrinsically and

soundly integrating these intra- and cross-services two-level business rules. We

should further recall that this service formalisation is adaptive by construction

since event-driven- business rules are by nature adaptive and evolving as they

reflect business policies and strategies of any organisation, service or alliance of

services. Business rules allow thus for keeping such (cross-)organisations com-

petitive and attractive [48]. Otherwise, any cross-organisations offering just

rigid (i.e. non rule-centric) services as the case with Web service standards

including WSDL, BPEL and WSCI which cannot attract customers or even

148

survive in so highly-volatile and fierce competitive global markets and econ-

omy.

In the so far approach, we have thus been supporting adaptability through

business rules, which we soundly integrate in the construction of the service-

based Petri nets model. More precisely, in order to adapt any business rule such

as those related to single-service like airlines or the cross-services like the agency

within an already specified CCSrv-Nets, we must redesign the corresponding

transition capturing such business rules. The redesign in this formalism means,

to change any transition, we have to explicitly replace all its input/output

inscriptions as well as its conditions with the associated ECA (events-conditions-

actions) elements of the newly introduced business rule. In other words, the so

far addressed rule-centric adaptivity is exclusively achieved at the design-time.

Before motivating and delving into the details about how to leverage such

design-time rule-centric adaptability towards dynamic runtime adaptability, we

judged it essential to recall some of the benefits of such design-time evolution,

we have been coping with in the previous chapters. Firstly, as we detailed in

the literature assessment, no existing approach has tackled business rules in

service-driven applications at the rigorous conceptual-level (besides the semi-

formal description) even at the design-time. Secondly, we have been coping with

both intra- and cross-service business rules in a harmonious complementarity.

Thirdly, due to the concurrent and visual capabilities of CCSrv-Nets, business

rules governing different activities/transitions behaviour can be simultaneously

checked and executed. Fourthly, while changing a given business rule governing

a transition behaviour, all other activities/transitions may be kept running;

even the transition under design-time change can be executed with respect to

the current business rule (i.e. before confirming the new one).

149

The purpose of the chapter aims above all at keeping all these benefits, while

leveraging the adaptability of any business rules from design-time to a fully

dynamic runtime adaptability. In other words, instead of blocking any transi-

tion(s) for explicitly updating their governing business rule, we will demonstrate

how to achieve such adaptability on the fly, and with respect to any number of

transitions. That is, while keeping the whole conceived CCSrv-Nets running,

we perform the change in a dynamic and non-intrusive manner, so that even the

concerned customer/user becomes unaware. Before presenting the main global

ideas of this runtime adaptability as a smooth yet sound extension to the pro-

posed design-time evolution, we present some of its basic principles, potentials

and advantages.

Explicit Separation of Adaptability-level from a Conceptual One:

Achieving runtime, unanticipated adaptability automatically requires, on

the one hand, an explicit separation between the running CCSrv-Nets

conceptual-level under current business rules and the adaptive-level1,

where all past, present and coming rules have to be managed (e.g.

removed, updated or added). On the other hand, adaptability implies

the ability to dynamically weave/unweave (i.e. incorporate/extract) any

business rule on the running CCSrv-Nets conceptual model. Indeed,

with the so-far design-time rule-intensive service development using the

CCSrv-Nets framework, the business rules are inherently tightly-coupled

to their corresponding transitions; a fact which makes it impossible,

among others, to supervise how the service rules are evolving along the

1In the literature we found different terminology for such explicit separation, including

meta- [101, 17], reflection-level [62] or more recently aspectual-level. We instead prefer to use

adaptive-level to expressively emphasise the purpose of that level

150

life-span of the service.

Explicit Focus on Rules and Their Evolution: As direct result of the

clean separation of business rules from the (running composite CCSrv-

Nets) service conceptualisation, corresponding (cross-)organisations be-

come able to focus more on managing adaptability and enhancing compet-

itiveness. In other words, business people become exclusively responsible

for coping with policies and strategies in terms of business rules, whereas

software designers will focus on how to formalise, implement and dynam-

ically integrate such innovative rules.

Competitiveness Through Agility: Of course as we just emphasised,

through the endowing of our conceptual model with an extra adaptability-

level for business rules, we are promoting services to respond to any mar-

ket changes, new emerging competitive policies, and/or new (rule-driven)

attractive composition or opportunistic alliance with other services.

Personalisation of Rules to Specific Customers and Context: Besides

adapting rules due to emerging policies and market changes, dynamic

adaptability also directly facilitates the personalisation to specific

instances of customers/providers and of times and locations as a simple

case of context. More precisely, since we are promoting a ”type-instance”

conceptual model with High-level Petri nets, we are in position to incor-

porate more than one business rule for a given transition. Each business

rule will be instantiate to the specific customer instances (e.g. golden,

silver customers or providers). The same can be applied to the time,

either in terms of specific days (week days and week-ends) or months

(summer/winter sales and discounts). Finally, the location, where the

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 151

customer of the provider is located or moving to can be captured through

specific rules to be dynamically applied.

The remaining sections of this chapter are organised as follows. In the next

section we informally motivate and present the main ideas and principles of

the aimed dynamic adaptability in CCSrv-Nets. In the second section we

illustrate these conceptualisation ideas on the already airline service CSrv-

Nets specification, which becomes rule-centric and dynamically adaptable.

We conclude this chapter by outlining some of the very recent attempts

and proposals to this challenging adaptability problem within service-oriented

applications and Web services, and emphasise the advantages of the forwarded

proposal.

6.1 Runtime Adaptability in CCSrv-Nets:

Principles

First it is important to point out that using CCSrv-Nets structural and be-

havioural features, it is quite straightforward to add at any time new mes-

sages and new properties with associated business rules and construct their

respective transitions, and this without any need to stop the running CCSrv-

Nets model. Moreover, we can update any business rule ingredients (i.e.

events/conditions/actions) by updating the arc inscriptions and the condition of

the corresponding transition. However, what goes beyond the hitherto CSrv-

Nets conceptualisation is the ability of dynamically manipulating any existing

business rule governing a given transition. Beyond the CCSrv-Nets capa-

bilities which belong further to the inability of dynamically endowing a given

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 152

transition with more than one business rule, each acting for example on specific

service instances.

In the following we progressively present our main ideas and principles to

smoothly leverage CCSrv-Nets so that it can address such dynamic manipula-

tion of transition behaviours,inherently governed through event-driven business

rules.

6.1.1 CCSrv-Nets Transitions (Meta-)Representation

Since any business rule governing an individual CSrv-Nets transition, the first

question to come into mind towards manipulating such business rules, can be

formulated as follows:

”Is it possible to come up with an appropriate (meta-)representation for

explicitly capturing any individual transition behaviour”

Towards proposing an adequate transition’s representation and thereby an-

swering that question, we should first understand what are the ingredients com-

prising any CCSrv-Nets transition in the most general case. As a systematic

response, a transition is definitely composed of: (1) a transition label or name;

(2) input arc inscriptions with their corresponding input place names; (3) out-

put arc inscriptions with their corresponding output places; and finally (4) the

transition condition.

Consequently, a simple possible candidate representation of any transition

may consist in gathering these four elements into a single tuple. Besides that,

since we are aiming at changes with possibly several ”versions” of such individ-

ual transition behaviour as tuple, we judge beneficial to enrich such tuple with a

fifth element, as a natural counter reflecting the version identity of any specific

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 153

behaviour related to a given transition. More precisely, we suggest a straight-

forward ”user-friendly” transition’s representation consisting of a five-element

tuple of the form:

〈 Transition identifier : current version | Input inscriptions,

output inscriptions, conditions〉

Recalling again that Input (resp. Output) inscriptions consist of all pairs ”place

with associated arc-inscription” getting in (resp. out) that transition, identified

through the label ”Transition identifier”.

To bring this ”abstract” representation one step closer to our specific

CCSrv-Nets framework, let us first (re-)conceive a generic pattern for

CCSrv-Nets transitions. As depicted in 6.1, the most general form of transi-

tions with respect to CSrv-Nets allow for bringing into contact different im-

ported messages (and events denoted by Msij) with targeted service instance

states (denoted by k

i=1
〈Sidi|prsi〉). Under specific conditions on both involved

input message parameters and selected states properties, the transition general

effect corresponds to the consumption of imported messages, the emerging of

some new exported messages (denoted by Msok
) and changes of some properties

of the involved service states.

The instantiation of the above general transition’s representation as a

five-element tuple on this specific CSrv-Nets generic transition, results thus

in the following more concrete five-element tuple.

〈Tgnr : v | n
p=1

(Msgp, Msip) (StSrv, k

i=1
〈Sidi|prsi〉) ,

j=1
(StSrv, k

j=1
〈Sidj|prsj〉) m

q=1
((Msgq, Msoq) , TC(Tgnr)〉

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 154

. . .

Im
po

rt
ed

 (
re

ce
iv

ed
)

m
es

sa
ge

s

.

E
xp

or
te

d
(i

nv
ok

ed
)

m
es

sa
ge

s

. . .

. . .
. . .

. . .

msi1(...)

msin(...)

mso1(,..)

msom(,..)

Tgnr

〈Sid1|pr1 : v1, ...〉

k
i=1

〈Sidi|prsi〉

k
j=1

〈Sidj |prsj〉

Msi1

Msin

Mso1

Msom

Msgi1

Msgin

Msgo1

Msgom

StSrv

CD as condition on states & parameters

Figure 6.1: The general pattern of CSrv-Nets transitions

where:

• Tgnr represents a transition label or identifier. As we are aiming to update

such transition as tuple, the corresponding name or label should of course

be any specific label from existing CSrv-Nets transitions.

• v as we motivated should refer to a given specific version of such transition.

By convention, we associate the counter zero (0) to the first behaviour.

Any other adaptations will be referenced by incrementing v by one (1).

We are thus using the version numbers to keep track of different changes.

• The third element of the tuple n
p=1

(Msgp, Msip) (StSrv, k

i=1
〈Sidi|prsi〉) de-

fines the different input messages and state places with their corresponding

(multiset of terms) input arc inscriptions as given in the generic transition

in Figure 6.1. Important to notice here is that such elements may contain

variables, exactly like inscriptions associated with usual transitions. They

are not like usual tokens which must be ground terms, that is, without

any variable inside.

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 155

• The fourth element .
j=1

(StSrv, k

j=1
〈Sidj|prsj〉) m

q=1
((Msgq, Msoq) captures

the different output message and state places with their associated arc-

inscriptions.

• Finally, the fifth element TC(Tgnr) represents the (transition) condition

we may associate with a given transition.

� Example 6.1.1 Let us reconsider the airline CSrv-Nets from chapter four,

that we reproduce here again in Figure 6.2 to spare the reader time looking for

it. Let us focus, for instance, on the transition Flight Book. Following the

above generic transition’s representation and its CSrv-Nets instantiation, the

five-element tuple governing the transition Flight Book in the Airline CSrv-

Nets specification, could be represented as follows:

〈Tflight bk : 0 | (F light Book, F lgBk(Cs, R, Dy, Py))(F ligh St,

〈FG|FgInf : [R.Fr.To.Dt.Tm.Cx], Rsv.Rs, Cmf : Fm〉) ,

(F light Bookd, F lgBkd(Cs, R.Fr.To.Dt.Tm, Py)(F light Pay,

F lgPay(Cs, R, Py) ∧ F lgPnl(Cs, R, Pn) , (Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (Py =

Cx) ∧ (Pn = 0) ∧ (Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (Pn := Py ∗ 0.1))〉

That is, first since this transition behaviour is the default one we assigned it

the version zero (0). For both input (resp. output) arc-inscriptions, we associ-

ated to them their corresponding input (resp. output) places. For instance, we

are coupling the input place Flight Book with its corresponding arc-inscription,

that is, F lgBk(Cs, R, Dy, Py). The same process is applied to all other (input

and output) places. Finally, the fifth element in the tuple is the condition,

where we have simply skipped the Else part.

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 156

E
xp

or
te

d
(i

nv
ok

ed
)

m
es

sa
ge

s

. . .

. . .

. . .

. . .

FlgRq(Ann,...)

Flight_Cancel

FlgCl(anni,.....)

. . .

FlightOP_Err

FlgRqErr(Cs,...)

FlgBkErr(Cs,...)

Im
po

rt
ed

 (
re

ce
iv

ed
)

m
es

sa
ge

s
A

N
D

/O
R

 (
tr

ig
ge

ri
ng

)
ev

en
ts

The Flight Service Interface Behavioural Specification

FlgBk(...)

Flight_Book

Flight_Requst

Tflight_rq

ChkSeat

. . .

Flight_St

. . .
ChSt(...)

. . .

FlgCl(Cs,...)

. . .

. . .

. . .

Flight_Bookd

. . .

Flight−Rsrvd

Flight_Refund

Flight_Pay

Flight_Cancld

FlgRfnd(Cs,...)

FlgPay(Cs,...)

PlgPnt(Cs,...)

Tflight_cl

Tflight_bk

FlgRsv(fl1,..)

Flgbkd(Cs,..)

〈F g1|F gInf : [K89.Uml.Paris.12306.1430.230], AvSt(F g)..〉

〈F g2|F gInf : [I24.London.DC.02606.2245.817], AvSt(F g)..〉

F lgRq(Cs.Ag, F r.To.Dt.Tm.Mx)

〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉

RsSt(Cs, F g)

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (P y := Cx)

∧((Ag ≤ 18) ∧ (P y := Cx ∗ 08)))
Else

F lgRqd(Cs, F g, [R.F r.To.Dt.Tm], Py, Dy)

F lgRsvErr(Cs,′ F lightRequestError′)

F lgBk(Cs, R, Dy, Py)

〈F G|F gInf : [R.F r.To.Dt.Tm.Cx], Rsv.Rs, Cmf : F m〉

(Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (P y = Cx) ∧ (P n = 0)∧

(Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (P n := P y ∗ 0.1))
Else

F lgBkd(Cs, R.F r.To.Dt.Tm, Py)

F lgPay(Cs, R, Py) ∧ F lgPnl(Cs, R, Pn)

F lgBkErr(Cm,′ F lightBookErr′)

F lgCl(Cs, R, Py, Dt)

〈F g|F gInf : [R.Dt], Rsv : Rs, Cmf : F m〉

((Cs ∈ Rs) ∧ (Rfnd := Py)) ∨ ((Cs ∈ F m) ∧ (Dc ≤ Dt)∧

(Rfnd = P y ∗ 0.85)) ∨ ((Cs ∈ F m) ∧ (Rfnd = P y ∗ 0.45))
Else

F lgRfnd(Cs, R, Rfnd)

F lgCld(Cs, R)

F lgClErr(Cs,′ F lgCancelErr′)

Figure 6.2: The Behavioural Specification of Flight Service Interface.

6.1.2 Towards PN-Based Manipulation of Transition-

Behaviours as-Tuple

After being able to capture any transition-behaviour as tuple in a given CSrv-

Nets conceptual model, the next decisive step concerns the independent and

dynamic manipulation (e.g. updating, adding and removing) of such tuples.

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 157

Moreover, to stay compatible with our CSrv-Nets framework, such manipu-

lation should be geared and based on (high-level) Petri nets; otherwise it would

impossible to dynamically link the CSrv-Nets with the envisioned adaptabil-

ity level. More precisely, the Petri nets-based proposal we are looking for to

realise such manipulation, could be summarised in the following steps:

(1) At first we propose to gather such (transition-behaviours) tuples into an

associated (meta-)place. Such place which should reflect the first con-

struct of the expected adaptability level allows thus for keeping all past

and current business rules.

(2) Given such tuples within that meta-place, we require then further (meta-

)places and transitions for effectively manipulating them.

Places for Changes Triggering: Since we are looking for updat-

ing/modifying, adding and/or removing any tuple, we propose three

corresponding (meta-operation) places, we denote by Chg-BhvTp,

Add-BhvTp and Del-BhvTp. These ((upper-)places permit thus

for storing any corresponding (meta-)messages for changing, adding

or removing any tuple. As will be detailed later, we may de-

note such (meta-)messages with respectively Chg(beh-as-tuple),

Add(beh-as-tuple) and Del(beh-as-tuple).

Transitions for Manipulating Tuples: Given such (meta-operation)

places and the tuple place, the last step for effectively enabling

any manipulation consists in conceiving three associated (upper-

)transitions. By denoting such transitions for instance as TChgBh,

TAdBh and TDlBh, they will respectively relate Chg Bh, Ad Bh

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 158

and Dl Bh places to the (meta- or upper-)place. Such tran-

sitions permit thus selecting any (meta-)message instance as token

from the corresponding meta-message place and associate to it the

existing tuple (except for addition of a tuple) from the meta-place

marking and perform the required operation (i.e. addition, removal

or update) on that tuple.

The upper-layer as illustrated in Figure 6.3 exactly reflects these explained

principles towards dynamic adaptability of the transition’s behaviour as-tuple.

More precisely, this proposed general upper adaptability-level is again a specific

variant of high-level Petri nets, but with tokens including variables as they

capture a complete transition behaviour. Note that for adding (transition-

)behaviours we have indeed conceived two transitions, instead of just one. The

reason is that while adding a new behaviour of a given base-level transition,

two cases are to be distinguished. The first case concerns the situation where

the to-be behaviour corresponds to a completely new transition; that is such

transition does not already exist in the meta-place (we use the symbol ∼ to

check this non-existence i.e. as inhibitor arc). In this case the version is set to

one (1). The second case concerns the adding of the new version behaviour to

an existing transition, where we have to increment to the version counter.

6.1.3 Connecting the Adaptability-Level to the Concep-

tual Base-Level

So far we motivated and presented how to conceive the adaptability-level as a

variant of high-level Petri nets. The next crucial step concerns the connection of

this adaptability-level to the running base-level CSrv-Nets conceptualisation.

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 159

Once such connection is established we have to finally develop on how to per-

form the weaving/unweaving (or shifting-down/shifting-up) of any new/existing

transition behaviour as token; that is how to dynamically (dis-)activate any

event-driven business rule.

Since the meta-place at the adaptability-level contains tokens as five-element

tuples, which we aiming at propagating as a normal CSrv-Nets transition at

the base conceptual-level, the appropriate necessary linking consists of the two

essential following mechanisms:

Enrich all Conceptual-level Transitions with Extra (meta-)variables:

The first mechanism for preparing the runtime propagation/extraction

of any selected meta-token (i.e. business rule from the meta-place)

consists of slightly upgrading transitions of the concerned (and already

conceived and validated) CSrv-Nets conceptual model with some extra

meta-variables. We are using the term meta-variables, because such

variables will be possibly instantiated with terms containing variables.

In other words, we are (almost) keeping the conceptual-level as it is

except for such additional extra (meta-variables). More precisely, using

a new construct we denote by �� we enrich all input/output inscriptions

and conditions of any transition with such meta-variables. The new

summing-up operator �� as will semantically be explained later, plays the

role of both (wedge) and or (vee) depending on the aimed propagation

strategy. That is, either we want to add the associated inscription to

an existing behaviour or substitute that inscription with a new one. As

an illustration, we are upgrading the input-arc inscription for the input

message place Msgi1 , from Msi1 to the enriched inscription Msi1 �� IT m
i1 .

With respect to the generic CSrv-Nets transitions pattern as depicted

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 160

in the lower level of Figure 6.3, these meta-variables and their roles could

be summarised as follows:

• The meta-variable IT s (resp. ITm) permits receiving any input-

inscription from the given selected meta-token related to the service

state (resp. imported messages). That is, IT is referring to ”input-

(meta-)token”, whereas s (resp. m) is referring to service state (resp.

imported message).

• The meta-variable OT s (resp. OT m) permits for receiving any out-

put-inscription from the given selected meta-token related to the ser-

vice state (resp. exported messages).

• Finally CD allows for receiving the condition part of any selected

meta-token.

Red-arcs Between the Meta-place and Any CSrv-Nets Transitions:

To permit bringing down/up any transition-behaviour as token from the

meta-place to any upgraded transition in the CSrv-Nets base-level, we

require to connect them in both directions, using thus input and output

arcs as red-arcs. For that purpose, we should use the already brought in

”meta-”variables to the concerned transition.

Taking these meta-variables into consideration, as shown in the middle of

the Figure 6.3, the resulting arc-inscription relating the meta-place to any

base-level CSrv-Nets transition takes the following form :

〈Tgnr : v | (StSrv, IT s) ip

i=i1
(Msgi, ITm

i) , (StSvr, OT s) hr

j=h1

(Msgj , OT m
j),

CDt〉

That is, besides the transition label and a variable for keeping track of the

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 161

version, all input (resp.) output places are paired with only the respective

meta-variables from associated arc-inscriptions. As we will detail later

on, the already defined initial behaviour (i.e. the arc-inscriptions and

condition without these variables), though displayed on the transition as

”referential” initial behaviour, in case of dynamic changes will not come

into play.

6.1.4 Mechanisms for Shifting Down/Up Business Rules

The last phase in this advanced conceptualisation towards addressing (rule-

driven) runtime adaptability in any CSrv-Nets service specification, consists

in precisely clarifying how the smoothly enriched CSrv-Nets transitions will

be executed or fired. In other words, how should we dynamically at runtime

bring down (and up) any transition-behaviour as meta-token from the meta-

place and execute it at the associated CSrv-Nets base-level transition. In the

following we thus informally explain this process, and afterwards define it in a

more disciplined manner.

Let us recall again the meaning of the crucial operator �� relating any

already existing initial arc-inscription with to be superposed on woven non-

instantiated inscription (as meta-variable). To cover most of adaptability (and

non-adaptability) cases, we propose to assign to this �� operator the following

four semantical interpretations:

meta-var as nil: The fact of enriching any specified CSrv-Nets transition

with just extra meta-variables should obligatory imply that all transitions

have to be adaptable. Indeed, in real-word service applications, there are

always some business activities (as transitions in our model) which require

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 162

to be fixed forever. For that reason, we are allowing in the proposed

interpretation to interpret, in such case, all extra inscriptions ” meta-var”

as if they do not exist, i.e. as nil. In other words, we are free to make any

CSrv-Nets transition as evolving or fixed, depending on the real-world

application at hand. Of course, any fixed transitions can be shifted at any

time towards evolving ones by interpreting the extra enriching part (i.e.

” meta-var”) following the next alternatives.

meta-var as or (∨) operator: Interpreting the operator as a choice ∨ opera-

tor means that for firing the concerned transition, we should dynamically

bring down a new behaviour from the meta-place. In other words, the

old existing initial behaviour is to be skipped and dynamically replaced

by any wished new business rule (as meta-token). In this case, the old

behaviour is completely swaped with the new propagated one, and its

presence at the arc-inscriptions permit just to remind the designer of that

initial behaviour.

meta-var as and (∧) operator: The last possibility, we propose to offer while

dynamically bringing down any behaviour as-token, consists in dynami-

cally softening/ tightening/enriching any already existing behaviour with

more knowledge. That is, we propose to interpret the operator as a

conjunction, which means integrating the newly woven behaviour with

the existing one. For instance adding a new behaviour at the condi-

tion means tightening further that condition, adding new input/output

messages while involving an existing transition means bringing in more

flexibility.

Mixing the operator as any of the three: Although we will not detail it

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 163

further, from the above interpretations it is quite straightforward to con-

sider within a same transition all the three possibilities with respect to

selected arc-inscriptions. For instance, we may skip adapting some input

messages, while dynamically tightening via as an add (∧) and soften-

ing some output messages by interpreting the operator as an (∨). As a

convention in the case where nothing is to be changed within a given arc-

inscription, we propose to use the minus symbol ”-” within the related

position in the corresponding meta-arc. For instance, for the following

meta-arc 〈Tg1 : 1 | −, −, CDt〉, we mean that all input and output in-

scriptions remain unchanged except the condition, which can be adapted.

In the following, we go into detail about one of the four above possibilities,

namely the choice case. We further highlight how the other cases (particularly

the third and the fourth) can be adjusted following the forwarded weaving

conceptualisation.

To confirm the smooth and progressive shifting from the CSrv-Nets base-

level conceptualisation towards this dynamic adaptability, we would like to recall

and shortly report on the firing semantics we already introduced and discussed

in chapter 4. The semantics of CSrv-Nets transition firing has been formalised

through the definition 6.1.2, we again recall hereafter:

Definition 6.1.2 (CSrv-Nets-transition semantics) We assume a given

marked CSrv-Nets net, with its marking state denoted by Mst =

k
(pk, M(pk)). Further, we assume as above that transitions are represented

as a five-element tuple but for sake of simplicity and understandability we are

using instead the place names given in Figure 6.1. That is, instead of Msgi,

StSrv), we are using pi and mti (resp. qj and ntj) for referring input message

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 164

and state (resp. output) places.

〈t : v |
i
(pi, mti),

j
(qj, ntj), [TC(x)]bool〉

The firing conditions and outputs are formally expressed through the fol-

lowing inference rule. That is, we have first to find a set of substitutions {σi}
for transition variables with corresponding terms from associated ground terms

Tpi
(∅) of same sort. The main condition is that such ground terms should belong

to the corresponding input message/state places. Moreover, with respect to the

union of such found substitutions (denoted by σ), the transition condition for

all variables appearing in the condition σ([TC(x)]bool) should hold true. The re-

sulting marking (i.e. conclusion part of this firing inference rule) consists in such

case in taking away all the matched tokens from the input places and produce

the new resulting tokens to corresponding output places (i.e. σ(
j
(qj, σ(ntj)))).

∃ σi : x(t) → [Tpi
(∅)] |

i
(pi, σ(mti)) ∈ Mst ∧ (σ([TC(x)]bool) = True)

M′
st = Mst −

i
(pi, σ(mti)) + σ(

j
(qj, σ(ntj)))

Obviously this firing mechanism as such cannot be applied to our newly

enriched transitions, i.e. to our ”adaptability-aware” or simply adaptable tran-

sitions as depicted in the low-part of Figure 6.1. The main challenging emerging

problem concerns thus the propagation of meta-token through the red-arc re-

lating the (adaptability and base) two-levels. To resolve this problem and allow

firing such enriched transitions, we propose instead a two-phased instantiations.

That is, in order to execute such adaptable transitions we first require to dy-

namically select the right ”behaviour as meta-token” from the meta-place of

the adaptability-level. Secondly, and only after that we will be in a position

6.1. RUNTIME ADAPTABILITY IN CCSRV-NETS: PRINCIPLES 165

to fire that newly and dynamically propagated behaviour following the above

usual mechanism.

To be more concrete the dynamic selection of a given behaviour as meta-

token (i.e. as an event-driven business rules) formally returns in finding a (meta-

)substitution we may denote as σvr, which permits instantiating all the involved

meta-variables, that are IT s, ITm, OT s, OT m and CD, so that they exactly

match one of the behaviour as meta-token in the meta-place. Because such

behaviour-as-meta-token can be dynamically manipulated through the devel-

oped adaptability-level, we are thus realising a runtime adaptability of business

rules. Note that we are using the notion of meta-substitution for σvr, due to

the fact that this substitution in contrast to those adopted {σi} in the above

definition instantiates the (meta-)variables with corresponding terms with vari-

ables.

Once selecting such specific transition behaviour from the meta-place, the

next step consists of firing that transition exactly as we defined in the above

definition. In terms of the precise inference rule, this two-phase execution of

adaptable transitions can be formulated as follows.

Definition 6.1.3 (adaptable CSrv-Nets-transition semantics) We as-

sume given a marked adaptable2 CSrv-Nets model directly connected with

an adaptable-level ”meta-CSrv-Nets” marked net as we developed. We de-

note the base-level CSrv-Nets marking state by Mst =
k
(pk, M(pk)). The

marking of the meta-place of the adaptable-level framework is denoted as follows

M(pmeta).

The base-level adaptable generic transition, as given in Figure 6.3 takes the

2With enriched transitions by meta-variables though the operator .

6.2. A DYNAMICALLY ADAPTABLE CSRV-NETS AIRLINE

SPECIFICATION 166

following form. Note that we are using the the abbreviations pi and qj instead of

Msgi and StSrv and abstracting IT s and ITm into a common IT meta-variable

and OT s and OT m into OT—, takes the form:

〈Tgnr : v |
i
(pi, mti�� ITi),

j
(qj , ntj�� OTj),[TC(X)]bool�� CDTgnr〉

In the above explanation and the definition 6.1.2, the inference rule allowing

for firing this adaptable transition can be expressed as follows.

∃ {σvr} : X(Tgnr) → [TPmeta(X)] |

〈Tgnr : σvr(v) |
i
(pi, σ

vr
i (ITi)),

j
(qj, σ

vr
j (OTj)),σ

vr(CD(Tgnr))〉 ∈ M(pmeta)

∃ σi : x(t) → [Tpi
(∅)] |

i
(pi, σ(σvr

i (ITi))) ∈ Mst ∧ (σ(σvr(CD(Tgnr))) = True)

M′
st = Mst −

i
(pi, σ(σ(σvr

i (ITi))) + σ(
j
(qj , σ(σvr

j (OTj))))

To mix any knowledge in already existing or default transition behaviour

with the dynamically propagated behaviour, the above firing mechanism could

be straightforwardly reshaped by including the (instantiated) arc-inscriptions

in the second phase of the instantiation process. That is, we will not involve

just IT , OT and CT as we did above, but also msi, msj and TC(x) while

substituting for the final firing of the transition.

6.2 A Dynamically Adaptable CSrv-Nets Air-

line Specification

The objective of this section is to apply the above conceptualisation for dy-

namically adapting the airline CSrv-Nets specification, we already detailed in

6.2. A DYNAMICALLY ADAPTABLE CSRV-NETS AIRLINE

SPECIFICATION 167

chapter four and recalled in this chapter through Figure 6.2. To illustrate this

dynamic adaptability of that airline specification, we require to progressively

put into force the above mechanisms. More precisely, first we have to endow

any transition of this Airline CSrv-Nets specification, with appropriate (meta-

)variables so that they become adaptive-aware. As a second step, we have to

built the adaptability-level, within which any business rule can be dynamically

manipulated. Finally, we show how any of these dynamically manipulated busi-

ness rules can be (dis-)activated by (un)weaving it to the base-level.

6.2.1 Upgrading the CSrv-Nets Airline Towards

Adaptability-Awareness

As we pointed out the first step towards endowing any knowledge service-driven

CSrv-Nets specification consists in preparing that specification to become

adaptable-aware. More precisely, for each of the CSrv-Nets airline transi-

tions, we have to slightly enrich its (input/output) arc-inscription as well as the

condition part with a (meta-)variable using the operator ��.

The result of applying this enrichment is depicted in the low-level of Figure

6.3. First note that to ease the manipulation, instead of the long name for

places (and transitions) we are shortening them. So, for instance, instead of

the place name Flight Book, we are using just FlBk. Second, because we want

that all activities of the flight service to be adaptable, we are enriching all the

three transitions; again here for the sake of simplicity we are dropping the Else

part (i.e. the exception cases) in all these transitions.

6.2. A DYNAMICALLY ADAPTABLE CSRV-NETS AIRLINE

SPECIFICATION 168

6.2.2 Building and Illustrating the CSrv-Nets Airline

Adaptability-Level

Towards effectively bringing this runtime knowledge-centric adaptability con-

ceptual machinery to the above airline CSrv-Nets prepared specification, let

us first consider three simplified business rule scenarios: Two concerning the

booking request business activity (i.e. the transition Tflg rq) and one new

business rule dealing with the cancelling activity (ie. the transition Tflg cl).

Of course as will be understood from this progressive illustration, we will be

able to dynamically deal with any business rule and with respect to any business

activity as transition.

These three business rules could informally be described as follows:

Flight to A Specific Destination and Period (R1): This rule says, for in-

stance, that any person travelling to Cairo or Istanbul between June and

August gets a discount of 50 percent from the normal fare.

Flight to A specific Destination for A Group (R2): Any two persons

travelling for instance to Las Vegas during the month of January will

automatically get a 30 percent discount.

Seasonal Flight-cancel (R3): This rule stipulates that during the winter

(Christmas time) season a refund will correspond to the VAT, whereas

during the summer the refund concerns only half of the paid price.

The next step after this informal description of any business rules to be

dynamically integrated in the running Airline CSrv-Nets specification consists

in formally expressing it as a five-element tuple with respect to the transition

6.2. A DYNAMICALLY ADAPTABLE CSRV-NETS AIRLINE

SPECIFICATION 169

governing the associated business activity. In the following the translation of

these three informal rules to their precise five-element tuples will be described.

The business rule R1 as tuple. The first rule R1 concerns the flight request

business activity, that is to say, it concerns the transition Tflg rq in the up-

graded CSrv-Nets airline specification. As it is the first rule to be introduced

in addition to the default rule, the counter for the version is to be set to one

(1). Moreover, when analysing this business rule, we see it mainly brings new

constraints or conditions. In other words, both the input and output places

with their corresponding arc-inscriptions remain unchanged as it is given by

the default behaviour (initial business rule). As we afore-suggested, in this case

the second and third elements in the tuple have to be set to ”-”. Finally, using

the variables from the (default) input messages and the input service state (i.e.),

the described conditions are straightforwardly expressed into the following for-

mal expression: (Fr = "Cairo" ∨ "Instanbul”) ∧ ("June" ≤ Dt ≤ "August")

∧(Py := Cx ∗ .50)

To summarise, the five-element tuple associated with the new business rule

R1 for flight request takes the following form:

〈Tflight rq : 1 |− ,− ,(AvSt(FG) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx)

∧ (Fr = "Cairo" ∨ "Instanbul”) ∧ ("June" ≤ Dt ≤ "August")

∧(Py := Cx ∗ .50)〉

The business rule R2 as tuple. This rule also concerns the flight request

and thus the transition Tflg rq. This systematically means that it is the second

version or alternative besides the default behaviour, and thus the counter for

the version is to be set to two (2). In contrast to the first rule, this rule

6.2. A DYNAMICALLY ADAPTABLE CSRV-NETS AIRLINE

SPECIFICATION 170

is to be triggered by the simultaneous occurrence of two requests (i.e. from

two persons). This implies that from the input place FlRq (flight-request) we

require two messages, one for instance from Cs1 and the second from Cs2 but

the same parameters (i.e. origin, destination, date, cost). The third element

in the tuple, that is, the output places and their corresponding inscriptions

remain unchanged as in the default; so we abbreviate them using the symbol

”-”. The last element in the tuple concerns the condition, which was formulated

for the above rule. We should just note that since two persons are at stake, the

available seat should greater than 2 and both the two customer Ids (i.e. Cs1

and Cs2) have to be added to the reservation list Rs. The flight cost should of

course be less than the maximum budget of any of the two customers. All this

tuple takes the following form:

〈Tflg rq : 2 |(F lRq, F lgRq(Cs1.Ag, Fr.To.Dt.Tm.Mx) F lgRq(Cs2.Ag, Fr.

To.Dt.Tm.Mx)) (F lSt, 〈Fg|FgInf : [R.Fr.To.Dt.Tm.Cx], AvSt(Fg),

Rsv : Rs, DlRs : Dy〉) ,− , (AvSt(FG) ≥ 2)∧
Rs.[Cs1.Cs2.R] ∧ (Cx ≤ Mx) ∧ (Fr = "Las Vigas") ∧ ("Jan." = Dt)

∧(Py := 2 ∗ Cx ∗ .70)〉

The business rule R3 as tuple. This new business rule concerns the cancel

activity and thus the transition Tflg cl as the first version besides the default

version. As for the first introduced rule, this rule mainly focusses on the con-

dition part, and henceforth the two input and output of the second and third

elements of the tuple as abbreviated to ”-”. The condition itself is composed

of a disjunction of two expressions: one concerning the Christmas period (i.e.

between 15 and 30th of December), where the sum to be refunded is to set the

6.2. A DYNAMICALLY ADAPTABLE CSRV-NETS AIRLINE

SPECIFICATION 171

VAT, and the summer period where just half is refunded. all the resulted tuple

is to be expressed as follows:

〈Tflg cl : 1 |− ,− ,(Cx ∈ Fm) ∧ ("15 Dec." ≤ Dt ≤ "30 Dec.")

∧(Rfnd := V at(Py)) ∨ ("May" ≤ Dt ≤ "Aug.") ∧ (Rfnd := Py ∗ .5))〉

6.2.3 The Emerging of the Three (Rules-As-)Tuples at

the Adaptability-Level

As depicted in Figure 6.3, for simplicity we have skipped all the places and

associated transitions for manipulating the rules as tuples. In other words, we

just assume that the three above tuples have been introduced using the (meta-

)transition TAdBh (for the second rule TAdBh1 as it is the second version.

That means that the place Ad Bh should have been containing three tokens of

the form:

- Add Bh(Tflg rq, , , (Fr = "Cairo" ∨ "Instanbul”)

∧("June" ≤ Dt ≤ "August") ∧ (Py := Cx ∗ .50)

- Add Bh(Tflg rq, (F lRq, F lgRq(Cs1.Ag, Fr.To.Dt.Tm.Mx)

F lgRq(Cs2.Ag.Fr.To.Dt.Tm.Mx) (F lSt, 〈Fg|FgInf :

[R.Fr.To.Dt.Tm.Cx], AvSt(Fg), Rsv : Rs, DlRs :

Dy〉) ,− , (AvSt(FG) ≥ 2)∧ Rs.[Cs1.Cs2.R] ∧ (Cx ≤ Mx)

∧(Fr = "Las Vigas") ∧("Jan." = Dt) ∧ (Py := 2 ∗ Cx ∗ .70))

- Add Bh(Tflg cl,− ,− ,(Cx ∈ Fm) ∧ ("15 Dec." ≤ Dt ≤ "30 Dec.")

∧(Rfnd := V at(Py)) ∨("May" ≤ Dt ≤ "Aug." ∧ (Rfnd := Py ∗ .5))

The firing of the (meta-)transition TAdBh three times successively results in

the emerging of three tuples in the meta-place Brs.Airline-Place as depicted

6.2. A DYNAMICALLY ADAPTABLE CSRV-NETS AIRLINE

SPECIFICATION 172

in the upper-layer of Figure 6.3. That is to say, three new rules have been

dynamically introduced at that adaptability-level. To keep the Figure man-

ageable we have indeed skipped this self-explained firing. Given these rules, it

is important to emphasise that we can in the same spirit change and/or delete

them through the two other (meta-) transitions (and meta-places).

6.2.4 The Dynamic Shifting Down/Up of these New

Rules on the Base-Level

After demonstrating how any business rules can be manipulated at runtime at

the adaptability-level, we will be able to activate any of these new rules for

firing the corresponding transitions. This dynamic activation is to be governed

using the two-step firing mechanism we forwarded in the above definition.

Besides this dynamic activation of any rule from the adaptability-level in-

stead or in combination with the default initial behaviour, we can also at

design-time change this default behaviour by any new emerging rule from the

adaptability-level. In the following we illustrate this design-time update of

default behaviours for both the flight request and cancel transitions. More pre-

cisely, let us bring the rule (R1) as a default for the transition Tflg rq and

the rule (R3) as a default for the transition Tflg cl. This also means that

the default behaviours of these two transitions have to be shifted up to the

adaptability-level while shifting down those corresponding to (R1) and (R3).

Formally the shifting up consists of introducing the two default behaviours

through the meta-transition Tad Bh as we explained for the three emerging

new rules. For the sake of simplicity, we are skipping this trivial phase and

assuming directly that these two default behaviours have already been added

6.3. SUMMARY 173

to the meta-place through a two-time firing of this meta-transition.

The ultimate result is depicted in Figure 6.4. That is, first the default behav-

iour for both transitions Tflg rq and Tflg cl is shifted up at the adaptability-

level. Secondly, the behaviour associated with the rules (R1) and (R3) is dis-

patched as it should be on the corresponding input/output inscriptions and

conditions. In other words, with this judicious combination of design- and

runtime-adaptability, we are in a position to dynamically adapt any CSrv-

Nets specification and monitor that change.

6.3 Summary

The purpose of this chapter is to go beyond the design-time adaptability of be-

havioural features governed by event-driven business rules. This soundly extend

the conceptual model by endowing its constituents (e.g. interfaces, local and

global composite services) with adaptability level, where rules can be dynami-

cally manipulated. For the dynamic shifting up/ down of such business rules of

services, we propose reflection mechanism.

6.3. SUMMARY 174

. . . .

. . .

FlgBk(...)

ChkSeat

. . .

. . .
ChSt(...)

. . .

. . .

. . .

. . .

 A
da

pt
ab

ili
ty

−
le

ve
l f

or
 B

us
in

es
s

R
ul

es

FlSt

. . .

F
lB

k

. . .

FlgCl(anni,...)

. . .

FlgRq(Ann,..)

FlgRsv(fl1,..)

. . .

Flgbkd(Cs,..)

PlgPnt(Cs,...)

FlgPay(Cs,...)

FlgRfnd(Cs,..)

FlgCl(Cs,...)

The Flight Service Interface Behavioural Specification

F
lR

q
F

lC
l

F
lR

s
F

lB
kd

E
xp

or
te

d
(i

nv
ok

ed
)

m
es

sa
ge

s
F

lP
ay

F
lR

fd
F

lc
ld

Tflg_rq

Tflg_bk

Tflg_cl

Im
po

rt
ed

 (
re

ce
iv

ed
)

m
es

sa
ge

s

The Adaptability−level for Business Rules for Airlines Runtime Manipulation

BRs.AirLine−Place

〈F g1|F gInf : [K89.Uml.P aris.12306.1430.230], AvSt(F g)..〉
〈F g2|F gInf : [I24.London.DC.02606.2245.817], AvSt(F g)..〉

F lgRq(Cs.Ag, F r.To.Dt.Tm.Mx) �� ITr
2

〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉 �� ITr
3

RsSt(Cs, F g) �� ITr
1

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (P y := Cx)

∧((Ag ≤ 18) ∧ (P y := Cx ∗ 08))) �� CDr

F lgRqd(Cs, F g, [R.F r.To.Dt.Tm], Py, Dy) �� OTr

F lgBk(Cs, R, Dy, Py) �� ITb
1

〈F G|F gInf : [R.F r.To.Dt.Tm.Cx], Rsv.Rs, Cmf : F m〉 �� ITb
2

(Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (P y = Cx) ∧ (P n = 0)∧
(Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (P n := P y ∗ 0.1)) �� CDb

F lgBkd(Cs, R.F r.To.Dt.Tm, Py) �� OTb
1

F lgPay(Cs, R, Py) ∧ F lgPnl(Cs, R, Pn) �� OTb
2

F lgCl(Cs, R, Py, Dt) �� ITc
1

〈F g|F gInf : [R.Dt],Rsv : Rs, Cmf : F m〉 �� ITc
2

((Cs ∈ Rs) ∧ (Rfnd := Py)) ∨ ((Cs ∈ F m) ∧ (Dc ≤ Dt)∧
(Rfnd = P y ∗ 0.85)) ∨ ((Cs ∈ F m) ∧ (Rfnd = P y ∗ 0.45)) �� CDb

F lgRfnd(Cs, R, Rfnd) �� OTc
1

〈Tflg rq : vr | (F lRq, IT r
3) (ChkS, IT r

1) (F lSt, IT r
3) , (F lRs, OT r

1) , CDr〉
〈Tflg bk : vb | (F lBk, IT b

1) (F lSt, IT b
2) , (F lBkd, OT r

1) (F lPay, OT r
2) , CDb〉

〈Tflg cl : vc | (F lCl, IT c
1) (F lSt, IT c

2) , (F lRfd, OT r
1) (F lcld, OT r

2) , CDc〉

F lgCld(Cs, R) �� OTc
2

〈Tflight rq : 1 |− ,− ,

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (F r = "Cairo" ∨ "Instanbul”)

∧("June" ≤ Dt ≤ "August") ∧ (Py := Cx ∗ .50)〉

〈Tflg rq : 2 |(F lRq, F lgRq(Cs1.Ag, F r.To.Dt.Tm.Mx) F lgRq(Cs2.Ag, F r.To.Dt.Tm.Mx))

(F lSt, 〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉) ,− ,

(AvSt(F G) ≥ 2) ∧ Rs.[Cs1.Cs2.R] ∧ (Cx ≤ Mx) ∧ (F r = "Las Vigas") ∧ ("Jan." = Dt) ∧ (Py := 2 ∗ Cx ∗ .70)

〈Tflg cl : 1 |− ,− ,(Cx ∈ F m)∧
("15 Dec." ≤ Dt ≤ "30 Dec.") ∧ (Rfnd := V at(Py)) ∨ ("May" ≤ Dt ≤ "Aug." ∧ (Rfnd := Py ∗ .5))

Figure 6.3: The Runtime Adaptability of CSrv-Nets flight service

6.3. SUMMARY 175

. . . .

. . .

FlgBk(...)

ChkSeat

. . .

. . .
ChSt(...)

. . .

. . .

. . .

. . .

 A
da

pt
ab

ili
ty

−
le

ve
l f

or
 B

us
in

es
s

R
ul

es

FlSt

. . .

F
lB

k

. . .

FlgCl(anni,...)

. . .

FlgRq(Ann,..)

FlgRsv(fl1,..)

. . .

Flgbkd(Cs,..)

PlgPnt(Cs,...)

FlgPay(Cs,...)

FlgRfnd(Cs,..)

FlgCl(Cs,...)

The Flight Service Interface Behavioural Specification

F
lR

q
F

lC
l

F
lR

s
F

lB
kd

E
xp

or
te

d
(i

nv
ok

ed
)

m
es

sa
ge

s
F

lP
ay

F
lR

fd
F

lc
ld

Tflg_rq

Tflg_bk

Tflg_cl

Im
po

rt
ed

 (
re

ce
iv

ed
)

m
es

sa
ge

s

The Adaptability−level for Business Rules for Airlines Runtime Manipulation

BRs.AirLine−Place

〈F g1|F gInf : [K89.Uml.P aris.12306.1430.230], AvSt(F g)..〉
〈F g2|F gInf : [I24.London.DC.02606.2245.817], AvSt(F g)..〉

F lgRq(Cs.Ag, F r.To.Dt.Tm.Mx) �� ITr
2

〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉 �� ITr
3

RsSt(Cs, F g) �� ITr
1

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (P y := Cx) ∧ (F r = "Cairo"∨)

"Instanbul” ∧ ("June" ≤ Dt ≤ "August") ∧ (P y := Cx ∗ .50) �� CDr

F lgRqd(Cs, F g, [R.F r.To.Dt.Tm], Py, Dy) �� OTr

F lgBk(Cs, R, Dy, Py) �� ITb
1

〈F G|F gInf : [R.F r.To.Dt.Tm.Cx], Rsv.Rs, Cmf : F m〉 �� ITb
2

(Dc ≤ Dy) ∧ (Cs ∈ Rs) ∧ (P y = Cx) ∧ (P n = 0)∧
(Cmf.[Cs.R]) ∧ ((Dc ≥ Dy) ∧ (P n := P y ∗ 0.1)) �� CDb

F lgBkd(Cs, R.F r.To.Dt.Tm, Py) �� OTb
1

F lgPay(Cs, R, Py) ∧ F lgPnl(Cs, R, Pn) �� OTb
2

F lgCl(Cs, R, Py, Dt) �� ITc
1

〈F g|F gInf : [R.Dt],Rsv : Rs, Cmf : F m〉 �� ITc
2

((Cs ∈ F m) ∧ ("15 Dec." ≤ Dt ≤ "30 Dec.")∧
(Rfnd := V at(P y)) ∨ ("May" ≤ Dt ≤ "Aug." ∧ (Rfnd := Py ∗ .5)) �� CDb

F lgRfnd(Cs, R, Rfnd) �� OTc
1

〈Tflg rq : vr | (F lRq, IT r
3) (ChkS, IT r

1) (F lSt, IT r
3) , (F lRs, OT r

1) , CDr〉
〈Tflg bk : vb | (F lBk, IT b

1) (F lSt, IT b
2) , (F lBkd, OT r

1) (F lPay, OT r
2) , CDb〉

〈Tflg cl : vc | (F lCl, IT c
1) (F lSt, IT c

2) , (F lRfd, OT r
1) (F lcld, OT r

2) , CDc〉

F lgCld(Cs, R) �� OTc
2

〈Tflight rq : 1 |−,− ,

(AvSt(F G) ≥ 1) ∧ Rs.[Cs.R] ∧ (Cx ≤ Mx) ∧ (Py := Cx)

wedge((Ag ≤ 18) ∧ (Py := Cx ∗ 08))〉

〈Tflg rq : 2 |(F lRq, F lgRq(Cs1.Ag, F r.To.Dt.Tm.Mx) F lgRq(Cs2.Ag, F r.To.Dt.Tm.Mx))

(F lSt, 〈F g|F gInf : [R.F r.To.Dt.Tm.Cx], AvSt(F g), Rsv : Rs, DlRs : Dy〉) ,− ,

(AvSt(F G) ≥ 2) ∧ Rs.[Cs1.Cs2.R] ∧ (Cx ≤ Mx) ∧ (F r = "Las Vigas") ∧ ("Jan." = Dt) ∧ (Py := 2 ∗ Cx ∗ .70)

〈Tflg cl : 1 |− ,− ,((Cs ∈ Rs) ∧ (Rfnd := Py)) ∨ ((Cs ∈ F m) ∧ (Dc ≤ Dt))∧
(Rfnd = Py ∗ 0.85) ∨ ((Cs ∈ F m) ∧ (Rfnd = Py ∗ 0.45))〉

Figure 6.4: (Shifted) Runtime Adaptability of CSrv-Nets flight service

Chapter 7

Conclusions and Future Work

The main objective that we have been focussing on during this thesis con-

cerns the formal specification and validation of dynamically adaptive knowledge-

intensive service-driven business applications. The thesis puts forwards an inte-

grated and progressive approach based on high-level Petri nets and event-driven

business rules. In this closing chapter, we first summarise the main achieved

contributions. Secondly, we present some of the possible extensions of this work

towards a more complete approach and methodology.

7.1 Thesis Contribution

As the service-oriented paradigm with its Web services technology and stan-

dards are getting increasingly maturing, more and more (worldwide) cross-

organisations and governmental institutions are shifting towards this technol-

ogy at a fast pace. Among other critical requirements, this service-oriented

tendency implies complex composite service applications to be engineered and

developed, that should exhibit at least the following features. Firstly, most po-

7.1. THESIS CONTRIBUTION 177

tential service applications such as E-Commerce, E-health and E-Government

are by essence knowledge-intensive, with more specifically event-driven busi-

ness rule-centric applications. Secondly, these service-driven applications are

mostly mission critical, which implies that only a high degree of preciseness and

formality are able to ensure this feature. Thirdly, to cope with swift competi-

tion, market volatility and economy changes, these service-driven applications

imperatively are required to be dynamic, evolving and adaptive.

In this thesis, we have thus been addressing these three crucial features in

today’s complex service-driven applications, namely: business rule-centricity;

formal foundation and runtime adaptability. More precisely, we put forward

an integrated and progressive approach for specifying and validating service-

driven rule-centric and adaptive business applications. The approach is based

on an innovative variant of high-level Petri nets, we referred to as adaptive

CCSrv-Nets. This framework can be distinguished at least with the following

characteristics:

Stateful and Conversational: The fact that CCSrv-Nets intrinsically per-

mits coping with both the type (e.g. as algebraic service specification)

and the service instances (i.e. service states and message instances), we

demonstrated how they are able to deal with persistency. Conversation

is dealt with the using of any partial-ordering of transitions (as business-

activities), that is, parallelism, sequence, choices and so on.

Inherently Rule-centric: CCSrv-Nets transitions are incrementally built

to directly reflect the corresponding event-driven business rule. In partic-

ular, any conditions that are complex are straightforwardly constructed

using first-order expressions with the involved message parameters and

7.1. THESIS CONTRIBUTION 178

properties values (as variables).

Validation through Visualisation: As we demonstrated any CCSrv-Nets

Web services specification can be validated by animating it with any ini-

tial configuration (ie, set of service states and message instances). The

validation purposes includes the detection of errors, misconceptions and

failure. The fact that the validation is graphical and can be achieved

with simultaneous firing of different activities make it very attractive and

understandable.

Locally and Globally Compositional: As we developed respectively in

chapter 4 and 5, we proposed two levels for specifying and validated

rule-centric service-driven applications. First, the usual so-called service

orchestration can be achieved by focussing on one service and calling oth-

ers; for instance we specified Airline services which may call the banking

services. The second level of specification concerns the so-called chore-

ography where different services have to be invoked and composed with

the same priorities; the example we developed concerns the Agency service

which integrates different services including Airlines, Hotels, and Banking.

Behaviourally Runtime Adaptable: The most significant challenging con-

tribution of this thesis concerns the dynamic adaptability, where we are

requested to be highly innovative. We thus put forward on top of each

CCSrv-Nets specification an extra adaptability-level and linked it to

the base-level in a way that business rules can be dynamically shifted up

and down.

In summary the most significant contributions of this thesis with respect

7.1. THESIS CONTRIBUTION 179

to the formal engineering of adaptive and knowledge-intensive service-driven

business applications could be highlighted in the following points:

A formalism for Specifying and Validating these Applications: The

formalism is progressively constructed by first semi-formally modelling

of the concerned service-driven applications using UML class-diagrams

and business rules. The CCSrv-Nets formalism as we just emphasised

permits to intrinsically integrate such business rules in the modelled

service-oriented business process, with the possibilities of dealing with

both orchestration and choreography in a harmonious complementary

manner.

Inherent Design-time Rule-centric Adaptability: Given the fact that we

have been intrinsically integrating event-driven business rules, the result-

ing CCSrv-Nets specification is by construction very flexible and adapt-

able. Moreover, at the design-time any modelled business rules as tran-

sitional behaviour can be updated as requested. More precisely, we can

change the conditions and/or any input/output arc-inscriptions of the

chosen transition.

Emerging Runtime Behavioural Adaptability: As we emphasised this is

the most innovative contribution of this thesis, so far no proposals have

been able to cope with runtime adaptability as we put forward in this

thesis. We were thus able to dynamically weave/unweave any business rule

as tuple from/to the adaptability-level, where rules can be dynamically

manipulated (i.e. added, removed or changed).

7.2. FUTURE WORK 180

7.2 Future Work

After having put forward this crucial step towards rigorously modelling and

validating adaptive and rule-centric service applications, we are aware that more

milestones are required towards an integrated, practical and methodologically

supported approach. More specifically, we are aware that much work remains

ahead at least on the four research and practical directions.

7.2.1 Deployment Using Advanced Web Standards

In this thesis we have been exclusively concentrating on the foundational-level,

through hinting on how the deployment-phase using advanced web services tech-

nology and standards can be achieved. We thus project that such deployment

must be addressed in more detail in any future extension of the proposed ap-

proach. In particular, once a specification is corrected, validated and adapted

it should be mapped to corresponding web standards such as WSDL and WS-

BPEL. Nevertheless, since such standards are static and purely process-centric,

to achieve a preserving and compliant mapping we require a more advanced en-

hancement of such standards. The integration of business rules within BPEL as

achieved in [49] could be a promising starting point. Another interesting direc-

tion towards that aim is the adoption of aspect-oriented techniques as recently

suggested in [19].

7.2.2 Supporting Tools For the Approach

After putting forwards the main milestones and concepts behind the CSrv-

Nets formalism for orchestrating rule-centric service-driven applications, we

found ourselves enforced to continue in one of the two following directions: (1)

7.2. FUTURE WORK 181

Building an advanced supporting software tools for environment using the JAVA

technology; or (2) fundamentally enhance this approach towards choregraphi-

cal composition (i.e. as developed in chapter 5) and come up with an extra

adaptability-layer for coping with runtime adaptability (chapter 6). Indeed,

both directions are very time-consuming and difficult to address. We have thus

decided to continue in the fundamental direction, though being highly aware of

the necessity of supporting tools for the approach.

Enhancing the practicability of this approach requires the development of

supporting software tools. These tools should include at least: (1) an editor

simulator for CCSrv-Nets specification, that is, this tool should allow the

designer to describe the specification, correct it and validate it using graphi-

cal simulation as we highlighted in the thesis. The second complementing tool

should cope with the runtime adaptability, that is, it should permit the ma-

nipulation of business rules as tuples, dynamically bringing them down to the

base-level and animating them as we showed in detail in the previous chapter.

7.2.3 Extensions Towards Formal Verification

Since our research group has wide experience in the formal verification of com-

plex systems using the temporal setting, it would be a promising direction to

extend this work towards verification, instead of just modelling and validation.

More specifically, we argue that the research explored by [89] in leveraging ITL

towards composing and verifying behavioural Web services could be a good

starting point in that direction. Indeed, we claim that it is quite possible since

our transitions could be easily expressed in this ITL-Web services framework.

REFERENCES 182

References

[1] Kavantzas, N and Olsson, G and Mischkinsky, J. Web Services Choreography
Description Language 1.0. http://www.w3.org/TR/ ws-cdl-10/, w3.org, 2004.

[2] Aalst, W. The Application of Petri Nets to Workflow Management. Journal of
Circuits, Systems, and Computers, 8(1):21–66, 1998.

[3] Aalst, W. Don‘t Go with the Flow: Web services Composition Standards
Exposed. IEEE Intelligent Systems, 18:72–76, 2003.

[4] Andrew, S and Tanenbaum, M. Distributed Systems: Principles and Paradigms.
Prentice Hall PTR, 2001.

[5] Ankolekar, A. DAML-S:Web Service Description for the Semantic Web. In Proc.
of International Semantic Web Conference (ISWC), pages 348–363. IEEE CS,
2002.

[6] Apt, K. Ten Years of Hoare’s Logic : A Survey - Part I. TOPLAS, 3(4):431–483,
1981.

[7] Asir, V. Web Services Description Language(1.1). W3C Recommendation,
http://www.w3.org/TR/wsdl, 2001.

[8] Baral, C and Gelfond, M. Logic Programming and Knowledge Representation.
Journal of Logic Programming, 19,20:73–148, 1994.

[9] Barkaoui, K. Dutheillet, C and Haddad, S. An Efficient Algorithm for Find-
ing Structural Deadlocks in Colored Petri Nets. In Proc. of 14th Int. Conf.
on Application and Theory of Petri nets, Lecture Notes in Computer Science.
Springer, 1993.

[10] Bernard, B and Michel, D. Modeling and Verification of Time Dependent
Systems Using Time Petri Nets. IEEE Trans, Software Eng, 259-273, 1991.

[11] Berners, L. Weaving the Web, 2000.

[12] Berners, L and Ora, L. The Semantic Web. Scientific Amrican, May 2001.

[13] Biggs, N and Wilson, R. Graph Theory. Oxford University Press, 1986.

[14] BM, C. Web Services Transaction. www.ibm.com/developerworks/web/library/ws-
transpec/, 2000.

REFERENCES 183

[15] Brauer, W and Reisig, W and Rozenberg, G. Petri Nets: Central Models and
Their Properties. In Proc. of 18th Int. Conf. on Application and Theor of Petri
nets, volume 254, 1986-1987.

[16] Cau, A and Moszkowski, B and Zedan, H. Interval Temporal Logic, 2005.

[17] Cazzola, W and Chiba, S and Ledoux, T. Reflection and Meta-Level Architec-
tures: State of the Art, and Future Trends. In ECOOP’2000 Workshop Reader,
volume 1964 of lncs, pages 1–15. Springer, 2000.

[18] Cazzola, W and Stroud, R and Tisato, F, editor. Reflection and Software
Engineering. Lecture Notes in Computer Science Vol. 1826, Springer, 1996.

[19] Charfi, A and Mezini, M. Hybrid Web Service Composition: Business Processes
Meet Business Rules. In Proceedings 2nd International Conference on Service
Oriented Computing (ICSOC04). ACM Press, 2004.

[20] David, B. Web Services Architecture, W3C Working Group Note, 2004.

[21] Dey, A. Towards a Services Platform for Context-Aware Applications, 2003.

[22] Duan, Z and Bernstein, A and Lewis, P. A Model for Abstract Process Specifi-
cation, Verification and Composition. In Proceedings of the 2nd international
conference on Service oriented computing (ICSOC’04), pages 232–241. ACM
Press, 2004.

[23] Edward, J. The Rule Markup Initiative. www.ruleml.org, 2005.

[24] Ehrig, H and Mahr, B. Fundamentals of Algebraic Specifications 1 : Equations
and Initial semantics. EATCS Monographs on Theoretical Computer Science,
21, 1985.

[25] Ehrig, H and Padberg, J. Graph Grammars and Petri Net Transformations.
Lecture Notes in Computer Science, 3098:496–536, 2004.

[26] Elrad, T and Filmanand, R and Bader, A. Special Issue on Aspect Oriented
Programming. Communications of the ACM, 44(10), 2001.

[27] Eric, N. Understanding Web Services. Addision-Wesley, September 2002.

[28] Foster, H. Behaviour Analysis And Verification of Web Service Composition,
note = Phd Thesis, University of london, 2004.

[29] Foster, H. A Rigorous Approach To Engineering Web Service Compositions,
2006.

[30] Goguen, J and Diaconescu, R. An Oxford Order Sorted Algebra. Mathematical
Structures in Computer Science, 4(4):363–392, 1994.

[31] Goguen, J and Winkler, T and Meseguer, J. Introducing OBJ. Technical Report
SRI-CSL-92-03, Computer Science Laboratory, SRI International, 1992.

[32] Grady, B and James, R and Ivar, J. Unified Modeling Language, Notation
Guide, Version 1.0. Addison-Wesley, 1998.

REFERENCES 184

[33] Haas, H. Web Services Activity. Technical report, W3C Web Services Activity
Group, 2002.

[34] Hamadi, R and Benatallah, B. A Petri Net-based Model for Web Service Com-
position. In Proceedings of the 14th Australasian Database Conference, vol-
ume 17 of CRPIT, pages 191–200. Australian Computer Society, 2003.

[35] Hamadi, R and Benatallah, B and Medjahed, B. Self-adapting Recovery Nets
for Policy-driven Exception Handling in Business Processes. Distrib Parallel
Databases, 23:1–44, 2008.

[36] Heather, K. Web services Conceptual Architecture, WSCA
1.0. Technical report, IBM Software Group, http://www-
306.ibm.com/software/solutions/webservices/pdf/WSCA.pdf, 2001.

[37] Heckel, R and Mariani, L. Automatic Conformance Testing of Web Services.
In Proceedings FASE, volume 3442, pages 34–48, 2005.

[38] Hewlett, P. Web Services Conversation Language (WSCL)1.0. W3C Recom-
mendation, http://www.w3.org/TR/wscl10/, 2002.

[39] Hunter, D, editor. Beginning XML. Wiley Publishing, 2004.

[40] ISO, 1995. Open Distributed Processing - Reference Model - Part2: Founda-
tions, International Standard 10746-2 / ITU-Recommendation X.902.

[41] James, B. Alexandra, P and Peter, W. An Event-Condition-Action Language
for XML. In Birkbeck College. University of London, 2003.

[42] Jensen, K. Coloured Petri Nets: Basic Concepts, Analysis Methods and practi-
cal Use - Volume 1 : Basic Concepts. EATCS Monographs in Computer Science,
26, 1992.

[43] Jensen, K and Rozenberg, G. High-level Petri Nets. Springer, 1991.

[44] Jhon, E. Web Services Coordination. www.ibm.com/developerworks/web/library/ws-
coor, 2000.

[45] John, D and Holger, L. Web Service Modelling Ontology. Technical report,
http://www.wsmo.org, 2004.

[46] Joseph, W. The Web services Debate: J2ee vs Net. pages 58–63. Commun,
ACM, 2003.

[47] K, Jensen. Coloured Petri Nets, Basic Concepts, Analysis Methods and Prac-
tical Use, volume 1 of Basic Concepts. Monographs in Theoretical Computer
Science. Springer, 1979.

[48] Kadir, W and Loucopoulos, P. Relating Evolving Business Rules to Software
Design. Journal of Systems Architecture, 2003.

[49] Kardasis, P and Loucopoulos, P. Expressing and Organising Business Rules.
Information and Software Technology, 2004.

REFERENCES 185

[50] Kiczales, G. Aspect-Oriented Programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP). LNCS, 1997.

[51] Kiczales, G. An Overview of AspectJ. In Proceedings of the European Con-
ference on Object-Oriented Programming (ECOOP’01), pages 327–353. LNCS
2072, 2001.

[52] Knolmayer, G and Endl, R and Pfahner, M. Modeling Processes and Workflows
by Business Rules. In Business Process Management, volume 1806, pages 16–29.
Springer, 2000.

[53] Lakos, C. From Coloured Petri Nets to Object Petri nets. In Proc. of 16th
Application and Theory of Petri Nets, volume 935 of Lecture Notes in Computer
Science, pages 278–287. Springer, 1995.

[54] Lakos, C. The Consistent Use of Names and Polymorphism in the Definition
of Objects Petri Nets. In Proc. of 17th Application and Theory of Petri Nets,
volume 1091 of Lecture Notes in Computer Science, pages 380–399. Springer,
1996.

[55] Lang, P and Obermair, W and Schrefl, M. Modeling Business Rules with
Situation / Activation Diagrams. In Proc. of the 13th International Conference
on Data Engineering (ICDE), pages 455–464. IEEE Computer Society Press,
1997.

[56] Leymann, F. Web Services Flow Language (WSFL 1.0). Technical report, IBM
Academy Of Technology, 2001.

[57] Martens, A. On Compatibility of Web Services. In Petri Net Newsletter, Volume
65, pages 12–20, 2003.

[58] Martens, A. On Usability of Web Services. In Proceedings of 1st Web Services
Quality Workshop (WQW 2003), 2003.

[59] Martens, A. Analyzing Web Service Based Business Processes. In Proceedings
FASE 2005, volume 3442, pages 19–33, 2005.

[60] Martin, D, Paolucci, M and Mcilraith, S, editor. Bringing Semantics to Web
Services: The OWL-S Approach, volume 3387 of Lecture Notes in Computer
Science. Springer, 2004.

[61] Martin, G and Marc, H. SOAP Version 1.2 Part 1: Messaging Framework.
W3C Recommendation, World wide Web Consortium, June 2003.

[62] Massimo, A and Walter, C. Implementing the Essence of Reflection: a Reflective
Run-Time Environment. In Proceedings of the 9th Annual ACM Symposium on
Applied Computing (SAC’04), Nicosia, Cyprus, 2004. ACM Press.

[63] Masuhara, H and Yonezawa, A. A Reflective Approach to Support Software
Evolution. In Proceedings of International Workshop on the Principles of Soft-
ware Evolution, pages 135–139, 1998.

REFERENCES 186

[64] Mecella, M and Presicce, F and Pernici, B. Modeling E-service Orchestration
Through Petri Nets. In TES 2002, volume 2444, pages 38–47, 2002.

[65] Meredith, G and Bjorg, S. Contracts and Types. Communications of the ACM,
46(10):41–47, 2003.

[66] Meseguer, J. A Logical Theory of Concurrent Objects and its Realization in the
Maude Language. In Research Directions in Object-Based Concurrency, pages
314–390. The MIT Press, 1993.

[67] Microsoft Corporation. The Component Object Model Specification, 1995.

[68] Microsoft, G. Microsofts NET Homepage. Technical report, 2005.

[69] Moldt, D and Offermann, S and Ortmann, J. A Proposal for Petri Net Based
Web Service Application Modeling. In In Proceedings of ICWE 2004, volume
4140, pages 93–97. Springer, 2004.

[70] Narayanan, S and McIlraith, S. Analysis and Simulation of Web Services.
Computer Networks, 42:675693, 2003.

[71] Object Management Group. The Common Object Request Broker: Architec-
ture and Specification(corba)rev 3.0.2.technical document. Technical report,
OMG, 2004.

[72] Orrins, B and Yang, J and Papazoglou, M. A Framework for Business Rule
Driven Web Service Composition. In Proc. of Conceptual Modeling for Novel
Application Domains, volume 2814, pages 52–64. Springer, 2003.

[73] Paananen, J. Introduction to and Comparision of Formalisms, 1995.
www.tml.hut.fi.

[74] Peterson, J. Petri Net Theory and the Modeling of Systems. In Englewood
Cliffs, Inc. New Jersey: Prentice Hall, 1981.

[75] Petri, C. Kommunikation mit Automaten, 1962.

[76] Piotr, C and Boualem, B and Rachid, H. A Top-Down Petri Net-Based Ap-
proach for Dynamic Workflow Modeling. of Lecture Notes in Computer Science,
pages 336–353, jan 2003.

[77] Poladian, V and Pedro, S and Shaw, M. Dynamic Configuration of Resource-
Aware Services. In Proceedings of the 26th International Conference on Software
Engineering (ICSE). ACM Press, 2004.

[78] Reisig, W. Petri Nets. Springer-Verlag EATCS Monographs on Theoretical
Computer Science, 4, 1982.

[79] Reisig, W. Petri Nets and Abstract Data Types. Theoretical Computer Science,
80:1–30, 1991.

[80] Reisig, W. Petri Nets and Algebraic Specifications. Theoretical Computer
Science, 80:1-24, 1991.

REFERENCES 187

[81] Richters, M and Gogolla, M. Validating UML Models and OCL Constraints. In
Proc. 3rd Int. Conf. Unified Modeling Language (UML’2000), LNCS. Springer,
2000.

[82] Robert, B. Web services and Flows (WSFL). Sams Publishing, September
2002.

[83] Roger, W. XML Web Services Basics. Technical report, Microsoft Corporation,
June 2002.

[84] Rosca, D and Wild, C. Towards a Flexible Deployment of Business Rules.
Expert Systems with Applications, 23:385–394, 2002.

[85] Schmidt, K. Verification of Siphons and Traps for algebraic Petri nets. In Proc.
of 18th Int. Conf. on Application and Theory of Petri nets, Lecture Notes in
Computer Science, pages 427–446. Springer, 1997.

[86] Sibertin, C. Communicative and Cooperative Nets. In Proc. of the 15th Inter-
national Confernce on the application and Theory of Petri Nets, volume 815 of
Lecture Notes in Computer Science. Springer, 1994.

[87] Sid, A and Ben, B. Web Service Business Process Execution
Language Version 2.0. Technical report, OASIS, http://www.oasis-
open.org/apps/org/workgroup/wsbpel/, December 2004.

[88] Skogan, D and Groenmo, R. Web Service Composition in UML. IEEE Inter-
national, pages 47–57, Sept 2004.

[89] Solanki, M. A Compositional Framework for the Specification, Verification and
Runtime Validation of Reactive Web services. Phd Thesis, 2005.

[90] Solanki, M and Cau, A and Zedan, H. Introducing Compositionality in Web
Service Descriptions. In Proceedings of the International Conference on World
Wide Web. IEEE Computer Society Press, 2004.

[91] Tabet, S and Wagner, G and Boley, H. MOF-RuleUML: The Abstract Syntax
of RuleML as a MOF Model. In Integrate, 2003.

[92] Technical. UDDI Technical White Paper. Technical report, OSSIS,
http://uddi.org/pubs/uddi-tech-wp.pdf, October 2004.

[93] Thatte, S. XLANG Web Services For Business Process Design, 2001.

[94] Valk, R. Concurrency in Communicating Object Petri Nets. In Concurrent
Object Oriented Petri Nets, volume 2001, pages 164–165. Springer, 2001.

[95] Van, A and Basten, T. Life-Cycle Inheritance: A Petri-Net-Based Approach.
In Proc. of ICATPN, pages 62–81, 1997.

[96] W3C. XML Schema. Technical report, http://www.w3c.org/XML/Schema,
2004.

[97] Wermlinger, M and Fiadeiro, J. A Graph Transformation Approach to Software
Architecture Reconfiguration. Science of Computer Programming, 44:133–155,
2002.

[98] Winskel, G and Nielsen, M. Models for Concurrency. Handbook of Logic in
Computer Science, 4, 1992.

[99] Yi, X and Kochut, K. A CP-nets-based Design and Verification Framework for
Web Services Composition. In IEEE International Conference on Web Services,
San Diego , California, pages 756–760, 2004.

[100] Yi, X and Kochut, K. A CPNets-based Framework for Design and Analysis for
Service Oriented Distributed Systems. ACM Transaction on Internet Technol-
ogy, 2005.

[101] Yonezawa, A and Matsuoka, S. Metalevel Architectures and Separation of Cross-
cutting Concerns, volume 2192. Springer, Proc. Reflection, 2001.

