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Abstract. Privacy risk assessments aim to analyze and quantify the
privacy risks associated with new systems. As such, they are critically
important in ensuring that adequate privacy protections are built in.
However, current methods to quantify privacy risk rely heavily on expe-
rienced analysts picking the “correct” risk level on e.g. a five-point scale.
In this paper, we argue that a more scientific quantification of privacy
risk increases accuracy and reliability and can thus make it easier to build
privacy-friendly systems. We discuss how the impact and likelihood of
privacy violations can be decomposed and quantified, and stress the im-
portance of meaningful metrics and units of measurement. We suggest
a method of quantifying and representing privacy risk that considers a
collection of factors as well as a variety of contexts and attacker models.
We conclude by identifying some of the major research questions to take
this approach further in a variety of application scenarios.
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1 Introduction

A privacy impact assessment (PIA) is the process of identifying and mitigating
privacy risks in an existing or planned system. During a privacy impact assess-
ment, organizations identify possible privacy risks, then quantify and rank these
risks, and finally take decisions on whether and how to reduce, remove, transfer,
or accept the risks. “PIA” also refers to the document produced in this process,
and it is generally seen as a living document in systems development. This is
because privacy risks can change over time: as a result of choices made dur-
ing design and implementation; as a result of evolution of the system and its
data governance; and as a result of developments in processing technology and
availability of related information in the system’s environment.

PIAs are an essential component of Privacy by Design [5], an approach to
dealing with privacy in a proactive rather than reactive way. They have been
recommended by national data protection authorities for more than 5 years al-
ready [13,6]. In the new European data protection regulation GDPR (General



Data Protection Regulation) [11], PTAs (called “data protection impact assess-
ments”) are mandated for some cases, including surveillance, data sharing, and
new technologies. This is relevant worldwide because of the GDPR’s global reach.
As PIAs include consultation with stakeholders, they are also a useful mecha-
nism for obtaining their buy-in in what might otherwise be seen as “creepy”
data processing processes.

However, the wider application and impact of PIAs may be limited because
privacy risk assessments currently rely heavily on experience, analogy and imag-
ination, that is, risk assessment more closely resembles an art than a science.
We argue that a more scientific approach to risk assessment can improve the
outcomes of privacy impact assessments by making them more consistent and
systematic. Beyond the use to measure and communicate an individual privacy
risk, we envision uses of these privacy risk metrics for at least five more purposes:
to quantify the effect of privacy controls, to compare the effects of different con-
trols, to analyze trends in privacy risk over time, to compute a system’s aggregate
privacy risk from its components, and to rank privacy risks.

Contributions. In this paper, we investigate how to quantify privacy risk
systematically with the aim of moving privacy risk assessment from being an
art closer to being a science. We focus on data driven privacy (i.e. the impact
of data decisions, possibly outside the data sphere) because this is the scope
of the GDPR, currently the strongest driver of PIAs. In line with the common
decomposition of risk into impact and likelihood, we discuss quantification of
impact and likelihood separately and suggest possible metrics for each (Sections
4 and 5). We then discuss how metrics for impact and likelihood can be com-
bined to form privacy risk metrics that can be used directly in privacy impact
assessments and privacy requirements engineering (Section 6). We illustrate an
initial approach to measuring and representing privacy risk in a case study with
two typical known privacy risks (Section 7). Finally, we highlight open issues in
the area of privacy risk quantification and set out an agenda for further research.

2 State of the Art

Before we discuss the benefits and building blocks of a more scientific method for
quantifying privacy risk, we briefly describe the state of the art in risk assessment,
privacy risk assessment, and privacy measurement.

Risk assessment. Risk is commonly calculated as some function of like-
lihood and impact. Several proposals exist to determine the risk of security
threats, for example the NIST guidelines [18] or the OWASP Risk Rating Method-
ology [20]. These are often cited in the privacy literature because security risks
can be quite close to privacy risks. An important difference between security
and privacy risk, however, is that harm to individuals is a primary consideration
for privacy risk (even if organizations may translate that into reputational and
regulatory risks), whereas it is of secondary importance for security risk.

Both NIST and OWASP rate impact and likelihood on Likert scales, e.g.
from “very low” to “very high”, with no clear guidelines on how to determine



the position on this scale. For example, the NIST guidelines [18] list examples of
adverse impacts, such as harm to operations, assets, or individuals, and explain
how the expected extent of each impact should be mapped to the Likert scale:
“significant” financial loss, for example, is a moderate impact, while “major”
financial loss is high impact. Likelihood is split into the likelihood that a threat
event occurs, and the likelihood that an adverse impact results from the threat
event. The ratings for likelihood and impact are then combined according to a
table that indicates the resulting risk rating for each combination of the separate
Likert scale ratings. For example, “low” impact and “very high” likelihood result
in a “low” overall risk. These impact and likelihood ratings are subjective, i.e.,
they may be rated differently by different people, and the resulting risk ratings
may not be accurate or reliable. In addition, while these tables allow to distin-
guish between the lowest and highest risks, they only give a partial ordering of
risks. For example, it may not be possible to decide the ordering of one risk with
low impact and high likelihood and another with high impact and low likelihood.

Privacy risk assessment. The OWASP top-10 list of privacy risks in web
applications [24] ranks privacy risks by their ratings for impact and likelihood.
Likelihood is measured as the frequency with which the risk occurs in existing
websites (determined via a survey of web developers and privacy/security ex-
perts), with a score of 0 indicating under 25%, and 3 indicating 75% or above.
Impact is measured in five dimensions as limited (1), considerable (2), or dev-
astating (3): two dimensions for organizational impact (reputation, finance) and
three dimensions for impact on individuals (reputation, finance, freedoms). The
final impact score is the average of the five scores.

Recently superseded guidance on privacy risk management by the French
data protection regulator CNIL [7] assesses risk severity, which is based on the
possible prejudicial effects — similar to impact — and on the level of identifiability
of data. The latter includes aspects of impact, i.e., the loss of highly identifiable
data is more impactful, as well as aspects of likelihood, i.e., the ease of exploiting
a data loss as a privacy attack depends on the level of identifiability of the targets
in the data set. Albakri et al. [1] employ this notion to abstract from attackers’
motivation and capacity, by assessing both privacy and security risks on the
basis of exploitability rather than likelihood.

Several bodies have published lists of known privacy risks, for example data
protection authorities [8], researchers [9], and regulators. Although these lists
can serve as starting points for privacy impact assessments, they typically do
not include a quantification or ranking of specific privacy risks.

Privacy measurement. Most privacy metrics that have been proposed in
the literature [28] focus on measuring the amount of privacy that a privacy
enhancing technology can provide against some adversary, for example expressed
as the adversary’s error, uncertainty, or information gain. Some privacy metrics
focus on the adversary’s success rate and may thus be suitable to quantify the
likelihood of a privacy violation (see Section 5). Very few privacy metrics measure
risk directly, for example, the privacy score in social networks [16] is computed as
the sensitivity of profile items multiplied by their visibility. However, this metric



has limited applicability because of its focus on social networks, and because it
does not consider harm to individuals.

3 Benefits and Building Blocks for Privacy Risk Metrics

We see four important benefits that can be achieved through the increased accu-
racy and reliability of a more scientific and systematic way of measuring privacy
risk. First, when building new systems, risk metrics could allow to compare the
risks associated with different ways of building the system. In particular, for
systems that are composed of smaller building blocks, risk could be measured
on the level of building blocks, and composition rules would allow to compute
the overall risk. In effect, such risk metrics allow to rationalize and substantiate
decisions about how systems that affect privacy are built and evaluated.

Second, risk metrics are also needed in privacy requirements engineering [9],
which is a similar process to privacy impact assessment (PTA), but with the goal
of deriving formal privacy requirements and identifying suitable protections in
the form of privacy-enhancing technologies. The privacy requirements engineer-
ing process can identify many risks and thus needs a way to prioritize risks.
For example, the LINDDUN method [9] uses risk scores, but does not state
specifically how these scores should be determined.

Third, risk metrics can also allow to set thresholds for when the regulator
needs to be consulted (e.g., as per GDPR guidance by the UK’s Information
Commissioner’s Office [14]), and thresholds for when privacy risks are too high
to permit data collection or processing. Thresholds can also play an important
role in organizations’ decisions to accept certain risks — for example, in large
organizations often risks need to associated with million dollars’ damages before
they warrant the board’s attention. Even vaguely defined metrics can support a
triage process on an identified collection of risks to determine the risks’ priorities
based on their severities.

Fourth, companies that offer cyber insurance benefit from accurate risk met-
rics to correctly determine insurance premiums. With their past experiences of
incidents that they have already paid given amounts out on, there is no doubt
that they already hold the largest vault of monetary valuations of privacy risks,
but are unlikely to share this, for commercial reasons.

Building blocks for a more scientific risk quantification. An important
foundation of a more scientific approach is the ability to measure and predict
the relevant quantities, i.e. the likelihood (Section 5) and impact (Section 4) of
privacy violations.

To make the measurement of privacy risk more systematic, we decompose
the impact and likelihood of privacy risk into more fine-grained components. As
Figure 1 shows, we decompose impact into the four components scale, sensitivity,
expectation, and harm, and decompose likelihood into the likelihoods of attack,
of adverse effect, and exploitability. Because these components are more specific
than the high-level concepts of impact and likelihood, it should be easier to find
meaningful metrics for them.
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Fig. 1. Components of privacy risk.

However, measuring these quantities is complicated by the fact that the
measurement necessarily relies on information known in the present. Future
data sharing or future technologies available to adversaries, such as advanced
re-identification algorithms, can significantly increase the privacy risk (but typi-
cally do not decrease the risk). Function creep — the repurposing of collected data
with the intent of realizing new functions — is also associated with an increase of
privacy risk. Any present-day measurement of privacy risk should therefore be
treated as a lower boundary on the real privacy risk.

Units of measurement are important to make risk metrics more understand-
able and manageable. Risks measured using the same unit can be meaningfully
aggregated, for example when computing the total privacy risk from contribut-
ing risk factors, and directly compared, for example when considering different
technical alternatives or when triaging and prioritizing risks. When units differ,
or when there is no unit at all (e.g., in Likert scales), such operations become
more difficult or fundamentally dubious.

In business, financial value may be acceptable as the ultimate unit which
is used to quantify direct costs — even reputation and human lives. However,
certainly the public sector does not operate on a competitive or financial basis,
and may prefer units that more closely relate to the concept of privacy risk.

4 Impact Quantification

To make the measurement of privacy impact more systematic, privacy impact
metrics should be based on four key components (see Figure 1): scale, sensitivity,
user expectations, and harm. Because of the intangible nature of some of these
components, we expect that their quantification will have to use proxy measures
instead of measuring the component directly.



4.1 Scale

The scale of a privacy violation roughly corresponds to the number of people
potentially affected by it. Everything else being equal, a violation that affects
one person is less severe than one that affects a hundred. This scale of privacy
violations is widely reported in the news when privacy breaches become public.
For example, there have been prominent instances of companies underestimating
the scale of privacy breaches when they are first reported, possibly to reduce neg-
ative impact on their reputation and hence on their share value. This underlines
the fact that companies treat the scale of a privacy violation as a meaningful
metric.

4.2 Sensitivity

The sensitivity of the affected data indicates the type and extent of possible
harm to individuals. The sensitivity of data is not necessarily fully aligned with
the GDPR’s categories of personal data and special category data — credit card
data are classified as personal data, but can cause direct financial harm, whereas
trade union membership is classified as special category data, but its exposure
would not be seen as harmful in many countries.

Importantly, if the privacy of more than one type of data is breached, then
the overall sensitivity may be higher than a linear combination of individual
sensitivities. For example, the information that a given person was at a location
(e.g. a celebrity at a nightclub) may not be that sensitive, but the combination
of that information with another person being at the same location at the same
time may produce sensitive evidence of a meeting between the two.

The sensitivity of data is thus difficult to quantify. Metrics from information
theory could be used to measure the amount of information (in bits) revealed by
a privacy breach; this will often be indicative of the level of identifiability, but
amount does not fully coincide with sensitivity. Another approach that is useful
when users can choose their individual privacy settings is to compute sensitivity
statistically from the privacy settings of a large number of users [16].

4.3 Expectation

The expectation individuals have of how their data will be treated, and how much
a privacy violation deviates from this expectation, indicates as how “creepy” a
privacy violation will be perceived. For example, users usually expect that their
data will be handled according to their personal privacy settings. Users may also
have expectations where their data is stored, for example, the leak of electronic
health records from a third party server located in a foreign country would be
unexpected because people may not expect that the storage of health records is
outsourced abroad. Depending on social norms, there may also be a reasonable
expectation of privacy in public places [19]. The GDPR makes it explicit that



the legality of data processing may depend on user expectations'. An approach
to quantify this deviation from expectation may be to first state the expectation
in terms of Solove’s taxonomy of privacy [23], i.e. to state which aspects of infor-
mation collection, information processing, information dissemination, or invasion
are expected by individuals. Then, a specific privacy violation can be analyzed
with respect to the number of aspects that differ from the stated expectation.

4.4 Harm

The harm to affected individuals can be financial, but can also be harm to their
reputation, harm caused by discrimination, distress, or anxiety, and harm due
to breaches of the individual’s rights and freedoms. These privacy harms are all
covered by (European) data protection legislation? and it was established before
the GDPR came in that individuals can sue for damages even where harms are
not material [12].

An important contributing factor in this is what has actually happened to
the data: has it been exposed, modified, processed non-transparently, or used to
make a decision affecting individuals? If exposed, to whom and what harms could
and would they cause, given existing and potential future information available
to the receivers of the data?

Similarly to sensitivity, harm may be cumulative. For example, a single data
disclosure may not be very harmful on its own, but a series of disclosures over a
period of time may finally allow an adversary to link data and cause serious harm.
This also means that it can be hard to attribute privacy harm to a single privacy
breach, which may lead to a dissolution of corporate responsibility, especially
when privacy breaches occur along the supply chain.

Harm can also encompass organizational harm, for example reputation dam-
age after the discovery of a privacy breach, or financial damage through loss of
customers or regulatory fines.

Finally, individuals may have different perceptions of the harm itself, espe-
cially non-financial harm. As a result, harm is difficult to quantify. A useful proxy
measure may be to estimate the amount of damages a court would be likely to
grant. However, not everything can be measured in money, and expressing harm
in monetary terms may not do justice to the extent of the harm caused. In this

! For example, Recital 47 on the legal basis of “legitimate interest” requires “tak-
ing into consideration the reasonable expectations of data subjects based on their
relationship with the controller.”

2 See GDPR Recital 75: “The risk to the rights and freedoms of natural persons, of
varying likelihood and severity, may result from data processing which could lead
to physical, material or non-material damage, in particular: where the processing
may give rise to discrimination, identity theft or fraud, financial loss, damage to
the reputation, loss of confidentiality of personal data protected by professional
secrecy, unauthorized reversal of pseudonymization, or any other significant economic
or social disadvantage; where data subjects might be deprived of their rights and
freedoms or prevented from exercising control over their personal data” [11]



case, a Likert scale could be used to estimate the extent of each type of harm
affected by a privacy breach.

5 Likelihood Quantification

Quantifying the likelihood of a privacy violation is somewhat more tangible than
quantifying the impact. Quantifying likelihood is particularly important because
most privacy controls affect the likelihood of a privacy violation instead of its
impact. The NIST guide on privacy engineering [3] focuses on the likelihood of
“problematic data actions.” However, we believe that a thorough quantification
of likelihood needs to take into account three aspects of likelihood: the likelihood
of an attack, the likelihood of an adverse effect, and exploitability.

5.1 Likelihood of attack

The likelihood of an attack focuses on the adversary’s motivation to cause a
privacy violation. This is very difficult to quantify because it may depend on
specific circumstances. For example, an adversary may be more motivated to
breach medical data privacy when a celebrity has recently been admitted to a
specific hospital. The arrival of the celebrity may even cause a perfectly innocent
staff member at the hospital to turn into an adversary who misuses their access
to patient records.

Instead of attempting to estimate this likelihood directly, we believe that
it is reasonable to assume that a motivated attacker is present (i.e., assume a
likelihood of 1), and to focus on quantifying the other aspects of likelihood.

5.2 Likelihood of adverse effect

The likelihood that an adverse effect actually materializes can similarly depend
on specific circumstances, and adverse effects may be very rare or not easily
attributable to a single privacy violation. The focus on harm to the individual
that is required to assess privacy risk means that it is not sufficient to assess
the typical case, but that the worst case also needs to be considered. Therefore,
instead of estimating the exact probability distribution for the occurrence of
adverse effects, we believe that it is more beneficial to assess privacy impact
for three distinct points on this distribution: the impact on the typical user,
the impact on the individual who would be affected worst, and the impact that
would be caused if the adversary didn’t have any additional information, i.e.,
the impact caused if this was a single, isolated privacy violation.

5.3 Exploitability

Exploitability focuses on the adversary’s ability to cause a privacy violation.
Specifically, a systematic quantification should focus on the probability that a



specific privacy violation occurs against an adversary with specific aims, capa-
bilities and additional knowledge that corresponds with a realistic attack model.
Considering possible adversaries explicitly is necessary to make the likelihood
quantification meaningful and highlights the assumptions made during the pri-
vacy risk assessment.

An adversary is any party that is interested in private data, whether within
the organization that holds the data, a connected organization such as a service
provider, or an external third party [10]. Privacy risks can exist even in the
absence of attacks, for example through human error and accident. Both can
be modeled as attacks by non-malicious insider adversaries. Privacy risks can
occur as a collateral effect even if the adversary is not primarily driven by a
privacy-related motivation. For example, an adversary targeting critical national
infrastructure may gather information for a spear-phishing attack, and in the
process cause privacy harms, even though this is not the primary goal.

There is a wide variety of adversary models considered in the literature (see
[28] for an overview). For adversaries that aim to breach privacy it is especially
important to consider inference algorithms that allow the adversary to learn
private information from public observations as well as the adversary’s prior
knowledge because combining data types can increase both likelihood and impact
of a privacy breach.

An important factor in exploitability is identifiability: many privacy attacks
are based on knowledge of sensitive information about an identified person. A
re-identification attack, in itself an abstract privacy attack, can be the essential
stepping stone in this, for example starting from “anonymized information or
“big data”. Quantification of re-identification risk is difficult [2], not least be-
cause there may be large differences between the possibilities of re-identifying a
specific individual (such as Governor Weld by Latanya Sweeney [26]), any indi-
vidual of choice, or all individuals in a given data set. The GDPR [11, Recital
26] nevertheless requires an explicit assessment of what an adversary may “rea-
sonably likely” use in attempting to re-identify information.

The result of modeling possible adversaries is a set of probability distributions
that indicate how likely it is for each adversary to succeed in breaching privacy.

6 Privacy Risk Metrics

Similarly to security risk metrics, a privacy risk metric could be defined as a
combination of metrics for impact and likelihood of privacy violations. However,
our discussion in the previous sections has shown that both the impact and the
likelihood of privacy risk are composed of several components that are not easily
integrated. For impact, using our suggested metrics above, we would need to
combine the number of people affected, the differences in user expectations, bits
of information revealed, and the (monetary equivalent of) harm to individuals.
Ideally, this combination should result in a metric with a meaningful unit, and
not just an arbitrary number. For likelihood, we need to consider both the like-
lihood of adverse effects and the exploitability for different kinds of adversaries.



As a result, the typical method of adding or multiplying Likert scores does not
appear suitable for privacy risk.

In the Introduction, we argued that privacy risk metrics are needed for five
purposes: to quantify the effect of privacy controls, to compare the effects of dif-
ferent controls, to analyze trends in privacy risk over time, to compute a system’s
aggregate privacy risk from its components, and to rank privacy risks. Each of
these purposes has a minimal requirement for the scale of measurement [25]
used by the privacy risk metric. For example, we need at least an ordinal scale
to rank privacy risks, and a ratio scale to analyze aggregate privacy risk in com-
plex systems. To analyze trends in privacy risk and to compare different privacy
controls, an ordinal scale is strictly speaking sufficient, but may not be fine-
grained enough to give meaningful or informative results. We show which scale
of measure is required to support each of the five purposes in Table 1.

Table 1. Measurement scales required for different purposes of privacy risk metrics

Purpose Scale of measure
Effectiveness of privacy controls Ordinal
Comparison of privacy controls Ordinal

Trends in privacy risk Ordinal
Calculation of system risk from components Ratio

Ranking of privacy risks Ordinal

We can see that Likert scores (ordinal, but coarse-grained) can be sufficient
for some purposes. However, they are not suitable to analyze the aggregate pri-
vacy risk in a complex system, and they are not desirable because, as we have
argued, they depend on subjective judgment and may therefore differ depend-
ing on who is performing the risk assessment. In some cases, however, it seems
unavoidable to use an ordinal scale, for example to express that an individual’s
freedoms have been infringed, or the level of distress experienced by an individ-
ual.

In these cases, it is unclear how two or more ordinal measures, e.g., for differ-
ent types of harm, should be combined because the commonly used operations
— addition and multiplication — are not defined for ordinal scales [25]. The usual
method of adding or multiplying impact and likelihood scores assigns numerical
scores to the levels on the ordinal scale, thus creating a false sense of an interval
or ratio scale, for which addition or multiplication would be permitted.

To achieve a clean combination of impact and likelihood metrics, we suggest
to measure the individual components separately and combine them visually. For
example, as shown in the case studies in Section 7 (Figs. 2 and 3), the impact
metrics can be combined in a radar plot, and the likelihoods for each adversary
type can be indicated with probability density functions or summarized in box
plots. This approach respects the essential multidimensionality of privacy risk
and allows to choose appropriate scales for each type of impact. For example,



employment-related harms could be assessed using a 5-point Likert scale ranging
from“annoying day” to “off with stress” to “fired/end of career,” whereas the
scale of the privacy violation could be assessed using the number of individuals
affected.

7 Case Study: Privacy Risks in a Flashlight App

To illustrate how a privacy risk assessment can analyze and visualize the com-
ponents of privacy risk that we have presented so far, we analyze an example
application for a mobile device, focusing on two privacy threats from the OWASP
top-10 list of privacy risks in web applications [24].

We consider a mobile application that allows users to use their phone as a
flashlight. During installation, the app has requested permission to geolocate the
user [22], and during usage the app displays advertisements [17].

7.1 Collection of Data not Required for Primary Purpose

The threat that an application collects data that is not required for its primary
purpose is rated on the OWASP list as the sixth-highest risk, with high impact
and very high frequency.

Assuming that the app stores phone identifiers and user locations in a database,
a privacy violation can be expected to affect all users of the app. Correspond-
ingly, the radar plot in Figure 2 shows that the scale is 100% in all cases.

The sensitivity of the data can be classified as very high because geolocation
data can allow inferences about behaviors, employment, health, and beliefs. This
is especially the case if the app can run in the background and continue to record
location data even when not in use.

The expectation of users is that a flashlight app does not collect, process,
or share geolocation information [15]. However, because the example app does
collect and process location data, the expectation differs from reality in two
aspects.

The app can cause harm to individual users in terms of reputation damage,
financial harm, distress, and a threat to life.

Reputational harm could be caused if, for example, it became public knowl-
edge that an individual regularly located in the red light district. In the worst
case, this could have severe consequences for employment or personal relation-
ships. The typical user may not have visited particularly sensitive locations, and
therefore the typical reputational harm would be much less severe.

Financial harm could be caused if an insurance company obtained the data,
determined that some customers were regularly located at a fast-food restaurant,
and decided that these customers should be paying higher insurance premiums.
In the worst case, the financial harm could therefore equal the additional yearly
cost of insurance to these users, whereas the typical user might not suffer any
financial harm.
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Fig. 2. Privacy risk caused by collection of data not required for primary purpose.

Harm in terms of distress could be caused if the data revealed a user’s home
location and patterns of their absence from home. As a result, users might be-
come afraid of burglaries. In the worst case, a user might happen to be a stalking
victim and may now have to relocate to avoid the stalker.

Harm as a threat to life could be caused if the app was used in a critical
environment such as a warzone. In the worst case, a soldier using the flashlight
app — maybe because the traditional flashlight has failed — might be targeted
by an enemy drone or hand grenade because the app has leaked the soldier’s
location [21].

We can estimate the likelihood of a privacy violation in terms of exploitability
for three cases. First, if the data has been collected but never used, an external
adversary would be limited to sniffing network traffic, which would be a rela-
tively difficult attack. Second, if the data has been leaked to the public, or if
an insider adversary has misused their access privileges, then re-identification
attacks are much easier to perform. Third, the data is most easily exploited if
an adversary has additional information that allows to link phone identifiers to
real user identities.

7.2 Sharing of Data with Third Party

The threat that an application shares data with a third party is the seventh-
highest risk on the OWASP list, with high impact and high frequency. We assume
that the flashlight app shares data with an advertising network, and that the ad
network also uses device fingerprinting to track user activity across all of their
applications. Figure 3 visualizes the impact and exploitability for this risk.
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Fig. 3. Privacy risk caused by sharing of data with third party.

Similarly to the first example, the privacy violation can affect all users. How-
ever, in some cases, users may have fewer or less interesting interactions with
their phones, or may be using ad blockers. In these cases, the scale in terms of
the number of affected users would be reduced.

The sensitivity of the data can vary depending on the type of activities
that a user performs. In the worst case, these can allow far-reaching inferences
about the user’s behaviors, purchases, and social life, but we expect that possible
inferences in the typical case will be somewhat more limited.

The expectation of users is that a flashlight app does not collect, process,
or share device fingerprints, all of which happen in this example. The reality
therefore differs from expectation in three aspects.

The primary harms caused by sharing of data with a third party are two
abstract types of harm: the violation of basic rights, and the loss of control over
data. The violation of rights is relatively limited, with the exception of children,
who are afforded more protection and whose rights are thus affected to a higher
degree. In contrast, the loss of control is fairly severe because the user not only
loses control over their data, but is also not informed of the data sharing.

The secondary harms caused by data sharing concern how the third party
uses the data, and can be grouped in distress, financial harm, and reputational
harm. Harm in terms of distress can be caused by targeted advertising, which is
typically a rather low-level annoyance. However, device fingerprinting increases
an individual’s identifiability, which, in the worst case, might lead to the identi-
fication of specific individuals as criminals.

Financial harm can be caused by differential pricing, that is, the case when
users are offered higher prices for products or services based on their profile.



Harm in terms of reputation damage can be caused, for example, if ads
targeted to one user appeared on other users’ devices that were falsely attributed
to the targeted user, for example the spouse’s phone. In a typical case, this may
only ruin birthday surprises, but in the worst case could lead to more severe
consequences for relationships or employment.

We can estimate the exploitability of this privacy risk for three types of ad-
versaries. First, the ad network itself is similar to the insider adversary in the
first example, but may be more easily able to exploit the risk because it already
has additional data from tracking the user across applications. Second, an ex-
ternal adversary who can only sniff network traffic would be somewhat more
limited than the external adversary in the first example because behavioral pro-
filing data is less easily recognizable than geolocation data. Finally, an adversary
with the ad network’s knowledge plus additional information that can be linked
to specific users is similarly powerful as in the first example.

7.3 Discussion

We have considered two significant and well-known abstract privacy risks in
a concrete scenario, with significant differences on the outcomes in several di-
mensions of privacy risk as well as in the adversary profiles. Considering the
separate factors and adversaries has led to a deeper understanding and more de-
tailed representation of the risks. Quantitative information mostly remained on
Likert scales, which means that not all questions we might ask of these scenarios,
such as “which risk is worse”, have received precise answers.

The OWASP list puts these risks at the same impact level. However, our
analysis shows that the impact in the first example is likely to be higher due to
the universally acknowledged sensitivity of location data and the potential worst-
case outcomes. This illustrates the additional insights created by our separate
analysis of factors for privacy risk.

8 Conclusion

This paper set out a research agenda of assessing privacy risk through decompos-
ing privacy risk into separate factors for both impact and likelihood. We showed
how these can be used on relatively coarse ordinal scales, and illustrated how
this can already be used to achieve better insight into specific privacy risks.

The next step would be to refine these metrics, measuring the factors di-
rectly, or through proxy measures — into finer-grained and potentially rational
scales; and to look at ways of integrating such metrics that recombine the vari-
ous dimensions into single values. Inspiration for this may be found in research
on multi-dimensional optimization. Such recombination of dimensional metrics
becomes essential for several of the potential uses of privacy risk measurement
that we indicated above.

The spectrum of metrics that may arise from such refinements and combina-
tions of elementary measurements is likely to be rich. This means that validation



of the alternatives becomes essential, in the first place through considering mul-
tiple extensive scenarios with rich collections of privacy risks, for example in the
contexts of smart cities or educational data analytics. It has been shown that the
strength of privacy metrics can differ between scenarios, and that many metrics
have weaknesses at least in some scenarios [27].

There are also mathematical criteria for evaluating privacy metrics. One of
these is monotonicity, i.e. that metrics should indicate lower privacy for stronger
adversaries [27]. In addition, it may be helpful to calibrate new privacy risk
metrics against a database of cases with known privacy risk, for example past
cases where the impact is not speculative anymore, in particular with regard to
privacy expectation and non-financial harm.

Finally, as with all rigorous methods supporting systems development, we
should also take an economical aspect into account. In privacy risk measure-
ment, we should avoid the false economy of accuracy, noting that “the time cost
of accuracy quite often outweighs the benefits for the organization” [4]. The
GDPR should increase the uptake of privacy impact assessment in general, but
it should not lead to a perception of the process as so complex that it becomes
a compliance tool for which cutting corners is desirable.
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