
Feature-based Approach to Bridge
the Information Technology and Business

Gap

PhD Thesis

Fayez Eid Alazemi

This thesis is submitted in partial fulfilment of the requirements

for the degree of Doctor of Philosophy.

Software Technology Research Laboratory

De Montfort University

Leicester - United Kingdom

2014

Dedication

To my parents, my wife and my children

for their love, support and encouragement

during this time of challenges

I

Abstract

The gap between business goals (problem domain), such as cost reduction, new

business processes, increasing competitive advantage, etc., and the supporting In-

formation Technology infrastructure (solution domain), such as the ability to imple-

ment software solutions to achieve these goals, is complex and challenging to bridge.

This gap emerges for many reasons; for instance, inefficient communication, domain

terminology misunderstanding or external factors, e.g. business change.

As most business and software products can be described by a set of features, a

promising solution would be to link both the problem and solution domains based

on these features. Thus, the proposed approach aims to bridge the gap between the

problem and the solution domains by using a feature-based technique in order to

provide a quick and efficient means for understanding the relationships between IT

solutions and business goals.

The novelty of the proposed framework emanates from the three characteristics

of the business-IT gap: the problem domain, the solution domain and the matching

process. Besides the proposed feature-based IT-business framework, other contribu-

tions are proposed: a feature extracting method and feature matching algorithms.

The proposed approach is achieved in three phases. The first phase is to decom-

pose business needs and transform them into a feature model (presented in UML

diagrams); this is represented as a top-to-middle process. The second phase is a

reverse engineering process. A system program code is sliced into modules and

II

transformed into feature-based models (again, in UML diagrams); these are repre-

sented as a bottom-to-middle process. The third phase is a model-driven engineering

process. It uses model comparison techniques to match the UML feature models of

the top-to-middle and bottom-to-middle phases.

The presented approach in this research shows that features elicited from the

business goals can be matched to features extracted from in the IT side. This

proposed approach is feasible and able to provide a quick and efficient means for

improving feature-based business IT matching.

Two case studies are presented to demonstrate that the feature-oriented view of

features from the users’ perspective can be matched to the feature-oriented view of

features in the IT side. This matching can serve to remove any ambiguities that

may cause difficulties in the cases of system maintenance or system evolution, in

particular when there are changes in requirements, which is to be expected when

there is any business change.

III

Declaration

I declare that the work described in this thesis is original work undertaken by me for

the degree of Doctor of Philosophy, at the software Technology Research Laboratory

(STRL), at De Montfort University, United Kingdom.

No part of the material described in this thesis has been submitted for any award

of any other degree or qualification in this or any other university or college of ad-

vanced education.

This thesis is written by me and produced using LATEX.

Fayez Alazemi

IV

Publications

F. Alazemi and M. Alawairdhi. Feature-based Approach to Bridge the Information

Technology and Business Gap. September 17-19, 2013, page 87 pp . Baltimore, MD,

USA, 2013. Recent Researches in Telecommunications, Informatics, Electronics and

Signal Processing.

V

Acknowledgments

First and foremost, my deepest and humblest gratitude goes to Almighty Allah, who

gave me the patience, health and strength that I needed to complete this research.

I was very lucky to have Professor Hussein Zedan, the Director of the Laboratory,

as my supervisor. His continual guidance, scientific support and ideas have greatly

helped me in developing my thinking, technical writing and widening my vision.

Without his guidance, support and encouragement, this thesis would not have been

possible to accomplish.

Also, many thanks go to my second supervisor Dr. Amelia Platt for her encour-

agement and support.

I also would like to thank all of my colleagues, especially Abduallah Almarshid

and Saad Almutairi, in the Software Technology Research Laboratory at De Mont-

fort University for their valuable suggestions and discussions.

I am grateful to all members of the STRL for creating the academic and homelike

environment and for their continued support, especially Mrs. Lynn Ryan and Mrs.

Lindsey Trent.

I am also thankful to the staff in the Research Office at De Montfort University

for their excellent management.

I am deeply indebted to my friend Dr. Mohammed Alawairdhi for his concern

and encouragement through all my study years.

I would like to express my gratitude to my dear brothers and sisters for their

VI

support, concern and encouragement.

I would like also to express my sincere gratitude to my mother and father, who

gave their unending love and support, and for everything they have given in their life

for me. Without their care, prayers and support, it would have been very difficult

for me to accomplish this project.

I would like to express my deepest love and gratitude to my wife, who has stood

by me throughout all these difficult years, and who has offered me her constant

support, patience, encouragement and unconditional love. Finally, my love goes to

my children Khaled, Salma, Fares, Maha and Saud for the hope and encouragement

they have given to me, without knowing it, to complete this work.

VII

Contents

Dedication I

Abstract II

Declaration IV

Publications V

Acknowledgments VI

Table of Contents XIII

List of Figures XVI

List of Tables XVII

List of Abbreviations XVIII

1 Introduction 1

1.1 Overview . 2

1.2 Motivation . 4

1.2.1 Business-IT Gap . 4

1.2.2 Research Problem . 4

1.3 Thesis Scope and Research Question 5

VIII

CONTENTS

1.4 Research Methodology . 6

1.5 Measure of Success . 8

1.6 Contribution to Knowledge . 9

1.7 Thesis Structure . 9

2 Feature-based Approach: State of the Art 12

2.1 Features and Features-Oriented Software Development (FOSD) 13

2.1.1 The Concept of Feature . 13

2.1.2 Feature-Oriented Software Development (FOSD) 14

2.1.3 Feature Modelling . 15

2.1.4 Feature Interaction . 16

2.1.5 Feature Implementation . 18

2.2 Software Evolution and Software Re-engineering 19

2.2.1 Software Engineering . 19

2.2.2 Software Re-engineering . 20

2.2.2.1 Re-engineering Classification and Software Abstraction 21

2.2.3 Reverse Engineering . 23

2.2.4 Software Evolution . 24

2.2.5 Laws of Software Evolution 25

2.2.6 Legacy Software System . 26

2.3 Software Architecture . 29

2.4 UML . 31

2.4.1 Introduction . 31

2.4.2 UML Concepts . 32

2.5 Program Slicing . 36

2.6 Requirement Engineering . 38

2.7 Model Comparison . 42

IX

CONTENTS

2.7.1 Model Comparison Phases . 42

2.7.2 Model Versioning . 43

2.7.3 Model Clone Detection . 44

2.7.4 Model Comparison Approaches 44

2.8 Conclusion . 46

3 Proposed Approach 47

3.1 Framework Overview . 48

3.2 Business Feature Elicitation . 55

3.2.1 Business Analysis . 56

3.2.2 Requirement Engineering . 57

3.3 IT Feature Extraction . 57

3.3.1 Program Understanding . 58

3.3.2 Program Slicing . 58

3.3.3 Program Dependence Graph 59

3.4 Feature Model Matching . 59

3.5 Conclusion . 60

4 Business Feature Elicitation 62

4.1 Overview . 63

4.2 Business Needs and Business Analysis 64

4.3 System Features . 66

4.4 Requirement Engineering . 68

4.4.1 Requirements Elicitation . 69

4.4.2 Requirement Analysis . 70

4.4.3 Requirement Specification . 71

4.4.4 Requirement Validation . 71

4.5 Requirement Elicitation Methods . 72

X

CONTENTS

4.5.1 Scenarios . 73

4.5.1.1 Scenarios and Requirement Elicitation 74

4.5.1.2 Scenarios . 76

4.5.2 Story Cards . 79

4.5.3 Analysis to Derive Features 81

4.6 UML-based Feature Modelling . 82

4.7 Conclusion . 85

5 IT Feature Extraction 86

5.1 Importance of the Phase . 87

5.2 Program Understanding . 89

5.3 Program Slicing Step . 90

5.4 Slices-to-UML Step . 93

5.4.1 IT Feature Representation . 96

5.5 Conclusion . 99

6 Feature Model Matching 101

6.1 Introduction . 102

6.2 The Matching Problem . 103

6.3 Model Comparison and Approaches 104

6.4 Proposed Model Matching Approach 107

6.4.1 Model Matching Example . 111

6.5 Conclusion . 115

7 Case Study 116

7.1 Overview . 117

7.2 Tool Support . 117

7.2.1 Eclipse . 117

XI

CONTENTS

7.2.2 Indus Java Program Slicer . 118

7.3 An ATM System . 119

7.3.1 The ATM Software System Application 120

7.3.2 Business Feature Elicitation Phase 125

7.3.2.1 Scenarios . 125

7.3.2.2 Story Cards . 127

7.3.2.3 Feature Presentation in UML Models 129

7.3.3 IT Feature Extraction Phase 130

7.3.3.1 Program Slicing Step 131

7.3.3.2 Program Dependency and Control Flow Graphs . . . 137

7.3.3.3 UML Model Feature Representation 138

7.3.4 Feature Model Matching Phase 140

7.3.4.1 Matching Algorithm 141

7.3.5 Matching Results . 142

7.4 A Library Management System . 142

7.4.1 The Library Management Software System Application 143

7.4.2 Business Feature Elicitation Phase 144

7.4.2.1 Scenario . 144

7.4.2.2 Story Cards . 145

7.4.2.3 Feature Presentation in UML Models 146

7.4.3 IT Feature Extraction Phase 147

7.4.3.1 Program Slicing Step 147

7.4.3.2 Program Dependency and Control Flow Graphs . . . 150

7.4.3.3 UML Model Feature Representation 151

7.4.4 Feature Model Matching Phase 152

7.4.4.1 Matching Algorithm 152

7.4.5 Matching Results . 153

XII

CONTENTS

7.5 Evaluation and Discussion . 153

7.6 Conclusion . 156

8 Conclusion And Future Work 158

8.1 Summary of the Thesis . 159

8.2 Research Questions Revisited . 160

8.3 Future Work . 161

Bibliography 181

A An ATM Case Study Source Code 182

XIII

List of Figures

2.1 Problem Domain and Solution Domain 13

2.2 Phases of the FOSD Process . 15

2.3 An Example of Feature Modelling with a Feature Diagram Notation . 16

2.4 Feature-Oriented Programming . 18

2.5 Re-engineering Classification and Software Abstraction 23

2.6 4+1 View Model . 29

2.7 UML Diagrams . 34

2.8 Levels of Requirements Engineering 40

3.1 An Overview of The Proposed Framework 49

3.2 Feature-Oriented IT-Business Framework 51

3.3 Framework Stages and Steps . 54

4.1 Needs, Features and Requirements 63

4.2 System Software Lifecycle . 64

4.3 Business Analysis Process . 65

4.4 ATM Use Case. 67

4.5 Components of Requirement Engineering Domain. 69

4.6 Iterative Requirement Elaboration Process 75

4.7 ATM Scenario . 77

4.8 Goals, Scenario and Features . 79

XIV

LIST OF FIGURES

4.9 Class Diagram - Display a Welcome Message. 83

4.10 Class Diagram - View Account Balance. 83

4.11 ATM User Authentication Activity Diagram 84

5.1 Level of Abstraction . 87

5.2 IT Feature Extraction Process . 89

5.3 Backward Slicing Example . 91

5.4 Forward Slicing Example . 92

5.5 Program Dependence Graph . 93

5.6 Control Flow Graph . 94

5.7 CFG and Program Slicing . 95

5.8 Potential System Features in a CFG 98

5.9 UML Class Diagram . 99

6.1 IT-Business Framework and Matching Stage 102

6.2 A Scholarly Teacher in USA and UK Academic System 104

6.3 Intersection Shape for ∆(v1, v2) . 106

6.4 Class Converting for a Matching Algorithm 108

6.5 Feature Model Mapping . 109

6.6 Class Model Matching Example . 111

6.7 Proposed Algorithm Activity Diagram 112

7.1 Indus Slicing Result . 119

7.2 A User Interface for an ATM Software System 120

7.3 An ATM User Welcome Screen . 121

7.4 User Authentication Screen . 122

7.5 Invalid Data Entry Screen . 123

7.6 Main Menu Screen of the ATM Software System 124

7.7 ATM Scenario . 126

XV

LIST OF FIGURES

7.8 Class UML Representation of the Welcome Feature 129

7.9 Activity UML Representation of ’authenticated user’ Feature 130

7.10 ATM Software Classes and Methods 132

7.11 Program Slices Across the System . 133

7.12 Snapshot of the Indus Slicing Tool . 134

7.13 Part of The ATM Source Code Shows Sliced Statements 137

7.14 CFG and Statements Both Inside and Outside the Slice. 138

7.15 Welcome UML Representation . 139

7.16 UML Activity Diagram of ’authenticate user’ Representation 140

7.17 : Library Management System Scenario 144

7.18 : UML Class for Confirm Add Book Confirmation Message 147

7.19 Part of the Library Management System Source Code 150

7.20 CFG Includes Statements Both Inside and Outside the Slice. 150

7.21 UML Class for add Book Confirm Message 151

XVI

List of Tables

2.1 Legacy System Maintenance Options 28

4.1 Story Card for Bank Customer - Welcome Screen 80

4.2 Story Card for Login . 80

4.3 Story Card for Main Menu . 81

4.4 Feature 1 - Welcome Screen . 82

4.5 Feature 2 - User Authentication . 82

7.1 ATM System Source Code Statistics 124

7.2 Story Card for Customer - Welcome 127

7.3 Story Card for Customer - Login . 128

7.4 Feature 1 - Welcome Screen . 128

7.5 Feature 2 - User Authentication . 129

7.6 Library Management System Source Code Statistics 143

7.7 Story Card for Library Management System - Add Book And Confirm146

7.8 Feature 1 - Confirm Add Book . 146

XVII

List of Abbreviation

CFGs Control Flow Graphs

CFG Control Flow Graph

RE Requirements Engineering

IT Information Technologies

FOSD Feature-Oriented Software Development

FODA Feature-Oriented Domain Analysis

FM Feature Modeling

UML Unified Modelling Language

PDG Program Dependence Graphs

SRS Software Requirement Specification

BA Business Analysis

SBRE Scenario Based Requirements Elicitation

PV Program visualisation

IT Information Technology

MDE Model-Driven Engineering

XVIII

List of Abbreviation

ATM Automated Teller Machine

OCL Object Constraint Language

VCS Version Control Systems

EMF Eclipse Modeling Framework

VCS Version Control Systems

AI Artificial Intelligence

PIN Personal Identification Number

IBM International Business Machines

IDE Integrated Development Environments

RSA Rational Software Architect

SBRE Scenario Based Requirements Elicitation

IEEE Institute of Electrical and Electronics Engineers

XIX

Chapter 1

Introduction

Objectives:

• Present an introduction and motivation for this research

• Identify the research questions

• Present the research methodology

• Present the thesis structure

1

CHAPTER 1. INTRODUCTION

1.1 Overview

In the last two hundred years, technological tools as well as management methods

have dramatically improved; from steam engines to electricity, from motorcycles to

aeroplanes, from telexes to computers. Organizational methods have also improved;

from small factories to assembly lines. These rapid changes have created many

challenges and complexities for business and industry.

In the past fifty years, information technology (IT) has emerged rapidly and has

become a key provider for (and a key factor in) the business world. It has improved

productivity, opened up and created new business opportunities, minimized delivery

times and allowed for flexibility in location decisions. Many businesses need guidance

in creating and developing new technology, and many new technologies create new

business opportunities. Many technological inventions (from mainframes to the web

and mobile computing) have helped to increase business profits, ultimately delivering

benefits to society. Nowadays, modern businesses cannot exist without IT.

IT providers are currently facing the challenge of rapid business change, and they

have to respond quickly to the business changes, and do so in an appropriate manner.

Even though there are many successful business-IT stories, there are also many

project failures within the domain of IT-business cooperation. Some analysts report

that the failure rate may exceed 50% of all projects [99]. Others have identified that

the major factors determining whether a project succeeds or fails are requirement-

related [66].

Software requirements, in general, describe the problem to be solved and the

solution to this problem. These requirements utilize stakeholder goals, needs and

agreements to capture system features. A feature can be described as a specific

service that a product provides, but it also can be described as an attribute of the

whole product, such as ’fault tolerant’ or ’user friendly’.

2

CHAPTER 1. INTRODUCTION

Thus, the concept of feature has been defined in various ways. These definitions

can be grouped into two main categories: abstract and technical. Some of the

abstract definitions are:

1. ”a prominent or distinctive user-visible aspect, quality, or characteristic of

software system of systems” [75].

2. ”a coherent and identifiable bundle of system functionality that helps charac-

terize the system from the user perspective” [142].

3. ”a product characteristic from user or customer views, which essentially con-

sists of a cohesive set of individual requirements” [32].

4. ”distinguishable characteristic of software (functional or non-functional) that

is relevant to some of its stakeholders” [41].

On the other hand, there are the technical feature definitions. For example:

1. ”an increment of program functionality” [12].

2. ”a structure that extends and modifies the structure of a given program in

order to satisfy a stakeholder’s requirements, to implement and encapsulate a

design decision, and to offer a configuration option” [8].

3. ”a triplet, f = (R,W,S), where R represents the requirements the feature sat-

isfies, W the assumptions the feature takes about its environment and S its

specification” [37].

Since this research aims to match features from a business’s perspective to IT

feature perspective, in this research a feature is defined as:

A required user service that can be used as a distinctive characteristic of software

system.

3

CHAPTER 1. INTRODUCTION

1.2 Motivation

1.2.1 Business-IT Gap

Business-IT gap or business-IT communication gap is mainly caused by a lack of

understanding between business and IT professionals [120]. This lack of business

IT alignment is considered to be a major factor of high cost and missed deadline

projects [120][99]. Moreover, this gap is a major cause for business to lose time,

budget, and even business reputation. To the business and IT professionals, this

gap remains a challenge to have true service excellence. Therefore, it is important

that IT and business professionals to understand each other needs and challenges

[103].

In general, there are two main approaches to bridge this business IT gap. First

approach is helping IT professionals with information needed to understand business

needs and goals. In this approach IT is trying to get closer to business [9]. Second

approach is helping business professionals with information needed to understand

IT challenges and abilities. In this second approach business is trying to get closer

to IT[127].

1.2.2 Research Problem

Stakeholders (e.g. users, customers and developers) think about and describe a

software system in terms of the features it provides. A feature of a software system

is any distinguishable characteristic of that software that is relevant to some of

its stakeholders; these characteristics are either functional or non-functional [41].

The feature-oriented view of features from the users’ perspective is not reflected

in the software development process during product production. In other words,

the connections between these features and the system software elements are not

4

CHAPTER 1. INTRODUCTION

obvious. This ambiguity cause difficulties in the case of system maintenance or

system evolution, especially when there are changes in requirements, which is to be

expected when there is any business change.

Software artefact traceability is well known as being an important factor in soft-

ware development, evolution, maintenance and testing. Software artefact traceabil-

ity has been defined as ”the ability to follow the life of a requirement in a forward

and backward direction” [61].

This research investigates tracing features from the users’ perspective and from

a technical viewpoint. Researchers in software traceability trace software require-

ments downstream from initial requirements down to the software system source

code. Other researchers trace these requirements upstream, from the software sys-

tem source code up to the software requirements. In this research, this linkage

should flow downstream and upstream at the same time, downstream from business

needs and upstream from software system source code, where both paths meet in

the middle at a specific development stage. The UML software modelling stage for

software system development is selected as being such a meeting point.

1.3 Thesis Scope and Research Question

The main focus of this thesis is to establish a framework and methodology in or-

der to match business goals and needs to corresponding software systems features.

The proposed feature-based business IT framework considers a system feature as a

cornerstone for every stage of the proposed framework. The proposed framework

follows systematic steps in order to match business needs to software systems fea-

tures. There are three main steps, which are: business feature elicitation, IT feature

extraction and feature model matching.

The first stage of the proposed framework focuses on business analysis and in

5

CHAPTER 1. INTRODUCTION

particular on software requirement engineering. The second stage uses a software

reverse engineering process, aiming to extract features from software code, which

are then represented as UML. Finely, the third stage focuses on model comparison,

a technique in model-driven engineering. The scope of this thesis is represented in

the issues covered in each stage of the framework.

Based on the above pertaining to the scope of this thesis, the main research work

is to answer following question:

Is it possible to trace business goals to the software features at the

source code level?

The main question opens the door to answering other sub-questions:

• Does the software satisfy the stakeholders’ requirements?

• Can the efficiency of the software system be improved during the software

evolution process?

• How can the software features be extracted from the source code?

• How can the software features be matched?

• How can the software features be represented?

1.4 Research Methodology

The research methodology for this thesis incorporates three approaches; the first

is classified as formulative, as proposed by Morrison and George in their research

approaches to software engineering [106]. The formulative approach involves the

”development and refinement of theories, models, or frameworks that govern research

6

CHAPTER 1. INTRODUCTION

activities and support scientific progress through paradigm shifts” [106]. The second

is constructive research. The main thrust of constructive research is the construction

of new theory, algorithms, methods, models or frameworks based on the existing

body of knowledge [40]. The constructive approach is ”a research procedure for

producing innovative constructions, intended to solve problems faced in the real

world and, by that means, to make a contribution to the theory of the discipline

in which it is applied” [29]. Finally, to evaluate the available tools and techniques,

an empirical research approach is required. Empirical research is a ”research that

is based on experimentation or observation, i.e. evidence. Such research is often

conducted to answer a specific question or to test a hypothesis” [83].

Accordingly, this research is conducted in four stages; the first one concerns

comprehending the research problem and identifying the most relevant questions.

The second stage concerns constructing a solution process. The third stage con-

cerns validating the proposed methodology. Finally, the last stage concerns deriving

conclusions.

1. Identifying the Research Problem and Questions

Problem-related literatures were reviewed and studied in order to gain a full

overview of the research problem. In addition, literatures related to the re-

search problems, such as algorithms and the tools adopted in this research,

were studied and analysed. To narrow down the research problem, a set of

research questions was suggested and structured to clarify all the problem

issues.

2. Constructing a Solution

Constructing a solution is a mixture of reverse-engineering and forward-engineering

processes. Its framework is composed of three main stages; firstly the busi-

ness features elicitation stage, secondly, the IT features extraction stage, and

7

CHAPTER 1. INTRODUCTION

finally, the feature modelling mapping stage. Algorithms and rules for feature

extraction and feature modelling matching were also developed.

3. Validation

To demonstrate and validate the proposed approach, a case study is presented.

The case study methodology is well known to be suitable for many kinds of

software engineering research [124]. An ATM case study is adopted because it

is a representative example, targeting the business and IT domains. The case

study is designed to demonstrate whether the methodology works is capable

of producing useful and meaningful results.

4. Deriving Conclusions.

At the end of this research, conclusions are drawn, and the methods adopted

and tested are discussed. Because a research is an iterative process in nature,

new (related) research questions and suggestions are proposed to encourage

future research work in the area.

1.5 Measure of Success

The criteria for measuring the success of the work conducted in this thesis are as

follows:

• The research questions mentioned at the beginning of this research must be

answered.

• The research’s proposed architecture must be shown to be identifiably different

from others.

8

CHAPTER 1. INTRODUCTION

• A study of why ’software system features’ was chosen among other tracing

methods must be done.

• The advantages of using feature-based mapping must be demonstrated.

1.6 Contribution to Knowledge

This research aims to investigate the possibility of tracing and matching features

from the users’ perspective with those from a technical viewpoint. Various aspects

of both the problem and the solution domains are investigated. Therefore, the main

contributions of this thesis are:

1. Developing a feature-based framework to link the features of both the business

side and IT side, which provides a quick and efficient means for understanding

the relationships between IT solutions and business goals.

2. Proposing a comparison algorithm to compare two UML diagrams. The algo-

rithm is used to match the two models from both sides (business features and

IT features).

3. Developing a method to extract features from a software source code based on

PDG and CFG.

1.7 Thesis Structure

The following paragraphs briefly give a description of the remaining chapters of the

thesis. At the end of each chapter, a summary is provided.

Chapter 2: Feature-based Approach: State of the Art

This chapter provides an overview, giving background information and describing

other works related to the research topic. The background information relates to

9

CHAPTER 1. INTRODUCTION

the basic concepts of the research area, and the related works are those topics

that are considered relevant to this research work. The chapter topics are: The

concept of Features, Features-Oriented Software Development (FOSD), Software

Evolution, Software Re-engineering, Unified Modelling Language (UML), Program

Slicing, Requirement Engineering and Model Comparison.

Chapter 3: Proposed Approach

This chapter introduces the research framework for feature-oriented business

and IT mapping. The three stages of the proposed framework are explained briefly.

These stages are: Business feature elicitation, IT feature extraction, and Business-IT

feature mapping.

Chapter 4: Business Feature Elicitation

The fourth chapter describes the first stage of the research’s proposed frame-

work, which is mainly the requirement engineering process. In this research, it is

represented as the top-to-middle stage, and it describes business needs, business

analysis and software requirement elicitation. This chapter starts from the business

analysis process and goes though the requirement engineering process to discover

the business needs and software requirements. Finally, features are presented as

UML modelling.

Chapter 5: IT Feature Extraction

This chapter explains the bottom-to-middle stage of the research framework,

which is mainly a program understanding process. The program understanding

is achieved though software reverse engineering. Program static slicing is used to

extract software-related source code statements. These sliced statements are trans-

10

CHAPTER 1. INTRODUCTION

formed into a visual representation form, which is later transformed into UML mod-

elling.

Chapter 6: Feature Model Matching

The last stage is business IT feature matching, which is located in the middle

of the proposed framework. It maps the outputs of the business feature elicitation

stage and the IT feature extraction stage. Comparison methods are described and

a new algorithm is proposed.

Chapter 7: Case Study

An ATM case study is presented to demonstrate the utility of the research ap-

proach, i.e. of the feature-oriented business IT framework. This chapter provides

a description of an ATM system and then demonstrates the process of applying all

the framework stages to the ATM system.

Chapter 8: Conclusion and Future Work

This chapter present a summary of the work conducted in this thesis. It then

highlights the significance of the proposed research and draws a number of conclu-

sions. Also, it discusses possible future work and makes suggestions.

11

Chapter 2

Feature-based Approach: State of

the Art

Objectives:

• To present an overview of software feature and related work

• To discuss software evolution, software re-engineering and related terminology

• To define basic concepts of related to software understanding

• To explore UML and model-driven engineering

12

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

2.1 Features and Features-Oriented Software De-

velopment (FOSD)

2.1.1 The Concept of Feature

The definition of feature, whether abstract of technical (as described and defined

through examples in the previous chapter), changes depending on the various soft-

ware development phases. From the top of the software development process, the

definition of feature is more abstract. However, during the software development

process, the definition of feature becomes less abstract (problem-orientated) and

more technical (solution-orientated), i.e. feature definitions become less abstract

and more technical the more they describe the lower levels of the software develop-

ment process. Thus, in the problem domain and during the software requirement

engineering process, the definition of feature is abstract; for example, ’character-

istic of software system’. On the other hand, during the design and performance

processes, the feature definition is much more technical; for example, ”structure

that extends and modifies the structure of a given program in order to satisfy a

stakeholder’s requirements” [8].

Problem Domain

Specification abstractions

Solution Domain

Implementation abstractions
Mapping

Figure 2.1: Problem Domain and Solution Domain [41].

Figure 2.1 shows the problem domain and the solution domain, as illustrated by

13

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

Czarnecki and Eisenecker [41]. The problem domain describes the problem in the

real world, the software system requirements and the system behaviour. The solu-

tion domain describes the solution to the problem in the virtual world (the computer

world), and how the system requirements and behaviours are satisfied. Feature def-

initions can be categorized as either feature definition from the perspective of the

problem domain or feature definition from the solution domain. Feature definitions

from the problem domain perspective describe features as services or what is ex-

pected from the software system. On the other hand, feature definitions from the

solution domain perspective describe how features are implemented, i.e. the desired

system functionality.

2.1.2 Feature-Oriented Software Development (FOSD)

In software systems, the concept of feature greatly assists in identifying similari-

ties and differences in analysis, design and implementation of the software system

phases. Feature-oriented software development (FOSD) is an approach to using the

feature concept in the software development phases during the software development

lifecycle. In FOSD, feature is the main focus during all the software development

lifecycles: analysis, design, implementation, testing and software evolution. Features

in other software development phases are derived from the structure and behaviour

of the whole software system. However, in FOSD, features are systematically and

explicitly used and defined. Features are defined as blocks within the structure of

the software system and they facilitate software reusability. FOSD represents a very

important property in the mapping of the features within the software requirements

to all the software lifecycle phases; it creates a path from system requirements in the

analysis phase, through the design phase, and down to the implementation level.

The FOSD process consists of four phases [7]; these are domain analysis, domain

design and specification, domain implementation, and product configuration and

14

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

generation. In all these phases, the concept of feature is at the core. The first phase

is the analysis domain, which determines all the features of the software system.

Besides this, analysts include how features are related to each other, e.g., some

features require the absence or presence of other features. The second and the third

phases are the design and the implementation phases. In design and implantation,

a feature is encapsulated as a feature artefact. From these sets of feature artefacts,

the software system can be generated, and this is the fourth phase. Figure 2.2 shows

the four phases of FOSD.

Domain

Analysis

Product

Configuration

and Generation

Domain

Implementation

Domain Design

and

Specification

Figure 2.2: Phases of the FOSD Process [7]

2.1.3 Feature Modelling

The concept of feature modelling was first used by Kang et al. during their work on

feature-oriented domain analysis (FODA) [75]. An FODA domain ”is defined as a set

of current and future systems sharing common capabilities. Domain analysis aims

at discovering and representing commonalities and variabilities among them” [42].

Kang et al. used the concept of feature in an attempt to describe commonalities

in and differences between software systems [75]. In their work to describe the

relationships and dependencies within a set of features, they introduced the feature

modelling concept. Feature modelling identifies the features from the end-users’

perspective as well as the system’s functionalities or capabilities.

15

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

Car

EngineTransmissionBody

Manual Auto Gasoline Electric

Air Condition

Mandatory

Optional

XOR

OR

Figure 2.3: An Example of Feature Modelling with a Feature Diagram Notation
[41].

Figure 2.3 shows a feature model that describes the variability of a simple car,

i.e., different cars can be produced in the domain of the model ’car’. In the feature

modelling, the root of the tree is the concept that is modelled. Other boxes are

features, where a child depends on its parent features. The connectors or arcs are

constraints on the ways in which the features are included in the model. In the

figure, the filled circles indicate that every car must have a body, a transmission

and an engine. However, the empty circle indicates that not every car must have

air conditioning. Unlike FOSD, the early work of FODA feature modelling did not

explicitly represent the features in the design or the code level.

2.1.4 Feature Interaction

The term ’feature interaction problem’ was first used in the telecommunications

industry, early in the 1980s [7][94][78]. A feature interaction emerges when a feature

behaves unexpectedly because of adding or removing another feature or features.

To illustrate the concept of feature interaction, two examples are given.

16

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

• Example 1: Phone call forwarding and call waiting

A telephone company can provide many features in a phone system; e.g.,

caller ID, call forwarding, call waiting, three-way calling, etc. Each feature

of the telephone system should be able to work independently. The call

forwarding feature is activated for any incoming call. The call waiting fea-

ture is activated when a call is coming in and the receiver phone is busy

with another call. In the second case, the incoming, the busy and the call

forwarding features should also be activated. However, it is unclear which

feature should work and which one should not.

• Example 2: A lift system

Consider these features of a lift system:

When the lift door has been opened, it will close automatically after 10

seconds.

When the lift is overloaded, the door will not close.

It is clear that the second feature conflicts with the first one. The first

feature tries to close the door after 10 seconds while the second feature

stops the door from closing until some passengers get out.

In feature-oriented software development, feature interaction is a major problem

and it should be detected and resolved [18][28][79][76]. Researchers have proposed

many techniques to detect and handle feature interaction [117][95][7]. The two main

17

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

feature interaction detection and handling methods are [82][34]:

1. Off-line detection: Feature Interaction detections are applied before the fea-

tures are executed. An example is Interaction filtering.

2. On-line detection: Feature Interaction detections are applied after the features

are executed. An example is Observers mechanism.

2.1.5 Feature Implementation

Software system developers traces features from the problem space to the features

in the solution spaces. This tracing process has been a longstanding problem [61].

An approach to solve this problem is to make features and feature interactions

explicit even in the programming language level [117]. A feature is built by a set

of programming units. Building a feature must follow a feature model. Features

merged together to group a feature packages where interactions among them are

resolved. In this case, feature packaged are reusable. Feature package can be seen

a single feature in other software system. Features implementation uses approaches

similar to the one used for FOSD. It implements features so they can be composed

in different combinations as illustrated in Figure 2.4.

Feature implementations

A

B

C

D

E

F

A

C

F

B

D

E

F

E

F

program program program

User Feature Selection

Figure 2.4: Feature-Oriented Programming [7].

18

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

2.2 Software Evolution and Software Re-engineering

This section presents an overview of software evolution and software re-engineering.

Subsection 2.2.4 gives a description of software evolution. Subsection 2.2.6 describes

legacy systems. The laws of software evolution are provided in Subsection 2.2.5.

Software engineering is described in Subsection 2.2.1. Subsection 2.2.2 gives an

overview of software re-engineering. Finally, Subsection 2.2.3 is an introduction to

software reverse engineering.

2.2.1 Software Engineering

Engineering is the use of science and mathematical principles in designing, building

and making things work. However, this definition of engineering is best understood

in its relation to other disciplines [62]. Software or computer software is a term used

to describe a computer program, which is a collection of computer data and instruc-

tions; other terms such as programs, applications, scripts and computer instructions

are also used. It is difficult to describe software because it is virtual, i.e. it cannot

be touched or seen; it is not physical like computer hardware. Computer software

consists of computer instructions, which are lines of codes written by a computer

programmer; they are compiled and stored in computer memory and they serve to

manipulate computer behaviour. Building a software system is a highly complex; in

fact, some believe that it is the most intricate and complex of human activities [22].

Software engineering is ”a systematic approach to analysis, design, assessment,

implementation, test, maintenance and reengineering of software, that is, the ap-

plication of engineering to software. In the software engineering approach, several

models for the software lifecycle are defined, and many methodologies for the den-

tition [sic] and assessment of the different phases of a lifecycle model” [88].

The need for software engineering emerged as an engineering solution for the

19

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

so-called ’software crisis’ of the 1960s, 1970s and 1980s [25]. A software crisis occurs

when many software projects fail, or run over time and budget.

2.2.2 Software Re-engineering

Software re-engineering utilizes a ’forward engineering’ technique to re-implement a

completely new system based on an original system’s requirements and specifications

[141]. Re-engineering can be the re-documenting of a legacy system, organising,

restructuring, or translating the system to a more modern programming language.

In general, the functionality of the system is not changed. In other words, the

software re-engineering process takes an existing legacy system, which has become

expensive or unable to update, and redesigning it. The output is higher performance,

and the software should be easier to maintain and more reliable [2]. However, the

major challenge is to fully comprehend the legacy system.

Thus, the main aims of software re-engineering are to understand the system

under review and to redevelop it in order to achieve better functionality and perfor-

mance. Software re-engineering objectives depend on the organisation’s goals but,

generally, there are four re-engineering objectives [108]:

1. Prepare for enhanced functionality

2. Improve maintenance

3. Access to the new platform

4. Improve reliability

Many terms are used in the software re-engineering domain. Some of these terms

are clarified by Yang and Ward as follows [159]:

20

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

• Forward engineering is the well-known transformation process from high-level

abstractions and logical, implementation-independent designs toward the phys-

ical implementation of a system.

• Reverse engineering is the process of understanding a system to (1) identify

the system’s components and their interrelationships, and (2) create represen-

tations of the system in another form or higher level of abstraction.

• Design recovery (or reverse design) is a subset of reverse engineering. Design

recovery recreates design abstractions from a combination of code, existing de-

sign documentation (if available), personal experience, and general knowledge

about a problem or application domains.

• Program understanding (or program comprehension) is a term related to re-

verse engineering. Program understanding always implies that understanding

begins with the source code, while reverse engineering can start at a binary

and executable form of the system or at high-level descriptions of the design.

Program understanding is comparable with design recovery because both of

them start at the source code level.

2.2.2.1 Re-engineering Classification and Software Abstraction

The software re-engineering process starts at the implementation level and ends

at the implementation level again, passing through the whole software develop-

ment lifecycle backwards (reverse engineering) and forwards (forward engineering).

Therefore, software re-engineering can be classified into two main operations: reverse

engineering and forward engineering. On the path of the software re-engineering pro-

cess, there are four levels of software abstraction: conceptual, requirements, design

and implementation.

21

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

The top level is the conceptual one. The conceptual level relates to the software’s

raison d’être, i.e. the purpose of the software. It explains the features expected from

the software in general terms. The requirements level of abstraction comes under

the conceptual level. Here, there is a description of what the system must do. How-

ever, it need not say anything, at this level, about how the system performs the

work required of it. The requirement level of abstraction deals with defining, mod-

elling, extracting, gathering and documenting the software requirements in order

to better understand the problem [133]. The software design level of abstraction is

a framework that describes and guides the implementation in order to achieve the

requirements. This description is a set of representations describing the data struc-

ture, architecture and algorithmic procedure [159]. The software implementation

level of abstraction is the lowest level. Here, a software design in translated into

artificial language, which is executed by the computer. Figure 2.5 shows these four

levels and the forward and reverse engineering processes.

22

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

Target System Existing System

Implementation

Implementation

Design

Requirement

s

Conceptual

Conceptual

Design

Requirement

s

Re-code

Re-design

Re-specify

Re-think

Reverse

Engineering

Forward

Engineering

Figure 2.5: Re-engineering Classification and Software Abstraction [132].

2.2.3 Reverse Engineering

Reverse engineering is an important process in extracting useful information from

the software (to be used in software maintenance or software reuse) [125]. The

process of reverse engineering does not change or modify anything; however, it is a

process that collects information for understanding in reverse order the traditional

software development process.

Reverse engineering has been defined as ”analysing a subject system to identify

its current components and their dependencies, and to extract and create system

abstractions and design information” [35]. The main aim of reverse engineering is to

23

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

transform a software system into a higher level of abstraction to reveal the software

system components and their interrelationships [130]. The higher the abstraction of

representation, the more easily the software system can be understood [158].

2.2.4 Software Evolution

’Evolution’ as a term has been used in many domains to describe a common phe-

nomenon, which is caused by continuing change in the evolving entity. Organisms,

cities, ideas, concepts and almost everything is subject to the phenomenon of evo-

lution within its own context [96].

In the context of software, evolution generally entails a slow process of incremen-

tal change, driven by the changing requirements of a software system [154]. Software

evolution generally passes through a long process of discrete steps throughout the

software lifecycle. This process consists of the execution, usage, enhancement, ex-

tension and updating of the software system in question. There are many and

various causes in software evolution; they can be corrective actions (e.g., fixing de-

fects), adaptive actions (e.g., adapting the changes in the operating environment)

or perfective actions (e.g., improving performance) [133].

The term evolution is used in contrast to software maintenance. Software main-

tenance has negative connotations, i.e. the software is declining in terms of optimal

functionality. Changes in the software environment or changes in stakeholder needs

make it important for the software to adapt to the new situation [102].

To keep pace with rapid changes in the environment, new business needs and

demands for new features, software systems must be in a state of continuous change

if they are to remain useful [133].

In general, there are four cause of software change; these are corrective, pre-

ventive, adaptive and perfective. Corrective changes are needed to correct software

defects. Preventative changes are needed to change the software to prevent potential

24

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

malfunctions. Adaptive changes are needed to adapt the software to changes in the

hardware or system environment. Finally, perfective changes are needed to change

the software system to improve its performance [159].

2.2.5 Laws of Software Evolution

Belady and Lehman were the first to study software evolution in a systematic manner

(in the late 1960s). Their works in software evolution continued for more than a

decade and they defined a set of laws pertaining to software evolution [13] [92] [93].

They identified three main laws in software evolution: the law of continuing change,

the law of increasing complexity and the law of self-regulation. A further two laws

were added to describe the limitation of software growth: the law of the conservation

of organizational stability, and the law of the conservation of familiarity [91] [11]. By

the late 1990s, another three laws were proposed in software evolution: the law of

continuing growth, the law of declining quality, and the law of the feedback system

[90].

Thus, the laws of evolution in software systems, which are usually called Leham’s

laws, are:

1. Law of Continuing Change: a software system must adapt to changes in the

real-world environment or it becomes less useful and continues to fall below

satisfactory performance.

2. Law of Increasing Complexity: as the system evolves to adapt to environment

change, it become more and more complex. More work and resources are

therefore needed to maintain simplicity.

3. Law of Self-Regulation: software system evolution is a self-regulating process,

i.e. the system adjusts its growth over time.

25

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

4. Law of the Conservation of Organizational Stability (invariant work rate):

during a system lifetime, the rate of productive output stays constant.

5. Law of the Conservation of Familiarity: the incremental growth of the system

is constant. New software releases are always followed by smaller releases to

fix problems in the initial release.

6. Law of Continuing Growth: software is in a state of continuing growth in order

to satisfy the continuing change of user requirements.

7. Law of Declining Quality: over time, the software system quality declines un-

less it is continually under maintenance to adapt to new environment changes.

8. Law of Feedback System: in order to achieve improvements in software evo-

lution, the system must be treated as a process of multi-level and multi-loop

feedbacks.

2.2.6 Legacy Software System

’Legacy system’ is a well accepted and a clear term in the software community

nowadays, unlike a couple of decades ago. The software community is aware that

new software systems quickly become legacy systems because of rapid changes in

software requirements and the environment [159]. Legacy systems are generally those

large software systems upon which a great deal of time and money has been spent

by organisations. However, these systems remain critical to the organisation’s main

business. Unfortunately, these systems often resist software evolution processes.

Thus, a legacy system may be an information system that resists change or evolution

processes in order to meet new requirements [21].

Most legacy software systems are associated with old and large systems that

26

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

were developed and coded in early versions of ’third generation’ languages such as

COBOL or FORTRAN. Moreover, legacy systems were generally designed and built

on inflexible architectures, and adaption to change or being able to update them

were not in the mind of designers during software development [96].

The reason for a software application becoming a legacy system usually stems

from software characteristics such as complexity [21], and the major factors in an

organisation’s decision to upgrade or maintain their legacy system are the costs

entailed and the extent to which they can benefit from the investment.

In general, there are four options organisations in dealing with legacy systems

[133]. The first one is to scrap the whole system and replace it with a totally new

one. This first option is usually chosen when the system is not essential and the cost

of the maintenance process can no longer be justified. The second option is keeping

the system and maintaining it. This option is chosen when the cost of purchasing

a new one cannot be justified; however, there are some benefits to keeping it for a

small number of organisations. The third option is re-engineering the legacy system.

This option is chosen when the cost of rebuilding the whole declining system justifies

the cost of investment. The fourth and last option is replacing part of the legacy

system. This option is chosen when only part of the system is causing the defect

(possibly due to some change in the system environment). Table 2.1 shows and

illustrates these options.

27

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

Legacy System

Maintenance Strategy
Description

Scrap the system com-

pletely

The system is not essential to the organisation’s busi-

ness, or the cost of building a new system is less than

the system maintenance.

Keep the system and

maintain it

The system is stable and the need for it is limited to

a small number of users. In this case, the organisation

needs the system but the upgrade cost is not worth the

investment.

Re-engineer the sys-

tem

The system quality is declining due to regular changes.

However, more changes are needed and the cost of re-

building the system is worth the investment.

Replace parts of the

system

Only parts of the system are causing the system de-

fects (because of environment change, e.g. hardware up-

grade). Sometimes, compromising some of the system’s

features is wiser than adopting costly maintenance.

Table 2.1: Legacy System Maintenance Options

28

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

2.3 Software Architecture

It is easier to understand a system once that system’s individual parts have been

decomposed, visualized and presented, revealing how those individual parts interact

and function together. This problem of precisely how to present a system as a set

of individual parts in such a way that it does reveal how they interact has been

researched by several authors; however, each author tends to address only certain

aspects of this problem [59][1]. Nevertheless, this high level view of a software system

structure is generally described in the literature as software or system architecture

[123].

Logical View Development View

Process View Physical View

Scenarios

End-user Functionality

Integrators Performance

Scalability

Programmers Software

management

System engineers

Topology Communications

Figure 2.6: 4+1 View Model [87].

In Figure 2.6, the ”4+1 view” model shows that system architecture consists of

five main views [87]. These five main views are:

1. Logical view:

29

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

The logical view identifies the functional requirements of the system. The de-

sign model is the core of the logical view, where a description of the functional

behaviour of the system is given.

2. Physical view:

The physical view maps the software to the hardware. It contains non-

functional requirements such as performance and availability.

3. Development view:

The development view is a description of the actual software module organi-

sation.

4. Process view:

The process view represents all the processes and emphasizes the concurrency

and synchronization aspects of the design.

5. Scenarios:

The scenarios view integrates and validates the other four views by using use-

cases.

The 4+1 view model provides a birds-eye view of a software system. It distin-

guishes and highlights all the software components as separate parts. This architec-

tural view of a software system provides a better understanding of a software system

as a whole but, when considering the 4+1 view model, the main target is to extract

the logical view.

30

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

2.4 UML

2.4.1 Introduction

A model is a blueprint description of a system [17]. In software systems, the def-

inition of a model refers to the modelling of a software process. Models simplify

complex systems and make them easier to understand.

UML stands for Unified Modelling Language. It is a modelling language written

mainly for software systems; however, the full scope of UML has always been the

subject of debate. The UML specification document states, ”The objective of UML

is to provide system architects, software engineers, and software developers with

tools for analysis, design, and implementation of software based systems as well as

for modelling business and similar processes” [39].

UML has been used for modelling system structure and behaviour. It is a lan-

guage for visualising, specifying, constructing and documenting the artefacts of a

software system. Nowadays, UML is considered the standard modelling language

for writing software blueprints and it is commonly used for modelling a wide range

of systems, from enterprise information systems to Web-based applications and em-

bedded systems.

UML is popular because of its impressive ability to address all the perspectives

needed to develop a system. When modelling large and complex systems, UML has

proven to be the most successful engineering practice [57] [80]. The best-practice

approach in UML is to model both a system’s data and its processes, and this done

by many professionals in the industry.

Because of the increasing popularity of the UML, many different CASE tools

have been introduced to support it. These tools can generate source code in many

different programming languages [105][30].

31

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

2.4.2 UML Concepts

What is now known as Unified Modelling Language (UML) is the product of inte-

grated software modelling approaches conducted by Booch, Rumbaugh and Jacobson

in 1995 [53]. UML is a visual language for modelling systems, and it describes in

simple terms the meaning of the system’s rules and the system design; it is not a

stage within the system development lifecycle.

The Object Management Group (OMG) is a non-profit computer industry group

started in 1989. It works on developing enterprise integration standards for a wide

range of technologies for many industries. OMG states, ”UML is a graphical lan-

guage for visualising, specifying, constructing, and documenting the artefacts of a

software-intensive system as well as for business modelling and other non-software

systems. The UML offers a standard way to write a system’s blueprints, including

conceptual things such as business processes and system functions as well as concrete

things such as programming language statements, database schemas, and reusable

software components.” The latest version of OMG UML, UML Version 2.4.1, was

published in August 2011 [100].

Diagrams are not the only part of UML; however, they are viewed as the core

part of the language. UML diagrams deliver the graphical representations of a

system. There are two main groups in UML diagrams: structure diagrams and

behaviour diagrams [146]. These two groups model the software system structures

and behaviours. Structure diagrams represent the static architecture of the system’s

physical or conceptual elements. These structures can be classes, objects, interfaces,

system physical components or the relationships among them. On the other hand,

behaviour diagrams describe the software system’s dynamic model. They represent

the activities and interactions of the software system.

When UML was introduced in the late 1990s, there were nine diagrams for de-

32

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

scribing a software system. However, describing a software system was fraught with

difficulties, and therefore UML 2.0 was developed, which had thirteen diagrams.

Some of the UML 1.0 diagrams were abandoned and new diagrams were intro-

duced [39]. UML 2.0 uses six of its thirteen diagrams to describe the static system

structure. These diagrams are: Class diagram, Object diagram, Package diagram,

Component diagram, Composite structure diagram and Deployment diagram. The

other seven diagrams are for modelling the system behaviour. These behaviour dia-

grams are: Use case, Activity diagram, State machine, Communication, Interaction

overview, Timing diagram and Sequence diagram. Four of the seven behaviour di-

agrams are sometimes referred to as interaction diagrams [3]. Figure 2.7 shows all

the UML diagrams [115].

33

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

UML

Diagrams

Structure

diagrams

Behavior

diagrams

Composite

Component

Class

Deployment

Object

Package

Use Case

Activity

State

Communication

Interaction

sequence

Timing

In
te

ra
c
ti
o

n
 d

ia
g

ra
m

s

Figure 2.7: UML Diagrams

UML is mostly used in the design phase of a software development lifecycle.

However, some of the UML models can be used in the early stages of software

development. UML graphically shows a bird’s-eye view of a system, and this big

picture of the system allows the UML diagrams to serve as a universal communica-

tion medium for everyone in the software development team [112]. In most projects,

34

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

UML is used very early in the software development project; however, it can be used

in other phases of the software lifecycle. An example is using UML in a software

reverse engineering process, such as extracting UML diagrams from software source

code [26]. Software engineers must understand the software system before they can

re-engineer or integrate it [27]. Extracting UML diagrams from an old system can

provide a great deal of assistance in fully understanding the system.

In summary, UML represents a system from two points of view: static and dy-

namic. It is important to know that UML is neither a system development lifecycle,

nor a software process model; it is simply a notation. UML is a language for the

visual representation of a project’s requirements and desired design. This visual

representation of a system ensures that there is one consistent model for a targeted

system, and that all stakeholders can understand and provide feedback on a project

in reference to the same model.

35

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

2.5 Program Slicing

Since Mark Weiser proposed the notion of program slicing in 1979, many researchers

have conducted their work in this area [150] [157]. Program slicing is a program

analysis and transformation technique. It is a technique for decomposing a pro-

gram to extract statements with respect to some particular computation. It uses

dependence information pertaining to program statements in order to identify all

statements that are affected by (or affect) a specific point in the program. This

specific point is called a slice criteria point [118].

When Weiser proposed program slicing twenty years ago, he defined it as ”method

for automatically decomposing programs by analysing their data flow and control

flow. Starting from a subset of a program’s behaviour, slicing reduces that program

to a minimal form which still produces that behaviour. The reduced program, called

a slice, is an independent program guaranteed to represent faithfully the original

program within the domain of the specified subset of behaviour” [151].

A software contains thousands of lines of code, which can be sliced into small

manageable segments to simplify their maintenance tasks.

In general, a slice consists of a set statements and a variable, < s, v >, where

every statement of s has a direct or indirect affect on the value of the variable v

[104].

Software slicing is used as a reverse engineering technique. It intensively used

in analysing legacy software systems to extract codes that are related to a targeted

software system. It is considered a particularly useful reverse engineering technique

[63]. Software slicing in not limited to software reverse engineering tasks. Software

engineers use it in many other software-related activities, such as software testing,

software measurement, program comprehension, and software debugging [51] [148].

Since Weiser described the concept of program slicing, many slicing algorithms

36

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

have been proposed in the literature. These slicing algorithms can be classified into

two main categories: static slicing and dynamic slicing [161][131]. Static slicing does

not consider any particular input. It was called static because it does not depend on

program execution. Dynamic slicing, on the other hand, depends on the program

execution and on a given program input. Static slicing is ideal for understanding

the impact of changing an existing system, e.g. in software maintenance [119].

Alternatively, dynamic slicing is ideal for software debugging tasks, as it depends

on program data input.

In the context of static program slicing, there are three main approaches. The

first uses data flow equations; this was first introduced by Weiser [151]. In this

approach, slices are computed based on processes over a Control Flow Graph (CFG).

This process uses data dependencies to compute sets of relevant variables for each

node in the CFG [149].

The second approach uses information-flow relations [15]. To obtain slices, rela-

tional calculus is applied to several kinds of information flow in a syntax-directed

bottom-up fashion.

The third approach uses Program Dependence Graphs (PDG); this is the most

popular one. In this approach, a Program Dependence Graph (PDG) is constructed.

A slice is produced by applying an algorithm to the PDG, and different slices can

be produced based on the different PDGs constructed [55].

Program dependencies can be traversed forwards or backwards from a slice cri-

terion; this is known as forward slicing or backward slicing, respectively. A forward

slicing is a set of all statements that can be influenced by a particular slice criterion.

In contrast, backward slicing is a set of all statements that could influence a partic-

ular slice criterion [51]. As explained in Chapter 5, forward slicing is the technique

adopted in this research, and it will be discussed in greater depth in that chapter.

37

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

2.6 Requirement Engineering

Lack of common definitions for the terms used in the software industry represents an

ongoing problem, and it causes confusion or misunderstandings. Many researchers

may describe the same statement with different terms [153], and the term ’require-

ment’ is no exception. It has been described in various ways; the IEEE (Institute

of Electrical and Electronics Engineers) Standard Glossary of Software Engineering

Terminology defined the term in 1990 thus [71]:

1. A condition or capability needed by a user to solve a problem or achieve an

objective.

2. A condition or capability that must be met or possessed by a system or system

components to satisfy a contract, standard, specification or other formally

imposed documents.

3. A documented representation of a condition or capability as in (1) or (2).

This definition of requirement combined both user and developer perspectives.

However, the term stakeholder should be used instead of user, as not all stakeholders

are users. A stakeholder is ”an individual, group of people, organization or other

entity that has a direct or indirect interest (or stake) in the system” [67].

Requirement can be viewed at a high level of abstraction as the services that

a system should provide [133]. On the other hand, at low level of abstraction,

requirement can be viewed as detailed, formal descriptions of the system functions

[44].

In any software development process, the first step is to identify and elicit the

software requirements. This step is not only the first step, it is the most important

step in the software development lifecycle. A correct, comprehensive and accurate

38

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

requirement specification is a must because the whole process is based on model

transformation. Therefore, if the original model requirements are less than satisfac-

tory, the final product will be so as well, and the project is doomed [128]. Unfor-

tunately, understanding and designing a software system is a difficult and complex

task.

Brooks, in his famous article No Silver Bullet: Essence and Accidents of Soft-

ware Engineering, illustrates why developing a software system is so hard [23]. He

classified the software development process into two main classes: essential qualities

and accidental qualities. The essential qualities are extremely difficult; these are:

complexity, invisibility, changeability and conformity. The accidental qualities relate

to implementing and testing, and the problems relating to these tasks are likely to

be solved with greater ease, given sufficient technical expertise [98].

As with many terms in the software industry, there are many definitions for

the term ’requirement engineering’ [110]. A clear definition of software requirement

engineering was given by Zave [160]: ”Requirements engineering is the branch of

software engineering concerned with the real-world goals for, functions of, and con-

straints on software systems. It is also concerned with the relationship of these

factors to precise specifications of software behaviour, and to their evolution over

time and across software families.” Requirement engineering refers to this first and

most important stage of the software development lifecycle.

The term ’system requirements’ is sometimes used to mean software require-

ments. However, these two terms are not the same. Firstly, the term ’system’ orig-

inates from the Greek systēma (Latin systema), which means ’to place together’,

’to combine’ or ’to organize as a whole’ [16]. Therefore, the term system require-

ment should be used to describe high level requirements, which contain software,

hardware, other subsystems or even people. In the software requirement process,

there are three separate levels that need to be extracted and analysed [153]. These

39

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

three levels are the business level, the user level and the functional level, as shown

in Figure 2.8.

Problem

Domain

Solution

Domain

Requirements

Engineering

Requirements

Engineering

Requirements

Engineering

Requirements

Engineering

Business Needs

Stakeholder

Requirements

System

Requirements

Subsystem

Requirements

lower level

subsystem

requirements

Business

Level

User Level

Functional

Level

Figure 2.8: Levels of Requirements Engineering [66].

The business level represents the high level objectives of the users or organiza-

tion that needs the system. The business level describes the business needs and

what it is that the system is expected to achieve in order to satisfy these needs.

User requirements represent the tasks or goals that the system user must be able to

perform. User requirements are usually expressed in natural language, such as sce-

narios and story cards, or as diagrams such as ’use case’. The third level represents

the functional requirements. These requirements are all the functionality that the

40

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

system must include to enable the users to achieve their goals in order to satisfy the

business requirements.

In addition to these levels, every system has a collection of non-functional re-

quirements. These non-functional requirements include performance goals and qual-

ity attributes. These attributes include portability, performance, security, usability

or robustness [36].

The functional and non-functional requirements are documented in a software

requirement specification (SRS) package. The SRS thus contains a full description

of the system and all the behaviour expected from the system. Therefore, the SRS

is used in the whole software system development lifecycle.

The process of requirement development is subdivided into four stages, which are

elicitation, analysis, specification and validation [52]. Inside each of these, many and

various techniques can be utilised; the choice of technique depends on the resources

and time available to the software engineers. Every requirement elicitation technique

has its strengths and weaknesses [77].

41

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

2.7 Model Comparison

Model comparison is a technique in Model-Driven Engineering (MDE). MDE is

the systematic use of high-level software models as the main artefacts during a

software engineering process [68]. Model comparison is a technique used to identify

the similarities or differences between any two models. It is also used for model

versioning and model clone detection (described below). Moreover, it is used in

many other MDE areas and it is the basis of other modelling techniques such as

model composition and model transformation testing [134].

Kolovos, Paige and Polack describe model comparison as a process that distin-

guishes elements into four groups [84]:

1. Elements that match and conform

2. Elements that match and do not conform

3. Elements that do not match and are within the domain of comparison

4. Elements that do not match and are not within the domain of comparison

Matching means that elements have the same idea or artefact, while conformance

refers to additional matching criteria. For example, a non-conformance UML class

diagram is when a class in two models has the same name but one is abstract;

although they probably represent the same artefact, they do ’sufficiently match’ or

conform to one another [84].

2.7.1 Model Comparison Phases

To solve the problem complexity in model differentiation, Brun and Pierantonio

decomposed model comparison into three phases [24]:

42

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

1. Calculation: this is the initial step in model comparison. Calculation can be an

algorithm, method or procedure that is able to find similarities or differences

between two models.

2. Representation: this phase takes place during the calculation phase, i.e. when

the differences and similarities are detected. It is a form of presentation relat-

ing to the outcome of the calculation phase. One approach used in represen-

tation is the notion of edit scripts [4] [101]; these are an operational represen-

tation of the changes needed to make one model equivalent to another, such

as add, edit or delete.

3. Visualization: model similarities and differences need to be visualized in an

end-user, human-readable notation that allows the designer to see the reasons

behind the differences or similarities between models; for example, visualizing

model-based representation through colouring [109]. Visualization is closely

related to representation; however, recent visualization approaches attempt to

distinguish visualization from representation [144][152].

2.7.2 Model Versioning

As in traditional software projects, teamwork in MDE projects is crucial. Version

Control Systems (VCS) is used to achieve such cooperation. VCS enables software

developers to keep previous versions in what is generally called a repository. The

repository keeps files and project structures that are under development stored in

order to be able to retrieve past versions.

In MDE projects, it is necessary that developers are able to work separately but

at the end able to reintegrate updated versions into the final project. Unfortunately,

models in traditional VCS do not work well [6].

43

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

Model versioning passes through different phases. The number of phases is dif-

ferent for different researchers [4][6]; however, it is clear that there are needs for:

1. Comparison or matching that identifies which model elements match other

model elements.

2. Detection of model differences or similarities.

3. Representation of any model differences and model merging that highlight

changes or conflicts.

2.7.3 Model Clone Detection

Model clone detection is another practice in model comparison. Model clone detec-

tion is related to a traditional software maintenance problem called code clone or

source code cloning. ”A code clone is a code block in source files which is identical

or similar to another code block” [107]. Many approaches, techniques and tools have

been proposed and developed to deal with code clones [122].

Model cloning is similar to code cloning; however, it involves a higher level of

abstraction. Model clone is a term referring to groups of model elements that share

certain similarities [135].

2.7.4 Model Comparison Approaches

Existing model comparison methods can be categorized by the types of models they

compare; yet, some methods claim they can work with different types of models.

Some of the categories in model comparison approaches are [135]:

1. Methods for Multiple Model Types: this first category of model comparison

approaches represents those approaches that are able to work with more than

44

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

one type of model, such as structural models and behavioural models. Exam-

ples of these models are: UML Models, EMF Models and Metamodel-Agnostic

Approaches [5].

2. 2. Methods for Behaviour/Data-Flow Models: this second category of model

comparison approaches deals behaviour or data-flow models. Examples of

these models are: Simulink and Matlab Models, Sequence Diagrams and Stat-

echart Diagrams [45].

3. Methods for Structural Models: these types of models represent the structure

of a system; for instance, UML Structural Models and Metamodel-Agnostic

Approaches [156].

4. 4. Methods for Product Line Architectures: this approach to comparison is

mainly for product line models (for merging). This approach assumes that the

comparison is being done between two different versions of the same artefact

[33].

5. 5. Methods for Process Models: this approach deals with the differences be-

tween software development process models and outlines; for example, node

matching, which compares process element labels and attributes, structural

similarity, which compares labels and topology, and behavioural comparison,

which evaluates labels in conjunction [49].

45

CHAPTER 2. FEATURE-BASED APPROACH: STATE OF THE ART

2.8 Conclusion

This chapter (Feature-based Approach: State of the Art) is a literature review,

which has studied researches related to the proposed feature-oriented framework.

The feature-oriented framework makes connections between the features relating to

business needs and the features relating to implementation. The proposed frame-

work focuses on software system understanding and software system re-engineering.

Therefore, most of the concepts covered and studied in this chapter relate to these

concepts.

The first section provided a background to the concept of feature in the software

development context. It proceeded to illustrate the concept of feature-oriented soft-

ware development (FOSD). Feature in software development has various definitions,

and most these definitions were explained and discussed in this first section. The

FOSD process consists of four phases: domain analysis, domain design and spec-

ification, domain implementation, and product configuration and generation. Fol-

lowing this, feature modelling and feature-oriented domain analysis (FODA) were

addressed. Feature interaction and feature implementation were covered in this

section as well.

The second section covered software evolution and software re-engineering. This

section and all the sections that followed it studied program understanding. These

studies included program reverse engineering and program slicing. UML concep-

tual system modelling was discussed in the UML section, and finally, requirement

engineering and model comparison were studied in the last two sections.

46

Chapter 3

Proposed Approach

Objectives:

• To introduce the stages of the feature-oriented business IT framework

• To give an overview of the steps within each stage

• To highlight the focus of this research in each stage of the framework

47

CHAPTER 3. PROPOSED APPROACH

3.1 Framework Overview

The term ’framework’ has been used in many different ways in the literature. Dic-

tionaries can provide a basic understanding of the meaning as well as synonyms of

this word, and two definitions have here been taken from two different dictionaries:

Dictionary.com and TheFreeDictionary.com.

Framework: [48]

1. A frame or structure composed of parts fitted and joined together.

2. A skeletal structure designed to support or enclose something.

Framework: [139]

1. A set of assumptions, concepts, values and practices that constitute a way of

viewing reality.

2. A particular set of beliefs, ideas or rules referred to in order to solve a problem.

In the discipline of computer science and particularly in its sub-discipline software

engineering, a framework presents an abstraction or a bird’s-eye view of a solution

to a number of problems that have similarities. It guides and assists in drawing a

map of the steps needed in order to find a solution without going into the details of

these steps or the activities they entail.

The framework introduced in this research can be seen as a roadmap for soft-

ware engineers targeting a linkage between technical-oriented software features and

problem-oriented domain features. This framework approach is comparable to the

first dictionary definition ”composed of parts fitted and joined together”.

48

CHAPTER 3. PROPOSED APPROACH

The proposed framework consists of three main phases. The first is a top-to-

middle process and the second is a bottom-to-middle process. These two processes

meet at the third phase, which is in the middle of the framework. Each phase

consists of a set of steps, which must be satisfied in order to achieve the final goal

of the phase’s purpose. In other words, these phases map views of the software

features from the business perspective, which is the top-to-middle process, and the

technical perspective, which is the bottom-to-middle process. Figure 3.1 provides

an overview of the proposed framework.

Business

Needs

Business

Feature

Elicitation

UML

representation

UML

representation

IT Features

Extraction

Existing

System

Figure 3.1: An Overview of The Proposed Framework

49

CHAPTER 3. PROPOSED APPROACH

This section now gives an overview of the steps within the phases of the pro-

posed feature-oriented IT business framework. As shown above in Figure 3.1, it has

two main phases (bottom-to-middle and top-to-middle); however, a third phase is

evident, and this can be seen as the mapping of the first and the second phases.

Generally, the first phase is a forward engineering software development phase. It

begins with the first step of any software development process; namely, identification

of business needs (which is a business analysis process). It proceeds to identify the

features needed to satisfy these needs, and finally represents these features using a

conceptual data model language.

On the other hand, the second phase is a reverse engineering process. It begins

at the lowest level of the software development lifecycle; namely, the software source

code. It is well known that information from the source code is the most reliable

information, as all the system features must be presented in the final software system

source code [64]. Program slicing, which is a reverse engineering technique, is used

to extract all statements that are related to a specific software feature. At this

lower level of software development, a software feature is defined as ”an increment

of program functionality” [143]. Figure 3.2 shows the feature-oriented IT-business

framework in more detail.

50

CHAPTER 3. PROPOSED APPROACH

Features Mapping

UML Diagrams

Business

Needs

System

Requirements

UML Diagrams

System Code Slicing

Relations understaning

Figure 3.2: Feature-Oriented IT-Business Framework

From the top-to-middle phase and the bottom-to-middle phase, conceptual mod-

els of the features are produced. These models are mapped to find feature similarities

in the third phase, as shown in the figure above. Thus, the proposed feature-oriented

IT-Business framework consists of three main phases:

1. The Business Feature Elicitation Phase:

The business feature elicitation phase is the top-to-middle process, as Fig-

ure 3.2 presents. It begins with the process of business analysis. This process

deals with identifying business needs or clarifying the business problems; it

then provides solutions to these needs or problems. These solutions are doc-

51

CHAPTER 3. PROPOSED APPROACH

umented as the business requirements or the features needed to resolve the

problems. Once the business needs have been identified, the next step is to

pass these to the requirement engineer. Requirement engineering elicits the

system requirements and documents these requirements or necessary features

in a ’technical requirements document’ called the Software Requirement Spec-

ification (SRS) file. These technical requirements are transferred to the next

level in the software development lifecycle process, wherein these requirements

are represented as data and behaviours in the form of conceptual modelling.

2. IT Feature Extraction Phase:

The IT feature extraction stage is the bottom-to-middle phase, as shown in

Figure 3.2 It begins with the system source code and then extracts software

features, which are later represented in conceptual modelling presentations.

The IT feature extraction phase is a reverse-engineering process. Program

slicing, which is a reverse-engineering technique, is used on the software source

code for program comprehension. Firstly, the software system code is sliced

into a set of related statements. Secondly, the slices resulting from the program

slicing technique are represented in program dependency graphs (PDG). These

high abstractions of model representations contain potential system features

or system functionalities. Finally, the PDGs are transformed into a conceptual

modelling presentation.

3. Model Matching Phase:

The final phase of the feature-orient business IT framework is located in the

middle. It takes the product of the two other phases and links them together.

The products of the two previous stages are sets of features presented in a

modelling language. Therefore, model comparison techniques are used in this

52

CHAPTER 3. PROPOSED APPROACH

phase to find similarities between the two models that were generated in the

previous phases.

The novelty of the proposed framework emanates from the three characteristics

of the business-IT gap: the problem domain, the solution domain and the matching

process. The problem domain part is covered in the first stage of the framework,

The Business Feature Elicitation Phase. The problem solution domain is covered

in the second part of the framework, IT Feature Extraction Phase. And finally, the

matching process is covered in the Model Matching Phase.

More details of these stages will be illustrated in next chapters. Chapter 4 will

discuss the business feature Elicitation stage. The IT Features Extraction Stage is

illustrated in chapter 5. Finally, chapter 6 illustrates the model matching stage.

Figure 3.3 provides detailed information on the phases of the proposed framework

as well as the steps in each.

53

CHAPTER 3. PROPOSED APPROACH

Source code is sliced into sets of related

statements

Static program slicing

Program Understanding Stage

Dependency Flow Graph

Requirement Engineering

Business Analysis

53 4

5

2 6

3 42

IT Features Extraction

Identifying

stakeholders

Identifying

business vision

Identify business

problem

Requirement engineering process

Requirement
elicitation

Mapping both features from downstream and upstream

UML diagrams

representation from IT

features extractions

UML diagrams

representation from business

features elicitation

Business Features Elicitation

Requirement
analysis

Requirement
specification

Validation and

documentation

Problem
domain

Solution
domain

Figure 3.3: Framework Stages and Steps

54

CHAPTER 3. PROPOSED APPROACH

3.2 Business Feature Elicitation

The first step for any business software system begins with identifying the business

needs, problems or business change. The business analysis process seeks to fully

comprehend the organization’s current state as well as its particular business needs,

the full range of current problem and the drivers of change [72]. Thus, this analysis

process involves: clarifying the business problem, identifying the vision, identifying

stakeholders and documentation. The business vision or strategic mission is inter-

preted as business goals or objectives. These business objectives are implemented

as business functions and processes. All these activities are carried out by a set of

processes within business analysis, all of which are within the context of the business

domain.

In the context of software engineering (as covered in the literature review chap-

ter), the process of identifying, modelling, communicating and documenting the

software system requirements is a Requirement Engineering (RE) task. A software

requirement task describes what is to be done but not how it is to be done [111].

Thus, RE is a set of processes that describes what needs to be done to solve the

problem under investigation. The main aim of this step is to identify business needs

and services, and then to decompose these services into a set of features that can

be modelled; it is a decomposing process.

Business tends to view system services as set of system features that can satisfy

business needs. These features are elicited as stakeholder requirements, which the

system must contain in order to satisfy the business needs. The RE process elicits

the business requirements and clusters all the features into sets of user and system

requirements. Finally, all the sets of requirements (which represent features) pass

through the software development process to be represented as conceptual model

diagrams.

55

CHAPTER 3. PROPOSED APPROACH

As evident in Figure ??, this phase can be divided into two main stages: the

business analysis stage and the requirement engineering stage. Business analysis

and part of the RE process are within the problem domain; however, the other part

of the RE is within the solution domain. In accordance with the limitations of this

research, most of the research work focuses on the requirement engineering stage

only.

3.2.1 Business Analysis

Business analysis is set of tasks and techniques used to identify business changes,

problems, opportunities or needs, and then it seeks to find solutions for them. A

business analyst creates a network among business stakeholders in order to under-

stand and analyse the business requirements needed for the business in question, and

the best solutions available. Once these business requirements have been collected,

they must be validated through the business processes, polices and information sys-

tems.

In general, the business analysis process passes through a set of steps, which are:

1. Understand how the organisation functions as well as its current state.

2. Define the organisation’s goals and objectives, and determine how it achieves

them.

3. Identify organisational units and any stakeholder interactions (within and out-

side).

4. Conduct validation and documentation.

56

CHAPTER 3. PROPOSED APPROACH

3.2.2 Requirement Engineering

The Requirement Engineering (RE) process starts after the business needs and prob-

lems have been identified. It is a set of processes that are involved in developing the

system requirements. RE consists of requirement elicitation, requirement analysis,

requirement specification and requirement validation.

1. Requirement Elicitation:

Elicitation is the process of interacting with stakeholders to capture their

needs.

2. Requirement Analysis:

The requirements collected from the stakeholders are analysed in detail to

produce a collection of consistent, unambiguous and complete requirements.

3. Requirement Specification:

A description of what must be done.

4. Requirement Validation:

The requirement collection outcome must satisfy the stakeholders’ needs.

3.3 IT Feature Extraction

The IT features extraction phase in this feature-oriented IT-business framework

works to extract software system features from the software system source code.

The process of extracting knowledge from software is a ’program understanding’

process. It consists of source code program slicing, Program Dependency Graph

(PDG) representation and, finally, transforming the PDG into conceptual modelling

diagrams.

57

CHAPTER 3. PROPOSED APPROACH

3.3.1 Program Understanding

The main concept of program understanding is building a knowledge base that

represents the program. Rugaber’s definition of program understanding is, ”...the

process of acquiring knowledge about a computer program. Increased knowledge

enables such activities as bug correction, enhancement, reuse, and documentation”

[38]. Software understanding is usually a reverse engineering process; it is about

building knowledge from software code.

Reverse engineering practise usually starts at the system source code level. It

takes software system code as an input and transforms it into higher level of abstrac-

tion. Reverse engineering techniques analyse and identify the system’s components

and the relationships among them. From these relationships, the reverse engineering

process creates higher representations of the system based on these relationships.

3.3.2 Program Slicing

In the literature review chapter, program slicing was reviewed and it was described as

a technique for decomposing programs by analysing their control flow and data. It is

usually employed at the source code level as a reverse engineering and transformation

technique. It is also well known to be one of the main applications in program

comprehension.

Software slicing is used in this research (and in this phase) to extract statements

related to program functionalities. This technique is considered to be a reliable

source of information pertaining to a software system.

Program slicing has been widely studied since it was first presented. By defini-

tion, program slicing is a technique for locating all statements (called slices) that

can affect or be affected by a critical point. The critical point is usually a variable or

a statement within a program. Many researchers and programmers use the program

58

CHAPTER 3. PROPOSED APPROACH

slicing technique as a tool to locate features implemented in a software system [10]

[85] [86] [97].

Thus in this phase, program slicing is used as a method for extracting statements

that are relevant to certain system behaviours of interest. It is a transformation

method that takes the program source code as an input and extracts statements

that have relationships among them. These groups of statements have the potential

to represent a software system’s features.

3.3.3 Program Dependence Graph

The second step of the IT feature extraction phase in the proposed framework is

taking the product of the program slicing step into a higher level of abstraction.

A Program Dependence Graph (PDG) is a graph in which each statement is rep-

resented as a node, and edges are represented as the possible flow of the PDG.

More details about the PFG process are presented and explained in the IT feature

extraction chapter.

The outcome from the previous step (the source code program slicing) is taken as

an input, analysed and transformed into a visual representation as a PDG. Rules are

proposed on producing candidate software system features. Some of these features

are independent sets of program codes within a PDG.

From the PDG and the program slicing steps, all potential software system fea-

tures are extracted. These extracted features are reverse engineered and represented

using a conceptual data model presentation.

3.4 Feature Model Matching

The feature model matching phase is the final one; it is located in the middle of the

proposed framework (as shown in Figure 3.3). It aims to match features represented

59

CHAPTER 3. PROPOSED APPROACH

as UML diagrams from the previous two phases (business feature elicitation and

IT feature extraction). This phase aims to reveal implemented features or missing

features. Model comparison approaches are employed and a matching algorithm

is proposed to perform the model matching. Model comparison is the practice of

identifying the similarities and differences between two model’s elements. As will

be illustrated in the model matching chapter, a feature might be represented as a

single model or a set of features might be embedded within a single model.

The matching algorithm proposed in this research is based on a UML class

diagram. It takes all the elements of each class diagram and generates a set of class

elements; for example, two classes represented as two sets where each set contains

elements of a class. An element can be a class attribute or a class operation. Finally,

the two sets are matched for similarities.

Thus, feature model matching involves Model Driven Engineering (MDE) and

model comparison approaches, employing a matching algorithm.

The algorithm states that Model v1 is matched to model v2 if all element of v1

exist in model v2. It’s also true the other ways around. More examples and details

will be illustrated in chapter feature model matching.

3.5 Conclusion

In this chapter, firstly, an overview of the proposal framework was given. The

feature-oriented IT business framework aims to address the need to link business

needs features with IT software features. This framework organises this task in three

main phases. The first is business feature elicitation, which is a forward engineering

process. The second is IT feature extraction, which is a reverse engineering process.

The third and last phase is feature model matching, which is a model matching

process.

60

CHAPTER 3. PROPOSED APPROACH

In every phase of the framework, a number of steps are followed in order to

achieve the final goal of each phase, which is presenting software features as UML

models.

61

Chapter 4

Business Feature Elicitation

Objectives:

• To highlight the importance of the business feature elicitation stage

• To define related terms

• To describe the business analysis steps

• To describe Requirement Engineering (terms and methods)

• To present the UML-based feature modelling

62

CHAPTER 4. BUSINESS FEATURE ELICITATION

4.1 Overview

The business feature elicitation stage begins with the business analysis process. Busi-

ness analysis deals with identifying business needs and seeks to provide solutions for

these needs. The outcome of this process is some form of documentation, which

states the business requirements or features needed for the problem solution. This

documentation passes though a Requirement Engineering (RE) process. The RE

process elicits system requirements and then documents these requirements or nec-

essary features in a requirement document called a Software Requirement Specifica-

tion (SRS) file. The SRSs are transferred to next level of the software’s development

lifecycle and are represented as data and behaviour conceptual modelling.

Figure 4.1 shows the decomposing of needs into the features needed and thence

into requirements.

Requirements

Features

Needs

Figure 4.1: Needs, Features and Requirements [89]

63

CHAPTER 4. BUSINESS FEATURE ELICITATION

4.2 Business Needs and Business Analysis

Business must be able to adapt to its current business environment if it is to achieve

its main goal, which is generating (and increasing) business profits. Business uses a

business analysis methodology to process and analyse any changes in the business

needs or business environment. Business analysis is a set of processes and techniques

used to study a organisation’s policies and structures, and makes suggestions for

achieving the business goals in a better manner [19].

One of the most important functions of a business analyst is to identify business

changes and to determine what is needed to adapt to these changes. He or she needs

to elicit new requirements and pass them to the IT department (if it is part of the

solution). However, the job of the business analyst does not end with passing the

new business requirements to the IT department; he or she should be involved in

the process of identifying the most efficacious solutions until final implementation.

Figure 4.2 illustrates the relationship between the business analysis process and

the software development process.

Requirements Design Build Install

Business
Analysis
Process

Bug fixes
IT/business

Requirements traceable

System software lifecycle

Figure 4.2: System Software Lifecycle

64

CHAPTER 4. BUSINESS FEATURE ELICITATION

Thus, the first step in any software development is the process of identifying

business needs. This process involves clarifying the business problem, identifying

the organisation’s vision or strategic mission and identifying stakeholders; this is

followed by validation and documentation. All of these activities are business anal-

ysis activities. Business analysis is a set of tasks, involving the building of knowledge

and employing techniques to comprehend the need for business change, identifying

the impact of those changes, and generating solutions for the business problem [155].

Figure 4.3 illustrates the business analysis process.

Requirements

Elicitation

Requirements

 Analysis

Solution &

Validation

Enterprise

Analysis

Figure 4.3: Business Analysis Process [19].

From the figure above, identifying the business needs during business analysis

process involves the following four steps:

1. Enterprise Analysis:

Enterprise analysis describes the general business problems, opportunities or

needs. It defines clearly all the needs and establishes a solution scope. The

business needs should be aligned with the strategic mission of the business. If

the new business needs or opportunities involve replacing part of the business

system, the processes involved in that part must be clearly understood and

form part of the requirement documents.

2. Elicitation:

65

CHAPTER 4. BUSINESS FEATURE ELICITATION

Elicitation is a process of interacting with all stakeholders in order to explore,

understand and define their needs and problems clearly and completely. These

interaction activities must be all documented.

3. Requirement Analysis:

Requirement analysis describes the steps needed to build the solution that is

to satisfy the business and stakeholder needs. The requirements collected must

be correct, validated and acceptable to all stakeholders.

4. Solution Validation and Documentation:

All solutions must be validated to ensure that the requirements are acceptable

and that the business needs will be satisfied.

4.3 System Features

Describing a product as a set of features that the system can provide is common in

business and IT fields. Therefore, it is natural to think about the features needed

in a system to fulfil business needs. Features fit in between the users’ descriptions

of real needs and the detailed descriptions of the system requirements for satisfying

those needs, as shown in Figure 4.1 above.

One of the many advantages of describing a system as a set of features is that

it provides initial system boundaries; this is because features describe a system at

a very abstract level. Features describe what the system is capable of doing as well

as what it is not able to do. Thus, most business analysts talk about a product’s

features in order to describe what that product is capable of achieving. In this

sense, a feature is a set of related functions that enable a user to satisfy a business

objective. At this level, feature definition is at the highest level of abstraction,

66

CHAPTER 4. BUSINESS FEATURE ELICITATION

which can be defined as a service that that system provides to fulfil one or more

stakeholder needs.

A product’s features are used to describe the system in natural language with

terms that are easy to understand for stakeholders. For example:

• The ATM system enables users to withdraw money.

• Bank customers are able to view their balance.

• The system displays a Welcome message to users.

To describe system features, software engineers use many techniques to present

what a system is capable of, and the most famous of these techniques is the UML

use case diagram. An example of a use case diagram is shown in Figure 4.4.

ATM System

Display Balance

Customer

Withdraw Cash

Make Deposit

Figure 4.4: ATM Use Case.

67

CHAPTER 4. BUSINESS FEATURE ELICITATION

The use case describes how the system’s user interacts with that system to ac-

complish a particular task. It also describes the system’s boundaries. The system

boundaries define what is expected from the system and what the user can expect

from that system.

The use case technique has been employed and developed in many researches,

and it is now standard practice in UML methodology [73][17]. It can be used as a

tool for explaining how the system features relate to the purpose and functions of

that system in a brief and effective manner.

4.4 Requirement Engineering

Sommerville asserts that Requirement Engineering (RE) consists of four distinct

steps [133]:

1. Requirement Elicitation

2. Requirement Analysis

3. Requirement Specification

4. Requirement Validation

68

CHAPTER 4. BUSINESS FEATURE ELICITATION

Requirements
engineering

Requirements
development

Analysis

Requirements
Management

Specification

Elicitation

Validation

Requirements
modelling

Figure 4.5: Components of Requirement Engineering Domain.

Two additional components are evident in the literature: requirement modelling

and requirement management [153][20]. Figure 4.5 shows all the components of

the requirement engineering domain. Requirement elicitation is briefly described

in subsection 4.4.1. Subsection 4.4.2 is about requirement analysis. Requirement

specification is briefly illustrated in subsection 4.4.3. Finally, requirement validation

is in section 4.4.4.

4.4.1 Requirements Elicitation

The first step in the RE process is conducting requirement elicitation. Elicitation

is the process of interacting with stakeholders to capture their needs. Requirements

elicitation can be difficult, time consuming and represent a heavy demand on re-

sources. The term requirement capturing is sometimes used as an alternative for

requirement elicitation. However, the term ’elicitation’ is usually preferred to ’cap-

turing’ because the latter implies that the requirements are already there and can

easily be collected by asking questions.

Requirement elicitation concerns discovering the system’s requirements by con-

69

CHAPTER 4. BUSINESS FEATURE ELICITATION

tacting stakeholders, studying system documentation, analysing the market and

exploiting domain knowledge.

The term ’system stakeholder’ is used to refer to anyone (a person or a group)

that might affect the requirements of the system under investigation whether di-

rectly or indirectly. The stakeholders’ needs must be elicited in order to obtain

the system requirements [58]. End-users, managers and software engineers are all

typical stakeholders but other parts of the organisation (that may occasionally in-

teract with the system) can also be considered stakeholders. Furthermore, external

organisations can form part of the system stakeholders.

The first goal of the requirement elicitation process is to place the system bound-

aries under investigation. The extent of the effort that needs to be expended on any

system development depends on the boundaries of that system. The system bound-

aries also determine who should be included in any considerations and who should

not. The system stakeholders, scenarios, use cases, goals and system tasks are all

determined based on the system boundaries.

Requirement elicitation works to identify the problem to be solved and to identify

the business and technical feasibilities. This process also endeavours to identify all

the people who could assist in collecting the system requirements.

4.4.2 Requirement Analysis

The requirement analysis task follows the requirement elicitation process. The re-

quirements collected from the stakeholders are analysed in detail in order that the

targeted stakeholder needs be satisfied. The requirement analysis begins with clas-

sifying the requirements and organising them into related groups. In other words,

the analysis activities entail collating the sets of unorganised, unstructured require-

ments gathered from previous stage in order to investigate the relationships among

them. The result of this stage must be a collection of consistence, unambiguous and

70

CHAPTER 4. BUSINESS FEATURE ELICITATION

complete requirements.

Many stakeholders are involved in building system requirements, and therefore

it is likely that some of the requirements will conflict. To resolve any such conflicts,

negotiations among the system stakeholders should be conducted.

In brief, requirement analysis takes the stakeholder needs as an input and pro-

duces a formal specification product as an output.

4.4.3 Requirement Specification

Requirement specification is the product of the RE process; it describes what must

be done, and what must be done is what the targeted system must do. It describes

the services, performance and the system features. In other words, requirement

specification describes the functional and non-functional requirements of a system.

The functional requirements are what the system must do, and the non- func-

tional requirements reflect the anticipated performance of that system. Besides the

functional and non-functional requirements of a system, the requirement specifica-

tion process describes the data that flow into and out of a system.

A system specification file is an official legal (contractual) document that de-

scribes what must be done. It can take various forms, from simple hand-written

documents, to prototypes and graphical or mathematical models; it may be a com-

bination of these.

4.4.4 Requirement Validation

Requirement validation measures the validity of the product as a result of the RE

process. It deals with demonstrating that the outcome of the requirement collection

process satisfies the stakeholders’ needs.

A formal technical review is often used as the main requirement validation mech-

71

CHAPTER 4. BUSINESS FEATURE ELICITATION

anism; this includes the participation of the system stakeholders. Such a formal

review assesses the system specifications to search for errors in content, to ensure

understanding, to eliminate lack of information, to identify remaining requirement

conflicts, and to determine whether or not the requirements are realistic.

Certain techniques are employed to ensure that the stakeholders’ requirements

have been clearly identified and that their needs are met. Some of these techniques

are requirement traceability, verifiability, comprehensibility and adaptability. Thus,

the ideal requirement specification file should be complete, correct, feasible, neces-

sary, prioritized, unambiguous and verifiable [145][20].

4.5 Requirement Elicitation Methods

In the subsection 4.4.1, requirement elicitation was defined as the practice of col-

lecting requirements by interacting with the targeted system stakeholders. At the

beginning of the requirement elicitation process, the system needs are not yet un-

derstood. Therefore, the needs that are to be included as requirements have not

yet been decided upon; not even which requirements must be included in the final

product.

They are many elicitation techniques and selecting which ones to employ depends

on various factors. These factors may be the time or resources available to the

requirements engineer as well as the identified system boundaries. Some of the

techniques used in requirement elicitation are:

1. Interviews::

The interview technique is often adopted as a requirement elicitation method,

which entails by meeting and interviewing a sample of system stakeholders.

The interview questions can be predefined as open or closed (or both) and the

interview itself conducted in a structured, semi-structured or unstructured

72

CHAPTER 4. BUSINESS FEATURE ELICITATION

manner; this latter may be conducted in a largely unprepared manner, in

which the interview takes the form of an open discussion.

2. Story Cards:

A story card is a written description, containing conversations and details

pertaining to a ’user story’; such a story identifies the functionality that is

considered important to that user (stakeholder).

3. Inspection:

Inspection is important when there is a large volume of data and formal doc-

umentation.

4. Observation:

In the literature, the terms observation, social analysis and ethnography have

largely the same meaning. Observation is a method of collecting requirements

by watching (or sometimes participating with) people performing their normal

duties.

Each elicitation method has its own advantages and disadvantages; however, this

depends on the system domain. The requirement engineer should select the method

or combination of methods that are appropriate to the domain. Because scenarios

have been widely used as a method for eliciting and modelling system requirements

[54], the scenario and story card methods are selected in this research for the purpose

of requirement elicitation. More details are given in the section below.

4.5.1 Scenarios

A scenario is the instantiation of a generic task type or a sequence of generic tasks

connected by transitions. It describes the characteristics and the social protocols

73

CHAPTER 4. BUSINESS FEATURE ELICITATION

that should be in place, and it explains what the users should do (or try to do) at

the requirements level, but not how they should do it [140].

The term ’scenario’ has a number of definitions in software engineering. For

example, a scenario is an interaction, and it describes a sequence of actions that

relate to real-life events rather than abstract descriptions of the functions [137].

Sutcliffe has another definition for scenario; he describes it as ”narratives that de-

scribe the usage or operation of a system, either drawn from experience of accidents

or imagined future situations for system operation” [138].

Scenarios have been widely used in RE as a technique for requirement elicitation,

requirement analysis, removing ambiguities, detecting missing features and conflict

among features, and verifying and validating requirements.

4.5.1.1 Scenarios and Requirement Elicitation

Scenarios are considered to be a very useful technique for requirement elicitation,

for two reasons; firstly, a scenario affords flexibility, as after each scenario session,

the system designer can identify and analyse the requirements. Secondly, the stake-

holders’ responses after interaction with a scenario serve to improve requirement

elicitation. Moreover, for a stakeholder, it is easier to relate to a scenario than to

abstract statements on what is required of the system. Scenarios generally follow

the specification of the initial requirements.

Figure 4.6 illustrates a scenario-based requirement elicitation, as presented by

Potts. It demonstrates that a scenario is an iterative process consisting of three

parts: document requirements, discuss requirements, and evolve requirements [116].

74

CHAPTER 4. BUSINESS FEATURE ELICITATION

Document

Requirements

Document

Requirements

Discuss

Requirements

Discuss

RequirementsEvolve RequirementsEvolve Requirements

Figure 4.6: Iterative Requirement Elaboration Process [116].

Figure 4.6 shows what may be described as a requirement elaboration process; it

begins with documenting the requirements. This entails documenting and collating

information gathered from the system’s stakeholders, analysing existing documents,

and finally, writing a new draft requirement document. A draft requirement doc-

ument usually contains information pertaining to the domain of the system to be

developed, system constraints, environment information and related documentation.

The discussing requirements stage has three steps. Initially, the collected re-

quirements are presented to the stakeholders. Then, feedback is collected in the

form of opinions, suggestions and answers to questions, until a general agreement is

reached. In the discussing requirements stage, the output of the requirements must

be documented for future reference as well as for further refinement, which is the

third stage.

The evolving requirements stage is the last one in the requirement elaboration

process. In this stage, the input is requirement document derived from the discussing

requirement stage, and this input is taken as a key factor in deciding to freeze a

requirement, to change it or to add more information to it.

75

CHAPTER 4. BUSINESS FEATURE ELICITATION

In 1990, Holbrook proposed Scenario Based Requirements Elicitation (SBRE)

[65], which involves creating scenarios in a recurring process. Feedback is taken from

the stakeholders to achieve refinement. The stakeholders then provide feedback, and

finally the functions expected from the system are reviewed. The importance of this

scenario review is because hitherto unstated requirements may emerge and this may

improve the system requirements as a whole.

In general, scenarios reveal information about functions, operations, features

of the system under investigation and the system’s surrounding environment. A

scenario may describe organisational settings, manual system actions within the

organisation, actors and their roles.

4.5.1.2 Scenarios

The scenario-based method consists of three steps, which are:

1. Scenario Description

2. Scenario Analysis

3. Scenario Modelling

Scenario Description:

Many methods have been used for scenario description; they are used as tools

to capture scenarios in different formats, such as text narratives, sketches, screen

shots and informal media. The result of a scenario can be represented as a formal

presentation, an event, or in visual form (as in use cases).

Several techniques and tools have been introduced for capturing and modelling

scenarios in the field of RE. For example, ScenIC proposes schema of goals, objec-

tives, tasks, obstacles and actors; actors are usually people but they can be machines

76

CHAPTER 4. BUSINESS FEATURE ELICITATION

[137]. ScenarioPlus is another tool for scenario-based analysis [69]; it verifies, an-

imates and plays back scenarios. These tools allow stakeholders to express their

requirements to software developers. ScenarioPlus contains a set of add-on tools,

such as a use case toolkit and a diagrams toolkit, to be used in scenario-based

requirement elicitation and analysis.

An example of a plain-text scenario is given Figure 4.7 below through an au-

tomated teller machine (ATM) scenario. Consider that an ATM system has been

developed to perform basic financial transactions. A simple scenario may then be:

A bank customer realizes that she needs some cash but there are no banks

nearby. So she goes to an ATM nearby to withdraw some cash. She identifies

herself to the ATM through her bank card and indicates that she needs £100

from her bank account. She states that she does not require a receipt or an

account balance statement. She takes her money and card, and then leaves

the machine.

Figure 4.7: ATM Scenario

Scenario Analysis:

According to Carroll a scenario contains the following four characteristic elements

[126]:

1. Actors

2. Background information about the actors and their environment

3. Goals

77

CHAPTER 4. BUSINESS FEATURE ELICITATION

4. Sequence of actions or events

For every scenario, there must be at least one actor who completes a sequence

of tasks in order to achieve a goal in the circumstances of the given context or

environment. Events are actions done by external systems.

Based on the example above, the scenario characteristic elements are five in number;

they are:

• Actor: the person who uses the ATM (bank customer).

• Environment: the location of the ATM.

• Action: the user requests money from the ATM.

• Events: the system retrieves the bank customer’s profile and account informa-

tion.

• Goal: performing a bank transaction.

Scenario Feature Modelling:

Feature modelling helps software engineers to elicit similarities and differences

among the features covered by a system. At this level of abstraction, a system

feature is defined as stakeholder’s view of the system’s characteristics and of product

functionality. A system feature is extracted based on the business objectives or

goals. The business goals and the system features are related though certain scenario

behaviours [81]. Figure 4.8 shows the relationships between scenarios, goals and

features.

78

CHAPTER 4. BUSINESS FEATURE ELICITATION

Goals

(Business Objectives)

Scenario

Achieved
by

Behaviour Describes

Feature

en
ab

le
s

sa
ti

sf
ie

s

Figure 4.8: Goals, Scenario and Features [81]

4.5.2 Story Cards

Story cards are generally identified as hand-written paper notes designed for require-

ment elicitation [129]. Besides providing a visible expression of a user story, story

cards ”represent customer requirements rather than document them” [43]. Cards

not only contain the text of a story, they also contain details derived from a recording

of the ensuing conversation [113].

For example, consider that a local bank needs an ATM system for basic banking

transactions. Analysts need to elicit the requirements of the required system in order

to develop that system. To achieve this, the stakeholders state their requirements

in story card format. In this scenario, the bank customer is welcomed into the

system, logs in securely and accesses the main menu. These can be represented as

79

CHAPTER 4. BUSINESS FEATURE ELICITATION

in Tables 4.1, 4.2 and 4.3.

Story Card
No. 1

SC1

Description The system should a present
Welcome screen to the ATM
user.

Note Provide a Welcome message
to the bank customer show-
ing where to log in.

Table 4.1: Story Card for Bank Customer - Welcome Screen

Story Card
No. 2

SC2

Description The bank customers must
log in before performing any
transaction.

Note Provide authentication pro-
cedure, such as a message
for the user to enter an
account number and pass-
word.

Table 4.2: Story Card for Login

80

CHAPTER 4. BUSINESS FEATURE ELICITATION

Story Card

No. 3
SC3

Description The bank customer chooses

a type of transaction to per-

form.

Note Provide a menu wherein the

ATM customer is able to se-

lect a banking transaction.

Table 4.3: Story Card for Main Menu

4.5.3 Analysis to Derive Features

The system requirement analyst takes the information from the story cards, such as

user ID, username, story card number, story description, date and time, and docu-

ments all this information in a database. Once the information has been collected,

the analyst combines and analyses all the information. The information is then

filtered and prioritized.

Thus, analysts derive system features based on information filtering and prior-

itizing. Table 4.4 shows an example of the Welcome screen feature, and Table 4.5

shows a user authenticated feature.

81

CHAPTER 4. BUSINESS FEATURE ELICITATION

Feature

No. 1
F1 Welcome Screen

Description The bank customer sees the

Welcome screen once they

access the system.

Table 4.4: Feature 1 - Welcome Screen

Feature
No. 2

F2 Login

Description Bank customer must be au-
thenticated before any bank
transaction is performed.

Table 4.5: Feature 2 - User Authentication

4.6 UML-based Feature Modelling

Each feature represented in the feature cards in the above examples can be rep-

resented as a UML diagram. The feature cards in Tables 4.4 and 4.5 can be

modelled in UML modelling diagrams. The power of the UML representation of a

system’s structure and behaviour is that it enables software engineers to represent

these feature cards in UML modelling diagrams. This transformation process in-

volves software engineers in modelling these feature representations (feature-oriented

modelling was described in Chapter 2).

Two examples can be given here to illustrate the modelling of structural and

behavioural feature representations. The feature presented in Table 4.4 can be

modelled in a UML structure diagram. For example, the class diagram Message ,

which has the attribute MSG : String = Welcome and the operation PrintMessage,

82

CHAPTER 4. BUSINESS FEATURE ELICITATION

is shown in Figure 4.9.

+PrintMessage()

-MSG : String = Welcome

Message

Figure 4.9: Class Diagram - Display a Welcome Message.

View Account Balance is Another example. This feature can be represented as

UML class diagram as well as shown in Figure 4.10

View Account Balance

+AvailableAccountBalance : Real;

+Message(‘The Available Account Balance is: ‘);

PrintAccountBlanace(){

 AvailableAccountBalance= DB.getAccountBalance();

 Print +Message;

 Print +AvailableAccountBalance;

}

Figure 4.10: Class Diagram - View Account Balance.

83

CHAPTER 4. BUSINESS FEATURE ELICITATION

Another example of presenting a feature was described in Table 4.5, and this can

be modelled by using a UML behaviour diagram.

The feature Login Required reflects the fact that an ATM user must be authenti-

cated before he or she is allowed to perform a banking transaction. This feature can

be presented as a UML activity diagram, as shown in Figure 4.11. However, this

feature can be decomposed into a set of two features. One feature displays a message

to the user in order to enter information, and the other feature authenticates these

data.

Enter account number

get Account Number

Enter PIN

get PIN

Authenticated = false Authenticated = true

[Authenticate User in Database]

Figure 4.11: ATM User Authentication Activity Diagram

Feature modelling can be represented at any level of software abstraction repre-

sentation. In this feature modelling, the feature is represented at the design level,

since the matching point of this research is chosen to be at this level.

84

CHAPTER 4. BUSINESS FEATURE ELICITATION

4.7 Conclusion

This chapter began with an overview (and highlighted the importance of) the busi-

ness feature elicitation stage. In the feature IT business framework, this stage has

two main objectives; the first is business analysis and the second is software require-

ment engineering. The software requirement engineering stage is the main focus of

this research. The business analyst elicits the business change and business needs,

and seeks to provide solutions, while the software requirement engineering process

transforms these solutions into a formal specification report.

System analysis and requirement engineering are important aspects of the prob-

lem space. The output of the requirement engineering process is eventually trans-

ferred into the solution space.

85

Chapter 5

IT Feature Extraction

Objectives:

• To discuss the role of the IT Feature Extraction phase within the proposed

framework

• To define the relevant terms used in this phase

• To highlight the role of program slicing

• To illustrate a feature extraction rule

86

CHAPTER 5. IT FEATURE EXTRACTION

5.1 Importance of the Phase

The feature extraction phase is a reverse engineering process. Software reverse en-

gineering starts with understanding the system that is to be reverse engineered.

Software understanding is defined as any activity that involves extracting knowl-

edge from a program in order to better understand the software [147]. Figure 5.1

shows level of abstraction of entity:

1. Data level: the data and program instructions.

2. Information level: the system presentation and design.

3. Knowledge level : the system architecture.

The higher the level abstraction, the less detail presented. The lower the level,

the more detail presented.

Data

Information

Knowledge

Figure 5.1: Level of Abstraction

87

CHAPTER 5. IT FEATURE EXTRACTION

Software that has not been updated (or inaccurate software documentation) is a

common problem in software development, mainly created by a program or software

package being allowed to lag behind its optimal evolution [114]. When software doc-

umentation is no longer reliable, software developers return to the software source

code, as this becomes the only (or the most reliable) form of documentation.

Studying software code in order to extract knowledge is a complex and difficult

task, particularly when the system has thousands of lines of code. Therefore, theo-

ries, techniques and tools have been developed to support software understanding.

Some of these techniques are lexical analysis, syntactic analysis, control flow analy-

sis and data flow analysis, and some of the tools automate the process of program

understanding; however, developer support is always required.

It is important to transform source code into an upper level of abstraction so

that software developers are more able to undertake the program understanding

process. Program visualisation (PV) is the process of transforming program source

code or program algorithms into graphical form in order to better illustrate the soft-

ware program in question [14]. PV tools are very useful in supporting developers in

system analysis, modelling, testing and maintenance. However, there is a need to

visually represent the whole software system in a blueprint manner.

Having improved the level of software understanding, the feature extraction

phase aims to target the software system features embedded in the source code

and to represents these features in a level of higher abstraction. The first step is to

slice the software system static source code into a set of related statements, called

slices. The second step is to present them in Program Dependency Graph (PDG),

highlighting the slices. Finally, the PDGs are used as a source to extract software

88

CHAPTER 5. IT FEATURE EXTRACTION

features, which are then represented as UML diagrams. Figure 5.2 shows the steps

of this IT feature extraction phase.

UML Diagrams

Software system Code
Slicing

Relations understaning

Figure 5.2: IT Feature Extraction Process

5.2 Program Understanding

The main goal of this phase is building a knowledge base the program undertaken.

Program understanding aims to extract knowledge of a computer program. The

extracted knowledge, about computer program, enable software engineer to better

understand and model computer program in higher abstract level. Moreover, it is

important for activities such as bug correction, enhancement, reuse, and documen-

tation.

Software understanding process works in a reverse engineering process; it can

89

CHAPTER 5. IT FEATURE EXTRACTION

starts at any software development level. However, reverse engineering practise

usually starts at the system source code level. It transforms software system code

into higher level of abstraction of a software life cycle level of abstraction shown in

Figure 5.1. Reverse engineering techniques analyse and identify the system’s com-

ponents and the relationships among them. From these relationships, the reverse

engineering process creates higher representations of the system based on these re-

lationships.

5.3 Program Slicing Step

Program slicing is a reverse engineering technique, first introduced in Mark Weiser’s

PhD thesis in 1981 [149]. It is a technique used to decompose a given program into

independent slices, based on given criteria [148]. Weiser defined program slicing as

a transformation technique used to extract an executable set of related statements

from a program; he called them slices [149]. With respect to the slicing criterion,

the resultant slices must together have the same behaviour as the original program

[31]. A ’slice program’ is therefore a subset program of the original program but the

slice program itself is an executable program whose behaviour must be identical to

some part of the original program’s behaviour [131].

Figure 5.3 shows static program slicing applied to a simple sequential program.

This example shows that program slicing is the process of removing those parts of

the program that are either not related to or have no affect on a certain statement

or variable.

90

CHAPTER 5. IT FEATURE EXTRACTION

(1) int x;
(2) int total = 0;
(3) int gama = 1;
(4) for(J = 0; J < N; J++) {
 (5) total = total + J;
 (6) gama = gama *J;
 }
(7) write(total);
(8) write(gama);

(1) int J;
(2) int total = 0;

(4) for(J = 0; J < N; J++) {
(5) total = total + J;

 }
(7) write(total);

The new subprogram was produced with respect to the criterion (write(total),{total}):

Figure 5.3: Backward Slicing Example

In this step, program slicing is used as a program understanding technique. It

has been studied and used for the purposes of program analysis and program trans-

formation as well as a reverse engineering technique. Also, program slicing has been

used to identify the relationships between individual parts of program statements,

based on a given initial program point, which is called a slice criterion.

A slice criterion is usually a single statement within a program or program vari-

able. For example, given a slice criterion C, all program statements that have a

direct or indirect influence on C are added to the slice S. In this case, S is called a

backward slice, based on the slice criterion point C. On the other hand, a forward

slice S contains all the program statements that are directly or indirectly influenced

by any change in the slice criterion point C. Thus, at the end of the slicing process,

a set of related statements is generated, based on the given criterion C.

Figure 5.4 shows part of a slice based on forward slicing technique and on the

statement criterion ’userAuthenticated = false’ . The figure also shows all the state-

ments that have been excluded from (as well as included in) the slice.

91

CHAPTER 5. IT FEATURE EXTRACTION

The slice
criteria

Statements
in the slice

Statements
out of the

slice

Figure 5.4: Forward Slicing Example

Usually, Program Slicing is viewed as a program transformation technique. It is

viewed as a technique, which delete part of none related statements to yield a slice

based on a certain statement (the slice criteria). It’s also used as a technique for

program restructuring, program differencing, program testing, program reuse and

program security.

In this phase, the program static slicing is used as a program analysis tech-

nique. On other words, it is used to extract related statements which are usually

related to a certain feature. However, these statements which represent a certain

92

CHAPTER 5. IT FEATURE EXTRACTION

feature can belong to a different classes in a software system as Figure 5.2 illustrates.

5.4 Slices-to-UML Step

The second step of the IT feature extraction phase is building a representation of

the software system following the program slicing process. Accordingly, a program

is presented as a Program Dependence Graph (PDG). A PDG is a directed graph

that contains a set of nodes and edges. A node represents a program statement and

an edge represents dependency direction. Each node in a PDG must be in between

two other nodes, and the PDG must start with a ’start node’ and end with an ’end

node’ or a ’stop node’. Figure 5.5 shows an example of a PDG.

Start Entry

Read (X)
Y:=10 Total:=0

X>Y

Write(Total)

Write(X)

Total :=
Total + 1

X := X+ 1;

Y := Y – 1;

Stop

Figure 5.5: Program Dependence Graph

93

CHAPTER 5. IT FEATURE EXTRACTION

Besides the PDG, the software representation step includes a program Control

Flow Graph (CFG). A CFG presents the program flow from one statement to an-

other. In a CFG, a node represents a statement in a program, and an edge represents

a possible flow from one node to another. Figure 5.6 shows an example of a CFG,

taken from the program presented in Figure 5.4.

Start

While (true)

While (!userAuthenticated

performTransactions()

screen.displayMessageLine("\nWelcome!");TRUE

userAuthenticated = false

screen.displayMessageLine("\nThank you!
Goodbye!");

 authenticateUser()

 currentAccountNumber = 0;

Figure 5.6: Control Flow Graph

In this step, the slices taken from the program slicing stage are presented along-

side the statements outside the slice, as a program flow graph; this is shown in

Figure 5.7, where the grey circles represent statements outside the slice, and the

white ones within the slice. This process can be performed using software tools;

however, the participation of software developers is needed in this part of this pro-

cess, as discussed in the literature review chapter.

94

CHAPTER 5. IT FEATURE EXTRACTION

5

7

3 4

6

2

8

86 7userAthen = TRUE

userAthen = FALSE

1 1

31 2 4

3 42

9

3 42

userAthenticated is TRUE

31 2

ATM.run

ATM.authenticate
User

keypad.getInput

bankDatabase.authenticateUser

bankDatabase.getAccount Account.validatePIN

5

screen:displayMessageLine("Welcome")

Figure 5.7: CFG and Program Slicing

Because a system achieves its functionality by passing messages among classes.

Figure 5.7 shows a slice contain statements belongs to different classes. The state-

ment “screen:displayMessageLine(’Welcome’)” is part of the control flow graph

(CFG); however, it’s not part of the path of the Program Dependence Graph (PDG)

of the two statements before it and after it.

Figure 5.7 Shows that PDG is connected to class methods. Examples of these

methods are:

1. ATM.authenticateUser method is divided into sub PDGs to achieve its func-

tionality. These divisions contains accepting data to be validate, accessing

database, validate data, and finely showing result.

2. BankDatabase.authenticateUser method takes user login and password then

authenticate the user by access the database. Even it is part of the CFG; it

has its own path in the PDG.

95

CHAPTER 5. IT FEATURE EXTRACTION

3. BankDatabase.getAccount method forks from BankDatabase.authenticateUser

PDG. It access the database to retrieve bank account number.

4. Account.validatePIN method forks from the BankDatabase.authenticateUser

PDG. It access database to retrieve bank customer Personal Identification

Number (PIN).

5.4.1 IT Feature Representation

The Unified Modelling Language (UML) is modelling language that has been widely

used to represent system behaviours and structures. It consists of six diagrams for

modelling the software system structure and seven models for modelling the software

system behaviour. The structure diagrams that sometimes called static diagrams

are used to model the system static structure. These diagrams are:

1. Class diagram

2. Composite diagram

3. Component diagram

4. Deployment diagram

5. Object diagram

6. Package diagram

The other seven UML diagrams are behaviour or dynamic diagrams. They are

used to model system behaviour. These diagrams can be divided into two group.

The first group model the system behaviour. These diagrams are:

1. State diagram

2. Use Case diagram

96

CHAPTER 5. IT FEATURE EXTRACTION

3. Activity diagram

The second group are these diagrams that model how the system interaction to

achieve its goals. These interaction diagrams are:

1. Communication diagram

2. Interaction diagram

3. sequence diagram

4. Timing diagram

As ’software system feature’ is defined as ”an increment of program function-

ality”, these functionalities can be presented as a structure or behaviour model in

UML.

Based on Figure 5.7, a sliced based feature extraction method can be introduced

for extracting a software system feature:

Sliced-based feature extraction method states that: a program statement (or

set of statements) can represent a software system feature if: (1) it is not part of

a program slice, (2) it is located in between two other statements, which are both

parts of a program slice.

97

CHAPTER 5. IT FEATURE EXTRACTION

5

7

3 4

6

2

8

8

6
7

1 1

31 2 4

3 42

9

3

4

2

31 2

5

screen:displayMessageLine("Welcome")

Potential System feature

Figure 5.8: Potential System Features in a CFG

In Figure 5.8, the statement ”screen:displayMessageLine(”Welcome”)” is located

in the middle of two statements that belong to a slice. This statement can be seen

as a simple system feature.

The feature ”screen:displayMessageLine(”Welcome”)” can be modelled as a sim-

ple structure UML class diagram. Figure 5.9 shows a representation of this feature

as a class diagram.

98

CHAPTER 5. IT FEATURE EXTRACTION

+PrintMessage()

-MSG : String = Welcome

Message

Figure 5.9: UML Class Diagram

As mentioned earlier software developers participation in this process can help.

Any of the UML diagrams can be used to model system features extracted from the

CFD.

In the case study in chapter 7 parts of ATM and library software systems features

were presented as a class diagram and activity diagram.

5.5 Conclusion

This chapter began with an overview (and highlighted the importance of) the IT

feature extraction phase. The whole process of this phase is reverse engineering; it

takes the system source code from the bottom of the software development lifecycle

and reverse engineers it into a modelling language. This phase comprises two main

objectives; firstly, the system program source coded is sliced using a static program

slicing technique, and secondly, the slicing is used to extract system features, which

are then represented in UML form.

99

CHAPTER 5. IT FEATURE EXTRACTION

Program reverse engineering is a difficult and complicated task. However, the

program source code usually represents a reliable source for understanding the sys-

tem’s requirements. The output of this phase is a set of features modelled in UML

modelling diagrams, which can be exploited in the next phase within the proposed

framework.

100

Chapter 6

Feature Model Matching

Objectives:

• To give an overview of model comparison

• To discuss algorithms for diagram comparison

• To discuss model comparison approaches

• To introduce the class model matching algorithm

101

CHAPTER 6. FEATURE MODEL MATCHING

6.1 Introduction

In the feature-based IT business framework described in Chapter 3, feature model

matching is the final phase. As mentioned in the proposed approach chapter, the

proposed framework builds a linkage between the business needs and the supporting

IT infrastructure. The feature model matching phase links the outputs of the other

two (as illustrated in the previous two chapters, they are the top-to-middle phase,

which was covered in the business feature elicitation chapter, and the bottom-to-

middle phase, which was covered in the IT feature extraction chapter). Figure 6.1

illustrate the goals of the previous two phases and the position of this current one.

Business

Needs

Business

Feature

Elicitation

UML

representation

UML

representation

IT Features

Extraction

Existing

System

BUSINESS FEATURE ELICITATION
(Business analysis , Requirement

engineering and forward software

engineering)

IT FEATURE EXTRACTION
Mainly software reverse engineering and

software understanding

FEATURE MODEL
MATCHING

Top-to middle and bottom-

to middle

matching

FEATURE MODEL MATCHING
uses model comparison techniques

and approaches

Figure 6.1: IT-Business Framework and Matching Stage

102

CHAPTER 6. FEATURE MODEL MATCHING

Thus, the aim of this phase is to match the features (represented as UML di-

agrams) generated in the previous two phases (business feature elicitation and IT

feature extraction). The matching phase reveals implemented features or missing

features from the both sides.

6.2 The Matching Problem

Matching problem is an important and a well-known area of research in computer

science. It has been researched in many computer science subjects such as semantic

web, ontology integration, database, data warehouse, model driven engineering and

others domains.

The term semantic matching is used in computer science to refer to elements

semantically related [50].

An example of a semantic matching is the S-Match algorithm. Two graphic-like

structure are matched to identify elements those semantically similar to one another.

The similarity can be for example torch and flashlight or associate professor in the

US academic system corresponds to senior lecturer in the UK academic system as

shown in Figure 6.2.

103

CHAPTER 6. FEATURE MODEL MATCHING

Institute Emplyee position

professor

Assistant
professor

Associate
professor

University

Staff

position

senior
lecturer

lecturer reader

(A) (B)

Figure 6.2: A Scholarly Teacher in USA and UK Academic System

In general, matching takes schemas or ontologies as an input and generate an

output as relationship. An input for matching is two sets of entities such as tables or

UML diagrams. The output is relationship between these two entities (equivalence,

not equivalence).

6.3 Model Comparison and Approaches

As illustrated in Section 2.7 of the chapter Feature-based Approach: State of the

Art, model comparison is the practice of identifying similarities and differences be-

tween two model’s elements. It is an MDE practice which has been used in model

versioning and model clone detection, beside many other MDE areas such as model

composition, model transformation testing, and others [136]. Model comparison

methods are categorized based on the models they designed to work on. A number

of comparison methods are here reviewed in order to investigate the need for their

use in this phase.

104

CHAPTER 6. FEATURE MODEL MATCHING

1. Multiple model methods:

These methods are able to compare two different types of models: structural

and behavioural.

2. Behaviour and data-flow model methods:

These methods are designed to deal with behaviour and data-flow models;

comparison approaches use concepts derived from graph theory as well as

graph theory applications [46].

3. Structural model methods:

These methods are for comparing the models of two system structures. In this

respect some work has been done in UML class diagram differences [60][121].

4. Product line architecture methods:

These methods are applied to models that are taken to be different versions

of the same artefact [33].

5. Process model methods:

These methods are for comparing models that represent software development

processes. Process models are compared based on node similarity, structural

similarity and behavioural similarity [49].

Delta algorithms (or difference algorithms) are applied to find any differences

between two different versions of the same artefact. Delta algorithms are extensively

used in text-based artefacts to reduce storage space through text merging [101].

However, these algorithms can be used to calculate and represent differences between

two models [5]. There are two delta algorithms: symmetric delta and directed delta.

105

CHAPTER 6. FEATURE MODEL MATCHING

Symmetric delta can be defined as:

∆(v1, v2) = (v1/v2) ∪ (v2/v1);

where v1 and v2 represent two versions of an artefact.

An example of symmetric delta consider that:

v1 = {1,2,3}

v2 = {3,4}

By applying a ∆ operation

∆(v1, v2) = {1, 3, 4}

Figure 6.3 shows an intersection shape that represents the shadow as ∆(v1, v2)

1 4
2

3

Figure 6.3: Intersection Shape for ∆(v1, v2)

106

CHAPTER 6. FEATURE MODEL MATCHING

Directed delta (or sometimes called change delta) is a set of sequential operations

(or changes) such that when this set of operations acts on one version’s model (v1),

it transforms that model into another version (v2). These sequential operations are

adding or deleting elements from one set in order to change it to another.

Directed delta is usually connected to data compression. It takes a set of data

and transforms this set into a new set. The new set is smaller than the original

set and can be transform back to the old set. The directed delta achieve this by

removing data redundancy.

6.4 Proposed Model Matching Approach

The word matching in computer science is defined as a process of taking two graphic-

like models or structures (e.g. UML models, graphs, etc.) and producing a map

between those two input based on similarities to each other.

In this research, a rule is introduced which states that:

If only an ”ADD” operator or only ”REMOVE” operator is applied to a set v1

and a set v2 can be generated; then v1 is matched to v2 and v2 is matched to v1.

For example:

v1 = {1}

v2 = {1, 2, 3, 5}

By adding 2,3,5 then v2 can be generated. Therefore, v1 in matched to v2. On the

other hand, if an operator remove is applied to v2 by removing 2,3 and 5, v1 can be

107

CHAPTER 6. FEATURE MODEL MATCHING

generated.

Figure 6.4 shows a class diagram is transformed into another class diagram for

matching.

Class printOutMessages

firstName
lastName
nationality
greatingMessage

+print_greatingMessage()
+prin_tnationality()
+print_FirstName()

+print_LastName()

Class printOutMessages

firstName
lastName
nationality
greatingMessage

+print_greatingMessage()
+prin_tnationality()
+print_FirstName()

+print_LastName()

Class printOutMessages

greatingMessage

+print_greatingMessage()

Class printMessages

welcomeMessage

+printWelcomeMessage()

Class printMessages

welcomeMessage

+printWelcomeMessage()

Match

Figure 6.4: Class Converting for a Matching Algorithm

The proposed model comparison algorithm is based on a directed delta algo-

rithm. A directed delta algorithm uses a set of operations to turn one model into

another, i.e. it transforms one set (v1) into another set (v2) by searching for ele-

108

CHAPTER 6. FEATURE MODEL MATCHING

ments within set v2 and then adding or removing elements from v1 until sets v1 and

v2 contain the same elements.

As some models might be subsets of other models, it is important to understand

that one or more features might be represented as a single model. Therefore, one or

more models, representing system features, might be matched into a single model,

which represents a set of features; as shown in Figure 6.5. Model matching in this

research refers to elements that represent the same idea or artefact.

Feature 1

Feature 2

Feature 3

Feature 1

Feature 2

Feature 3

Figure 6.5: Feature Model Mapping

Based on this discussion and the structural model methods, a feature matching

algorithm is proposed:

109

CHAPTER 6. FEATURE MODEL MATCHING

Algorithm : A feature of class-based Model v1 is matched to a feature class-based

model v2 if all element of v1 exist in model v2.

The algorithm achieves its matching approach of two class models through a set

of steps:

1. Given 2 class models, set all elements of class model 1 to v1 and all elements

of class model 2 to v2.

2. Set Flag-match to false.

3. If all elements within v1 exist in v2, set Flag-match to true.

4. If all elements within v2 exist in v1, set Flag-match to true.

5. If Flat-match is true, the models v1 and v2 are a match.

In some models, such as class UML models, attributes and operations are repre-

sented in natural language (e.g. English). However, this natural language represen-

tation makes the model comparison or matching a complicated task. One approach

is to use AI language-related techniques; however, this is beyond the scope of this

research. Another approach is that software developers be part of the process in

order to overcome the natural language and design complexity.

110

CHAPTER 6. FEATURE MODEL MATCHING

6.4.1 Model Matching Example

+printWelcome()
+printnationality()
+printFirstName()
+printLastName()

printOutClass

-firstName
-lastName
-welcome : string = Welcome to NBK Bank
-nationality

+printWelcome()

-welcome : string = Welcome To NBK Bank

printWelcome

Figure 6.6: Class Model Matching Example

Figure 6.6 shows two examples of class diagrams; one has only one feature and the

other has more than one feature. Each diagram consists of a set of elements, i.e.

attributes and operations:

printWelcome contains two elements: an attribute, i.e. welcome, and an opera-

tion, i.e. printWelcome().

printOutClass contains eight elements: 4 attributes and 4 operations.

Attributes: firstName, lastName, welcome and nationality.

Operations: printWelcome(), printnationality(), printFirstName() and printLast-

Name().

111

CHAPTER 6. FEATURE MODEL MATCHING

It is clear that not all elements of printOutClass are in the printWelcome class;

however, all elements of printWelcome are in printOutclass. An activity diagram

for the proposed algorithm and pseudo code is shown below.

Search If all Element of A are also in B

A is a subset of BA is NOT a subset of B

Search If all Element of B are also in A

B is a subset of A

B is NOT a subset of A

A and B are mapped

A and B are not mapped

Figure 6.7: Proposed Algorithm Activity Diagram

// load first model elements

WHILE (more_element_in_model_A){

112

CHAPTER 6. FEATURE MODEL MATCHING

ADD element to A_element_array

}

// load second model elements

WHILE (more_element_in_model_B){

ADD element to B_element_array

}

// reset Flags

Flag-match = false;

break_flag = false;

// check if all elements in A are in B as well

FOR (String A_element : A_element_array) {

FOR (String B_element : B_element_array) {

IF (B_element <> A_element) THEN // Found an element in A but not

in B

BEGIN_IF

break_flag = true;

Break;

END_IF

} // B_element_array for loop

} // A_element_array for loop

// check if all elements in B are in A as well

IF break_flag = true THEN //If A is not a subset of B

113

CHAPTER 6. FEATURE MODEL MATCHING

BEGIN_IF

FOR (String B_element : B_element_array) {

FOR (String A_element : A_element_array) {

IF (A_element <> B_element) THEN

// Found an element in B but not in A

BEGIN_IF

break_flag = true;

Break;

END_IF

} // A_element_array for loop

} // B_element_array for loop

END_IF

IF (break_flag <> true)

BEGIN_IF

Flag-match = TRUE

END_IF

114

CHAPTER 6. FEATURE MODEL MATCHING

6.5 Conclusion

The feature modelling matching chapter is the final phase of the proposed feature-

oriented IT business framework. It works as a linkage that maps the feature mod-

elling from the business feature elicitation phase with that of the IT feature extrac-

tion phase.

At the beginning of this chapter, an overview was given and all the relevant terms

defined. As this phase is a mapping process, it illustrated the model comparison

concepts and approaches.

The main goal of this phase is to link the models of the business elicitation

phase to those of the IT extraction phase, and consequently, this phase searches for

similarities between two models in order to make that link. For this purpose, an

algorithm (for a UML class diagram) was developed to match the features within

the two given models; the algorithm was illustrated through an example. At the

end of the chapter, an algorithm activity diagram and a pseudo code were provided.

115

Chapter 7

Case Study

Objectives:

• To review the tools used in this case study

• To show how the framework phases of the proposed approach can be used with

an existing system

• To show how to use the selected tools in the software reverse engineering

process

116

CHAPTER 7. CASE STUDY

7.1 Overview

This case study chapter aims to evaluate the proposed framework presented in Chap-

ter 3. Its objective is to assess the efficacy of the implementation of the proposed

approach. All three phases of proposed framework are covered in this case study (i.e.

business feature elicitation, IT feature extraction and feature model comparison).

To demonstrate this, an ATM software system application is here used for the case

study.

Section 7.3 provides background information on the ATM system. In Section 7.2,

a brief description of the tools used is given. The first phase of the proposed frame-

work (business feature elicitation) is demonstrated in Section 7.3.2. The second

phase (IT feature extraction) is demonstrated in Section 7.3.3. Finally, the third

phase (feature model comparison) is demonstrated in Section 7.3.4.

7.2 Tool Support

7.2.1 Eclipse

Eclipse was a project launched in November 2001 by IBM. It is a community for

individuals and organisations who wish to cooperate in developing ’open source’

software [56]. The Eclipse community works on a variety of open source projects,

varying from open development platforms, to tools for building and deploying or

managing software.

The Eclipse project first started as a Java Integrated Development Environments

(IDE) project but has since evolved to cover many other languages. Moreover, this

project has tools designed for modelling as well as for business reporting and mobile

applications. One important feature of the Eclipse project is the use of plug-ins

117

CHAPTER 7. CASE STUDY

to develop applications in others languages such as COBOL, C, C++, PHP, Perl,

Python amongst others. Developers use Eclipse Java IDE as a tool for managing

all their software artefacts, such as software coding and debugging. It has a built-in

Java compiler and a model of the Java source file.

Eclipse is used in this project as a tool to install the Java code slicer plug-ins.

Eclipse 3.4.1 is used even though it is not the latest version available; this is because

the Indus Java slicer was developed to work with this application version. Also, the

Indus Java slicer was chosen as it works only under Eclipse applications, and the

hardware requirements to install Eclipse run acceptably well on an average desktop

computer.

7.2.2 Indus Java Program Slicer

Indus is a Java program slicer designed to slice object-oriented Java applications.

Besides being the first Java program slicer, Indus is the only publicly available Java

slicer [119]. Alongside Indus, Kaveri is a front-end Eclipse plug-in for the Indus Java

slicer; t adds highlight annotations to the sliced Java source code [74].

Figure 7.1 shows a screen snapshot of the Eclipse application. This snapshot

was taken after running a forward slicing process on the ATM software using the

Indus slicer. Kaveri highlights all the statements included in the slice. However,

these statements are not all the statements included in the slice, as some other

statements, which are part of the slice, are in other ATM application classes. The

left side of the screen shows other classes, which comprise other statements included

in the slice.

118

CHAPTER 7. CASE STUDY

Figure 7.1: Indus Slicing Result

7.3 An ATM System

ATM stands for Automated Teller Machine or Automatic Teller Machine. An ATM

is an electronic banking outlet that gives bank customers access to perform basic

financial transactions without the aid of a branch teller. Nowadays, ATM systems

are important tools, where customers can withdraw cash at anytime of the day.

The ATM software system used as a case study in this research is written in the

Java programming language, and it handles basic ATM features [47]. Usually, the

main ATM features are:

1. Check account balance

119

CHAPTER 7. CASE STUDY

2. Withdraw cash

3. Deposit cash

4. Transfer money

The ATM software system was selected to demonstrate the proposed feature-

oriented IT business mapping framework because it provides basic, easy-to-understand

features; the fact that they represent banking transactions is of no particular rele-

vance. Figure 7.2 shows a user interface for an ATM software system.

Welcome.
Please insert your

ATM card for service.
1 2 3

4

7

5

0

9

6

8

Enter

Receipt

ATM card

Cash dispensing door

Deposit envelope door

Figure 7.2: A User Interface For An ATM Software System

7.3.1 The ATM Software System Application

The ATM software system application used in this case study runs on Ubuntu, a

desktop Linux operating system. The program is simple and the system has a basic

120

CHAPTER 7. CASE STUDY

user interface; its overall simplicity is essential for fully comprehending the research

approach.

Welcome screen. The program starts by displaying a welcome screen, requesting

the end-user to enter his/her account number. A screen snapshot of the start screen

is shown in Figure 7.3.

Figure 7.3: An ATM User Welcome Screen

As the above screen snapshot shows, the first functionality of the application

is providing a welcome statement to the system user. A welcome statement is

considered to be a software feature as the definition of feature can be applied to it:

• A distinctive user-visible aspect

• An increment of program functionality

Users Authentication. The user authentication process is applied within the

initial screen of the program display. Firstly, an ATM user is asked to enter his/her

121

CHAPTER 7. CASE STUDY

account number and to press the Enter button. Once this entry has been accepted,

another line is invoked, which requests the user to enter the bank account PIN. A

snapshot of the user authentication process is shown in Figure 7.4.

Figure 7.4: User Authentication Screen

The User Authentication process is another feature of the ATM software system.

This feature can be defined as ”a set of individual requirements”. If a user enters

invalid data, the authentication process replies with an error message, and ask the

user to re-enter his/her data. Figure 7.5 shows the error screen.

122

CHAPTER 7. CASE STUDY

Figure 7.5: Invalid Data Entry Screen

Once the ATM user has entered a valid bank account number and PIN, the

software system takes the user to the next screen, which is the main menu screen, as

shown in Figure 7.6. The software’s main menu screen shows the banking services

available to the ATM user. As shown in Figure 7.6, these services are: view the

account’s balance, withdraw cash, deposit cash and an option to exit the ATM

software system. A system user must enter the number corresponding to his/her

choice. The Exit choice terminates the validation process as well as the session.

123

CHAPTER 7. CASE STUDY

Figure 7.6: Main Menu Screen of the ATM Software System

Statistics table. Statistical information pertaining to the ATM Java source code

is shown in Table 7.1. It provides the ATM system metrics, which give the number

of classes, methods and total number of lines of code in the ATM software source

code used for this case study.

Metric Total
Number of Classes 12
Number of Methods 20
Lines of code 700

Table 7.1: ATM System Source Code Statistics

The ATM software system application used in this case study is not a complete

one; however, it does have the basic concepts and features of an ATM software

system. In this case study, the ATM software system application is used merely to

124

CHAPTER 7. CASE STUDY

illustrate the proposed feature-based IT business framework.

7.3.2 Business Feature Elicitation Phase

As discussed in the business feature elicitation chapter, this phase covers the business

requirements elicitation process. In the proposed framework, the business elicitation

process begins with business analysis, which aims to identify the business needs

and goals, and to clarify any business changes (usually in relation its operational

environment). The business analysis processes was illustrated in Section 4.2 but

owing to the limitations of this research, this process will not form part of this case

study.

In this phase, the case study begins with the requirement engineering step, which

describes the scenario, feature modelling and UML modelling. At the beginning

of this step, a scenario is analysed using the Carroll analysis methods previously

explained in Chapter 4. In the subsequent step, story cards are created and analysed.

Finally, feature cards are produced.

At the end of this phase, features are represented in UML models. These models

represent the features from the first phase of the proposed feature-oriented frame-

work, which are later mapped onto the feature models derived from the second phase

(the IT feature extraction phase).

7.3.2.1 Scenarios

A scenario is an example of an interactive session; it describes a sequence of actions

that relate to real-life examples rather than to abstract descriptions of the functions.

To illustrate the proposed approach, a usage scenario is generated. The Scenario is

analysed and in this case study the results deliver a set of ATM software features.

All these processes are part of the requirement engineering stage.

For the purpose of this case study and as an example, a scenario for an ATM

125

CHAPTER 7. CASE STUDY

system is produced, which is shown in Figure 7.7:

The bank customer realizes that she needs some cash but there are no banks

nearby. So, she goes to an ATM to withdraw some. She identifies herself

to the ATM and indicates that she needs £100 from her bank account. She

states that she does not require a receipt for the transaction or to know her

account balance. She withdraws her money when it is delivered.

Figure 7.7: ATM Scenario

As illustrated in Chapter 4, a scenario is a description of a high level of abstrac-

tion. In the above scenario, the description avoids any discussion about the ATM

card, the PIN or any implementation or technical solutions associated with the soft-

ware system. It is important to separate the user activities from the technology;

the user activities remain constant and consistent, regardless of any technological

improvement.

Analysis:

For the above scenario, and based on the Carroll method described on Chapter 4,

the scenario elements are:

• Setting: the environment or context of the user.

• Actors: the bank customer, i.e. the ATM user; someone is performing activ-

ities or actions.

126

CHAPTER 7. CASE STUDY

• Actions: the actions the user performs to achieve his/her goal.

• Events or decisions: the user makes from the alternatives/options.

• Goal: desired outcome of the user who is using the system under considera-

tion.

7.3.2.2 Story Cards

Story cards were illustrated in Chapter 4. As mentioned previously, a story card is

a communication technique for user stories. User stories are methods through which

user requirements are elicited.

To demonstrate the role of story cards in this case study, a number of story cards

have been produced in order to build the ATM software system. Two story cards

are shown below; Table 7.2 shows a story card for customer Welcome message, and

the second story card (shown in Table 7.3) is for the login screen.

Story Card No. 1

Description
The system must present a wel-
come message to bank customers.

Note

Provide a welcome message to the
bank customer once an ATM user
starts using the system.

Table 7.2: Story Card for Customer - Welcome

127

CHAPTER 7. CASE STUDY

Story Card No. 2

Description

The bank customer must login to

perform any bank transactions.

Note

Provide a message for the user

to enter an account number and

password.

Table 7.3: Story Card for Customer - Login

Analysis:

Chapter 4 indicates that stakeholder story cards can be collected and analysed

to extract system features. From the above story cards, ATM software features can

be extracted. Some of the features that can be produced from these stakeholder

story cards are shown below. Table 7.4 shows a ’welcome screen’ feature; it shows

the feature name and provides a description of this feature. Table 7.5 shows a ’user

authentication’ feature; it too shows the feature name and provides a description.

Feature No. F1 Welcome Screen

Description
Bank customer sees a welcome
screen having accessed the system

Table 7.4: Feature 1 - Welcome Screen

128

CHAPTER 7. CASE STUDY

Feature No. F2 Login

Description
Bank customer must be authenti-
cated before any bank transaction
is performed.

Table 7.5: Feature 2 - User Authentication

7.3.2.3 Feature Presentation in UML Models

As covered in Chapter 4, the software requirement process deals with managing

and developing software requirements; it produces a set of diagrams, algorithms,

documentation and other requirement artefacts. Each one of these requirement

artefacts is designed to serve a specific goal in software understanding. In this case

study, UML is used to describe and organize the software system requirements.

Figure 7.8 shows a class diagram representing the feature of the welcome screen,

as described in Table 7.4.

Message

MSG : String = Welcome;

PrintMessage ();

Figure 7.8: Class UML Representation of the Welcome Feature

Another representation of a software feature for this case study is the Login fea-

ture. This type of feature entails behavioural activity. It can be presented as a UML

activity diagram, as shown in Figure 7.9. The activity diagram changes the state

of an ATM authenticated user from the ’not authenticated’ to the ’authenticated’

state.

129

CHAPTER 7. CASE STUDY

Enter account number

get Account Number

Enter PIN

get PIN

Authenticated = false Authenticated = true

[Authenticate User in Database]

Figure 7.9: Activity UML Representation of ’authenticated user’ Feature

7.3.3 IT Feature Extraction Phase

The IT feature extraction phase is mostly a program understanding process. The

main objective of a program understanding process is to comprehend the functional

aspects of the existing software via extracting relationships from within the source

code and then representing these relationships in a diagrammatical view.

The IT feature extraction phase has two main objectives; the first is extracting

knowledge from the software program source code, and the second is representing

this knowledge as software system features.

The first objective is achieved in a set of steps. These steps are demonstrated in

the following two subsections: program slicing, and program dependency and control

130

CHAPTER 7. CASE STUDY

flow graphs. The second objective of this phase is to recover the feature structures

of the software through feature UML diagrams, as described in Chapter 5.

7.3.3.1 Program Slicing Step

Program slicing was reviewed in the literature review chapter. Moreover, Chapter 5

illustrates the role of program slicing in the IT feature extraction phase. As men-

tioned previously, program slicing is a program analysis technique that uses program

statement dependence information to identify a program’s statement relationships,

based on an initial program point called a slice criterion point.

The ATM software system used in this case study consists of 12 classes, as shown

above in Table 7.1. However, one of these twelve classes is used as a simple class

that allows the whole software system to start up. Therefore, it is not included in

Figure 7.10, which shows the classes and methods of the ATM software system used

in this case study.

131

CHAPTER 7. CASE STUDY

+run()

+authenticateUser()

+performTransactions()

+displayMainMenu()

+CreateTransaction()

ATM

+useAuthenticated : Boolean = false

+getInput() : Integer

Keypad

+displayMessage()

+displayMessageLine()

+displayDollarAmount()

Screen

+isEnvelopeReceived() : Boolean

DepositSlot

+dispenseCash()

+isSufficientCashAvailable() : Boolean

cashDispenser

-count : Integer = 500

+execute()

Withdrawal

-amount : Double

+getAccountNumber()

+execute()

Transaction

-accountNumber : Integer

+execute()

Deposit

-amount : Double

+authenticateUser() : Boolean

+getAcailableBalance() : Double

+getTotalBalance() : Double

+credit()

+debit()

BankDatabase

+validatePIN() : Boolean

+getavailableBalance() : Double

+getTotalBalance() : Double

+credit()

+debit()

Account

-accountNumber : Integer

-pin : Integer

-availableBalance : Double

-totalBalance : Double

+execute()

BalanceInquiry

Figure 7.10: ATM Software Classes and Methods

Applying any slicing technique (forwards, backwards or full) on the ATM soft-

ware system used here produces sets of statements sharing relationships. These sets

of statements are called program slices. More details about program slicing were

given in the literature review chapter. In this case study, a forward slicing technique

and a global variable are chosen to illustrate the proposed framework. The forward

132

CHAPTER 7. CASE STUDY

slicing was used because the slice criterion point is located at the beginning of the

software program.

A system achieves its functionalities by executing a set of program statements.

These statements can be viewed as sending messages between classes, as statements

can belong to different classes. The relationships within the source code exist across

all the system classes (in order to achieve the system functionalities), as shown in

Figure 7.11.

System Code Slicing

Relations understaning

Figure 7.11: Program Slices Across the System

Indus is a static Java program slicing tool; it was discussed in the Tool Support

section. Also, Kaveri is an Indus front-end and an Eclipse plug-in, which highlights

all the sliced statements of a sliced application source code. By applying the Indus

133

CHAPTER 7. CASE STUDY

slicer with the assistant of Kaveri, a set of statements is generated that together

represent an ATM application slice.

Figure 7.12 shows a snapshot of the Indus slicer. Also, it shows the slicing

criterion point, i.e. ”userAuthenticated = false.”

Figure 7.12: Snapshot of the Indus Slicing Tool

The output of the slicing stage produces a set of slices based on slicing criteria

points. These slices can be used to extract relationships among these statements and

from within a system as a whole. Some of these slices can be used to identify code

that is unique to a software system feature. However, these sets of statements need

to be presented in graphical form in order to better comprehend the relationships.

After using the program slicing technique, with ”userAuthenticated” as the slic-

134

CHAPTER 7. CASE STUDY

ing criterion point and with forward slicing as the slicing method, the output of

the slicing process is shown in the Eclipse framework (Figure 7.12 above). For il-

lustration purposes, part of the source code is shown below in Figure 7.13. The

statements that were affected by the forward slicing are shown with a gray back-

ground; the others are not part of the slice. The output of all the slicing classes

is included as an appendix at the end of this research. Presenting these sets of

statements in a graphical form is the next step.

The first method is ’run’ in the ATM Class:

1.public void run(){

2. while (true){// loop while user is not yet authenticated

3. while (!userAuthenticated){

4. screen.displayMessageLine("\nWelcome!");

5. authenticateUser(); // authenticate user

} // end while \

6. performTransactions(); // user is now authenticated

7. userAuthenticated = false; // reset before next ATM session

8. currentAccountNumber = 0; // reset before next ATM session

9. screen.displayMessageLine("\nThank you! Goodbye!");

} // end while

} // end method run

The second method is ’authenticateUser ’ in the ATM Class:

1. private void authenticateUser(){

2. screen.displayMessage("\nPlease enter your account number: ");

135

CHAPTER 7. CASE STUDY

3. int accountNumber = keypad.getInput(); // input account number

4. screen.displayMessage("\nEnter your PIN: "); // prompt for PIN

5. int pin = keypad.getInput(); // input PIN

6. userAuthenticated = bankDatabase.authenticateUser(accountNumber,

pin);

7. if (userAuthenticated){

currentAccountNumber = accountNumber; // save user’s account #

} // end if

8. else

screen.displayMessageLine("Invalid account number or PIN. Please

try again.");

} // end method authenticateUser

The third method is ’authenticateUser ’ in the BankDatabase Class:

1. public boolean authenticateUser(int userAccountNumber, int userPIN){

2. Account userAccount = getAccount(userAccountNumber);

3. if (userAccount != null) return userAccount.validatePIN(userPIN);

4. else return false; // account number not found, so return false

} // end method authenticateUser

The fourth method is ’getAccount ’ in the BankDatabase Class:

private Account getAccount(int accountNumber)

{

int i;

for (i=0; i < 1;i++){

if (accounts[i].getAccountNumber() == accountNumber)

return accounts[i];

136

CHAPTER 7. CASE STUDY

}

return null;

}

The fifth method is ’validatePIN ’ in the BankDatabase Class:

public boolean validatePIN(int userPIN)

{

if (userPIN == pin)

return true;

else

return false;

} // end method validatePIN

Figure 7.13: Part of The ATM Source Code Shows Sliced Statements

7.3.3.2 Program Dependency and Control Flow Graphs

This step aims to take the output of the program slicing step and to transform it

into a new form. These resulting sets of statements are thus presented in program

dependency graphs (PDG). The sliced statements from the whole software system

are spread across the software system classes, as Figure 7.11 shows.

The next step in of this phase entails representing these program statements in

a graphical manner. Figure 7.14 shows part of the PDG of the sliced statements

given in the previous example. However, this graph includes statements that are

137

CHAPTER 7. CASE STUDY

not in the slice but that are part of the control flow graph (CFG) of the application

program. The graph thus shows the statements that are part of the slicing process

as white circles, and the ones that are gray are those statements that are not part

of the slicing process.

5

7

3 4

6

2

8

86 7userAthen = TRUE

userAthen = FALSE

1 1

31 2 4

3 42

93 42 userAthenticated is TRUE

31 2

ATM.run

ATM.authenticate
User

keypad.getInput

bankDatabase.authenticateUser

bankDatabase.getAccount Account.validatePIN

5

Figure 7.14: CFG and Statements Both Inside and Outside the Slice.

More details on the transformation process to a PDG were given in Chapter 5.

The next step entails applying the rule explained in Chapter 5 to extract system

features.

7.3.3.3 UML Model Feature Representation

This step takes the graphical representation of the sliced software system source

code (and other statements that are part of the CFG) and extracts potential soft-

ware system features. In Figure 7.14 above, there are two sets of statements that

are potential software features. As the proposed rule in Chapter 5 states, feature

statements are located in between two other sliced statements.

• The first set of statements that could be a software feature is a simple set,

138

CHAPTER 7. CASE STUDY

i.e. consisting of one statement. Statement No. 4 in the ATM.run method, i.e.

”screen:displayMessageLine(”Welcome!”);”

• The second feature is a set of statements which is called from the statements

number 5 in Figure 7.14 in the ATM.run method. Several other statements could

be considered as potential system features in this case, such as statements numbers

7, 8 and 9 in the ATM.run.

The simple statement ”screen.displayMessageLine(”nnWelcome!”)” can be rep-

resented as a UML class diagram. As discussed in Chapter 5, this process requires

the involvement of software developers. Figure 7.15 shows a UML class diagram

representation of this single statement, which it represents as a system feature.

On the other hand, the second set of statements from the graph can be rep-

resented as a UML activity diagram. Figure 7.16 shows a UML activity diagram

representing the user authentication feature.

+PrintMessage()

-MSG : String = Welcome

Message

Figure 7.15: Welcome UML Representation

139

CHAPTER 7. CASE STUDY

Enter account number

get Account Number

Enter PIN

get PIN

Authenticated = false Authenticated = true

[Authenticate User in Database]

Figure 7.16: UML Activity Diagram of ’authenticate user’ Representation

7.3.4 Feature Model Matching Phase

The feature model matching phase is the final one in the proposed feature-oriented

framework. It takes two inputs (from the business feature elicitation and the IT

feature extraction phases) and matches them.

Based on the model matching algorithm proposed in Chapter 6, the two class

models generated from the business elicitation and the IT extraction phases are

tested for matching. For the simplicity and to make the illustration clear, a basic

and simple example is used.

From the business feature elicitation stage, a message class was generated (shown

in Figure 7.8). Another class was generated from the IT feature extraction phase

(shown in Figure 7.15). To match these two classes, the matching algorithm pro-

posed in the feature model matching chapter is applied.

140

CHAPTER 7. CASE STUDY

7.3.4.1 Matching Algorithm

Based on the algorithm to match two classes of UML models (introduced in Chapter

6), the following steps are undertaken:

• First: the elements of each model are assigned to a set, which in this case are

either v1 or v2.

v1 is the class from the business feature elicitation phase; it has two elements:

one attribute and one operation.

V1 = {MSG : String = Welcome, PrintMessage()}

v2 is the class from the IT feature extraction phase; it also has two elements:

one attribute and one operation.

V2 = {MSG : String = Welcome, PrintMessage()}

• Second: set Flag-match to false.

• Third: check if all elements of v1 exist in v2; if so, set the Flag-match to true. In

this case, the Flag-match is set to true, as all elements of v1 exist in v2.

• Fourth: check if all the elements of v2 exist in v1; if so, set the Flag-match to true.

In this case, the Flag-match is set to true, as all elements of v2 exist in v1.

• Fifth: check if the Flag-match is true; if so, the models x and y are a match. If the

Flag-match is true in Step 3, then model x is a subset of model y. If the Flag-match

true in Step 4, then y is subset of x.

For the second example, the activity diagrams in Figures7.9 and 7.16, they

can be tested for matching by using other matching techniques. Deissenboecket

141

CHAPTER 7. CASE STUDY

al. proposed a CloneDetective approach that uses ideas from graph theory that is

applicable to any model represented as a data-flow graph[46]. The cloneDetectibe

approach shows that both activity diagrams of Figures7.9 and 7.16 are matched.

7.3.5 Matching Results

ATM software system features such as Login screen, Welcome Message, Transfer,

Withdraw and deposit can be matched to business goals. There are three possibilities

in business IT features matching results:

• A required business feature exists in software system.

• A required business feature does not exist in software system.

• A required business feature cannot be proven to be exist in software system.

A feature such as transfer money was removed from the ATM system. The

bottom-to middle approach failed to extract this feature. However, this feature is

part of the business requirement goals. Therefore, such a feature cannot be matched.

One of the benefits the business-IT feature-based framework able to provide is the

efficiency feature allocation. Such a benefit is very important during software evo-

lution and software testing.

7.4 A Library Management System

A library management system is the second case study used to demonstrate the

proposed approach of this research. The library management system is free to use

for academic purposes and available to download from Planet-Source-Code.com. It

was written in Java and it supports all the main functions needed in a library.

The main purpose of a regular library management system is to manage the

status of books, where each one has a unique identification code. Besides books, a

142

CHAPTER 7. CASE STUDY

library system deals with library members who are able to borrow books based on

a set of rules. Books and members can be added to, removed from or modified in

the system by library staff. Moreover, librarians can search for books and library

members. Books can be searched for by using the book title, author, ISBN or other

criteria. In addition, members can be searched for by name, address or other criteria.

7.4.1 The Library Management Software System Applica-

tion

Statistics table. Statistical information pertaining to the library management

system’s Java source code is shown in Table 7.6. It provides the library management

system metrics, which give the number of classes, methods and total number of lines

of code in the library management software source code used for this case study.

Metric Total
Number of Classes 29
Number of Methods 88
Lines of code 4500

Table 7.6: Library Management System Source Code Statistics

The library management system’s application software used in this case study

is not complete; however, it does have the basic concepts and features of a library

management software system. In this case study, the library system’s application

software is used merely to illustrate the benefits of the proposed feature-based IT

business framework.

143

CHAPTER 7. CASE STUDY

7.4.2 Business Feature Elicitation Phase

This phase works as a process to elicit the business feature requirements. More

details were given and discussed in the business features chapter and in the previous

case study, the ATM.

As discussed in the previous case study regarding the limitations of this research,

this case study begins with the requirements engineering step. During this step,

scenario, feature modelling and UML modelling will be studied and analysed.

7.4.2.1 Scenario

A scenario is narrative or a written story that explains how a user or users interact

with the system; it shows how a person uses a product or service in real-life examples

rather than through abstract descriptions of the functions. To describe the proposed

approach, a scenario is thus produced. Library software system features are elicited

through analysing the scenario. A library book-borrowing scenario is shown in

Figure 7.17

A library member identifies himself to the librarian and presents one or

more books. The librarian conducts a search for each book to make sure

it can be loaned. If the search for a book fails, i.e. the book is not in the

system, he adds the book’s details into the system. Moreover, the librarian

checks for membership validity. If acceptable, the librarian stamps each

book with a return date.

Figure 7.17: : Library Management System Scenario

144

CHAPTER 7. CASE STUDY

Figure 7.17 shows a book-borrowing scenario. As chapter 4 illustrated, a scenario

shows a description of a high level of abstraction; thus, for example, details about

the type of a member’s identification is not discussed. As mentioned previously, in

a scenario, it is important to separate activity from technology.

Analysis: For the book-borrowing scenario, and based on the Carroll method de-

scribed on Chapter 4, the scenario elements are:

• Setting: the environment or context of a library.

• Actors: there are at least two actors in this scenario: library member and

librarian.

• Actions: the actions a user performs to achieve his or her goals.

• Events or decisions: those that the system user makes from the alternatives

or options.

• Goal: desired outcome of a user who is using the system under consideration.

7.4.2.2 Story Cards

In chapter 4, a story card is described as a communication technique for a user story.

It is a method by which users’ requirements are elicited. For a library management

system, a story card (add a book) is generated as shown in Figure 7.7.

Analysis:

Story cards provide a path for extracting system features. However, these story

cards must be analysed before extracting any system features; Chapter 4 provides

145

CHAPTER 7. CASE STUDY

Story Card No. 1

Description

The system must be able to store
books details and confirm that
book has been added

Note

Provide a function to enable
books to be added to system and
show a confirmation message

Table 7.7: Story Card for Library Management System - Add Book And Confirm

more details about story card analysis. From the story card ’add book’, there are

two features: first, an ’add book’ feature and second, a ’confirm book added’ feature.

A system feature confirming addition can be provided, as shown in Table 7.8.

Feature No. F1 Confirm Add book

Description
Librarian is able to see a confir-
mation message that a book has
been added.

Table 7.8: Feature 1 - Confirm Add Book

7.4.2.3 Feature Presentation in UML Models

The final step of this phase is to represent the system features as a UML represen-

tation. Besides features representation, the software requirements process produces

a set of artefacts pertaining to the system under consideration. These artefacts

can be a diagrams, algorithms and system documentation. Each product of the

requirements engineering process serves a specific purpose. In the library man-

agement system case study presented here, UML representation describes system

146

CHAPTER 7. CASE STUDY

requirements.

Figure 7.18 shows a class diagram of the Confirm Add Book feature which was

described in Table 7.8.

confirmAddBookDetail

-MSG : String = Record saved

+PrintMessage()

Figure 7.18: : UML Class for Confirm Add Book Confirmation Message

7.4.3 IT Feature Extraction Phase

The second phase of the proposed framework is a reverse engineering process; it

is a bottom-to-middle process. A program understanding technique is used in this

phase. Software source code is sliced in order to extract code relationships. These

relationships are transformed into diagrammatical views. On these diagrammatical

views, the proposed algorithm is applied to extract system features. Chapter 5

illustrates more of this phase of the proposed framework. In general, there are two

main objectives to this phase. The first is extracting knowledge from the software

source code by presenting the relationships among the source code statements. The

second is presenting this knowledge as software features.

7.4.3.1 Program Slicing Step

Program slicing was described in the literature review chapter (Chapter 2), as a

program understanding technique for extracting software code relationships.

The library management system used in this case study consists of 29 classes, 88

methods and about 4,500 lines of code. The classes are shown in Table 7.6.

A slice is a set of program code statements sharing relationships. A slice can

be produced by applying a program-slicing technique (forwards, backwards or full).

147

CHAPTER 7. CASE STUDY

Program-slicing was also covered in the literature review chapter. The library man-

agement system, like all other systems, achieves its functions by executing a set of

statements. Therefore, program-slicing is used to extract these program code state-

ments relating to the system features. Figure 7.19 shows part of the Addbooks class

of the library management system.

AddBooks Class:

public class AddBooks extends JFrame implements ActionListener

{

TextField book_id,book_title,author,year,available,total,category;

public void actionPerformed(ActionEvent ae)

{

if(ae.getSource()==b)

{

try

{

String a=book_id.getText();

String b=book_title.getText();

String c=author.getText();

String d=year.getText();

String e=available.getText();

String f=total.getText();

String g=category.getText();

int di=Integer.parseInt(d);

int ei=Integer.parseInt(e);

148

CHAPTER 7. CASE STUDY

int fi=Integer.parseInt(f);

Class.forName("com.mysql.jdbc.Driver");

Connection con=DriverManager.getConnection

("jdbc:mysql:///Library_Database","root","");

Statement st=con.createStatement();

String query="insert into Books

values(’"+a+"’,’"+b+"’,’"+c+"’,"+di+","+ei+","+fi+",’"+g+"’);";

System.out.println(query);

int x=st.executeUpdate(query);

if(x>0)

{

//System.out.println("record saved");

JOptionPane.showMessageDialog(AddBooks.this,"Record saved");

}

} catch(Exception ex)

{

System.out.println(""+ex.getMessage());

}

}

if(ae.getSource()==b2)

{

f.setVisible(false);

}

}

public static void main(String args[])

{

AddBooks add=new AddBooks();

149

CHAPTER 7. CASE STUDY

}

}

Figure 7.19: Part of the Library Management System Source Code

7.4.3.2 Program Dependency and Control Flow Graphs

The purpose of the IT feature extraction step is to take the results of the previous

step (program-slicing), and to transform them into a visual representation form. In

this case study, the visual representation is PDG form. Figure 7.20 shows the Control

Flow Graphs (CFG) of the results of the previous step (program-slicing). The whole

CFG is represented; however, the circles are coloured depending on which statements

are part of the slice and which are not. The white ones are those statements that

are part of the CFG and part of the slice as well, and the grey ones are just part

of the slice. More details of the transformation process were illustrated in the IT

feature extraction chapter (Chapter 5).

1917

22

13 161-12 14 15

"Record saved"

MSG

Error MSG

If statement

Book saved?

Insert Book

Details

Figure 7.20: CFG Includes Statements Both Inside and Outside the Slice.

150

CHAPTER 7. CASE STUDY

7.4.3.3 UML Model Feature Representation

The purpose of the UML feature representation step is to extract system features

from the CFG presented in the previous step. This step represents these features as

UML diagrams, which are an input for the next step.

In the Figure 7.20 shows potential software features. As proposed in Chapter

5, potential features are located in between two other sliced statements. Three

potential features can be considered:

1. The first feature to be considered is Add Book, which can be seen in statements

14, 15 and 16. These three statements insert book details into the library

database.

2. The second feature to be considered is a message statement indicating that

book details have been saved.

3. The third feature is similar to the second one. However, it shows that an error

has occurred and that a book is not been added to the library system.

From the three potential features, the second one is considered ”(AddBooks.this,”Record

saved”);”. This feature can be represented as a UML class diagram. As discussed

in the IT feature extraction chapter (Chapter 5), this process requires a software

engineer’s involvement. Figure 7.21 is a representation of the above feature as a

UML class diagram.

confirmAddBook

-MSG : String = Record saved

+PrintMessage()

Figure 7.21: UML Class for add Book Confirm Message

151

CHAPTER 7. CASE STUDY

7.4.4 Feature Model Matching Phase

The outputs of the previous two phases, the business feature elicitation and the IT

feature extraction phase, are the input for this final phase. The UML diagrams are

matched in this phase to show matching, existing or missing features. The model-

matching algorithm proposed in Chapter 6 is applied in this phase. The two UML

models produced from the previous two phases are used as an example to apply and

test the matching algorithm. These two UML models are shown in Figure 7.18 and

Figure 7.21.

7.4.4.1 Matching Algorithm

To test the algorithm proposed in the feature model matching chapter, certain al-

gorithm steps are undertaken.

1. Elements of each UML model in Figur 7.18 (x) and Figure 7.21 (y) is assigned

to a set v1 and v2 respectively.

v1 is a set from the class was generated from the business feature elicitation

phase; it has two elements: one attribute and one operation.

v1 = {MSG : String = Record saved; PrintMessage()}

v2 is a set from the class was generated from the IT feature extraction phase;

it also has two elements: one attribute and one operation.

v2 = {MSG : String = Record saved; PrintMessage()}

2. Set Flag-match to false.

3. Check if all elements of v1 exist in v2; if so, set the Flag-match to true. In

this case, the Flag-match is set to true, as all elements of v1 exist in v2.

152

CHAPTER 7. CASE STUDY

4. Check if all the elements of v2 exist in v1; if so, set the Flag-match to true.

In this case, the Flag-match is set to true, as all elements of v2 exist in v1.

5. Check if the Flag-match is true; if so, the models x and y are a match. If

the Flag-match is true in Step 3, then model x is a subset of model y. If the

Flag-match true in Step 4, then y is subset of x.

The model match algorithm proposed shows that both models from both pro-

posed framework are matched. This match prove that feature ’confirm Add book’

is implemented in the library management software source code.

7.4.5 Matching Results

Library Management System usually comes with several features to achieve its goals.

Features such as add book, delete book, add member and loan a book can be matched

to the system’s goals.

Adding or removing features from the software system was detected in the pro-

posed framework. Features can be removed from both sides of the framework (busi-

ness goals or IT side). Such ability of detection provide a powerful approach espe-

cially in software evolution.

7.5 Evaluation and Discussion

In these two case studies, the proposed Business-IT feature-based framework was

tested to produce a match between features from the business side and features from

the IT side.

The framework begins with software a requirement engineering (RE) process;

this represents the first part of the first phase. The first phase is designed to elicit

153

CHAPTER 7. CASE STUDY

software features from the upper level of the proposed framework (the business fea-

ture elicitation phase). This phase is called an upper-to-middle process as it follows

the software lifecycle process from the upper to the middle part of the cycle.

The second phase (the IT feature extraction) is designed to extract software fea-

tures from the bottom level of the framework. In the middle of the framework is

the feature model-matching phase. Features from the first and second phases were

subsequently tested for matching.

An ATM (Automated Teller Machine) was the first case study presented in this

work; it was introduced in Section 7.3. The first phase of the proposed framework

(Business Feature Elicitation phase) was applied to produce two ATM features, i.e.

the ’welcome message’ and ’login’ features. These two features were transformed into

UML models representing software system features, as shown in Figures 7.4 and 7.5.

This phase is an upper-to-middle process, as shown in the proposed framework in

Chapter 3.

IT Feature Extraction is the second phase of the framework; it was applied on

the ATM software source code. The ATM software system is a program of 700

lines of code, as shown in Table 7.1. A static slicing tool was used to generate

each program slice; a slice is a set of statements sharing a relationship. This set

of statements was transformed into CFG and PDG representations. The methods

proposed in Chapter 5 were used to generate system features from the CFG and

PDG representations. Two features were generated and modelled: as a class UML

diagram and an activity diagram. These two UML models are a ’welcome message’

class diagram and a ’login’ activity diagram.

154

CHAPTER 7. CASE STUDY

The final phase of the framework is feature model matching. It takes models

from both previous phases and applies the algorithm proposed in Chapter 6 to gen-

erate a matching result.

The second case study was a library management system, presented in Sec-

tion 7.4. It is a software system with 4,500 lines of code, as shown in Table 7.6. The

Business-IT feature-based framework was tested on the library management system.

Features were generated from both the upper-to-middle and the bottom-to-middle

phases of the framework, and were matched in the third (middle) phase.

Scalability is defined in terms of the aspect of the product that needs to be de-

veloped. It describes the product’s ability to handle the complexity of the problem

addressed. On the other hand, software evaluation scalability describes the effec-

tiveness of the approaches or methodologies for handling increasing amounts of work

[70].

Two case studies were presented in the case study chapter; the ATM and the

Library Management system. The ATM software contains about 700 lines of code

whereas the Library Management system contains more than 4,500 lines of code.

The proposed approach (Business-IT feature-based framework) was applied on both

software systems and yet it was able to produce similar results. Thus, the size of

the software system has no noticeable effect of the proposed framework.

155

CHAPTER 7. CASE STUDY

7.6 Conclusion

The proposed model-matching algorithm shows that both models from the proposed

framework are matched. This match proves that the feature Confirm Add Book is

implemented in the library management software’s source code.

At the beginning of this case study chapter, an overview of an ATM system,

the system’s functions, source code and metrics were given. Following the overview

of the ATM system, a short description of the tools used in this case study was

provided; these include Eclipse, and the Indus slicer and Kaveri as Eclipse plug-ins.

Following this overview, the first phase of the proposed framework was demon-

strated. Initially, scenarios and story cards were presented and then analysed in

order to elicit system features. Following this, feature cards were produced and

then transformed into UML models. Two feature-based UML models were pro-

duced: the Welcome screen and the Login screen.

In the second phase (IT feature extraction), the ATM Java application source

code was presented. Indus and Kaveri were used to slice the software system source

code. This process generated a slice that is a set of related statements. From these

statements, a program dependency graph was built, which included a control flow

diagram. The graph generated presents all the statements, whether or not they were

in the slicing set.

The rule proposed in Chapter 5 (on feature extraction) was applied on the gen-

erated graph, and this rule delivered some software system features. Two of these

features were considered: the Welcome message and the user Login features. At the

156

CHAPTER 7. CASE STUDY

end of this stage, the features were modelled in UML; the first as a class diagram

and the second as an activity diagram.

The third phase was the feature model matching. It took the two models of

the previous phases and sought to make a match. As described in Chapter 6,

the proposed algorithm for matching these two models was applied. The proposed

algorithm matched the two UML class diagrams, i.e. those generated from the first

and second phases. For the second example, The CloneDetective approach proposed

by Deissenboecket shows that the UML activity diagrams matched as well.

157

Chapter 8

Conclusion And Future Work

Objectives:

• To give a summary for the Thesis

• To provide a statement of evaluation

• To provide research limitations and future works

158

CHAPTER 8. CONCLUSION AND FUTURE WORK

8.1 Summary of the Thesis

This chapter provides a summary of the work conducted in this thesis. Chapter 1

gave an introduction to the research; it described the problem to be addressed and

listed the research questions. Also, it provided the thesis structure. Chapter 2 was a

background study on the feature-oriented domain, describing the problem and solu-

tion domains as well as other related subjects. It reviewed many related works, basic

concepts and definitions considered fundamental to this research, such as the con-

cept of features, feature-oriented software development, feature modelling, software

evolution, UML, program slicing, requirement engineering and model comparison.

The third chapter reviewed work related to the proposed feature-oriented busi-

ness IT framework. It illustrated three main concepts: forward engineering, re-

verse engineering and model comparison. This chapter proposed a novel conceptual

feature-based business IT framework to map the problem domain onto the solution

domain.

In Chapter 4, the first phase of the proposed framework was covered. It is a

top-to-middle process, and it begins with business analysis, passes through software

requirement engineering and ends with software system modelling.

The second phase of the proposed feature-based framework was covered in Chap-

ter 5. This is a bottom-to-middle process, and it mainly involves reverse engineering.

It starts with the source code of the software system, which is then reverse engineered

and modelled in UML diagrams.

Chapter 6 deals with the final phase of the proposed feature-oriented frame- work,

wherein models from the first and second phases are mapped. Model-matching

is thus conducted between the two models in order to identify links between the

outputs from the first and second phases (business feature elicitation and IT feature

extraction).

159

CHAPTER 8. CONCLUSION AND FUTURE WORK

Before the final chapter of this thesis, a case study was presented in Chapter 7

to demonstrate that the proposed approach is indeed a useful construct. Besides

the case study, this chapter presented and discussed the tools that can be used to

support the implementation of the proposed approach.

8.2 Research Questions Revisited

The research questions are here revisited in order to evaluate the significance of this

work and of the contributions to the field that were claimed in the first chapter.

The main research question presented in Chapter 1 was:

• Is it possible to trace business goals to the software features at the source code

level?

The main research question was generally answered through proposing the feature-

oriented business IT framework. The novelty of the proposed framework emanates

from the three characteristics of the business-IT gap: the problem domain, the

solution domain and the matching process.

A set of sub-questions were then introduced as a result of posing the main research

question:

• Does the software satisfy the stakeholders’ requirements?

• Can the efficiency of the software system be improved during the software evo-

lution process?

These questions were answered in Chapter 6, wherein model representations from

the top-to-middle process are mapped to models from the bottom-to-middle process,

160

CHAPTER 8. CONCLUSION AND FUTURE WORK

i.e. identifying and linking the business and the IT domains.

8.3 Future Work

The IT-business gap is challenging; it is a dynamic gap and it is unlikely to be fully

addressed for many reasons. Each reason represents an area for possible research;

for example:

• Business and IT professionals are often suspicious of each other and lack the

ability to work together in open teamwork.

• Business and IT professionals do not communicate in the same language, e.g.

IT professionals tend to use technical terms that cannot be understood by

business professionals, and verse versa.

• Business and IT professionals do not share the same goal; business managers

often set requirements for the IT team that are impossible to achieve.

The first phase of the research approach entails taking the business domain

closer to the IT domain by more fully comprehending the business needs; this is

achieved through the business analysis processes but various other approaches could

be utilized in this, e.g. identifying and then sharing a common language.

The IT feature extraction phase is a reverse engineering process, which is a very

challenging area in software engineering. It is the process of extracting knowledge

from software source code. This research used static program slicing as a technique

for the purpose of program understating but other program slicing techniques for

this purpose are available, such as dynamic slicing.

The third phase of this research is feature model matching. Models of UML class

diagrams are used to demonstrate the mapping technique; however, other models

could be used to match the features of the business and IT domains. UML activity

161

CHAPTER 8. CONCLUSION AND FUTURE WORK

diagram is one such example; for UML activity diagrams, the area of graph theory

is promising in attempting to link these types of models. Finally, to gain a better

understanding of the proposed approach, real systems in the industrial or commercial

fields could be used as additional case studies.

162

Bibliography

[1] G. D. Abowd, R. Allen, and D. Garlan. Using style to understand descriptions

of software architecture. In SIGSOFT FSE, pages 9–20, 1993.

[2] V. K. Ahmed Saleem Abbas, W. Jeberson. The need of re-engineering in

software engineering. International Journal of Engineering and Technology

Volume 2 No. 2, February, 2012, 2, 2012.

[3] A. Akundi, F. Zapata, and E. Smith. UML profile and extensions for complex

approval systems with complementary levels of abstraction. Procedia Com-

puter Science, 12(0):75 – 80, 2012. Complex Adaptive Systems 2012.

[4] M. Alanen and I. Porres. Difference and union of models. In P. Stevens,

J. Whittle, and G. Booch, editors, UML, volume 2863 of Lecture Notes in

Computer Science, pages 2–17. Springer, 2003.

[5] M. Alanen and I. Porres. Version control of software models. Advances in

UML and XML-Based Software Evolution, pages 47–70, 2005.

[6] K. Altmanninger, G. Kappel, A. Kusel, W. Retschitzegger, M. Seidl,

W. Schwinger, and M. Wimmer. AMOR - Towards Adaptable Model Version-

ing. In 1st International Workshop on Model Co-Evolution and Consistency

Management (MCCM’08), Workshop at MODELS’08, Toulouse, France, 2008.

163

BIBLIOGRAPHY

[7] S. Apel and C. Kästner. An overview of feature-oriented software development,

2009.

[8] S. Apel, C. Lengauer, B. Moller, and C. Kästner. An algebra for features and

feature composition. In J. Meseguer and G. Rosu, editors, AMAST, volume

5140 of Lecture Notes in Computer Science, pages 36–50. Springer, 2008.

[9] A. Arsanjani. Grammar-Oriented Object Design: Towards Dynamically Re-

configurable Business and Software Architecture For On-demand Computing.

PhD thesis, De Montfort University, 2003.

[10] T. Ball and S. G. Eick. Software visualization in the large. Computer, 29(4):33–

43, Apr. 1996.

[11] E. J. Barry, C. F. Kemerer, and S. Slaughter. How software process automa-

tion affects software evolution: a longitudinal empirical analysis. Journal of

Software Maintenance, 19(1):1–31, 2007.

[12] D. S. Batory. Feature models, grammars, and propositional formulas. In

J. H. Obbink and K. Pohl, editors, SPLC, volume 3714 of Lecture Notes in

Computer Science, pages 7–20. Springer, 2005.

[13] L. A. Belady and M. M. Lehman. A model of large program development.

IBM Systems Journal, 3:225–252, 1976.

[14] S. Bentrad and D. Meslati. Visual Programming and Program Visualization

Towards an Ideal Visual Software Engineering System. International Journal

on Information Technology, 1(3):7, December 2011.

[15] J.-F. Bergeretti and B. A. Carré. Information-flow and data-flow analysis of

while-programs. ACM Trans. Program. Lang. Syst., 7(1):37–61, Jan. 1985.

[16] B. S. Blanchard. System Engineering Management. John Wiley & Sons, 2012.

164

BIBLIOGRAPHY

[17] G. Booch, J. Rumbaugh, and I. Jacobson. The unified modeling language user

guide. Addison-Wesley, Upper Saddle River, NJ, 2005.

[18] T. Bowen, F. Dworack, C. Chow, N. Griffeth, G. Herman, and Y.-J. Lin. The

feature interaction problem in telecommunications systems. In Software Engi-

neering for Telecommunication Switching Systems, 1989. SETSS 89., Seventh

International Conference on, pages 59 –62, jul 1989.

[19] K. Brennan. A Guide to the Business Analysis Body of Knowledge (Babok

Guide). International Institute of Business Analysis, 2009.

[20] J. K. A. R. Brian Berenbach, Daniel Paulish. Software & Systems Require-

ments Engineering: In Practice. 2009.

[21] M. L. Brodie and M. Stonebraker. Migrating legacy systems: Gateways, in-

terfaces & the incremental approach. The Morgan Kaufmann series in data

management systems. Kaufmann Publ., San Francisco, Calif, 1995.

[22] F. Brooks. The mythical man-month. Addison-Wesley, 1995.

[23] J. Brooks, F.P. No silver bullet essence and accidents of software engineering.

Computer, 20(4):10 –19, april 1987.

[24] C. Brun and A. Pierantonio. Model differences in the eclipse modelling frame-

work. In The European Journal for the Informatics Professional, 2008.

[25] A. Bryant. It’s engineering jim ... but not as we know it: software engineer-

ing - solution to the software crisis, or part of the problem? In C. Ghezzi,

M. Jazayeri, and A. L. Wolf, editors, ICSE, pages 78–87. ACM, 2000.

[26] S. Budhkar and D. A. Gopal. Article: Reverse engineering java code to class

diagram: An experience report. International Journal of Computer Applica-

165

BIBLIOGRAPHY

tions, 29(6):36–43, September 2011. Published by Foundation of Computer

Science, New York, USA.

[27] E. Buss and J. Henshaw. A software reverse engineering experience. In CAS-

CON First Decade High Impact Papers, CASCON ’10, pages 42–60, Riverton,

NJ, USA, 2010. IBM Corp.

[28] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec. Feature inter-

action: a critical review and considered forecast. Computer Networks, 41(1),

2003.

[29] A. Caplinskas and O. Vasilecas. Information systems research methodologies

and models. In Proceedings of the 5th international conference on Computer

systems and technologies, CompSysTech ’04, pages 1–6, New York, NY, USA,

2004. ACM.

[30] A. Charfi, C. Mraidha, S. Gérard, F. Terrier, and P. Boulet. Toward opti-

mized code generation through model-based optimization. In Proceedings of

the Conference on Design, Automation and Test in Europe, DATE ’10, pages

1313–1316, 3001 Leuven, Belgium, Belgium, 2010. European Design and Au-

tomation Association.

[31] O. Chebaro, N. Kosmatov, A. Giorgetti, and J. Julliand. Program slicing

enhances a verification technique combining static and dynamic analysis. In

S. Ossowski and P. Lecca, editors, SAC, pages 1284–1291. ACM, 2012.

[32] K. Chen, W. Zhang, H. Zhao, and H. Mei. An approach to constructing

feature models based on requirements clustering. In Proceedings of the 13th

IEEE International Conference on Requirements Engineering, RE ’05, pages

31–40, Washington, DC, USA, 2005. IEEE Computer Society.

166

BIBLIOGRAPHY

[33] P. Chen, M. Critchlow, A. Garg, C. van der Westhuizen, and A. van der

Hoek. Differencing and merging within an evolving product line architecture.

In F. van der Linden, editor, PFE, volume 3014 of Lecture Notes in Computer

Science, pages 269–281. Springer, 2003.

[34] Z. Chentouf, S. Cherkaoui, and A. Khoumsi. Experimenting with feature in-

teraction management in sip environment. Telecommunication Systems, 24(2-

4):251–274, 2003.

[35] E. J. Chikofsky and J. H. C. II. Reverse engineering and design recovery: A

taxonomy. IEEE Software, 7(1):13–17, 1990.

[36] L. Chung and J. Prado Leite. On non-functional requirements in software

engineering. In A. Borgida, V. Chaudhri, P. Giorgini, and E. Yu, editors,

Conceptual Modeling: Foundations and Applications, volume 5600 of Lecture

Notes in Computer Science, pages 363–379. Springer Berlin Heidelberg, 2009.

[37] A. Classen, P. Heymans, and P.-Y. Schobbens. What’s in a feature: a re-

quirements engineering perspective. In Proceedings of the Theory and practice

of software, 11th international conference on Fundamental approaches to soft-

ware engineering, FASE’08/ETAPS’08, pages 16–30, Berlin, Heidelberg, 2008.

Springer-Verlag.

[38] R. Clayton, S. Rugaber, and L. M. Wills. On the knowledge required to

understand a program. In WCRE, pages 69–78, 1998.

[39] S. Cook. Looking back at uml. Software & Systems Modeling, 11:471–480,

2012.

[40] G. Crnkovic. Constructive research and info-computational knowledge gener-

ation. In L. Magnani, W. Carnielli, and C. Pizzi, editors, Model-Based Rea-

167

BIBLIOGRAPHY

soning in Science and Technology, volume 314 of Studies in Computational

Intelligence, pages 359–380. Springer Berlin Heidelberg, 2010.

[41] K. Czarnecki and U. W. Eisenecker. Generative programming: methods, tools,

and applications. ACM Press/Addison-Wesley Publishing Co., New York, NY,

USA, 2000.

[42] K. Czarnecki, P. Grünbacher, R. Rabiser, K. Schmid, and A. W käsowski. Cool

features and tough decisions: a comparison of variability modeling approaches.

In Proceedings of the Sixth International Workshop on Variability Modeling of

Software-Intensive Systems, VaMoS ’12, pages 173–182, New York, NY, USA,

2012. ACM.

[43] R. Davies. The power of stories. XP, 2001.

[44] A. M. Davis. Software requirements - objects, functions, and states. Prentice

Hall international editions. Prentice Hall, 1993.

[45] F. Deissenboeck, B. Hummel, E. Jürgens, M. Pfaehler, and B. Schätz. Model

clone detection in practice. In K. Inoue, S. Jarzabek, R. Koschke, and J. R.

Cordy, editors, IWSC, pages 57–64. ACM, 2010.

[46] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz, S. Wagner, J.-F. Girard,

and S. Teuchert. Clone detection in automotive model-based development. In

H. Giese, M. Huhn, U. N. 0002, and B. Schätz, editors, MBEES, volume 2008-

2 of Informatik-Bericht, pages 57–67. TU Braunschweig, Institut für Software

Systems Engineering, 2008.

[47] P. Deitel and H. Deitel. Java: How to Program. How to Program. Prentice

Hall, 2011.

[48] Dictionary.com. http://dictionary.reference.com.

168

BIBLIOGRAPHY

[49] R. Dijkman, M. Dumas, B. Dongen, R. Käärik, and J. Mendling. Similarity

of Business Process Models: Metrics and Evaluation. Information Systems,

36(2):498–516, 2011.

[50] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontology matching:

A machine learning approach. In Handbook on Ontologies in Information

Systems, pages 397–416. Springer, 2003.

[51] L. Du and P. Cai. A survey on applications of program slicing. In J. Luo,

editor, Soft Computing in Information Communication Technology, volume

158 of Advances in Intelligent and Soft Computing, pages 215–220. Springer

Berlin Heidelberg, 2012.

[52] R. Dupuis, P. Bourque, A. Abran, J. W. Moore, and L. L. Tripp. The SWE-

BOK Project: Guide to the software engineering body of knowledge, May

2001. Stone Man Trial Version 1.00, http://www.swebok.org/ [01/12/2003].

[53] H. Eichelberger and K. Schmid. Guidelines on the aesthetic quality of uml

class diagrams. Information & Software Technology, 51(12):1686–1698, 2009.

[54] S. Faily and I. Fléchais. A meta-model for usable secure requirements engi-

neering. In Proceedings of the 2010 ICSE Workshop on Software Engineering

for Secure Systems, SESS ’10, pages 29–35, New York, NY, USA, 2010. ACM.

[55] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence

graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–

349, July 1987.

[56] E. Foundation. About the eclipse foundation.

169

BIBLIOGRAPHY

[57] M. Fowler and K. Scott. UML distilled (2nd ed.): a brief guide to the stan-

dard object modeling language. Addison-Wesley Longman Publishing Co., Inc.,

Boston, MA, USA, 2000.

[58] G. Gabrysiak, H. Giese, A. Seibel, and S. Neumann. Teaching requirements

engineering with virtual stakeholders without software engineering knowledge.

In Requirements Engineering Education and Training (REET), 2010 5th In-

ternational Workshop on, pages 36 –45, sept. 2010.

[59] D. Garlan and M. Shaw. An introduction to software architecture. In V. Am-

briola and G. Tortora, editors, Advances in Software Engineering and Knowl-

edge Engineering, volume I. River Edge, NJ: World Scientific Publishing Com-

pany, 1993.

[60] M. Girschick and T. Darmstadt. Difference detection and visualization in

UML class diagrams, 2006.

[61] O. C. Z. Gotel and C. W. Finkelstein. An analysis of the requirements trace-

ability problem. In International Conference on Requirements Engineering,

pages 94–101, 1994.

[62] D. A. Gretar Tryggvason. Shaping Our World: Engineering Education for the

21st Century. ohn Wiley & Sons, 2011.

[63] Ä. Hajnal and I. Forgäcs. A demand-driven approach to slicing legacy cobol

systems. Journal of Software: Evolution and Process, 24(1):67–82, 2012.

[64] M. Harman. Why source code analysis and manipulation will always be im-

portant. In SCAM, pages 7–19. IEEE Computer Society, 2010.

[65] H. Holbrook, III. A scenario-based methodology for conducting requirements

elicitation. SIGSOFT Softw. Eng. Notes, 15(1):95–104, Jan. 1990.

170

BIBLIOGRAPHY

[66] M. E. C. Hull, K. Jackson, and J. Dick. Requirements Engineering, Second

Edition. Springer, 2005.

[67] M. E. C. Hull, K. Jackson, and J. Dick, editors. Requirements Engineering,

Third Edition. Springer, 2011.

[68] J. Hutchinson, M. Rouncefield, and J. Whittle. Model-driven engineering

practices in industry. In Software Engineering (ICSE), 2011 33rd International

Conference on, pages 633 –642, may 2011.

[69] L. B.-D. Ian Alexander. Discovering Requirements: How to Specify Products

and Services. John Wiley & Sons, 2009.

[70] H. Ibrahim, B. Far, and A. Eberlein. Scalability improvement in software

evaluation methodologies. In Information Reuse Integration, 2009. IRI ’09.

IEEE International Conference on, pages 236–241, Aug 2009.

[71] IEEE. IEEE standard glossary of software engineering terminology. IEEE Std

610.12-1990, Dec. 1990.

[72] IIBA. A guide to the Business Analysis Body of Knowledge (BABOK guide),

version 2.0. 2009.

[73] I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard. Object-oriented

software engineering - a use case driven approach. Addison-Wesley, 1992.

[74] G. Jayaraman, V. P. Ranganath, and J. Hatcliff. Kaveri: delivering the indus

java program slicer to eclipse. In Proceedings of the 8th international confer-

ence, held as part of the joint European Conference on Theory and Practice

of Software conference on Fundamental Approaches to Software Engineering,

FASE’05, pages 269–272, Berlin, Heidelberg, 2005. Springer-Verlag.

171

BIBLIOGRAPHY

[75] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature-Oriented

Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-

TR-21, Software Engineering Institute, Carnegie Mellon University, 1990.

[76] C. Kästner, S. Apel, S. S. ur Rahman, M. Rosenmüller, D. S. Batory, and

G. Saake. On the impact of the optional feature problem: analysis and case

studies. In D. Muthig and J. D. McGregor, editors, SPLC, volume 446 of

ACM International Conference Proceeding Series, pages 181–190. ACM, 2009.

[77] S. Kausar, S. Tariq, S. Riaz, and A. Khanum. Guidelines for the selection of

elicitation techniques. In Emerging Technologies (ICET), 2010 6th Interna-

tional Conference on, pages 265 –269, oct. 2010.

[78] D. O. Keck and P. J. Kühn. The feature and service interaction prob-

lem in telecommunications systems. a survey. IEEE Trans. Software Eng.,

24(10):779–796, 1998.

[79] C. H. P. Kim, C. Kästner, and D. S. Batory. On the modularity of feature

interactions. In Y. Smaragdakis and J. G. Siek, editors, GPCE, pages 23–34.

ACM, 2008.

[80] I.-W. Kim and K.-H. Lee. A model-driven approach for describing semantic

web services: From uml to owl-s. Systems, Man, and Cybernetics, Part C:

Applications and Reviews, IEEE Transactions on, 39(6):637 –646, nov. 2009.

[81] M. Kim, H. Yang, and S. Park. A domain analysis method for software product

lines based on scenarios, goals and features. In Software Engineering Confer-

ence, 2003. Tenth Asia-Pacific, pages 126 – 135, dec. 2003.

[82] K. Kimbler, C. Capellmann, and H. Velthuijsen. Comprehensive approach to

service interaction handling. Comput. Netw. ISDN Syst., 30(15):1363–1387,

Sept. 1998.

172

BIBLIOGRAPHY

[83] B. Kitchenham, S. L. Pfleeger, L. Pickard, P. Jones, D. C. Hoaglin, K. E.

Emam, and J. Rosenberg. Preliminary guidelines for empirical research in

software engineering. IEEE Trans. Software Eng., 28(8):721–734, 2002.

[84] D. S. Kolovos, R. F. Paige, and F. A. Polack. Model comparison: a foundation

for model composition and model transformation testing. In Proceedings of the

2006 international workshop on Global integrated model management, GaMMa

’06, pages 13–20, New York, NY, USA, 2006. ACM.

[85] B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–

163, Oct. 1988.

[86] B. Korel and J. Rilling. Dynamic program slicing in understanding of program

execution. In Program Comprehension, 1997. IWPC ’97. Proceedings., Fifth

Iternational Workshop on, pages 80 –89, mar 1997.

[87] P. Kruchten. Architectural blueprints – the “4+1” view model of software

architecture. IEEE Software, 12(6):42–50, November 1995.

[88] P. A. Laplante. What Every Engineer Should Know about Software Engineer-

ing. 2007.

[89] D. Leffingwell. Features, Use Cases, Requirements, Oh My!

[90] M. Lehman, J. Ramil, P. Wernick, D. Perry, and W. Turski. Metrics and laws

of software evolution-the nineties view. In International Software Metrics

Symposium, pages 20–32, Albuquerque, NM, Nov. 1997.

[91] M. M. Lehman. On understanding laws, evolution and conservation in the

large program life cycle. Journal of Systems and Software, 1(3):213–221, 1980.

[92] M. M. Lehman and L. A. Belady. Program evolution: processes of software

change. Academic Press Professional, Inc., San Diego, CA, USA, 1985.

173

BIBLIOGRAPHY

[93] M. M. Lehman and J. F. Ramil. Software evolution: background, theory,

practice. Information Processing Letters, 88(1-2):33–44, 2003.

[94] W.-H. F. Leung. Writing reusable feature programs with the feature language

extensions. In S. Reiff-Marganiec and M. Ryan, editors, FIW, pages 163–177.

IOS Press, 2005.

[95] J. Liu, D. Batory, and C. Lengauer. Feature oriented refactoring of legacy

applications. In ICSE ’06: Proceeding of the 28th international conference on

Software engineering, pages 112–121, New York, NY, USA, 2006. ACM Press.

[96] N. H. Madhavji, J. Fernandez-Ramil, and D. E. Perry. Software Evolution and

Feedback: Theory and Practice. Wiley, 2006.

[97] A. Malony, D. Hammerslag, and D. Jablonowski. Traceview: a trace visual-

ization tool. Software, IEEE, 8(5):19 –28, sept. 1991.

[98] D. Mancl, S. D. Fraser, and W. F. Opdyke. No silver bullet: a retrospective

on the essence and accidents of software engineering. In Companion to the

22nd ACM SIGPLAN conference on Object-oriented programming systems and

applications companion, OOPSLA ’07, pages 758–759, New York, NY, USA,

2007. ACM.

[99] D. McDavid. Systems engineering for the living enterprise. In Systems Engi-

neering, 2005. ICSEng 2005. 18th International Conference on, pages 244 –

249, aug. 2005.

[100] S. Mellor and M. Balcer. Executable UML: A foundation for model-driven

architectures. Addison-Wesley Longman Publishing Co., Inc., 2002.

[101] T. Mens. A state-of-the-art survey on software merging. IEEE Trans. Software

Eng., 28(5):449–462, 2002.

174

BIBLIOGRAPHY

[102] T. Mens and S. Demeyer. Software Evolution. Springer, 2008. ISBN 978-3-

540-76439-7.

[103] D. Miller. Business Focused It and Service Excellence. British Comp Society

Series. BCS, 2008.

[104] D. P. Mohapatra, R. Mall, and R. Kumar. An overview of slicing techniques

for object-oriented programs. Informatica (Slovenia), 30(2):253–277, 2006.

[105] T. Moreira, M. Wehrmeister, C. Pereira, J.-F. Pétin, and E. Levrat. Generat-

ing vhdl source code from uml models of embedded systems. In M. Hinchey,

B. Kleinjohann, L. Kleinjohann, P. Lindsay, F. Rammig, J. Timmis, and

M. Wolf, editors, Distributed, Parallel and Biologically Inspired Systems, vol-

ume 329 of IFIP Advances in Information and Communication Technology,

pages 125–136. Springer Berlin Heidelberg, 2010.

[106] J. Morrison and J. F. George. Exploring the software engineering component

in MIS research. Commun. ACM, 38(7):80–91, 1995.

[107] M. M. Morshed, M. A. Rahman, and S. U. Ahmed. A literature review

of code clone analysis to improve software maintenance process. CoRR,

abs/1205.5615, 2012.

[108] P. V. Nguyen. The study and approach of software re-engineering. CoRR,

abs/1112.4016, 2011.

[109] D. Ohst, M. Welle, and U. Kelter. Differences between versions of uml di-

agrams. In Proceedings of the 9th European software engineering conference

held jointly with 11th ACM SIGSOFT international symposium on Founda-

tions of software engineering, ESEC/FSE-11, pages 227–236, New York, NY,

USA, 2003. ACM.

175

BIBLIOGRAPHY

[110] C. Pacheco and I. Garcia. A systematic literature review of stakeholder identi-

fication methods in requirements elicitation. Journal of Systems and Software,

85(9):2171 – 2181, 2012.

[111] F. Paetsch, A. Eberlein, and F. Maurer. Requirements engineering and agile

software development. In IEEE International Workshops on Enabling Tech-

nologies: Infrastructure, pages 308–313, Linz, Austria, 2003.

[112] M. Page-Jones. Fundamentals of object-oriented design in UML. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2000.

[113] M. Palamalai, R. Ahmad, and M. Nizam. Story based mobile application

for requirements engineering process. In Advanced Computer Theory and En-

gineering, 2008. ICACTE ’08. International Conference on, pages 303 –307,

dec. 2008.

[114] D. Parnas. Precise documentation: The key to better software. In S. Nanz,

editor, The Future of Software Engineering, pages 125–148. Springer Berlin

Heidelberg, 2011.

[115] D. Pilone and N. Pitman. UML 2.0 - in a nutshell: a desktop quick reference.

O’Reilly, 2005.

[116] C. Potts, K. Takahashi, and A. Anton. Inquiry-based requirements analysis.

Software, IEEE, 11(2):21 –32, march 1994.

[117] C. Prehofer. Feature-oriented programming: A fresh look at objects. In

ECOOP, pages 419–443, 1997.

[118] V. Ranganath and J. Hatcliff. An overview of the indus framework for analysis

and slicing of concurrent java software (keynote talk - extended abstract).

176

BIBLIOGRAPHY

In Source Code Analysis and Manipulation, 2006. SCAM ’06. Sixth IEEE

International Workshop on, pages 3 –7, sept. 2006.

[119] V. P. Ranganath and J. Hatcliff. Slicing concurrent java programs using indus

and kaveri. STTT, 9(5-6):489–504, 2007.

[120] J. Reagan. Virtual prototyping: Bridging the Business/IT gap, Second

2008. Copyright - Copyright Data Warehousing Institute Second Quarter

2008; Document feature - Tables; Diagrams; ; Last updated - 2013-08-08;

; Duggan, Jim, Matthew Hotle, Matt Light, and Robert Francis Solon Jr.

2005] . ”Will I Save Money Moving From a Waterfall Method to an Iterative

One?” Gartner, November 7; Havenstein, Heather 2007]. ”Survey: Time, Cost

Woes Mar Data Warehousing Projects,” Computerworld, March 21; Royce,

Winston 1970] . ”Managing the Development of Large Software Systems,”

Proceedings of IEEE WESCON 26: 1-9, August, http://www.cs.umd.edu/

class/spring2003/cmsc838p/Process/waterfall.pdf.

[121] R. Reddy and R. France. Model composition - a signature-based approach. In

in "Aspect Oriented Modeling (AOM) Workshop, Montego, 2005.

[122] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code

clone detection techniques and tools: A qualitative approach. Sci. Comput.

Program., 74(7):470–495, 2009.

[123] N. Rozanski and E. Woods. Software Systems Architecture: Working With

Stakeholders Using Viewpoints and Perspectives. Addison-Wesley Professional,

2011.

[124] P. Runeson and M. Höst. Guidelines for conducting and reporting case study

research in software engineering. Empirical Softw. Engg., 14(2):131–164, Apr.

2009.

177

BIBLIOGRAPHY

[125] J. Sadiq and T. Waheed. Reverse engineering amp; design recovery: An eval-

uation of design recovery techniques. In Computer Networks and Information

Technology (ICCNIT), 2011 International Conference on, pages 325 –332, july

2011.

[126] G. Salvendy. Handbook of Human Factors and Ergonomics, 4th Edition. John

Wiley & Sons, 2012.

[127] N. M. Sampat. Stakeholder Negotiations in Component Based Development.

PhD thesis, De Montfort University, 2004.

[128] A. Shaikh, U. K. Wiil, and N. Memon. Evaluation of tools and slicing tech-

niques for efficient verification of uml/ocl class diagrams. Adv. Soft. Eng.,

2011:5:1–5:18, Jan. 2011.

[129] H. Sharp, H. Robinson, and M. Petre. The role of physical artefacts in agile

software development: Two complementary perspectives. Interacting with

Computers, 21(1-2):108–116, 2009.

[130] C. E. Silva. Reverse engineering of gwt applications. In S. D. J. Barbosa, J. C.

Campos, R. Kazman, P. A. Palanque, M. D. Harrison, and S. Reeves, editors,

EICS, pages 325–328. ACM, 2012.

[131] J. Silva. A vocabulary of program slicing-based techniques. ACM Comput.

Surv., 44(3):12, 2012.

[132] H. Singh. Software reengineering: New approach to software development. IN-

TERNATIONAL JOURNAL OF RESEARCH IN EDUCATION METHOD-

OLOGY, 1(3), 2012.

[133] I. Sommerville. Software Engineering. Addison-Wesley, Harlow, England, 9.

edition, 2010.

178

BIBLIOGRAPHY

[134] M. Stephan and Cordy. Application of model comparison techniques to model

transformation testing. In MODELSWARD, 2013.

[135] M. Stephan and J. Cordy. A survey of model comparison approaches and

applications. In Modelsward 2013, page 10 pp . (to appear), Barcelona, Spain,

2013. 1st International Conference on Model-Driven Engineering and Software

Development.

[136] M. Stephan and J. R. Cordy. Application of model comparison techniques to

model transformation testing. MODELSWARD, 2013.

[137] A. Sutcliffe. Scenario-based requirements engineering. In Requirements Engi-

neering Conference, 2003. Proceedings. 11th IEEE International, pages 320 –

329, sept. 2003.

[138] A. G. Sutcliffe and A. Gregoriades. Automating scenario analysis of human

and system reliability. Systems, Man and Cybernetics, Part A: Systems and

Humans, IEEE Transactions on, 37(2):249 –261, march 2007.

[139] TheFreeDictionary.com. http://www.thefreedictionary.com.

[140] M. Tian. Scenario-driven requirements engineering : method and tool. 2003.

[141] D. Tucker and D. Simmonds. A case study in software reengineering. In In-

formation Technology: New Generations (ITNG), 2010 Seventh International

Conference on, pages 1107 –1112, april 2010.

[142] C. R. Turner, A. Fuggetta, L. Lavazza, and A. L. Wolf. A conceptual basis

for feature engineering. J. Syst. Softw., 49(1):3–15, Dec. 1999.

[143] E. Uzuncaova, S. Khurshid, and D. Batory. Incremental test generation

for software product lines. Software Engineering, IEEE Transactions on,

36(3):309 –322, may-june 2010.

179

BIBLIOGRAPHY

[144] M. van den Brand, Z. Protić, and T. Verhoeff. Generic tool for visualization of

model differences. In Proceedings of the 1st International Workshop on Model

Comparison in Practice, IWMCP ’10, pages 66–75, New York, NY, USA, 2010.

ACM.

[145] K. P. Vangalur S. Alagar. Specification of Software Systems. Springer, 2011.

[146] S. Vasilakos, G. Iacobellis, C. Stylios, and M. Fanti. Decision support systems

based on a uml description approach. In Intelligent Systems (IS), 2012 6th

IEEE International Conference, pages 041 –046, sept. 2012.

[147] B. L. Vinz and L. H. Etzkorn. Improving program comprehension by com-

bining code understanding with comment understanding. Know.-Based Syst.,

21(8):813–825, Dec. 2008.

[148] M. P. Ward and H. Zedan. Slicing as a program transformation. ACM Trans.

Program. Lang. Syst., 29(2), 2007.

[149] M. Weiser. Program slicing. In S. Jeffrey and L. G. Stucki, editors, ICSE,

pages 439–449. IEEE Computer Society, 1981.

[150] M. Weiser. Programmers use slices when debugging. Commun. ACM,

25(7):446–452, July 1982.

[151] M. Weiser. Program slicing. Software Engineering, IEEE Transactions on,

SE-10(4):352 –357, july 1984.

[152] S. Wenzel, J. Koch, U. Kelter, and A. Kolb. Evolution analysis with animated

and 3d-visualizations. In ICSM, pages 475–478. IEEE, 2009.

[153] K. E. Wiegers. Software Requirements. MICROSOFT PRESS, November

2009.

180

BIBLIOGRAPHY

[154] J. Wu, C. Spitzer, A. Hassan, and R. Holt. Evolution spectrographs: visualiz-

ing punctuated change in software evolution. In Proceedings. 7th International

Workshop on Principles of Software Evolution, 2004.

[155] R. K. Wysocki. The Business Analyst/Project Manager. John Wiley & Sons,

2010.

[156] Z. Xing and E. Stroulia. Umldiff: an algorithm for object-oriented design

differencing. In Proceedings of the 20th IEEE/ACM international Conference

on Automated software engineering, ASE ’05, pages 54–65, New York, NY,

USA, 2005. ACM.

[157] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen. A brief survey of program

slicing. SIGSOFT Softw. Eng. Notes, 30(2):1–36, Mar. 2005.

[158] H. Yang, X. Liu, and H. Zedan. Abstraction: a key notion for reverse engi-

neering in a system reengineering approach. Journal of Software Maintenance,

12(4):197–228, 2000.

[159] H. Yang and M. Ward. Successful Evolution Of Software Systems. Artech

House, 2003.

[160] P. Zave. Classification of research efforts in requirements engineering. ACM

Comput. Surv., 29(4):315–321, 1997.

[161] Y. Zhang, W. Fu, and H. Leung. Web service publishing and composition

based on monadic methods and program slicing. Knowledge-Based Systems,

37(0):296 – 304, 2013.

181

Appendix A

An ATM Case Study Source Code

In this appendix, a JAVA source code of the ATM software system adopted from

Deitel with some changes.

This appendix shows the source code of the program after running the INDUS

slicer. A forward static slicing technique is used and ”userAuthenticated = false;”

as a slice criteria point. This slice criteria point is in class ATM, method ATM().

182

// ATM.java
// Represents an automated teller machine
// forward slicing userAuthenticated

public class ATM
{
 private boolean userAuthenticated; // whether user is authenticated
 private int currentAccountNumber; // current user's account number
 private Screen screen; // ATM's screen
 private Keypad keypad; // ATM's keypad
 private CashDispenser cashDispenser; // ATM's cash dispenser
 private DepositSlot depositSlot; // ATM's deposit slot
 private BankDatabase bankDatabase; // account information database

 // constants corresponding to main menu options
 private static final int BALANCE_INQUIRY = 1;
 private static final int WITHDRAWAL = 2;
 private static final int DEPOSIT = 3;
 private static final int EXIT = 4;

 // no-argument ATM constructor initializes instance variables
 public ATM()
 {
 userAuthenticated = false; // user is not authenticated to start
 currentAccountNumber = 0; // no current account number to start
 screen = new Screen(); // create screen
 keypad = new Keypad(); // create keypad
 cashDispenser = new CashDispenser(); // create cash dispenser
 depositSlot = new DepositSlot(); // create deposit slot
 bankDatabase = new BankDatabase(); // create acct info database
 } // end no-argument ATM constructor

 // start ATM
 public void run()
 {
 // welcome and authenticate user; perform transactions
 while (true)
 {
 // loop while user is not yet authenticated
 while (!userAuthenticated)
 {
 screen.displayMessageLine("\nWelcome!");
 authenticateUser(); // authenticate user
 } // end while

 performTransactions(); // user is now authenticated
 userAuthenticated = false; // reset before next ATM session

183

 currentAccountNumber = 0; // reset before next ATM session
 screen.displayMessageLine("\nThank you! Goodbye!");
 } // end while
 } // end method run

 // attempts to authenticate user against database
 private void authenticateUser()
 {
 screen.displayMessage("\nPlease enter your account number: ");
 int accountNumber = keypad.getInput(); // input account number
 screen.displayMessage("\nEnter your PIN: "); // prompt for PIN
 int pin = keypad.getInput(); // input PIN

 // set userAuthenticated to boolean value returned by database
 userAuthenticated =
 bankDatabase.authenticateUser(accountNumber, pin);

 // check whether authentication succeeded
 if (userAuthenticated)
 {
 currentAccountNumber = accountNumber; // save user's account #
 } // end if
 else
 screen.displayMessageLine(
 "Invalid account number or PIN. Please try again.");
 } // end method authenticateUser

 // display the main menu and perform transactions
 private void performTransactions()
 {
 // local variable to store transaction currently being processed
 Transaction currentTransaction = null;
 boolean userExited = false; // user has not chosen to exit

 // loop while user has not chosen option to exit system
 while (!userExited)
 {

 // show main menu and get user selection
 int mainMenuSelection = displayMainMenu();

 // decide how to proceed based on user's menu selection
 switch (mainMenuSelection)
 {
 // user chose to perform one of three transaction types
 case BALANCE_INQUIRY:
 case WITHDRAWAL:

184

 case DEPOSIT:

 // initialize as new object of chosen type
 currentTransaction =
 createTransaction(mainMenuSelection);

 currentTransaction.execute(); // execute transaction
 break;
 case EXIT: // user chose to terminate session
 screen.displayMessageLine("\nExiting the system...");
 userExited = true; // this ATM session should end
 break;
 default: // user did not enter an integer from 1-4
 screen.displayMessageLine(
 "\nYou did not enter a valid selection. Try again.");
 break;
 } // end switch
 } // end while
 } // end method performTransactions

 // display the main menu and return an input selection
 private int displayMainMenu()
 {
 screen.displayMessageLine("\nMain menu:");
 screen.displayMessageLine("1 - View my balance");
 screen.displayMessageLine("2 - Withdraw cash");
 screen.displayMessageLine("3 - Deposit funds");
 screen.displayMessageLine("4 - Exit\n");
 screen.displayMessage("Enter a choice: ");
 return keypad.getInput(); // return user's selection
 } // end method displayMainMenu

 // return object of specified Transaction subclass
 private Transaction createTransaction(int type)
 {
 Transaction temp = null; // temporary Transaction variable

 // determine which type of Transaction to create
 switch (type)
 {
 case BALANCE_INQUIRY: // create new BalanceInquiry transaction
 temp = new BalanceInquiry(
 currentAccountNumber, screen, bankDatabase);
 break;
 case WITHDRAWAL: // create new Withdrawal transaction
 temp = new Withdrawal(currentAccountNumber, screen,
 bankDatabase, keypad, cashDispenser);

185

 break;
 case DEPOSIT: // create new Deposit transaction
 temp = new Deposit(currentAccountNumber, screen,
 bankDatabase, keypad, depositSlot);
 break;
 } // end switch

 return temp; // return the newly created object
 } // end method createTransaction
} // end class ATM

186

// Account.java
// Represents a bank account
// forward slicing userAuthenticated

public class Account
{
 private int accountNumber; // account number
 private int pin; // PIN for authentication
 private double availableBalance; // funds available for withdrawal
 private double totalBalance; // funds available + pending deposits

 // Account constructor initializes attributes
 public Account(int theAccountNumber, int thePIN,
 double theAvailableBalance, double theTotalBalance)
 {
 accountNumber = theAccountNumber;
 pin = thePIN;
 availableBalance = theAvailableBalance;
 totalBalance = theTotalBalance;
 } // end Account constructor

 // determines whether a user-specified PIN matches PIN in Account
 public boolean validatePIN(int userPIN)
 {
 if (userPIN == pin)
 return true;
 else
 return false;
 } // end method validatePIN

 // returns available balance
 public double getAvailableBalance()
 {
 return availableBalance;
 } // end getAvailableBalance

 // returns the total balance
 public double getTotalBalance()
 {
 return totalBalance;
 } // end method getTotalBalance

 // credits an amount to the account
 public void credit(double amount)
 {
 totalBalance += amount; // add to total balance
 } // end method credit

187

 // debits an amount from the account
 public void debit(double amount)
 {
 availableBalance -= amount; // subtract from available balance
 totalBalance -= amount; // subtract from total balance
 } // end method debit

 // returns account number
 public int getAccountNumber()
 {
 return accountNumber;
 } // end method getAccountNumber
} // end class Account

188

// ATMCaseStudy.java
// Driver program for the ATM case study
// forward slicing userAuthenticated

public class ATMCaseStudy
{

// main method creates and runs the ATM
public static void main(String[] args)
{

ATM theATM = new ATM();
theATM.run();

} // end main
} // end class ATMCaseStudy

189

// BalanceInquiry.java
// Represents a balance inquiry ATM transaction
// forward slicing userAuthenticated

public class BalanceInquiry extends Transaction
{
 // BalanceInquiry constructor
 public BalanceInquiry(int userAccountNumber, Screen atmScreen,
 BankDatabase atmBankDatabase)
 {
 super(userAccountNumber, atmScreen, atmBankDatabase);
 } // end BalanceInquiry constructor

 // performs the transaction
 public void execute()
 {
 // get references to bank database and screen
 BankDatabase bankDatabase = getBankDatabase();
 Screen screen = getScreen();

 // get the available balance for the account involved
 double availableBalance =
 bankDatabase.getAvailableBalance(getAccountNumber());

 // get the total balance for the account involved
 double totalBalance =
 bankDatabase.getTotalBalance(getAccountNumber());

 // display the balance information on the screen
 screen.displayMessageLine("\nBalance Information:");
 screen.displayMessage(" - Available balance: ");
 screen.displayDollarAmount(availableBalance);
 screen.displayMessage("\n - Total balance: ");
 screen.displayDollarAmount(totalBalance);
 screen.displayMessageLine("");
 } // end method execute
} // end class BalanceInquiry

190

// BankDatabase.java
// Represents the bank account information database
// forward slicing userAuthenticated

public class BankDatabase
{
 private Account accounts[]; // array of Accounts

 // no-argument BankDatabase constructor initializes accounts
 public BankDatabase()
 {
 accounts = new Account[2]; // just 2 accounts for testing
 accounts[0] = new Account(12345, 54321, 1000.0, 1200.0);
 accounts[1] = new Account(98765, 56789, 200.0, 200.0);

 } // end no-argument BankDatabase constructor

 // retrieve Account object containing specified account number
 private Account getAccount(int accountNumber)
 {
 int i;
 // loop through accounts searching for matching account number
 for (i=0; i < 1;i++)
 {
 // return current account if match found
 if (accounts[i].getAccountNumber() == accountNumber)
 return accounts[i];
 } // end fo
 //for (Account currentAccount : accounts) do
 /*
 * {
 // return current account if match found
 if (currentAccount.getAccountNumber() == accountNumber)
 return currentAccount;
 } // end for
 */

 return null; // if no matching account was found, return null
 } // end method getAccount

 // determine whether user-specified account number and PIN match
 // those of an account in the database
 public boolean authenticateUser(int userAccountNumber, int userPIN)
 {
 // attempt to retrieve the account with the account number
 Account userAccount = getAccount(userAccountNumber);

191

 // if account exists, return result of Account method validatePIN
 if (userAccount != null)
 return userAccount.validatePIN(userPIN);
 else
 return false; // account number not found, so return false
 } // end method authenticateUser

 // return available balance of Account with specified account number
 public double getAvailableBalance(int userAccountNumber)
 {
 return getAccount(userAccountNumber).getAvailableBalance();
 } // end method getAvailableBalance

 // return total balance of Account with specified account number
 public double getTotalBalance(int userAccountNumber)
 {
 return getAccount(userAccountNumber).getTotalBalance();
 } // end method getTotalBalance

 // credit an amount to Account with specified account number
 public void credit(int userAccountNumber, double amount)
 {
 getAccount(userAccountNumber).credit(amount);
 } // end method credit

 // debit an amount from of Account with specified account number
 public void debit(int userAccountNumber, double amount)
 {
 getAccount(userAccountNumber).debit(amount);
 } // end method debit
} // end class BankDatabase

192

// CashDispenser.java
// Represents the cash dispenser of the ATM
// forward slicing userAuthenticated

public class CashDispenser
{
 // the default initial number of bills in the cash dispenser
 private final static int INITIAL_COUNT = 500;
 private int count; // number of $20 bills remaining

 // no-argument CashDispenser constructor initializes count to default
 public CashDispenser()
 {
 count = INITIAL_COUNT; // set count attribute to default
 } // end CashDispenser constructor

 // simulates dispensing of specified amount of cash
 public void dispenseCash(int amount)
 {
 int billsRequired = amount / 20; // number of $20 bills required
 count -= billsRequired; // update the count of bills
 } // end method dispenseCash

 // indicates whether cash dispenser can dispense desired amount
 public boolean isSufficientCashAvailable(int amount)
 {
 int billsRequired = amount / 20; // number of $20 bills required

 if (count >= billsRequired)
 return true; // enough bills available
 else
 return false; // not enough bills available
 } // end method isSufficientCashAvailable
 } // end class CashDispenser

193

// Deposit.java
// Represents a deposit ATM transaction
// forward slicing userAuthenticated

public class Deposit extends Transaction
{

private double amount; // amount to deposit
private Keypad keypad; // reference to keypad
private DepositSlot depositSlot; // reference to deposit slot
private final static int CANCELED = 0; // constant for cancel option

// Deposit constructor
public Deposit(int userAccountNumber, Screen atmScreen,

BankDatabase atmBankDatabase, Keypad atmKeypad,
DepositSlot atmDepositSlot)

{
// initialize superclass variables
super(userAccountNumber, atmScreen, atmBankDatabase);

// initialize references to keypad and deposit slot
keypad = atmKeypad;
depositSlot = atmDepositSlot;

} // end Deposit constructor

// perform transaction
public void execute()
{

BankDatabase bankDatabase = getBankDatabase(); // get reference
Screen screen = getScreen(); // get reference

amount = promptForDepositAmount(); // get deposit amount from user

// check whether user entered a deposit amount or canceled
if (amount != CANCELED)
{

// request deposit envelope containing specified amount
screen.displayMessage(

"\nPlease insert a deposit envelope containing ");
screen.displayDollarAmount(amount);
screen.displayMessageLine(".");

// receive deposit envelope
boolean envelopeReceived = depositSlot.isEnvelopeReceived();

// check whether deposit envelope was received
if (envelopeReceived)
{

194

screen.displayMessageLine("\nYour envelope has been "
+

"received.\nNOTE: The money just deposited
will not " +

"be available until we verify the amount
of any " +

"enclosed cash and your checks clear.");

// credit account to reflect the deposit
bankDatabase.credit(getAccountNumber(), amount);

} // end if
else // deposit envelope not received
{

screen.displayMessageLine("\nYou did not insert an "
+

"envelope, so the ATM has canceled your
transaction.");

} // end else
} // end if
else // user canceled instead of entering amount
{

screen.displayMessageLine("\nCanceling transaction...");
} // end else

} // end method execute

// prompt user to enter a deposit amount in cents
private double promptForDepositAmount()
{

Screen screen = getScreen(); // get reference to screen

// display the prompt
screen.displayMessage("\nPlease enter a deposit amount in " +

"CENTS (or 0 to cancel): ");
int input = keypad.getInput(); // receive input of deposit amount

// check whether the user canceled or entered a valid amount
if (input == CANCELED)

return CANCELED;
else
{

return (double) input / 100; // return dollar amount
} // end else

} // end method promptForDepositAmount
 } // end class Deposit

195

// Screen.java
// Represents the screen of the ATM
// forward slicing userAuthenticated

public class Screen
{
 // display a message without a carriage return
 public void displayMessage(String message)
 {
 System.out.print(message);
 } // end method displayMessage

 // display a message with a carriage return
 public void displayMessageLine(String message)
 {
 System.out.println(message);
 } // end method displayMessageLine

 // displays a dollar amount
 public void displayDollarAmount(double amount)
 {
 System.out.print(amount);
 } // end method displayDollarAmount
} // end class Screen

196

// Transaction.java
// Abstract superclass Transaction represents an ATM transaction
// forward slicing userAuthenticated

public abstract class Transaction
{
 private int accountNumber; // indicates account involved
 private Screen screen; // ATM's screen
 private BankDatabase bankDatabase; // account info database

 // Transaction constructor invoked by subclasses using super()
 public Transaction(int userAccountNumber, Screen atmScreen,
 BankDatabase atmBankDatabase)
 {
 accountNumber = userAccountNumber;
 screen = atmScreen;
 bankDatabase = atmBankDatabase;
 } // end Transaction constructor

 // return account number
 public int getAccountNumber()
 {
 return accountNumber;
 } // end method getAccountNumber

 // return reference to screen
 public Screen getScreen()
 {
 return screen;
 } // end method getScreen

 // return reference to bank database
 public BankDatabase getBankDatabase()
 {
 return bankDatabase;
 } // end method getBankDatabase

 // perform the transaction (overridden by each subclass)
 abstract public void execute();
} // end class Transaction

197

// Withdrawal.java
// Represents a withdrawal ATM transaction
// forward slicing userAuthenticated

public class Withdrawal extends Transaction
{
 private int amount; // amount to withdraw
 private Keypad keypad; // reference to keypad
 private CashDispenser cashDispenser; // reference to cash dispenser

 // constant corresponding to menu option to cancel
 private final static int CANCELED = 6;

 // Withdrawal constructor
 public Withdrawal(int userAccountNumber, Screen atmScreen,
 BankDatabase atmBankDatabase, Keypad atmKeypad,
 CashDispenser atmCashDispenser)
 {
 // initialize superclass variables
 super(userAccountNumber, atmScreen, atmBankDatabase);

 // initialize references to keypad and cash dispenser
 keypad = atmKeypad;
 cashDispenser = atmCashDispenser;
 } // end Withdrawal constructor

// perform transaction
public void execute()
{
 boolean cashDispensed = false; // cash was not dispensed yet
 double availableBalance; // amount available for withdrawal

 // get references to bank database and screen
 BankDatabase bankDatabase = getBankDatabase();
 Screen screen = getScreen();

 // loop until cash is dispensed or the user cancels
 do
 {
 // obtain a chosen withdrawal amount from the user
 amount = displayMenuOfAmounts();

 // check whether user chose a withdrawal amount or canceled
 if (amount != CANCELED)
 {
 // get available balance of account involved
 availableBalance =

198

 bankDatabase.getAvailableBalance(getAccountNumber());

 // check whether the user has enough money in the account
 if (amount <= availableBalance)
 {
 // check whether the cash dispenser has enough money
 if (cashDispenser.isSufficientCashAvailable(amount))
 {
 // update the account involved to reflect the withdrawal
 bankDatabase.debit(getAccountNumber(), amount);

 cashDispenser.dispenseCash(amount); // dispense cash
 cashDispensed = true; // cash was dispensed

 // instruct user to take cash
 screen.displayMessageLine("\nYour cash has been" +
 " dispensed. Please take your cash now.");
 } // end if
 else // cash dispenser does not have enough cash
 screen.displayMessageLine(
 "\nInsufficient cash available in the ATM." +
 "\n\nPlease choose a smaller amount.");
 } // end if
 else // not enough money available in user's account
 {
 screen.displayMessageLine(
 "\nInsufficient funds in your account." +
 "\n\nPlease choose a smaller amount.");
 } // end else
 } // end if
 else // user chose cancel menu option
 {
 screen.displayMessageLine("\nCanceling transaction...");
 return; // return to main menu because user canceled
 } // end else
 } while (!cashDispensed);

 } // end method execute

 // display a menu of withdrawal amounts and the option to cancel;
 // return the chosen amount or 0 if the user chooses to cancel
 private int displayMenuOfAmounts()
 {
 int userChoice = 0; // local variable to store return value

 Screen screen = getScreen(); // get screen reference

199

 // array of amounts to correspond to menu numbers
 int amounts[] = { 0, 20, 40, 60, 100, 200 };

 // loop while no valid choice has been made
 while (userChoice == 0)
 {
 // display the menu
 screen.displayMessageLine("\nWithdrawal Menu:");
 screen.displayMessageLine("1 - $20");
 screen.displayMessageLine("2 - $40");
 screen.displayMessageLine("3 - $60");
 screen.displayMessageLine("4 - $100");
 screen.displayMessageLine("5 - $200");
 screen.displayMessageLine("6 - Cancel transaction");
 screen.displayMessage("\nChoose a withdrawal amount: ");

 int input = keypad.getInput(); // get user input through keypad

 // determine how to proceed based on the input value
 switch (input)
 {
 case 1: // if the user chose a withdrawal amount
 case 2: // (i.e., chose option 1, 2, 3, 4 or 5), return the
 case 3: // corresponding amount from amounts array
 case 4:
 case 5:
 userChoice = amounts[input]; // save user's choice
 break;
 case CANCELED: // the user chose to cancel
 userChoice = CANCELED; // save user's choice
 break;
 default: // the user did not enter a value from 1-6
 screen.displayMessageLine(
 "\nInvalid selection. Try again.");
 } // end switch
 } // end while

 return userChoice; // return withdrawal amount or CANCELED
 } // end method displayMenuOfAmounts
} // end class Withdrawal

200

	Dedication
	Abstract
	Declaration
	Publications
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Overview
	Motivation
	Business-IT Gap
	Research Problem

	Thesis Scope and Research Question
	Research Methodology
	Measure of Success
	Contribution to Knowledge
	Thesis Structure

	Feature-based Approach: State of the Art
	Features and Features-Oriented Software Development (FOSD)
	The Concept of Feature
	Feature-Oriented Software Development (FOSD)
	Feature Modelling
	Feature Interaction
	Feature Implementation

	Software Evolution and Software Re-engineering
	Software Engineering
	Software Re-engineering
	Re-engineering Classification and Software Abstraction

	Reverse Engineering
	Software Evolution
	Laws of Software Evolution
	Legacy Software System

	Software Architecture
	UML
	Introduction
	UML Concepts

	Program Slicing
	Requirement Engineering
	Model Comparison
	Model Comparison Phases
	Model Versioning
	Model Clone Detection
	Model Comparison Approaches

	Conclusion

	Proposed Approach
	Framework Overview
	Business Feature Elicitation
	Business Analysis
	Requirement Engineering

	IT Feature Extraction
	Program Understanding
	Program Slicing
	Program Dependence Graph

	Feature Model Matching
	Conclusion

	Business Feature Elicitation
	Overview
	Business Needs and Business Analysis
	System Features
	Requirement Engineering
	Requirements Elicitation
	Requirement Analysis
	Requirement Specification
	Requirement Validation

	Requirement Elicitation Methods
	Scenarios
	Scenarios and Requirement Elicitation
	Scenarios

	Story Cards
	Analysis to Derive Features

	UML-based Feature Modelling
	Conclusion

	IT Feature Extraction
	Importance of the Phase
	Program Understanding
	Program Slicing Step
	 Slices-to-UML Step
	IT Feature Representation

	Conclusion

	Feature Model Matching
	Introduction
	The Matching Problem
	Model Comparison and Approaches
	Proposed Model Matching Approach
	Model Matching Example

	Conclusion

	Case Study
	Overview
	Tool Support
	Eclipse
	Indus Java Program Slicer

	An ATM System
	The ATM Software System Application
	Business Feature Elicitation Phase
	Scenarios
	Story Cards
	Feature Presentation in UML Models

	IT Feature Extraction Phase
	Program Slicing Step
	Program Dependency and Control Flow Graphs
	UML Model Feature Representation

	Feature Model Matching Phase
	Matching Algorithm

	Matching Results

	A Library Management System
	The Library Management Software System Application
	Business Feature Elicitation Phase
	Scenario
	Story Cards
	Feature Presentation in UML Models

	IT Feature Extraction Phase
	Program Slicing Step
	Program Dependency and Control Flow Graphs
	UML Model Feature Representation

	Feature Model Matching Phase
	Matching Algorithm

	Matching Results

	Evaluation and Discussion
	Conclusion

	Conclusion And Future Work
	Summary of the Thesis
	Research Questions Revisited
	Future Work

	 Bibliography
	 An ATM Case Study Source Code

