
1

De Montfort University

Efficient Enforcement of Security

Policies in Distributed Systems

by

Ali Mousa G. Alzahrani

PhD Thesis

This thesis is submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

Supervised by

Dr. Helge Janicke and Dr. Antonio Cau

in the

Faculty of Technology

Software Technology Research Laboratory (STRL)

April 2013

University Web Site URL Here (include http://)
Faculty Web Site URL Here (include http://)
Department or School Web Site URL Here (include http://www.cse.dmu.ac.uk/STRL/)

Abstract

Policy-based management (PBM) is an adaptable security policy mechanism in

information systems (IS) that confirm only authorised users can access resources.

A few decades ago, the traditional PBM has focused on closed systems, where

enforcement mechanisms are trusted by system administrators who define access

control policies. Most of current work on the PBM systems focuses on designing a

centralised policy decision point (PDP), the component that evaluates an access

request against a policy and reports the decision back, which can have performance

and resilience drawbacks.

Performance and resilience are a major concern for applications in military, health

and national security domains where the performance is desirable to increase situ-

ational awareness through collaboration and to decrease the length of the decision

making cycle. The centralised PDP also represents a single point of failure. In

case of the failure of the centralised PDP, all resources in the system may cease to

function. The efficient distribution of enforcement mechanisms is therefore key in

building large scale policy managed distributed systems.

Moving from the traditional PBM systems to dynamic PBM systems supports

dynamic adaptability of behaviour by changing policy without recoding or stop-

ping the system. The SANTA history-based dynamic PBM system has a formal

underpinning in Interval Temporal Logic (ITL) allowing for formal analysis and

verification to take place. The main aim of the research to automatically distribute

enforcement mechanisms in the distributed system in order to provide resilience

against network failure whilst preserving efficiency of policy decision making. The

policy formalisation is based on SANTA policy model to provide a high level of

assurance.

The contribution of this work addresses the challenge of performance, manageabil-

ity and security, by designing a Decentralised PBM framework and a corresponding

Distributed Enforcements Architecture (DENAR). The ability of enforcing static

and dynamic security policies in DENAR is the prime research issue, which bal-

ances the desire to distribute systems for flexibility whilst maintaining sufficient

security over operations. Our research developed mechanisms to improve the effi-

ciency of the enforcement of security policy mechanisms and their resilience against

network failures in distributed information systems.

i

Acknowledgements

In the name of Allah, the Most Merciful and the Most Gracious, I give praise and

thanks to Him for supporting me with the strength to complete this thesis, and for

providing me with knowledgeable and caring individuals during the study process.

This thesis could not have been completed without the recommendations, advice

and encouragements of many people. It may not be possible to mention all of them

here, but their contributions, guidance and support are extremely appreciated.

I would like to thank both Dr. Helge Janicke, who was my first supervisor, he was

generous with me, provided freely of his knowledge and made many suggestions,

and Dr. Antonio Cau who was my second supervisor and has encouraged my au-

tonomy and given me invaluable instruction.

Dr. Turki Alghamdi is more than a friend. Without his help, encouragement, and

academic discussion, the pace of my work would be slower. I will never forget the

nice times we spent working together at the university .

I would like to pay high regards to my dear father and mother, my dear children

(Almuthana and Lana), my brothers and my sisters for their sincere encouragement

and inspiration throughout my research work and lifting me uphill this phase of

life. I owe everything to them. Besides this, several people have knowingly and

unknowingly helped me in the successful completion of this research.

Also, my wife (Um Almuthana) has been, always, my pillar, my joy and my guiding

light, and I thank her.

Finally, I would like to thank University of Hail, not only for providing the schol-

arship which allowed me to undertake this research, but also for giving me the

opportunity meet so many nice people, places and cultures.

ii

Publications

1. Alzaharani A., Janicke H. and Abubaker S. (2010). Decentralized XACML

Overlay Network. In proceedings of the Third IEEE International Sympo-

sium on Trust, Security and Privacy for Emerging Applications (TSP-10).

Bradford, UK.

2. Alzaharani A., Janicke H. (2010). Decentralized Policy Based Management.

In Proceedings of the Saudi International Conference (SIC2010). Manch-

ester, UK.

iii

Contents

Abstract i

Acknowledgements ii

Publications iii

List of Figures ix

List of Tables xi

1 Introduction 1

1.1 Problem Statement . 2

1.2 Motivation . 2

1.3 Research Question . 3

1.4 Original Contribution . 4

1.5 Research Methodology . 5

1.5.1 Research Work Packages and Milestones 5

1.5.2 Deliverables/Milestones . 8

1.6 Success Criteria . 9

1.7 Thesis Outline . 10

2 Related Work 12

2.1 Introduction . 13

2.2 Security Policy Overview . 13

2.3 Access Control Models . 14

2.3.1 Discretionary Policies . 15

2.3.2 Non-Discretionary Policies 15

2.3.3 Mandatory Policies . 16

2.3.3.1 Bell-LaPadula Model 16

2.3.3.2 Chinese Wall Model 17

2.3.4 Access Control Matrix . 18

2.3.5 Role-based Policies . 19

2.4 Policy Specification Languages . 21

2.4.1 Authorisation Specification Language (ASL) 22

iv

2.4.2 LaSCO . 23

2.4.3 eXtensible Access Control Markup Language (XACML) . . . 23

2.4.4 Ponder . 25

2.4.5 Usage Control (UCON) . 26

2.4.6 Security Analysis Toolkit for Agents (SANTA) 28

2.4.7 Trust Specification . 29

2.5 Policy Based Management (PBM) 30

2.5.1 Overview . 30

2.5.2 IETF Policy Based Admission Control Framework 31

2.5.3 Common Open Policy Service (COPS) Protocol 34

2.6 Enforcement . 35

2.6.1 Centralised Policy Enforcement 36

2.6.2 Decentralised Policy Enforcement 37

2.7 Summary . 39

3 Preliminaries 40

3.1 Introduction . 41

3.2 SANTA Policy Language . 41

3.2.1 Policy Syntax . 43

3.2.1.1 Policy Rules . 44

3.2.1.2 Authorisation Rules 49

3.2.1.3 Obligation Rules 52

3.2.1.4 Simple Policies . 52

4 Decentralised Policy Based Management (PBM) 54

4.1 Introduction . 55

4.2 Decentralised Policy Based Management
(PBM) Framework . 55

4.2.1 Policy Specification . 56

4.2.2 Policy Analysis . 56

4.2.3 Policy Decomposition . 57

4.2.4 Policy and PDPs Deployment 58

4.2.5 PDPs Enforcement and Coordination 60

4.3 Summary . 61

5 Distributed Enforcements Architecture (DENAR) 62

5.1 Introduction . 63

5.2 Distributed Enforcements Architecture
(DENAR) . 63

5.2.1 The Architecture . 66

5.2.2 Component Functionalities 67

5.2.2.1 Policy Enforcement Point (PEP) Functionality . . 69

5.2.2.2 Policy Repository (PR) Functionality 71

5.2.2.3 Policy Information Point (PIP) Functionality . . . 71

5.2.2.4 Policy Decision Point (PDP) Functionality 71

5.2.2.5 PIPcoordinator Functionality 72

5.2.2.6 PDPcoordinator Functionality 73

5.2.3 Component Interactions . 74

5.2.3.1 PEP and DENAR Interaction 74

5.2.3.2 DENAR Components Interaction (PDP, PR, PIP,
PDPcoordinator and PDPcoordinator) 75

5.3 DENARs Administration . 79

5.3.1 DENARs Configuration . 80

5.3.2 DENARs Deployment . 82

5.3.3 DENARs Re-propagation and Recovery Technique 83

5.4 Summary . 84

6 DENAR Analysis 86

6.1 Introduction . 87

6.2 Security Policy Analysis in DENAR 87

6.2.1 Security Policy Challenges 87

6.2.2 Policy Dependency Scope 92

6.3 Collaborative DENAR Analysis . 96

6.3.1 Domain Scope . 97

6.3.2 Collaborative DENAR Decision 98

6.3.2.1 Independent Rule Decision 100

6.3.2.2 Dependent Rule Decision 100

6.4 Summary . 102

7 Policy Decomposition and Deployment 103

7.1 Introduction . 104

7.2 Policy Decomposition . 104

7.2.1 Rule Fragmentation . 105

7.2.2 Rules Refinement . 110

7.2.2.1 Refinement Analysis 110

7.2.2.2 Refinement Independent Rule Method 112

7.2.2.3 Refinement Dependent Rule Method 115

7.3 Policy Deployment . 118

7.4 Summary . 119

8 DENAR Enforcement and Coordination 121

8.1 Introduction . 122

8.2 Policy Enforcement in DENAR . 122

8.2.1 Local Domain Decision . 123

8.2.2 Remote Domain Decision . 125

8.3 DENAR Coordination Mechanisms 127

8.3.1 Pull Model . 129

8.3.2 Push Model . 131

8.4 DENARs Properties . 132

8.4.1 DENAR’s Coordination and Synchronisation 132

8.4.2 DENAR’s Concurrency . 134

8.4.3 DENAR’s Security . 135

8.5 Summary . 135

9 DENAR Prototype 137

9.1 Introduction . 138

9.2 DENARs Network Lab . 138

9.2.1 Building DENAR Topologies in Netkit 139

9.2.2 DENARs Network Configurations 140

9.2.2.1 Domain Configuration 142

9.3 Software Design and Implementation of DENAR 143

9.3.1 XACML Architecture . 145

9.3.1.1 Policy File, Request and Response 146

9.3.2 Client-Server Application . 149

9.3.2.1 Client Class . 150

9.3.2.2 DENAR Class . 151

9.3.3 DENARs Enforcement and Coordination 153

9.3.3.1 SimplePDP Class 153

9.3.3.2 ConstraintCheckerFunction Class 155

9.3.3.3 PIPcoordinator Class 158

9.3.3.4 RemotePIPcoordinator Class 159

9.3.3.5 PIP Class . 160

9.4 Summary . 161

10 Case Study and Evaluation 163

10.1 Introduction . 164

10.2 Policy Based Management (PBM) Simulation 164

10.2.1 First Simulator: Centralised PBM 165

10.2.2 Second Simulator: Decentralised PBM 166

10.3 Case Study . 167

10.3.1 Case Study 1 (Static Policy) 170

10.3.2 Case Study 2 (Local Domains’ Dynamic Policy) 171

10.3.3 Case Study 3 (Remote Domains’ Dynamic Policy) 173

10.4 Evaluation . 177

10.4.1 DENARs’ Performance . 177

10.4.1.1 Network Traffic . 177

10.4.2 DENARs’ Security . 181

10.4.2.1 Enforcement Functional Behaviour 182

10.4.3 DENARs’ Manageability . 184

10.4.3.1 Resource Utilisation 184

10.4.3.2 Administrative Cost 184

10.4.4 DENARs’ Resilience . 185

10.5 Summary . 191

11 Conclusion and Future Work 193

11.1 Summary of the Thesis . 193

11.2 Revisiting Contributions . 194

11.3 Achieving Success Criteria . 196

11.4 Future Work . 197

A Source Code 210

A.1 DENARs Network Labs . 210

A.1.1 Network Configuration . 210

A.1.2 Centralised PBM . 221

A.1.3 Decentralised PBM . 223

A.2 DENAR Software . 226

A.2.1 XACML Policy and Request 226

A.2.2 Client Class . 235

A.2.3 DENAR Class . 239

A.2.4 tester Class . 244

A.2.5 SimplePDP Class . 245

A.2.6 ConstraintCheckerFunction Class 247

A.2.7 PIPcoordinator Class . 251

A.2.8 RemotePIPcoordinator Class 256

A.2.9 PIP Class . 258

List of Figures

1.1 Research work packages . 6

2.1 Access Control Matrix . 18

2.2 RBAC0 Example . 20

2.3 Policy Representation Levels . 21

2.4 XACML Representation . 24

2.5 Continuity and Mutability Properties of UCON 27

2.6 UCON Components . 27

2.7 SANTA Components . 29

2.8 IETF/DMTF policy framework . 32

2.9 Components Architecture for Policy Based Admission Control . . . 34

2.10 Policy Enforcement Model . 36

3.1 SANTA Rule Structure . 45

3.2 Informal Interpretation of a Policy Rule 46

4.1 Decentralised Policy Based Management (PBM) Framework 56

4.2 The Overlay Network of DENARs 59

5.1 Policy Enforcement Architecture in DMTF model 64

5.2 The DENARs network . 68

5.3 The Distributed Policy Enforcements Architecture (DENAR) 69

5.4 Messages Exchange in DENARs network 74

5.5 PEP and DENAR Interaction Activity Diagram 76

5.6 PEP and DENAR Interaction Sequence Diagram 77

5.7 DENAR Components Interaction Activity Diagram 1 78

5.8 DENAR [DENAR Components Interaction Activity Diagram 2 . . . 79

5.9 The DENARs network for the Scenario 81

6.1 Access Control Matrix . 90

6.2 The Enforcement Decision for no Condition Rule 91

6.3 The Enforcement Decision with Past Decision Condition 92

6.4 Conditional Premise Rule Decision 94

6.5 Network Domains . 98

6.6 Static PDPcontroller . 100

6.7 Dynamic PDPcontroller . 101

ix

7.1 Policy Decomposition Phase and Policy Deployment Phase 105

7.2 Network Domains . 112

8.1 Local Decision Sequence Diagram 125

8.2 Remote Decision Sequence Diagram 128

8.3 Local Condition Signal . 128

8.4 Coordination Signal . 129

8.5 Pull Model . 131

8.6 Push Model . 133

9.1 LAN1 (Local Area Network) . 140

9.2 The DENARs Network . 141

9.3 The DENARs Network domains 142

9.4 DENAR prototype class diagram 144

9.5 DSP XACML framework . 145

9.6 Client class . 150

9.7 Client class flow chart . 151

9.8 DENAR Class . 152

9.9 DENAR class flow chart . 153

9.10 SimplePDP class . 154

9.11 ConstraintCheckerFunction class . 156

9.12 PIPcoordinator class . 159

9.13 RemotePIPcoordinator class . 160

9.14 PIP class . 161

10.1 First Simulator: Centralised PBM 165

10.2 Centralised PBM Simulator Screens 166

10.3 Second Simulator: Decentralised PBM for DENARs 167

10.4 Decentralised PBM for DENARs Simulator Screens 168

10.5 Central Policy . 169

10.6 Decomposed sub-policies . 169

10.7 Case Study 1 (Static Policy) in Centralised PBM 170

10.8 Case Study 1 (Static Policy) in Decentralised PBM 171

10.9 Case Study 2 (Dynamic Policy) in Centralised PBM 173

10.10Case Study 2 (Dynamic Policy) in Decentralised PBM 174

10.11Case Study 3 (Remote Domains’ Dynamic Policy) in Centralised
PBM . 175

10.12Case Study 3 (Remote Domains’ Dynamic Policy) in Decentralised
PBM . 176

10.13Centralised PBM Traffic for Case Study 1 (Static Policy) 178

10.14Decentralised PBM Traffic for Case Study 1 (Static Policy) 179

10.15Centralised PBM Traffic for Case Study 2 (Dynamic Policy) 180

10.16Decentralised PBM Traffic for Case Study 2 (Dynamic Policy) . . . 181

10.17Failures in Centralised PBM . 187

10.18Failures in Decentralised PBM . 187

List of Tables

10.1 Enforcement Functional Behaviour of Enforcement for Centralised
PBM and Decentralised PBM . 183

10.2 Enforcement and Coordination Failures for Centralised PBM network185

10.3 Enforcement and Coordination Failures for Centralised PBM network189

xi

Chapter 1

Introduction

Objectives

• Motivate the needs of security policy enforcement in distributed systems.

• Highlight the original contribution and identify the research question.

• Provide the research methodology and define the success criteria.

• Provide the thesis organisation.

1

Chapter 1. Introduction 2

1.1 Problem Statement

A distributed system consists of a large number of heterogeneous networks that

interact with each other in order to achieve a common goal. Managing distributed

systems results in high administrative costs and long deployment cycles for busi-

ness initiatives. Security and management of distributed systems are mutually

dependent and each needs the services of the other [46]. Managing security in

heterogeneous, distributed systems can become expensive and prone to error be-

cause security administration must be distributed to multiple policy administra-

tors, which makes it difficult to provide consistent security policies across the

entire system. It is thus necessary to analyse security policies for conflicts and

inconsistencies that may lead the system to insecure states. Analysis of policy

specification is also important in order to ensure that enterprise security goals

are met. In large-scale systems with large numbers of both users and policies, it

must be possible to analyse the policies to check for the existence of policies that

implement the high-level security goals of the organisation.

Policy Based Management (PBM) is an evolutionary process. Policy-based re-

source allocation, the association between policy and the devices/entities on which

it must be implemented, and even the policies themselves are subject to frequent

review and change. Decentralised management of large and complex organisational

structures is both difficult and error-prone and administrators must be isolated

from the details of the underlying implementations and policy representations.

This can be accomplished with Decentralised Policy Based Management (PBM)

that permits integrated enforcements and hides the heterogeneity of policies and

the complexity of policy deployment.

1.2 Motivation

With the growth of the World Wide Web (WWW), the need for distributed sys-

tems has increased extraordinarily in the last decade. Accompanying this growth

has been the increased need for distributed access control architectures, where

communication and the sharing of information to provide services with limited

resources is essential. In addition, providing services to consumers or users via

new technologies (e.g., mobile agents, active networks) and the use of the Internet

increase the security concerns associated with today’s networked environments.

Chapter 1. Introduction 3

The management of these systems must be distributed in order to be scalable

with the size of enterprise networks, and management procedures must be auto-

mated to reduce administrative costs, which can be facilitated with Policy Based

Management approaches. Policy Based Management (PBM) can be defined as

an adaptable security policy mechanism in information systems (IS) that confirm

only authorised users can access information [19, 88]. A few decades ago, the

PBM focused on a closed system, where enforcement mechanisms were trusted

by system administrators who defined access control policies i.e. static policies.

Building on the PBM approach by involving dynamic policies defines decisions on

the basis of the system state or changes in the system state. Sometimes access

control requirements refer to the execution history [3], this means that a policy

decision can depend on the system behaviour that was observed in the past i.e.

dynamic policy. For example, the access requirement is being “if a user at some

point in the past has read file (A) that is secret then the same user cannot write

to file (B), otherwise the user can write on file (B)”.

Sharing information in a secure manner, but keeping information available, is a

major concern for distributed systems in military, health and national security

domains where it is desirable to increase situational awareness through collabora-

tion.

Decentralised Policy Based Management (PBM) avoids a single point of failure for

security policy enforcement where it involves distributed enforcements. In case of

centralised enforcement, the failure of the enforcement would cease all the resources

on the system to function. In addition, Decentralised Policy Based Management

(PBM) would be more efficient in terms of resource utilisation.

Thus, based on the identified requirements, we concluded that the efficient distri-

bution of enforcements mechanism and the automated decomposition of dynamic

security policies without conflict among them are key in building large-scale policy

managed distributed systems.

1.3 Research Question

The overall and the central research question investigated in this thesis is:

Chapter 1. Introduction 4

• Q1. How to improve the access control decision making with support for

static and dynamic security policies in a distributed setting?

• Q2. To what extent can a Decentralised Policy Based Management system

improve performance, security, manageability and resilience?

1.4 Original Contribution

The research improves the efficiency of security policy enforcement mechanisms

and their resilience against policy enforcement failures in Policy Based Manage-

ment system (PBM).

Performance, by the distribution of Policy Decision Points (PDPs), is based on a

sound theory of policy decomposition, in which correctness is preserved to decrease

the length of the authorisation decision to performing any service. Moreover,

the Decentralised Policy Based Management (PBM) framework is a manageable

system that can be readily understood and safely managed by administrators as

well as analysing dynamic policies and refining them in our Distributed Policy

Enforcements Architecture (DENAR) to result in fewer security breaches due to

administrative and enforcement errors. Finally, the collaborative DENARs are

designed to fulfill resilience in less enforcement failure and resource utilisation.

The objectives of the research are:

• O1. Providing a formal framework for Decentralised (PBM) that enforce

security policies in a distributed setting. [See Chapter 4 and 6]

• O2. Improving the performance (network traffic) of security policy enforce-

ment mechanisms and their resilience against unintentional and intentional

enforcement failures in distributed information systems by designing Dis-

tributed Policy Enforcements Architecture (DENAR). [See Chapter 5]

• O3. Providing an automated policy decomposition of static and dynamic

security policies to accomplish high assurance safety-critical information

systems for Distributed Policy Enforcements Architecture (DENAR). [See

Chapter 7]

Chapter 1. Introduction 5

• O4. Designing coordination and collaboration enforcement model, using

the policy decomposition of (O3) and the Distributed Policy Enforcements

Architecture (DENAR) of (O2), that enable Decentralised PBM in (O1) to

deploy and enforce policies for large-scale systems. [See Chapter 8]

1.5 Research Methodology

The ’Constructive Research’ is a scientific research method that is detailed in

[63] [29] is used as the research method in this research. The constructive research

method is being used in the majority of the computer science approaches. It refers

to knowledge contributions being developed as a new framework, theory, model or

algorithm.

The methodology of the proposed research is made up of nine work packages which

are adjusted with the list of the steps in constructive research [63]. The first work

package addresses the research background and the research project requirements.

Seven are scientific research work packages. The last work package concentrates

on the thesis writing up. The investigation work packages are illustrated in Figure

1.1.

1.5.1 Research Work Packages and Milestones

The research is undertaken along a theoretical to an applied axis and is structured

in work packages as follows.

Work package organisation

• WP1: Literature Review.

An introduction and critical review of related work is conducted via the dig-

ital resources, including the following topics: Access control models, security

policy specification languages and enforcement policy systems in centralised

and distributed PDPs. Additionally, the literature review provides the tech-

nology that we used: Security Analysis Toolkit for Agents (SANTA).

• WP2: Decentralised PBM Framework.

Chapter 1. Introduction 6

Figure 1.1: Research work packages.

The framework that expresses compositional policies, and their decomposi-

tion and enforcement in the PDPs is designed to capture the research objec-

tives as expressed in the research question.

– Task 2.1: Identifying requirements for a Decentralised PBM and de-

signing a framework that show the methodology to achieve decentralised

enforcement.

• WP3: Distributed Policy Enforcements Architecture (DENAR).

This work package designs Distributed Policy Enforcements Architecture

(DENAR). The research in this work package explicitly states how the ar-

chitecture components interact to achieve the research objectives.

– Task 3.1: Designing Distributed Policy Enforcements Architecture

(DENAR) that fulfill the second research objective.

Chapter 1. Introduction 7

– Task 3.2: Describing the DENAR component interaction.

• WP4: DENAR Analysis.

The research investigation in this stage focus on the development of a novel

formal model for policy enforcement in DENAR (Analysis and Dependen-

cies). This work package is concerned with the analysis of policies and de-

pendencies on the requirements of the access control in Decentralised PBM.

– Task 4.1: Syntactic and semantic analysis of policies to identify depen-

dencies between policy and the access control in information systems.

– Task 4.2: Analysis the enforcement of static and dynamic policies is

being in DENAR to achieve a collaboration enforcements.

• WP5: Policy Decomposition Model.

This work package addresses the policy decomposition model of re-specifying

the policy into independent sub-policies that can be deployed and enforced

in the (DENAR).

– Task 5.1: Development of the policy decomposition model that can

split a policy based on the rule object domain with the concern of policy

dependencies that found in dynamic policy. e.g. Chinese Wall [25].

– Task 5.2: Specification of measurements for efficiency and resilience

based on the Distributed Policy Enforcements Architecture (DENAR)

[See Task 3.1 and Task 4.2] and identification of the effect of the refine-

ment rules on these measures.

• WP6: DENAR Enforcement and Coordination.

The development of a behavioural model to express decomposed sub-policies

and enforcement in the DENAR including coordination and concurrency

between DENARs.

– Task 6.1: Behavioral semantics of DENAR capturing decision making

and their interaction with PEPs.

– Task 6.2: Modelling Push and Pull Models to achieve coordination

and concurrency between DENARs .

Chapter 1. Introduction 8

• WP7: DENAR Prototype

This work package describes the design and implementation of our prototype

for DENAR.

• WP8: Evaluation through case study.

The Decentralised PBM performance, security, manageability and resilience

against the centralised PBM approach through representative case studies.

– Task 8.1: Network simulators of the Centralised PBM and Decen-

tralised PBM systems to case studies, which are developed. the case

studies show the expressiveness of the dynamic and static policies and

exemplify the enforcement and coordination in the Distributed Policy

Enforcements Architecture (DENAR) for a realistic system scenario.

– Task 8.2: Validation of the results against the objectives of the ap-

proach: i) Performance: by the network traffic for DENAR in compar-

ison with the centralised PDP results; ii) Security: by comparative dis-

cussion of the ability of enforcing the case studies developed in Task 8.1

using the centralised PDP and the DENAR; iii) Manageability: by dis-

cussing the resource utilisation and administration in the DENAR; iiii)

Resilience: by simulating both the centralised PDP and the (DENAR)

and varying the number of failures are discussed.

• WP9: Write up. Based on results of work packages.

1.5.2 Deliverables/Milestones

The following deliverables are produced as part of the work program:

• D1 Problem, objectives, proposed framework and solution and literature

review. From reports on WP1 and WP2 and reports, we produced a first

published paper [6].

• D2 Distributed Policy Enforcements Architecture (DENAR) model (WP5)

and tool-support. This delivery includes a software prototype that demon-

strates the feasibility of automation. Reported on the a second published

paper [7].

• D3 PhD Theses. Reports on the case study and validation of the approach.

Chapter 1. Introduction 9

1.6 Success Criteria

In today’s critical communication and information-sharing age, healthcare, com-

mercial and governmental organisations require to protect the information assets

within their organisations’ networks as well as the security requirements, which

can be mutable and frequently dependent on the history of the system by involving

the dynamic policy (e.g., Chinese-Wall policies) or require dynamic reconfiguration

triggered by events. Therefore, policy decisions cannot be made in isolation of the

system. However, research on the impact that history-based and dynamic policies

have on the distribution of PDPs in a system is still in its infancy. PDPs are very

much linked to the system and are required to have the ability to observe events

in order to make decisions. The proposed framework exploits these dependencies

to identify an efficient and resilient deployment of PDPs in our Distributed Policy

Enforcements Architecture (DENAR), whilst ensuring that static and dynamic

policies are correctly enforced in DENAR.

The measure of success is that both the Decentralised PBM framework and Dis-

tributed Policy Enforcements Architecture (DENAR) and their supporting algo-

rithm indeed resolve the proposed research question and demonstrate it by exper-

iments through the implementation prototype. The DENAR prototype demon-

strates that the research output results match the research objective factors as

follows:

• Performance, a discussion of improving the enforcement will be provided

and some experiments will be used to measure the network traffic in both

centralised PDP and a network of DENARs.

• Security, some experiments will be used to discuss the ability of enforcing

both static and dynamic policies in both centralised PDP and the network

of DENARs.

• Manageability, a discussion of the resource utilisation and administration

in the DENAR will be provided.

• Resilience, Network simulators for both centralised PDP and the network

of DENARs will be used to discuss the resilience in some potential failures

scenarios.

Chapter 1. Introduction 10

1.7 Thesis Outline

This section provides the proposed structure of the authors’ PhD thesis.

Chapter 1: Introduction.

This Chapter gives an overview of the problem, motivation and approach to the

solution.

Chapter 2: Related Work.

Access control models, security policy specification languages, enforcement policy

systems in centralised and distributed PDPs are introduced. Additionally, the

security policy concepts are presented.

Chapter 3: Preliminaries.

The Security Analysis Toolkit for Agents (SANTA) technology is described in this

Chapter.

Chapter 4: Decentralised Policy Based Management (PBM).

The Decentralised Policy Based Management (PBM) framework that expresses the

policy decomposition and enforcement in the DENAR is described. This Chapter

identifies the methodology used in the proposed framework. This Chapter fulfils

the first objective in the research.

Chapter 5: Distributed Enforcements Architecture (DENAR).

The Distributed Policy Enforcements Architecture (DENAR) components are de-

tailed in structural and behavioural diagrams with their interaction. The network

of DENARs is described in scope of administration task. This Chapter fulfils the

second objective in the research.

Chapter 6: DENAR Analysis.

This Chapter is concerned with the analysis of security policies and dependencies

on the structure of information systems. Formal model of policies and enforce-

ment is provided (Analysis and Dependencies). Clearly, syntactic and semantic

analysis of policies to identify dependencies between policy and the access control

requirements in information systems (particularly in dynamic policies). Moreover,

it identifies and analyses the distributed policy enforcements challenges to meet

Chapter 1. Introduction 11

the enforcement in collaborative DENARs. This Chapter fulfils the second and

third objectives in the research.

Chapter 7: Policy Decomposition and Deployment.

This Chapter models the policy decomposition model that fragment the policy into

sub-policies. The refinement method is then implemented to relate sub-policies

to each other so those can be deployed and enforced in the network of DENARs.

This Chapter fulfils the third objective in the research.

Chapter 8: DENAR Enforcement and Coordination.

In this Chapter, the network of DENARs is presented in structural and be-

havioural diagrams to describe the enforcement mechanism in DENAR. In ad-

dition, DENARs coordination mechanism is provided and related with the result

the produced in Chapter 7. This Chapter fulfils the fourth objective in the re-

search.

Chapter 9: DENAR Prototype.

This Chapter designs the Distributed Enforcements Architecture (DENAR) pro-

totype to evaluate the research objectives. DENARs prototype implements for

DENAR network and DENARs enforcement and coordination software.

Chapter 10: Case Study and Evaluation.

This Chapter introduces the Centralised PBM and Decentralised PBM simulators.

In addition, the Chapter provides three case studies to illustrate the practical ap-

plicability for both static and dynamic policies those enforced in Centralised PBM

and Decentralised PBM simulators. The performance, security, manageability and

resilience factors are evaluated through the case studies in Decentralised PBM sim-

ulator against the Centralised PBM simulator.

Chapter 11: Conclusion and Future Work.

This Chapter includes the final results, conclusion of our research and our views

for future work.

Chapter 2

Related Work

Objectives

• Provide an overview of security policy and highlight the current policy spec-

ification languages.

• Give an overview of the access control models.

• Provide an overview of the Policy Based Management (PBM).

• Identify the difficulties and problem of the related research in both cen-

tralised and decentralised policy enforcement.

12

Chapter 2. Related Work 13

2.1 Introduction

In this Chapter we critically review related work in the area of security with the

emphasis on Policy-based languages and access control mechanisms in general

using both centralised and distributed approaches. Firstly, we survey some of

the well known access control models (Section 2.3) and critically discuss some of

the formal and informal policy languages that have been proposed in this context

(Section 2.4). Following the review of policy models and languages, we review

the Policy Based Management (PBM) framework. Subsequently, the centralised

and distributed enforcement approaches are discussed in Section 2.6. The Chapter

concludes with a short summary in Section 2.7.

2.2 Security Policy Overview

Security in the context of distributed systems is identified as consisting of four pri-

mary requirements: confidentiality or secrecy, integrity, availability and account-

ability. Confidentiality requires that the information or resources in distributed

systems only be disclosed to authorised parties. Integrity is associated with the

protection of information against improper or unauthorised modification. Avail-

ability refers to the provision of prompt access to information and resources by

those authorised. Finally, accountability indicates knowing who has had access to

information or resources.

Authentication, access control and audit are the mutually supportive technologies

to accomplish the above requirements. Authentication deals with identification

of parties and access control is concerned with limiting the activity of legitimate

parties who have been successfully authenticated by ensuring that every access to

a system and its information or resources is controlled and that only accesses that

are authorised can take place.

An access control system has three primary components: the subjects whose active

entities cause information to flow among objects or change the system state, e.g.

users, agents running on behalf of users, groups, compounds of subjects or roles;

the objects (targets) whose entities contain or receive information; and the rules

which specify the ways in which the subjects can access the targets [75]. However,

in this project we also suppose that the confidentiality and integrity of messages

Chapter 2. Related Work 14

that are exchanged between parties in the system should given on the notation of

specification and enforcement of authorisation, obligation, delegation and integrity

constraints on interactions where they are defined according to [51] as:

• Authorisation. Authorisation policies (often called permissions or privi-

leges) define the conditions under which an authenticated subject (a user or

an agent acting on behalf of a user) is allowed to perform a specific action on

an object. In some languages, a positive authorisation policy defines under

which conditions the subjects are permitted to execute a specific action on

objects. On the other hand, a negative authorisation policy specifies under

which conditions the subjects are forbidden to execute a specific action on

objects.

• Obligation. Obligation policies define the conditions or events (sometimes

also called triggers) under which a subject must perform a specific action on

an object, therefore, when certain events occur and provide the ability to

respond to changing circumstances.

• Delegation Delegation policies define the conditions under which a subject

can permit a specific access right (i.e. the right to perform an action on an

object) which they possess, to another subject to perform an action on their

behalf. Integrity policies define constraints on the execution of an action on

an object by a specific subject.

A security policy is defined as a specification of the security requirements of a

system. Access control models provide a formal representation of security policies

such as confidentiality policies or integrity policies or a mixture of both. A variety

of useful access control models are given in (Section 2.3). Additionally, a con-

siderable body of work is devoted to developing languages for expressing security

policies. A review of these works is given in (Section 2.4).

2.3 Access Control Models

In this section we overview different approaches to the specification of security

policies, where the main focus is on access control. Access control is described

Chapter 2. Related Work 15

in [12] as follows: ”The function of access-control is to control which principals

(subjects) have access to which resources (objects) in the system”. Based on this

definition, we give an overview of access control as the mechanisms that enforce au-

thorisation and delegation policies. Access control models have been traditionally

divided into Mandatory Access Control (MAC), which is mostly concerned with

controlling information flow between the objects of a system, and Discretionary

Access Control (DAC), which is concerned with the specification of authorisation

rules to govern the access of users to the information.

2.3.1 Discretionary Policies

The Discretionary Access Control (DAC) model was developed by the TCSEC

[36] and is derived from the Discretionary Security Property of the Bell-LaPadula

Model [See Section 2.3.3.1].

In DAC each object has a possessor who exercises primary control over the object.

The controls are discretionary in the sense that a subject with possession of access

permission on an object can delegate that permission to any other subject [36].

DAC policies exploit the access matrix model as a framework for reasoning about

the permitted accesses. [See Section 2.3.4 for the access matrix model]

However, DAC policies do not enforce any control on the information flow once

this information has been acquired by a process. As a matter of fact, DAC does

not distinguish between the user and subjects operating on behalf of the user.

As a result, if the ownership of an object is obtained by a malicious or incompe-

tent subject, nothing can prevent that subject from destroying all discretionary

protections.

2.3.2 Non-Discretionary Policies

Non-discretionary policies establish controls that cannot be changed by users di-

rectly, but only through administrative action. In this case, an administrator

determines which subjects can have access to certain objects based on the organ-

isation’s security policy. In this context administrative policies that control who

is authorised to modify access rights are of grater importance.

Chapter 2. Related Work 16

Thus, any global and persistent access control policy that depends on access control

decision information not directly controlled by the security administrator is non-

discretionary, and in NDAC, the policy for delegating authority must be explicit

[4].

2.3.3 Mandatory Policies

In mandatory access control (MAC), both principals and target objects are tagged

with security labels. The enforcement of these policies essentially matches the

principal’s security clearance against the security label of the resource. Typically

this form of access control model is used for military and governmental policies.

Examples of MAC policies are Bell-LaPadula or the Chinese Wall Models.

2.3.3.1 Bell-LaPadula Model

The Bell-LaPadula Model (Multilevel Security) [66] provides a means to prove the

security of time-sharing mainframe systems. In the model, information is tagged

with a label that indicates the sensitivity of the information. Traditionally the

military classification scheme contains the levels Unclassified, Confidential, Secret

and Top Secret, but changes to this classification may occur over time and often

lead to incompatibilities between different systems [12]. Principals hold a specific

security clearance corresponding to the classification. An individual is only allowed

to access documents (objects) that he is cleared for, or documents that require a

lower clearance level. The model relies on three basic rules; the *-property, the

simple property and the tranquillity property.

• *-property (star property): An individual is only allowed to access an object

if the security level of the object is the same or greater than the security

level of the individual. Thus information cannot leak out to individuals with

lower security clearances. Therefore, this property is also sometimes referred

to as the confinement property.

• Simple property: An individual must have a security label more privileged

than the labels on the objects they may access.

Chapter 2. Related Work 17

• Tranquillity property: The tranquillity property requires that when a system

is currently accessing an object, the security label of the individual and object

involved must not be changed.

Thus, it demonstrates that the current state of the access control system guaran-

tees a correct behaviour.

2.3.3.2 Chinese Wall Model

The Chinese Wall model [25] was stimulated by business operations where it in-

troduces dynamic compartments to capture the concept of separation of duty. It

comes from the financial background, where service firms have internal rules that

prevent conflicting interests. An informal example is given by [25] which explains

the Chinese Wall requirements. This example cannot be expressed using other

MAC models. The key contrast between the Bell-LaPadula and Chinese Wall

models is that the Chinese Wall Model leaves a subject initially the free choice,

which information to access, but restricts further access to compartments, that

are different to the previous one. Two properties then ensure valid access control:

• ss-property: This property states that access is only granted if the requested

object is in the same company dataset as an object already accessed by that

subject, i.e. within the Wall, or belongs to an entirely different conflict of

interest class.

• *-property. This property states that a write access is only permitted if

access is permitted by the simple security property and no object can be

read which is in a different company dataset to the one for which write

access is requested and contains unsanitised information.

The Chinese Wall model is a primitive history-based (or audit-based) access-

control model [1] and as such requires more sophisticated enforcement mechanisms

than the Bell-LaPadula model.

Chapter 2. Related Work 18

2.3.4 Access Control Matrix

A good way of representing access-control specifications is in the form of an access-

control matrix. The access control matrix of access control was proposed by Lamp-

son [65] and extended in HRU model [2, 18, 22]. The HRU extension defines the

issue of subject/object creation and deletion rights. The matrix addresses that

subjects are allowed to perform actions on objects in the system. In the access

matrix model, the state of the system is defined by a triple (S,O,A), where S is

the set of subjects, O is the set of objects and A is the access matrix where rows

correspond to subjects, columns correspond to objects and entry A[S,O] reports

the privileges of subjects on objects.

Figure 2.1: Access Control Matrix.

A reference monitor can then directly base the authorisation decision on the matrix

entries. However, in other enforcement mechanisms, the reference monitor needs

to satisfy this specification by other means. The access control matrix can be

distributed to be enforced. The most common form is to distribute the matrix to

each protected object. Figure 2.1 shows the access control matrix and the access

control list which is based on the distribution to objects. The access control matrix

stores the actions, that a subject can perform on an object (resource). However,

in large-scale systems, the access matrix model is insufficient because increasing

Chapter 2. Related Work 19

the number of entries in the matrix leads to more complexity, and it becomes less

verifiable.

2.3.5 Role-based Policies

The main motivation for the Role Based Access Control (RBAC) model was to

combine the flexibility of explicit access control along with additionally imposed

enterprise-specific constraints. In addition, although different research has been

done so far, the main notion of RBAC remains the same [30]. The RBAC security

system adjusts the access to objects based on organisational activities and respon-

sibilities called roles which are assigned to subjects within the system. Instead

of specifying all the accesses that each subject is permitted to execute, a security

policy in RBAC is specified for roles, while subjects are granted to adopt roles.

The subject playing a role is allowed to execute all privileges for which the role

is authorised. This significantly simplifies the security administration in RBAC.

For example, if a user moves to a new function within the organisation, the user

can simply be assigned to the new role and removed from the old role. An ad-

ditional motivation for RBAC has been to reuse role specifications by a form of

inheritance whereby one role (often a manager in the organisation) can inherit the

privileges of another role and therefore avoid the need to recreate the specification

of permissions.

Sandhu et. al [40] defined four conceptual models in an effort to standardise

RBAC. We briefly summarise these models in order to present an overview of

the features supported by RBAC implementations. RBAC0 contains users, roles,

permissions and sessions. Permissions are assigned to roles and users can be as-

signed to roles to assume those permissions. A user can start a session to activate

a subset of the roles to which the user is assigned. RBAC1 includes RBAC0 and

initiates role hierarchies [84]. Hierarchies are a way of structuring roles to reflect an

organisation’s lines of authority and responsibility, and are specified using inheri-

tance between roles. Role inheritance allows the reuse of permissions by allowing

a senior role to inherit permissions from a junior role. RBAC0 example is given

in [84] and shown in Figure 6.1.

RBAC2 includes RBAC0 and initiates constraints to restrict the activation of

roles in sessions or the assignment of users or permissions to roles. Constraints are

used to specify application-dependent conditions, and satisfy well-defined control

Chapter 2. Related Work 20

Figure 2.2: RBAC0 Example.

principles such as the principles of least-privilege and separation of duties. Finally,

RBAC3 combines both RBAC1 and RBAC2, and provides both role hierarchies

and constraints.

The use of RBAC models to manage access to computational resources and dig-

ital information within a closed computer system is widely accepted as a best

practice for commercial applications. Systems such as Microsoft Active Directory,

SELinux, Solaris, Oracle DBMS and PostgreSQL effectively have utilized some

form of RBAC to guarantee the confidentiality of digital resources [82].

Role-based access control models have been still in challenges of researchers be-

cause the simple hierarchical relationship is insufficient to model various sorts of

relationships that may occur. Team-based Access Control [94] is the extension

of RBAC that allows for the specification of temporal constraints on role assign-

ment and activation and was proposed with Temporal Role-based Access Control

by Bertino et.al. [20, 21]. Both RBAC and TRBAC have been modelled by

[16] using Constraint Logic Programming. With the aim of expressing dynamic

separations of duty in RBAC, [73] extending the traditional set-oriented specifi-

cation of RBAC with a version that is based on first order temporal logic. RBAC

has also been standardised by the National Institute of Standards and Technology

(NIST) [8]. RBAC3 models can be expressed using Siewe’s [87] basic authorisation

framework, by introducing specialised actions for role-assignment and (de-) acti-

vation, together with data structures that represent the current role-assignments

and activations.

Chapter 2. Related Work 21

2.4 Policy Specification Languages

Having reviewed the foundations of security models and policies, we will now

review the state of the art in policy specification languages. Figure 2.3 summarises

a policy hierarchy (according to [30]), and represents different views on policies

and abstractions of policies for the purpose of refining high-level management goals

into low-level policy rules whose enforcement can be fully automated. A policy

language is expected to include (according to [30]):

Figure 2.3: Policy Representation Levels.

• High level policies, which can be business or management goals, or even

natural language statements. High-level abstract policies are not enforceable

and their recognition involves refining them into one of the other two levels

below.

• Specification level policies (called high level policies by some researchers)

refer to those policies specified by a human administrator to supply ab-

stractions for low-level policies in a specific format. These policies relate to

objects or specific services, and their interpretation can be automated.

• Low-level policies or configurations include security mechanism configura-

tions, device configurations and directory schema entries.

Chapter 2. Related Work 22

2.4.1 Authorisation Specification Language (ASL)

The first work investigating logic-based languages for the specification of security

policies was the work by Woo and Lam [98], but this was generally not intuitive and

did not easily map onto implementation mechanisms. Their language has a strong

mathematical background, which can make it complex to use. ASL [48, 49] is

an example of a formal logic language for specifying authorisation policies. They

proposed the use of positive and negative authorisation rules and showed how

conflicts are resolved by decision rules. The example below is an authorisation

rule in ASL, which states that all subjects belonging to the group Employees but

not to Soft-Developers are authorised to read file1.

cando(file1, s,+read) < −in(s, Employees) & −in(s, Soft−Developers)

The ”cando” predicate indicated a specification of positive authorisations; the

sign in front of the action in the ”cando” predicate indicates the modality of the

authorisation e.g. negative authorisation would be denoted by a (-) sign in front

of the read action. A ”dercando” predicate is defined in the language to specify

derived authorisations based on previous access using so-called ”done” rules. These

are essentially facts, which are created by the system during runtime and reflect

the access executed by a user. Furthermore, the ”do” and ”done” predicates, can

be used to specify history-dependent authorisations based on actions previously

executed by a subject. The final decision, whether to grant access or deny a

request is then resolved by a so-called decision rule. For example the following:

do(file, s,+a) < −dercando(file, s,+a)&− dercando(file, s,−a)

This rule indicates that if it can be derived that s is authorised to perform action

a on file, and it cannot be derived that s is denied to perform action a on file, then

s is effectively authorised to perform a on file.

However, temporal dependencies among authorisations are not compositional.

Thus, Siewe’s [87] extends the language to allow temporal dependency of autho-

risations and caters for the compositionality of security policies, but the major

points for criticism are that it is not possible to express obligation policies in ASL.

Chapter 2. Related Work 23

In addition, the approach of derived authorisations based on the system state or

the occurrence of an event is still ambiguous. The Flexible Authorization Frame-

work (FAF) [50] extends the approach in [49] to handle dynamic authorizations

and is also based on stratified clausal-form logic. It includes support for RBAC

and discusses propagation rules (for example the propagation of access rights from

groups to group-members) as well as having an emphasis on integrity rules. How-

ever, the integrity rules in their model cannot take into account the result of the

execution, as integrity constraints are checked prior to the decision whether the

access is granted or denied - they are mainly concerned with the integrity of the

access control policy specification itself.

2.4.2 LaSCO

The Language for Security Constraints on Objects (LaSCO) [45]is a graphical

approach for specifying security constraints on objects. A policy graph is an an-

notated directed graph where nodes represent system objects and edges represent

system events. Nodes and edges are decorated using domain predicates and re-

quirement predicates. Domain predicates restrict what can match a node or edge

while requirement predicates are constraints to be met on domain match.

Damianou [31] states some of the drawbacks of LaSCO. Firstly, it cannot express

any form of obligation (which is also the case for ASL), secondly it is not com-

positional and thirdly there is no textual representation of LaSCO graphs, as is

found in other graph-oriented languages.

The main advantage of LaSCO is that a graphical representation is more accessible

to the human user and aids in the specification of security policies. We also believe

that the representation of access rights in the form of a graph is intuitive for the

analysis of permissible information flows in policies.

2.4.3 eXtensible Access Control Markup Language (XACML)

XACML [76] is a technology developed as a research project by SUN Microsys-

tems. It is a standard language (XACML version 2.0 has been accepted by the

Organisation for the Advancement of Structured Information Standards (OASIS))

for specifying access control policy, the structure of XML messages that request

Chapter 2. Related Work 24

access to resources, and the structure of the messages responding to these requests.

The language is based on eXtensible Markup Language (XML) and specifies a sub-

ject, object, action and condition policy in the context of XML documents. The

language supports role based access control, where roles, the same as groups, are

defined as collections of attributes relevant to a principal [19].

Figure 2.4: XACML Representation.

XACML’s standardised architecture for decision making exploits two components:

the Policy Enforcement Point (PEP) and the Policy Decision Point (PDP). The

PEP constructs the request based on the requester’s attributes, the resource re-

quested, the action specified, and other situation-dependent information through

PIP. The PDP receives the constructed request, evaluates it with the applicable

policy and system state through the Policy Access Point (PAP), and then returns

permit, deny, indeterminate or not-applicable to the PEP. The PEP then allows

or denies access to the resource. The PEP and PDP components can be embedded

within a single application or distributed across a network. Figure 2.4 illustrates

the XACML standardised architecture as described above. In [34] XACML obliga-

tion is presented but the attribute coordination is not addressed between multiple

PDPs. Moreover, in [60, 61], the description logic reason for the language is pro-

vided.

Chapter 2. Related Work 25

However, in XACML the underlying representation is XML; therefore, the policy

is verbose and not really aimed at human interpretation. On the other hand,

XACML comes with an open source reference implementation of a Policy Decision

Point (PDP).

2.4.4 Ponder

The Ponder policy specification system [30, 33, 37], is an object-oriented, declara-

tive policy language to express security and management policies that was created

at Imperial College.

Ponder policies have been implemented for controlling policy-based networking

(PBN) equipment or software written in the Java language. Moreover, it provides

a common language abstraction over the heterogeneous components in such a secu-

rity network. Additionally, the language supports native authorisation, delegation

obligation and, unlike the previously discussed policy models [5], obligation poli-

cies [32]. Ponder also provides the grouping of objects in domains and roles and

groups give structure to the system’s subjects. The Ponder authorisation policy

syntax is:

inst (auth+ | auth-) policyName "{"

subject [<type>] domain-Scope-Expression ;

target [<type>] domain-Scope-Expression ;

action action-list;

[when constraint-Expression ;]"}"

Positive (auth+) and negative (auth-) authorisation policy defines which subject

(group or role) can perform what actions (activities) on a domain of objects,

where the former is indicative of a permission, and the latter a prohibition. As

we mentioned, Ponder’s roles can have attached obligation policies, which is the

strength of Ponder. The syntax for such policies is:

inst oblig policyName "{"

on event-specification ;

subject [<type>] domain-Scope-Expression ;

[target [<type>] domain-Scope-Expression ;]

Chapter 2. Related Work 26

do obligation-action-list ;

[catec Expression-specification ;]

[when constraint-Expression ;]"}"

Ponder is an attractive policy specification language, since it has tool-support

which allows it to have a graphical view, it is suitable for large system policies

and defines the domains and the Ponder compiler. It translates high-level Ponder

specifications into low level policy languages, for instance the Windows 2000 secu-

rity templates, or policies for the Java security model. The three policy languages,

ACL, LaSCO and Ponder are discussed in the comparative study [5]. It critically

compares the expressiveness of the BMA security model for Electronic Patient

Records system developed in [10, 11]. It conclude that because Ponder allows the

specification of obligation policies Ponder gives the most flexibility rather than

ACL and LaSCO.

2.4.5 Usage Control (UCON)

UCON is a relatively new approach that aims to unify prior models at a high

abstraction level over the usage of digital objects and to combine Access Control,

Trust Management and Digital Rights Management in one more expressive frame-

work. The authors of UCON , Park and Sandhu [77, 85] address concepts behind

UCON and describe the different forms of usage in terms of rights mixture. The

UCON model abstracts a system, as previous models, into subjects, objects and

rights. Furthermore, it obtains authorisation rules, obligations, and conditions.

The authors in [78]introduced the (UCONABC) core models that particularly fo-

cus on the notion of mutable and immutable attributes that are associated with

objects or subjects. Mutable attributes can change during the execution of the

system, whereas immutable attributes can only change by administrative action.

Before, ongoing and post usage are phases addressed in this model that satisfy

denying a resource whilst the resource is already in use. Furthermore, they ad-

dress pre-update, ongoing and post-update functions to comply with obligations

and maintain mutable attributes. For example on classification of attributes we

refer to [79]. Figures 2.5 and 2.6 illustrate the model.

While covering many aspects of former models, like access-history tracking or

auditing, the definitions that are given in the paper are mostly informal and are

Chapter 2. Related Work 27

Figure 2.5: Continuity and Mutability Properties of UCON.

Figure 2.6: UCON Components.

Chapter 2. Related Work 28

not suited for the analysis of UCON policies. However, it is a powerful abstract

model that covers some aspects which are not covered by former frameworks.

Later on, Zhang [101, 102, 103]formalised the different (UCONABC) models using

Lamport’s temporal logic of action (TLA) [64]for providing a formal definition of

the (UCONABC) core models and their functioning. Obligations in UCON are

presented in [59].

In [56], an alternative approach to formalise UCON model is presented which is

based on ITL. The approach deals mainly with scenarios of continuous on-going

usage. It redefines a concept of a usage process and request. Usage process is

formed by a sequence of intervals constructed using a set of operators. Interval

is a (in)finite sequence of system states. In [53, 54], although the formal model

significantly reduces the number of assumptions made in [3], it is being improved

to specify the potential of usage control.

2.4.6 Security Analysis Toolkit for Agents (SANTA)

SANTA [51, 87] is a framework which integrates the specification of security, func-

tional and temporal requirements for the development of distributed systems in

a uniform and formal framework that was developed at The Software Technology

Research Laboratory, DMU. The authors have chosen Multi-Agent Systems as a

representative of distributed systems for the reasons which have been addressed

in [57] by Janicke. Interval Temporal Logic (ITL) [74] is used as the underpinning

logic for SANTA. Therefore, it shows that the system implementation satisfies the

functional, security and temporal requirements. Figure 2.7 outlines the SANTA

framework.

The foundation is a formal computational model and a compatible security model.

It provides linguistic support, in the form of the SANTA Wide-Spectrum Language

(SANTA-WSL), that supports the specification and design of a Secure Multi Agent

System (SMAS). The language is agent-based and offers constructs for the speci-

fication of reactive agents, objects that represent shared resources, security poli-

cies and their enforcement mechanisms. The specification-oriented semantics of

SANTA-WSL is given in ITL which is the basic logical underpinning of the SANTA

framework. Policies are defined at a higher level of abstraction than the system

implementation itself. For instance, an authorisation policy defines the conditions

under which a user can access a specific resource in a declarative manner (without

Chapter 2. Related Work 29

Figure 2.7: SANTA Components [51].

detailing how this constraint is actually implemented). SANTA has the ability

to express behaviours as part of the specification removes the need to explicitly

model state for the execution history as is, e.g. the case in UCON [78] or [17].

Additionally, enforcement mechanisms are defined at a high abstraction level. The

system properties that must be satisfied to comply with a specific policy are stated

by enforcement mechanisms. Then, during the development process, policies and

enforcement mechanisms are refined into concrete and deterministic enforcement

code that can be readily implemented in agent frameworks such as JADE [80].

Finally, SPAT [87]is tool-support for the specification and analysis of policies and

is provided as part of the SANTA framework. The support for obligations spec-

ification, integrity constraints and scoping and parallel composition of policies is

the strength of SANTA.

2.4.7 Trust Specification

Web based labelling, signed email, active networks and e-commerce applications

require connectivity between entities that do not know each other for establishing

and enforcing access control [42]. Thus, there has been significant prior research

into schemes which allow gradual exchange of digital certificates or credentials

Chapter 2. Related Work 30

that represent statements certified by given entities, which can be used to estab-

lish properties of their holder (e.g. identity, accreditation). An access control

decision of whether or not a party may execute an access is based on properties

that the party may have, and can prove by presenting credentials. This approach

is called certificate-based authorisation and is adopted for trust specification [30].

The access control decision is a complex process and its completion sometimes re-

quires trust negotiations for privacy guaranteed, safe and fair credentials exchange

between parties (subject and object providers) [67].

Yao [99] has described a number of existing trust management systems, in par-

ticular tracing PolicyMaker’s [24] evolution into KeyNote [23] and the Internet

Engineering Task Force’s (IETF) Simple Public Key Infrastructure (SPKI) [39].

Most of these schemes are based on asymmetric digital cryptography as well as

providing a universal solution to both access control and authentication which

make the systems more complex.

2.5 Policy Based Management (PBM)

Policy Based Management (PBM) is a technology wherein various resources on a

network are not individually configured but rather are dynamically configured by

an overlay network [69] based on various policies that are defined by a network

administrator. In this section, an overview is introduced as well as a current

framework and protocol is described.

2.5.1 Overview

Present day computer networks are extremely complex both in terms of the tech-

nologies behind them as well as the variety of network hardware that they use.

There are multiple types of servers, routers, switches and other network hard-

ware supplied by multiple vendors. In addition, not all the systems on a network

may use the same software platform. Due to this, a network administrator would

typically be required to know about multiple operating systems, hardware and

software and be continuously informed and updated about the various new fea-

tures being continuously introduced. Policy Based Management (PBM) provides a

Chapter 2. Related Work 31

way to overcome this problem by simplifying and largely automating the network

administration process.

Ensuring that the many different devices on present day IP networks inter operate

smoothly is not a trivial task. In addition, various new technologies that have

emerged in order to overcome a few limitations of the traditional IP protocols, such

as delivering Quality of Service, have only served to make present day networks

more and more complex. In many cases, it is more economical to simply introduce

excess capacity into existing networks rather than train the manpower on the

different technologies that are continuously being introduced. Indeed this is often

the route employed by many network administrators. However, with the advent

of Policy Based Management, this is poised to become a thing of the past.

PBM is a technology wherein various resources on a network are not individu-

ally configured but rather are dynamically configured by an overlay network [69]

based on various policies that are defined by a network administrator. For ex-

ample, instead of configuring a hundred printers on a network independently to

print documents only in black and white, a network administrator would simply

define a single policy for the same and update it on a central policy server. This

policy would then automatically be applied to all printers on the network by the

network management software. The Internet Engineering Task Force (IETF) and

the Distributed Management Task Force (DMTF) [100] are the chief bodies for the

standardisation of this policy framework so that various resources and technologies

can comply with it and it can become an accepted standard.

2.5.2 IETF Policy Based Admission Control Framework

The Internet Engineering Task Force (IETF) has proposed a framework for policy

based admission control [100] in order to aid applications or end users to request

specific quality or levels of service from an internetwork in addition to the IP best

effort services. This framework addresses important aspects of admission control

which were previously unresolved. As per RFC 2753, “network managers and

service providers must be able to monitor, control, and enforce use of network

resources and services based on policies derived from criteria such as the identity

of users and applications, traffic/bandwidth requirements, security considerations

and time of day/week.”

Chapter 2. Related Work 32

The IETF/DMTF policy framework consists of four elements the Policy Manage-

ment Tool, the Policy Repository (PR), the Policy Decision Point (PDP) and the

Policy Enforcement Point (PEP).

The Policy Management Tool is the user interface of a Policy Based Management

system. The network administrator uses the policy management tool to specify

policies that are to be enforced on all devices in a network. These policies are

stored in a Policy Repository (PR). The actual point at which the policies are

enforced on the network is known as the Policy Enforcement Point (PEP). This

Policy Enforcement Point gets its directions from the Policy Decision Point (PDP)

which is responsible for interpreting the policies stored in the Policy Repository

and communicating them to the PEP. The general layout of these elements in

Policy Based Management is shown in Figure 2.8 below.

Figure 2.8: IETF/DMTF policy framework.

The policies stored in the Policy Repository must correspond to the information

model specified by the Policy Framework Working Group in order to allow various

devices with various capabilities and from different vendors to inter operate with

each other. Various standardised protocols are used by various components of the

Policy Management System to communicate with each other. The Common Open

Policy Service (COPS) [38] or Simple Network Management Protocol (SNMP) [26]

is generally used for PDP and PEP communication. The Policy Repository may

be accessed using the Lightweight Directory Access Protocol (LDAP) [43].

Effective implementation of Policy Based Management is dependent on two fea-

tures of the management architecture which are centralisation and business level

abstraction. Centralisation is the means by which all devices on a network can

Chapter 2. Related Work 33

be configured from a single point which is the Policy Management Tool. Without

the benefits of PBM an administrator would have to spend hours configuring and

provisioning each device on a network manually. With a Policy Based Manage-

ment system, however, he/she simply requires to spend a few minutes entering the

desired policy into the Policy Management Tool and the system will take care of

the rest and apply the policy to all the various devices automatically.

As we have seen, there are two basic elements for policy control the PEP (Policy

Enforcement Point) and the PDP (Policy Decision Point). The Policy Enforce-

ment point (PDP)-. is the point at which the policies for network management

such as admission control policies based on factors such as the time of day, user

identity, credentials, user groups, service agreements between various ISPs related

to revenue sharing on the basis of bandwidth usage, priorities for services such as

video conferencing, VoIP etc. are actually enforced. The Policy Decision Point is

responsible for making decisions which the PEP enforces.

When the PEP requires to make a decision regarding access control for resources,

bandwidth etc, it formulates a request for policy control which may contain one

or more policy elements detailing the resource requested and sends it to the PDP.

The PDP accesses the policy repository and returns the policy decision which the

PEP then enforces by appropriately accepting or denying the request. The PDP

may also return additional information to the PEP which may be used for formu-

lating error messages or warnings based on pre defined criteria. The PDP may

use additional mechanisms and protocols for providing accounting, authentication,

policy storage and other functions. For this purpose, it may contact other external

servers using protocols defined for network management and communication like

SNMP (Simple Network Management Protocol) [26] or LDAP (Lightweight Direc-

tory Access Protocol) [43] among others. The detailed component framework for

Policy Based Admission Control is shown in Figure 2.9.

We now come to the question of the format in which the policies should be entered

into the policy management tool. Due to the large plethora of vendors and equip-

ment available on the market today, one policy format may not be compatible

between all the multiple equipment that the network supports. For this reason,

policies can be defined at two levels a business level and a technology level. Busi-

ness level policies are general policies that apply to all the various devices on the

network whereas technology level policies are policies that are derived from the

business level policies according to the technological requirements and instruction

Chapter 2. Related Work 34

Figure 2.9: Components Architecture for Policy Based Admission Control.

formats of the various devices on the network. The process of separating the busi-

ness level policies from the technology level policies is known as Business Level

Abstraction. The network management system uses a policy transformation logic

to transform the business level policies into technology level policies based on the

various devices on the network and stores them in the policy repository from where

they are accessed by the PDP in order to convey a decision to the PEP based on

the policy.

2.5.3 Common Open Policy Service (COPS) Protocol

The COPS protocol is a simple query and response protocol between a PEP and

a PDP. The basic model of this interaction is compatible with the framework

document for policy based admission control [38]. As per RFC 2748 [38], Durham

et. al describe the COPS protocol in detail, the main characteristics of the COPS

protocol include:

Chapter 2. Related Work 35

• COPS utilizes a client-server model. It is the PEP that sends requests to

the PDP which acts as the server and the PDP responds with its decisions.

• TCP is used as the transport protocol for exchange of messages and no

additional mechanisms are specified for reliable communication between the

PDP and the PEP.

• The protocol is designed for general configuration and enforcement of policies

and uses self identifying objects that encapsulate all relevant information for

decision making. As a result the protocol itself need not be modified for

various usage scenarios.

• Though COPS provides for message level security for message integrity and

protection, existing protocols for security such as IPSEC [14] or TLS [35]

may optionally be utilized as a security measure to secure communications

between the PDP and the PEP.

• The protocol is intended to be stateful. The PDP is expected to retain

previous requests made by the PEP unless they are explicitly deleted by

the PEP and may generate asynchronous decisions at any time to modify

a previously installed request state. Also it may respond to a new request

differently based on the decision made on a previous request. The PDP is

also capable of transmitting configuration information about various devices

to the PEP and modifying or removing them at a later stage as required.

2.6 Enforcement

The enforcement of policies refers to providing mechanisms in the system which

can ensure that the policy specification is not violated by the system’s execution

[51]. A well known and widely used architecture for policy enforcement is the

Reference Monitor (RM). The ISO standard (ISO/IEC 10181-3:1996) [47] defines

the standard model for policy enforcement that is used in most centralised and

distributed policy enforcement approaches. Figure 2.10 depicts this model. The

model separates the enforcement and the policy evaluation into a Policy Enforce-

ment Point (PEP) and the Policy Decision Point (PDP). PEP is the component

intercepting the request, and the Policy Decision Point (PDP) is the component

that evaluates an access request against a policy and reports the decision back

Chapter 2. Related Work 36

to the PEP. Thus, it is beneficial as the implementation of the PEP is usually

application or platform specific [9].

Figure 2.10: Policy Enforcement Model.

2.6.1 Centralised Policy Enforcement

The policy enforcement model in the ISO standard (ISO/IEC 10181-3:1996) [47] is

based on a centralised enforcement decision mechanism that receives events from

different components of the system. This means enforcing local security policies

in which all the security relevant events are produced by a single node. There-

fore, a centralised policy decision point in large scale computational systems is

not sufficient due to the heavy congestion resulting from the very large number of

events which becomes a single point of failure. A major challenge to shift the com-

putational mechanism towards distributed systems is interpreting and efficiently

enforcing security policies. Most approaches to policy enforcement such as [1] and

[70] are based on the centralised enforcement decision mechanism.

The centralised Policy Based Management (PBM) is more efficient when the length

of the authorisation decision and the authorisation traffic to performing any service

are not critical and the service can be provided later, e.g. banking services. On the

other hand, in such systems, when the authorisation decision response time and

the traffic are being important, the Decentralised PBM becomes more efficient,

e.g. Military, National Security.

Chapter 2. Related Work 37

2.6.2 Decentralised Policy Enforcement

The chief disadvantages of having a centralised PDP is that though coordination

among various decision requests are easily achieved, it is a bottleneck to perfor-

mance because all requests have to be routed through it.

The GlobusToolkit [86] have addressed distributed PDPs (Master/Slave PDPs

model) and the coordination between them. The master PDP orchestrates the

querying of a series of slave PDPs which each make their own (sub)-authorisation

decisions whilst the master then determines whether the ultimate decision is

granted or denied. They do not detail how their “master policies” are incor-

porated into the XACML-PDP policies. In addition, the model does not address

coordination between multi-user access requests.

Another method to enhance the PDP’s performance is to add LPDP (Local Policy

Decision Point) as an assistant to the centralised PDP, such as the case in [38].

LPDP stays in the same application or network node with a PEP, rather than

in the server as a centralised PDP does. It frequently backups the decisions of

the PDP, so when connection is interrupted between the PDP and the PEP, the

LPDP can substitute the PDP to guide the PEP temporarily. But centralised

PDP has the superior authority. LGI [71] is based on controllers that moderate

the network traffic going to and coming from observed nodes. Minsky et. al [71]

have illustrated a conceptual mechanism of Distributed Chinese-Wall (an example

of stateful policies) that can be enforced using LGI where it is a decentralised

enforcement mechanism. LGI has provided the exchange of messages between

targets, and does not deal with the behaviour of targets, or to changes in their

internal state. The significant differences between LGI and our work is that the

enforcement depends on agent cooperation in LGI where as in our work it is

automatically enforced on objects-domain or in another domain that has been

made decisions in the past by other PDPs.

A set of distributed PDP’s co-located with each of the PEP’s would solve this

problem. One of the ways which have been proposed in order to achieve distributed

PDP’s is to break down a main policy into its component parts based on the target

device to which it applies [90]. Though we will not delve into the mechanics of

how exactly decomposition is done in this paper, it should be clear to us that

when a main policy is broken down into its various component parts, coordination

is required between the various PDP to whom it is distributed to ensure that the

Chapter 2. Related Work 38

component policies produce the same effect as intended by the main policy. The

sum of the parts should perform in exactly the same manner as the main policy

performs.

In [90], [68], the notion of policy decomposition have been provided. Lin et. al.

[68] identify that the policy decomposition is based on the sensitivity of attribute

information necessary for access control and/or user defined constraints at each

PDP. However, Chadwick et. al. [90] policy decomposition model is guided by the

resource type hierarchy. Their model considers refining a high-level access control

policy into sub-policies that is specific to a resource instance and then sub-policies

are then deployed at the PDPs controlling each resource. In comparison, our

policy decomposition model is not guided by the resource type hierarchy or the

sensitivity of attribute information but object domains, thus, not every domain

has its PDP where that is based on policy analysis.

Chadwick et. al. [27], have also provided a conceptual model for coordination by

sharing and exchanging coordination data between one or more PDPs and have

extended the policy specification to include coordination and obligation policies.

Nevertheless, their work is informal and they do not show how new policies are

deployed to the PDPs when the system configuration or policy changes. Their

proposed coordination object is conceptually a repository which maintains a per-

sistent record of the various coordination attributes each time a request to access

a particular controlled resource is permitted. It may contain multiple dimensions

for the subject, resource, action or the environment variables. It is persistent and

stateful, much like the environment variables of date and time - the only difference

being that in the latter, the system is only required to read the values whereas in

the former, it is required to read as well as update the values on successful execu-

tion of the request. A case when the subject attribute may require coordination is

in a situation where maybe only one of a group of users or user groups is allowed

access to a particular resource. The resource attribute may require coordination

in practical scenarios like limiting the total usage of bandwidth per user to say 3

GB. The action attribute may require to be coordinated in cases when the same

user cannot both create and execute a given test and the environment attribute

may require coordination in cases where no more than, say 250 Dollar is to be

withdrawn from a given ATM in a given day. In this research, we study this inter-

esting problem and propose an efficient decentralised enforcement mechanism of

Chapter 2. Related Work 39

security policies in distributed systems while managing the coordination between

them.

2.7 Summary

In this Chapter we reviewed the specification and policy enforcement, obligation

and integrity constraints of access control. Particularly, we focussed on policy

models and languages for the specification of these requirements in access control

systems. Many languages to define security policies have been proposed. The

more formal, logic-based approaches (e.g. ASL) in general lack the flexibility and

scalability of more informal specifications (e.g. Ponder, XACML), but have the

advantage, that properties of the specification can be proved. The advantage of

the informal models is typically the increased scalability, due to concepts like in-

heritance or instantiation of policy classes as well as the generally better developed

tool-support. As has been noted by others [1, 70], most languages that did not

start with a formal model as the underlying foundation are prone to semantic

ambiguities. Thus, a mathematical approach is essential to achieve a level of as-

surance in the policy. Additionally, Janicke [51]emphasises Becker’s view, that the

logical foundation should not hinder the understandability of the model and the

language through its complexity and give the example that the algebra for policy

composition presented in [96], whilst addressing an important subject, appears to

introduce a level of complexity that is not justifiable. Finally, we concluded the

discussion of related work with the Policy Based Management (PBM) systems in

both centralised and decentralised approaches.

Unfortunately, no policy models and languages have defined the distributed en-

forcements mechanism of dynamic security policies that achieve the mean of De-

centralised Policy Based Management systems.

Chapter 3

Preliminaries

Objectives

• Give an overview of the SANTA policy language formalisation that involved

in the contribution.

40

Chapter 3. Preliminaries 41

3.1 Introduction

The Security Analysis Toolkit for Agents (SANTA) history-based dynamic PBM

system [87] [51] has a formal underpinning in Interval Temporal Logic (ITL) [74]

allowing formal authorisation and verification to take place [56]. We build our

decomposition policy model on the formal policy model of SANTA to provide a

high level of assurance. Consequently, our framework can automatically distribute

PDPs in the system in order to provide resilience against network failure and

efficacy of policy decision making.

The SANTA security policy framework involves three main components. Firstly,

the policy model allows for the expression of security requirements such as autho-

risation, obligation and delegation (delegation is excluded in our work). ITL is

appropriate to express temporal dependencies and the dynamic change of system

requirements in a compositional manner for outcome of policy decisions. More-

over, ITL specification can link different granularity of time via the projection

operator. In addition, ITL has an executable subset, Tempura, which means

an interpreter for our decomposition policy is readily available, if expressible in

this subset. Therefore, much of the proof of a system that is specified in ITL

can be decomposed into proofs of its parts. Secondly, linguistic support is pre-

sented to abstract from the underlying mathematical description and appeal to a

more business-oriented audience. However, the semantics of the language is unam-

biguous as it directly translates into the underlying model. Finally, the Security

Policy Analysis Tool (SPAT) [87] is tool-support for the specification and analysis

of policies that are provided as part of the SANTA framework. SPAT allows for

the prototyping and validation of policies, and which assists policy developers to

translate high-level requirements into concrete policies.

3.2 SANTA Policy Language

A security policy expresses protection requirements on the system in a precise and

unambiguous form. Policies in SANTA are concerned with access control, obliga-

tions and integrity. They relate to the entities in the system, and define constraints

on their interactions. Access control requirements in this model are authorisation

requirements, viz. constraints on the actions that a subject can perform on ob-

jects. Obligation requirements express that subjects must perform specific actions.

Chapter 3. Preliminaries 42

The aim of policies is to express these requirements at a high level of abstraction,

hiding the details of the implementation that is necessary for their enforcement.

In SANTA, policy rules are used as the basis for policy specifications. Rule-based

languages are well established and well suited because most of these requirements

are already informally expressed in the form of conditions and consequences. Each

rule is expressed in terms of subjects, objects and actions. Subjects are the actors

in the system. They can request access to objects, that represent the available

resources.

In SANTA two different types of policies are distinguished: environmental and

behavioural policies. The former represents the more traditional view that the

access to shared resources in the environment is protected. The latter addresses

constraints on the behaviour of agents in the system which is not in our considered

in work.

Policy Specification is the process of expressing informal protection require-

ments within the policy language. Policy rules form the basis of SANTA policy

specifications and one of the major tasks during the specification process is the

development of rules that adequately capture the informal requirements. The ac-

curate specification of rules can be difficult when complex requirements need to

be expressed. These are for example dependencies on the state of the system or

dependencies on the history of the execution [3]. The SANTA policy language

provides support for both state and history dependencies. Not all requirements

can be easily expressed in form of rules. One example would be an electronic paper

submission system that is staged in different phases, e.g. registration, submission,

review, etc. During each phase a different policy applies, controlling the ability of

users to submit, review and comment on a paper. This would require the policy

to change dynamically at the transition from one phase to the next. This form of

requirements is difficult and cumbersome to encode in rules, because the different

phases have to be considered in each of the rules. The approach in SANTA is

different in that these types of requirements are captured through policy compo-

sition. Thus, SANTA policy specifications is being more efficient to be involved

for the policy decomposition to be deployed in distributed enforcements.

Policy Composition The advantage of SANTA policies over the majority of

other policy languages is that policies can be specified in small units, which are

composed using a rich set of operators. The provided operators allow for policies

to be composed along a temporal and structural axis.

Chapter 3. Preliminaries 43

Temporal composition leads to policies that change dynamically over time or on

the occurrence of events. This can be used to specify the transition from one policy

to another, for example to capture protection requirements for different phases.

Structural composition is concerned with the separation of subjects, objects, ac-

tions and policies, that apply only to a certain subset of these entities. A typical

example is a hierarchical organisational structure, where each department defines

its own policies. The combination of all these policies, together with some general

protection requirements, yield the overall policy that applies to the organisation as

a whole. The concept of Dynamically Changing Access Control Policies has been

investigated by Siewe [87]. Indeed, his work on temporal composition of authorisa-

tion policies forms the basis of the SANTA policy model. It has been significantly

extended to capture other types of requirements, such as delegation, obligation

and integrity. The structural composition and the unique problems that arise for

the conflict resolution between two dynamically changing policies are addressed.

Using these new concepts, policies can be specified as compositions of smaller,

simpler policies along both the temporal and structural axis. This composition-

ality is also of great advantage for the enforcement of policies. Whilst the overall

composition allows for the analysis of the system wide effects that the enforcement

of the policy has, it is also a great aid to decompose policies into units that are

enforceable by the mechanisms present in the system. This makes it possible to

drop the assumption of a centralised enforcement mechanism and replace it by the

decentralised enforcements. Therefore, the policy composition is not an objective

in this research where it is well described in [87] and we focus on both Access

Control List (ACL) [2] and History Based Policy (HBP) [3] only.

3.2.1 Policy Syntax

Policies in SANTA are an integral part of the system specification. They capture

protection requirements for the IS. The smallest unit of a policy specification is

a policy rule. Rules capture individual requirements, such as: “allow students to

submit their assignments.” The rule syntax and the informal semantics is detailed

in [51] where it provides examples and the informal meaning of authorisation,

delegation, obligation and integrity rules. Rules are combined into larger units,

named simple policies. Simple policies are a set of rules that are all enforced

Chapter 3. Preliminaries 44

simultaneously. They define for example the protection requirements that apply

in a specific situation or phase of the system execution.

3.2.1.1 Policy Rules

The rule-based approach to policy specification is advantageous because it pro-

vides a higher level of abstraction to the specification. An access control rule for

example describes under what conditions a specific access control decision is taken

it does not define the actual mechanism that is used to enforce this decision. In

this sense the policy is more abstract than a concrete check that is implemented

directly in the accessing code. Also, the syntax of policy rules contains some high

level constructs to reference the past behaviour of the system. Examples are the

temporal modalities always and sometime.

Rule Structure A simple policy (central policy) is a set of policy rules enclosed

in parenthesis. The set may be empty. Every rule consists of a premise and

a consequence. The premise describes the condition that when observed by the

enforcement mechanism leads to he specified consequence. Figure 3.4 defines the

rule structure which is presented in [54].

The general form of a rule is:

consequence (x, y, z) when premise

The consequence of a rule distinguishes the class of requirements that can be

expressed in that rule. The triplet (x,y,z) references the subject, object and action

to which the rule applies. Finally, the premise of the rule describes the condition

under which the rule fires.

Policy Scope. Every policy has a scope, that defines to which subjects, objects

and actions the policy applies to. The scope of a policy is accessible in the syntax

using the keywords subjects, objects and actions, that represent the set of subjects,

the set of objects and the set of actions in the scope of the policy. The scope

of a policy affects the rules contained in that policy. The subject, object and

action in each rule definition must be within the scope of the policy (x ∈ subjects
o ∈ objects and z ∈ actions). Rules can also be defined in terms of all subjects,

objects and actions in the scope using the keywords S, O and A. This provides a

Chapter 3. Preliminaries 45

Figure 3.1: SANTA Rule Structure [54].

greater flexibility in the expression of rules. By default the scope is the universal

scope, viz. the sets of all subjects, objects and actions in the system.

Using the keywords S, O and A. Often rules apply to more than one subject,

object or action. To avoid the effort to duplicate the rules for the different subject,

object and action pairings, the keywords S, O and A can be used to reference free

variables in the rule definition. These free variables are bound by the scope of

the policy in the semantics of each rule. For example, given that the scope of the

policy is:

subjects = {x1, ..., xn} objects = {y1} actions = {read}

The requirement to unconditionally grant all subjects in the scope of the policy

the right to perform read on object o1, would require the definition of n rules:

allow (x1, y1, read) when true

allow (x2, y1, read) when true

...

allow (xn, y1, read) when true

Chapter 3. Preliminaries 46

Using the keyword S this could be written more compact as:

allow (S, y1, read) when true

Referencing state and history in rules. Rules in SANTA can express state

and history-based dependencies. This is achieved by allowing the premise of a

rule to reference the current state of the system or the behaviour of the system

in the past. The referenced state and behaviour is restricted to the part of the

system that is observable by the mechanism enforcing the policy. This means that

policies and the mechanisms enforcing them cannot be seen in separation if the

requirements are dependent on the system state or the history of the execution.

These constraints are not a limitation of the policy language itself. Policies can

violate these restrictions. However, it is beneficial to be aware of the limitations

of the enforcement mechanisms when writing the policy to ensure that it is en-

forceable.

Premise of Policy Rules.

The premise of a rule allows the expression of a set of behaviours, that when

observed trigger (or fire) the rule. The syntax of the premise is restricted to

ensure that the rules are implementable. Due to the expressiveness of the model

care needs to be taken to ensure that the premise does capture the requirement

correctly and does not define a too large (or too narrow) set of behaviours that

trigger the rule.

Figure 3.2: Informal Interpretation of a Policy Rule

Chapter 3. Preliminaries 47

Figure 3.5 depicts informally the relation between the set of behaviours expressed

in the premise and the consequence.

Assume the policy containing the rule started to be enforced in state σ′0 . Given

that the premise of a rule is represented by the formula f and the consequence of

the rule is evaluated in the state σ′3 , then the consequence is true if the behaviour

described by f is satisfied by at least one of the intervals depicted in Figure 3.5.

For example the rule consequence when x = 0 would mean that if x has been

zero in state σ′0 , or σ′1 , . . . , or σ′3 then the consequence would be true in

state σ′3 . The expressiveness of the policy model is both a boon and a bane. The

benefits are that many complex requirements can be captured in a concise and

short form. The disadvantage is that some requirements, that are straightforward

to express in other policy models, require more thought. This is especially the case

when rules depend on the past behaviour of the system. The following illustrates

the syntax that can be used to specify premises of policy rules that are state or

history-dependent.

Constraining the length of the behaviour. Often rules are state-dependent,

this means that f does not actually express a behaviour, but rather a predicate

on the current state of the system. For example to express that the rule should

only fire if x is now (in state σ′3) equal to zero then the length of the formula f

must be explicitly restricted by writing:

consequence when 0 : x = 0

Sequence. It is also possible to specify a list to restrict the length of the be-

haviour, for example the rule:

consequence when [0 . . 2] : x = 0

would fire if x = 0 holds in σ′2, σ
′
1 or σ′0 , viz. on an interval of length 0, 1 or 2 in

the past. The concrete meaning of 2 states in the past depends on the concrete

enforcement mechanism that is chosen for the enforcement of the policy. For the

enforcement mechanisms described in SANTA the transition from one policy state

to the next means that the enforcement mechanisms solicited (granted or denied)

Chapter 3. Preliminaries 48

exactly one access. Figure 3.5 depicts informally the relation between the set of

behaviours expressed in the premise and the consequence.

Temporal Modalities. Often the modalities always or sometime are used

informally in requirements. These can be directly expressed in SANTA. Their

scope is restricted by the length of the interval specification that contains the

modality. For example writing:

consequence when 2 : sometime x = 0

Denotes within the past interval length two there is some suffix interval that

satisfies x = 0. In other words it means that:

consequence when 2 : (x = 0 or (1 : true; x = 0) or (2 : true; x = 0))

The global length specification is important, to limit the interpretation of the

behaviour to the past interval of length 2. The case for always is similar, however

all suffix intervals must satisfy x = 0, which is equivalent to replacing the or in

the above rule with an and. The informal meaning of the conditional choice is self

explanatory. The existential and universal quantification can be used to quantify

over lists, e.g. the list subjects, objects and actions that can be used to access the

policy scope.

Consequence of Policy Rules

Authorisation, Delegation, Obligation and Integrity rules are distinguished syn-

tactically by their consequence. However, we are not interested in Delegation and

Integrity rules in SANTA so refer the reader to [51] for more details. Table 7.1

provides an overview of the available consequences:

Authorisation (See Section 3.3.1.2)

allow(x, y, z) positive authorisation

deny(x, y, z) negative authorisation

decide(x, y, z) decision rule

Obligation (See Section 3.3.1.3)

oblige(x1, x2, z) obligation

Table 3.1: Consequences in Policy Rules

Chapter 3. Preliminaries 49

3.2.1.2 Authorisation Rules

Authorisation rules express access control requirements. Three different types of

rules are concerned with authorisation: positive authorisation, negative authoriza-

tion and decision rules.

Positive Authorisation. Positive authorisation rules are statements that indi-

cate under which condition an access request should be granted. It is important to

note that it is only an indication, which is taken into account for the final access

decision of the policy.

Negative Authorisation. Negative authorization rules are statements that in-

dicate under which condition an access request should be denied. Similarly to

positive authorisations, they are only an indication, which is taken into account

for the final access decision of the policy.

State-based Authorisation Rule. The condition in this rule must be fulfilled

at the time of the access control check.

Example 3.1 (Positive Authorisation)

allow (S, temp, clear) when true

The rule states an unconditional positive authorisation for all subjects to perform

action (clear) on file (temp).

Example 3.2 (Negative Authorisation)

deny (S,marks, write) when 0 : group(S, student)

The rule states the negative authorisation for any subject in the policy scope

that is a member of the group student to write in file marks where the predicate

group(subject, group) denotes the group membership test. This relation is main-

tained by the system and must be accessible to the mechanisms that enforce the

policy. This is an example of a The preceding 0: denotes that this condition must

be fulfilled at the time of the access control check.

Example 3.3 (Negative Authorisation)

Chapter 3. Preliminaries 50

deny (S,O, read) when 0 : level(O) > clearance(S)

The second rule is the no read up rule from the Bell-LaPadula policy [66]. It

states that no subject with a clearance level (denoted by clearance(S)) that is

lower than the security level of the object (denoted by level(O)) is allowed to read

information.

History-based Authorisation Rule. The condition in this rule must be fulfilled

based on the past of the access control check.

Example 3.4 (Positive Authorisation)

allow (S,O,A) when true

allow (S, passwd, write) when 0 : group (S, admin)

allow (S,O,A) when T : (

exists y in objects : exists z in actions :

((dataset(O) = dataset(y)) and

(sometime done (S, y, z)))

The first rule states an unconditional positive authorisation for all subjects, objects

and actions in the scope of the containing policy. This is an example of an activity

based authorisation rule. The second rule states the positive authorisation for

any subject in the policy scope that is a member of the group admin. Here the

predicate group(subject, group) denotes the group membership test. This relation

is maintained by the system and must be accessible to the mechanisms that enforce

the policy. The preceding 0: denotes that this condition must be fulfilled at the

time of the access control check. This is an example of a state-based authorisation

rule.

The third rule states a positive authorisation from the Chinese Wall policy [25]:

Once a subject [denoted by S] has accessed [denoted by z] an object [denoted by y],

the only other objects [denoted by O] accessible by that subject are within the same

company data-set [denoted by dataset].

The preceding T: denotes that the length of the subsequent behaviour is the time

since the rule started being enforced. The rule is actually more precise, as it

Chapter 3. Preliminaries 51

explicitly specifies that O and y must have been in the same data-set at the time

the rule started being enforced. The sometime done(S,y,z) denotes that at some

point in time since the enforcement of the rule the subject S successfully performed

an action z on an object y in the same data-set. This rule is an example of a

history-based authorisation rule.

Decision Rules and Conflict Resolution. Decision rules specify the final

access control decision of a policy. Any policy should contain at least one decision

rule, as otherwise no access will be granted by the policy. The alternative term

“conflict resolution rule” originates from the fact that this rule de-conflicts the

policy if a positive and negative authorisation is derived for a specific access.

The term decision rule describes more accurately the fact that any access control

decision is defined by the policy is decided by one or more of these rules not only

decisions in the conflicting case. The examples below provide three widely used

decision rules.

Example 3.5 (Decision Rule)

decide (S,O,A) when 0 : allow (S,O,A)

This rule states that access is granted if a positive authorisation can be derived

from the policy. This rule is used in closed policies, where any access is denied,

unless it is explicitly allowed. The rule ignores all negative authorisation rules,

viz. negative authorisation rules in a policy with this decision rule are not having

any effect on the policy decision and should be omitted.

Example 3.6 (Decision Rule)

decide (S,O,A) when 0 : not deny (S,O,A)

The access in this rule is granted if no negative authorisation can be derived from

the policy. This rule is used in open policies, where any access is allowed, unless

it is explicitly denied. Blacklists are typical examples of open policies. The rule

ignores all positive authorisations, viz. positive authorisation rules in a policy

with this decision rule are not having any effect.

Example 3.7 (Decision Rule)

Chapter 3. Preliminaries 52

decide (S,O,A) when 0 : allow (S,O,A) and not deny (S,O,A)

The example states a rule that is used in hybrid policies. Hybrid policies are

taking into account both, positive and negative authorisation. Hybrid policies are

suitable to express more complex access control requirements. The difficulty with

hybrid policies is that conflicts can occur, in the sense that a subject is at the

same time allowed and denied to access a resource. In these cases, the decision

rule does also resolve the conflict. The rule in the example states that access

is only granted if explicitly allowed and not explicitly denied in the policy. It

therefore gives precedence to denials. It is allowed to have more than one decision

rule in the policy. However, it is important to note that it is sufficient to have

one decision rule firing for the access to be granted. Like other rules, the decision

rules can also contain state and history-dependent premises.

3.2.1.3 Obligation Rules

Obligation rules state under which condition a subject must perform a specific

action. Consequently obligations can only be enforced if they are defined as be-

havioural policy rules (e.g. an e-learning system to notify students when their

grades appear).

Example 3.8 (Obligation Rule)

oblige (S, S, notify) when 0 : done (S,O, submit)

This assumes that the e-learning system defines the actions submit grades and

notify students for their grades.

3.2.1.4 Simple Policies

Simple policies represent a collection of policy rules that all apply simultaneously.

In the SANTA language this is currently represented by grouping a set of rules

using parenthesis. Siewe showed in [87] that set theoretic operators can be used

to compose simple policies. He also defined some operators to filter rules based

on their type (e.g. positive authorisation, negative authorisation rules). These

Chapter 3. Preliminaries 53

operators for the set theoretic composition of simple policies are currently not

included in the SANTA syntax, but can be included without much difficulty.

Chapter 4

Decentralised Policy Based

Management (PBM)

Objectives

• Describe the Decentralised Policy Based Management (PBM) framework.

• Identify the framework with their need.

54

Chapter 4. Decentralised Policy Based Management (PBM) 55

4.1 Introduction

This Chapter provides an overview of proposed Decentralised Policy Based Man-

agement (PBM) framework. It identifies the methodologies for the Decentralised

PBM with their need. Improvement of access control decision making is achieved

by Decentralised Policy Based Management (PBM) framework and its required

steps those described in this Chapter. The framework details the workflow to

achieve the enforcement of static and dynamic policies in a distributed setting.

The remainder of this Chapter is structured as follows. Section 4.2 provides general

overview of the framework with its description steps in subsections. Section 4.3

summarises the Chapter.

4.2 Decentralised Policy Based Management

(PBM) Framework

The main aim of this research is the development of a high-level security framework

for the adaptable management of security in large-scale safety-critical information

systems. This section provides the framework definition and identifies the method-

ology to achieve the Decentralised PBM.

Figure 4.1 depicts the steps in the use of our proposed framework where adminis-

trators write policies that express the information system’s security requirements

at a high level of abstraction. The red rectangles are the outputs of each step

where the outputs from each step being inputs for the next step. After our Decen-

tralised PBM system is implemented, changing policies require to return to policy

analysis step again. Moreover, reconfiguring the enforcement infrastructure back

to the policy decomposition step.

The overall system policy is composed of several smaller policies that capture indi-

vidual security requirements. The compositional approach allows for the structur-

ing of the system policy into logical units, reducing the complexity. The decompo-

sition of this policy is design by the network infrastructure and non-fundamental

considerations such as efficiency and resilience.

Chapter 4. Decentralised Policy Based Management (PBM) 56

Figure 4.1: Decentralised Policy Based Management (PBM) Framework.

4.2.1 Policy Specification

The technologies we are using in our research is the SANTA [51] for the policy

specification. The SANTA policy language provides support for both state and

history dependencies. The main reason for our choice of policy language is that

the reasoning about histories using temporal logic descriptions is more natural to

support with tools than analysis models that incorporate history-dependencies by

expressions on log-files or lists. [See Section 3.3 for the SANTA details].

4.2.2 Policy Analysis

The policy analysis and its dependencies on the structure of the access control

requirements is a key for policy decomposition. This step addresses the identi-

fication of dependencies between the policy specification and the access control

requirements.

In order to enforce a policy, all relevant observations must be available to all Policy

Decision Points (PDPs) and PDPs must control the interaction with the protected

resources and also between each other when they share a decision. For example,

in Chinese-Wall policy [25] between two resources in such system requires PDPs

Chapter 4. Decentralised Policy Based Management (PBM) 57

to control interactions with both resources especially when these resources are

located in different systems or locations (domains).

We are mainly interested in history-based policies [3] and build upon the work

on the analysis of this class of policies those described in [58], [56] and [52]. The

techniques presented in this work are as however independent of the concrete policy

language chosen and can easily be adapted to other policy languages that allow

for the expression of history-based policies (e.g. [51]). In Chapter 6, the policy

analysis dependencies are described. [See Chapter 6 for more details]

4.2.3 Policy Decomposition

Policy decomposition addresses the decomposition of the policy into sub-policies

with the consideration of the dependencies between their rules. To ensure correct

enforcement, the decomposition must not violate any dependencies.

Often security requirements distinguish between different situations of the sys-

tem in question. According to [55], policy composition befits the complicated re-

quirements where smaller policies are combined to express more complex security

requirements. On the other hand, the policy decomposition is breaking these com-

posed policies into smaller sub-policies for the needs of distributing enforcements.

In our contribution, the importance of both composition and the decomposition to

fulfil these requirements is essential. We strongly believe that perform composition

to produce a central policy that covers all requirements for the system and then

decomposition model is efficient to guarantee the efficiency of the enforcements in

distributed manner.

In our policy decomposition model, we use structural refinement to transform the

central policy into several policies according to policy object (target) domains. The

domain is a collection of objects governed by the same geographical boundaries,

object type, responsibility or the level of security or authority.

Finally, these sub-polices can be deployed in a network of DENARs to meet the

need of Decentralised PBM. In addition, collaborative DENARs network is mod-

elled to make the shared decision when it’s required.

Unfortunately, freedom in the choice of a policy language for the specification of

policy can result in some advantages when specifying and modelling the policy for

Chapter 4. Decentralised Policy Based Management (PBM) 58

access control systems from early stage of designing a system. On the other hand,

it results a disadvantages when the policy is specified in rules and then these rules

composed in one simple (central) policy or decompose into sub-policies. (Specially

when some policies are involved like the Bell-LaPadula [66] or the Chinese Wall

Policy [25]). In turn, this would result in a much larger set of sub-policies, more

complex composed and decomposed algorithms, as well as a higher probability of

“orphan” enforcing policies that cannot be matched by requited existing policy.

However, to solve these drawbacks, in [53], the authors show how dependencies

between policy rules affect their enforcement. Moreover in [53], they propose

a technique by UCON model to improve the enforcement mechanism for these

policies. However, our decomposition model and algorithms that are detailed in

Chapter 7 is a refinement of these dependencies where they are being enforced in

centralised PDP and also in distributed PDPs.

The idea of policy decomposition model is based on object’s domains when it offers

less decision response time with the similar accuracy of decision. Additionally,

efficiency in enforcement is satisfied by applying multiple PDPs those share and

synchronise the decision between them. In addition, we choose objects in domains

mechanism instead of subjects where subjects always are free movement in the

network systems but objects rarely are in some systems e.g. AdHoc systems and

that is being a hot topic for researchers and not covered in this work. Moreover,

applying both object’s and subject’s mechanisms to make a preference to the

system administrator is being more efficient and a good future work. Additionally,

the accurate decision is satisfied when split all objects in the system into domains

as mentioned above as well as that can involved the Bell-LaPadula [66] or the

Chinese Wall [25] policies by our mechanisms. [See Chapter 7 for more details in

how decomposition model involved]

An example of a structural decomposition is shown in Figure 4.2 where the policy

is decomposed into three independent sub-policies. Then, sub-policies are deployed

into corresponding DENARs (in particulate Policy Repository PR) in Deployment

step. The deployment is detailed in Chapter 7.

4.2.4 Policy and PDPs Deployment

A network of DENARs in peer to peer fashion is include the PDPs as an overlay

to the network. The DENARs network link the PEP’s to the PDPs dynamically

Chapter 4. Decentralised Policy Based Management (PBM) 59

Figure 4.2: The Overlay Network of DENARs.

such that policies enforced at their DENAR’ PDP as if they were enforced locally.

Additionally, the policies are distributed among various PRs in DENARs where

each sub-policies deployed in its domain policy repository PR. Having a system of

DENARs removes the bottleneck, improves performance and also eliminates the

single point of failure. Not only would decision making be much faster in such a

setup, the system would be more efficient in terms of resource utilisation.

Though more efficient performance wise by implementing the network of DENARs

has two serious drawbacks. Firstly, it is possible that enforcing these policies may

suffer unexpected failures; perhaps because a PDP cannot retrieve a policy from

its local policy repository (PR) or no backup DENAR is available. Secondly,

coordination between the DENARs network is may lost in case of the policy that

enforced is history-based policy (e.g. Chinese-Wall policy [25]) and requires to

share decision between more than one PDP. Clearly, it is possible that enforcing

this sort of policy may suffer unexpected failures, perhaps because a PDP cannot

retrieve such conditional attribute from remote PIP or there is no collaboration

between DENARs.

Chapter 4. Decentralised Policy Based Management (PBM) 60

Ideally, policy enforcement must be resilient to such failures if no decision can

be computed or no conditional attribute can be evaluated. This can be achieved

in two steps. The first step would be to physically transmit the decomposed

sub-policy to a particular policy repository PR and connect all DENARs in the

network immediately with it. Once the decomposed policies are deployed to all

the connected DENARs, all of them can take local decisions when a policy request

is received in case of the independent policy is enforced, thus overcoming the prob-

lem of immediate network overload due to multiple possible concurrent decision

requests. The second step would be to incorporate a mechanism by which all the

enforcements query each one of the other connected DENARs in the network for

a decision and allow the operation only if all of them either respond with a ’allow ’

or a ’deny ’ response. However, in a network where there could potentially be

thousands of PDPs connected to each other, this in itself would be a serious bot-

tleneck to performance because of the tremendous amount of bandwidth it would

consume. Therefore, we address this step only for dependent policies with rich the

efficiency as well by propose Pull and Push Models. [See Section 8.3.1 for more

details].

In summary, we combine both the above mentioned models to optimise the dis-

tributed functionality of the network of DENARs based on available the object-

domain for the first issue and the rule dependency for the second one where those

have been proposed and discussed in above units.

4.2.5 PDPs Enforcement and Coordination

After the distribution of policies among various PDPs, the coordination and syn-

chronisation between the distributed PDPs is declared and implemented. PEPs

are automatically linked with DENARs. In addition, the DENARs are connected

with each other to fulfil the need of coordination. In this manner, the PDP’s

can now arrive at decisions locally and thus save on time and network resources.

Moreover, the connections between components of the DENAR’s component are

stated in this step. [See Chapter 5 for the DENAR architecture and Chapter 8 for

the coordination mechanism details]

Chapter 4. Decentralised Policy Based Management (PBM) 61

4.3 Summary

This Chapter introduced the Decentralised Policy Based Management (PBM)

framework. The framework workflow from policy specification to the DENARs co-

ordination is described. The workflow steps illustrated the methodology to achieve

the efficiency in enforcing static and dynamic policies in distributed systems. How-

ever, ignoring any step in the framework affects the overall access control decision

making or affects the original contribution of this research. Involving the frame-

work output the performance, security, manageability and resilience factor that

considered in the research.

The following chapters give description of each steps of the presented framework.

In Chapter 5, the DENAR architecture is designed and detailed. The analysis

of policy and enforcement in DENAR are provided in Chapter 6. The policy

decomposition step and policy deployment are modelled in Chapter 7. Finally,

the coordination step is detailed with the enforcement model for the collaborative

DENARs are detailed in Chapter 8.

Chapter 5

Distributed Enforcements

Architecture (DENAR)

Objectives

• Describe the DENAR architecture.

• Show how the DENAR components interact.

• Provide DENAR administration technique and configuration.

62

Chapter 5. Distributed Enforcements Architecture (DENAR) 63

5.1 Introduction

The Distributed Enforcements Architecture (DENAR) is described focusing on

component functionalities and interactions. In addition, the DENAR administra-

tion technique and configuration is provided.

Performance and manageability are contributing factors to improve access control

decision making. Thus, DENAR is designed in this Chapter to fulfill these factors.

The remainder of this Chapter is structured as follows. Section 5.2.1 provides an

overview of the architecture. Section 5.2.2 provides a description of the DENAR’s

components functionality where the component interactions are detailed in section

5.2.3. The DENAR administration is described in task of configuration, deploy-

ment, re-propagation and recovery techniques in section 5.3. Finally, section 5.4

summarises the Chapter.

5.2 Distributed Enforcements Architecture

(DENAR)

According to the IETF and DMTF model [100], the policy enforcement architec-

ture consists of three components which are Policy Repository (PR), Policy En-

forcement Point (PEP) and Policy Decision Point (PDP). Moreover, it may include

Policy Administration Point (PAP) that formulation, analysis and verification of

policies on the part of humans. In addition, there may involve Policy Information

Point (PIP) that can provide information against which policy conditions (such

as subject, object, environment or past decision access) are evaluated in a PDP.

The PR provides mechanism for storing policies and retrieving them as required

by the decision points. The responsibility of PEPs is enforcing the outcome of

those policy decisions. The PDP is a module in the system that is responsible for

making policy decisions. They evaluate authorisation requests coming from PEP

against the policies stored in the repository that would be applicable under a given

circumstance and determine what needs to be done to comply with those policies.

The below Figure 5.1 shows the Policy Enforcement Architecture in DMTF model.

In such Centralised PBM system, policy makers pre-define a central policy through

a PAP, then the PAP deposits them in a PR. Therefore, a PDP can monitor the

Chapter 5. Distributed Enforcements Architecture (DENAR) 64

Figure 5.1: Policy Enforcement Architecture in DMTF model.

access control. Once the specific access request occurs, PEPs trigger the PDP

to retrieve the PR for applicable policies. According to these policies, when the

specific conditions are met, the corresponding actions should be enforced by the

related PEP. For the communication protocol, Simple Network Management Pro-

tocol (SNMP) [26] or Common Open Policy Service (COPS) [38] may be involved

for the communication between the PDP and the PEP. In addition, Lightweight

Directory Access Protocol (LDAP) [43] is involved for the communication in the

PDP to retrieve a policy from PR.

Having a centralised PDP has a number of benefits. The most important advantage

to having a centralised PDP is that the activities of the various PEP’s can be

coordinated amongst each other. Resources that are being accessed by multiple

PEP’s can be synchronised and the overall usage limits for a specified resource

across the entire distributed system can be set. Let us illustrate with an example.

Assume that each user in a university network has access to the printers on the

network but can print no more than 100 pages per day.

In case of a centralised PDP, this is easy to accomplish given that the PDP is

stateful and stores access request and decision states for at least a day for later

reference. In case of such a setup, the PDP will check how many pages the user

has already printed before allowing access to print further pages and if the limit

is exceeded, will deny the request. However, in a network which has hundreds of

network nodes and devices, having a centralised PDP can be a huge bottleneck

to performance if the system is busy. Access requests may flood the PDP and

there may be unacceptable delays in getting a response. Another disadvantage to

having a centralised PDP is that it presents a single point of failure. In case of

Chapter 5. Distributed Enforcements Architecture (DENAR) 65

the failure of the PDP, all the devices on the network may cease to function. In

practice, this is rarely the case as there is at least one alternate backup provided

in case of the failure of the main PDP but the fact still remains that decision

making is centralised and thus tends to decrease the performance and efficiency of

the system.

The Policy Framework proposed by the IETF, RFC 2753 [100] mentions a local

Policy Decision point in addition to the remote PDP in order to facilitate decision

making. However, according to their specifications, even if a decision is arrived

at by the local PDP, the details of such a decision as well as the original request

needs to be forwarded to the remote PDP for final ratification. Their measure,

in essence is designed simply to ensure minimal disruption in service in case of

the failure of the remote PDP by allowing the local PDP to take decisions for a

limited time frame when the main PDP is not functioning. It is not meant to be a

proper distributed system per se. As a result, most of the earlier implementations

of policy based control as well as a majority of current ones, rely on a centralised

PDP for their decision making.

In such a scenario, having a system of distributed PDPs would remove the bot-

tleneck, improve performance and also eliminate the problem of a single point of

failure. The distributed PDP’s may either be co-located with the PEP or may

service a specified area such as an administrative domain. Not only would deci-

sion making be much faster in such a setup, the system would be more efficient

in terms of resource utilisation. An accepted method which has been proposed

in order to achieve this distribution is to break up high level policies into smaller

component parts specific to each resource being controlled [90] . This process

is known as the decomposition of policies. The decomposed components of the

policy can then be distributed to the respective PDP’s in charge of the specified

resource for which the policy has been decomposed. In this manner, the PDP’s

can now arrive at decisions locally and thus save on time and network resources.

Under such an arrangement, the role of the centralised PDP would simply be to

decompose the policies into component parts and distribute them to the various

distributed PDPs.

However the above arrangement, though more efficient performance wise, has one

serious drawback. All coordination between the distributed PDPs is now lost.

If we consider the example mentioned above, this would mean that a user could

technically print out 99 pages from a printer in the network which is under the

Chapter 5. Distributed Enforcements Architecture (DENAR) 66

control of a particular PDP and then simply move to another part of the network

and print out another 99 pages from another printer which is controlled by a

second PDP. As far as both the PDP’s individually are concerned, the user has

not exceeded the limit specified for him in the policy but as far as the entire

distributed system is concerned, he has far exceeded his quota.

Then, it also could not count to 99 where this poses a serious problem. By state-

less, what is meant is that they take access control decisions for every request in

isolation to all previous requests which have been made or permitted. Given this

scenario, coordination is required even in case of a centralised PDP in order to

enforce usage limits on various resources which are being controlled. Indeed this

is the main reason why most distributed systems, like the ATM systems in banks,

rely on centralised PDP’s with custom built software to enforce usage limits in

order to enforce their policies. Chadwick et. al [27] suggested a way to overcome

this problem. They proposed the introduction of a coordination object to enable

otherwise stateless PDP’s to coordinate their decision making.

The coordination is required between all PDPs to share information that is re-

quired in access decision making. Therefore, there is an evident need for adding

new components into IETF and DMTF model [100] for coordination. We design

our Distributed Policy Enforcements Architecture (DENAR) based on this needs.

5.2.1 The Architecture

The Peer-to-Peer (P2P) networking approach, at least the one characterised by

Overlay Network [69], appears to be a much more effective architecture on which

to build the distributed PDPs for the Decentralised PBM system.

Since each peer can communicate with any other peer in the network to provide

a service, P2P networks support a more distributed architecture. By involving

an Overlay Network to create a group of DENARs for the Decentralised PBM

system, there are less central components in the DENARs network operations.

Additionally, the PDP peers in the DENARs network can communicate with each

other (in particular, through PIPcoordinator and PDPcoordinator components)

and propagate the decision information throughout the DENARs overlay network.

Thus, this approach provides a fully distributed architecture.

Chapter 5. Distributed Enforcements Architecture (DENAR) 67

Obviously, a simple policy (central policy) is decomposed into sub-policies to be

deployed in multiple PRs, so that every PDP peer would only need to communicate

directly with its DENARs’ PR for a policy and PIP for conditional attributes.

A benefit to decompose the policy into sub-policies and deploy them into PRs

is that the network traffic load can be shared through the local domain for local

DENAR or through remote DENAR by PDPs peers, instead of through select

routes to centralised PR. Consequently, it avoids single points of failure and ef-

ficiently utilizes the available network bandwidth, therefore reducing congestion

[97].

P2P protocols provide a discovery mechanism. The discovery mechanism allows

PDP peer to dynamically discover (in the same DENAR) the PR for the policy that

would be enforced and the PIP for the required attributes for the local enforcement.

In the discovery mechanism, each PDP peer can discover other PDP peers for

remote DENAR within the network. We believe discovery to be a useful feature

for the Decentralised PBM system, since we expect there to be situations where

network domains topology may change. Thus, it would be inefficient to structure

the network of DENARs with predefined PDPs, PRs and PIPs.

Therefore, instead of directly implementing the Internet Engineering Task Force

(IETF) model [100] [95] to provide a more suitable policy-based system for the

network, we decided to modify the IETF and DMTF model [100] to be built

using P2P protocols (Overlay Network) and adding new components which are

PDPcoordinator and PIPcoordinator with the other components in the model to

play the role of coordination and concurrency between DENARs.

The below Figure 5.2 shows the DENARs network where the DENAR’s component

and interactions are detailed in the following subsections.

5.2.2 Component Functionalities

Since each peer can communicate with any other peer in the network to provide

a service, P2P networks support a more distributed architecture. By involving

Overlay Network [69] to create distributed PDPs for the Decentralised PBM sys-

tem, distributed PRs and PIPs are involved. Thus, there is no centralisation in the

enforcement operations but each Policy Decision Point (PDP) peer communicates

directly with its PR, PIP, PDPcoordinator and PIPcoordinator in local DENAR.

Chapter 5. Distributed Enforcements Architecture (DENAR) 68

Figure 5.2: The DENARs network.

Chapter 5. Distributed Enforcements Architecture (DENAR) 69

However, for the remote (collaborative) decision, the PDP peers can communicate

with each other and propagate the decision information throughout the overlay

network of DENAR (in particular, through PDPcoordinator and PIPcoordinator

components) [See Chapter 5, Section 5.2.2.5 and 5.2.2.6 for more details]. This

approach provides a fully distributed architecture. Obviously, a simple policy

(central policy) is decomposed into sub-policies to be deployed in multiple PRs, so

that every PDP peer would only need to communicate directly with its DENARs’

PR for a policy and PIP for conditional attributes. Figure 5.3 shows DENAR

architecture components where they are detailed in the following subsections.

Figure 5.3: The Distributed Policy Enforcements Architecture (DENAR).

5.2.2.1 Policy Enforcement Point (PEP) Functionality

A Policy Enforcement Point (PEP) is a core component in our architecture. It is

responsible for sending requests to a PDP, and enforcing decisions made by the

PDP, thus acting as an authorisation link between the PDP and system elements

(subjects and objects) for the authorisation purpose.

Chapter 5. Distributed Enforcements Architecture (DENAR) 70

To perform its task the PEP collects access requests from various system elements,

and forwards them to the PDP for decision making. Moreover, the PEP enforces

the actions determined by the PDP. However, in some cases, when enforcement

task is complicated the PEP must obligate the PDP about the action execution,

and this is done by obligation policies where this value is required in a future

decision, e.g. a bank could define an obligation to notify its customers whenever

anyone withdrew money from their bank account, thus, the process performing

access first and then notifying the action.

In DENAR, a PEP discovers a PDP that it should communicate with as well

as other PEPs in the network. After a PDP has been found, the PEP sends

an authorisation request messages to the PDP. If the PEP fails to communicate

with the PDP, the PEP returns discovery and waits until it has found the PDP

otherwise communicates with backup DENAR. In particular, the PDP in backup

DENAR that configured as backup enforcement by a system administrator, i.e

when any of these PDPs is disconnected, this often causes accessing problems

which lead to security violations. [See Chapter 5, Section 5.3.3 for more details

for resilience]

The PEP has an initialization phase and a run phase. The main purpose of the

initialization phase is, firstly, to find other PEPs in the network and connect with

them. Secondly, it has to find a proper PDP for this domain and connect with

it. Initialization is completed after the PEP has created its authorisation message

pipe with the proper PDP. After initialization, the PEP uses the authorisation

message pipe to periodically send authorisation request messages to the PDP and

check the response to those messages. If the PEP fails to receive a response from

the PDP after time has elapsed for sending another authorisation request, the

connection to the PDP is gone. When the connection to the PDP is lost the

PEP will return to the initialization phase to find another PDP link otherwise

communicates with backup DENAR (in particular the PDP in backup DENAR).

Once the PEP is up, it uses the pipe advertisement (i.e., the same one that the PDP

used) to set-up a connection with the PDP. Once connectivity between the PDP

and the PEPs has been established, the PEP can send an authorisation request

packet to PDP and receive the decision. The PEP creates a directory with the

configuration file and the cached service advertisements from other peers. Once

the PEP receives the decision, it may execute the obligation that was sent with

the decision.

Chapter 5. Distributed Enforcements Architecture (DENAR) 71

5.2.2.2 Policy Repository (PR) Functionality

In each DENAR, there is one PR that stores the sub-policies for a domain or

domains (based on the network topology configuration). System administrators

configure these PRs in their DENARs. The PDP in the DENAR is responsible to

retrieve proper policy from DENARs’ PR.

5.2.2.3 Policy Information Point (PIP) Functionality

An authorisation request is evaluated against a policy and if the policy has some

access restrictions (conditions), a PIP in the DENAR provides local conditional

attributes (those are stored in the same domain) those are evaluated by a PDP.

On the other hand, the PDP contacts a local PIPcoordinator for the remote con-

ditional attributes (those are stored in the different PIPs in other DENARs) [See

Chapter 5, Section 5.2.1.5].

5.2.2.4 Policy Decision Point (PDP) Functionality

In general, a PDP retrieves a policy from a PR. The request is evaluated against

the policy and if the policy has some access restrictions (conditions), the PDP

contacts the PIP for attributes those would evaluated in the conditions.

In DENAR, the local PDP in the DENAR is responsible for receiving an authori-

sation request that is sent by a PEP and retrieves a policy from a local PR. The

request is evaluated against the policy and if the policy has access restrictions

(conditions), the PDP contacts the local PIP for the local conditional attributes

(those are stored in the local PIP) those would evaluated in the conditions.

Alternatively, it contacts a local DENARs’ PIPcoordinator for the remote condi-

tional attributes (those are stored in the different PIPs in other DENARs in the

network) those will be evaluated in the conditions where PIPcoordinator can com-

municate with other PIPcoordinators in the DENARs network to find the value

for those attributes. In addition, the local PDP contacts a local PDPcoordinator

DENARs’ if the decision is shared by other PDP in the DENARs network. In this

case, the local PDPcoordinator communicates with other PDPcoordinators in the

network to ask their PDPs to share decision.

Chapter 5. Distributed Enforcements Architecture (DENAR) 72

For configuration, the PDP creates the default PDPs group. After that, it uses a

server pipe to accept connections from the other peers in that group. There is only

one active PDP within a DENAR. Once the PDP is up and running, it applies

discovery service. Subsequently, a PDP searches for the PR, PIP, PIPCoordinator

and PDPCoordinator within the same DENAR as well as PEPs.

5.2.2.5 PIPcoordinator Functionality

The PIPcoordinator is a new component in Distributed Enforcements Architec-

ture (DENAR). The main function of the PIPcoordinator is to act as bridge for

sharing conditional attributes between two DENARs. A PDP in the DENAR can

communicate with other PIPs in the DENAR network only via PIPcoordinators.

In case of enforcing dynamic policies, the PDP communicates with other PIPs to

evaluate attributes those question in the policy condition and cannot be found in

the local PIP. The PIPcoordinator is being the coordinator between the PDP and

other remote PIPs to perform sending those attributes (push) or request those

attributes (pull). [See Section for details 8.2.1]

The PIPcoordinator discovers other remote PIPcoordinators those should commu-

nicate with in different DENARs. In running phase, after PIPcoordinators have

been found, the PIPcoordinator sends (push) attribute request to other PIPcoor-

dinators in other DENARs if and only if the attribute is located in remote PIP

or PIPcoordinator request (pull) attributes from other PIPcoordinators (produced

from / required for) the current decision (e.g., in case of enforcing history-based

policy). If the PIPcoordinator fails to communicate with another PIPcoordinator

in the DENARs network, the PIPcoordinator returns discovery and waits until

it has found it otherwise communicates with backup DENAR (in particular the

PIPcoordinator in backup DENAR).

The PIPcoordinator has an initialization phase and a run phase. The purpose of

the initialization phase is to find other PIPcoordinators in the DENARs network

and connected with them. Initialization is completed after the PIPcoordinator

has created its shared attribute exchange pipe with other PIPcoordinators. After

initialization, the PIPcoordinator uses the shared attribute exchange pipe to peri-

odically send (push) or request (pull) attributes to proper PIPcoordinator in the

DENARs network and check the response to those messages in case of the Pull or

Chapter 5. Distributed Enforcements Architecture (DENAR) 73

Push Models. If the PIPcoordinator fails to receive a response from other PIP-

coordinators after time has elapsed for sending another shared attribute request,

the connection to the PIPcoordinator is gone. When the connection to the other

PIPcoordinators are lost, it will communicate with backup DENAR (in particular

the PIPcoordinator in backup DENAR).

5.2.2.6 PDPcoordinator Functionality

The PDPcoordinator is a new component in the DENAR. The main function of

the PDPcoordinator is to act as bridge for sharing a decision between two PDPs.

A PDP in the DENAR communicates with other PDPs in the DENAR network

only via PDPcoordinators. In case of enforcing hypothetical policy where a rule

depends on another authorisation rule, multiple PDPs communicate to make the

final decision where one of these PDPs is being the coordinator PDP that received

the authorisation request from a PEP.

The PDPcoordinator discovers other remote PDPcoordinators those should com-

municate with in the DENARs network. After PDPcoordinators have been found,

the PDPcoordinator sends an authorisation request messages to other PDPcoordi-

nators in the DENARs network if and only if authorisation decision will be shared

with multiple PDPs (e.g., in case of enforcing hypothetical rule) . If the PDPcoor-

dinator fails to communicate with another PDPcoordinator, the PDPcoordinator

returns discovery and waits until it has found it otherwise communicates with

backup DENAR (in particular the PDPcoordinator in backup DENAR).

The PDPcoordinator has an initialization phase and a run phase. The purpose of

the initialization phase is to find other PDPcoordinators in the DENARs network

and connected with them. Initialization is completed after the PDPcoordinator

has created its shared authorisation decision pipe with other PDPcoordinators. Af-

ter initialization, the PDPcoordinator uses the shared authorisation decision pipe

to periodically send a request for shared authorisation decision to proper PDP-

coordinator in the DENARs network and check the response to those messages.

If the PDPcoordinator fails to receive a response from other PDPcoordinators

after time has elapsed for sending another shared authorisation decision request,

the connection to the PDPcoordinator is gone. When the connection to the other

PDPcoordinators are lost, it will communicate with backup DENAR (in particular

the PDPcoordinator in backup DENAR).

Chapter 5. Distributed Enforcements Architecture (DENAR) 74

5.2.3 Component Interactions

Interactions in DENAR are between the component themselves and also between

DENARs in the DENARs overlay network. The component interactions make

the access control decision and interactions between DENARs to support the co-

ordination and synchronisation requirements in access control decision making.

Figure 5.4 illustrates messages exchange pipes in DENARs network to achieve the

above requirements where they are detailed in the below subsections.

Figure 5.4: Messages Exchange in DENARs network.

5.2.3.1 PEP and DENAR Interaction

There are three types of messages for the PEP and the PDP:-

1. Discovery Configuration: to establish a communication between a PEP

and a PDP, the PEP will create its authorisation message pipe with all PDPs

in the DENARs network to find all active PDPs in the network, thus, a sys-

tem administrator has the choice to configure a proper PDP for the PEP

and the backup PDP as well. The administrator can also setup the secure

Chapter 5. Distributed Enforcements Architecture (DENAR) 75

message exchange protocol between the PEP and PDP. For the communica-

tion protocol, SNMP (Simple Network Management Protocol) [26] or COPS

(Common Open Policy Service) [38] may be involved for the communication

between a PDP and a PEP.

2. Peer Authorisation Request: after initialization, the PEP uses the au-

thorisation message pipe to periodically send authorisation request messages

to the DENAR (in particular the PDP) and check the response to those mes-

sages. Transition between the PDP and its PEPs is also logged to a file for

obligation needs.

3. The Decision Information: if there is an obligation policy that must be

enforced, the PEP can respond to the PDP after the action is executed so

the PDP can log that into its local DENARs’ PIP or remote PIPs in different

DENARs(in Push Model).

The diagrams below in Figure 5.5 and Figure 5.6 show the PEP and DENAR for

the activity and sequence interaction.

5.2.3.2 DENAR Components Interaction (PDP, PR, PIP, PDPcoor-

dinator and PDPcoordinator)

A PDP in the DENAR discovers one PR and PIP that are located in the same

DENAR otherwise discover the backup PR or PIP those configured in DENAR

backup. There are messages exchanges between these components as:-

1. Discovery Configuration: to establish a communication between a PDP

and a PR and PIP, the PDP finds the active PR and PIP in the DENAR.

Then, a system administrator can configure the backup PR and PIP in

DENAR backup. The administrator can also setup the secure message ex-

change protocol between the PDP and local PR and PIP as well as the

message exchange protocol for the backup PR and PIP. For the communica-

tion protocol, LDAP (Lightweight Directory Access Protocol) [43] is involved

in the PDP to retrieve a PR or PIP.

2. Policy Request: after initialization, the PDP uses the configured protocol

to retrieve a proper policy from the local PR or backup PR that enforced

against the authorisation request to make the decision.

Chapter 5. Distributed Enforcements Architecture (DENAR) 76

Figure 5.5: PEP and DENAR Interaction Activity Diagram

3. Shared Decision Request: the PDP contacts its local PDPcoordinator

in the DENAR if the decision is shared with other PDPs in the DENARs

network. In this case, the local PDPcoordinator communicates other PDP-

coordinators in the DENARs network to ask their PDPs to make decision.

[See Chapter 8, Section 8.2 for more details].

4. Local Conditional Attribute Request: after initialization, the PDP uses

the configured protocol to retrieve particular conditional attributes those re-

quired in the policy conditions if there are restrictions in the policy. The PDP

retrieves local attributes from local DENARs’ PIP otherwise from backup

DENAR (in particular PIP backup).

5. Remote Conditional Attribute Request: the PDP uses PIPcoordinator

component to retrieve particular conditional attributes as required in the

policy conditions if there are restrictions in the policy. The PDP retrieves via

this component only remote conditional attributes from remote PIPs those

Chapter 5. Distributed Enforcements Architecture (DENAR) 77

Figure 5.6: PEP and DENAR Interaction Sequence Diagram.

are located in different DENARs. The PIPcoordinator can communicate

only with PIPcoordinators in the DENARs network to do this task. However,

we have modelled this task as Pull Model in our coordination mechanism.

[See Chapter 8, Section 8.3]

6. Submission Decision Locally: if there is an obligation policy that must

be enforced, after the PEP sends the confirmation of the action execution.

The PDP after that sends that value into its DENARs’ PIP.

7. Submission Decision Remotely: if there is an obligation policy that must

be enforced, after the PEP sends the conformation of the action execution.

The PDP after that sends that value into remote PIPs those located in

different DENARs. The PDP uses PIPcoordinator component to store the

value into those remote PIPs. The PIPcoordinator can communicate only

with PIPcoordinators in the DENARs network to do this task. However, we

have model this task as Push Model in our coordination mechanism. [See

Chapter 8, Section 8.3]

Chapter 5. Distributed Enforcements Architecture (DENAR) 78

The diagrams below in Figure 5.7 and Figure 5.8 illustrate the DENAR compo-

nents for the activity interaction.

Figure 5.7: DENAR Components Interaction Activity Diagram 1.

Figure 5.7 shows the activity after receiving an authorisation request for a PEP

until the DENAR makes its decision and Figure 5.8 shows the activity after receiv-

ing an access notification from the PEP until the DENAR end the enforcement

process.

Chapter 5. Distributed Enforcements Architecture (DENAR) 79

Figure 5.8: DENAR Components Interaction Activity Diagram 2.

5.3 DENARs Administration

In the Decentralised PBM, a central policy (a simple policy) is formalised, anal-

ysed, decomposed and then deployed into a network of DENARs by centralised

PAP (Policy Administration Point) into distributed PRs to satisfy and meet all

distributed environments requirements. [See details in the Chapter 7] .

The complexity here would be how policies or domains topology could be changed

on-the-fly. Thus, distributed enforcements topology, decomposed policies struc-

ture, etc., which is beyond our scope at this section.

Chapter 5. Distributed Enforcements Architecture (DENAR) 80

Scenario: A network administrator configured a university network to contain

four network domains (D1, D2, D3 and D4) where domains held resources. DENARs

overlay network are configured on top of the university network. The network ad-

ministrator decided that each domain has its local DENAR to make the access

decisions for its resources. The access control policy had specified as central policy

that contain all access rules for this network. Let us assume a case where there are

four DENARs which are distributed and connected to each other. Each of these

DENARs may be contacted in order for various groups of subjects to gain access

to protected resources inside the university.

The administrator deploys the decomposed sub-policies to their policy repositories

PRs according to their DENARs based on our policy decomposition model and

deployment model in Chapter 7. Each decomposed sub-policy would only be

available to the local PDP for the DENAR in which it has been deployed.

In order to assume truly distributed systems, these systems should share some

information and share their decision making as well. The DENARs in the net-

work are able to exchange the information and collaborate to make access control

decision. Each sub-policy is deployed on a certain PR where only the local PDP

should have access to it.

Figure 5.9 below illustrates the DENARs network configuration for the above

scenario. The red dotted lines indicate to shared authorisation decision pipes

between PDPcoordinators. The green dotted lines show shared conditional at-

tribute exchange pipes between PIPcoordinators. The solid black lines show the

authorisation message pipes between PEPs and PDPs.

5.3.1 DENARs Configuration

In general our DENAR architecture provides method to implement Decentralised

PBM system via an Overlay Network [69] architectures to offer a distributed en-

forcements model.

DENAR is based on the IETF model [100] where it use COPS protocol [38] as the

authorisation mechanism between PEPs and peer PDP and P2P protocol (e.g.,

JXTA protocols [97]) for the message exchange between PIPcoordinator peers and

also PDPcoordinators in the DENARs network.

Chapter 5. Distributed Enforcements Architecture (DENAR) 81

Figure 5.9: The DENARs network for the Scenario.

The PR and PIP are assumed to be within the DENAR as the PDP. The PDP and

the PEPs will use the same pre-defined COPS protocol to establish a connection.

Clearly, the main motivation for our DENAR architecture is that chosen predefined

PEPs can communicate with the active PDP(s) in domain, otherwise in case of

no PDP is active, PEPs in that domain can communicate to the backup PDP. We

assume that the pipe for a message exchange between PDPs peers defined where

it provides major security concerning for applications in such military, health and

national security domains. The PDPs peers must know the “secret keys” before

two-way communication can be established. The architecture also assumes that an

authorisation request is routed between PEPs in the based in known routing table

tell a particular PEP picks the request to forward to a the PDP that connected

with the PEP. In this case, the object (target) that is need for perform an action on

being within the same domain of the PDP responsible for make the authorisation

decision.

Each PR has a different policy file where it is accessible by the PDP that is re-

sponsible for the authorisation decision for those objects (targets) are located in

the same DENAR. In this case, in the backup DENAR, the PR has a copy of all

decomposed policies and also PIP has a copy of all conditional attributes for all

Chapter 5. Distributed Enforcements Architecture (DENAR) 82

targets in the system. Additionally, in case of any policy change or domain topol-

ogy change, our decomposition mechanism will restart again. However, in case of

reconfiguring the policy (changing) or in the network reconfiguration the system

can relay on the backup DENAR only to offer the accessibility and availability.

To meet the efficiency target for enforcing the history-based policy [3], we assume

that, any PDP can ”push” a new value of conditional attribute for the current

decision to other PIPs those required for future decision [this is done by obligation,

see Chapter 3, Section 3.3.1.3] . On the other hand, the PDP in such cases can

”pull” any conditional attribute value that is located in remote PIPs that required

in the PDP for the current decision. The decomposition attempts to minimise the

lookup and update access control attributes and policies.

Finally, in the DENAR, a central policy (a simple policy) is formalised, analysed

decomposed and deployed by centralised PAP. In fact, distributed enforcements

implementation for distributed environments that often built upon a physically

large and topologically complex network must be reliability and efficiency of ad-

ministration into consideration. Large distributed systems are usually divided into

various and separate domains. As a consequence, policies also are administered

in centralised PAP and then decomposed and deployed into distributed PRs to

satisfy and meet the distributed environments requirements.

5.3.2 DENARs Deployment

A library can be designed to easily create and synchronise a network of DENARs

in a peer to peer fashion based on the network domains topology. A network

administrator is able to configure the DENARs as an overlay to the network and

also link the PEP’s to the DENARs components dynamically. In the case of any

DENARs failing, the library is dynamically reconfigured to connect PEPs or any

components in the DENAR to the backup DENAR components in the network.

The PEP will be capable of connecting to a one active DENAR or if it fails, it will

automatically connect to the backup DENARs for a decision.

For the PEP, the DENARs appear to be one coherent system and the distribution

and coordination between the various DENARs are transparent. The chief char-

acteristic of the overlay network is that it can be used to easily convert existing

Chapter 5. Distributed Enforcements Architecture (DENAR) 83

standalone, stateless enforcements into a network of stateful networked enforce-

ments with minimal alteration in the existing enforcements code. Having a system

of DENARs network improves performance in access control decision making and

also eliminates the problem of a single point of failure.

5.3.3 DENARs Re-propagation and Recovery Technique

The distributed policy enforcements that comprise Decentralised Policy Based

Management (PBM) system are viewed as independent pieces and are managed as

such. Administrators have to configure a number of DENARs based on the network

topology. The problems originate from the independent nature of each DENAR.

Every DENAR has private sub-policies those decomposed from the central policy,

performs access control according to that specification, and is oblivious to the

sub-policies those deployed into other DENARs.

This often causes accessing problems which lead to security violations. Firstly,

when any of these DENARs is disconnected. Secondly, the network administra-

tors are trying to reconfigure the overlay DENARs topology (e.g. make more

DENARs than the actual the overlay DENARs topology exist) in some distribu-

tion network view. Finally, the system administrators are trying to reconfigure

the Decentralised PBM system with new policies adding or changing (only with

new dependent policy).

For the three cases, we design a backup DENAR that is configured by the system

administrator. The backup DENAR is utilized in case of any failure communi-

cation between any PEP, PIPcoordinator or PDPcoordinator and DENARs. In

addition, it is used in case of reconfiguring the Decentralised PBM system with new

policies. Clearly, decentralised policy-based management system is become cen-

tralised policy-based management system only during the reconfiguration which

relay on the backup DENAR for access control. The backup DENAR has its PR

that store the central policy (all rules before the decomposition into sub-policies),

its PIP that stores all conditional attributes.

However, according to our Decentralised Policy Based Management (PBM) frame-

work we detailed in Chapter 4 and the Distributed Policy Enforcements Architec-

ture (DENAR) four benefits are accrued by re-propagation and recovery technique:

Chapter 5. Distributed Enforcements Architecture (DENAR) 84

Scalability: A network of DENARs is distributed to improve the performance of

access control decision making, thus, DENARs re-propagation can lead to avoid-

ing the performance bottlenecks of a particular DENAR that has access control

requests.

Flexibility: Adding or removing resources for the system does not affect the

DENARs topology. Therefore, only adding a new policy for that resource and its

attribute can be added without reconfiguring the DENARs topology.

Simplicity: Individualized administration of DENARs is eliminated, simplifying

management.

Consistency: DENARs topology remains consistent in case a new policy is added

or changed. The policy may be analysed and decomposed without changing of

DENARs topology.

5.4 Summary

This Chapter introduced the Distributed Enforcements Architecture (DENAR).

The components, their function and interaction are described. Details of their

design and implementation, together with algorithm are given. Moreover, the net-

work of DENARs administration and configuration are detailed. The deployment

of DENARs in Decentralised PBM is introduced where the collaboration between

them are involved through the two new component we added, which are PIPcoor-

dinator and PDPcoordinator. In addition, re-propagation and recovery techniques

are described for DENARs network.

The novelty of the DENAR architecture is the inclusion of coordination and col-

laboration mechanisms that allow for distributed PDPs of dynamic policies e.g.

history based policies. This improves the standard IETF framework [100] that

cannot coordinate distributed PDPs and PIPs and adds a formal underpinning

to similar approaches to coordination [27] by using the history-based policy lan-

guage SANTA [51]. The network of DENARs which include multiple PDPs and

PIPs remove the single point of failure that is common in centralised enforcement

approaches i.e. that rely on the IETF model. The choice of a distributed PIP

overlay in the architecture provides a key contribution, which makes the decision

making more resilient to network failure.

Chapter 5. Distributed Enforcements Architecture (DENAR) 85

In Chapter 9 and 10, the implementation and evaluation showed that the Dis-

tributed Enforcements Architecture (DENAR) is feasible to enforce both static

and dynamic policies. DENARs’ manageability is discussed in Chapter 10, sec-

tion 10.4.3.

The following Chapter gives an analysis of enforcement static and dynamic policies

in the DENAR.

Chapter 6

DENAR Analysis

Objectives

• Identify the security policy challenges in DENAR.

• Analyse the security policy dependencies.

• Identify the distributed policy enforcements challenges.

• Analyse the distributed policy enforcements collaboration.

86

Chapter 6. Analysis 87

6.1 Introduction

The distribution of enforcement mechanism in the Decentralised PBM and the

conception and development of static and dynamic policies are an essential part

of DENAR’s design.

This Chapter addresses the analysis of dependencies in security policy to meet

policy decomposition requirements. In addition, the analysis of distributed policy

enforcements resilience significantly extends this approach, allowing the collabo-

rative DENARs to enforce static and dynamic policies in a decentralised manner.

The remainder of this Chapter is structured as follows. Section 6.2 analyses the

security policy enforcement challenges and dependencies in DENAR. Section 6.3

identifies the domain scope for DENARs in subsection 6.3.1 and analyses the col-

laborative DENARs decision in subsection 6.3.2. Finally, section 6.4 summarises

the Chapter.

6.2 Security Policy Analysis in DENAR

In this section, we identify policy dependency challenges facing distributed policy

enforcements needs. The dependency between policies in dynamic policy (History

Based Policy (HBP)) [3] is analysed and classified to be involved in the decompo-

sition model in Chapter 7.

6.2.1 Security Policy Challenges

A common approach is to distribute the policy to localised policy decision points

(LPDPs) that may well form a part of the PEP itself [38] [62] [100]. However,

this is not always possible, depending on the policy that is to be enforced by the

PDP. When policy is static (Access Control List (ACL)) [2], the distribution of

this sort of policy is straightforward and represents essentially the decomposition

of an access control matrix into a set of access control lists (object-based distri-

bution) or capability lists (subject-based distribution) [13]. This decomposition is

well understood and implemented in many systems [2]. On the other hand, it is

Chapter 6. Analysis 88

impossible with dynamic policies where there is no collaborative enforcement be-

tween those LPDPs, i.e. one of LPDPs need for its current enforcement a previous

decision result of the other LPDPs.

More recently the decomposition of dynamic policies (History Based Policy (HBP))

[3] have received attention, paying attention to the subject or object attributes

that are required for the policy decision making. The decomposition then does

entail an analysis of the attributes that are referenced in the policy and distributing

these attributes to various localised Policy Information Points (PIPs) that store

the attribute information.

In [68] and [91], the notion of policy decomposition is provided. In [68], the pol-

icy decomposition is based on the sensitivity of attribute information necessary

for access control and/or user defined constraints at each PDP. In [91], however,

policy decomposition is guided by the resource type hierarchy. Their model con-

siders refining a high-level access control policy into sub-policies that are specific

to a resource instance and then sub-policies are deployed at the PDPs controlling

each resource. In comparison, our policy decomposition approach is not guided

by the resource type hierarchy or the sensitivity of attribute information but ob-

ject domains, thus, not every domain has its PDP where that is based on policy

dependency analysis.

A major challenge is how a central (simple) policy that includes both static policy

(e.g. ACL [2]) and dynamic policy (e.g HBP [3]) are deployed into collaborative

enforcements and then interpreting and efficiently enforcing these policies. To

shift the computational mechanism towards distributed systems and enforcements,

we propose a policy decomposition that finds the dependency between rules in

the central policy and then decomposes them into sub-policies based on their

object-domains and dependency if they have to be ready for the deployment into

enforcements.

Our policy analysis and dependencies address the analysis of the policy specifi-

cation into static policy (independent policy) and dynamic policy (dependent),

in which policy decisions are based on the history of events. To ensure correct

enforcement, the policy decomposition is designed to take into account enforcing

a policy into a single PDP or collaborative enforcements (PDPs). We propose

that the policy is decomposed into sub-policies according to rules’ object domains

Chapter 6. Analysis 89

and then send these sub-policies to corresponding DENARs which are deployed in

deployment mechanism (described in this Chapter, section 6.3).

In the following example, we illustrate how our policy decomposition for static

policy (independent policy) (e.g Access Control List (ACL) [2]) is being simple.

Nevertheless, the situation becomes complicated when dynamic policy (dependent

policy) (e.g History based policy(HBP) [3]) has to decompose into sub-policies.

An illustrative example: Suppose a company has two categories of employees

(fulltime staff and agency workers). Further, we distinguish two types of re-

sources representing documents available in the system requirements; these are

(operational and strategic). For this example, we concern ourselves with an action

(read), representing all types of access that allow subjects to retrieve information

from the documents.

The policy denotes that only fulltime staff can read strategic documents whereas

operational documents are readable by both fulltime staff and agency workers.

Also, the fulltime staff can delete the strategic and operational documents with a

condition of (if and only if any of fulltime members has read the strategic docu-

ment).

We here have the set of subjects (S = fulltime, agency); the set of objects (O =

operational, strategic). Let fulltime staff be (Fiona and Fred), agency workers be

(Alice and Adam). Operational documents are (open.txt, transfer.txt and close.txt)

and strategic document is (regulation.txt). These requirements can be formalised

in a central policy that captures these requirements as rules.

As we illustrated before, the general form of a rule in SANTA is:

consequence (S,O,A) when premise

The consequence of a rule distinguishes the class of requirements that can be

expressed in that rule. The triplet (S,O,A) references the subjects (S), objects

(O) and action (A) to which the rule applies. Finally, the premise of the rule

describes the condition under which the rule fires.

The formalisation for the example requirements above in SANTA is given below.

There is no condition in rule1 and rule2, thus, the premise is stated as True but

in rule3 where there is condition is stated in:

Chapter 6. Analysis 90

sometime done (S,O, read)

Example 6.1

rule1 :

allow (S,O, read) when true where S := {Fiona, Fride} and
O := {regulation.txt}

rule2 :

allow (S,O, read) when true

where S := {Fiona, Fride, Adam,Alice} and
O := {open.txt, close.txt, transfer.txt}

rule3 :

allow (S,O, delete) when sometime done (S, regulation.txt, read)

where S := {Fiona, Fride} and
O := {open.txt, close.txt, transfer.txt, regulation.txt}

The central policy above has three rules where rule1 and rule2 show the static

(independent) policy and the rule3 illustrates the dynamic (dependent) policy.

Rule1 and rule2 can be implemented in matrix or (ACL) as shown in Figure 6.1

but rule3 cannot for the reason that the decision for the rule3 is based on the past

decision of the rule1. Therefore, decomposing the central policy into sub-polices

is being complicated for the (History Based Policy) reason.

Figure 6.1: Access Control Matrix.

Chapter 6. Analysis 91

The orange colour shows the rule1 and the green colour shows the rule2. However,

the rule3 cannot be implemented in this matrix where the decision for the rule3

is based on the past decision of the rule1 that indicated in its condition.

The enforcement execution for rule1 and rule2 are shown the Figure 6.2 where

no conditions are included. The event means that subject(s) perform a particular

action on object(s). The enforcement decision for rule1 and rule2 are fully inde-

pendent of each other, thus, no matter if each of them are in a different system to

where the rule exists.

Subject

Object

event

action

action_done

Figure 6.2: The Enforcement Decision for no Condition Rule.

However, conditions’ branches in the rule are conceivable to question for subject

attributes’, object attributes’ or environment attributes. In addition, they may

question for values of decisions that are taken at some point in the past as it is

shown in rule3. Clearly, Figure 6.3 shows the dependency between rule1 and rule3

where the enforcement execution for rule3 that restricts performing its action on

the past decision of the rule1.

At the end of this Chapter, the result of the our policy decomposition for the above

policy is shown where the rule1 remains as it is and the rule2 is decomposed into

sub-policies based on fragmenting the object scope and then are deployed and

enforced in their domains’ enforcements. Finally, rule3 is decomposed into sub-

policies based on the rule’s object-domains and its dependency with rule1 and then

are deployed and enforced in their domains’ enforcements. Therefore, the challenge

Chapter 6. Analysis 92

Subject

Object

event

action

action_done

Past Decisions

yes

noconditions(n)

Figure 6.3: The Enforcement Decision with Past Decision Condition.

that is illustrated in this Chapter is showing how these rules are decomposed

appropriately to be enforced and result in the same decision by distributed PDPs

in comparison with a centralised PDP.

6.2.2 Policy Dependency Scope

A policy analysis and dependencies on the structure of the system requirements

are the key for Distributed Enforcements Architecture (DENAR). Policy analysis

identifies dependencies between policy and the access control in information sys-

tems (particularly, for dynamic policies). The second aspect is the analysis of the

enforcement for both static and dynamic policies in DENAR to meet collaboration

enforcement requirements.

In order to enforce a policy, all relevant observations must be available to a PDP

and the PDP must control the interaction with the protected resources. In dy-

namic policies (History Based Policy (HBP)) [3], for example, the Chinese-Wall

policy [25] between two resources in a system requires the PDP to control inter-

actions with both resources. The techniques presented in this section are however

independent of the policy language chosen and can easily be adapted to other

policy languages that allow for the expression of history-based policies (e.g. [51]).

Chapter 6. Analysis 93

In some cases, an access to a resource must be restricted to satisfy the IT man-

agement requirements. On the other hand, no restrictions are required as well to

meet the IT requirements.

The general form of a rule is:

consequence (s, o, a) when premise

The consequence of a rule distinguishes the class of requirements that can be

expressed in that rule. The triplet (s,o,a) references the subject, object and action

to which the rule applies. Finally, the premise of the rule describes the condition

under which the rule fires.

Premise in a rule describes a set of conditions that presents these restrictions.

Empty or none existed conditions in premise expresses no restrictions for subject(s)

to access resource(s) where it is the simplest rule in ACL model [2]. However, when

the access to resource(s) must be restricted, this could be expressed in premise with

one or multiple conditions.

Regarding access control requirements, we can classify the premise into basic

premise (no condition) or conditional premise (has non empty condition) where we

classify it as independent or dependent premise based on a conditions’ structure.

The following subsection shows these classifications.

Basic Premise (No condition)

Definition 6.2 :- an event (either an explicit message being passed between two

points, or a change of state) triggers the execution of an action.

The basic premise can be authorising for the event to trigger the action without

any restrictions. Figure 6.2 depicts this process. Moreover, a system may allow

different events to trigger the action. Based on a policy language that used to

support subject scope or objects scope, viz. only one subject or a set of subjects

and a one or a set of objects can be used in the event.

The basic premise can be formalised in as follows:

consequence (s, o, a) when true

Chapter 6. Analysis 94

Conditional Premise

The conditional premise is supporting set conditions to be evaluated before the

action is taken. The conditional premise is more complicated in that it can be

nested and iterated. In addition, the action is executed only when the event

occurs and all condition branches hold true. Figure 6.4 shows the control flow of

the condition premise.

Subject

Object

event

action

action_done

yes

no

conditions(n)

Figure 6.4: Conditional Premise Rule Decision.

The different decision of a rule can be determined by only the conditions they

evaluated. If none of the conditions evaluate to true, no action is performed.

The conditional premise is conceivable to hold one or more of subjects’ attribute,

objects’ attributes, environments’ attributes, values of decision that are taken at

some point in the past (past events) or hypothetical rule condition. Subjects’,

objects’ and environments’ attributes are involved in the conditional premise to

be evaluated to true where they question for subject, object or environment at-

tributes’ themselves. The examples 6.2, 6.3, 6.4, 6.5 and 6.6 describe these sort of

conditional premise sequentially.

Example 6.2 (Subjects’ attributes condition) A subject can be any actor that deal

with the system (e.g. user, software. etc.) Each subject in a system has some

identified attributes those required to verify and recognise a particulate subject

rather than other subjects in the system. The below rule shows the subjects’

Chapter 6. Analysis 95

attribute condition when the age of a subject that perform an action on an object

must be greater than 30 years.

consequence (s, o, a) when (s.age > 30)

Example 6.3 (Objects’ attributes condition) A object can be any resource (target)

that a subject deal with (e.g. file, door. etc.). Each object in a system has some

identified attributes those required to verify and recognise a particulate object

rather than other objects in the system. The below rule shows the Objects’ at-

tribute condition when the size of an object that perform an action on by a subject

must be greater than 10kb.

consequence (s, o, a) when (o.size > 10000)

Example 6.4 (Environments’ attributes condition) The environments’ attributes

indicate to the system attributes, e.g. the current date. The below rule shows

the date of the event must be at 01.01.2012 to perform an action.

consequence (s, o, a) when (system.date = 01.01.2012)

Example 6.5 (Event condition) Another important IT management requirement is

a consideration of the specification of history-based policies [51]. For example, the

requirement “if a user at some point in the past has read file (A) that is secret

then the same user cannot write to file (B), otherwise the user can write on file

(B)” can be expressed by the use of a conditional in premise. This is considered in

the expression of a large class of security requirements, including dynamic policies

such as the Chinese Wall Policy [25]. These sorts of conditions express as the past

event conditions. Thus, considering event condition on the state of the system

or on the history of the execution is essential (e.g. in military system). The

below rule shows the event condition when the subject (Alice) had read the object

(open.txt), a subject (s) in the rule can then perform an action (a) on an object

(o).

consequence (s, o, a) when (done(Alice, open.txt, read))

Chapter 6. Analysis 96

Example 6.6 (hypothetical rule condition) Hypothetical access is also important

IT management requirement. For example, the requirement “if a user can read

file (A) that is secret then the same user cannot write to file (B), otherwise if not

can write on file (B)” can be expressed by the use of a condition in premise. This

is considered in the expression of a large class of security requirements, including

dynamic policies such as the Chinese Wall Policy [25]. These sorts of conditions

express as the hypothetical rule conditions. Thus, considering hypothetical rule

condition is essential in such systems. e.g. military system. The below rule

shows hypothetical rule condition when the subject (Alice) can read the object

(open.txt), a subject (s) in the rule can then perform an action (a) on an object

(o).

consequence (s, o, a) when (allow (Alice, open.txt, read))

Independent and Dependent Condition

The premise context is conceivable for the classifying independent or dependent

rules. The premise classification is involved to be used for the policy decompo-

sition [See Chapter 7, Section 7.2]. We classify a rule to be independent, when

no condition is involved in the rule or all conditions in condition set are being

independent conditions. On the other hand, when one dependent condition in

premise is found the rule is classified as dependent rule. The subject and envi-

ronment attribute conditions are always classified in our analysis as independent

conditions where these attributes can be found internally (in the same domain).

In this case, the local PIP in a DENAR can provide these attributes and then

make the authorisation decision. However, in case of object and event attribute

and hypothetical rule condition’s evaluation, these attribute values can be located

in the same or different domains thus, the conditions evaluation may involve two

or more DENARs in the network. [For more detailed see Section 6.3.3]

6.3 Collaborative DENAR Analysis

In the centralised enforcement approach all interactions between users and sys-

tem resources are controlled and observable by the centralised PDP where there

is no coordination. However, in the network of DENARs where multiple PDPs

Chapter 6. Analysis 97

are involved, the coordination is a key to collaborate PDPs for an enforcement

decision. The collaborative DENARs can be synchronised which is important

when controlling usage limits for resources across the distributed system, or dy-

namic constraints, such as the mutual exclusion requirements found in the well

known Chinese Wall policy [25] and dynamic separation of duty constraints [83].

In the following, we addresses how a domain scope can indicate to subsystems and

logically how the collaborative DENARs is achieved.

6.3.1 Domain Scope

In large-scale systems, domains provide a practical solution for PBM system where

specifying a policy for individual object is difficult to be managed in PBM system

[41]. Sloman et. al [41] define a domain as a group of objects in a large system

based on geographical boundaries, object type, responsibility or authority. For

large-scale systems, therefore, specifying a policy for a particular domain (a group

of objects that share the same interest) propagates scalability for managing PBM.

In decentralised access control when multiple domains are involved, the access

control in a domain is independently maintained from other domains (one PDP is

involved for each domain but there is no collaboration between PDPs). Specifying

policies based on this technique results in difficulties for solving a policy conflict

between domains especially when Bell-LaPadula Model (Multilevel Security) [66]

or Chinese-Wall [25] policies are involved and are not enforced correctly. Ideally,

a PBM system may involve multiple PDPs to improve the access control decision

making performance.

Definition 6.1. A domain is a collection of objects governed by the same geographi-

cal boundaries, object type, responsibility or the level of security or authority those

may grouped from different systems.

Grouping objects in a large system into domains is useful. Unlike Ponder policy

language, in our Decentralised PBM, we use the domain scoping in the policy

decomposition where it being after all policies are specified and all dependency

between policies are detected as well and then the policy decomposition that based

on the objects domains is performed. In Ponder policy language, the specification

is based on the objects domains.

Chapter 6. Analysis 98

In addition, we can configure one PDP in DENAR to be responsible for enforcing

the policies for one or more domains. The Decentralised PBM that has collab-

orative DENARs can share a single decision by multiple PDPs in the system.

Therefore, according to our Decentralised PBM framework, policy decomposition

step is after the policy specification to solve the policy conflicts from policy ab-

straction level and then the domain consideration being in policy decomposition.

Clearly, our Decentralised PBM framework does not solve the policy conflation

where it must be solved in the policy specification step.

Figure 6.5: Network Domains.

The Figure 6.5 shows distributed domains in a network by circles where each circle

contains one or more objects those grouped in same interest. Network administra-

tors manage a distributed hierarchy of domain objects and support the efficient of

controlling access by involving DENAR. The domain service can be implemented

in our Decentralised PBM as in Ponder [32] using Lightweight Directory Access

Protocol [43] .

6.3.2 Collaborative DENAR Decision

In this section, we show how the enforcement of static and dynamic policies can

impact the potential problems that can occur when multiple PDPs are imple-

mented. Also, we extend the approach in [53] to define sufficient constraints on

the concurrency of the distributed PDPs to avoid conflicts.

In order to coordinate DENARs, the access control policy firstly defines the con-

ditional attributes which need to be coordinated. Finally, it specifies the param-

eters for the conditional attribute updation - that specifies when the conditional

Chapter 6. Analysis 99

attribute should be updated. The above be achieved by rules refinement to com-

plement each rule that needs coordination in this manner. We introduce Pull

Model for retrieving the conditional attribute and Push Model for updating the

conditional attribute by an obligation. [See Chapter 7, Section 7.2. for policy

refinement]

We base DENAR coordination on the UCON model [78], allowing for per, on-

going and post authorisation control of long standing interactions. In addition,

we provide a semantics in Interval Temporal Logic [74] for the dynamic policies

in a motivation example [See Chapter 6, Section 6.4] for the Chinese Wall [25]

policy. We use the controller that presented in [53] for the static policy to avoid

the conflicts with the respect of DENAR’ decision. Additionally, we involve the

concept of obligations discussed earlier wherein a PDP sends a PEP instructions

on obligations that need to be necessarily fulfilled on execution of the request.

The obligation element specifies the actions to be taken by the PEP, rather than

the PDP, since it is at the PEP that the action is actually executed.

The development of a semantic model to express dynamic policies, viz. policy that

can change over time and on the occurrence of event (e.g the Chinese Wall Policy

[25]), and their distributed enforcements in distributed systems are the underpin-

nings of our research. Our collaborative DENARs is built on the formal policy

model investigated in [53] and [55]. To meet the challenges, a sound theory of

policy decomposition is developed, taking into account the limitation of involving

multiple PDPs without considering the coordination for the dynamic policy en-

forcement where a PDP in DENAR may require conditional attributes from other

DENARs in different domain.

The enforcement in access control system must to be stateful and maintain at-

tributes that influence future control decisions to meet the requirements especially

when some policies are involved, such as the Chinese Wall Policy [25] or Clark-

Wilson [28]. Park et.al. [78] provide in Usage Control (UCON) model far reaching

flexibility for access control specifications where the notions of mutable attributes

are proposed. Using mutable attributes for these policies can be expressed, or the

number of users concurrently accessing a resource can be limited where attributes

can change their values based on the previous accesses that are initiated by users

[53]. [See Chapter 2, Section 2.4.5 Usage Control (UCON) for more details].

Chapter 6. Analysis 100

6.3.2.1 Independent Rule Decision

In UCONA, preA0 (pre-authorisation) policy is specified to be enforced without

pre-updates attribute. Therefore, we can classify this sort of policy as the indepen-

dent policy where immutable attributes are evaluated. Therefore, the enforcement

will be stated as the Figure 6.6 below illustrated.

idle

check

 pre

request
/readydeny

Figure 6.6: Static PDPcontroller.

The state check evaluates the request against a particular policy.

6.3.2.2 Dependent Rule Decision

preA1 (pre-authorisation) policy is specified to be enforced with attribute on-

updates (mutable attributes) before the access takes place. In addition, preA3

(pre-authorisation) policy is specified to be enforced with attribute post-updates

(mutable attributes) after the access is taking place. We design Pull Model to

retrieve these attributes to the PDP [See Chapter 8, Section 8.3.1 for Pull Model].

Therefore, we can classify this sort of policy as the dependent policy. The PDP

that enforces the dependent policy can also perform update action for these at-

tributes to the same PDP or other PDPs for the access decision in Push Model

[See Chapter 8, Section 8.3.2 for Push Model]. Therefore, the PDP will be stated

as the Figure 6.7 below illustrate.

The states of the PDP are states PDPcontroller = idle, check, allowed. The

behaviour of a PDPcontroller is then defined as:

Chapter 6. Analysis 101

idle

check

pre-update

request
/readydeny

allowed

permit

Figure 6.7: Dynamic PDPcontroller.

ϕ idle,p =̂ PDPcontrollerp(idle, {Einitp , Edenyp , Erdyp}, {Ereqp}) (1)

ϕ check,p =̂ PDPcontrollerp(check, {Ereqp}, {Epullp}∗, {Epushp}∗,
{Epermitp , Edenyp}) (2)

ϕ allowed,p =̂ PDPcontrollerp(allowed, {Epushp}∗, { Erdyp}) (3)

ϕ PDPcontrollerp =̂ StatesPDPcontrollerp = idle ∧ (ϕidle,p; ϕcheck,p;

ϕ(allowed,p,⊕(empty ∧ Edenyp)))∗ (4)

ϕ Control =̂
∧

P∈p(ϕPDPcontrollerp) (5)

In equation 2, the state check does explicitly perform pre-update actions for preA1

to modify the mutable attributes of the policy in the push event where these may

located in same domain or different domains. These update actions are part of

UCON policies and are defined as an obligation event on the state check. The

example of this case is a check of bank account balance before withdrawing.

Chapter 6. Analysis 102

However, in equation 3, the state allowed does explicitly perform post-update

actions for preA3 to modify the mutable attributes of the policy in the push event

where these may located in same domain or different domains. The example of

this case is watching movies online where the access control is based on the usage

time against the credit balance.

The choice of involving push event in check or allowed state is based on the system

requirement where the push event does not occur in both states.

However, we take the view that the mutable attributes updates can be expressed

as the assignment for a set of attributes to new values. More complex update

activities can be introduced, which however complicates the model and its anal-

ysis when attributes can be shared between the DENARs for the various usage

processes.

6.4 Summary

This Chapter presented the DENAR analysis which is based on ITL. The analysis

presented in this work addresses these issues by providing analysis policy depen-

dency and the semantics of distributed PDPs. The DENAR analysis presented

here significantly extends approach [51], allowing for the enforcement of static and

dynamic policies in a decentralised manner where multiple PDPs can be coordi-

nated. We illustrated the syntax of ITL in terms of collaborative decisions for

dynamic policy, we explained the semantics, and demonstrated some examples.

As part of our contribution, we demonstrate how collaborative DENARs enforce

UCON (preA0, preA1 and preA3) pre-authorisation policies in a decentralised

manner where those policies may decompose into DENARs.

In Chapter 10, the evaluation shows that the policy classification into independent

and dependent policy rules and implementing the domain scope to enforce security

policies results in more efficient enforcement.

In the next Chapter, we propose a novel policy decomposition model for both

independent and dependent policies. Also, a policy deployment in DENARs is

discussed.

Chapter 7

Policy Decomposition and

Deployment

Objectives

• Describe the policy decomposition.

• Provide a policy deployment model.

• Present algorithms for policy decomposition and deployment.

103

Chapter 7. Policy Decomposition 104

7.1 Introduction

The policy decomposition and deployment are described in this Chapter. The

decomposition will make use of the policy analysis results (Chapter 6) and describe

the method to decompose a central policy into sub-policies and refine them to be

enforced in the collaborative DENARs. The policy deployment provides a way

of distributing sub-policies to different policy repositories based on the domains

scope.

The decomposition will make use of the policy analysis results (Chapter 6) and

describe

The remainder of this Chapter is organised as follows. Section 7.2 describes the pol-

icy decomposition. Subsection 7.2.1 explains a rule fragmentation and subsection

7.2.2 rule refinement. Section 7.3 describes the policy deployment to distributed

DENARs in the Decentralised PBM system. Finally, section 7.4 summarises the

Chapter.

7.2 Policy Decomposition

This section describes the method to decompose a central policy into sub-policies.

The policy decomposition is achieved by the rule fragmentation phase and the

rule refinement phase. In the rule fragmentation phase, the fragmentation is pro-

cessed which output the fragmented-rule where each rule controls only one object.

Moreover,in the rule refinement phase, the dependent and independent rules are

recognised and refined to be enforced in DENAR where the DENARs collabora-

tion are required in dependent rules enforcing. The rule refinement phase outputs

the sub-policies.

Once the decomposition is complete, the sub-policies are deployed into their cor-

responding DENARs. In Figure 7.1 illustrates the central policy is being input in

the policy decomposition. The green rectangles show the output of each phase.

Chapter 7. Policy Decomposition 105

Figure 7.1: Policy Decomposition Phase and Policy Deployment Phase.

7.2.1 Rule Fragmentation

The specification of policy is being a prerequisite and input for the proposed rule

fragmentation. The rule is fragmented according to object set that is reference in

a policy scope. The fragmentation method is achieved by the idea of controlling

only one object in a fragmented-rule that is generated from the rule.

According to the SANTA policy language we are used, the policy scope in defines

to which subjects, objects and actions the policy applies to. The scope of a policy

is presented in the syntax using the keywords S, O and A, that represent the set

of subjects, the set of objects and the set of actions of a policy. The scope of a

policy affects the rules contained in that policy. The subject, object and action in

each rule definition must be within the scope of the policy (s ∈ S, o ∈ O and a ∈
A).

Chapter 7. Policy Decomposition 106

Often rules apply to more than one subject, object or action. To achieve the ob-

jective of the policy decomposition, fragmenting the rules for the different objects

in the O can be used to reference only one object per rule. For example, given

that the scope of the policy is:

S = {s} and O = {o1, o2, ..., on} and A = {read}

The requirement to unconditionally grant subject(s) in the scope of the policy the

right to perform read on all objects , would require the definition of n rules:

rule :

∀o ∈ O [[allow (s,O, read) when true]]

Using the keyword O is instantiated to mean the conjunction of:

rule :

[[allow (s, o1, read) when true]] ∧
[[allow (s, o2, read) when true]] ∧

/. / ∧

[[allow (s, on, read) when true]]

on is the last object in the object set.

Also, the objects set may include all objects in the rule which are controlled

or required. For example, given that a CONTROLS(x) of the policy and a

REQUIRES(Y) are:

rule :

allow (S, x, read) when done (S, y, read)

where S = {s} and O = {x, y}

Chapter 7. Policy Decomposition 107

The object x is controlled and object y is required in this rule where no fragmen-

tation is applied here. The use of the rule fragmentation has the advantage that

it allows the decomposition for the same rule into sub-policies based on the object

domain.

Case1, A one object is isolated in the object set and therefore no fragmentation

for this case. The rule is ready for the next phase (refinement phase) in the policy

decomposition. Thus, according to early example 6.1 [in Chapter 6, section 6.2.1],

rule1 can be expressed in SANTA without fragmentation as:

rule1 :

allow (S,O, read) when true

where S = {Fiona, Fride} and O = {regulation.txt}

The fragmentation result for rule1 :

allow (S, regulation.txt, read) when true

where S = {Fiona, Fride}

No fragmentation just matching object O with its object set in the policy scope.

Case2, for the set of objects, the set of objects is defined and includes a number

of objects those located in a same domain or different domains in the system.

Thus, the object set can be fragmented based on their domains. In following, we

eliminate the object set by the fragmentation method which generates new rule

for each object in the object set for the policy scope.

rule2 :

allow (S,O, read) when true

where S = {Fiona, Fride, Adam,Alice} and
O = {open.txt, close.txt, transfer.txt}

The fragmentation result for the rule2 is:

Chapter 7. Policy Decomposition 108

rule2.1 :

allow (S, open.txt, read) when true

where S = {Fiona, Fride, Adam,Alice}

rule2.2 :

allow (S, close.txt, read) when true

where S = {Fiona, Fride, Adam,Alice}

rule2.3 :

allow (S, transfer.txt, read) when true

where S = {Fiona, Fride, Adam,Alice}

Based on the object set in the policy scope for this rule that include three objects,

the fragmentation method produces three rules where each rule controls only one

object.

Case3, for the set of objects that includes CONTROLS (O) and REQUIRES (o)

objects, the fragmentation method eliminates the object set by generates new rule

for each controlled object in the object set for the policy scope.

rule3 :

allow (S,O, delete) when sometime done (S, regulation.txt, read)

where S = {Fiona, Fride} and
O = {open.txt, close.txt, transfer.txt, regulation.txt}

The fragmentation result for rule3 is:

rule3.1 :

allow (S, open.txt, delete) when sometime done (S, regulation.txt, read)

where S = {Fiona, Fride}

Chapter 7. Policy Decomposition 109

rule3.2 :

allow (S, close.txt, delete) when sometime done (S, regulation.txt, read)

where S = {Fiona, Fride}

rule3.3 :

allow (S, transfer.txt, delete) when sometime done (S, regulation.txt, read)

where S = {Fiona, Fride}

rule3.4 :

allow (S, regulation.txt, delete) when sometime done (S, regulation.txt, read)

where S = {Fiona, Fride}

Algorithm for fragmentation based on the cases above, a simple fragmentation

algorithm is given, as outlined by the following pseudo-code:

Algorithm 1 Rule Fragmentation

Require: central policy (P)

1: Begin

2: Load P

3: for each r in P do

4: r′ = r

5: for each o in {O} for r′ do

6: obj = o

7: remove all objects in {O}
8: insert obj in {O}
9: RuleID = sequential number

10: add RuleID into r′

11: add r′ into fragmented− rule repository
12: end for

13: end for

14: End

Chapter 7. Policy Decomposition 110

The above algorithm performs the fragmentation of rules for the central policy

(P). According to the number of objects in object-set (O), the fragmented rules

are produced. Moreover, the RuleID is added as identifier of the new rules. The

algorithm output copies the new rules into fragmented-rule repository where each

rule controls only one object in its object-set to be ready for the next phase (Rule

Refinement).

7.2.2 Rules Refinement

According to the discussion in Chapter 6, the IT requirements meet the impor-

tance of involving the dependent (dynamic) and independent (static) policies. The

needs of dependency between rules is explored in Chinese-Wall [25] and highlighted

in the example 6.1 (in particular rule3). The conditions’ context (premise) is con-

ceivable for the classifying independent or dependent rules. Clearly, refinement

analysis classifies subject attributes’ and environment attributes’ that structured

in a conditional premise into an independent condition. On the other hand, the

rule that its conditional premise asking for object or past event attributes’ is

considered as the independent or dependent condition based on objects domain

location. The conditional premise classifications are involved to be used for the

refinement rule method [See Chapter 6, Section 6.2.2 for the conditional premise

classification].

7.2.2.1 Refinement Analysis

The analysis in this section is expressed to only one rule that loaded from the

fragmented policies sequentially that is going to be refined. Refinement algorithms

follow two goals: first, to ascertain that the condition premise (condition context)

does in fact match the condition premise classification in question. If it does,

the algorithms proceed to refine the rule into independent or dependent rule.

Consequently, each condition in the independent or dependent rule must show

the type of signalling, viz. where the condition attribute values are founded and

retrieved in local or remote domain. If the condition premise does not match the

first condition premise class, the next condition premise class can then be tried.

In the following subsection we show how our refinement analysis is processed in

steps. [See Chapter 6, Section 6.2.2 for the independent or dependent rule].

Chapter 7. Policy Decomposition 111

• Matching Condition Premise Class

The first step in the rule refinement method is to load the first rule from the

fragmented-rule repository (the output of the rule fragmentation phase) to

the refinement algorithm. [See Section 7.2.2.2 and Section 7.2.2.3]. Then, the

matching of condition premise class (independent or dependent) is the recog-

nition procedure that required for choosing appropriate refinement method.

Basically, to identify the condition premise class matched for condition in a

rule, the condition premise is compared to every the condition premise class

till the match is found or until there are no further classes to compare to.

Based on the policy language is used, the order of the condition premise in

a rule may be presented differently.

For all rules fragmented-rule repository, the condition premise must be matched.

However, in the case of unmatched condition premise, human intervention

becomes essential. The unmatched condition premise possibly may be caused

by errors in the policy specification or a new condition premise class those

not defined. The refinement algorithms show how condition premise can

match its corresponding condition premise class. [See Section 7.2.2.2 and

Section 7.2.2.3]

• Mapping Objects’ Domain

Mapping objects’ domain is the process for pointing into the domain for a

particular object by querying a reference table that reference objects’ do-

mains information. The domain can be a collection of objects governed by

the same geographical boundaries, object type, responsibility or the level

of security or authority. The query must only return one result domain or

nothing. An object that does not belong to any domain in the system will

result null for the query. Therefore, the null result drops the current rule and

loads the next rule from the fragmented-rule repository and then notifies the

system administrator about that rule.

The assumption that every object is located in a domain where:

Mapping Objects′ Domain

Domainof : object(1) 7→ domain(D1)

Domainof : object(6) 7→ domain(D3)

Chapter 7. Policy Decomposition 112

Figure 7.2: Network Domains.

Domains′ PIPs

PIPof : domain(D1) 7→ PIP (PIP1)

PIPof : domain(D3) 7→ PIP (PIP3)

Therefore, each rule in fragmented-rule repository has a single object and

is therefore mapped to a single domain and also each domain maps a single

Policy Information Point (PIP).

Thus, realising the object-domain for early stage is involved to determine if

the condition is classified as independent or dependent condition and also

recognise the Policy Information Point for a particular domain.

7.2.2.2 Refinement Independent Rule Method

In such cases, the conditions inside condition premise in question can split into

branches those are based on the sort of the condition attributes. Without changing

the execution flow, the subject and environment attribute conditions are repre-

sented by local condition signal, viz. finding these attributes internally (in the

Policy Information Point PIP within same domain). Thus, in those cases, only

enforcement process is obtained for the local condition signals and the decision,

thus, these conditions referenced as default conditions in our method i.e. no coor-

dination. The example 7.2 and 7.3 show this result.

Chapter 7. Policy Decomposition 113

Example 7.2: Suppose a rule that saying the subjects (Adam and Alice) can

read the resource (open.txt) without any restrictions so the rule is expressed in

SANTA as:

allow (S, open.txt, read) when true

where S = {Adam,Alice}

Example 7.3: Suppose a rule that saying the subject (Fiona, Fride) can read

the resource (open.txt) with two restrictions:- 1) the subject age must be above 30

years. 2) The access must be at the first day of 2012. So the rule is expressed in

SANTA as:

allow (S, open.txt, read) when ((S.age > 30) and (system.date =′′ 01.01.2012′′))

where S = {Fiona, Fride}

Moreover, in some cases, an object that is controlled in a rule is located in the

same or different domain location of the object attribute that is required in the

condition. Thus, by mapping the object-domain for both controlled and required

objects and comparing the domains, in one hand, if they are same, it is processed

as independent condition; otherwise, it is processed as dependent condition.

Clearly, a condition that asking for the past event that happen on particular object

where this object can in the same or different domain of the controlled object in

the rule. Thus, by comparing the domain of the object for the past event and the

domain for the object that is controlled in the rule, in one hand, if they are same,

it is processed as independent condition. On the other hand, it is processed as

dependent conditional.

Example 7.4: Suppose a rule that saying the subject (Fiona, Fride) can read

the resource (close.txt) with two restrictions:- 1) the subject has read (open.txt)

resource in the past. 2) The (open.txt) resource size must be greater than 10000

bytes. So the rule is expressed in SANTA as:

Chapter 7. Policy Decomposition 114

allow (S, close.txt, clear) when

sometime done (S, open.txt, read) and ((open.txt).size > 10000))

where S = {Fiona, Fride}

We show in the example 7.4 the refinement of independent condition where the

condition premise has two conditions. The first condition branch is match the

event condition attribute where it is might be dependent or independent condition.

In addition, the second condition branch is match the object condition attribute

where it is might be dependent or independent condition. However, by comparing

the object domain location for the object (close.txt) of the rule and the object

domain location that required in the condition (open.txt), we assume these objects

are located in a same domain, thus, the two conditions are classified as independent

condition i.e. default condition.

Therefore, our model can rewrite the rule as shown below to illustrate the signaling.

The symbol (@) indicates to the local signal and default condition where the PIP

(PIP5) is presented to reference the located PIP for the attribute. The refinement

of independent condition for above policy is:

allow (S, close.txt, read) when

(@PIP5 sometime done (S, open.txt, read)) and

(@PIP5 (open.txt).size > 10000))

where S = {Fiona, Fride}

Algorithm for refinement Independent Rule Method: Based on the dis-

tinction between condition premise classifications in a rule, refinement rule algo-

rithm for independent rule is first match the condition premise (in line 6) and

adds default indicator (@) for the subject and environment conditional (in line

7). Moreover, for object and past event conditional (in line 8), it checks the do-

main location for the object that controlled (o) in the rule and the object for each

condition premise (requiredObj) (in line 13). Therefore, if object and past event

conditional is independent, adding the default indicator into its condition with

the PIP for the domain (in line 15). Finally, it copies the rule (r’) into the sub-

policies repository. The condition that does not include the indicator means that

is dependent conditional which is refined in the next algorithm for the dependent

rules. The algorithm is outlined by the following pseudo-code :

Chapter 7. Policy Decomposition 115

Algorithm 2 Rule Refinement (Independent Rule)

Require: fragmented− rule repository
1: Begin

2: Load rules from fragmented− rule repository
3: for each r in fragmented− rule repository do

4: r′ = r

5: for each condition branch c in r′ do

6: if c match subject or environment class then

7: add @ before c

8: else

9: o = the controlled object in r′

10: controlledObjDomain = findDomain(o)

11: requiredObj= the required object in c

12: requiredObjDomain = findDomain(requiredObj)

13: if controlledObjDomain = requiredObjDomain then

14: controlledObjPIP = findPIP (controlledObjDomain)

15: add @ controlledObjPIP before c

16: end if

17: end if

18: end for

19: copy r′ into sub− policies repository
20: end for

21: End

7.2.2.3 Refinement Dependent Rule Method

The object attribute condition is represented by local or remote condition signals.

The remote condition signals signify to object attributes where object attribute

condition is located in different domain from the object that controlled in the

rule. The condition attribute values are retrieved by a coordination process, viz.

communicated with other PIPs to get the values.

Moreover, according to the importance of the consideration of history-based poli-

cies [3] for the IT management in previous section, the past event conditional

attribute is proposed as the object conditional attribute that can be independent

Chapter 7. Policy Decomposition 116

or dependent based on the domain location for the object that controlled in the

rule and the domain that the past event happened in.

Example 7.5: Suppose a rule that saying the subject (Fiona) can read the re-

source (close.txt) with two restrictions:- 1) the subject has read (regulation.txt)

resource in the past. 2) The (regulation.txt) resource size must be greater than

10000 bytes. So the rule is expressed in SANTA as:

allow (S, close.txt, clear) when

(sometime done (S, regulation.txt, read) and ((regulation.txt).size > 10000)))

where S = {Fiona}

We show in example 7.5 the refinement of dependent condition where the condition

premise has two conditions. The first condition branch is match the past event

condition attribute where it is can be dependent or independent condition. In

addition, the second condition branch is match the object condition attribute

where it is can be dependent or independent condition. However, by comparing

the object domain location for the object (close.txt) of the rule and the object

domain location that required in the condition (regulation.txt), we assume these

objects are located in different domains, thus, the two conditions are classified as

dependent condition.

Therefore, our method rewrites the rule as shown below to illustrate the signaling.

The symbol (#@) indicates to the remote signal where the PIP (PIP9) is presented

to reference the located PIP for its domain. The refinement of dependent condition

for above policy is:

allow (S, close.txt, clear) when

(#@PIP9 sometime done (S, regulation.txt, read))) and

(#@PIP9 (regulation.txt).size > 10000)))

where S = {Fiona}

The coordination process leads us to propose Push and Pull Models that involved

to query the objects’ or past events’ attributes those are presented as remote

Chapter 7. Policy Decomposition 117

signal in the condition premise. (Push and Pull Models are provided in Chapter

8, section 8.3)

However, the independent condition is classified as default condition where only

enforcement process is obtained the local condition signal and the decision. In our

decision making, the default conditions (local condition signal) are always being

checked first before dependent conditions are evaluated, thus, to avoid the over-

head communications. The dependent conditions attributes always be founded in

different domains (different PIPs), thus, it requires coordination process to retrieve

those attributes for the evaluation. Moreover, if any of independent condition at-

tributes’ are evaluated to false then no need for the coordination process (remote

condition signals) to be run for evaluating dependent condition attributes’. The

coordination process is run for both Pull and Push Models which are described in

(Chapter 8, section 8.3, Coordination Mechanism).

Algorithm for Refinement Dependent Rule Method:

Based on the distinction between condition premise classifications in a rule, refine-

ment rule algorithm for the dependent rule is first load rules from the sub-policies

repository (in line 2). Then, it checks if the indicator (@) does not exist that

means it is dependent so be refined in this algorithm (in line 5). Thus, it checks

the domain location for the object that controlled in the rule and the object for

each condition premise. If they are not similar (in line 10), the condition is depen-

dent and then find a PIP for the domain (in line 11 and 12). Then, it provides the

choice for the Pull or Push Models where in Pull adding remote indicator (#@)

before the condition (in line 14), on the other hand , adding obligation in Push

Model (in line 17). The algorithm is outlined by the following pseudo-code :

Chapter 7. Policy Decomposition 118

Algorithm 3 Rule Refinement (Dependent Rule)

Require: sub− policies repository
1: Begin

2: Load rules from sub− policies repository
3: for each r in sub− policies repository do

4: for each condition branch c in r do

5: if c not include @ then

6: o = the controlled object in r

7: controlledObjDomain = findDomain(o)

8: requiredObj= the required object in c

9: requiredObjDomain = findDomain(requiredObj)

10: if controlledObjDomain ! = requiredObjDomain then

11: controlledObjPIP = findPIP (controlledObjDomain)

12: requiredObjPIP = findPIP (requiredObjDomain)

13: if coordination mechanism is Pull then

14: add #@ requiredObjPIP before c

15: else

16: requiredObjPDP = findPDP (requiredObjDomain)

17: add Oblig(requiredObjPDP, controlledObjPIP, c = true)

18: end if

19: end if

20: end if

21: end for

22: end for

23: End

7.3 Policy Deployment

Strictly speaking, deployment does not constitute a part of the decomposition

method. However, deployment of the sub-policies is great importance to the ap-

proach as a whole. After policy decomposition has been completed, the sub-policies

are distributed to their domains. Thus, for the Decentralised PBM, the generated

sub-policies are being activated and the central policy is deactivated. On the other

hand, for the other reason for switch to Centralised PBM approach, the central

policy is activated for the DENAR that configured to be the central enforcement in

Chapter 7. Policy Decomposition 119

case of reconfiguring a system or on longer need for Decentralised PBM. Therefore,

re-propagation and recovery can be achieved. [See Chapter 5, Section 5.3.3].

However, rules deployment is based object domain location where the decompo-

sition method eliminates the object set to control only one object in each rule.

Consequently, finding the object domain location and deploying a rule in its do-

mains’ policy repository (PR) is become uncomplicated. Deployment algorithm is

outlined by the following pseudo-code:

Algorithm 4 Policy Deployment

Require: sub− polices repository
1: Begin

2: Load r from sub− polices repositry
3: for each r in sub− polices repositry do

4: obj = o of r

5: domain = FindObjectLocation(obj) {f}inding the domain location for the

object.

6: PR = FindPolicyRepository(domain) {f}inding the policy repository for

the domain.

7: if PR = null then

8: create new Policy Repository for the domain and then store r in Policy

Repository

9: else

10: store r in PR

11: end if

12: end for

13: End

7.4 Summary

We proposed in this Chapter that the central policy is decomposed into sub-policies

according to object domains and then distributed to corresponding DENARs

in policy deployment. Fragmentation and refinement methods are described in

SANTA syntax and algorithms for the policy decomposition. The fragmentation

method described for decomposing the policy into sub-policies where each rule

Chapter 7. Policy Decomposition 120

controls only one object. The refinement method refines the rule to indicate the

location of PIPs those store conditional attributes. The local indicator shows the

local condition signal to find these attributes internally in the same domain. The

remote indicator shows the remote condition signal to find these attributes remote

domains. In addition, the policy deployment is detailed in algorithm.

The implementation and evaluation of policy decomposition and deployment are

not implemented in the DENAR prototype; therefore, not evaluated. The policy

decomposition and deployment algorithms are easy to develop in any programming

languages. Instead the algorithms where applied manually to decompose and refine

the policies used for evaluation.

In the next Chapter, the DENAR enforcement and coordination mechanism in-

volve the output of this Chapter where the sub-policies are decomposed and de-

ployed in their DENARs. The next Chapter describes the DENAR enforcement

and coordinate between DENARs.

Chapter 8

DENAR Enforcement and

Coordination

Objectives

• Show how the network of DENARs interacts to enforce policies.

• Provide a coordination mechanism for DENAR enforcement.

• Identify the DENAR properties.

121

Chapter 8. DENAR Enforcement and Coordination 122

8.1 Introduction

This Chapter presents the DENAR enforcement and coordination models. Enforc-

ing security policy in distributed PDPs can not meet the security access control re-

quirements without considering the need of coordination between these distributed

PDPs. The coordination need is clear in involving History Based Policy (HBP) in

Decentralised PBM for access control decision. For enforcing History Based Policy

(HBP), DENAR is required to have the ability to observe events and previous de-

cisions in order to make a current decision which are in some cases being enforced

by other DENARs. Thus, the access control decision making can be improved by

identifying a local domain decision and remote domain decision.

The remainder of this Chapter is organised as follows. Section 8.2 describes the

policy enforcement model in DENAR. Subsection 8.2.1 models the local domain

decision where the subsection 8.2.2 models the remote domain decision. Section

8.3 describes DENAR coordination mechanisms. Subsection 8.3.1 describes a Pull

Model decision where the subsection 8.3.2 describes Push Model those fulfill the

coordination needs between collaborative DENARs). Section 8.4 highlights the

DENAR’s properties and show how these are achieved (in particular synchronisa-

tion, concurrency and security). Finally, section 8.5 summarises the Chapter.

8.2 Policy Enforcement in DENAR

In this section, we present a simple scenario that shows the relevant dependent

(dynamic policy) and independent policy (static policy) enforcement in our Dis-

tributed Policy Enforcements Architecture (DENAR) and its components interac-

tions to make a policy decision.

There are two types of policy decision which are local domain decision and remote

domain decision. The local domain decision details the interaction between the

DENAR components where no need for communicate other DENARs in the net-

work. The remote domain decision details the interaction between the DENAR

components themselves and other DENARs components where communicating

other DENARs in the network is essential to make policy decisions. During the

authorisation process, the DENAR receives an authorisation request from a PEP.

Then, a PDP retrieves the policy for that request from the local PR. Thus, the

Chapter 8. DENAR Enforcement and Coordination 123

local domain decision or remote domain decision can be made based on the rule

type (dependent or independent rule).

Sequence diagrams are used to explain both local decision where one DENAR

make the decision and also collaborative DENARs in the network those share the

decision.

8.2.1 Local Domain Decision

There are four cases to make a decision locally based on the independent rules

which are illustrated below.

Case1: when a rule has no restrictions (no condition premise). [See Chapter 6,

Section 6.2.2 for more details]

Example 8.1: Suppose a rule that saying: subject (Adam and Alice) can read the

resource (open.txt) without any restrictions. The rule is:

allow (S, open.txt, read) when true

where S = {Adam,Alice}

This rule is enforced locally by one DENAR because there is no condition premise.

Case2: a rule has restrictions (conditional premise) but the rule is an independent

rule where restrictions on subjects and environments only. [See Chapter 6, Section

6.2.2 for more details].

Example 8.2: Suppose a rule that saying: subjects (Fiona, Fride) can read the

resource (open.txt) with two restrictions:- 1) the subject age must be above 30

years. 2) The access must be at the first day of 2012. The rule is:

allow (S, open.txt, read) when ((S.age > 30) and (system.date =′ 01.01.2012′))

where S = {Fiona, Fride}

Chapter 8. DENAR Enforcement and Coordination 124

Case3: a rule has restrictions (conditional premise) and the rule is independent

rule where restrictions on objects, past events and hypothetical rule and those

conditional attributes can be found in local PIP, i.e. in the same DENAR. [See

Chapter 8, Section 8.3.2 for more details].

Example 8.3: Suppose a rule that saying the subject (Fiona, Fride) can read the

resource (close.txt) with two restrictions:- 1) the subject has read (open.txt) re-

source in the past. 2) The (open.txt) resource size must be greater than 10000

bytes. The object domain location for the object (close.txt) of the rule and the

object domain location that evaluated in the condition (open.txt) are located in a

same domain, thus, these conditional attributes be founded in local PIP (let say

PIP1). The rule is:

allow (S, close.txt, read) when

(@PIP1 sometime done (S, open.txt, read)) and(@PIP1 (open.txt).size > 10000)

where S = {Fiona, Fride}

Case4: when a rule has no restriction but indicate to an obligation after the

decision made and the action is taking place. The decision value must be stored in

local PIP where this value is needed for other future decision in same DENAR (let

say is enforced and needed for PDP1 so stored in PIP1). This sort of enforcement

is detailed in Push Model. [See Chapter 6, Section 8.2.1.2 for more details]

Example 8.4: Suppose a rule that saying the subject (Fride) can read the resource

(open.txt) without any restrictions. The rule is:

rule1.1 :

allow (S, open.txt, read) when true

where S = {Fride}

rule1.2 :

oblig (PDP1, P IP1, S.read.open = true) when

always done (S, open.txt, read)

where S = {Fride}

Chapter 8. DENAR Enforcement and Coordination 125

The below sequence diagram in Figure 8.1 is used to explain local decision where

one DENAR can make the decision locally.

Figure 8.1: Local Decision Sequence Diagram.

8.2.2 Remote Domain Decision

There are three cases to make a decision remotely based on the dependent rules

which are illustrated below.

Case1: a rule has restrictions (conditional premise) where the main rule is based

on another hypothetical rule that located in different DENAR (in a remote PR).

[See Chapter 6, Section 6.2.2 for more details].

Chapter 8. DENAR Enforcement and Coordination 126

Example 8.5: Suppose a rule that saying the subject (Fiona, Fride) can read the

resource (open.txt) with one restriction:-

the subject has authorisation to read the resource (open.txt) if and only if he/she

has the authorisation to read the resource (regulation.txt). In this case, the re-

source (regulation.txt) is located in different domain and the hypothetical rule

is deployed in remote PR and must evaluated by the remote PDP in different

DENAR. The rule is:

rule1 :

allow (S, open.txt, read) when allow (S, regulation.txt, read)

where S = {Adam,Alice}

Case2: a rule has restrictions (conditional premise) and the rule is a dependent

rule where restrictions on objects and past events and those conditional attributes

can be found in Remote PIPs, i.e. in the different DENAR. This sort of enforce-

ment is detailed in the Pull Model. [See Chapter 8, Section for more details 8.3.1

].

Example 8.6: Suppose a rule that saying: subjects (Fiona, Fride) can delete the

resource (close.txt) with two restrictions:- 1) the subject has read (regulation.txt)

resource in the past. 2) The (regulation.txt) resource size must be greater than

10000 bytes. The object domain location for the object (close.txt) of the rule

and the object domain location that evaluated in the condition (regulation.txt)

are located in a different domain, thus, these conditional attributes be founded in

remote PIPs (let say PIP2). The rule is:

allow (S, close.txt, delete) when

(#@PIP2 sometime done (S, regulation.txt, read))) and

(#@PIP2 (regulation.txt).size > 10000)))

where S = {Fiona, Fride}

Case3: when a rule has no restriction but indicate an obligation after the decision

made and the action is taking plase. The decision must be stored in remote PIPs

where this value is needed for other future decision in different DENARs (let say

Chapter 8. DENAR Enforcement and Coordination 127

is enforced by PDP2 and needed for PDP1 so stored in PIP1). This sort of

enforcement is detailed in Push Model. [See Section for more details 8.3.2]

Example 8.7: Suppose a rule that saying the subject (Fride) can read the resource

(regulation.txt) without any restrictions. The rule is:

rule1.1 :

allow (S, regulation.txt, read) when true

where S = {Fride}

rule1.2 :

oblig (PDP2, P IP1, S.read.regulation = true) when

always done (S, regulation.txt, read)

where S = {Fride}

The below sequence diagram in Figure 8.2 is used to explain how collaborative

DENARs share information to make a decision.

8.3 DENAR Coordination Mechanisms

Realisation of IT management processes by means of policy rules relies on local

condition and coordination signals to acquire a particular decision. Hence, some

features of the coordination signal that is implicit to the local condition signal

definition need to be treated in a special manner. Thus, we propose Push and Pull

Models to the coordination signal that run to check the value located in different

DENARs. However, the Push and Pull Models are the coordination signals that

run when the local condition signal is running to communicate with remote PIP(s)

(in different DENARs) to check the value that needed to evaluate the condition.

However, to control rule enforcement for both techniques, the termination of the

action must be detected, and continuation of this enforcement must be facilitated

either the coordination signal is succeed to get the value or fail.

As these are not “local condition” signal but runtime-dependent messages originat-

ing in the policy enforcement infrastructure, they are called coordination signal.

Chapter 8. DENAR Enforcement and Coordination 128

:PEP :Local PDP

1. send Auth_Request()

9. return Auth_Responce (decision)

2. find policy()

3. return policy

4.check policy has collaborative rules

4.1. call local PDPcoordinator remote decision

7.evaluate the policy against Auth_Request

10.check policy has obligation

10.1. log obligation in log file

8.perform the Auth_Responce

11. notify accessing()

11.1.check notification against obligation in log file

11.2. store notification locally

:Local PDPcoordinator :Local PIPcoordinator

4.3. return remote decision

4.2.contact PDPcoordinator remote
PDPcoordinators for remote decision

5.check policy has conditions

6.1. find local attributes for conditions

6.2. return local attributes

6.3. call local PIPcoordinator to find remote attributes for conditions

6.4.contact PIPcoordinator remote
PIPcoordinators for remote attributes

6.5. return local attributes

11.3. store notification remotely

Local PR Local PIP

Figure 8.2: Remote Decision Sequence Diagram.

Hence, an remote signal is used to signify the dependent condition in a rule. The

following Figure 8.3 and Figure 8.4 depict the difference between the local con-

dition signal and coordination signal where the refinement rules involves remote

signal to decouple signal partitions.

local signal

conditions(n)
local signal

local signal

condition1

condition2

condition N

Figure 8.3: Local Condition Signal.

Chapter 8. DENAR Enforcement and Coordination 129

conditions(n) local signal

dependent condition
remote signal

remote signal

dependent condition(N)

independent condition(N)

Figure 8.4: Coordination Signal.

This is achieved by allowing the conditional attributes to have reference that indi-

cate to the local or remote signal where that based on the condition classifications

and attribute in question. Moreover, the conditional attributes that have remote

signal always use a Pull Model. However, the Push Model can be presented as

obligation that is added in a rule.

The acknowledgement is required to provide coordination for either Push or Pull

Model to request or provide some values those are evaluated in condition where

may be distributed over several PIPs. In essence, in the Push Model, the coor-

dination mechanism must be able to detect the execution of an action as well as

sending the acknowledgement of this execution to DENARs that needs this value

or associates with their enforcement. For the Pull Model, the coordination mech-

anism must be able to find the required attributes located in several PIPs, thus,

one or more signals are run and then they are evaluated in the condition premise.

Therefore, the execution of action is being made when these values are returned

back and evaluated.

The policy decision and enforcement process are based on information that orig-

inates inside or outside the process by the local condition or coordination signal.

Thus, this process and the policy action must be connected.

8.3.1 Pull Model

The Pull Model is used by a PDP to ask remote PIPs (those not located in the

same DENAR of the PDP) about a value that required in dependent condition to

complete the decision for a particular rule. By coordination mechanisms, remote

signal must be introduced in a condition premise for dependent conditions where

Chapter 8. DENAR Enforcement and Coordination 130

the remote signal is introduced in the rule refinement method (See Chapter 7,

Section 7.2.2). This signal can be issued to mark the completion of requesting and

receiving all dependent conditional attributes, i.e. all conditional attribute must

be received and evaluated to true and then the action can be executed otherwise

the action cannot be executed.

Example 8.8 Suppose that there are dependent rules:

The subject (Fride) can read the resource (regulation.txt). In addition, the subject

(Fride) can delete the resource (close.txt) only if he has read the resource (regula-

tion.txt). According our refinement method, for rule1, the object (regulation.txt)

is located in (domain1), thus, rule1 should deployed into the policy repository

(PR1) for the (DENAR1) where it is enforced by (PDP1). Also, when the rule1

enforced and the subject (Fride) read the resource (regulation.txt), the decision

value is stored in (PIP1). In addition, for rule2, the object (close.txt) is located in

(domain2), thus, rule2 should deployed into the policy repository (PR2) for the

(DENAR2) where it is enforced by (PDP2). However, rule2 decision cannot made

without evaluating its condition where the attribute value is located in different

domain.

This rule1 and rule2 in Pull Model can be formalised in SANTA as:

rule1 :

allow (S, regulation.txt, read) when true

where S = {Fiona}

rule2 :

allow (S, close.txt, delete) when sometime done (S, regulation.txt, read)

where S = {Fiona}

In Figure 8.5, during the enforcement of rule2 by (PDP2), the reference (indicator)

in its condition premise shows that the value for condition context is existed in

(PIP1). The coordination signal is run (in step 3) to request the past event

attribute by (@PIP1) indicator. As the result of rule1 enforcement in the past

(in step 1), the PIPcoordinator for DENAR2 runs remote coordination signal to

return the decision value that made by (PDP1) in the past to (PDP2) in step 4.

Chapter 8. DENAR Enforcement and Coordination 131

Actually, (PDP2) hold the decision till the requested value is returned in step 2.

Then, the action is executed if and only if the condition is evaluated to true.

Figure 8.5: Pull Model.

8.3.2 Push Model

The Push Model is used by a PDP to send a decision value that might be requesting

in future by other PDPs to save the overhead of communications between PDPs.

Thus, the obligation should be concerned to all such rules to coordinate this value

with other rules. To account for all remote signals in the Push communications

technique with other PDPs, either any policy language can support the obligation

be using (if available), or a synthetic, coordination signal must be introduced. This

signal can be issued to mark the completion of enforcing a rule, i.e. the action has

to be executed and then all values have to be sent to all PIPs those their PDPs

need the result of this event.

Example 8.9

By going back to the same example 8.7 scenario, the formalisation in SANTA in

the Push Model will be change to:

The rule1 is remain as its in rule1.1 and also a new obligation rule is produced in

rule1.2 that saying if the action of rule1.1 is performed then notify PIP2 about

this decision where the PDP2 will need it in the future.

Chapter 8. DENAR Enforcement and Coordination 132

rule1.1 :

allow (S, regulation.txt, read) when true

where S = {Fride}

rule1.2 :

oblig (PDP1, P IP2, S.read.regulation = true) when

done (S, regulation.txt, read)

where S = {Fride}

rule2 :

allow (S, close.txt, delete) when

(@PIP2 sometime done (S, regulation.txt, read))

where S = {Fride}

In Figure 8.6, rule1 is enforced by PDP1 and then PDP1 obligates its decision to

the PIP2 by a coordination signal via PIPcoordinators (in step 1). The PIPcoor-

dinator for DENAR2 stores the value in PIP2 (in step 2). Therefore, when rule2

is enforcing, the PDP2 can find the value locally in PIP2 (in step 3) so that there

is no need to communicate the DENAR1 at the decision time of rule2.

8.4 DENARs Properties

DENAR’s properties are introduced in this section. Synchronisation and concur-

rency in enforcement describe the coordination and collaboration between DENARs.

Finally, the secrecy property describes the secure technologies that can be involved

in the DENAR.

8.4.1 DENAR’s Coordination and Synchronisation

As with all distributed systems, synchronisation and concurrency are major con-

siderations in the distributed enforcements design. The two terms are overlapping

and are almost synonymous. Synchronisation refers to the simultaneous access and

Chapter 8. DENAR Enforcement and Coordination 133

Figure 8.6: Push Model.

updating of shared data between two threads or processes. Concurrency on the

other hand, refers to the efficiency with which a thread or process handles multi-

ple simultaneous requests made from one access control request. The Distributed

Policy Enforcements Architecture (DENAR) is designed to be synchronised and

concurrent. [See Section 8.4.2 for concurrency]

When an access to a specified resource is requested, a policy that retrieved by the

PDP may first consult evaluation for object attributes or past decision against the

current values before make an access decision as restrictions (conditions).

Object and past decision attributes may stored in centralised repository (PIP),

thus, all PDPs access the repository to retrieve the conditional attributes value

but this idea in fact make the enforcement still centralised. On the other hand,

distributed repositories (PIPs) may be designed. In the first case, the conditional

attributes may be replicated across all PIPs on the network which would necessi-

tate the PDPs to continuously coordinate the values of their resources and past

decision attributes with each other. In other case, the conditional attributes may

be only deployed into a particular PIP that being configured for a particulate do-

main. The last case is being more efficient for less communication and resources

capacity.

Chapter 8. DENAR Enforcement and Coordination 134

However at this point, the conditional attributes those located in the local PIP

(at DENARs’ PDP) are available to the PDP but other conditional attributes

are not. Therefore, we design PIPcoordinator component that instruct a PDP

to retrieve the remote conditional attributes from other PIPs. Moreover, the

component coordinates these values, where a decision is based on originating of

these values between PIPcoordinators in DENARs, viz. a sub-policy can be located

in a domain for which decision are being derived from a subject rights on other

objects located in another domain or decisions that have been made in the past

by other PDPs. Thus, the coordination can be done only by the PIPcoordinator

component. Remotely retrieving or coordinate conditional attribute values for

PDPs proposed to be done through Push and Pull Models those are designed in

(Section 8.3.1). Additionally, locally and remotely storing and updating of these

values in PIPs are proposed to be done through an obligation. Obligations are the

set of actions which a PEP is required to perform either before it has executed a

request, after it has executed a request or along with request execution. In this

case, an obligation updates a proper conditional attribute value once access has

been granted to a resource.

8.4.2 DENAR’s Concurrency

As we mentioned in previous section that concurrency refers to the efficiency

with which a thread or process handles multiple simultaneous requests made from

one access control request. Our Distributed Policy Enforcements Architecture

(DENAR) is designed to be concurrent.

When an access to a specified resource is requested, a policy that is retrieved

by the PDP may consult for collaborative decision (e.g. hypothetical rule, see

Chapter 6, Section 6.2.2) for more than one decisions those made in multiple

PDPs. In this case, the PDP that received the request from a PEP is being the

main decision point to make the final decision for the main request and other

PDPs those involved make other requests. Therefore, we design PDPcoordinator

component that instruct a PDP to communicate the remote PDPs for shared

decision. Moreover, the component act as requester for access decision where a

main decision is based on multiple decisions those made in remote PDPs and

originating to the PDPcoordinator component. Thus, the decision concurrency

can be done only by the PDPcoordinator component.

Chapter 8. DENAR Enforcement and Coordination 135

8.4.3 DENAR’s Security

Each DENAR must be secure and also the communication between DENARs is

the network must be secure. The sub-policies in all PRs and conditional attributes

in PIPs may be encrypted. In addition, the communication between DENAR com-

ponents can be secured (e.g. using LDAP, Lightweight Directory Access Protocol

for retrieving policy from PRs and retrieving conditional attributes from PIPs).

Finally, for the communication between PEPs and PDPs, the network adminis-

trator can implement a secure tunnel (e.g. using COPS protocol). Though COPS

provides for message level security for message integrity and protection, existing

protocols for security such as IPSEC [14] or TLS [35] may optionally be utilised

as a security measure to secure communications between the PDP and the PEP.

The COPS protocol also specifies certain requirements for fault tolerance which is

essential from a distributed application point of view. In order to achieve this, both

the PEP and the PDP are expected to communicate with each other periodically

using connection Keep Alive messages. If the PEP detects failure in the PDP it

should try to reconnect to a backup PDP and in the absence of a connection, should

revert to local decision making in order to minimise disruption. Once a connection

is re-established with a PDP, the PEP should synchronise all decisions taken in

its absence with it. Alternatively, the PDP may request this synchronisation. It

is desirable for the PEP to cache details of previous request decisions so that in

the event of the PDP failing it may continue to use these previous decisions for a

limited period of time till the PDP becomes active again.

However, hacking any DENAR does not affect other DENARs where each DENAR

access to its PR and its PIP.

8.5 Summary

This Chapter presented the enforcement and coordination models in DENAR. De-

signing the enforcement and coordination models, using the policy decomposition

and the Distributed Policy Enforcements Architecture (DENAR), that enable en-

forcement of static and dynamic policies is one of the research objectives. Details

of their design and implementation, together with algorithm are given.

Chapter 8. DENAR Enforcement and Coordination 136

Push and Pull models are proposed and detailed that provide the coordination and

collaboration between DENARs. The access control decision making is improved

by identifying local domain decision and remote domain decision. In addition, this

Chapter showed DENAR’s properties. Performance is improved by localised and

remote decision making, saving time during enforcement.

In Chapter 9 (section 9.3.3), the implementation of the enforcement and coordina-

tion models is provided. In Chapter 10, the evaluation showed that the Distributed

Enforcements Architecture (DENAR) is feasible to the enforcement of both static

and dynamic policies. The Push model was not evaluated in this research because

it would required design of the Policy Enforcement Point (PEP) to notify the PDP

for enforces an obligation which was not presented in the scope of this thesis.

The following Chapter shows the Distributed Enforcements Architecture (DENAR)

prototype to evaluate the research objectives.

Chapter 9

DENAR Prototype

Objectives

• Develop a network of DENARs.

• Implement the DENAR prototype.

• Support the evaluation of the research.

137

Chapter 9. DENAR Prototype 138

9.1 Introduction

The Distributed Enforcements Architecture (DENAR) prototype is developed to

test the security, performance, manageability and resilience of DENAR to enforce

access control policy. It consists of two parts; the DENAR network lab, software

design and implementation modules. It also describes how these interact to achieve

the research objectives.

The DENARs network lab at a technical level describes how the DENARs network

is created and configured. The second part describes how the XACML architecture

and the Sun XACML library are implemented in DENAR. In addition, it describes

how the server-client application that is simulating usage scenarios works and

how the DENAR (server) deals with the users (clients) request. Finally, enforce-

ment and coordination are implemented where DENARs can seamlessly handle

all communications and synchronisation among the various DENAR components

connected in the network.

The rest of this Chapter is structured as follows. Section 9.2 introduces DENARs

network lab. Section 9.2.1 describes the design of DENARs network topologies in

Netkit and DENARs network domains and configuration is described in section

9.2.2. Section 9.3 describes the software design and implementation of DENAR.

Subsection 9.3.1 provides XACML architecture. In subsection 9.3.2, the server-

client application describes how the DENAR (server) deals with the users request

(client). Finally, subsection 9.3.3 describes all classes in the DENAR for the en-

forcement and coordination in DENARs network. Finally, section 9.4 summarises

the Chapter.

9.2 DENARs Network Lab

Setting up a network requires various equipment such as routers, switches, cables,

and machines. Facilities and utilities, installing and maintaining all these devices

in one lab is costly.

To avoid this expenditure and to create additional flexibility in the set up, this

research opted to simulate these devices and save time, effort and money. Network

simulation software is one solution to imitate the working of computers network.

Chapter 9. DENAR Prototype 139

Netkit [81] is free and open source networks simulator. Netkit [81] was developed

by Roma Tre University and the Linux User Group LUG Roma. In Netkit, a vir-

tual network lab can be created by writing simple configuration files that describe

the topology and configurations of that network to be emulated on a single host

machine. The topology is the layout pattern that shows how the machines are

connected with each other in that network.

The DENARs network lab is created using Netkit package 2.8. This software con-

sists of; Netkit core package, Netkit file system package and Netkit kernel package.

These packages were obtained from (wiki.netkit.org/index.php/DownloadOfficial)

and installed on Ubuntu (Debian GUN/Linux) operating system. The Installation

instructions can be found in: (wiki.netkit.org/download/netkit/INSTALL).

We choose Netkit as it meets the requirements for our prototype implementa-

tion and can model the network at various levels of detail, allowing to run the

components of DAENAR implemented in Java.

9.2.1 Building DENAR Topologies in Netkit

DENARs network is divided into sub-networks or LANs (Local Area Network).

LAN refers to a group of computers connected together so that users can share

some resources such as files, printers etc. In this network, each LAN comprises

one DENAR (server), multiple resources and client machines. When a client re-

quests accessing to a resource, a (DENAR) enforces a authorisation policy for the

authorisation decision to the resource before performing the access action.

Figure 9.1 illustrates LAN1 in DENARs network. In this LAN, DENAR1 is the

server machine and pc1-1 is a client machine. The machines are connected with

each other using central router. This type layout represents a star topology. In

this topology, each machine is connected with the router with a cable. Failure in

any cable or any machine except the main router will not take down the entire

LAN [89].

In Netkit simulation software, configuring DENARs network topology requires

creating a file that describes the topology. The file that describes the topology of

the entire network lab is called (lab.conf) and it is provided in (Appendix A.1.2).

For each virtual machine in Netkit, there is an entry of two lines written in that

http://wiki.netkit.org/index.php/Download_Official
http://wiki.netkit.org/download/netkit/INSTALL

Chapter 9. DENAR Prototype 140

Figure 9.1: LAN1 (Local Area Network) in DENARs Network.

file. For example, entry;

1 PC1 -1[mem]=128

2 PC1 -1 [0]= lan1

Listing 9.1: Client (PC1-1) and LAN (LAN1) Configuration in Netkit

The entry creates a virtual machine PC1-1 with network interface eth0, and allo-

cates 128MB of memory for that machine to operate. Netkit also creates a virtual

router for that LAN and connects that machine to one port on that router.

In the DENARs network, the set up of virtual machines are provided in the “vir-

tual machine”.stratup files that echo the virtual machines and connect them to

the network.

1 pc1 -1. startup file

2 --------------------

3 echo ’send host -name "pc1 -1";’ >> /etc/dhcp3/dhclient.conf

4 dhclient eth

5

6 and so on for other PCs

Listing 9.2: Virtual machine (PC1-1) set up in Netkit

9.2.2 DENARs Network Configurations

The client machines IP address can be configured manually. For each machine,

IP address is written in machines’ (.startup) file. This is not the best solution

Chapter 9. DENAR Prototype 141

as it takes time. The network lab is designed to be scalable so that it can be

expanded with the most minimum configuration files editing. Using Dynamic

Host Configuration Protocol (DHCP) can achieve that goal and provides more

realistic and professionalism to the network lab. It automatically assigns dynamic

IP address to the client machines whenever they connect to a DENAR (server).

For each DENAR machine, the DHCP configuration file is (dhcpd.conf). The

DHCP configures to allocates IP addresses within the range of IP addresses in

a LAN. These address ranges can be modified at any time to accommodate any

increase in the lab clients. Along with IP address, DHCP informs the clients

about their default gateway and name server. It offers an IP address for any

machine requesting IP address. If the machine accepts that offer, DHCP becomes

responsible for maintain that IP address for that machine as long as it is connected

to it [93]. Figure 9.2 illustrates the DENARs network that will be used in Chapter

10 to evaluate the efficiency of DENAR.

Geteway

Router1 Router3 Router4Router2

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0
.0

DENAR1

PC1-2

PC3-2

PC2-2

PC4-2

DENAR2

PC1-3

PC3-3

PC2-3

PC4-3

DENAR3

PC1-4

PC3-4

PC2-4

PC4-4

DENAR4

LAN1 LAN2 LAN3 LAN4

Figure 9.2: The DENARs Network.

Chapter 9. DENAR Prototype 142

9.2.2.1 Domain Configuration

Domain Name System (DNS) provides naming service that translates IP addresses

to names, and vice versa [72]. For each LAN, there is a Name Server (NS) that

runs name series. Each LAN represents a domain or zone that can be represented

hierarchly. Figure 9.3 illustrates the hierarchy domain structure of the DENARs

network lab:

• .project represents the top domain which is served by the Gateway.

• .d1.project represents the subdomain (domain1) which is served by Router1.

• .d2.project represents the subdomain (domain2) which is served by Router2.

• .d3.project represents the subdomain (domain3) which is served by Router3.

• .d4.project represents the subdomain (domain4) which is served by Router4.

Geteway

Router1 Router3 Router4Router2

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0

.0

DENAR1

PC1-2

PC3-2

PC2-2

PC4-2

DENAR2

PC1-3

PC3-3

PC2-3

PC4-3

DENAR3

PC1-4

PC3-4

PC2-4

PC4-4

DENAR4

LAN1 LAN2 LAN3 LAN4

.d1.project Domain .d2.project Domain .d3.project Domain .d4.project Domain

.project Domain

Figure 9.3: The DENARs Network domains.

Chapter 9. DENAR Prototype 143

Netkit configures and manages network domains by three files which are named.conf.local,

named.conf.option and db.root. [See Appendix A.1.1 for those files.]

9.3 Software Design and Implementation of DENAR

In this section, DENAR software is presented which involves the XACML frame-

work and policy language [76] in order to integrate a network of stateful, connected

DENARs which involve multiple PDPs, with XACML policy language [76] to en-

force a security policy.

While the network lab represents the infrastructure of DENARs network, we

choose XACML policy language for our implementation. The Sun XACML imple-

mentation is well known in business and widely used. Given the extensibility of

the DENARs prototype, it can possibly be implemented in far more complex and

industry relevant applications. The XACML policy is a stateful policy language

that is a subset of the SANTA language in terms of expressiveness.

The DENARs software is based on Sun’s XACML implementation [92] of the Oa-

sis Markup language (OASIS) [76]. Sun’s XACML Implementation [92] in Java

library of the OASIS standard allows a user to easily program a stateless stan-

dalone PDP which accepts requests encoded in the XML language and provides

a response based on the conditions specified in a relevant policy. This library im-

plements all the standard XACML features specified in the OASIS specification.

The programmers guide to the XACML implementation [92] provides an in-depth

account of how to work with and set up the XACML library. The core PDP used

in DENAR implementation is adapted from Sun’s sample implementation package

(which also contains the sun.xacml library) and adapted for use with the other

DENARs classes.

The class diagram in Figure 9.4 shows all classes in the system and the relation-

ships between these classes where all classes are presented and described in below

subsections.

Chapter 9. DENAR Prototype 144

«DENAR»

Attributes

Operations
+ClientInstance(,)
+run()
+listenSocket()
#finalize()
+main(,)

«SimplePDP»

Attributes

Operations
+getXACMLDecision(, ,)

«RemotePIPcoordinator»

Attributes

Operations
+connectionToRemotePIP(, , , , , , , , , ,)
+addToLocalPIP(, , , , , , ,)
+updateLocalPIP(, , , , , ,)
+getAttributeLocalPIP(, , , , , ,)

«PIPcoordinator»

Attributes

Operations
+getSubjectCondtionAttribute(, ,)
+getObjectCondtionAttribute(, ,)
+getEnvironmentCondtionAttribute(, ,)
+getEventCondtionAttribute(, ,)
+addAttributesToDB(, , , , , , ,)
+updateAttributesDB(, , , , , ,)

«PIP»

Attributes

Operations
+PIPcoordinatorTask(, , , , , , , , , , ,)
+addToLocalPIP(, , , , , , ,)
+updateLocalPIP(, , , , ,)
+getAttributeLocalPIP(, , , , , ,)
+connectionToRemotePIP()
+addToRemotePIP(, , , , , , , ,)
+updateRemotePIP(, , , , , , ,)
+getAttributeRemotePIP(, , , , , , , ,)

«Client»

Attributes

Operations
+client()
+toTokenise()

«ConstrintCheckerFunction»

Attributes

Operations
+PolicyChecker(, ,)

«Tester»

Attributes

Operations
+wait1sec()
+main(,)

1..* 0..1

run

1..11..1

run

1..1

1..1 call

1..1

0..1

call

1..1

0..1

call

1..1

0..1

call

1..1

0..1

call

0..n
0..1

connect

Figure 9.4: DENAR prototype class diagram.

Chapter 9. DENAR Prototype 145

9.3.1 XACML Architecture

OASIS standard XACML architecture (See Chapter 2, Section 2.4.3) was mod-

ified by [15] in a way that PDPs become easy to be deployed in the DENARs

network lab. Figure 9.5 depicts the DSP XACML framework that presented in

[15]. In Figure 9.5, the PDP becomes at the heart of the architecture instead

of context handler, context handler is moved inside the PDP [15]. This, on one

hand, increases the performance of handling authorisation requests, querying the

attributes, evaluating decisions, and providing authorisation responses. On the

other hand, this makes PDP to become portable and easy to be moved from one

location to another across the network [15]. Moreover,in [7], we modified XACML

architecture to provide synchronisation between multiple PDPs those enforce dy-

namic policies.

Figure 9.5: DSP XACML framework [15].

The PEP, in Figure 9.5, appears in the server application to be as close as possible

to the resources. User requests initially come from client to the server application.

PEP picks up the requests, sends them to the context handler in the PDP, and

Chapter 9. DENAR Prototype 146

waits for the decisions. Decisions are sent from PDP to PEP wrapped inside

XACML response.

Sun XACML implementation consists of several packages for implementing PDP,

PEPs and any other XACML related component. The most important packages

are:

• com.sun.xacml is the core package. It contains PDP class, policy and

policy set handling, rule evaluation and target matching.

• com.sun.xacml.ctx is the package that defines XACML context schema

types such as request and response. It contains classes for encoding and

parsing XML context. The PEP can be built based on these classes.

• com.sun.xacml.combine is the package that supports all of the standard

combining algorithms. It also contains standard interfaces and abstract

classes for creating new combining algorithms. The combining algorithm

specifies the final access control decision of a policy. In SANTA, the combin-

ing algorithm is provided in term of decision rule. [See Chapter 3, Section

3.2.1.2]

• com.sun.xacml.attr is the package that supports all the standard XACML

attribute data types. It also contains standard interfaces and abstract classes

to define new attribute types.

• com.sun.xacml.finder represents the PAP and PIP. It contains classes for

retrieving policies, attributes not provided in the request for PDP.

DENAR software is implemented using Sun XACML implementation [92] and

the DSP XACML framework [15] and additional classes we built. However, DSP

XACML framework implements multiple PDPs but does not involve the PIPs

where as the DENAR prototype does.

9.3.1.1 Policy File, Request and Response

In order for PDP to evaluate authorisation decisions, policies must be available

in policy repository all the time for the PDP. DENAR enforces only one rule per

request from policy files, i.e. those stored in policy repository (PR). According to

Chapter 9. DENAR Prototype 147

our decomposition model in Chapter 7, for each object in the system, there is a

rule that represents its authorisation statement. Rules in the policy file that are

implemented in our prototype are very simple. That is, each rule allows a user to

perform download action on the directory that he owns only. For example, user

(ali) can perform download action on (/hosthome/XACML-Project/users/ali) file.

Listing 9.2 shows the rule corresponding to user (ali). That rule has an ID (in first

line), which is an identifier used by PAP and PDP to classify the rules. It also has

an effect, which is Permit. The rules’ effect is the authorisation decision for the

requested authorisation access. The subject attribute, (in line 6), represents the

user name. The resource attributes, (in line 16 and 17), represents the resource to

be accessed. The actions attribute, (in line 26), specifies action.

1 <Rule RuleId =" Rule0001" Effect =" Permit">

2 <Target >

3 <Subjects >

4 <Subject >

5 <SubjectMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:string -equal">

6 <AttributeValue DataType ="http ://www.w3.org /2001/ XMLSchema#string">ali

7 </AttributeValue >

8 <SubjectAttributeDesignator DataType ="http :// www.w3.org /2001/ XMLSchema#string"

9 AttributeId ="urn:oasis:names:tc:xacml :1.0: subject:subject -id" />

10 </SubjectMatch >

11 </Subject >

12 </Subjects >

13 <Resources >

14 <Resource >

15 <ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:string -equal">

16 <AttributeValue DataType ="http ://www.w3.org /2001/ XMLSchema#string">

17 /hosthome/XACML -Project/users/ali </ AttributeValue >

18 <ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/ XMLSchema#string"

19 AttributeId ="urn:oasis:names:tc:xacml :1.0: resource:resource -id" />

20 </ResourceMatch >

21 </Resource >

22 </Resources >

23 <Actions >

24 <Action >

25 <ActionMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:string -equal">

26 <AttributeValue DataType ="http ://www.w3.org /2001/ XMLSchema#string">Download

27 </AttributeValue >

28 <ActionAttributeDesignator DataType ="http :// www.w3.org /2001/ XMLSchema#string"

29 AttributeId ="urn:oasis:names:tc:xacml :1.0: action:action -id" />

30 </ActionMatch >

31 </Action >

32 </Actions >

33 </Target >

34 </Rule >

35 </Policy >

Chapter 9. DENAR Prototype 148

Listing 9.3: Policy File in XACML

In a request, (ali) is the subject, (/hosthome/XACML-Project/users/ali) is the

resource, i.e. the object to be accessed, and (download) is the action to be per-

formed on that resource. The PEP passes these three values to the context handler

in the PDP.

The context handler generates a standard XACML request similar to that one

in Listing 9.3. The request must contain subject, resource and action attributes.

Then, it forwards the request to the PDP. The PDP uses subject attribute to

search for any applicable rule. If any applicable rule is found, the PDP compares

the resource and action attribute values of the applicable rule with the resource

and action attribute values of the request. If all values are matched, the request

is evaluated to true and the rule effect is returned. Otherwise, the PDP found no

applicable rule and in this case it returns NotApplicable.

1 <Request xmlns="urn:oasis:names:tc:xacml :1.0: context"

2 mlns:xsi="http ://www.w3.org /2001/ XMLSchema -instance">

3 <Subject >

4 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: subject:subject -id"

5 DataType ="urn:oasis:names:tc:xacml :1.0: data -type:rfc822Name">

6 <AttributeValue >ali </ AttributeValue >

7 </Attribute >

8 </Subject >

9 <Resource >

10 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: resource:resource -id"

11 DataType ="http ://www.w3.org /2001/ XMLSchema#string">

12 <AttributeValue >/ hosthome/XACML -Project/users/ali </ AttributeValue >

13 </Attribute >

14 </Resource >

15 <Action >

16 <Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: action:action -id"

17 DataType ="http ://www.w3.org /2001/ XMLSchema#string">

18 <AttributeValue >Download </ AttributeValue >

19 </Attribute >

20 </Action >

21 </Request >

Listing 9.4: Request File in XACML

According to the rule above, this request will be evaluated to true. The rule will

return its effect to the policy. The policy will return that value to the PDP which

in turn wraps it into an XACML response and sends it to the context handler.

Chapter 9. DENAR Prototype 149

Since the applicable rule effect is Permit, this value will be placed in the decision

attribute of the XACML response and returned to the PEP to be enforced. Listing

9.4 shows the standard XACML response. In that response the decision attribute

which contains Permit appears in line 3. If no applicable rule is found, that value

will be NotApplicable.

1 <Response >

2 <Result >

3 <Decision >Permit </Decision >

4 <Status >

5 <StatusCode Value="urn:oasis:names:tc:xacml :1.0: status:ok"/>

6 </Status >

7 </Result >

8 </Response >

Listing 9.5: Response File in XACML

9.3.2 Client-Server Application

Client-Server application is a simple distributed Java application that allows users

to download files. It consists of two parts; server part (DENAR.java file, Appendix

A.2.3) and client part (client.java file , Appendix A.2.2).

The implementation in the paper [7] provides a library in Java which creates and

links a network of PDP’s in a peer to peer implementation. The library is provided

for the maintenance of state even for PDP’s that are stateless. The library also

contains classes for the generation of PEP nodes that automatically link with the

Overlay Network created and manage communication to and from the PDP. The

PEP is capable of connecting to more than one PDP if required and automatically

queries the backup PDP’s for a decision if the main active PDP fails. For the PEP,

the PDP’s appear to be one coherent system and the distribution and coordination

between the various PDP’s are completely hidden from it by the Overlay Network.

The chief characteristic of the overlay network is that it can be used to easily

convert existing standalone, stateless PDP’s into a network of stateful networked

PDP’s with minimal alteration in the existing PDP code.

By the same technique in [7], the network of DENAR can be implemented for the

event of any DENAR failing, thus, the library will dynamically reconfigure itself

to distribute the load among the other DENAR’s in the network. The reason for

Chapter 9. DENAR Prototype 150

not undertaking the peer to peer implementation in this work is that we have

done that in [7]. However, in this work, we implements the network of DENAR by

client-server technique to evaluate the efficiency of enforcing static and dynamic

policy in distributed setting where integrating this work with the work in [7] would

be useful for the future work to offer more resilience in policy enforcement.

9.3.2.1 Client Class

The client part enables users to request (downloading) files after being authen-

ticated. The client application asks for username and password before allowing

users to make request. If the user is authenticated; he/she can perform the action

(download) to resources from the server (DENAR).

The client class variables, operations and responsibilities are illustrated in Fig-

ure 9.6.

«Client»

-clientsocket: Socket
-ToServer: PrintWriter
-FromServer: BufferedReader
-input: InputStream
-output: OutputStream
-serverip: String
-username: String
-password: String

+client(): void
+toTokenise(): void

Responsibilities
-- Connecting to the server
-- Requesting dwenload file

Figure 9.6: Client class.

Figure 9.7 illustrates flow chart process in the client class for the authorisation

request to download a file.

The client application requires a username or subject, action and resource which

is the destination file. It sends all these data to the DENAR (server) and waits for

authorisation decision. If NotApplicable or deny is returned, this means that the

user has no permission to perform the action on the destination file. Otherwise,

Chapter 9. DENAR Prototype 151

Figure 9.7: Client class flow chart.

Permit will be returned and the user will be able to perform the action on that

file.

9.3.2.2 DENAR Class

The DENAR part, on the other hand, is responsible for; authenticating users, au-

thorising their request and enforcing authorisation decisions. This part is designed

to be a multi-threading application. Because it is acting as a server, it has to be

able to serve clients concurrently.

Using multi-threading, the server application is designed to create a connection

with each client, and keeps that connection alive as long as the client remains

connected. These connections must be reliable. That is, data must not be dropped

and must not arrive late on the client or out of order. This can be achieved using

sockets. A Socket is a bidirectional end point between two applications on the

network. Each program binds a socket to its end of the connection using local and

remote IP address and port numbers [44].

Chapter 9. DENAR Prototype 152

The DENAR class variables, operations and responsibilities are illustrated in Fig-

ure 9.8.

«Server»

-csokt: Socket
-username: String
-password: String
-FromClient: BufferedReader
-ToClient: PrintWriter
-input: InputStream
-output: OutputStream
-authorisationResult: String

+ClientInstance(clientsokt: Socket): void
+run(): void
+listenSocket(): void
#finalize(): void
+main(args: String[])

Responsibilities
-- Accepting client connection
-- Authentication
-- Calling PDP

Figure 9.8: DENAR Class.

Figure 9.9 illustrates a flow chart process in the DENAR class for the authorisation

response to download request. In order to connect the client to DENAR, a user has

to type the DENARs IP address (i.e. 192.168.20.1). The client application asks

the user to type his username and password. If this authentication information

was entered correctly, the user can now request access his files. (See Appendix

A.2.4 for tester class)

Instead of manually generating requests from each user, tester class is an auto-

matic code used to generate 50 requests from each user machine. This, on one

hand, saves time and efforts. On the other hand make the test more effective by

sending requests from each user to the PDP at the same time. It must be started

in conjunction with client application as follow:

1 java tester [server address] [username] [password] [seed] | java client

Listing 9.6: Connecting the client to DENAR

Chapter 9. DENAR Prototype 153

Figure 9.9: DENAR class flow chart.

This command makes tester class to start the client application, and supply con-

nection, authentication and requests data to the client application on behalf of the

user. Since this application generates requests randomly, the seed value makes it

generate the same set of request by generating the same set of random numbers.

9.3.3 DENARs Enforcement and Coordination

In this subsection, the SimplePDP, ConstraintCheckerFunction, PIPcoordinator,

RemotePIPcoordinator and PIP classes are described where they provide the

DENARs policy enforcement and coordination.

9.3.3.1 SimplePDP Class

The SimplePDP class is the main class in the DENAR enforcement implementa-

tion. It extends the PDPConfig class. The SimplePDP class variables, operations

and responsibilities are shown in Figure 9.10.

Chapter 9. DENAR Prototype 154

«SimplePDP»

-xacmlRequest: String
-decisionValue: String

+getXACMLDecision(subjectString: String ,resourceString: String ,actionString: String): String

Responsibilities
-- Calling Sun XACML Library.
-- Creating request.
-- Evaluating access request against a policy.
-- Creating response and send it back to the server.
-- Calling ConstrintCheckerFunction to evaluate conditions .

Figure 9.10: SimplePDP class.

SimplePDP.java file (Appendix A.2.5) represents the PDP of DENAR. Policy

Repository (PR) is the first component of the PDP to be created.

The SimplePDP extends the original PDPConfig class in order to implement a cus-

tom function getXACMLDecision(). This function is required to setup a policy

and attribute finders where they are imported from (com.sun.xacml.finder). Also,

it creates a PDP, receives a request file and creates a response file where being the

start task of the policy enforcement in DENAR. Since PDP understands XACML

requests in XML format only, the context handler is implemented to format such

requests. It is designed to formulate XACML request. It uses a template made of

string with three spaces; subject, resource and action. The context handler fills

these spaces with the values that come from the PEP to generate the XACML

request in XML format. An alternative way is by an XML file represents the stan-

dard XACML request. The context handler reads that file and replaces subject,

resource and action attributes with the same values come from the PEP. Instead of

receiving a request file, the function receives request attributes (subject, resource

and action) and creates the request which save a network bandwidth.

Sun XACML [92] defines a finder module (i.e. FilePolicyModule) to implement

the repository. This module specifies the location of policies which is usually XML

file. Instead of that, module is created and loaded with the DENAR policy file

Policy.xml.

The PolicyFinder represents the PAP. It is loaded by FilePolicyModule which rep-

resents the repository of policy. Effectively, it loads DENAR policy file. A brief

description of SimplePDP functions are as follows in below listing:

1 // Initialise and start PDP

Chapter 9. DENAR Prototype 155

2 PDP pdp = new PDP(new PDPConfig(attrFinder , policyFinder , null));

3 // load the policies

4 FilePolicyModule policyModule = new FilePolicyModule ();

Listing 9.7: Starting PDP and loading policy in DENAR

The SimplePDP class also calls the specially designed ConstraintCheckerFunction

class to evaluate conditional attributes from a policy against their values from

distributed PIPs.

1 FunctionFactoryProxy proxy = StandardFunctionFactory.getNewFactoryProxy ();

2 FunctionFactory factory = proxy.getConditionFactory ();

3 factory.addFunction(new ConstraintCheckerFunction ());

4 FunctionFactory.setDefaultFactory(proxy);

5 decisionValue = ConstraintCheckerFunction.PolicyChecker(subjectString , resourceString ,

6 actionString);

7 // create xacml request and response

8 RequestCtx request = RequestCtx.getInstance(requestNode);

9 ResponseCtx response = pdp.evaluate(request);

Listing 9.8: Enforcing a policy In DENAR

Once the request is ready, the PDP uses the method evaluate(); to evaluate the

request, and return XACML response which contains the result of evaluation to

the context handler. The response consists mainly of decision attribute which is

the actual value that the PEP uses to enforce the decision. The context handler is

also developed to process the XACML response instantly in the memory instead

of writing it to XML file so that the PEP read it. The context handler returns the

decision value which is either Permit for authorisation or NotApplicable or Deny

for no authorisation.

1 // create xacml request and response

2 RequestCtx request = RequestCtx.getInstance(requestNode);

3 ResponseCtx response = pdp.evaluate(request);

Listing 9.9: Creating authorisation response In DENAR

9.3.3.2 ConstraintCheckerFunction Class

The ConstraintCheckerFunction is a special class (Appendix A.2.6) designed ex-

clusively to evaluate the conditional attributes when a policy is enforced by a PDP.

Chapter 9. DENAR Prototype 156

The ConstraintCheckerFunction class variables, operations and responsibilities are

shown in Figure 9.11 below.

«ConstrintCheckerFunction»

-subjectPolicy: String
-objectPolicy: String
-actionPolicy: String
-subjectCondition: String
-objectCondition: String
-environmentCondition: String
-eventCondition: String
-decisionResult: String

+PolicyChecker(subjectRequest: String , objectRequest: String , actionRequest: String): String

Responsibilities
-- Calling PIPcoordinator to find conditions values.
-- Evaluating condition attributes in the policy against condition values in PIPs and send result
back to SimplePDP.

Figure 9.11: ConstraintCheckerFunction class.

The ConstraintCheckerFunction is invoked by the SimplePDP whenever there is

a call to evaluate condition in a policy file. It uses one main method to arrive at

a decision for any request.

1 String PolicyChecker(String subjectRequest , String objectRequest ,

2 String actionRequest)

Listing 9.10: Evaluating conditions In DENAR

The syntax and semantics of the PolicyChecker, we are more concerned with, are

the list of inputs. The ConstraintCheckerFunction retrieves these inputs from the

actual policy file those meet the same attributes from request. It has to be sup-

plied with all the parameters required by the coordination PIP of the DENAR.

These parameters as declared in the ConstraintCheckerFunction are:

1 String subjectPolicy = "";

2 String objectPolicy = "";

3 String actionPolicy = "";

4 String conditionPolicy = "";

5 String subjectCondition = "";

6 String objectCondition = "";

7 String environmentCondition = "";

8 String eventCondition = "";

Listing 9.11: Main conditional attributes in a policy

Chapter 9. DENAR Prototype 157

Examples of policy files are provided in Appendix A.2.1. Of special interest is the

’LimitedAccessPolicy.xml’ (in Listing A.18) policy which is designed specially to

demonstrate the capabilities of the DENAR coordination PIP using the custom

ConstraintCheckerFunction. The ConstraintCheckerFunction is invoked by the

’LimitedAccessPolicy’ policy. Listing 9.11 shows the rules’ conditions those being

evaluated before making a decision as defined in the policy.

1 <Condition FunctionId =" PDPOverlay_Constraint_Checker">

2 <SubjectCondition DataType ="http :// www.w3.org /2001/ XMLSchema#string">Research

3 </SubjectCondition >

4 <ObjectCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">Secret

5 </ObjectCondition >

6 <EnvironmentConditionDataType ="http ://www.w3.org /2001/ XMLSchema#string ">01 Jan2012

7 </EnvironmentCondition >

8 <EventCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">has allowed

9 </EventCondition >

10 </Condition >

Listing 9.12: Example of conditional attributes in a policy

As can be seen, all the conditional attributes required by the policy to be eval-

uated first against condition values in PIPs. Calling the PIPcoordinator class is

designed to access PIPs in DENARs using the PIPcoordinatorTask function. The

PolicyChecker in the ConstraintCheckerFunction class returns the condition eval-

uation result for those conditional attributes in the policy against those condition

values in PIPs if they are evaluation result equal to true where the result return

back to the SimplePDP class.

1 String conditionEvaluationResult = "";

2 PIPcoordinator = new PIPcoordinator ();

3 conditionEvaluationResult = PIPcoordinator.PIPcoordinatorTask(PIPfind , job ,

4 subjectPolicy , objectPolicy , actionPolicy , subjectCondition , objectCondition ,

5 environmentCondition , eventCondition , nodeAttribute , oldAttribute , newAttribute);

Listing 9.13: Calling PIPcoordinator class for add/update/find condition val-

ues

Once the access is done by receiving that for PEP, the PolicyChecker determines

if new condition values need to be added or current condition values need to be

updated where that enforced by obligation context in a policy. Thus, it simply

creates a new entry for a new condition value in a PIP. Adding and updating con-

dition values in PIPs is performed by the PolicyChecker if the obligation context

Chapter 9. DENAR Prototype 158

indicates that in the policy, the DENAR ensures that all the coordinated condition

values across the DENARs network are updated.

However, unlike the implementation in [27] where the coordinated condition values

are updated before the access. In the DENAR, PDP updates the coordinated

condition values after permitting access to the PEP. The updating can easily

be incorporated by changing the ConstraintCheckerFunction and implementing a

custom method in the PEP for acknowledging execution of the request. This could

potentially be a consideration in future revisions of the prototype to achieve the

objective of the Push Model in the coordination mechanism.

9.3.3.3 PIPcoordinator Class

The main function of the PIPcoordinator class (Appendix A.2.7) is to act as bridge

between DENARs for the coordination. The SimplePDP class in the DENAR can

communicate with other PIPs in the DENARs network only via PIPcoordinators

class. In case of enforcing policies, the PDP communicates with local PIP and

remote PIPs in other DENARs to evaluate conditional attributes.

The PIPcoordinator is being the coordinator between the PDP and PIPs to add

a new condition values or update condition values.

The PIPcoordinator class can determine if the condition values are located in the

local PIP or remote PIPs from the condition context (condition attributes) in the

policy. According to our decomposition model that is described in the Chapter

7, the conditional attributes that begin by indicator “#@” that indicates to the

remote PIPs and followed by the PIP name so those condition values can be

founded in the remote PIPs otherwise condition values can be founded in local

PIP.

In addition, PIPcoordinator calls local PIP via PIP class (presented in Section

9.3.3.5) to add a new condition value, update condition value and fetch a required

condition value for a decision. Also, the PIPcoordinator calls RemotePIPcoordi-

nators class (presented in next section) to connect PIPs in different DENARs.

The PIPcoordinator class variables, operations and responsibilities are shown in

Figure 9.12.

Chapter 9. DENAR Prototype 159

«PIPcoordinator>

-isPermitted: boolean
-subjectPIP: String
-objectPIP: String
-actionPIP: String
-subjectconditionPIP: String
-objectconditionPIP: String
-environmentconditionPIP: String
-eventConditionPIP: String
-PIPcoordinatorSocket: ServerSocket
-out: PrintWriter
-in: BufferedReader

+PIPcoordinatorTask(PIPfind: String , job: String , subjectPolicy: String , objectPolicy: String ,
 actionPolicy: String , subjectCondition: String , objectCondition: String ,
 environmentCondition: String , eventCondition: String , nodeAttribute: String ,
 oldAttribute: String , newAttribute: String): boolean
+addToLocalPIP(PIPadd: String , subject: String , resource: String , action: String ,
 subjectAttribute: String , objectAttribute: String , environmentAttribute: String ,
 eventAttribute: String)
+updateLocalPIP(PIPupdate: String , subject: String , resource: String , action: String ,
 nodeAttribute: String , oldAttribute: String , newAttribute: String): void
+getAttributeLocalPIP(subjectPolicy: String , objectPolicy: String , actionPolicy: String ,
 subjectCondition: String , objectCondition: String , environmentCondition: String ,
 eventCondition: String): boolean
+connectionToRemotePIP(): void
+addToRemotePIP(PIPadd:String , job: String , subject: String , resource: String ,
 action: String , subjectAttribute: String , objectAttribute: String ,
 environmentAttribute: String , eventAttribute: String): void
+updateRemotePIP(PIPupdate: String , job: String , subject: String , resource: String ,
 action: String , nodeAttribute: String , oldAttribute: String , newAttribute: String): void
+getAttributeRemotePIP(PIPfind: String , job: String , subjectPolicy: String ,
 objectPolicy: String , actionPolicy: String , subjectCondition: String , objectCondition: String ,
 environmentCondition: String , eventCondition: String): boolean

Responsibilities
-- calling local PIP to find local condition values.
-- calling local PIP to add new condition values.
-- calling local PIP to update condition values.
-- calling RemotePIPcoordinator to find remote condition values.
-- calling RemotePIPcoordinator to add new remote condition values.
-- calling RemotePIPcoordinator to update remote condition values.

Figure 9.12: PIPcoordinator class.

9.3.3.4 RemotePIPcoordinator Class

The RemotePIPcoordinator class (Appendix A.2.8) acts as bridge for transmitting

condition values between PIPcoordinator and remote PIPs, i.e. those located in

different DENARs.

PDPs can communicate with other PIPs in the DENAR network only via Re-

motePIPcoordinator class which is invoked by PIPcoordinator class. The Re-

motePIPcoordinator is involved to add new condition values, update condition

values and query a required condition value for a decision when those values are

located in remote PIPs.

Chapter 9. DENAR Prototype 160

«RemotePIPcoordinator»

- isPermitted: boolean
- pipsocket: Socket
- out: PrintWriter
- in: BufferedReader
- subjectPIP: String
- actionPIP: String
- subjectconditionPIP: String
- objectconditionPIP: String
- environmentconditionPIP: String
- eventConditionPIP: String

+connectionToRemotePIP(PIPtoConnect: String , job: String , subject: String , resource: String ,
 action: String , subjectAttribute: String , objectAttribute: String ,
 environmentAttribute: String , eventAttribute: String ,
 nodeAttribute: String , oldAttribute: String , newAttribute: String): boolean
+addToLocalPIP(PIPadd: String , subject: String , resource: String , action: String ,
 subjectAttribute: String , objectAttribute: String , environmentAttribute: String ,
 eventAttribute: String): void
+updateLocalPIP(PIPupdate: String , subject: String , resource: String , action: String ,
 nodeAttribute: String , oldAttribute: String , newAttribute: String): void
+getAttributeLocalPIP(subjectPolicy: String , objectPolicy: String , actionPolicy: String ,
 subjectCondition: String , objectCondition: String , environmentCondition: String ,
 eventCondition: String): boolean

Responsibilities
-- accepting connection from mutiple PIPcoordinator.
-- calling local PIP to find local condition values.
-- calling local PIP to add new condition values.
-- calling local PIP to update condition values.

Figure 9.13: RemotePIPcoordinator class.

The RemotePIPcoordinator class variables, operations and responsibilities are

shown in Figure 9.13.

9.3.3.5 PIP Class

The main function of the PIP class (Appendix A.2.9) is to open its defined repos-

itory and add, update and query condition values. The PIP class accepts modifi-

cation and searching for condition values in a defined repository (PIP) either via

PIPcoordinators class (locally) or via RemotePIPcoordinators class (remotely).

The PIP class variables, operations and responsibilities are shown in Figure 9.14

below.

As we can see, the new implementations of the ConstraintCheckerFunction, the

PIPcoordinators and the RemotePIPcoordinators classes can be supplied as pa-

rameters to the DENARs Network so that they are seamlessly integrated into the

network. The coordination is achieved by PIPcoordinator and RemotePIPcoordi-

nator classes where they can seamlessly handle all communications and synchro-

nisation among the various DENARs connected in the network.

Chapter 9. DENAR Prototype 161

«PIP»

-conditionValue: String
-SubjectPIP: String
-ObjectPIP: String
-ActionPIP: String
-conditionValue: String
-conditionValue: String
-conditionValue: String

+getSubjectCondtionAttribute(subjectValue: String , objectValue: String ,
 actionValue: String): String
+getObjectCondtionAttribute(subjectValue: String , objectValue: String ,
 actionValue: String): String
+getEnvironmentCondtionAttribute(subjectValue: String , objectValue: String ,
 actionValue: String): String
+getEventCondtionAttribute(subjectValue: String , objectValue: String ,
 actionValue: String): String
+addAttributesToDB(PIPadd: String , subject: String , resource: String ,
 action: String , subjectAttribute: String , objectAttribute: String ,
 environmentAttribute: String , eventAttribute: String): void
+updateAttributesDB(PIPupdate: String , subjectValue: String , objectValue:String ,
 actionValue: String , nodeAttribute: String , oldAttribute: String , newAttribute: String): void

Responsibilities
-- opening the PIP repository to find the needed condition values.
-- opening the PIP repository to add new condition values.
-- opening the PIP repository to update condition values.

Figure 9.14: PIP class.

9.4 Summary

This Chapter introduced a high level design and some key aspects of the imple-

mentation prototype developed for policy enforcement in a network of DENARs

and the coordination between DENARs.

The DENAR network is developed in the Netkit [81] simulation software. The

DENAR software is implemented in Java where it is integrated with Sun XACML

implementation library [92]. The Chapter also described how these parts work with

each other to achieve the research objectives. In addition, The Chapter described

how the access control request received, a policy enforced and the authorisation

response is made in DENAR. Finally, the PIPcoordinator class is implemented to

retrieve and update a local conditional attributes and the RemotePIPcoordinator

class is implemented to retrieve and update a remote conditional attributes where

these two classes are designed for the coordination task.

In Chapter 10, the evaluation showed that the implementation of Distributed

Enforcements Architecture (DENAR) is feasible to the enforcement of both static

and dynamic policies.

Chapter 9. DENAR Prototype 162

The following Chapter introduces the Centralised PBM and Decentralised PBM

simulators. Moreover, the performance, security, manageability and resilience fac-

tors for this research are evaluated through the case studies in Decentralised PBM

simulator against the Centralised PBM simulator.

Chapter 10

Case Study and Evaluation

Objectives

• Give appropriate network simulators that show how a security policy is en-

forced in both Centralised PBM and Decentralised PBM systems.

• Give appropriate case studies of static and dynamic policies showing policy

enforcement in both Centralised PBM and Decentralised PBM simulators.

• Demonstrate the practical applicability of the presented research.

• Evaluate the Decentralised PBM approach against the Centralised PBM

approach.

163

Chapter 10. Case Study and Evaluation 164

10.1 Introduction

This Chapter introduces the Decentralised Policy Based Management (PBM) sim-

ulator that allows for the enforcement of both static [65] and dynamic [3] policies.

In addition, the Chapter provides three case studies to illustrate the practical ap-

plicability for both static and dynamic policies, i.e those enforced in Centralised

PBM and Decentralised PBM simulators. Finally, this Chapter evaluates the Cen-

tralised PBM and Decentralised PBM approaches based on the research success

criteria. [See Chapter 1, Section 1.6]

The Decentralised PBM simulator is designed to support the static and dynamic

policy enforcement and is used to establish the enforcement functional behaviour

of the Decentralised PBM approach. Enforcement functional behaviour is defined

as the replication of policy decisions that would have been made by a Centralised

PBM in the same scenario. Other success criteria such as performance, security,

manageability and resilience are evaluated in this Chapter based on the case studies

and in Centralised PBM and Decentralised PBM simulators to show the feasibility

of the Decentralised PBM implementation.

The Centralised PBM and Decentralised PBM simulators are described in Section

10.2. Section 10.3 provides the three case studies for static and dynamic policies.

Section 10.4 evaluates the Centralised PBM and Decentralised PBM approaches

in the provided case studies and the simulators.

10.2 Policy Based Management (PBM) Simula-

tion

The aim of this section is to describe the PBM simulation of the centralised and de-

centralised approaches. The two simulators are designed and configured in Netkit

[81]. Both simulators were deployed on a host machine which has the following

specifications:

• Processor: Intel(R) Core(TM) 2 Duo CPU E7500 @ 2.93GHz.

• Memory: 3GB.

• Operating System: Ubuntu GNU/Linux 3.20-35-generic kernel.

Chapter 10. Case Study and Evaluation 165

10.2.1 First Simulator: Centralised PBM

In Centralised PBM, the network includes four LANs with four routers and main

getaway. Also, each LAN includes four client machines (PCs). One Policy Decision

Point (PDP) is deployed on LAN2 server machine. The PDP is involved in the

server application so that running the application will automatically run the PDP

on the same machine (CentralPDP). Users can use the client application on client

machines (PCs) to connect to the server and start performing requests to access

their files.

<
<

 a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t

a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e
 >

>

Geteway

Router1 Router3 Router4Router2

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0
.0PC1-2

PC3-2

PC2-2

PC4-2

Central PDP

PC1-3

PC3-3

PC2-3

PC4-3

PC1-4

PC3-4

PC2-4

PC4-4

LAN1 LAN2 LAN3 LAN4

<
<

 a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t

a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e
 >

>

<
<

 a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t

a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e
 >

>

<
<

 a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t

a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e
 >

>

<
<

 a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t

a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e
 >

>

Figure 10.1: First Simulator: Centralised PBM.

Figure 10.1 shows the authorisation traffic flow, viz. authorisation requests and

responses traffic, for the first simulator. The PDP is operating on LAN 2 server

machine. Authorisation requests from all the clients in LAN1, LAN2, LAN3 and

LAN4 are sent to the PDP where the authorisation response is sent back to the

client that sent the request.

Chapter 10. Case Study and Evaluation 166

The Centralised PBM simulator screen is shown in Figure 10.2. Each LAN is

shown in a corner of the screen with their client windows machines (PCs) and its

window router. The centralPDP is shown in the middle of the screen.

Figure 10.2: Centralised PBM Simulator Screens.

10.2.2 Second Simulator: Decentralised PBM

In Decentralised PBM, four DENARs are deployed where each DENAR involves

one PDP. The first PDP is deployed on LAN1 DENAR machine and similarly for

other LANs.

Unlike the first simulator where all users (clients) are sending their requests to one

PDP, requests are distributed across DENARs. In each LAN, one client sends its

requests to the local DENAR and the other three clients send their requests to

the remote DENARs which are on different LANs.

Chapter 10. Case Study and Evaluation 167

Geteway

Router1 Router3 Router4

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0
.0

DENAR1

PC1-2

PC3-2

PC2-2

PC4-2

DENAR2

PC1-3

PC3-3

PC2-3

PC4-3

DENAR3

PC1-4

PC3-4

PC2-4

PC4-4

DENAR4

LAN1 LAN2 LAN3 LAN4
<

<
 a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e
 >

>

<
<

 a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t

a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e
 >

>

<
<

 a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t

a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e
 >

>

<
<

 a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t

a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e
 >

>

a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t >

>

<
<

 a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e

Router2

a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t >

>

<
<

 a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e

a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t >

>

<
<

 a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e

a
u

th
o

ris
a

tio
n

 re
q

u
e

s
t >

>

<
<

 a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e

Figure 10.3: Second Simulator: Decentralised PBM for DENARs.

Figure 10.3 shows how the authorisation traffic flow is distributed over the DENARs

network. one client (PC1-1) in LAN1 sends requests to the DENAR1 of LAN1,

and the client (PC2-1) sends requests to DENAR2 of LAN2 and so on for the

other clients in LAN1.

The Decentralised PBM simulator screen is shown in Figure 10.4 where each LAN

is shown in a corner of the screen with client windows machines (PCs) and window

DENAR for that LAN.

10.3 Case Study

Our case studies consider a university exam system. Modules’ lecturer prepares a

modules’ exam in the online module directory. Student can download exams with

no restriction or with some restriction based on policies in the case studies below.

Chapter 10. Case Study and Evaluation 168

Figure 10.4: Decentralised PBM for DENARs Simulator Screens.

Each student is doing four modules per semester where each module belongs to a

different school. Figure 10.5 shows these requirements.

Scenario: Suppose students (Ali and Adam) are doing modules (Math1, Com-

puter1, Accounting1 and Research1). Each student can download modules’ exams

which is called (exam1) from the online module directory. The (Math1) module

belongs to Science School and (Computer1) module belongs to Technology School.

The (Accounting1) module belongs to Management School and (Research1) mod-

ule belongs to Art School.

The above requirements are formalised in a central policy where it is suitable for

the Centralised PBM system. On the other hand, the central policy is decomposed

according our decomposition model [See Chapter 7] based on object domains.

Suppose there are four domains where the domain means the school that the

Chapter 10. Case Study and Evaluation 169

Figure 10.5: Central Policy.

module belongs to. According to the decomposition model the central policy is

decomposed into four sub-policies as shown in Figure 10.6.

Figure 10.6: Decomposed sub-policies.

The below case studies show the different restrictions for the above central policy

and sub-policies.

The policy :- Allowing (ali) to (download) resources ((Math1/exam1), (Com-

puter1/exam1), (Accounting1/exam1) and (Research/exam1)) without restriction

(condition). [See Appendix A.2.1, Listing A.10 for the central policy for Cen-

tralised PBM] [See Appendix A.2.1, Listing A.11, A.12, A.13 and A.14 for decom-

posed sub-policies for Decentralised PBM]

Chapter 10. Case Study and Evaluation 170

10.3.1 Case Study 1 (Static Policy)

Students (ali) is doing module (Math1). Student can download modules’ exam

(exam1) from the module directory. In addition, for this case there is no restriction

for the student to download the exam.

Case study 1 policy :- Allowing student (ali) to (download) resource (Math1/exam1)

without restriction (condition). [See Appendix A.2.1, Listing A.15 for the case

study 1 policy]

In Centralised PBM, the policy is enforced in the centralised PDP in LAN2 where

the resource (Math1/exam1) is located in a different domain to the client location

domain (Science School, LAN1). Therefore, the traffics of authorisation request

and authorisation response traffics crosses LAN1 to LAN2 as shown in Figure 10.7

.

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

 >
>

Geteway

Router1 Router3 Router4Router2

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0
1

9
2

.1
6

8
.1

0
.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0

.0PC1-2

PC3-2

PC2-2

PC4-2

Central PDP

PC1-3

PC3-3

PC2-3

PC4-3

PC1-4

PC3-4

PC2-4

PC4-4

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

 >
>

ali

LAN1

Science School

LAN2

Technology School

LAN3

Management School
LAN4

Art School

Math1/exam1

Case study 1 authorisation

Figure 10.7: Case Study 1 (Static Policy) in Centralised PBM.

Chapter 10. Case Study and Evaluation 171

However, in Decentralised PBM, the policy is enforced in the DENAR1 in LAN1

where the resource (/Math1/exam1) is located in the same domain (Science School,

LAN1). Therefore, the traffics of authorisation request and authorisation response

traffics are being inside the same LAN or domain as shown in Figure 10.8 .

Geteway

Router1 Router3 Router4

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.2
0
.0

1
9

2
.1

6
8

.3
0
.0

1
9

2
.1

6
8

.4
0

.0

DENAR1

PC1-2

PC3-2

PC2-2

PC4-2

DENAR2

PC1-3

PC3-3

PC2-3

PC4-3

DENAR3

PC1-4

PC3-4

PC2-4

PC4-4

DENAR4

LAN1

Science School

LAN2

Technology School

LAN3

Management School
LAN4

Art School

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

 >
>

1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t >
>

<
<

 2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

Router2

ali
Math1/exam1

Case study 1 authorisation

Figure 10.8: Case Study 1 (Static Policy) in Decentralised PBM.

10.3.2 Case Study 2 (Local Domains’ Dynamic Policy)

In this case, a policy is enforced with condition of restricting access (download) to

the (Computer1) exam. The condition shows the requirements that must evaluate

to true before performing the action (download). The main objective restricting

the access is that all conditional attributes must be evaluated in a PDP against

their values which are located in a Policy Information Point (PIP).

Case study 2 policy :- Allowing (ali) to (download) resource (Computer1/exam1)

with restriction (condition) where (ali) belongs to Foundation group, the (Com-

puter1/exam1) is classified as OpenBook, the download must be done before 01/Jan/13

Chapter 10. Case Study and Evaluation 172

and the (Computer1/exam1) has not been downloaded before. [See Appendix A.2.1,

Listing A.16 for the case study 2 policy].

Listing 10.1 illustrates conditional attributes that are involved in the policy for

this case study.

1 <Condition FunctionId =" PDPOverlay_Constraint_Checker">

2 <SubjectCondition DataType ="http :// www.w3.org /2001/ XMLSchema#string">Foundation

3 </SubjectCondition >

4 <ObjectCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">

5 (/ Computer1/exam1)=OpenBook </ ObjectCondition >

6 <EnvironmentCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">

7 01/ Jan /2013 </ EnvironmentCondition >

8 <EventCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">

9 NotDone(ali ,(/ Computer1/exam1), Download)</EventCondition >

10 </Condition >

Listing 10.1: Case study 2 policy in XACML

In Listing 10.1, the SubjectCondition attribute means that the student (ali) be-

longs to Foundation group and ObjectCondition attribute means that exam file

(/Computer1/exam1) must be classified as OpenBook. Moreover, the Environ-

mentCondition attribute means that exam must be downloaded before 01/Jan/2013

and EventCondition attribute means that exam (/Computer1/exam1) must not

be done before by the same student.

In Centralised PBM for this case, the policy is enforced and also all conditional

attributes in the policy are evaluated against their values in the centralised PIP

by the CentralPDP. Figure 10.9 shows the authorisation traffic where it crosses

LAN1 to LAN2 to be enforced in CentralPDP.

However, in Decentralised PBM for this case, the policy is enforced by the DENAR1

and also all conditional attributes are evaluated against their values in the local

PIP (PIP1) for domains’ DENAR (DENAR1). In this case, the student (ali) re-

quests downloading the exam (/Computer1/exam1) where it is located in (Tech-

nology domain), thus, this policy is enforced by PDP2 in DENAR2 that is con-

figured for the Technology domain. The conditional attributes (ObjectCondition)

and (EventCondition) values are retrieved from the local PIP for DENAR2 be-

cause they are located in the same domain as the object (/Computer1/exam1).

Figure 10.10 shows the authorisation traffic where it crosses LAN1 to LAN2 to

be authorised in DENAR2.

Chapter 10. Case Study and Evaluation 173

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

 >
>

Geteway

Router1 Router3 Router4Router2

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0

.0PC1-2

PC3-2

PC2-2

PC4-2

Central PDP

PC1-3

PC3-3

PC2-3

PC4-3

PC1-4

PC3-4

PC2-4

PC4-4

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

 >
>

ali

LAN1

Science School

LAN2

Technology School

LAN3

Management School
LAN4

Art School

Computer1/exam1

Case study 2 authorisation

Figure 10.9: Case Study 2 (Dynamic Policy) in Centralised PBM.

10.3.3 Case Study 3 (Remote Domains’ Dynamic Policy)

In this case, a policy is enforced with condition involving restricting the access

(download) to the (Accounting1) exam. Listing 10.2 illustrates conditional at-

tributes involved in a policy.

Case study 3 policy :-Allowing (ali) to (download) resource (Accounting1/exam1)

with restriction (condition) where (ali) belongs to Foundation group, the (Re-

search1/exam1) is classified as MutipleChoice, the download must be done before

01/Jan/13 and the exam (Research1/exam1) is downloaded before by the same

student. [See Appendix A.2.1, Listing A.17 for the case study 3 policy].

1 <Condition FunctionId =" PDPOverlay_Constraint_Checker">

2 <SubjectCondition DataType ="http :// www.w3.org /2001/ XMLSchema#string">Foundation

3 </SubjectCondition >

4 <ObjectCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">

5 (Research1/exam1)= MutipleChoice </ ObjectCondition >

6 <EnvironmentCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">

Chapter 10. Case Study and Evaluation 174

Geteway

Router1 Router3 Router4

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0

.0

DENAR1

PC1-2

PC3-2

PC2-2

PC4-2

DENAR2

PC1-3

PC3-3

PC2-3

PC4-3

DENAR3

PC1-4

PC3-4

PC2-4

PC4-4

DENAR4

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

 >
>

Router2

1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t >
>

<
<

 2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

ali

Computer1/exam1
LAN1

Science School

LAN2

Technology School

LAN3

Management School
LAN4

Art School

Case study 2 authorisation

Figure 10.10: Case Study 2 (Dynamic Policy) in Decentralised PBM.

7 01/ Jan /2013 </ EnvironmentCondition >

8 <EventCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">

9 Done(ali ,(Research1/exam1), Download)</EventCondition >

10 </Condition >

Listing 10.2: Case study 3 policy in XACML

In listing 10.2, the SubjectCondition attribute means that the student must belong

to Foundation group and ObjectCondition attribute means that exam file (Re-

search1/exam1) must be classified as MutipleChoice. Moreover, the Environment-

Condition attribute means that exam must be downloaded before 01/Jan/2013

and EventCondition attribute means that exam (Research1/exam1) must be done

before by the same student.

In Centralised PBM, the policy is enforced in the CentralPDP and all conditional

attributes in the policy are evaluated against their values in the centralised PIP.

Figure 10.11 shows these traffics.

Chapter 10. Case Study and Evaluation 175

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

 >
>

Geteway

Router1 Router3 Router4Router2

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0

.0PC1-2

PC3-2

PC2-2

PC4-2

Central PDP

PC1-3

PC3-3

PC2-3

PC4-3

PC1-4

PC3-4

PC2-4

PC4-4

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

 >
>

ali

LAN1

Science School

LAN2

Technology School

LAN3

Management School
LAN4

Art School

Accounting1/exam1 Research1/exam1

Case study 3 authorisation

Figure 10.11: Case Study 3 (Remote Domains’ Dynamic Policy) in Centralised
PBM.

However, in Decentralised PBM, the policy is enforced by the DENAR3 and all

conditional attributes must be evaluated against their values in the remote PIP

(PIP4) of DENAR4. In this case, the student (ali) requests downloading exam

(Accounting1/exam1) where it is located in (Management domain), thus, this pol-

icy is enforced by the PDP3 in DENAR3 that is configured for the Management

domain. The conditional attributes (ObjectCondition) and (EventCondition) val-

ues are retrieved from the remote PIP4 for DENAR4 because they are not located

in the same domain of the object (Research1/exam1). Therefore, there are two

traffic the first one (in green arrow) for authorisation request and response between

the subject and the PDP3 in DENAR3. The second traffic (in orange arrow) for

the coordination for retrieving condition values where it is between the PDP3 in

DENAR3 and the PIP4 in DENAR4. Figure 10.12 shows the above traffics.

To meet the efficiency target for enforcing the history-based policy [3] (dynamic

policy) which is involved in this case study, we design the Pull Model that is

Chapter 10. Case Study and Evaluation 176

<
<

 2
- c

o
o

rd
in

a
tio

n
 re

q
u

e
s

t

3
- c

o
o

rd
in

a
tio

n
 re

s
p

o
n

s
e

 >
>

Geteway

Router1 Router3 Router4

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0

.0

DENAR1

PC1-2

PC3-2

PC2-2

PC4-2

DENAR2

PC1-3

PC3-3

PC2-3

PC4-3

DENAR3

PC1-4

PC3-4

PC2-4

PC4-4

DENAR4

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

4
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

 >
>

Router2

1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t >
>

<
<

 4
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

ali

Accounting1/exam1

LAN1

Science School

LAN2

Technology School

LAN3

Management School
LAN4

Art School

Research1/exam1

2
- c

o
o

rd
in

a
tio

n
 re

q
u

e
s

t >
>

<
<

 3
- c

o
o

rd
in

a
tio

n
 re

s
p

o
n

s
e

Case study 3 authorisation

Case study 3 coordnation

Figure 10.12: Case Study 3 (Remote Domains’ Dynamic Policy) in Decen-
tralised PBM.

designed for retrieving any condition value that is located in remote PIPs. [For

Pull Model see Chapter 8, Section 8.3.1].

On the other hand, In Push Model, DENAR can ”push” a new condition value

for the current decision to other PIPs required for future decisions [this is done by

obligation, for Push Model see Chapter 8, Section 8.3.2].

Decentralised PBM can involve Pull or Push Models in the policy for the coordi-

nation. Pull Model is designed for retrieving condition values where they are being

in the PIP4. On the other hand, the Push Model is designed to push condition

values to be stored in PIP4 i.e. in this case study, the EventCondition value is

updated and stored in PIP4 after the subject (ali) downloads (Research1/exam1)

and this is done by the obligation.

Moreover, for the Push Model in this case study, storing EventCondition value

in PIP3 saves authorisation time and traffic for the next authorisation decision.

This technique is modelled in this research but not implemented and evaluated.

Chapter 10. Case Study and Evaluation 177

Therefore, this could potentially be a consideration in future work and revisions

of the prototype.

10.4 Evaluation

This section evaluates the Centralised PBM and Decentralised PBM approaches

in the provided case studies and the simulators. Following subsection discusses the

evaluated factors for the DENARs’ prototype that is designed for the Decentralised

PBM approach. Performance, security, manageability and resilience are the factors

in following subsections. The

10.4.1 DENARs’ Performance

While the security in the access control systems is essential, the performance

of enforcing security policy is also essential. The efficiency is currently based

on the number of authorisation traffic. The authorisation traffic is discussed by

a comparison between the Centralised PBM and Decentralised PBM simulators.

The time of access control decision making is one of the important factors in critical

systems (e.g. Military) where it is recommended as a future work. The reason for

not measuring the response time and delays for the access control decision making

is that the experiment simulated and evaluated in a single machine where virtual

machines are simulated by Netkit.

10.4.1.1 Network Traffic

The network of DENARs reduces the network traffic bottlenecks for access control

decision making in comparison with a centralised PDP. According to the case

studies mentioned in section 10.3, this section discusses the network traffic in both

Centralised PBM and the Decentralised PBM simulators identified at in section

10.2.

In the following we present two network traffic measurements for the first case

study and the second case study mentioned at the beginning of this Chapter.

Each client (PC) sends 50 requests to download a file with size (2 bytes) where

each request is being authorised first before the action (download) is performed.

Chapter 10. Case Study and Evaluation 178

The network traffic measures the request, response hence small file transfer traffic

between the client and its proper PDP. We show the network traffic comparison

by the number of packets and the number of bytes for each client and PDP in

both Centralised PBM and the Decentralised PBM simulators.

• Static Policy (Case Study 1)

Traffic for Centralised PBM: In the Centralised PBM simulator, the en-

forcement of the first case study (Static Policy) is analysed where all autho-

risation requests from all clients in the network are sent to the centralised

PDP to enforce the first case study policy and respond back with the au-

thorisation decision. The static policy in this case study means there is no

restriction for performing the action.

209 Packets

16643 Bytes

261 Packets

20052 Bytes

263 Packets

20212 Bytes

264 Packets

20306 Bytes

261 Packets

20904 Bytes

264 Packets

20278 Bytes

263 Packets

20212 Bytes

262 Packets

20132 Bytes

264 Packets

20292 Bytes

253 Packets

19481 Bytes

253 Packets

19469 Bytes

220 Packets

17594 Bytes

212 Packets

16841 Bytes

209 Packets

16643 Bytes

212 Packets

16919 Bytes

246 Packets

18937 Bytes

Geteway

Router1 Router3 Router4

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0

.0

PC1-2

PC3-2

PC2-2

PC4-2

PC1-3

PC3-3

PC2-3

PC4-3

PC1-4

PC3-4

PC2-4

PC4-4

LAN1 LAN2 LAN3 LAN4

<
<

T
o

ta
l tra

ffic
 fro

m
 &

 to
 a

ll P
C

s
>

>

3
9

1
6

 P
a

c
k
e

ts

3
0

4
9

1
5

 B
y
te

s

Central PDP

Traffic in LAN2

1
9

2
.1

6
8

.2
0

.0

Router2

Traffic in each PC

Figure 10.13: Centralised PBM Traffic for Case Study 1 (Static Policy).

Traffic for Decentralised PBM: In the Decentralised PBM simulator,

the enforcement of the first case study (Static Policy) is analysed. The first

clients (PC1) (those in the orange line) for each LAN send their requests to

Chapter 10. Case Study and Evaluation 179

DENAR1 and also the second clients (PC2) (those in the green line) for each

LAN send their requests to the DENAR2. The third clients (PC3) (those

in the blue line) for each LAN send their requests to the DENAR3 and also

the fourth clients (PC4) (those in the pink line) for each LAN send their

requests to the DENAR4.

Measurements Discussion:

DENAR1

Geteway

Router1 Router3 Router4

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0
.0

PC1-2

PC3-2

PC2-2

PC4-2

DENAR2

PC1-3

PC3-3

PC2-3

PC4-3

DENAR3

PC1-4

PC3-4

PC2-4

PC4-4

DENAR4

LAN1 LAN2 LAN3 LAN4

Router2

8
3

1
 P

a
c
k
e

ts

6
6

1
4

6
 B

y
te

s

206 Packets

16417 Bytes

207 Packets

16469 Bytes

206 Packets

16417 Bytes

210 Packets

16681 Bytes

207 Packets

16407 Bytes

211 Packets

16825 Bytes

207 Packets

16497 Bytes

218 Packets

17391 Bytes

213 Packets

16893 Bytes

206 Packets

16417 Bytes

213 Packets

16949 Bytes

209 Packets

16615 Bytes

212 Packets

16841 Bytes

209 Packets

16629 Bytes

206 Packets

16403 Bytes

1
9

2
.1

6
8

.1
0

.0

209 Packets

16657 Bytes

8
5

0
 P

a
c
k
e

ts

6
7

6
5

0
 B

y
te

s8
3

6
 P

a
c
k
e

ts

6
6

4
8

8
 B

y
te

s

8
3

2
 P

a
c
k
e

ts

6
6

2
2

4
 B

y
te

s

Figure 10.14: Decentralised PBM Traffic for Case Study 1 (Static Policy).

Figure 10.13 shows the traffic result on the CentralPDP machine in LAN

2 for the Centralised PBM similator. The clients (PCs) sent in total 800

requests to the CentralPDP machine which produce 3915 packets (304915

bytes) those are enter and exit to/from the CentralPDP machine. On the

other hand, in Figure 10.14, the authorisation traffic is distributed between

the DENARs which decrease the number of packets on LAN2 to 850 (67650

bytes). While each DENAR in the Decentralised PBM processes in total 200

requests, there is no traffic overload in a particular LAN or machine.

• Dynamic Policy (Case Study 2)

Chapter 10. Case Study and Evaluation 180

Traffic for Centralised PBM: In the Centralised PBM simulator, the en-

forcement of the second case study (Dynamic Policy) is analysed where all

authorisation requests from all clients in the network are sent to the cen-

tralised PDP to enforce the second case study policy and response back

the authorisation decision. The dynamic policy in this case study means

there are restrictions (conditions) for performing the action. The condition

shows that the requirements must be evaluated to true before performing

the action. The main objective restricting the access is that all conditional

attributes must be evaluated by a PDP against their values located in a PIP.

179 Packets

14639 Bytes

186 Packets

15214 Bytes

181 Packets

14806 Bytes

182 Packets

14900 Bytes

189 Packets

15285 Bytes

180 Packets

14741 Bytes

178 Packets

14658 Bytes

183 Packets

14900 Bytes

185 Packets

15077 Bytes

187 Packets

15195 Bytes

179 Packets

14625 Bytes

184 Packets

15109 Bytes

183 Packets

14875 Bytes

180 Packets

14691 Bytes

177 Packets

14554 Bytes

180 Packets

15229 Bytes

Geteway

Router1 Router3 Router4

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0

.0

PC1-2

PC3-2

PC2-2

PC4-2

PC1-3

PC3-3

PC2-3

PC4-3

PC1-4

PC3-4

PC2-4

PC4-4

LAN1 LAN2 LAN3 LAN4

<
<

T
o

ta
l tra

ffic
 fro

m
 &

 to
 a

ll P
C

s
>

>

3
9

1
6

 P
a

c
k
e

ts

3
0

4
9

1
5

 B
y
te

s

Central PDP

Traffic in LAN2

1
9

2
.1

6
8

.2
0

.0

Router2

Traffic in each PC

Figure 10.15: Centralised PBM Traffic for Case Study 2 (Dynamic Policy).

Traffic for Decentralised PBM: In the Decentralised PBM simulator,

the enforcement of second case study (Dynamic Policy) is analysed. All con-

ditional attributes must be evaluated by a PDP against their values which

are located in the PIP of the same DENAR.

Measurements Discussion:

Chapter 10. Case Study and Evaluation 181

DENAR1

Geteway

Router1 Router3 Router4

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0
.0

PC1-2

PC3-2

PC2-2

PC4-2

DENAR2

PC1-3

PC3-3

PC2-3

PC4-3

DENAR3

PC1-4

PC3-4

PC2-4

PC4-4

DENAR4

LAN1 LAN2 LAN3 LAN4

Router2

7
4

7
 P

a
c

k
e

ts

6
1

5
9

8
 B

y
te

s

180 Packets

15215 Bytes

189 Packets

15488 Bytes

194 Packets

15657 Bytes

187 Packets

15294 Bytes

187 Packets

15462 Bytes

197 Packets

15905 Bytes

183 Packets

15016 Bytes

183 Packets

14995 Bytes

194 Packets

15650 Bytes

191 Packets

16018 Bytes

188 Packets

15247 Bytes

188 Packets

15268 Bytes

189 Packets

15419 Bytes

193 Packets

15704 Bytes

185 Packets

15007 Bytes

1
9

2
.1

6
8

.1
0

.0

192 Packets

15596 Bytes

7
5

6
 P

a
c

k
e

ts

6
1

9
1

0
 B

y
te

s

7
5

5
 P

a
c

k
e

ts

6
1

3
9

8
 B

y
te

s

7
6

2
 P

a
c

k
e

ts

6
2

0
3

5
 B

y
te

s

Figure 10.16: Decentralised PBM Traffic for Case Study 2 (Dynamic Policy).

Figure 10.15 shows the traffic result on the CentralPDP machine in LAN

2 for the Centralised PBM similator. The clients (PCs) sent in total 800

requests to the CentralPDP machine which produce 2913 packets (238498

bytes) those are enter and exit to/from the CentralPDP machine. On the

other hand, in Figure 10.16, the authorisation traffic is distributed between

the DENARs which decrease the number of packets on LAN2 to 756 (61910

bytes). While each DENAR in the Decentralised PBM is processing in total

200 requests, there is no traffic overload in a particular LAN or machine.

10.4.2 DENARs’ Security

The main objective of this research is providing the Decentralised PBM approach

the same security level as the Centralised PBM. The correct enforcement of se-

curity policy and involving the dynamic policy are essential in the current access

Chapter 10. Case Study and Evaluation 182

control systems. The following discusses the enforcement functional behaviour and

the ability of involving dynamic policy in our Decentralised PBM approach.

10.4.2.1 Enforcement Functional Behaviour

For Decentralised PBM, enforcement functional behaviour is defined as the repli-

cation of policy decisions that would have been made by a Centralised PBM in

the same scenario.

During the access control testing of the three case studies (Section 10.3) in both

Centralised PBM and Decentralised PBM network simulators (Section 10.2), the

same tests were carried out.

Chapter 10. Case Study and Evaluation 183

Table 10.1: Enforcement Functional Behaviour of Enforcement for Centralised

PBM and Decentralised PBM

Simulator Case study Result

* The policy is deployed in the centralised PR for

the centralised PDP.
1

* The policy is enforced by the centralised PDP.

* The policy is enforced correctly.

* The policy is deployed in the centralised PR for

the centralised PDP.
Centralised PBM 2

* The policy is enforced by the centralised PDP.

* The condition values are retrieved from the

centralised PIP for the centralised PDP.

* The policy is enforced correctly.

* The policy is deployed in the centralised PR for

the centralised PDP.
3

* The policy is enforced by the centralised PDP.

* The condition values are retrieved from the

centralised PIP for the centralised PDP.

* The policy is enforced correctly.

* The policy is deployed in PR1 for DENAR1.
1

* The policy is enforced by PDP1 in DENAR1.

* The policy is enforced correctly.

* The policy is deployed in PR2 for DENAR2.
Decentralised PBM 2

* The policy is enforced by PDP2 in DENAR2.

* The condition values are retrieved from PIP2

in DENAR2.

* The policy is enforced correctly.

* The policy is deployed in PR3 for DENAR3.
3

* The policy is enforced by PDP3 in DENAR3.

* The object and event condition values are

retrieved from PIP4 in DENAR4 thus the

coordination between DENAR3 and DENAR4

is required to evaluate object and event

condition values.

* The policy is enforced correctly.

Chapter 10. Case Study and Evaluation 184

All results satisfy the enforcement functional behaviour which mean both ap-

proaches result in the same enforcement decision for those policies in the case

studies. The table 10.1 shows the functional behaviour of the policies enforce-

ments in both simulators.

10.4.3 DENARs’ Manageability

According to the Distributed Policy Enforcements Architecture (DENAR) (Chap-

ter 5), we consider qualitatively administrative cost and resource utilisation prop-

erties of the DENAR architecture.

10.4.3.1 Resource Utilisation

DENARs in our project can arrive at decisions locally and thus save time and

network resources.

However, given the number of policies that may be present in the Centralised PBM,

the PDP, PIP, PR must have sufficient computing and storage resources to store

and enforce these policies, which may become a bottleneck. In our Decentralised

PBM, the distribution of PDPs, PIPs and PRs in a collaborative DENARs opti-

mise the policy enforcement and network resource utilisation functionality based

on available bandwidth and computing infrastructure.

10.4.3.2 Administrative Cost

• Simplicity: In DENAR, administration of Decentralised PBM policies is

eliminated. According to our case studies above, changing policies over

semesters is by school staff who are familiar with the school rules and regula-

tion. Thus, managing policy repositories (PRs) individually by schools staff

will save time and effort in comparison with the Centralised PBM system.

Also, it provides privacy for a policy that located in a domain (school), thus,

no disclosure from other administrators in other domains.

• Consistency: DENARs network topology remains consistent in case a new

policy is added or changed in any particulate domain. The policy can be

analysed and decomposed without changing of DENARs network topology.

Chapter 10. Case Study and Evaluation 185

A centralised backup DENAR can be configured by a system administrator

in case of the reconfiguring the DENARs network with new policies adding or

changing. Clearly, the DENARs network operates one centralised DENAR

(backup DENAR) only during the reconfiguration and that for a short time.

The backup DENAR has its PR that stores the central policy (all rules

before the decomposition into sub-policies), its PIP that stores condition

values. [See Chapter 5, Section 5.3.1]

• Flexibility: Adding or removing resources from the system does not affect

the DENARs network topology. Therefore, only adding a new policy for

that resource has been added and its attribute without reconfiguring the

DENARs network topology.

10.4.4 DENARs’ Resilience

Our research proposes mechanisms that improve the resilience against network

failures in access control for distributed information systems.

In case of the failure of the policy enforcement in centralised PDP, all the devices on

the network may cease to function. Clearly, an authorisation request to a particular

resource or service does not respond. In practice, this is rarely the case as there is

at least one alternate backup provided in . The problem is indeed if centralised PIP

is involved where it remains the centralised authorisation decision making which

still has the performance drawback. Moreover, conditional attributes are no longer

observable due to failure of the centralised PIP. Finally, involving distributed PDPs

and PIPs without coordination between PDPs to retrieve dynamic attributes from

other PIPs where enforcing dynamic policies is a bottleneck.

In Figure 10.17 and table ??, we discuss some potential failure scenarios in the

centralised PDP network that may affect authorisation.

Table 10.2: Enforcement and Coordination Failures for Centralised PBM net-

work

Failure No. Case study Enforcement and Coordination Affection

Chapter 10. Case Study and Evaluation 186

f1 1, 2 and 3
f1 affects only authorisations sent from LAN1

machines where the failure isolates all resources in

LAN1 to reach the centralised PDP.

f2 1, 2 and 3

f2 affects authorisation in the entire network where

there is no communication with the centralised PDP

because all resources in LAN2 are unreachable.

(LAN2 is down)

f3 1, 2 and 3 f3 affects authorisation in the entire network

because the centralised PDP is down or unreachable.

f4 1, 2 and 3

f4 does not affect the authorisation for all

mentioned case studies. However, f4 affects only

authorisations sent from LAN4 because all

resources in LAN2 are unreachable. (LAN4 down)

Chapter 10. Case Study and Evaluation 187

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

 >
>

Geteway

Router1 Router3 Router4Router2

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0

.0PC1-2

PC3-2

PC2-2

PC4-2

Central PDP

PC1-3

PC3-3

PC2-3

PC4-3

PC1-4

PC3-4

PC2-4

PC4-4

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

 >
>

ali

LAN1

Science School

LAN2

Technology School

LAN3

Management School
LAN4

Art School

Computer1/exam1 Research1/exam1
Accounting1/exam1

Math1/exam1

X
XX

X
f3

f2

f1

f4

Figure 10.17: Failures in Centralised PBM.

<
<

 2
- c

o
o

rd
in

a
tio

n
 re

q
u

e
s

t

3
- c

o
o

rd
in

a
tio

n
 re

s
p

o
n

s
e

 >
>

Geteway

Router1 Router3 Router4

PC1-1

PC3-1

PC2-1

PC4-1

10.0.0.0

172.16.100.0

1
9

2
.1

6
8

.1
0

.0

1
9

2
.1

6
8

.2
0

.0

1
9

2
.1

6
8

.3
0

.0

1
9

2
.1

6
8

.4
0

.0

DENAR1

PC1-2

PC3-2

PC2-2

PC4-2

DENAR2

PC1-3

PC3-3

PC2-3

PC4-3

DENAR3

PC1-4

PC3-4

PC2-4

PC4-4

DENAR4

1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t >
>

<
<

 4
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

ali

Accounting1/exam1

LAN1

Science School

LAN2

Technology School

LAN3

Management School
LAN4

Art School

Research1/exam1

2
- c

o
o

rd
in

a
tio

n
 re

q
u

e
s

t >
>

<
<

 3
- c

o
o

rd
in

a
tio

n
 re

s
p

o
n

s
e

X X

X

f1

f3

f5

f6

Computer1/exam1

X
f4

Math1/exam1

1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t >
>

<
<

 2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

<
<

 1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t

a
u

th
o

ris
a

tio
n

 re
s

p
o

n
s

e
 >

>

Case study 1 authorisation

Case study 2 authorisation

Case study 3 authorisation

Router2f2

X
X

Case study 3 coordnation

1
- a

u
th

o
ris

a
tio

n
 re

q
u

e
s

t >
>

<
<

 2
- a

u
th

o
ris

a
tio

n
 re

s
p

o
n

s
e

Figure 10.18: Failures in Decentralised PBM.

Chapter 10. Case Study and Evaluation 188

The collaborative DENARs are designed to fulfill resilience in less policy enforce-

ment failure and resource utilisation. The collaborative DENARs means that

DENARs query each other for authorisation decision purpose (coordination).

Figure 10.18 and table 10.3 show the supposed failures in the DENARs network

that may effect the authorisation.

Chapter 10. Case Study and Evaluation 189

Table 10.3: Enforcement and Coordination Failures for Centralised PBM net-

work

Failure No. Case study Enforcement and Coordination Affection

1

f1 does not affect case study 1 authorisation because

the DENAR1 responsible for the requested

authorisation based on the location of the resource

(Math1/eaxm1)

f1 2

f1 affects authorisation because the authorisation

request is sent from LAN1 and the resource

(Computer1/exam1) is located in LAN2. Therefore,

the policy is enforced by DENAR2 where the

DENAR2 is unreachable.

3

f1 affects authorisation because the authorisation

is sent from LAN1 and the resource

(Accounting1/exam1) is located in LAN3. Therefore,

the policy is enforced by DENAR3 where the

DENAR3 is unreachable.

1 f2 and f3 do not affect authorisation for the case

study 1 because it is enforced locally by DENAR1.

f2 and f3 2

f2 and f3 affect authorisation for case study 2

because the authorisation is sent from LAN1 and

the resource (Computer1/exam1) is located in LAN2.

Therefore, the policy is enforced by DENAR2 where

DENAR2 is unreachable.

3

f2 and f3 do not affect authorisation for case

study 3 because the policy is enforced by DENAR3

and the coordination values are being remotely in

DENAR4.

Chapter 10. Case Study and Evaluation 190

1 f4 does not affect authorisation for case study 1

because it is enforced locally in DENAR1.

f4 2 f4 does not affect authorisation for case study 2

because it is enforced by DENAR2.

3

f4 affects authorisation for case study 3 because

the policy is enforced by DENAR3 and the

coordination values are requested by DENAR3 from

DENAR4 where the DENAR3 is down.

1 f5 and f6 do not affect authorisation for case

study 1 because it is enforced locally by DENAR1.

f5 and f6 2 f5 and f6 do not affect authorisation for case

study 2 because it is enforced by DENAR2.

3

f5 and f6 affect authorisation for case study 3

because the policy is enforced by DENAR3 and the

coordination values are requested by DENAR3 from

DENAR4 where the DENAR4 is unreachable.

In DENARs network, a backup DENAR can be configured by the system admin-

istrator. The backup DENAR is utilised in case of DENARs failure. In addition,

it can be used in case of reconfiguring the DENARs network with new adding or

changing DENARs topology. Clearly, the network operates one centralised PDP

only during the reconfiguration which is the backup DENAR for access control.

The backup DENAR has its PR that stores the central policy (all rules before the

decomposition into sub-policies), and its PIP that stores conditional attributes.

The centralised Policy Based Management (PBM) is more efficient when the length

of the authorisation decision and the authorisation traffic to performing any service

Chapter 10. Case Study and Evaluation 191

are not critical and the service can be provided later, e.g. banking services. On the

other hand, in such systems, when the authorisation decision response time and

the traffic are being important, the Decentralised PBM becomes more efficient,

e.g. Military and National Security systems.

10.5 Summary

This Chapter described the simulators of the Centralised PBM and Decentralised

PBM for both static and dynamic policies. The simulators are currently avail-

able as a prototype implementation that shows the feasibility of the enforcement

involved.

The Chapter discussed three case studies that describe how static and dynamic

policies are enforced in Centralised PBM and Decentralised PBM simulators. The

first case study was provided to show how the static policy (independent policy)

is enforced. The second case study showed the enforcement of the dynamic policy

(locally domain dependent policy) where the coordination values are located in

the same PIP of DENAR that enforce the policy. The third case study showed

enforcement of dynamic policy (remote domain dependent policy) where the co-

ordination values are located in different PIPs of the DENARs that enforce the

policy.

The core aim of this work was to provide a Decentralised PBM framework for

enforcing static and dynamic policies. This Chapter analysed and evaluated the

proposed framework against the Centralised PBM approach.

The first factor, performance was evaluated by measuring the authorisation net-

work traffic. The authorisation traffic is analysed to show how the centralised

approach is affected by the traffic and can be a bottleneck for the authorisation

response. Thus, we can observe that the decentralise approach is more efficient

and does avoid a single point of failure.

The second evaluation factor discussed is the functional behaviour of enforcing

the case studies policies in both centralised and decentralise approaches and the

ability of involving the dependent policy in the decentralised approach.

Thirdly, the discussion of the administrative cost and resource utilisation are pro-

vided in the manageability factor. The Decentralised PBM is more efficient and

manageable in contrast with the centralised approach. The Decentralised PBM

Chapter 10. Case Study and Evaluation 192

provides re-propagation and recovery techniques that improve the authorisation

decision making to avoid the delay and failure.

Finally, the resilience of involving a network of DENARs in Decentralised PBM

approach illustrated the effectiveness countermeasure of some network failures, i.e

those facing the centralised approach.

The following Chapter introduces the final results, conclusion of our research and

views for future work.

Chapter 11

Conclusion and Future Work

This chapter provides a summary of the work presented in this thesis, and identifies

what has been achieved. We conclude with future work.

11.1 Summary of the Thesis

The thesis presented a new framework for Decentralised Policy Based Management

(PBM) that supports the distribution of Policy Decision Points (PDPs) to enforce

static and dynamic policies. The framework illustrated a practical workflow to

achieve the enforcement of security policy enforcement for distributed systems

(Chapter 4). The Distributed Enforcement Architecture (DENAR) is designed to

include multiple PDPs and other DENAR components. The components, their

function and interaction are described. The deployment of DENARs in Decen-

tralised PBM is introduced where the collaboration between them is facilitated by

the PIPcoordinator and PDPcoordinator. In addition, re-propagation and recov-

ery techniques are described for DENARs network (Chapter 5).

Chapter 6 presented the DENAR analysis which is based upon ITL. The DENAR

analysis provided policy dependency and the semantics of distributed policy en-

forcements, viz. allowing for the enforcement of static and dynamic policies in

decentralised manner where multiple enforcements can be coordinated. As part

of the research contribution, we demonstrated how DENARs collaborate to en-

force static and dynamic policies in a decentralised manner to provide resilient

enforcement.

193

Chapter 11. Conclusion and Future Work 194

Chapter 7 detailed the policy decomposition model that considers both static and

dynamic policies. Fragmentation and refinement methods are described in SANTA

syntax and the algorithms for the policy decomposition. The policy deployment

model is detailed in algorithm. The advantage of this policy decomposition model

is that it allows the coordination and collaboration between DENARs that provides

enforcement functional behaviour of security policy with respect to centralised

enforcement.

The DENAR enforcement and coordination models were presented Chapter 8. The

coordination need is clear for dynamic policy in distributed DENARs for access

control decision. Push and Pull models are proposed and detailed to implement

the coordination and collaboration between DENARs. The access control decision

making is improved by identifying and proposing local domain decision and remote

domain decision.

The prototype implementation of the presented approach is based on XACML pol-

icy language and Netkit simulator. The Decentralised Policy Based Management

(PBM) framework is however largely language independent and can potentially be

applied to other policy languages.

Finally, the thesis demonstrated that distributed PDPs can be achieved by De-

centralised PBM in which the presented framework supports the collaboration

between DENARs as enforcement requirements (Chapter 8).

11.2 Revisiting Contributions

The main contribution of this thesis is a novel Decentralised Policy Based Man-

agement system (PBM) based on a distributed Policy Decision Points PDPs for

enforcing static and dynamic policies in distributing setting, so the access control

can be provided with efficient performance, security, manageability and resilience

support. The performance, security, manageability and resilience are achieved by

the Distributed Policy Enforcements Architecture (DENAR), where static and dy-

namic policies are enforced. This section revisits the four original contributions as

follows:

1. Decentralised PBM framework has been developed. The Decentralised

PBM framework has described the methodology of the framework workflow

Chapter 11. Conclusion and Future Work 195

to apply DENAR. The workflow illustrated how to achieve the enforcement

of static and dynamic policies in distributed systems. In Chapter 6, the

analysis of policies has provided to identify dependencies between policy and

the access control requirements those involved in dynamic policy. Moreover,

it identifies and analyses the enforcement challenges in distributed PDPs

where a collaboration of PDPs is required.

2. Distributed Policy Enforcements Architecture (DENAR) has been

designed. It has five components, including Local Policy Decision Point

(PDP), Local Policy Repository (PR), Local Policy Information Point (PIP),

and PIPcoordinator and PDPcoordinator components. The LPDP, LPIP

and LPR aim to improve the performance (network traffic) of security policy

enforcement and their resilience against enforcement failures when a decision

is made locally. The PIPcoordinator and PDPcoordinator components are

designed for the coordination mechanism.

3. Policy Decomposition and Policy Deployment Techniqes have been

provided with the respect of independent and dependent rules. The policy

decomposition results in sub-policies according to object domains that are

then distributed to corresponding DENARs. In the policy decomposition,

fragmentation and refinement methods have been developed. The fragmen-

tation algorithm described for decomposes the policy into sub-policies. The

refinement method refines the rule to indicate the location of PIPs that store

conditional attributes where located in local or remote domain. In addition,

the policy deployment is detailed algorithmically.

4. Coordination and Collaboration Enforcement Model, using the pol-

icy decomposition of and the Distributed Policy Enforcements Architecture

(DENAR), those enable Decentralised PBM to deploy and enforce static and

dynamic policies for large-scale systems. The PIPcoordinator component in

the DENAR responsible of the Push and Pull models. The performance is

achieved by identifying local domain decision (that done by one DENAR)

and remote domain decision (that done by collaborative DENARs).

The proposed Decentralised PBM framework and the Distributed Policy Enforce-

ments Architecture (DENAR) enforce static and dynamic policies in distributing

setting. The approach presented here provides efficient performance, security,

Chapter 11. Conclusion and Future Work 196

manageability and resilience to the enforcement of the policies. The DENAR was

designed, implemented, and evaluated using a test-bed.

11.3 Achieving Success Criteria

To answer the research questions that were set in Section 1.3, the Decentralised

PBM framework and the Distributed Policy Enforcements Architecture (DENAR)

has been designed, implemented and evaluated throughout this thesis.

Involving the local domain decision and remote domain decision in DENARs within

PBM framework allows static and dynamic policies to be enforced and coordinated.

Enforcing independent policies for local domain decision using the one DENAR

supports the performance aspect. The remote domain decision in collaborative

DENARs provides the ability of the enforcing the dependent policies. A set of

criteria of success and research objective factors have been defined in Section 1.3.

These predefined research objective factors are revisited as follows:

• Performance, a discussion of improving the enforcement will be

provided and some experiments will be used to measure the net-

work traffic in both centralised PDP and a network of DENARs.

The research has shown how performance can be improved effectively in

terms of the network traffic. As described in Chapter 5 and Chapter 8, the

research work showed how local domain decisions supports the performance

by using the one DENAR to enforce independent rules. Moreover, in the net-

work of DENARs, the authorisation traffic is distributed between DENARs

which distributed the number of packets over the network instead of direct

these traffic into a particular part of the network or machine.

• Security, some experiments will be used to discuss the ability of

enforcing both static and dynamic policies in both centralised PDP

and the network of DENARs.

The evaluation of our approach, as presented in Chapter 10, has shown

that the DENAR can enforce static and dynamic policies by the replication

of policy decision that would have been made by a Centralised PDP in the

same scenario. The coordination mechanism offers the Push and Pull models

Chapter 11. Conclusion and Future Work 197

those are proposed for the collaborative DENARs to enforce dependent rules

[See Chapter 8, Section 8.3].

• Manageability, a discussion of the resource utilisation and admin-

istration in the DENAR will be provided.

Chapter 5 showed that the DENAR configuration, deployment, re-propagation

and recovery techniques are described where the resource utilisation and

administrative cost are discussed in Chapter 10, Section 10.4.3. The De-

centralised PBM offers sufficient computing and storage resources to store

and enforce policies. The administrative cost showed that DENAR is simple

and flexible in its configuration and reconfiguration which can configure as

Centralised PBM during the re-propagation and reconfiguration.

• Resilience, Network simulators for both centralised PDP and the

network of DENARs will be used to discuss the resilience in some

potential failures scenarios.

Chapter 10 illustrated that the DENAR has resilience against network fail-

ures in access control for distributed information systems. The bottleneck is

indeed if centralised PDP, PIP or PR is involved where it remains the autho-

risation decision making centralised which still has performance drawbacks

and potential failures.

11.4 Future Work

Several issues for further work have been identified throughout the thesis. We list

the most important of them in this section.

• The Policy Decomposition and Deployment Prototype.

The most immediate need in DENAR prototype is the implementation of

policy decomposition and deployment algorithm. The DENAR prototype

implementation needs to concentrate on the enhancement of the analysis

and decomposition of policy that can be enforced in collaborative DENARs.

• Push Model Implementation for Usage Control.

Usage control is a largely open research area in computer security. There

is still a lot of work to be done to cover usage control requirements. Usage

Chapter 11. Conclusion and Future Work 198

control in PBM system has to be scrutinised by starting from specification

and up to enforcement mechanisms and implementation. The Decentralised

PBM which involves distributed enforcements must be able to coordinate

mutable attributes that presented in [79] to be updated during the enforce-

ment execution. For this purpose, we provided the Push Model that would

require an implementation of the Policy Enforcement Point (PEP) to notify

the distributed enforcements about the mutable attributes changes. Another

not well understood aspect is the continuous monitoring of processes and the

impact that UCON decisions have on the integrity of ongoing processes.

• Sequential and Parallel Policies.

PDPcoodination component is deigned in DENAR to act as bridge for shar-

ing collaborative decision between multiple DENARs. In case of enforcing

sequential and parallel policies that presented in [53] multiple DENARs com-

municate to make the final decision where one of these DENARs is being the

synchroniser DENAR that received the authorisation request from a PEP

and make this final decision. This is not currently implemented in this work

and represents an additional level of abstraction from the policy specification

side. However, it is likely that any composed policy containing sequential

and parallel policies can be expressed as a normal form compatible with

the DENAR architecture. This requires further investigation and also has

potential impacts on the coordination model.

• Dynamic Reconfiguration Based on Traffic Mining.

Push and Pull models are proposed and detailed that provide the coordina-

tion and collaboration between DENARs. Pull model is designed for retriev-

ing any conditional attribute value that is located in local or remote PIPs.

[For Pull Model see Chapter 8, Section 8.3.1]. In Push model, DENAR can

”push” a new condition value for the current decision to other PIPs those

required for future decision [this is done by obligation, for Push Model see

Chapter 8, Section 8.3.2]. However, refining a rule for the choice of Push

or Pull model by mining the authorisation traffic saves authorisation time

and traffic for the next authorisation decision e.g. PDPx requires a condi-

tional attribute value (α) frequently from remote PIP (PIPy), thus, pushing

this value to the PIPx will save authorisation time and traffic for the next

authorisation decision.

References 199

• Temporal Permissions.

For the temporal permissions, i.e. permissions that lasts for a certain amount

of time, the enforcement can make use of DENARs coordination features.

If the authorisation decision is occurred, the enforcement timer is reset to

result the same authorisation decision for a defined period. This would allow

authorisation rules depending on hypothetical decisions to cache some of the

results from remote DENARs. Thus, caching the authorisation decision

history for the current authorisation request without a need of enforcement

process would improve the performance. Another aspect of this research

avenue is the ability to identify fix-points in the enforcement of history-based

access control rules [See [53]].

For example:

Coordination Fixpoints

sometime ϕ @PDPy ; always not µ @PDPx

remote local

The coordination is only needed unless ϕ is observed once.

References

[1] Abadi, M. [2003], Logic in access control, in ‘LICS ’03: Proceedings of the

18th Annual IEEE Symposium on Logic in Computer Science’, IEEE Com-

puter Society, Washington, DC, USA, p. 228.

[2] Abadi, M., Burrows, M., Lampson, B. and Plotkin, G. [1991], ‘A calculus for

access control in distributed systems’, ACM Transactions on Programming

Languages and Systems 15, 706–734.

[3] Abadi, M. and Fournet, C. [2003], Access control based on execution history,

in ‘Proc. 10th Annual Network and Distributed System Security Symposium’.

[4] Abrams, M. [1993], ‘Renewed understanding of access control policies’, In

Proceedings of the 16th National Computer Security Conference pp. 87–96.

[5] Aljareh, S. and Rossiter, N. [2001], ‘Towards security in multi-agency clinical

information services’, Health Informatics Journal 8(2), 95–103.

[6] AlZahrani, A. and Janicke [2010], Decentralized policy based management.,

in ‘The Saudi International Conference (SIC2010), 2010 SIC 4th International

Conference on’.

[7] AlZahrani, A., Janicke, H. and Abubaker, S. [2010], Decentralized xacml

overlay network, in ‘Computer and Information Technology (CIT), 2010 IEEE

10th International Conference on’, pp. 1032 –1037.

[8] American National Standards Institute [2004], Ansi incits 359-2004 role based

access control, Technical report, American National Standards Institute, New

York, NY. Retrieved in Jan 2009.

[9] Anderson, A. [2006], A comparison of two privacy policy languages: Epal and

xacml, in ‘SWS ’06: Proceedings of the 3rd ACM workshop on Secure web

services’, ACM, New York, NY, USA, pp. 53–60.

200

References 201

[10] Anderson, R. [1996], A security policy model for clinical information systems,

in ‘Security and Privacy, 1996. Proceedings., 1996 IEEE Symposium on’,

IEEE, pp. 30–43.

[11] Anderson, R. [1999], Information technology in medical practice: Safety and

privacy lessons from the united kingdom, in ‘Med J Aust’, Citeseer.

[12] Anderson., R. [2001], Security Engineering, A Guide to Build Dependable

Distributed Systems, John Wiley & Sons, Inc., New York, NY, USA.

[13] Artz, D. and Gil, Y. [2007], ‘A survey of trust in computer science and the

semantic web’, Web Semantics: Science, Services and Agents on the World

Wide Web 5(2).

[14] Atkinson, R. and Kent, S. [1998], ‘Security architecture for the internet pro-

tocol’.

[15] Awad, S. [2011], The impact of using distributed xacml pdp on the network,

Master’s thesis, De Montfort University.

[16] Barker, S. and Stuckey, P. J. [2003], ‘Flexible access control policy speci-

fication with constraint logic programming.’, ACM Trans. Inf. Syst. Secur.

6, 501–546.

[17] Becker, M. [2009], Specification and analysis of dynamic authorisation poli-

cies, in ‘Computer Security Foundations Symposium, 2009. CSF’09. 22nd

IEEE’, IEEE, pp. 203–217.

[18] Benantar, M. [2005], Access control systems: security, identity management

and trust models, Springer.

[19] Bergstra, J. and Burgess, M. [2007], Handbook of Network and System Ad-

ministration, Elsevier Science.

[20] Bertino, E., Bettini, C., Ferrari, E. and Samarati, P. [1998], ‘An access con-

trol model supporting periodicity constraints and temporal reasoning.’, ACM

Trans. Database Syst. 23, 231–285.

[21] Bertino, E., Bonatti, P. and Ferrari, E. [2001], ‘Trbac: A temporal role-based

access control model.’, ACM Trans. Inf. Syst. Secur. 4, 191–233.

[22] Bishop, M. [2003], ‘Computer security: Art and science.’, Westford, MA:

Addison Wesley Professional pp. 4–12.

References 202

[23] Blaze, M., Feigenbaum, J. and Keromytis, A. [1998], Keynote: Trust man-

agement for public-key infrastructures, in ‘Infrastructures (Position Paper).

Lecture Notes in Computer Science’, pp. 59–63.

[24] Blaze, M., Feigenbaum, J. and Lacy, J. [1996], Decentralized trust manage-

ment, in ‘In Proceedings of the 1996 IEEE Symposium on Security and Pri-

vacy’, IEEE Computer Society Press, pp. 164–173.

[25] Brewer, D. and Nash, M. [1989], The chinese wall security policy., in ‘IEEE

Symposium on Security and Privacy’, pp. 206–214.

[26] Case, J., Fedor, M., Schoffstall, M. and Davin, J. [1989], Simple Network

Management Protocol (SNMP), Network Information Center, SRI Interna-

tional, United States.

[27] Chadwick, D., Su, L., Otenko, O. and Laborde, R. [2006], Coordination be-

tween distributed pdps, in ‘POLICY ’06: Proceedings of the Seventh IEEE

International Workshop on Policies for Distributed Systems and Networks’,

IEEE Computer Society, Washington, DC, USA, pp. 163–172.

[28] Clark, D. and Wilson, D. [1987], A comparison of commercial and military

computer security policies, in ‘1987 IEEE Symposium on Security and Pri-

vacy’, IEEE Computer Society Press, pp. 184–194.

[29] Crnkovic, G. [2010], ‘Constructive research and info-computational knowledge

generation’, Model-Based Reasoning in Science and Technology pp. 359–380.

[30] Damianou, N. [2002], A Policy Framework for Management of Distributed

Systems, PhD thesis, University of London.

[31] Damianou, N., Bandara, A., Sloman, M. and Lupu, E. [2002], ‘A survey of

policy specification approaches’, Department of Computing, Imperial College

of Science Technology and Medicine, London .

[32] Damianou, N., Dulay, N., Lupu, E. and Sloman, M. [2000], ‘Ponder: A lan-

guage for specifying security and management policies for distributed sys-

tems’, London: Department of Computing, Imperial College, Tech. Rep .

[33] Damianou, N., Dulay, N., Lupu, E. and Sloman, M. [2001], The ponder policy

specification language., in M. Sloman, J. Lobo and E. Lupu, eds, ‘POLICY’,

Vol. 1995 of Lecture Notes in Computer Science, Springer, pp. 18–38.

References 203

[34] Demchenko, Y., de Laat, C., Koeroo, O. and Sagehaug, H. [2008], Extend-

ing xacml authorisation model to support policy obligations handling in dis-

tributed applications, in ‘Proceedings of the 6th International Workshop on

Middleware for Grid Computing’.

[35] Dierks, T. and Allen, C. [1999], ‘Rfc 2246: The tls protocol’.

[36] DoD Computer Security Center [1983], Trusted computer system evaluation

criteria, Technical report, US Department of Defense, Washington, DC. Re-

trieved in Jan 2010.

[37] Dulay, N., Damianou, N., Lupu, E. and Sloman, M. [2001], A policy language

for the management of distributed agents., in M. Wooldridge, G. Wei and

P. Ciancarini, eds, ‘AOSE’, Vol. 2222 of Lecture Notes in Computer Science,

Springer, pp. 84–100.

[38] Durham, D., Boyle, J., Cohen, R., Herzog, S., Rajan, R. and Sastry, A. [2000],

RFC 2748: The COPS (Common Open Policy Service) Protocol, Technical

report, IETF. Retrieved in Jan 2010.

URL: www.ietf.org/rfc/rfc2748.txt

[39] Ellison, C., Frantz, B., Lampson, B., Rivest, R., Thomas, B. and Ylonen., T.

[1999], ‘Spki certificate theory’. Retrieved in Jan 2012.

URL: http://www.ietf.org/rfc/rfc2693

[40] Feinsteink, H., Sandhu, R. and Youmank, C. [1996], ‘Role-based access con-

trol models’, Computer 29(2), 38–47.

[41] Framework, A., Sloman, M. and Twidle, K. [1994], ‘Domains: A framework

for structuring management policy’, Network and Distributed Systems Man-

agement pp. 433–453.

[42] Grandison, T. and Sloman, M. [2000], ‘A survey of trust in internet applica-

tions.’, IEEE Communications Surveys and Tutorials 3.

[43] Group Network Working [2006], ‘Comment on rfc 4516 - lightweight directory

access protocol (ldap)’.

[44] Harold, E. [2006], Java I/O, 6 edition edn, O’REILLY, CA USA.

References 204

[45] Hoagland, J. [2000], ‘Specifying and implementing security policies us-

ing lasco, the language for security constraints on objects’, CoRR

cs.CR/0003066.

[46] Hyland, P. and Sandhu, R. [1998], ‘Management of network security applica-

tions’, The 21st National Information Systems Security Conference (NISSC),

.

[47] ITU-T, Recommendation [1996], ‘Information technology-open systems

interconnection-security frameworks in open systems’, Non-repudiation

Framework . Retrieved in May 2010.

[48] Jajodia, S., Samarati, P., Sapino, M. L. and Subrahmanian, V. [2001], ‘Flexi-

ble support for multiple access control policies.’, ACM Trans. Database Syst.

26, 214–260.

[49] Jajodia, S., Samarati, P., Subrahmanian, V. and Bertino, E. [1997], A unified

framework for enforcing multiple access control policies., in J. Peckham, ed.,

‘SIGMOD Conference’, ACM Press, pp. 474–485.

[50] Jajodia, S. and Wijesekera, D. [2004], A flexible authorization framework for

e-commerce., in R. K. Ghosh and H. Mohanty, eds, ‘ICDCIT’, Vol. 3347 of

Lecture Notes in Computer Science, Springer, pp. 336–345.

[51] Janicke, H. [2007], The Development of Secure Multi-Agent Systems, PhD

thesis, De Montfort University.

[52] Janicke, H., Cau, A., Siewe, F. and Zedan, H. [2007], Deriving enforcement

mechanisms from policies, in ‘POLICY 07: Proceedings of the Eighth IEEE

International Workshop on Policies for Distributed Systems and Networks’,

IEEE Computer Society, Washington, DC, USA, pp. 161–172.

[53] Janicke, H., Cau, A., Siewe, F. and Zedan, H. [2008], Concurrent enforcement

of usage control policies, in ‘Proceedings of the 2008 IEEE Workshop on Poli-

cies for Distributed Systems and Networks’, POLICY ’08, IEEE Computer

Society, Washington, DC, USA.

[54] Janicke, H., Cau, A., Siewe, F. and Zedan, H. [2012], ‘Dynamic access control

policies: Specification and verification’, The Computer Journal .

References 205

[55] Janicke, H., Cau, A., Siewe, F., Zedan, H. and Jones, K. [2006], A composi-

tional event & time-based policy model, in ‘POLICY 06: Proceedings of the

Seventh IEEE International Workshop on Policies for Distributed Systems

and Networks’, IEEE Computer Society, Washington, DC, USA, pp. 173–

182.

[56] Janicke, H., Cau, A. and Zedan, H. [2007], A note on the formalisation of

ucon, in ‘SACMAT 07: Proceedings of the 12th ACM symposium on Access

control models and technologies’, ACM, New York, NY, USA, pp. 163–168.

[57] Janicke, H. and Finch., L. [2007], The role of dynamic security policy in

military scenarios, in ‘In Proceedings of the 6th European Conference on

Information Warfare and Security’, pp. 2007–9.

[58] Janicke, H., Siewe, F., Jones, K., Cau, A. and Zedan, H. [2005], Analysis and

run-time verification of dynamic security policies., in S. G. Thompson and

R. A. Ghanea-Hercock, eds, ‘Defence Applications of Multi-Agent Systems’,

Lecture Notes in Computer Science, Springer, pp. 92–103.

[59] Katt, B., Zhang, X., Breu, R., Hafner, M. and Seifert, J. [2008], A general

obligation model and continuity: Enhanced policy enforcement engine for

usage control, in ‘Proceedings of the 13th ACM Symposium on Access Control

Models and Technologies’, ACM, pp. 123–132.

[60] Kolovski, V. and Hendler, J. [2008], ‘Xacml policy analysis using description

logics’, Under submission .

[61] Kolovski, V., Hendler, J. and Parsia, B. [2006], ‘Formalizing xacml using

defeasible description logics’, University of Maryland, USA, Tech. Rep. TR-

233-11 .

[62] Krief, F. and Bouthinon, D. [2005], A learning and intentional local policy

decision point for dynamic qos provisioning, in D. Gati, S. Galms and R. Puig-

janer, eds, ‘Network Control and Engineering for QoS, Security and Mobility,

III’, Vol. 165 of IFIP International Federation for Information Processing,

Springer US, pp. 277–288.

[63] Labro, E. and Tuomela, T.-S. [2003], ‘On bringing more action into manage-

ment accounting research: Process considerations based on two constructive

case studies’, European Accounting Review, pp. 409–442.

References 206

[64] Lamport, L. [1994], ‘The temporal logic of actions.’, ACM Trans. Program.

Lang. Syst. 16, 872–923.

[65] Lampson, B. [1974], ‘Protection’, ACM SIGOPS Operating Systems Review

8, 18–24.

[66] LaPadula, L. and Bell, D. [1973], Secure computer systems: Mathematical

foundations, Technical report, MITRE Technical Report 2547. Retrieved in

Jan 2009.

[67] Li, J., Li, N. and Winsborough, W. [2005], Automated trust negotiation using

cryptographic credentials, in ‘Proceedings of the 12th ACM Conference on

Computer and Communications Security’, ACM, pp. 46–57.

[68] Lin, D., Rao, P., Bertino, E., Li, N. and Lobo, J. [2008], Policy decomposition

for collaborative access control, in ‘Proceedings of the 13th ACM symposium

on Access Control Models and Technologies’, SACMAT ’08, ACM, New York,

NY, USA.

[69] Lua, E., Crowcroft, J., Pias, M., Sharma, R. and Lim, S. [2005], ‘A survey and

comparison of peer-to-peer overlay network schemes’, IEEE Communications

Surveys and Tutorials 7, 72–93.

[70] M. Becker, C. F. and Gordon, A. [September 2006.], Secpal: Design and se-

mantics of a decentralized authorisation language, Technical report, Microsoft

ResearchResearch, Roger Needham Building 7 J.J. Thompson Avenue, Cam-

bridge, CB3 0FB, UK,. Retrieved in Jan 2009.

[71] Minsky, N. and Ungureanu, V. [2000], ‘Law-governed interaction: a coordina-

tion and control mechanism for heterogeneous distributed systems’, TOSEM,

ACM Transactions on Software Engineering and Methodology 9, 273–305.

[72] Mockapetris, P. and Dunlap, K. [1988], Development of the domain name

system, Vol. 18, ACM.

[73] Mossakowski, T., Drouineaud, M. and Sohr, K. [2003], A temporal-logic ex-

tension of role-based access control covering dynamic separation of duties., in

‘TIME’, IEEE Computer Society, pp. 83–90.

[74] Moszkowski, B. [1980], ‘Interval temporal logic’. Retrieved in Jan 2009.

URL: http://www.cse.dmu.ac.uk/STRL/ITL/

References 207

[75] National, Computer, Security, Center and (NCSC) [1988], Glossary of com-

puter security terms, Technical report, Report NSCD-TG-004, Fort Meade,

Md.: NCSC. Retrieved in Feb 2010.

[76] OASIS [2005], ‘extensible access control markup language (xacml) version

2.0,’. Retrieved in Sep 2009.

URL: http://docs.oasis-open.org/xacml/2.0/accesscontrol-xacml-2.0-core-

spec-os.pdf

[77] Park, J. and Sandhu, R. [2002], Towards usage control models: Beyond tra-

ditional access control, in ‘SACMAT ’02: Proceedings of The Seventh ACM

Symposium on Access Control Models and Technologies’, ACM, New York,

NY, USA, pp. 57–64.

[78] Park, J. and Sandhu, R. [2004], ‘The uconabc usage control model’, ACM

Trans. Inf. Syst. Secur. 7(1), 128–174.

[79] Park, J., Zhang, X. and Sandhu, R. [2004], ‘Attribute mutability in usage

control’, Research Directions in Data and Applications Security XVIII pp. 15–

29.

[80] Rafael ordini, Mehdi Dastani, J. D. and Seghrouchni, A. F. [2005], Multi-

Agent Programming, Springer US, chapter Jade A Java Agent Development

Framework, pp. 125–147.

[81] Roma, Tre, University, , the, Linux, User, Group, LUG and Roma [2006],

‘Netkit’. accessed 12.06.2010.

URL: http://wiki.netkit.org/index.php/MainPage

[82] Samarati, P. and Vimercati, S. [2001], ‘Access control: Policies, models, and

mechanisms’, Foundations of Security Analysis and Design pp. 137–196.

[83] Sandhu, R. [1988], Transaction control expressions for separation of duties,

in ‘Aerospace Computer Security Applications Conference, 1988., Fourth’,

IEEE, pp. 282–286.

[84] Sandhu, R. [1998], Role activation hierarchies., in ‘ACM Workshop on Role-

Based Access Control’, pp. 33–40.

[85] Sandhu, R. and Park, J. [2003], ‘Usage control: A vision for next generation

access control’, Computer Network Security pp. 17–31.

References 208

[86] Siebenlist, F. and Mori, T. [2005,], ‘Globus toolkit: Authorization processing’.

Retrieved in May 2010.

URL: http://www.globus.org/alliance/events/gw06/gt-authz-gw06-v3.pdf

[87] Siewe, F. [2005], A Compositional Framework for the Development of Secure

Access Control Systems, PhD thesis, Software Technology Research Labora-

tory, Department of Computer Science and Engineering, De Montfort Uni-

versity, Leicester.

[88] Sloman, M. [1994], ‘Policy driven management for distributed systems’, Jour-

nal of Network and Systems Management 2(4), 333–360.

[89] Stallings, W. [2010], Data and Computer Communications, 9 edition edn,

Prentice Hall, NY USA.

[90] Su, L., Chadwick, D., Basden, A. and Cunningham, J. [2005a], Automated

decomposition of access control policies, in ‘Proc of 6 th IEEE International

Workshop on Policies for Distributed Systems and Networks’, pp. 6–8.

[91] Su, L., Chadwick, D., Basden, A. and Cunningham, J. [2005b], Automated

decomposition of access control policies, in ‘POLICY ’05: Proceedings of the

Sixth IEEE International Workshop on Policies for Distributed Systems and

Networks’, IEEE Computer Society, Washington, DC, USA, pp. 3–13.

[92] Sun Microsystems [2006], ‘Sun’s xacml implementation’. Retrieved in Jan

2010.

URL: http://sunxacml.sourceforge.net/

[93] Tanenbaum, A. and Wetherall, D. [2010], Computer Networks., 5 edition edn,

Prentice Hall, London.

[94] Thomas, R. [1997], Team-based access control (tmac): A primitive for ap-

plying role-based access controls in collaborative environments., in ‘ACM

Workshop on Role-Based Access Control’, pp. 13–19.

[95] Verma, D. [2000], Policy-Based Networking: Architecture and Algorithms,

New Riders Publishing, Thousand Oaks, CA, USA.

[96] Wijesekera, D. and Jajodia, S. [2003], A propositional policy algebra for access

control, Vol. 6, ACM, New York, NY, USA, pp. 286–325.

References 209

[97] Wilson, B. [June 2002.], JXTA, first edition edn, New Riders Publishing,

Indianapolis, IN.

[98] Woo, T. and Lam, S. [1993], ‘Authorization in distributed systems: A new

approach’, Journal of Computer Security 2(2), 107–136.

[99] Yao, W. [2002], Trust Management for Widely Distributed Systems., PhD

thesis, University of Cambridge, Computer Laboratory.

[100] Yavatkar, R., Pendarakis, D. and Guerin, R. [2000], RFC 2753: A Framework

for Policy-based Admission Control, Technical report, IETF. Retrieved in Jan

2011.

URL: www.ietf.org/rfc/rfc2753.txt

[101] Zhang, X., Parisi-Presicce, F., Sandhu, R. and Park, J. [2005], ‘Formal

model and policy specification of usage control’, ACM Trans. Inf. Syst. Secur.

8(4), 351–387.

[102] Zhang, X., Park, J., Parisi-Presicce, F. and Sandhu, R. [2004], A logical

specification for usage control, in ‘SACMAT ’04: Proceedings of the Ninth

ACM Symposium on Access Control Models and Technologies’, ACM, New

York, NY, USA, pp. 1–10.

[103] Zhang, X., Sandhu, R. and Parisi-Presicce, F. [2006], Safety analysis of usage

control authorization models, in ‘Conference on Computer and Communica-

tions Security: Proceedings of the 2006 ACM Symposium on Information,

Computer and Communications Security’, Vol. 21, pp. 243–254.

Appendix A

Source Code

The following listings present source code of the classes of the DENAR proto-

type implementation. The implementation presents only the DENAR prototype

to evaluate the functionalities of the DENAR components work to achieve our

approach objectives. However, It is not implemented to a level at which it could

be readily commercially utilised.

A.1 DENARs Network Labs

A.1.1 Network Configuration

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

maingw.startup file

ifconfig eth0 172.16.100.254

route add default gw 10.0.0.254

route add -net 192.168.10.0 netmask 255.255.255.0 gw 172.16.100.1 dev eth0

route add -net 192.168.20.0 netmask 255.255.255.0 gw 172.16.100.2 dev eth0

route add -net 192.168.30.0 netmask 255.255.255.0 gw 172.16.100.3 dev eth0

route add -net 192.168.40.0 netmask 255.255.255.0 gw 172.16.100.4 dev eth0

iptables -t nat -A POSTROUTING -o eth1 -j SNAT --to-source 10.0.0.1

#iptables -t nat -A PREROUTING -s 192.168.10.1 -j DNAT --to-destination 172.16.100.254

#iptables -t nat -A PREROUTING -s 192.168.20.1 -j DNAT --to-destination 172.16.100.254

210

Appendix A. Source Code 211

#iptables -t nat -A PREROUTING -s 192.168.30.1 -j DNAT --to-destination 172.16.100.254

#iptables -t nat -A PREROUTING -s 192.168.40.1 -j DNAT --to-destination 172.16.100.254

echo "domain project" >> /etc/resolv.conf

echo "search project" >> /etc/resolv.conf

echo "nameserver 172.16.100.254" >> /etc/resolv.conf

/etc/init.d/bind start

db .100.16.172 file

$TTL 60000

@ IN SOA ns.project. root.project. (

2006031201 ; serial

28800 ; refresh

14400 ; retry

3600000 ; expire

0 ; negative cache ttl

)

@ IN NS ns.project.

254 IN PTR maingw.project.

db.project file

$TTL 60000

@ IN SOA ns.project. root.project. (

2006031201 ; serial

28800 ; refresh

14400 ; retry

3600000 ; expire

0 ; negative cache ttl

)

@ IN NS ns.project.

ns IN A 172.16.100.254

maingw IN CNAME ns

gw IN CNAME maingw

d1 IN NS ns.d1.project.

ns.d1 IN A 192.168.10.1

d2 IN NS ns.d2.project.

ns.d2 IN A 192.168.20.1

d3 IN NS ns.d3.project.

ns.d3 IN A 192.168.30.1

d4 IN NS ns.d4.project.

ns.d4 IN A 192.168.40.1

named.conf.local file

zone "project" {

type master;

file "/etc/bind/db.project ";

allow -update { 127.0.0.1; };

notify yes;

};

Appendix A. Source Code 212

zone "100.16.172.in -addr.arpa" {

type master;

file "/etc/bind/db .100.16.172";

allow -update { 127.0.0.1; };

notify yes;

};

Listing A.1: maingw Configuration

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

router1.startup file

ifconfig eth0 192.168.10.1

ifconfig eth1 172.16.100.1

route add default gw 172.16.100.254

#iptables -t nat -A POSTROUTING -o eth1 -j SNAT --to-source 192.168.10.1

#iptables -t nat -A PREROUTING -s 172.16.100.254 -j DNAT --to -destination 192.168.10.1

#iptables -t nat -A PREROUTING -s 192.168.20.1 -j DNAT --to-destination 192.168.10.1

#iptables -t nat -A PREROUTING -s 192.168.30.1 -j DNAT --to-destination 192.168.10.1

#iptables -t nat -A PREROUTING -s 192.168.40.1 -j DNAT --to-destination 192.168.10.1

echo "domain d1.project" > /etc/resolv.conf

echo "search d1.project" >> /etc/resolv.conf

echo "nameserver 192.168.10.1" >> /etc/resolv.conf

/etc/init.d/bind start

/etc/init.d/dhcp3 -server start

db .10.168.192 file

$TTL 8h

@ IN SOA ns.d1.project. d1 -admin.d1.project. (

2011021801 ; serial

8h ; refresh

2h ; retry

1w ; expire

0 ; negative cache ttl

)

@ IN NS ns.d1.project.

1 IN PTR router1.d1.project.

db.project.d1 file

$TTL 8h

@ IN SOA ns.d1.project. d1 -admin.d1.project. (

2011021801 ; serial

8h ; refresh

Appendix A. Source Code 213

2h ; retry

1w ; expire

0 ; negative cache ttl

)

@ IN NS ns.d1.project.

ns IN A 192.168.10.1

router1 IN CNAME ns

gw IN CNAME router1

named.conf.local file

zone "d1.project" {

type master;

file "/etc/bind/db.project.d1";

allow -update { key localhost -ddns; };

notify yes;

};

zone "10.168.192.in-addr.arpa" {

type master;

file "/etc/bind/db .10.168.192";

allow -update { key localhost -ddns; };

notify yes;

};

named.conf.options file

key "localhost -ddns" {

algorithm hmac -md5;

secret "q0qvEmpG9jSqNNgpa+dJfA ==";

};

options {

directory "/var/cache/bind";

forwarders {

172.16.100.254;

};

forward only;

recursion yes;

auth -nxdomain no;

listen -on-v6 { any; };

};

dhcpd.conf file

ddns -update -style interim;

ddns -updates on;

ddns -domainname "d1.project ";

ddns -rev -domainname "in-addr.arpa";

deny client -updates;

key "localhost -ddns" {

algorithm hmac -md5;

secret q0qvEmpG9jSqNNgpa+dJfA ==;

Appendix A. Source Code 214

};

option domain -name "d1.project ";

option domain -name -servers 192.168.10.1; # local DNS

default -lease -time 300;

max -lease -time 600;

update -static -leases on;

authoritative;

subnet 192.168.10.0 netmask 255.255.255.0

{

option subnet -mask 255.255.255.0;

option routers 192.168.10.1; # Gateway

range 192.168.10.100 192.168.10.120;

allow unknown -clients;

zone d1.project.

{

primary 127.0.0.1;

key localhost -ddns;

}

zone 10.168.192.in-addr.arpa.

{

primary 127.0.0.1;

key localhost -ddns;

}

}

Listing A.2: router1 Configuration

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

router2.startup file

ifconfig eth0 192.168.20.1

ifconfig eth1 172.16.100.2

route add default gw 172.16.100.254

#iptables -t nat -A POSTROUTING -o eth1 -j SNAT --to-source 192.168.20.1

#iptables -t nat -A PREROUTING -s 172.16.100.254 -j DNAT --to -destination 192.168.20.1

#iptables -t nat -A PREROUTING -s 192.168.10.1 -j DNAT --to-destination 192.168.20.1

#iptables -t nat -A PREROUTING -s 192.168.30.1 -j DNAT --to-destination 192.168.20.1

#iptables -t nat -A PREROUTING -s 192.168.40.1 -j DNAT --to-destination 192.168.20.1

echo "domain d2.project" > /etc/resolv.conf

echo "search d2.project" >> /etc/resolv.conf

echo "nameserver 192.168.20.1" >> /etc/resolv.conf

/etc/init.d/bind start

/etc/init.d/dhcp3 -server start

db .20.168.192 file

Appendix A. Source Code 215

$TTL 8h

@ IN SOA ns.d2.project. d2 -admin.d2.project. (

2011021801 ; serial

8h ; refresh

2h ; retry

1w ; expire

0 ; negative cache ttl

)

@ IN NS ns.d2.project.

1 IN PTR router2.d2.project.

db.project.d2 file

$TTL 8h

@ IN SOA ns.d2.project. d2 -admin.d2.project. (

2011021801 ; serial

8h ; refresh

2h ; retry

1w ; expire

0 ; negative cache ttl

)

@ IN NS ns.d2.project.

ns IN A 192.168.20.1

router2 IN CNAME ns

gw IN CNAME router2

named.conf.local file

zone "d2.project" {

type master;

file "/etc/bind/db.project.d2";

allow -update { key localhost -ddns; };

notify yes;

};

zone "20.168.192.in -addr.arpa" {

type master;

file "/etc/bind/db .20.168.192";

allow -update { key localhost -ddns; };

notify yes;

};

named.conf.options file

key "localhost -ddns" {

algorithm hmac -md5;

secret "q0qvEmpG9jSqNNgpa+dJfA ==";

};

options {

directory "/var/cache/bind";

forwarders {

172.16.100.254;

};

Appendix A. Source Code 216

forward only;

recursion yes;

auth -nxdomain no;

listen -on-v6 { any; };

};

dhcpd.conf file

ddns -update -style interim;

ddns -updates on;

ddns -domainname "d2.project ";

ddns -rev -domainname "in-addr.arpa";

deny client -updates;

key "localhost -ddns" {

algorithm hmac -md5;

secret q0qvEmpG9jSqNNgpa+dJfA ==;

};

option domain -name "d2.project ";

option domain -name -servers 192.168.20.1; # local DNS

default -lease -time 300;

max -lease -time 600;

update -static -leases on;

authoritative;

subnet 192.168.20.0 netmask 255.255.255.0

{

option subnet -mask 255.255.255.0;

option routers 192.168.20.1; # Gateway

range 192.168.20.100 192.168.20.120;

allow unknown -clients;

zone d2.project.

{

primary 127.0.0.1;

key localhost -ddns;

}

zone 20.168.192.in-addr.arpa.

{

primary 127.0.0.1;

key localhost -ddns;

}

}

Listing A.3: router2 Configuration

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

router3.startup file

ifconfig eth0 192.168.30.1

Appendix A. Source Code 217

ifconfig eth1 172.16.100.3

route add default gw 172.16.100.254

#iptables -t nat -A POSTROUTING -o eth1 -j SNAT --to-source 192.168.30.1

#iptables -t nat -A PREROUTING -s 172.16.100.254 -j DNAT --to -destination 192.168.30.1

#iptables -t nat -A PREROUTING -s 192.168.40.1 -j DNAT --to-destination 192.168.30.1

#iptables -t nat -A PREROUTING -s 192.168.20.1 -j DNAT --to-destination 192.168.30.1

#iptables -t nat -A PREROUTING -s 192.168.10.1 -j DNAT --to-destination 192.168.30.1

echo "domain d3.project" > /etc/resolv.conf

echo "search d3.project" >> /etc/resolv.conf

echo "nameserver 192.168.30.1" >> /etc/resolv.conf

/etc/init.d/bind start

/etc/init.d/dhcp3 -server start

db .30.168.192 file

$TTL 8h

@ IN SOA ns.d3.project. d3 -admin.d3.project. (

2011021801 ; serial

8h ; refresh

2h ; retry

1w ; expire

0 ; negative cache ttl

)

@ IN NS ns.d3.project.

1 IN PTR router3.d3.project.

db.project.d3 file

$TTL 8h

@ IN SOA ns.d3.project. d3 -admin.d3.project. (

2011021801 ; serial

8h ; refresh

2h ; retry

1w ; expire

0 ; negative cache ttl

)

@ IN NS ns.d3.project.

ns IN A 192.168.30.1

router3 IN CNAME ns

gw IN CNAME router3

named.conf.local file

zone "d3.project" {

type master;

file "/etc/bind/db.project.d3";

allow -update { key localhost -ddns; };

notify yes;

};

zone "30.168.192.in -addr.arpa" {

type master;

file "/etc/bind/db .30.168.192";

Appendix A. Source Code 218

allow -update { key localhost -ddns; };

notify yes;

};

named.conf.options file

key "localhost -ddns" {

algorithm hmac -md5;

secret "q0qvEmpG9jSqNNgpa+dJfA ==";

};

options {

directory "/var/cache/bind";

forwarders {

172.16.100.254;

};

forward only;

recursion yes;

auth -nxdomain no;

listen -on-v6 { any; };

};

dhcpd.conf file

ddns -update -style interim;

ddns -updates on;

ddns -domainname "d3.project ";

ddns -rev -domainname "in-addr.arpa";

deny client -updates;

key "localhost -ddns" {

algorithm hmac -md5;

secret q0qvEmpG9jSqNNgpa+dJfA ==;

};

option domain -name "d3.project ";

option domain -name -servers 192.168.30.1; # local DNS

default -lease -time 300;

max -lease -time 600;

update -static -leases on;

authoritative;

subnet 192.168.30.0 netmask 255.255.255.0

{

option subnet -mask 255.255.255.0;

option routers 192.168.30.1; # Gateway

range 192.168.30.100 192.168.30.120;

allow unknown -clients;

zone d3.project.

{

primary 127.0.0.1;

key localhost -ddns;

}

zone 30.168.192.in-addr.arpa.

{

primary 127.0.0.1;

key localhost -ddns;

Appendix A. Source Code 219

}

}

Listing A.4: router3 Configuration

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

router4.startup file

ifconfig eth0 192.168.40.1

ifconfig eth1 172.16.100.4

route add default gw 172.16.100.254

#iptables -t nat -A POSTROUTING -o eth1 -j SNAT --to-source 192.168.40.1

#iptables -t nat -A PREROUTING -s 172.16.100.254 -j DNAT --to -destination 192.168.40.1

#iptables -t nat -A PREROUTING -s 192.168.30.1 -j DNAT --to-destination 192.168.40.1

#iptables -t nat -A PREROUTING -s 192.168.20.1 -j DNAT --to-destination 192.168.40.1

#iptables -t nat -A PREROUTING -s 192.168.10.1 -j DNAT --to-destination 192.168.40.1

echo "domain d4.project" > /etc/resolv.conf

echo "search d4.project" >> /etc/resolv.conf

echo "nameserver 192.168.40.1" >> /etc/resolv.conf

/etc/init.d/bind start

/etc/init.d/dhcp3 -server start

db .40.168.192 file

$TTL 8h

@ IN SOA ns.d4.project. d4 -admin.d4.project. (

2011021801 ; serial

8h ; refresh

2h ; retry

1w ; expire

0 ; negative cache ttl

)

@ IN NS ns.d4.project.

1 IN PTR router4.d4.project.

db.project.d4 file

$TTL 8h

@ IN SOA ns.d4.project. d4 -admin.d4.project. (

2011021801 ; serial

8h ; refresh

2h ; retry

1w ; expire

0 ; negative cache ttl

)

@ IN NS ns.d4.project.

Appendix A. Source Code 220

ns IN A 192.168.40.1

router4 IN CNAME ns

gw IN CNAME router4

named.conf.local file

zone "d4.project" {

type master;

file "/etc/bind/db.project.d4";

allow -update { key localhost -ddns; };

notify yes;

};

zone "40.168.192.in-addr.arpa" {

type master;

file "/etc/bind/db .40.168.192";

allow -update { key localhost -ddns; };

notify yes;

};

named.conf.options file

key "localhost -ddns" {

algorithm hmac -md5;

secret "q0qvEmpG9jSqNNgpa+dJfA ==";

};

options {

directory "/var/cache/bind";

forwarders {

172.16.100.254;

};

forward only;

recursion yes;

auth -nxdomain no;

listen -on-v6 { any; };

};

dhcpd.conf file

ddns -update -style interim;

ddns -updates on;

ddns -domainname "d4.project ";

ddns -rev -domainname "in-addr.arpa";

deny client -updates;

key "localhost -ddns" {

algorithm hmac -md5;

secret q0qvEmpG9jSqNNgpa+dJfA ==;

};

option domain -name "d4.project ";

option domain -name -servers 192.168.40.1; # local DNS

default -lease -time 300;

max -lease -time 600;

update -static -leases on;

Appendix A. Source Code 221

authoritative;

subnet 192.168.40.0 netmask 255.255.255.0

{

option subnet -mask 255.255.255.0;

option routers 192.168.40.1; # Gateway

range 192.168.40.100 192.168.40.120;

allow unknown -clients;

zone d4.project.

{

primary 127.0.0.1;

key localhost -ddns;

}

zone 40.168.192.in-addr.arpa.

{

primary 127.0.0.1;

key localhost -ddns;

}

}

Listing A.5: router4 Configuration

A.1.2 Centralised PBM

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

lab.conf file

maingw[mem]=256

maingw [0]= xtrnal

maingw [1]=tap ,10.0.0.254 ,10.0.0.1

router1[mem]=256

router1 [0]= lan1

router1 [1]= xtrnal

router2[mem]=256

router2 [0]= lan2

router2 [1]= xtrnal

router3[mem]=256

router3 [0]= lan3

router3 [1]= xtrnal

router4[mem]=256

router4 [0]= lan4

router4 [1]= xtrnal

pc1 -1[mem]=128

pc1 -1[0]= lan1

pc2 -1[mem]=128

pc2 -1[0]= lan1

pc3 -1[mem]=128

Appendix A. Source Code 222

pc3 -1[0]= lan1

pc4 -1[mem]=128

pc4 -1[0]= lan1

pc1 -2[mem]=128

pc1 -2[0]= lan2

pc2 -2[mem]=128

pc2 -2[0]= lan2

pc3 -2[mem]=128

pc3 -2[0]= lan2

pc4 -2[mem]=128

pc4 -2[0]= lan2

CentralPDP[mem]=512

CentralPDP [0]= lan2

pc1 -3[mem]=128

pc1 -3[0]= lan3

pc2 -3[mem]=128

pc2 -3[0]= lan3

pc3 -3[mem]=128

pc3 -3[0]= lan3

pc4 -3[mem]=128

pc4 -3[0]= lan3

pc1 -4[mem]=128

pc1 -4[0]= lan4

pc2 -4[mem]=128

pc2 -4[0]= lan4

pc3 -4[mem]=128

pc3 -4[0]= lan4

pc4 -4[mem]=128

pc4 -4[0]= lan4

lab.dep file

router1 router2: maingw

router3 router4: maingw

pc1 -1: router1 router2

pc2 -1: router1 router2

pc3 -1: router1 router2

pc4 -1: router1 router2

pc1 -2: router1 router2

pc2 -2: router1 router2

pc3 -2: router1 router2

pc4 -2: router1 router2

CentralPDP: router1 router2

pc1 -3: router3 router4

pc2 -3: router3 router4

pc3 -3: router3 router4

pc4 -3: router3 router4

pc1 -4: router3 router4

pc2 -4: router3 router4

pc3 -4: router3 router4

pc4 -4: router3 router4

Listing A.6: Centralised PBM Configuration

Appendix A. Source Code 223

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

CentralPDP.startup file

echo ’send host -name "CentralPDP ";’ >> /etc/dhcp3/dhclient.conf

dhclient eth0

pc1 -1. startup file

echo ’send host -name "pc1 -1";’ >> /etc/dhcp3/dhclient.conf

dhclient eth

and so on for other PCs

Listing A.7: CentralPDP and PCs Configuration in Centralised PBM

A.1.3 Decentralised PBM

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

lab.conf file

maingw[mem]=256

maingw [0]= xtrnal

maingw [1]=tap ,10.0.0.254 ,10.0.0.1

router1[mem]=256

router1 [0]= lan1

router1 [1]= xtrnal

router2[mem]=256

router2 [0]= lan2

router2 [1]= xtrnal

router3[mem]=256

router3 [0]= lan3

router3 [1]= xtrnal

router4[mem]=256

router4 [0]= lan4

router4 [1]= xtrnal

pc1 -1[mem]=128

pc1 -1[0]= lan1

pc2 -1[mem]=128

pc2 -1[0]= lan1

Appendix A. Source Code 224

pc3 -1[mem]=128

pc3 -1[0]= lan1

pc4 -1[mem]=128

pc4 -1[0]= lan1

DENAR1[mem]=128

DENAR1 [0]= lan1

pc1 -2[mem]=128

pc1 -2[0]= lan2

pc2 -2[mem]=128

pc2 -2[0]= lan2

pc3 -2[mem]=128

pc3 -2[0]= lan2

pc4 -2[mem]=128

pc4 -2[0]= lan2

DENAR2[mem]=128

DENAR2 [0]= lan2

pc1 -3[mem]=128

pc1 -3[0]= lan3

pc2 -3[mem]=128

pc2 -3[0]= lan3

pc3 -3[mem]=128

pc3 -3[0]= lan3

pc4 -3[mem]=128

pc4 -3[0]= lan3

DENAR3[mem]=128

DENAR3 [0]= lan3

pc1 -4[mem]=128

pc1 -4[0]= lan4

pc2 -4[mem]=128

pc2 -4[0]= lan4

pc3 -4[mem]=128

pc3 -4[0]= lan4

pc4 -4[mem]=128

pc4 -4[0]= lan4

DENAR4[mem]=128

DENAR4 [0]= lan4

lab.dep file

router1 router2: maingw

router3 router4: maingw

pc1 -1: router1 router2

pc2 -1: router1 router2

pc3 -1: router1 router2

pc4 -1: router1 router2

DENAR1: router1 router2

pc1 -2: router1 router2

pc2 -2: router1 router2

pc3 -2: router1 router2

pc4 -2: router1 router2

DENAR2: router1 router2

pc1 -3: router3 router4

pc2 -3: router3 router4

pc3 -3: router3 router4

Appendix A. Source Code 225

pc4 -3: router3 router4

DENAR3: router3 router4

pc1 -4: router3 router4

pc2 -4: router3 router4

pc3 -4: router3 router4

pc4 -4: router3 router4

DENAR4: router3 router4

Listing A.8: Decentralised PBM Configuration

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

DENAR1.startup file

echo ’send host -name "DENAR1";’ >> /etc/dhcp3/dhclient.conf

dhclient eth0

DENAR2.startup file

echo ’send host -name "DENAR2";’ >> /etc/dhcp3/dhclient.conf

dhclient eth0

DENAR3.startup file

echo ’send host -name "DENAR3";’ >> /etc/dhcp3/dhclient.conf

dhclient eth0

DENAR4.startup file

echo ’send host -name "DENAR4";’ >> /etc/dhcp3/dhclient.conf

dhclient eth0

pc1 -1. startup file

echo ’send host -name "pc1 -1";’ >> /etc/dhcp3/dhclient.conf

dhclient eth

and so on for other PCs

Listing A.9: DENARs and PCs Configuration in Decentralised PBM

Appendix A. Source Code 226

A.2 DENAR Software

A.2.1 XACML Policy and Request

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

<?xml version ="1.0" encoding ="UTF -8" ?>

<Policy xmlns="urn:oasis:names:tc:xacml :1.0: policy" xmlns:xsi="http ://www.w3.org /2001/

XMLSchema -instance" xsi:schemaLocation ="urn:oasis:names:tc:xacml :1.0: policy

cs-xacml -schema -policy -01. xsd" PolicyId =" Policy0000" RuleCombiningAlgId=

"urn:oasis:names:tc:xacml :1.0:rule -combining -algorithm:first -applicable">

<Target />

<Rule RuleId =" Rule0001" Effect =" Permit">

<Target >

<Subjects >

<Subject >

<SubjectMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:

string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">ali </ AttributeValue >

<SubjectAttributeDesignator DataType ="http :// www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

subject:subject -id" />

</SubjectMatch >

</Subject >

</Subjects >

<Resources >

<Resource >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/Math1/exam1

</AttributeValue >

<ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

resource:resource -id" />

</ResourceMatch >

</Resource >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/Computer1/exam1

</AttributeValue >

<ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

resource:resource -id" />

</ResourceMatch >

</Resource >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

Appendix A. Source Code 227

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/Accounting1/exam1

</AttributeValue >

<ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

resource:resource -id" />

</ResourceMatch >

</Resource >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/Research/exam1

</AttributeValue >

<ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

resource:resource -id" />

</ResourceMatch >

</Resource >

</Resources >

<Actions >

<AnyAction />

</Actions >

</Target >

</Rule >

</Policy >

Listing A.10: XACML Policy (Policy.xml)

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

<?xml version ="1.0" encoding ="UTF -8" ?>

<Policy xmlns="urn:oasis:names:tc:xacml :1.0: policy" xmlns:xsi="http ://www.w3.org /2001/

XMLSchema -instance" xsi:schemaLocation ="urn:oasis:names:tc:xacml :1.0: policy

cs-xacml -schema -policy -01. xsd" PolicyId =" Policy0000" RuleCombiningAlgId=

"urn:oasis:names:tc:xacml :1.0:rule -combining -algorithm:first -applicable">

<Target />

<Rule RuleId =" Rule0001" Effect =" Permit">

<Target >

<Subjects >

<Subject >

<SubjectMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:

string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">ali </ AttributeValue >

<SubjectAttributeDesignator DataType ="http :// www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

subject:subject -id" />

</SubjectMatch >

</Subject >

Appendix A. Source Code 228

</Subjects >

<Resources >

<Resource >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/Math1/exam1

</AttributeValue >

<ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

resource:resource -id" />

</ResourceMatch >

</Resource >

</Resources >

<Actions >

<AnyAction />

</Actions >

</Target >

</Rule >

</Policy >

Listing A.11: XACML Policy (sub-policy1.xml)

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

<?xml version ="1.0" encoding ="UTF -8" ?>

<Policy xmlns="urn:oasis:names:tc:xacml :1.0: policy" xmlns:xsi="http ://www.w3.org /2001/

XMLSchema -instance" xsi:schemaLocation ="urn:oasis:names:tc:xacml :1.0: policy

cs-xacml -schema -policy -01. xsd" PolicyId =" Policy0000" RuleCombiningAlgId=

"urn:oasis:names:tc:xacml :1.0:rule -combining -algorithm:first -applicable">

<Target />

<Rule RuleId =" Rule0001" Effect =" Permit">

<Target >

<Subjects >

<Subject >

<SubjectMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:

string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">ali </ AttributeValue >

<SubjectAttributeDesignator DataType ="http :// www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

subject:subject -id" />

</SubjectMatch >

</Subject >

</Subjects >

<Resources >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/Computer1/exam1

Appendix A. Source Code 229

</AttributeValue >

<ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

resource:resource -id" />

</ResourceMatch >

</Resource >

</Resources >

<Actions >

<AnyAction />

</Actions >

</Target >

</Rule >

</Policy >

Listing A.12: XACML Policy (sub-policy2.xml)

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

<?xml version ="1.0" encoding ="UTF -8" ?>

<Policy xmlns="urn:oasis:names:tc:xacml :1.0: policy" xmlns:xsi="http ://www.w3.org /2001/

XMLSchema -instance" xsi:schemaLocation ="urn:oasis:names:tc:xacml :1.0: policy

cs-xacml -schema -policy -01. xsd" PolicyId =" Policy0000" RuleCombiningAlgId=

"urn:oasis:names:tc:xacml :1.0:rule -combining -algorithm:first -applicable">

<Target />

<Rule RuleId =" Rule0001" Effect =" Permit">

<Target >

<Subjects >

<Subject >

<SubjectMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:

string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">ali </ AttributeValue >

<SubjectAttributeDesignator DataType ="http :// www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

subject:subject -id" />

</SubjectMatch >

</Subject >

</Subjects >

<Resources >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/Accounting1/exam1

</AttributeValue >

<ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

resource:resource -id" />

</ResourceMatch >

</Resource >

</Resources >

Appendix A. Source Code 230

<Actions >

<AnyAction />

</Actions >

</Target >

</Rule >

</Policy >

Listing A.13: XACML Policy (sub-policy3.xml)

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

<?xml version ="1.0" encoding ="UTF -8" ?>

<Policy xmlns="urn:oasis:names:tc:xacml :1.0: policy" xmlns:xsi="http ://www.w3.org /2001/

XMLSchema -instance" xsi:schemaLocation ="urn:oasis:names:tc:xacml :1.0: policy

cs-xacml -schema -policy -01. xsd" PolicyId =" Policy0000" RuleCombiningAlgId=

"urn:oasis:names:tc:xacml :1.0:rule -combining -algorithm:first -applicable">

<Target />

<Rule RuleId =" Rule0001" Effect =" Permit">

<Target >

<Subjects >

<Subject >

<SubjectMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:

string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">ali </ AttributeValue >

<SubjectAttributeDesignator DataType ="http :// www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

subject:subject -id" />

</SubjectMatch >

</Subject >

</Subjects >

<Resources >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/Research/exam1

</AttributeValue >

<ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

resource:resource -id" />

</ResourceMatch >

</Resource >

</Resources >

<Actions >

<AnyAction />

</Actions >

</Target >

</Rule >

</Policy >

Appendix A. Source Code 231

Listing A.14: XACML Policy (sub-policy4.xml)

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

<?xml version ="1.0" encoding ="UTF -8" ?>

<Policy xmlns="urn:oasis:names:tc:xacml :1.0: policy" xmlns:xsi="http ://www.w3.org /2001/

XMLSchema -instance" xsi:schemaLocation ="urn:oasis:names:tc:xacml :1.0: policy

cs-xacml -schema -policy -01. xsd" PolicyId =" Policy0000" RuleCombiningAlgId=

"urn:oasis:names:tc:xacml :1.0:rule -combining -algorithm:first -applicable">

<Target />

<Rule RuleId =" Rule0001" Effect =" Permit">

<Target >

<Subjects >

<Subject >

<SubjectMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:

string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">ali </ AttributeValue >

<SubjectAttributeDesignator DataType ="http :// www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

subject:subject -id" />

</SubjectMatch >

</Subject >

</Subjects >

<Resources >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/Math1/exam1

</AttributeValue >

<ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

resource:resource -id" />

</ResourceMatch >

</Resource >

</Resources >

<Actions >

<AnyAction />

</Actions >

</Target >

</Rule >

</Policy >

Listing A.15: The Case Study 1 Policy (PolicyCS1.xml)

/* --

Appendix A. Source Code 232

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

<?xml version ="1.0" encoding ="UTF -8" ?>

<Policy xmlns="urn:oasis:names:tc:xacml :1.0: policy" xmlns:xsi="http ://www.w3.org /2001/

XMLSchema -instance" xsi:schemaLocation ="urn:oasis:names:tc:xacml :1.0: policy

cs-xacml -schema -policy -01. xsd" PolicyId =" Policy0000" RuleCombiningAlgId=

"urn:oasis:names:tc:xacml :1.0:rule -combining -algorithm:first -applicable">

<Target />

<Rule RuleId =" Rule0001" Effect =" Permit">

<Target >

<Subjects >

<Subject >

<SubjectMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:

string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">ali </ AttributeValue >

<SubjectAttributeDesignator DataType ="http :// www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

subject:subject -id" />

</SubjectMatch >

</Subject >

</Subjects >

<Resources >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/Computer1/exam1

</AttributeValue >

<ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

resource:resource -id" />

</ResourceMatch >

</Resource >

</Resources >

<Actions >

<AnyAction />

</Actions >

<Condition FunctionId =" PDPOverlay_Constraint_Checker">

<SubjectCondition DataType ="http :// www.w3.org /2001/ XMLSchema#string">

Foundation </ SubjectCondition >

<ObjectCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">

(/ Computer1/exam1)=OpenBook </ ObjectCondition >

<EnvironmentCondition DataType ="http :// www.w3.org /2001/ XMLSchema#string">

01/ Jan /2013 </ EnvironmentCondition >

<EventCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">

NotDone(ali ,(/ Computer1/exam1), Download)</EventCondition >

</Condition >

</Target >

</Rule >

</Policy >

Listing A.16: The Case Study 2 Policy (PolicyCS2.xml)

Appendix A. Source Code 233

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

<?xml version ="1.0" encoding ="UTF -8" ?>

<Policy xmlns="urn:oasis:names:tc:xacml :1.0: policy" xmlns:xsi="http ://www.w3.org /2001/

XMLSchema -instance" xsi:schemaLocation ="urn:oasis:names:tc:xacml :1.0: policy

cs-xacml -schema -policy -01. xsd" PolicyId =" Policy0000" RuleCombiningAlgId=

"urn:oasis:names:tc:xacml :1.0:rule -combining -algorithm:first -applicable">

<Target />

<Rule RuleId =" Rule0001" Effect =" Permit">

<Target >

<Subjects >

<Subject >

<SubjectMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:

string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">ali </ AttributeValue >

<SubjectAttributeDesignator DataType ="http :// www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

subject:subject -id" />

</SubjectMatch >

</Subject >

</Subjects >

<Resources >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/Accounting1/exam1

</AttributeValue >

<ResourceAttributeDesignator DataType ="http ://www.w3.org /2001/

XMLSchema#string" AttributeId ="urn:oasis:names:tc:xacml :1.0:

resource:resource -id" />

</ResourceMatch >

</Resource >

</Resources >

<Actions >

<AnyAction />

</Actions >

<Condition FunctionId =" PDPOverlay_Constraint_Checker">

<SubjectCondition DataType ="http :// www.w3.org /2001/ XMLSchema#string">

Foundation </ SubjectCondition >

<ObjectCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">

(Research1/exam1)= MutipleChoice </ ObjectCondition >

<EnvironmentCondition DataType ="http :// www.w3.org /2001/ XMLSchema#string">

01/ Jan /2013 </ EnvironmentCondition >

<EventCondition DataType ="http ://www.w3.org /2001/ XMLSchema#string">

Done(ali ,(Research1/exam1), Download)</EventCondition >

</Condition >

</Target >

</Rule >

</Policy >

Appendix A. Source Code 234

Listing A.17: The Case Study 3 Policy (PolicyCS3.xml)

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

<?xml version ="1.0" encoding ="UTF -8" ?>

<Policy xmlns="urn:oasis:names:tc:xacml :1.0: policy" xmlns:xsi="http ://www.w3.org/

2001/ XMLSchema -instance" PolicyId =" LimitedAccess" RuleCombiningAlgId ="urn:oasis:

names:tc:xacml :1.0:rule -combining -algorithm:ordered -permit -overrides">

<Target />

<Rule RuleId =" Rule0001" Effect =" Permit">

<Target >

<Subjects >

<Subject >

<SubjectMatch MatchId ="urn:oasis:names:tc:xacml :1.0: function:

string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">ali </ AttributeValue >

<SubjectAttributeDesignator DataType ="http :// www.w3.org/

2001/ XMLSchema#string" AttributeId ="urn:oasis:names:tc:

xacml :1.0: subject:subject -id" />

</SubjectMatch >

</Subject >

</Subjects >

<Resources >

<Resource >

<ResourceMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">/hosthome/XACML -Project/users/ali

</AttributeValue >

<ResourceAttributeDesignator DataType=

"http ://www.w3.org /2001/ XMLSchema#string" AttributeId=

"urn:oasis:names:tc:xacml :1.0: resource:resource -id" />

</ResourceMatch >

</Resource >

</Resources >

<Actions >

<Action >

<ActionMatch MatchId ="urn:oasis:names:tc:xacml :1.0:

function:string -equal">

<AttributeValue DataType ="http ://www.w3.org /2001/

XMLSchema#string">Download </ AttributeValue >

<ActionAttributeDesignator DataType ="http ://

www.w3.org /2001/ XMLSchema#string" AttributeId ="urn:

oasis:names:tc:xacml :1.0: action:action -id" />

</ActionMatch >

</Action >

</Actions >

Appendix A. Source Code 235

<Condition FunctionId =" PDPOverlay_Constraint_Checker">

<SubjectCondition DataType ="http :// www.w3.org /2001/

XMLSchema#string">Research </ SubjectCondition >

<ObjectCondition DataType ="http :// www.w3.org /2001/

XMLSchema#string">Secret </ ObjectCondition >

<EnvironmentCondition DataType ="http :// www.w3.org/

2001/ XMLSchema#string ">01 Jan 2012

</EnvironmentCondition >

<EventCondition DataType ="http ://www.w3.org /2001/

XMLSchema#string">has allowed </ EventCondition >

</Condition >

</Target >

</Rule >

</Policy >

Listing A.18: XACML Policy (LimitedAccessPolicy.xml)

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

<?xml version ="1.0" encoding ="UTF -8" ?>

<Request xmlns="urn:oasis:names:tc:xacml :1.0: context" xmlns:xsi="http ://www.w3.org/

2001/ XMLSchema -instance">

<Subject >

<Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: subject:subject -id"

DataType ="urn:oasis:names:tc:xacml :1.0: data -type:rfc822Name">

<AttributeValue >ali </ AttributeValue >

</Attribute >

</Subject >

<Resource >

<Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: resource:resource -id"

DataType ="http ://www.w3.org /2001/ XMLSchema#string">

<AttributeValue >exam </ AttributeValue >

</Attribute >

</Resource >

<Action >

<Attribute AttributeId ="urn:oasis:names:tc:xacml :1.0: action:action -id"

DataType ="http ://www.w3.org /2001/ XMLSchema#string">

<AttributeValue >read </ AttributeValue >

</Attribute >

</Action >

</Request >

Listing A.19: XACML Request

A.2.2 Client Class

Appendix A. Source Code 236

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

import java.io.*;

import java.net.*;

import java.util .*;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

public class client {

Socket clientsocket = null;

PrintWriter ToServer = null;

BufferedReader FromServer = null;

InputStream input = null;

OutputStream output = null;

String serverip = null;

String username = null;

String password = null;

String challenge = null;

String hashedpasswd = null;

String Line = null;

String delims = "[]+";

String delims1 = "/";

String [] tokens = null;

File F1 = null;

String fname = null;

String [] tokens1 = null;

String outFileName = null;

int fileNameadd = 1;

public client () throws Exception {

String UserInput = null;

System.out.println (" Please type the server address ");

BufferedReader FromUser = new BufferedReader(new InputStreamReader(System.in));

Console console = System.console ();

serverip = FromUser.readLine ();

try {

clientsocket = new Socket(serverip , 5555);

ToServer = new PrintWriter(clientsocket.getOutputStream (), true);

FromServer = new BufferedReader(new InputStreamReader(clientsocket.

getInputStream ()));

input = clientsocket.getInputStream ();

output = clientsocket.getOutputStream ();

System.out.println (" Connected to the server " + serverip);

} catch (Exception e) {

System.out.println (" Unable to connect to " + serverip);

System.exit (1);

}

// Authentication

challenge = FromServer.readLine ();

System.out.println (" Enter Username :");

username = FromUser.readLine ();

Appendix A. Source Code 237

password = FromUser.readLine (); // new String (console.readPassword

("Enter password: "));

hashedpasswd = SHA1(challenge + password);

ToServer.println(username + ":" + hashedpasswd);

if ((FromServer.readLine ()). equals ("1")) {

System.out.println("--------------- SUCCESSFUL AUTHENTICATION

[" + username + "]---------------");

System.out.println (" Usage: \n To download a file ---> Download {file}

\n To upload a file -----> Upload {file} {Destination Directory}

\n To delete a file -----> Delete {file} \n To list a directory -->

List {directroy} \n To quit , Quit \n");

UserInput = FromUser.readLine ();

while (! UserInput.equals ("Quit ")) { // compare by reference

toTokenise(UserInput);

UserInput = FromUser.readLine ();

}// end of while

System.out.println ("Bye!");

clientsocket.close ();

} //end of if

else {

System.out.println (" Authentication failure. Exiting");

clientsocket.close ();

}

} //end of client constructor

public void toTokenise(String s1) {

tokens = s1.split(delims);

if (tokens [0]. equals (" Download ")) {

try {

F1 = new File(tokens [1]);

if (!(F1.isDirectory ())) {

System.out.println (" Trying to download " + tokens [1]

+ "..........");

ToServer.println(tokens [0] + " " + tokens [1]);

try {

Line = FromServer.readLine ();

if (Line.equals (" NotApplicable ")) {

System.out.println (" " + Line);

} else {

fname = tokens [1];

tokens1 = fname.split(delims1);

outFileName = tokens1 [(tokens1.length - 1)];

int bytesRead = 0;

byte[] mybytearray = new byte[Integer.parseInt(Line)];

System.out.println ("File size " + mybytearray.length);

int current = 0;

// Receive file

bytesRead = input.read(mybytearray , 0, mybytearray.length);

if (bytesRead == 0) {

System.out.println (" Failed .[0 Bytes] Downloaded , the

file is either empty or does not exist ");

} else {

FileOutputStream fos = new FileOutputStream(fileNameadd

+ outFileName);

current = bytesRead;

// thanks to A. C d i z for the bug fix

Appendix A. Source Code 238

do {

bytesRead = input.read(mybytearray , current ,

(mybytearray.length - current));

if (bytesRead >= 0) {

current += bytesRead;

}

} while (bytesRead > 0);

fos.write(mybytearray , 0, current);

System.out.println ("File Downloaded ");

fos.flush ();

fileNameadd ++;

}

}

} catch (IOException e) {

System.out.println(e);

}

ToServer.flush ();

} else {

System.out.println (" ERROR: " + tokens [1] + " is a directory.

You can download files only ");

}

} catch (ArrayIndexOutOfBoundsException e) {

System.err.println (" ERROR: Make sure that the Download command is

formated properly \n e.g. Download [File_location]");

}

}// end of downloading file

else {

System.out.println (" ERROR: Unknow command ");

}

} //end of toTokenise

////////////// hashing the password /////////////

// This code was taken from

//http :// www.anyexample.com/programming/java/java_simple_class_to_compute

// _sha_1_hash.xml

private static String convertToHex(byte[] data) {

StringBuffer buf = new StringBuffer ();

for (int i = 0; i < data.length; i++) {

int halfbyte = (data[i] >>> 4) & 0x0F;

int two_halfs = 0;

do {

if ((0 <= halfbyte) && (halfbyte <= 9)) {

buf.append ((char) (’0’ + halfbyte));

} else {

buf.append ((char) (’a’ + (halfbyte - 10)));

}

halfbyte = data[i] & 0x0F;

} while (two_halfs ++ < 1);

}

return buf.toString ();

}

public static String SHA1(String text)

throws NoSuchAlgorithmException , UnsupportedEncodingException {

MessageDigest md;

md = MessageDigest.getInstance ("SHA -1");

byte[] sha1hash = new byte [40];

Appendix A. Source Code 239

md.update(text.getBytes ("iso -8859 -1") , 0, text.length ());

sha1hash = md.digest ();

return convertToHex(sha1hash);

}

////////////////// end of hashing ///

public static void main(String [] args) throws Exception {

client c1 = new client ();

} // end of main

} //end of class

Listing A.20: Client Class

A.2.3 DENAR Class

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

import java.io.*;

import java.net.*;

import java.util .*;

import java.security.MessageDigest;

import java.security.NoSuchAlgorithmException;

class ClientInstance implements Runnable {

public boolean foundString = false;

private Socket csokt;

public String AB = "0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ ";

ClientInstance(Socket clientsokt) {

this.csokt = clientsokt;

System.out.println ("New connection from " + csokt.getInetAddress () +

" on port " + csokt.getPort ());

} // end of ClientInstance constructor

public synchronized void run() { // assign thread for each client

String line;

String delims = "[]+";

String delims1 = "/";

String delims2 = ":";

String baseDir = null;

String [] tokens = null;

String [] baseDirTokens = null;

String username = null;

String password = null;

String challenge = null;

String hashedpasswd = null;

BufferedReader FromClient = null;

PrintWriter ToClient = null;

InputStream input = null;

OutputStream output = null;

File toBeDeleted = null;

Appendix A. Source Code 240

File toBeListed = null;

SimplePDP xacmlFram = new SimplePDP ();

String authorisationResult = null;

try {

FromClient = new BufferedReader(new InputStreamReader(csokt.

getInputStream ()));

ToClient = new PrintWriter(csokt.getOutputStream (), true);

input = csokt.getInputStream ();

output = csokt.getOutputStream ();

} catch (IOException e) {

System.out.println ("I/O Error ");

System.exit (-1);

}

// Authentication

try {

challenge = randomString (12);

ToClient.println(challenge);

line = FromClient.readLine ();

String [] tokens2 = line.split(delims2);

String userRecord = search(tokens2 [0]);

if (! userRecord.equals ("0")) {

String [] frompassfile = userRecord.split(delims2);

try {

hashedpasswd = SHA1(challenge + frompassfile [1]);

} catch (NoSuchAlgorithmException nsae) {

}

if (tokens2 [0]. equals(frompassfile [0]) && tokens2 [1]. equals

(hashedpasswd)) {

username = frompassfile [0];

System.out.println ("[" + username + "] AUTHENTICATED

SUCCESSFULLY ");

ToClient.println ("1");

///////////// End of Authentication //////////////

while (true) {

try {

line = FromClient.readLine ();

System.out.println(line);

tokens = line.split(delims);

baseDirTokens = tokens [1]. split(delims1);

baseDir = baseDirTokens [0];

for (int j = 1; j < baseDirTokens.length - 1; j++) {

baseDir += delims1 + baseDirTokens[j];

}

// reconstruct the base directory of user request

if (tokens [0]. equals (" Download ")) {

System.out.println (" Authorising " + username +

"’s requests to download " + tokens [1] +

"");

// baseDir = baseDirTokens [0] + "/" + baseDirTokens [1]

+ "/" + baseDirTokens [2] + "/" + baseDirTokens [3];

try {

authorisationResult = xacmlFram.getXACMLDecision

(username , baseDir , tokens [0]);

System.out.println(authorisationResult);

if (authorisationResult.equals (" Permit ")) {

Appendix A. Source Code 241

File myFile = new File(tokens [1]);

ToClient.println(myFile.length ());

byte[] mybytearray = new byte[(int)

myFile.length ()];

FileInputStream fis = new FileInputStream

(myFile);

fis.read(mybytearray , 0, mybytearray.length);

output.write(mybytearray , 0, mybytearray.

length);

output.flush ();

} else {

ToClient.println(authorisationResult);

}

} catch (Exception e) {

System.out.println (" Unable to donwload " + "("

+ e.getMessage () + ")");

}

}

else {

ToClient.println (" Invalid request ");

}

} catch (IOException e) {

System.out.println ("Read failed ");

}

} // end of while

}

ToClient.println ("0");

csokt.close ();

System.out.println (" Disconnected ");

} //end of if

else {

ToClient.println ("0");

csokt.close ();

System.out.println (" Disconnected ");

}

} catch (IOException e) {

} //end of try

} // end of run

//////////////////////// search passwords file ///////////////////////////////////

public String search(String s1) {

String filename = "passwords.txt";

BufferedReader inpass = null;

// I initialize the buffered reader to start at the begining every time

try {

inpass = new BufferedReader(new FileReader(new File(filename)));

} catch (IOException e) {

}

String searchFor = s1;

String lineContent = null;

int currentLine = 0;

// this will be set to true if the string was found

while (true) {

currentLine ++;

// get a line of text from the file

Appendix A. Source Code 242

try {

lineContent = inpass.readLine ();

} catch (IOException e) {

break;

}

// checks to see if the file ended (in.readLine () returns null if

the end is reached)

if (lineContent == null) {

break;

}

if (lineContent.indexOf(searchFor) == -1) {

continue;

} else {

return lineContent;

}

} //end of while

if (! foundString) {

System.out.println (" Authentication failure , Disconnecting");

return "0";

}

try {

inpass.close ();

} catch (IOException ioe) {

}

return "0";

} //end of search function

///////////////// random string generating //

// This method was developed by maxp at http :// stackoverflow.com/

//http :// stackoverflow.com/questions /41107/how -to -generate -a-random -alpha -numeric -

string -in-java

String randomString(int len) {

Random rnd = new Random ();

StringBuilder sb = new StringBuilder(len);

for (int i = 0; i < len; i++) {

sb.append(AB.charAt(rnd.nextInt(AB.length ())));

}

return sb.toString ();

}

//////////////////////////// hashing password /////////////////////////////////////

// This code was taken from http ://www.anyexample.com/programming/java/java_simple

_class_to_compute_sha_1_hash.xml

private static String convertToHex(byte[] data) {

StringBuffer buf = new StringBuffer ();

for (int i = 0; i < data.length; i++) {

int halfbyte = (data[i] >>> 4) & 0x0F;

int two_halfs = 0;

do {

if ((0 <= halfbyte) && (halfbyte <= 9)) {

buf.append ((char) (’0’ + halfbyte));

} else {

buf.append ((char) (’a’ + (halfbyte - 10)));

}

halfbyte = data[i] & 0x0F;

} while (two_halfs ++ < 1);

Appendix A. Source Code 243

}

return buf.toString ();

}

public static String SHA1(String text)

throws NoSuchAlgorithmException , UnsupportedEncodingException {

MessageDigest md;

md = MessageDigest.getInstance ("SHA -1");

byte[] sha1hash = new byte [40];

md.update(text.getBytes ("iso -8859 -1") , 0, text.length ());

sha1hash = md.digest ();

return convertToHex(sha1hash);

}

///////////////// end of hashing ////////////

} // end of ClientInstance

public class server {

ServerSocket Serversocket = null;

server () {

} // end of server constructor

public synchronized void listenSocket () {

try { //try opening server socket

Serversocket = new ServerSocket (5555);

System.out.println ("The server is listening on port " + Serversocket

.getLocalPort ());

} catch (IOException e) {

System.out.println (" Server is unable to listen on port: 5555");

System.exit (-1);

}

while (true) { //try opening clinet socket

ClientInstance insClient;

try {

insClient = new ClientInstance(Serversocket.accept ());

Thread thread = new Thread(insClient);

thread.start ();

} catch (IOException e) {

System.out.println (" Unble to accept connections on port: 5555");

System.exit (-1);

}

} //end of while

} // end of listenSocket

protected void finalize () { // clean up and release the resources

try {

Serversocket.close ();

} catch (IOException e) {

System.out.println (" Could not close socket ");

System.exit (-1);

}

} //end of finalize

public static void main(String [] args) {

server server1 = new server ();

server1.listenSocket ();

}

}

Listing A.21: DENAR Class

Appendix A. Source Code 244

A.2.4 tester Class

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

import java.io.*;

import java.util.Random;

public class tester {

public tester () {

}

public static void wait1sec () {

long t0, t1;

t0 = System.currentTimeMillis ();

do {

t1 = System.currentTimeMillis ();

} while (t1 - t0 < 100);

}

public static void main(String [] args) throws Exception {

System.out.println(args [0]);

System.out.println(args [1]);

System.out.println(args [2]);

Random xRandom = new Random(Integer.parseInt(args [3]));

int randomNumber;

int randomUser;

int randomFile;

File toBeListed;

String uploadDestination;

String Basedir = "/ hosthome/XACML -Project/users /";

String userNames [] = {"adam", "ali"};

for (int i = 0; i < 50; ++i) {

randomNumber = xRandom.nextInt (1);

randomUser = xRandom.nextInt (1);

// System.out.println (" Generated: " + randomNumber);

switch (randomNumber) {

case 0:

wait1sec ();

toBeListed = new File(Basedir + "ali");

File[] dFiles = toBeListed.listFiles ();

randomFile = xRandom.nextInt(dFiles.length);

System.out.println (" Download" + dFiles[randomFile]. toString ());

break;

case 1: //exit

System.exit (0);

default:

System.out.println ("\n This case is from 0 to 3\n");

} //end of case

}

System.out.println ("Quit ");

}

}

Appendix A. Source Code 245

Listing A.22: tester Class

A.2.5 SimplePDP Class

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

import java.io.*;

import java.util .*;

import com.sun.xacml .*;

import com.sun.xacml.ctx.*;

import com.sun.xacml.finder .*;

import com.sun.xacml.finder.impl .*;

import org.w3c.dom .*;

import org.xml.sax .*;

import javax.xml.parsers .*;

import javax.xml.transform .*;

import javax.xml.transform.dom.*;

import javax.xml.transform.stream .*;

import java.io.FileInputStream;

import java.util .*;

import com.sun.xacml.PDPConfig;

import com.sun.xacml.ParsingException;

import com.sun.xacml.cond.FunctionFactory;

import com.sun.xacml.cond.FunctionFactoryProxy;

import com.sun.xacml.cond.StandardFunctionFactory;

import com.sun.xacml.ctx.RequestCtx;

import com.sun.xacml.ctx.ResponseCtx;

import com.sun.xacml.finder.AttributeFinder;

import com.sun.xacml.finder.PolicyFinder;

import com.sun.xacml.finder.impl.CurrentEnvModule;

import com.sun.xacml.finder.impl.FilePolicyModule;

public class SimplePDP {

ConstraintCheckerFunction ConstraintCheckerFunction;

public void SimplePDP () {

} ;

public String getXACMLDecision(String subjectString , String resourceString ,

String actionString) throws Exception {

ConstraintCheckerFunction = new ConstraintCheckerFunction ();

// load the policies

FilePolicyModule policyModule = new FilePolicyModule ();

policyModule.addPolicy (" LimitedAccessPolicy.xml ");

// setup the policy finder

PolicyFinder policyFinder = new PolicyFinder ();

Set policyModules = new HashSet ();

policyModules.add(policyModule);

policyFinder.setModules(policyModules);

Appendix A. Source Code 246

// module to provide the current date & time

CurrentEnvModule envModule = new CurrentEnvModule ();

// setup the attribute finder

AttributeFinder attrFinder = new AttributeFinder ();

List attrModules = new ArrayList ();

attrModules.add(envModule);

attrFinder.setModules(attrModules);

// load the constraint checker function designed to access the

// coordination object of the overlay network

FunctionFactoryProxy proxy = StandardFunctionFactory.getNewFactoryProxy ();

FunctionFactory factory = proxy.getConditionFactory ();

factory.addFunction(new ConstraintCheckerFunction ());

FunctionFactory.setDefaultFactory(proxy);

// create the PDP

PDP pdp = new PDP(new PDPConfig(attrFinder , policyFinder , null));

// now work on the request

String xacmlRequest = "<?xml version =\"1.0\" encoding =\"UTF -8\"? >"

+ "<Request xmlns =\" urn:oasis:names:tc:xacml :1.0: context \"

xmlns:xsi=\" http ://www.w3.org /2001/ XMLSchema -instanc \"

xsi:schemaLocation =\" urn:oasis:names:tc:xacml :1.0: context

cs-xacml -schema -context -01. xsd\">"

+ "<Subject >"

+ "<Attribute AttributeId =\"urn:oasis:names:tc:xacml :1.0:

subject:subject -id\" DataType =\" http ://www.w3.org /2001/

XMLSchema#string \">"

+ "<AttributeValue >" + subjectString + "</AttributeValue >"

+ "</Attribute >"

+ "</Subject >"

+ "<Resource >"

+ "<Attribute AttributeId =\"urn:oasis:names:tc:xacml :1.0:

resource:resource -id\" DataType =\" http ://www.w3.org /2001/

XMLSchema#string \">" + "<AttributeValue >" + resourceString +

"</AttributeValue >"

+ "</Attribute >"

+ "</Resource >"

+ "<Action >"

+ "<Attribute AttributeId =\"urn:oasis:names:tc:xacml :1.0:

action:action -id\" DataType =\" http :// www.w3.org /2001/

XMLSchema#string \">" +

"<AttributeValue >" + actionString + "</AttributeValue >"

+ "</Attribute >"

+ "</Action >"

+ "</Request >";

// convert the string to xml

DocumentBuilderFactory docFactory0 = DocumentBuilderFactory.newInstance ();

DocumentBuilder requestDocument = docFactory0.newDocumentBuilder ();

InputSource inputSourceReq = new InputSource ();

inputSourceReq.setCharacterStream(new StringReader(xacmlRequest));

Document xacmlRequestDoc = requestDocument.parse(inputSourceReq);

Node requestNode = xacmlRequestDoc.getDocumentElement ();

//xacml request and response

RequestCtx request = RequestCtx.getInstance(requestNode);

ResponseCtx response = pdp.evaluate(request);

// re -create xacml response to extract only the decision values

ByteArrayOutputStream baos = new ByteArrayOutputStream ();

Appendix A. Source Code 247

response.encode(baos);

String responseString = baos.toString ();

DocumentBuilderFactory docFactory1 = DocumentBuilderFactory.newInstance ();

DocumentBuilder responseDocument = docFactory1.newDocumentBuilder ();

InputSource inputSourceRes = new InputSource ();

inputSourceRes.setCharacterStream(new StringReader(responseString));

Document xacmlResponseDoc = responseDocument.parse(inputSourceRes);

xacmlResponseDoc.getDocumentElement (). normalize ();

NodeList nodeLst = xacmlResponseDoc.getElementsByTagName (" Result ");

Node resultNode = nodeLst.item (0);

String decisionValue = null;

if (resultNode.getNodeType () == Node.ELEMENT_NODE) {

Element resultElmnt = (Element) resultNode;

NodeList decisionNodeLst = resultElmnt.getElementsByTagName (" Decision ");

Element decisionNodeElmnt = (Element) decisionNodeLst.item (0);

NodeList decisionNode = decisionNodeElmnt.getChildNodes ();

decisionValue = ((Node) decisionNode.item (0)). getNodeValue ();

getNodeValue ());

}

decisionValue = ConstraintCheckerFunction.PolicyChecker(subjectString ,

resourceString , actionString);

return decisionValue;

}

}

Listing A.23: SimplePDP Class

A.2.6 ConstraintCheckerFunction Class

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

import com.sun.xacml.EvaluationCtx;

import com.sun.xacml.attr.AttributeValue;

import com.sun.xacml.attr.BooleanAttribute;

import com.sun.xacml.attr.IntegerAttribute;

import com.sun.xacml.attr.StringAttribute;

import com.sun.xacml.cond.EvaluationResult;

import com.sun.xacml.cond.FunctionBase;

import java.text.SimpleDateFormat;

import java.util .*;

import java.io.*;

import java.net.*;

import org.w3c.dom.Document;

import org.w3c.dom .*;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

Appendix A. Source Code 248

import java.util.List;

public class ConstraintCheckerFunction extends FunctionBase {

/**

* The identifier for this function

*/

public static final String NAME =

"PDPOverlay_Constraint_Checker ";

PIPcoordinator PIPcoordinator;

boolean success;

int currentValue;

boolean isPermitted;

/**

* The attributes that the policy must pass onto this function are:

*String subject name

*String resource name

*String action name

*String environment name

* Constructor that accepts mixed data type inputs as specified for Sun ’s

* XACML PDP implementation

*/

public ConstraintCheckerFunction () {

super(NAME , 0, attributes , areBags , BooleanAttribute.identifier , false);

System.out.println (" ConstraintCheckerFunction Function Starting ");

}

public String PolicyChecker(String subjectRequest , String objectRequest ,

String actionRequest) {

String ruleID = "";

String subjectPolicy = "";

String objectPolicy = "";

String actionPolicy = "";

boolean conditionEvaluationResult = false;

String conditionPolicy = "";

String subjectCondition = "";

String objectCondition = "";

String environmentCondition = "";

String eventCondition = "";

String decisionResult = "";

try {

DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory.

newInstance ();

DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder ();

Document doc = docBuilder.parse(new File(" LimitedAccessPolicy.xml "));

// normalize text representation

doc.getDocumentElement (). normalize ();

NodeList listOfPersons = doc.getElementsByTagName (" Subject ");

int totalPersons = listOfPersons.getLength ();

for (int s = 0; s < listOfPersons.getLength (); s++) {

Node firstPersonNode = listOfPersons.item(s);

if (firstPersonNode.getNodeType () == Node.ELEMENT_NODE) {

Element firstPersonElement = (Element) firstPersonNode;

//-------

NodeList firstNameList = firstPersonElement.

getElementsByTagName (" AttributeValue ");

Element firstNameElement = (Element) firstNameList.item (0);

Appendix A. Source Code 249

NodeList textFNList = firstNameElement.getChildNodes ();

subjectPolicy = ((Node) textFNList.item (0)). getNodeValue (). trim ();

}// end of if clause

}// end of for loop with s var

NodeList listOfResources = doc.getElementsByTagName (" Resource ");

int totalResources = listOfResources.getLength ();

for (int s = 0; s < listOfResources.getLength (); s++) {

Node firstResourceNode = listOfResources.item(s);

if (firstResourceNode.getNodeType () == Node.ELEMENT_NODE) {

Element firstResourceElement = (Element) firstResourceNode;

//-------

NodeList firstObjectList = firstResourceElement.

getElementsByTagName (" AttributeValue ");

Element firstObjectElement = (Element) firstObjectList.item (0);

NodeList textFOList = firstObjectElement.getChildNodes ();

objectPolicy = ((Node) textFOList.item (0)). getNodeValue (). trim ();

objectPolicy);

}// end of if clause

}// end of for loop with s var

////////////////-------------------------------

NodeList listOfActions = doc.getElementsByTagName (" Action ");

int totalActions = listOfActions.getLength ();

for (int s = 0; s < listOfActions.getLength (); s++) {

Node firstActionNode = listOfActions.item(s);

if (firstActionNode.getNodeType () == Node.ELEMENT_NODE) {

Element firstActionElement = (Element) firstActionNode;

//-------

NodeList firstActList = firstActionElement.

getElementsByTagName (" AttributeValue ");

Element firstActElement = (Element) firstActList.item (0);

NodeList textFAList = firstActElement.getChildNodes ();

actionPolicy = ((Node) textFAList.item (0)). getNodeValue (). trim ();

}// end of if clause

}// end of for loop with s var

////////////////-------------------------------

NodeList listOfConditions = doc.getElementsByTagName (" Condition ");

int totalConditions = listOfConditions.getLength ();

// System.out.println ("Total no of Conditions : " + totalConditions);

for (int c = 0; c < listOfConditions.getLength (); c++) {

Node firstConditionNode = listOfConditions.item(c);

if (firstConditionNode.getNodeType () == Node.ELEMENT_NODE) {

Element firstConditionElement = (Element) firstConditionNode;

subjectCondition = getTagValue (" SubjectCondition",

firstConditionElement);

objectCondition = getTagValue (" ObjectCondition",

firstConditionElement);

environmentCondition = getTagValue (" EnvironmentCondition",

firstConditionElement);

eventCondition = getTagValue (" EventCondition",

firstConditionElement);

System.out.println (" Subject Condition : " + subjectCondition);

System.out.println (" Object Condition : " + objectCondition);

System.out.println (" Environment Condition : " +

environmentCondition);

System.out.println (" Event Condition : " + eventCondition);

Appendix A. Source Code 250

}// end of if clause

}// end of for loop with s var

////////////////-------------------------------

System.out.println (" subject Request = " + subjectRequest);

System.out.println (" subject Policy = " + subjectPolicy);

System.out.println (" object Request = " + objectRequest);

System.out.println (" object Policy = " + objectPolicy);

System.out.println (" action Request = " + actionRequest);

System.out.println (" action Policy = " + actionPolicy);

// System.out.println (" Calling PIP");

String y = "";

String g = "Alui";

} catch (SAXParseException err) {

System.out.println ("** Parsing error" + ", line "

+ err.getLineNumber () + ", uri " + err.getSystemId ());

System.out.println (" " + err.getMessage ());

} catch (SAXException e) {

Exception x = e.getException ();

((x == null) ? e : x). printStackTrace ();

} catch (Throwable t) {

t.printStackTrace ();

}

////////------------

try {

PIPcoordinator = new PIPcoordinator ();

System.out.println (" Calling PIPcoordanitor ");

String PIPfind = "PIPdata.xml";

// PIPdata.xml is supposed value here but the value can be found in

obligation context

String job = "findAttribute ";

// can be sent form PEP , it maybe (" findAttribute" for authrisation)

or (" addAttribute" or "updateAttribute" for obligation).

String nodeAttribute = "";

// this value is assigned in update attribute the node updated can

be found in obligation context to be updated in PIP

String oldAttribute = "";

// this value is the old value in PIP for the above node

String newAttribute = "";

// this value is the new value in PIP for the above node which can

be found in obligation context

conditionEvaluationResult = PIPcoordinator.PIPcoordinatorTask(PIPfind ,

job , subjectPolicy , objectPolicy , actionPolicy , subjectCondition ,

objectCondition , environmentCondition , eventCondition ,

nodeAttribute , oldAttribute , newAttribute);

System.out.println (" Policy decision Result = " + decisionResult);

System.out.println (" condition Evaluation Result = " +

conditionEvaluationResult);

if (conditionEvaluationResult == true) {

decisionResult = "Permit ";

System.out.println (" decisionResult = " + decisionResult);

} else {

decisionResult = "NotApplicable ";

}

} catch (Exception e) {

System.out.print(" Connect to another PDP in network? (y or n): ");

Appendix A. Source Code 251

}

return (decisionResult);

}

//////////

private static String getTagValue(String sTag , Element eElement) {

NodeList nlList = eElement.getElementsByTagName(sTag).item (0). getChildNodes ();

Node nValue = (Node) nlList.item (0);

return nValue.getNodeValue ();

}

//////////////

public EvaluationResult evaluate(List inputs , EvaluationCtx context) {

System.out.println (" result =");

System.out.println(context);

System.out.println (" sssssssssssssssss ");

//Get the current value from the PDP Overlay coordination object

int[] x = new int [2];

try {

PIPcoordinator = new PIPcoordinator ();

System.out.println (" Calling PIPcoordanitor ");

String Attr = "";

System.out.println (" success = " + success);

if (x[0] == 1) {

isPermitted = false;

} else {

isPermitted = true;

}

if (success == true) {

isPermitted = true;

} else {

isPermitted = false;

}

isPermitted = true;

System.out.println (" isPermitted = " + isPermitted);

} catch (Exception e) {

Constraint Checker ");

System.out.print(" Connect to another PDP in network? (y or n): ");

}

// Return the evaluation result using the getInstance class designed

by Sun microsystems

return EvaluationResult.getInstance(isPermitted);

}

}

Listing A.24: ConstraintCheckerFunction Class

A.2.7 PIPcoordinator Class

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

Appendix A. Source Code 252

import java.util .*;

import java.io.*;

import java.net.*;

import org.w3c.dom.Document;

import org.w3c.dom .*;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

public class PIPcoordinator {

public static PIP pip;

public static RemotePIPcoordinator remotePIPcoordinator;

///////////////////////

// Finding is PIPs local or remote

//////////////////////

public boolean PIPcoordinatorTask(String PIPfind , String job , String subjectPolicy ,

String objectPolicy , String actionPolicy , String subjectCondition , String

objectCondition , String environmentCondition , String eventCondition , String

nodeAttribute , String oldAttribute , String newAttribute) throws Exception {

String RemotePIPindicator = "@";

boolean RemoteAttributeSubject = false;

boolean RemoteAttributeObject = false;

boolean RemoteAttributeEnvironment = false;

boolean RemoteAttributeEvent = false;

boolean isPermitted = false;

if (subjectCondition.indexOf(RemotePIPindicator.charAt (0)) >= 0) {

RemoteAttributeSubject = true;

}

if (objectCondition.indexOf(RemotePIPindicator.charAt (0)) >= 0) {

RemoteAttributeObject = true;

}

if (environmentCondition.indexOf(RemotePIPindicator.charAt (0)) >= 0) {

RemoteAttributeEnvironment = true;

}

if (eventCondition.indexOf(RemotePIPindicator.charAt (0)) >= 0) {

RemoteAttributeEvent = true;

}

if (RemoteAttributeSubject == false || RemoteAttributeObject == false ||

RemoteAttributeEnvironment == false || RemoteAttributeEvent == false) {

if (job.equals (" addAttribute ")) {

addToLocalPIP(PIPfind , subjectPolicy , objectPolicy , actionPolicy ,

subjectCondition , objectCondition , environmentCondition ,

eventCondition);

isPermitted = true;

} else if (job.equals (" updateAttribute ")) {

updateLocalPIP(PIPfind , subjectPolicy , objectPolicy , actionPolicy ,

nodeAttribute , oldAttribute , newAttribute);

isPermitted = true;

} else if (job.equals (" findAttribute ")) {

isPermitted = getAttributeLocalPIP(subjectPolicy , objectPolicy ,

actionPolicy , subjectCondition , objectCondition , environmentCondition ,

eventCondition);

Appendix A. Source Code 253

isPermitted = true;

}

} else {

if (job.equals (" addAttribute ")) {

addToRemotePIP(PIPfind , job , subjectPolicy , objectPolicy , actionPolicy ,

subjectCondition , objectCondition , environmentCondition , eventCondition);

isPermitted = true;

} else if (job.equals (" updateAttribute ")) {

updateRemotePIP(PIPfind , job , subjectPolicy , objectPolicy ,

actionPolicy , nodeAttribute , oldAttribute , newAttribute);

isPermitted = true;

} else if (job.equals (" findAttribute ")) {

isPermitted = getAttributeRemotePIP(PIPfind , job , subjectPolicy ,

objectPolicy , actionPolicy , subjectCondition , objectCondition ,

environmentCondition , eventCondition);

}

}

return (isPermitted);

}

///////////////////

// Local PIPs

///////////////////

public static void addToLocalPIP(String PIPadd , String subject , String resource ,

String action , String subjectAttribute , String objectAttribute ,

String environmentAttribute , String eventAttribute) throws Exception {

pip.addAttributesToDB(PIPadd , subject , resource , action , subjectAttribute ,

objectAttribute , environmentAttribute , eventAttribute);

}

/////////////////////

public static void updateLocalPIP(String PIPupdate , String subject , String

resource , String action , String nodeAttribute , String oldAttribute , String

newAttribute) throws Exception { pip.updateAttributesDB(PIPupdate , subject ,

resource , action , nodeAttribute , oldAttribute , newAttribute);

}

//////////////////////

public boolean getAttributeLocalPIP(String subjectPolicy , String objectPolicy ,

String actionPolicy , String subjectCondition , String objectCondition , String

environmentCondition , String eventCondition) {

boolean isPermitted = false;

String subjectPIP = subjectPolicy;

String objectPIP = objectPolicy;

String actionPIP = actionPolicy;

String subjectconditionPIP = "";

String objectconditionPIP = "";

String environmentconditionPIP = "";

String eventConditionPIP = "";

try {

System.out.println (" Calling PIP ");

subjectconditionPIP = pip.getSubjectCondtionAttribute(subjectPIP ,

objectPIP , actionPIP);

objectconditionPIP = pip.getObjectCondtionAttribute(subjectPIP ,

objectPIP , actionPIP);

environmentconditionPIP = pip.getEnvironmentCondtionAttribute

(subjectPIP , objectPIP , actionPIP);

Appendix A. Source Code 254

eventConditionPIP = pip.getEventCondtionAttribute(subjectPIP ,

objectPIP , actionPIP);

if (subjectconditionPIP.equals(subjectCondition) &&

objectconditionPIP.equals(objectCondition) &&

environmentconditionPIP.equals(environmentCondition) &&

eventConditionPIP.equals(eventCondition)) {

isPermitted = true;

}

// System.out.println ("PIP called ");

} catch (Throwable t) {

t.printStackTrace ();

}

return (isPermitted);

}

///////////////////////

// Remote PIPs through remote PIPcoordinator

////////////////////////

public static void connectionToRemotePIP () throws Exception {

ServerSocket PIPcoordinatorSocket = null;

try {

PIPcoordinatorSocket = new ServerSocket (7777);

} catch (IOException e) {

System.err.println (" Could not listen on port: 7777.");

System.exit (1);

}

Socket PIPsocket = null;

try {

PIPsocket = PIPcoordinatorSocket.accept ();

} catch (IOException e) {

System.err.println (" Accept failed .");

System.exit (1);

}

PrintWriter out = new PrintWriter(PIPsocket.getOutputStream (), true);

BufferedReader in = new BufferedReader(

new InputStreamReader(

PIPsocket.getInputStream ()));

String inputLine , outputLine;

RemotePIPProtocol kkp = new RemotePIPProtocol ();

outputLine = kkp.processInput(null);

out.println(outputLine);

while ((inputLine = in.readLine ()) != null) {

outputLine = kkp.processInput(inputLine);

out.println(outputLine);

if (outputLine.equals ("Bye .")) {

break;

}

}

out.close ();

in.close ();

PIPsocket.close ();

PIPcoordinatorSocket.close ();

}

///////////////

public static void addToRemotePIP(String PIPadd , String job , String subject ,

Appendix A. Source Code 255

String resource , String action , String subjectAttribute , String objectAttribute ,

String environmentAttribute , String eventAttribute) throws Exception {

connectionToRemotePIP ();

boolean addingNewAttribute = false;

String nodeAttribute = "";

String oldAttribute = "";

String newAttribute = "";

addingNewAttribute = remotePIPcoordinator.connectionToRemotePIP(PIPadd ,

job , subject , resource , action , subjectAttribute , objectAttribute ,

environmentAttribute , eventAttribute , nodeAttribute , oldAttribute ,

newAttribute);

}

//////////////////

public static void updateRemotePIP(String PIPupdate , String job , String subject ,

String resource , String action , String nodeAttribute , String oldAttribute ,

String newAttribute) throws Exception {

connectionToRemotePIP ();

boolean updatingAttribute = false;

String subjectAttribute = "";

String objectAttribute = "";

String environmentAttribute = "";

String eventAttribute = "";

updatingAttribute = remotePIPcoordinator.connectionToRemotePIP(PIPupdate ,

job , subject , resource , action , subjectAttribute , objectAttribute ,

environmentAttribute , eventAttribute , nodeAttribute , oldAttribute ,

newAttribute);

}

///////////////////////

public boolean getAttributeRemotePIP(String PIPfind , String job , String

subjectPolicy , String objectPolicy , String actionPolicy , String

subjectCondition , String objectCondition , String environmentCondition ,

String eventCondition) throws Exception {

connectionToRemotePIP ();

boolean evaluatedAttribute = false;

String nodeAttribute = "";

String oldAttribute = "";

String newAttribute = "";

try {

evaluatedAttribute = remotePIPcoordinator.connectionToRemotePIP(

PIPfind , job , subjectPolicy , objectPolicy , actionPolicy ,

subjectCondition , objectCondition , environmentCondition ,

eventCondition , nodeAttribute , oldAttribute ,

newAttribute);

} catch (Throwable t) {

t.printStackTrace ();

}

return (evaluatedAttribute);

}

}

Listing A.25: PIPcoordinator Class

Appendix A. Source Code 256

A.2.8 RemotePIPcoordinator Class

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

import java.util .*;

import java.io.*;

import java.net.*;

import org.w3c.dom.Document;

import org.w3c.dom .*;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

public class RemotePIPcoordinator {

public static PIP pip;

/////////////////

public boolean connectionToRemotePIP(String PIPtoConnect , String job , String

subject , String resource , String action , String subjectAttribute , String

objectAttribute , String environmentAttribute , String eventAttribute , String

nodeAttribute , String oldAttribute , String newAttribute) throws Exception {

boolean isPermitted = false;

Socket pipsocket = null;

PrintWriter out = null;

BufferedReader in = null;

try {

pipsocket = new Socket ("146.227.66.178" , 8888);

out = new PrintWriter(pipsocket.getOutputStream (), true);

in = new BufferedReader(new InputStreamReader(pipsocket.getInputStream ()));

} catch (UnknownHostException e) {

System.err.println ("Don ’t know about host: PIPcoordinator .");

System.exit (1);

} catch (IOException e) {

System.err.println ("Couldn ’t get I/O for the connection to: PIPcoordinator ");

System.exit (1);

}

BufferedReader stdIn = new BufferedReader(new InputStreamReader(System.in));

String fromPIPcoordinator;

String fromPIP;

while ((fromPIPcoordinator = in.readLine ()) != null) {

System.out.println (" PIPcoordinator: " + fromPIPcoordinator);

if (fromPIPcoordinator.equals ("Bye .")) {

break;

}

fromPIP = stdIn.readLine ();

if (fromPIP != null) {

System.out.println ("PIP: " + fromPIP);

out.println(fromPIP);

}

}

Appendix A. Source Code 257

if (job.equals (" addAttribute ")) {

addToLocalPIP(PIPtoConnect , subject , resource , action , subjectAttribute ,

objectAttribute , environmentAttribute , eventAttribute);

}

if (job.equals (" updateAttribute ")) {

updateLocalPIP(PIPtoConnect , subject , resource , action , nodeAttribute ,

oldAttribute , newAttribute);

}

if (job.equals (" findAttribute ")) {

isPermitted = getAttributeLocalPIP(subject , resource , action ,

subjectAttribute , objectAttribute , environmentAttribute , eventAttribute);

}

out.close ();

in.close ();

stdIn.close ();

pipsocket.close ();

return (isPermitted);

}

//////////////

// Local PIPs

///////////////

public static void addToLocalPIP(String PIPadd , String subject , String resource ,

String action , String subjectAttribute , String objectAttribute , String

environmentAttribute , String eventAttribute) throws Exception {

pip.addAttributesToDB(PIPadd , subject , resource , action , subjectAttribute ,

objectAttribute , environmentAttribute , eventAttribute);

}

/////////////////////

public static void updateLocalPIP(String PIPupdate , String subject ,

String resource , String action , String nodeAttribute , String oldAttribute ,

String newAttribute) throws Exception { pip.updateAttributesDB(PIPupdate ,

subject , resource , action , nodeAttribute , oldAttribute , newAttribute);

}

////////////////////////

public boolean getAttributeLocalPIP(String subjectPolicy , String objectPolicy ,

String actionPolicy , String subjectCondition , String objectCondition , String

environmentCondition , String eventCondition) {

boolean isPermitted = false;

String subjectPIP = subjectPolicy;

String objectPIP = objectPolicy;

String actionPIP = actionPolicy;

String subjectconditionPIP = "";

String objectconditionPIP = "";

String environmentconditionPIP = "";

String eventConditionPIP = "";

try {

System.out.println (" Calling PIP ");

subjectconditionPIP = pip.getSubjectCondtionAttribute(subjectPIP ,

objectPIP , actionPIP);

objectconditionPIP = pip.getObjectCondtionAttribute(subjectPIP ,

objectPIP , actionPIP);

environmentconditionPIP = pip.getEnvironmentCondtionAttribute(subjectPIP ,

objectPIP , actionPIP);

eventConditionPIP = pip.getEventCondtionAttribute(subjectPIP , objectPIP ,

Appendix A. Source Code 258

actionPIP);

if (subjectconditionPIP.equals(subjectCondition) && objectconditionPIP.

equals(objectCondition) && environmentconditionPIP.equals(environmentCondition)

&& eventConditionPIP.equals(eventCondition)) {

isPermitted = true;

}

} catch (Throwable t) {

t.printStackTrace ();

}

return (isPermitted);

}

}

Listing A.26: RemotePIPcoordinator Class

A.2.9 PIP Class

/* --

* @author Ali Alzahrani (STRL , DMU , UK)

* aalzahrani@dmu.ac.uk

---*/

import java.util.Vector;

import java.util.ListIterator;

import java.io.*;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.ParserConfigurationException;

import javax.xml.transform.Transformer;

import javax.xml.transform.TransformerException;

import javax.xml.transform.TransformerFactory;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import org.w3c.dom.Document;

import org.w3c.dom.NodeList;

import org.w3c.dom.Node;

import org.w3c.dom.Element;

import org.w3c.dom.NamedNodeMap;

import org.xml.sax.SAXException;

public class PIP {

String x;

public static String getSubjectCondtionAttribute(String subjectValue , String

objectValue , String actionValue) {

String conditionValue = "";

String SubjectPIP = "";

String ObjectPIP = "";

String ActionPIP = "";

try {

DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory.

Appendix A. Source Code 259

newInstance ();

DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder ();

Document doc = docBuilder.parse(new File(" PIPdata.xml "));

doc.getDocumentElement (). normalize ();

NodeList listOfRules = doc.getElementsByTagName ("rule ");

int totalRules = listOfRules.getLength ();

for (int s = 0; s < listOfRules.getLength (); s++) {

Node firstRuleNode = listOfRules.item(s);

if (firstRuleNode.getNodeType () == Node.ELEMENT_NODE) {

Element firstRuleElement = (Element) firstRuleNode;

//-------

NodeList subjectConditionList = firstRuleElement.

getElementsByTagName (" Subject ");

Element subjectConditionElement = (Element) subjectConditionList.

item (0);

NodeList textFSList = subjectConditionElement.getChildNodes ();

SubjectPIP = ((Node) textFSList.item (0)). getNodeValue (). trim ();

//-------

NodeList objectConditionList = firstRuleElement.

getElementsByTagName (" Object ");

Element objectConditionElement = (Element) objectConditionList.

item (0);

NodeList textFOList = objectConditionElement.getChildNodes ();

ObjectPIP = ((Node) textFOList.item (0)). getNodeValue (). trim ();

//-------

NodeList actionConditionList = firstRuleElement.

getElementsByTagName (" Action ");

Element actionConditionElement = (Element) actionConditionList.

item (0);

NodeList textFAList = actionConditionElement.getChildNodes ();

ActionPIP = ((Node) textFAList.item (0)). getNodeValue (). trim ();

//-------

if (subjectValue.equals(SubjectPIP) && objectValue.equals(ObjectPIP)

&& actionValue.equals(ActionPIP)) { NodeList firstConditionList =

firstRuleElement.getElementsByTagName (" SubjectAttribute ");

Element firstConditionElement = (Element) firstConditionList.

item (0);

NodeList textFNList = firstConditionElement.getChildNodes ();

conditionValue = ((Node) textFNList.item (0)). getNodeValue ().

trim ();

break;

}// end of if clause

}// end of if clause

}// end of for loop with s var

} catch (Throwable t) {

t.printStackTrace ();

}

return (conditionValue);

}// end of getSubjectCondtionAttribute

/////////////

public static String getObjectCondtionAttribute(String subjectValue , String

objectValue , String actionValue) {

String conditionValue = "";

String SubjectPIP = "";

Appendix A. Source Code 260

String ObjectPIP = "";

String ActionPIP = "";

try {

// System.out.println (" Reading the PIP Database ");

DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory.

newInstance ();

DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder ();

Document doc = docBuilder.parse(new File(" PIPdata.xml "));

// normalise text representation

doc.getDocumentElement (). normalize ();

NodeList listOfRules = doc.getElementsByTagName ("rule ");

int totalRules = listOfRules.getLength ();

for (int s = 0; s < listOfRules.getLength (); s++) {

Node firstRuleNode = listOfRules.item(s);

if (firstRuleNode.getNodeType () == Node.ELEMENT_NODE) {

Element firstRuleElement = (Element) firstRuleNode;

//-------

NodeList subjectConditionList = firstRuleElement.

getElementsByTagName (" Subject ");

Element subjectConditionElement = (Element) subjectConditionList.

item (0);

NodeList textFSList = subjectConditionElement.getChildNodes ();

SubjectPIP = ((Node) textFSList.item (0)). getNodeValue (). trim ();

//-------

NodeList objectConditionList = firstRuleElement.

getElementsByTagName (" Object ");

Element objectConditionElement = (Element) objectConditionList.

item (0);

NodeList textFOList = objectConditionElement.getChildNodes ();

ObjectPIP = ((Node) textFOList.item (0)). getNodeValue (). trim ();

//-------

NodeList actionConditionList = firstRuleElement.

getElementsByTagName (" Action ");

Element actionConditionElement = (Element) actionConditionList.

item (0);

NodeList textFAList = actionConditionElement.getChildNodes ();

ActionPIP = ((Node) textFAList.item (0)). getNodeValue (). trim ();

//-------

if (subjectValue.equals(SubjectPIP) && objectValue.equals(ObjectPIP)

&& actionValue.equals(ActionPIP)) { NodeList firstConditionList =

firstRuleElement.getElementsByTagName (" ObjectAttribute ");

Element firstConditionElement = (Element) firstConditionList.

item (0);

NodeList textFNList = firstConditionElement.getChildNodes ();

conditionValue = ((Node) textFNList.item (0)). getNodeValue ().

trim ();

conditionValue);

break;

}// end of if clause

}// end of if clause

}// end of for loop with s var

} catch (Throwable t) {

t.printStackTrace ();

}

return (conditionValue);

Appendix A. Source Code 261

}// end of getObjectCondtionAttribute

/////////////////////////////

public static String getEnvironmentCondtionAttribute(String subjectValue ,

String objectValue , String actionValue) {

String conditionValue = "";

String SubjectPIP = "";

String ObjectPIP = "";

String ActionPIP = "";

try {

// System.out.println (" Reading the PIP Database ");

DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory.

newInstance ();

DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder ();

Document doc = docBuilder.parse(new File(" PIPdata.xml "));

// normalize text representation

doc.getDocumentElement (). normalize ();

NodeList listOfRules = doc.getElementsByTagName ("rule ");

int totalRules = listOfRules.getLength ();

for (int s = 0; s < listOfRules.getLength (); s++) {

Node firstRuleNode = listOfRules.item(s);

if (firstRuleNode.getNodeType () == Node.ELEMENT_NODE) {

Element firstRuleElement = (Element) firstRuleNode;

//-------

NodeList subjectConditionList = firstRuleElement.

getElementsByTagName (" Subject ");

Element subjectConditionElement = (Element)

subjectConditionList.item (0);

NodeList textFSList = subjectConditionElement.

getChildNodes ();

SubjectPIP = ((Node) textFSList.item (0)). getNodeValue ().

trim ();

//-------

NodeList objectConditionList = firstRuleElement.

getElementsByTagName (" Object ");

Element objectConditionElement = (Element)

objectConditionList.item (0);

NodeList textFOList = objectConditionElement.

getChildNodes ();

ObjectPIP = ((Node) textFOList.item (0)). getNodeValue ().

trim ();

//-------

NodeList actionConditionList = firstRuleElement.

getElementsByTagName (" Action ");

Element actionConditionElement = (Element) actionConditionList.

item (0);

NodeList textFAList = actionConditionElement.getChildNodes ();

ActionPIP = ((Node) textFAList.item (0)). getNodeValue (). trim ();

//-------

if (subjectValue.equals(SubjectPIP) && objectValue.equals(ObjectPIP)

&& actionValue.equals(ActionPIP)) {

NodeList firstConditionList = firstRuleElement.

getElementsByTagName (" EnvironmentAttribute ");

Element firstConditionElement = (Element) firstConditionList.

item (0);

NodeList textFNList = firstConditionElement.getChildNodes ();

Appendix A. Source Code 262

conditionValue = ((Node) textFNList.item (0)). getNodeValue ().

trim ();

break;

}// end of if clause

}// end of if clause

}// end of for loop with s var

} catch (Throwable t) {

t.printStackTrace ();

}

return (conditionValue);

}// end of getEnvironmentCondtionAttribute

/////////////////

public static String getEventCondtionAttribute(String subjectValue , String

objectValue , String actionValue) {

String conditionValue = "";

String SubjectPIP = "";

String ObjectPIP = "";

String ActionPIP = "";

try {

// System.out.println (" Reading the PIP Database ");

DocumentBuilderFactory docBuilderFactory = DocumentBuilderFactory.

newInstance ();

DocumentBuilder docBuilder = docBuilderFactory.newDocumentBuilder ();

Document doc = docBuilder.parse(new File(" PIPdata.xml "));

// normalize text representation

doc.getDocumentElement (). normalize ();

NodeList listOfRules = doc.getElementsByTagName ("rule ");

int totalRules = listOfRules.getLength ();

for (int s = 0; s < listOfRules.getLength (); s++) {

Node firstRuleNode = listOfRules.item(s);

if (firstRuleNode.getNodeType () == Node.ELEMENT_NODE) {

Element firstRuleElement = (Element) firstRuleNode;

//-------

NodeList subjectConditionList = firstRuleElement.

getElementsByTagName (" Subject ");

Element subjectConditionElement = (Element) subjectConditionList.

item (0);

NodeList textFSList = subjectConditionElement.getChildNodes ();

SubjectPIP = ((Node) textFSList.item (0)). getNodeValue (). trim ();

//-------

NodeList objectConditionList = firstRuleElement.

getElementsByTagName (" Object ");

Element objectConditionElement = (Element) objectConditionList.

item (0);

NodeList textFOList = objectConditionElement.getChildNodes ();

ObjectPIP = ((Node) textFOList.item (0)). getNodeValue (). trim ();

//-------

NodeList actionConditionList = firstRuleElement.

getElementsByTagName (" Action ");

Element actionConditionElement = (Element) actionConditionList.

item (0);

NodeList textFAList = actionConditionElement.getChildNodes ();

ActionPIP = ((Node) textFAList.item (0)). getNodeValue (). trim ();

//-------

if (subjectValue.equals(SubjectPIP) && objectValue.equals(ObjectPIP)

Appendix A. Source Code 263

&& actionValue.equals(ActionPIP)) { NodeList firstConditionList =

firstRuleElement.getElementsByTagName (" EventAttribute ");

Element firstConditionElement = (Element) firstConditionList.

item (0);

NodeList textFNList = firstConditionElement.getChildNodes ();

conditionValue = ((Node) textFNList.item (0)). getNodeValue ().

trim ();

break;

}// end of if clause

}// end of if clause

}// end of for loop with s var

} catch (Throwable t) {

t.printStackTrace ();

}

return (conditionValue);

}// end of getEventCondtionAttribute

/////////////////////

public static void addAttributesToDB(String PIPadd , String subject , String

resource , String action , String subjectAttribute , String objectAttribute ,

String environmentAttribute , String eventAttribute) {

// PIPadd can be any PIP database in the system instead of (PIPdata.xml) below

File docFile = new File(" PIPdata.xml ");

Document doc = null;

try {

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance ();

DocumentBuilder db = dbf.newDocumentBuilder ();

doc = db.parse(docFile);

} catch (java.io.IOException e) {

System.out.println ("Can ’t find the file ");

} catch (Exception e) {

System.out.print(" Problem parsing the file .");

}

Element root = doc.getDocumentElement ();

NodeList children = root.getChildNodes ();

Element ruleElement = doc.createElement ("rule ");

Node updateText = doc.createTextNode ("");

ruleElement.appendChild(updateText);

Element subjectAdd = doc.createElement (" Subject ");

String str_subject = subject;

Node subjectAddNode = doc.createTextNode(str_subject);

subjectAdd.appendChild(subjectAddNode);

ruleElement.appendChild(subjectAdd);

//-------

Element objectAdd = doc.createElement (" Object ");

String str_object = resource;

Node objectAddNode = doc.createTextNode(str_object);

objectAdd.appendChild(objectAddNode);

ruleElement.appendChild(objectAdd);

//-------

Element actionAdd = doc.createElement (" Action ");

String str_action = action;

Node actionAddNode = doc.createTextNode(str_action);

actionAdd.appendChild(actionAddNode);

ruleElement.appendChild(actionAdd);

Appendix A. Source Code 264

//-------

Element SubjectAttributeAdd = doc.createElement (" SubjectAttribute ");

String str_SubjectAttribute = subjectAttribute;

Node SubjectAttributeNode = doc.createTextNode(str_SubjectAttribute);

SubjectAttributeAdd.appendChild(SubjectAttributeNode);

ruleElement.appendChild(SubjectAttributeAdd);

//-------

Element ObjectAttributeAdd = doc.createElement (" ObjectAttribute ");

String str_ObjectAttribute = objectAttribute;

Node ObjectAttributeNode = doc.createTextNode(str_ObjectAttribute);

ObjectAttributeAdd.appendChild(ObjectAttributeNode);

ruleElement.appendChild(ObjectAttributeAdd);

//-------

Element EnvironmentAttributeAdd = doc.createElement (" EnvironmentAttribute ");

String str_EnvironmentAttribute = environmentAttribute;

Node EnvironmentAttributeNode = doc.createTextNode(str_EnvironmentAttribute);

EnvironmentAttributeAdd.appendChild(EnvironmentAttributeNode);

ruleElement.appendChild(EnvironmentAttributeAdd);

//-------

Element EventAttributeAdd = doc.createElement (" EventAttribute ");

String str_EventAttribute = eventAttribute;

Node EventAttributeNode = doc.createTextNode(str_EventAttribute);

EventAttributeAdd.appendChild(EventAttributeNode);

ruleElement.appendChild(EventAttributeAdd);

//-------

root.appendChild(ruleElement);

}

/////////////

public static void updateAttributesDB(String PIPupdate , String subjectValue ,

String objectValue , String actionValue , String nodeAttribute , String

oldAttribute , String newAttribute) {

String conditionValue = "";

String SubjectPIP = "";

String ObjectPIP = "";

String ActionPIP = "";

try {

// PIPupdate can be any PIP database in the system instead of

(PIPdata.xml) below

String filepath = "c:\\ file.xml";

DocumentBuilderFactory docFactory = DocumentBuilderFactory.newInstance ();

DocumentBuilder docBuilder = docFactory.newDocumentBuilder ();

Document doc = docBuilder.parse(filepath);

// normalize text representation

doc.getDocumentElement (). normalize ();

NodeList listOfRules = doc.getElementsByTagName ("rule ");

int totalRules = listOfRules.getLength ();

for (int s = 0; s < listOfRules.getLength (); s++) {

Node firstRuleNode = listOfRules.item(s);

if (firstRuleNode.getNodeType () == Node.ELEMENT_NODE) {

Element firstRuleElement = (Element) firstRuleNode;

//-------

NodeList subjectConditionList = firstRuleElement.

getElementsByTagName (" Subject ");

Element subjectConditionElement = (Element) subjectConditionList.

Appendix A. Source Code 265

item (0);

NodeList textFSList = subjectConditionElement.getChildNodes ();

SubjectPIP = ((Node) textFSList.item (0)). getNodeValue (). trim ();

//-------

NodeList objectConditionList = firstRuleElement.

getElementsByTagName (" Object ");

Element objectConditionElement = (Element) objectConditionList.

item (0);

NodeList textFOList = objectConditionElement.getChildNodes ();

ObjectPIP = ((Node) textFOList.item (0)). getNodeValue (). trim ();

//-------

NodeList actionConditionList = firstRuleElement.

getElementsByTagName (" Action ");

Element actionConditionElement = (Element) actionConditionList.

item (0);

NodeList textFAList = actionConditionElement.getChildNodes ();

ActionPIP = ((Node) textFAList.item (0)). getNodeValue (). trim ();

//-------

if (subjectValue.equals(SubjectPIP) && objectValue.equals(ObjectPIP)

&& actionValue.equals(ActionPIP)) { NodeList firstConditionList =

firstRuleElement.getElementsByTagName(nodeAttribute);

Element firstConditionElement = (Element) firstConditionList.

item (0);

NodeList textFAttList = firstConditionElement.getChildNodes ();

conditionValue = ((Node) textFAttList.item (0)). getNodeValue ().

trim ();

if (nodeAttribute.equals(firstConditionElement.getNodeName ())

&& conditionValue.equals(oldAttribute)) {

firstConditionElement.setTextContent(newAttribute);

}// end of if clause

break;

}// end of if clause

}// end of if clause

}// end of for loop with s var

// write the content into xml file

TransformerFactory transformerFactory = TransformerFactory.newInstance ();

Transformer transformer = transformerFactory.newTransformer ();

DOMSource source = new DOMSource(doc);

StreamResult result = new StreamResult(new File(filepath));

transformer.transform(source , result);

} catch (Throwable t) {

t.printStackTrace ();

}

}

}

Listing A.27: PIP Class

	Abstract
	Acknowledgements
	Publications
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Motivation
	1.3 Research Question
	1.4 Original Contribution
	1.5 Research Methodology
	1.5.1 Research Work Packages and Milestones
	1.5.2 Deliverables/Milestones

	1.6 Success Criteria
	1.7 Thesis Outline

	2 Related Work
	2.1 Introduction
	2.2 Security Policy Overview
	2.3 Access Control Models
	2.3.1 Discretionary Policies
	2.3.2 Non-Discretionary Policies
	2.3.3 Mandatory Policies
	2.3.3.1 Bell-LaPadula Model
	2.3.3.2 Chinese Wall Model

	2.3.4 Access Control Matrix
	2.3.5 Role-based Policies

	2.4 Policy Specification Languages
	2.4.1 Authorisation Specification Language (ASL)
	2.4.2 LaSCO
	2.4.3 eXtensible Access Control Markup Language (XACML)
	2.4.4 Ponder
	2.4.5 Usage Control (UCON)
	2.4.6 Security Analysis Toolkit for Agents (SANTA)
	2.4.7 Trust Specification

	2.5 Policy Based Management (PBM)
	2.5.1 Overview
	2.5.2 IETF Policy Based Admission Control Framework
	2.5.3 Common Open Policy Service (COPS) Protocol

	2.6 Enforcement
	2.6.1 Centralised Policy Enforcement
	2.6.2 Decentralised Policy Enforcement

	2.7 Summary

	3 Preliminaries
	3.1 Introduction
	3.2 SANTA Policy Language
	3.2.1 Policy Syntax
	3.2.1.1 Policy Rules
	3.2.1.2 Authorisation Rules
	3.2.1.3 Obligation Rules
	3.2.1.4 Simple Policies

	4 Decentralised Policy Based Management (PBM)
	4.1 Introduction
	4.2 Decentralised Policy Based Management (PBM) Framework
	4.2.1 Policy Specification
	4.2.2 Policy Analysis
	4.2.3 Policy Decomposition
	4.2.4 Policy and PDPs Deployment
	4.2.5 PDPs Enforcement and Coordination

	4.3 Summary

	5 Distributed Enforcements Architecture (DENAR)
	5.1 Introduction
	5.2 Distributed Enforcements Architecture (DENAR)
	5.2.1 The Architecture
	5.2.2 Component Functionalities
	5.2.2.1 Policy Enforcement Point (PEP) Functionality
	5.2.2.2 Policy Repository (PR) Functionality
	5.2.2.3 Policy Information Point (PIP) Functionality
	5.2.2.4 Policy Decision Point (PDP) Functionality
	5.2.2.5 PIPcoordinator Functionality
	5.2.2.6 PDPcoordinator Functionality

	5.2.3 Component Interactions
	5.2.3.1 PEP and DENAR Interaction
	5.2.3.2 DENAR Components Interaction (PDP, PR, PIP, PDPcoordinator and PDPcoordinator)

	5.3 DENARs Administration
	5.3.1 DENARs Configuration
	5.3.2 DENARs Deployment
	5.3.3 DENARs Re-propagation and Recovery Technique

	5.4 Summary

	6 DENAR Analysis
	6.1 Introduction
	6.2 Security Policy Analysis in DENAR
	6.2.1 Security Policy Challenges
	6.2.2 Policy Dependency Scope

	6.3 Collaborative DENAR Analysis
	6.3.1 Domain Scope
	6.3.2 Collaborative DENAR Decision
	6.3.2.1 Independent Rule Decision
	6.3.2.2 Dependent Rule Decision

	6.4 Summary

	7 Policy Decomposition and Deployment
	7.1 Introduction
	7.2 Policy Decomposition
	7.2.1 Rule Fragmentation
	7.2.2 Rules Refinement
	7.2.2.1 Refinement Analysis
	7.2.2.2 Refinement Independent Rule Method
	7.2.2.3 Refinement Dependent Rule Method

	7.3 Policy Deployment
	7.4 Summary

	8 DENAR Enforcement and Coordination
	8.1 Introduction
	8.2 Policy Enforcement in DENAR
	8.2.1 Local Domain Decision
	8.2.2 Remote Domain Decision

	8.3 DENAR Coordination Mechanisms
	8.3.1 Pull Model
	8.3.2 Push Model

	8.4 DENARs Properties
	8.4.1 DENAR's Coordination and Synchronisation
	8.4.2 DENAR's Concurrency
	8.4.3 DENAR's Security

	8.5 Summary

	9 DENAR Prototype
	9.1 Introduction
	9.2 DENARs Network Lab
	9.2.1 Building DENAR Topologies in Netkit
	9.2.2 DENARs Network Configurations
	9.2.2.1 Domain Configuration

	9.3 Software Design and Implementation of DENAR
	9.3.1 XACML Architecture
	9.3.1.1 Policy File, Request and Response

	9.3.2 Client-Server Application
	9.3.2.1 Client Class
	9.3.2.2 DENAR Class

	9.3.3 DENARs Enforcement and Coordination
	9.3.3.1 SimplePDP Class
	9.3.3.2 ConstraintCheckerFunction Class
	9.3.3.3 PIPcoordinator Class
	9.3.3.4 RemotePIPcoordinator Class
	9.3.3.5 PIP Class

	9.4 Summary

	10 Case Study and Evaluation
	10.1 Introduction
	10.2 Policy Based Management (PBM) Simulation
	10.2.1 First Simulator: Centralised PBM
	10.2.2 Second Simulator: Decentralised PBM

	10.3 Case Study
	10.3.1 Case Study 1 (Static Policy)
	10.3.2 Case Study 2 (Local Domains' Dynamic Policy)
	10.3.3 Case Study 3 (Remote Domains' Dynamic Policy)

	10.4 Evaluation
	10.4.1 DENARs' Performance
	10.4.1.1 Network Traffic

	10.4.2 DENARs' Security
	10.4.2.1 Enforcement Functional Behaviour

	10.4.3 DENARs' Manageability
	10.4.3.1 Resource Utilisation
	10.4.3.2 Administrative Cost

	10.4.4 DENARs' Resilience

	10.5 Summary

	11 Conclusion and Future Work
	11.1 Summary of the Thesis
	11.2 Revisiting Contributions
	11.3 Achieving Success Criteria
	11.4 Future Work

	A Source Code
	A.1 DENARs Network Labs
	A.1.1 Network Configuration
	A.1.2 Centralised PBM
	A.1.3 Decentralised PBM

	A.2 DENAR Software
	A.2.1 XACML Policy and Request
	A.2.2 Client Class
	A.2.3 DENAR Class
	A.2.4 tester Class
	A.2.5 SimplePDP Class
	A.2.6 ConstraintCheckerFunction Class
	A.2.7 PIPcoordinator Class
	A.2.8 RemotePIPcoordinator Class
	A.2.9 PIP Class

