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Abstract—Airports face pressures to reduce costs at the secu-
rity lane area by reducing lane opening hours whilst maintaining
a passenger service level. Evolutionary methods have been shown
to design schedules that minimise both objectives. However, by
reducing lane opening hours schedules have a tendency to over-
fit the expectation of passenger arrivals at security resulting
in long delays with deviations from this forecast. Evolutionary
dynamic re-optimisation can mitigate for this reducing passenger
waiting times but the security lane problem is an example of
a constrained problem in that schedules cannot be significantly
altered. Consequently, this paper will investigate the considera-
tion of flexibility when evolving initial schedules to facilitate the
evolutionary dynamic re-optimisation process. Several differing
methods of measuring flexibility will be investigated alongside
reducing security lane opening hours and passenger waiting
times. Results demonstrate that considering flexibility in the initial
design of schedules improves the effectiveness of evolutionary
dynamic re-optimisation of schedules.

I. INTRODUCTION

In the modern world reducing costs through efficiency
savings is considered standard practice. This is the case for
airports whereby cost savings need to be made in areas such
as the security checking area. However, reducing the degree
to which security lanes are open to process passengers will
naturally result in longer waits for passengers passing through
security. Optimisation techniques though such as evolutionary
methods can treat this as a multi-objective optimisation prob-
lem and design schedules for security lanes that minimise both
these objectives [5]. A problem though with this methodology
is that the optimisation process will reduce security lane open-
ing hours to match the expected passenger arrivals. Effectively,
these optimised schedules over-fit a forecast of the numbers of
passengers arriving at security throughout the day. Therefore,
should passenger arrivals deviate from this forecast perhaps as
a result of bad weather or a traffic accident in the vicinity of the
airport, significant passenger delays can occur raising passen-
ger dissatisfaction. Chitty et al. showed that this problem can
be mitigated by using evolutionary methods to dynamically
re-optimise these schedules by modifying shift times reducing
passenger waiting times [5]. However, changing shift times is
difficult as a result of the human element involved in security
checks, shifts can only be modified to a minor degree. The
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problem of the dynamic re-optimisation of airport security lane
schedules is an example of a constrained scheduling problem
consequently limiting the effectiveness of dynamically re-
optimising schedules within a changing scenario.

Therefore, it is postulated that when evolving initial security
lane schedules that minimise both passenger waiting times and
opening hours based on a passenger flow forecast, considera-
tion should be given to the need to potentially dynamically re-
optimise this evolved optimal schedule. Essentially, an initially
optimsed schedule not only needs to reduce forecast passenger
waiting times whilst also reducing lane opening but maintain
a degree of flexibility such that in the event of unforeseen
changes to passenger arrivals at security necessitating the
dynamic re-optimisation of the schedule, there are a greater
number of options thereby facilitating the re-optimisation pro-
cess. This paper will consider several methods of measuring
the flexibility of a security lane schedule when searching for
optimal schedules and incorporating these into the effective
fitness of candidate schedules. Schedules derived by using
these additional flexibility measures will then be tested as
to their effectiveness with unforeseen differing passenger
arrivals necessitating the evolutionary dynamic re-optimisation
of schedules to maintain optimality.

This paper is laid out as follows. Section II briefly reviews
related work to optimising airport security lane schedules
and consideration of flexibility in schedules. Section III de-
scribes the airport security lane optimisation problem and the
evolutionary dynamic re-optimisation of schedules. Section
IV introduces several methods of measuring the flexibility
of a candidate schedule. Section V contrasts these flexibility
measures against each other to derive the best methodology.
Finally, Section VI draws conclusions and presents ideas for
further work.

II. RELATED WORK

There is limited literature associated with the optimisation
of airport security lane schedules to reduce passenger waiting
times. Soukour ef al. [17] used a memetic algorithm merged
with an evolutionary algorithm to assign security staff con-
centrating on reducing over and undertime and raising staff



satisfaction. However, the security lane problem is similar
to optimising airport check-in desks to minimise passenger
delays and the degree to which desks are open. Wang and
Chun [18] used a Genetic Algorithm (GA) [8] for optimal
counter assignment for check-in desks. Chun and Mak [6]
used simulation and search heuristics to determine the optimal
check-in desk allocation that reduces the time desks are
open and acceptable queue lengths for Hong Kong Airport.
Bruno and Genovese [4] proposed a number of optimisation
models for the check-in service balancing operational costs
with passenger waiting times for Naples airport. Araujo and
Repolho [2] present a new methodology to optimise the
check-in desk allocation problem of maintaining a service
level whilst reducing operational costs. Three phases are used
whereby the first optimises the number of desks based upon
[4], the second uses simulation to test the service level and
the third uses an optimisation model to solve an adjacent
desk constraint. Integer programming is used to solve both
a common and dedicated desk problem. Mota [13] uses an
evolutionary algorithm and a simulation approach to establish
the allocation and opening times of check-in desks to reduce
passenger waiting times.

The dynamic optimisation of check-in desks has been
investigated by Parlar er al.[15], [16] with regards the optimal
opening of desks to minimise a monetary cost determined
as the financial cost of waiting passengers and the cost of
open check-in desks and aircraft delays solved using dynamic
programming for a single flight scenario. A static policy was
recommended as a dynamic policy was found to suffer from
the curse of dimensionality [16]. Hsu er al. [9] investigated
the dynamic allocation of check-in facilities and passengers to
desks defined as a Sequential Stochastic Assignment Problem
and solved using binary integer programming with positive
results. Nandhini et al. [14] investigated the dynamic optimi-
sation of check-in desks to minimise the conflicting objectives
of resource allocation and passenger waiting times using a GA.

With regards the consideration of the flexibility of schedules
in dynamic environments there has been some limited work.
Jensen [12] postulated that a more robust or flexible schedule
may be more valuable than an inflexible optimal schedule. A
robustness measure is used whereby a schedule is compared to
others in its neighbourhood the premise being that a schedule
open to flexibility will have many good solutions within
its neighbourhood and the fitness is the average quality of
solutions in this neighbourhood. Results demonstrated these
schedules to be more amenable to rescheduling. Jensen also
considered an alternative co-evolutionary approach for testing
schedules against a worst case scenario [11]. Worst case sched-
ules are evolved alongside break down scenarios for a job shop
scheduling problem. This approach was found to evolve more
flexible schedules. Branke and Mattfield [3] considered the use
of a secondary flexibility measure when evolving schedules.
This measure involved an anticipation measure of likely future
changes for a job shop scheduling problem whereby avoiding
early machine idle time was considered beneficial to schedules
in a dynamic environment. Finally, Al-Hinai and EIMekkawy

[1] used a hybrid GA to generate robust and stable schedules
for the flexible job shop scheduling problem using a secondary
objective to test six different robustness measure of proposed
schedules based on predicted operations.

III. DYNAMIC OPTIMISATION OF SECURITY LANE
SCHEDULES

A. The Security Lane Optimisation Problem

Passengers travelling by air are required to pass through
stringent security checks such as hand baggage searches and
passing through metal detectors etc. with a number of available
security lanes for processing passengers. Security checks are
staff intensive and cannot be compromised as maintaining
security is paramount. One aspect of security that is open
to optimisation is the schedules of opening these security
lanes. Clearly, minimising passenger waiting times at security
reduces passenger dissatisfaction. Thus, opening all security
lanes will achieve this but to the expense of the airport but al-
ternatively, closing lanes will increase passenger waiting times
and hence increase passenger dissatisfaction. Therefore, it can
be considered that the problem is multi-objective in nature,
minimising waiting times and minimising security operations
are mutually exclusive objectives. However, passenger demand
will ebb and flow and therefore the problem becomes the
design of a schedule that ensures low passenger waiting times
at peak times and lower security lane opening hours at times
of low passenger demand. Figure 1 demonstrates the ebb and
flow of passenger demand during a 24h period with a supplied
generalised forecast of passenger arrivals at an airport for four
exemplar problems and an example of actual passenger flow
data as a comparison.

B. Evolutionary Optimisation of Security Lane Schedules

The optimisation objective of the security lane problem is
to simultaneously reduce passenger waiting times whilst also
minimising the degree to which security lanes are open hence
reducing costs. The two objectives are mutually exclusive
hence the problem is multi-objective. The main objective is
to reduce the worst passenger waiting time as defined by:

minimise fi= max (W), (D

ie{l,...,m}
where W is the waiting time experienced by the i*” passenger
at the security queue and m is the number of passengers that
arrive over the time period.
The secondary objective is to minimise the degree of time
to which security lanes are open during the stated time period,
defined as follows:

i<n

f2=>_ 5 )
i=1

where S; is the time for which the i** security lane shift lasts
and n is the number of shifts within the schedule.
Essentially, the key objective is to minimise the maximum
passenger waiting time experienced by any passenger across
the whole time period. Therefore, the multi-objective problem

minimise
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Fig. 1. The forecast arrivals of passengers at security and a set of actual passenger arrivals over a 24 hour period for the exemplar problems labelled (a)

F_PAXflow_2425, (b) F_PAXflow_2428, (c) F_PAXflow_2501 and (d) F_PAXflow_21113 respectively.

can be simplified to finding the lowest maximum waiting time
experienced by a passenger with the fewest hours of security
lane operation. To derive the optimal security lane operational
schedule an evolutionary approach can be used by deploying
a GA whereby a candidate schedule is represented as a set of
shifts defined by a start and finish time with a granularity of
five minutes with shifts restricted to being between two and
four hours in length and each gene represents a shift. Since a
set of shifts constituting a schedule can be variable in nature, a
variable GA approach is used [7]. Two point crossover swaps
subsets of shifts between two candidate solutions with these
subsets being of differing size. Mutation consists of either
swapping a subset of shifts with a random replacement set or a
low probability bitwise mutation of starting and finishing times
of shifts. In terms of fitness selection, a candidate schedule
with a lower maximum passenger waiting time is considered
the fitter. If the times are identical then the schedule with
the lower degree of lane operation is considered the fitter.
A simulation based approach is used to measure passenger
waiting times. Passengers are simulated arriving at security
defined by the passenger flow forecast and enter a queue
operating in a First In First Out (FIFO) manner. Open security
lanes take passengers from this queue and process them which
is defined as randomly taking between 15 and 21 seconds
per passenger. Ten simulations are used to account passenger
processing variance.

However, as evidenced in Fig. 1, passenger arrivals will
often not reflect the predicted forecast with bad weather or
road traffic accidents causing changes to passenger arrivals.
With schedules optimised to the forecast this will likely cause
significant queues with security lanes not being open, these
schedules essentially over-fit the forecast and by minimising
security lane opening hours there is no spare capacity. To
address this issue a dynamic re-optimisaton approach can be
used to improve these optimised schedules by modifying the
shifts. In fact, resource managers often alter schedules to suit
demand known as real-time shift updating [10]. However, there
are constraints with this policy in that shifts due to their human
component may only have their start time brought forward or
pushed back by up to an hour and similarly for the finish time
with shifts restricted to being between two and four hours
in length. To dynamically modify security lane schedules a
re-optimisation is performed every hour using the same afore-
mentioned evolutionary approach. Forecast passenger flow is

TABLE I
GA PARAMETERS USED THROUGHOUT UNLESS OTHERWISE STATED

Population Size 100
Max Generations 2,000
Tournament Size 7
Crossover Probability 0.9
Mutation Probability 0.1

Primary Fitness Measure Minimisation of max. passenger waiting time
Secondary Fitness Measure Minimisation of total lane opening time

used for simulated future arrivals and actual passenger events
are represented purely by the current passengers in the queue
which could be much larger than expected. Full details of the
approach can be found in [5].

To establish the effectiveness of an evolutionary approach
to the design of security lane schedules for both static and
dynamic policies experiments are conducted for the four
exemplar problems with results averaged over 25 random runs.
Initial schedules are evolved using the forecast passenger flow
information. These are then tested against the actual passenger
flow information. Moreover, the dynamic re-optimisation of
these schedules is also tested against actual passenger flow
events. The parameters used by the evolutionary optimisation
are shown in Table I.

The results in terms of maximum passenger waiting times,
average passenger waiting times and total security lane open-
ing hours from the initial evolved static schedules and the
dynamically re-optimised schedules throughout the given time
period are shown in Table II. It is clear to see that there are
lengthy maximum passenger waiting times of over several
hours for the static schedules for actual passenger arrival
events. Dynamic re-optimisation of these schedules results
in significant reductions in these maximum waiting times.
This demonstrates how the static schedules have over-fit the
forecast in terms of the pattern of lane opening hours matching
projected peaks in passenger demand. Deviations from this
forecast results in significant passenger delays. Clearly, the
dynamic approach is highly effective in mitigating for the
over-fitting issue but it can be considered that there is a limit
to the degree to which it can improve passenger experiences
as a result of the constrained nature of modifying schedules.
As previously discussed, scheduled shift start and finish times
can only be modified by up to plus or minus an hour
with shifts remaining no longer than four hours in length.



TABLE 11
THE MAXIMUM WAITING TIMES, THE AVERAGE WAITING TIMES AND THE SCHEDULED TOTAL LANE OPENING TIME USING ACTUAL PASSENGER
ARRIVALS FOR A RANGE OF AVAILABLE LANES FOR THE OPTIMAL STATIC AND THE DYNAMICALLY RE-OPTIMISED SCHEDULES. RESULTS AVERAGED
OVER 25 EVOLVED SCHEDULES AND 10 SIMULATIONS WITH VARYING PASSENGER PROCESSING TIMES.

Max. Maximum Wait (in minutes) Average Wait (in minutes) Shift Time (in hours)

Problem Lanes Static Dynamic Static Dynamic Static Dynamic
4 161.79+ 5.84 107.81+£19.43 27.32+ 2.97 15.474+3.79 38.14+1.07 42.88+1.55
F_PAXflow 5 143.61 £ 8.05 114.12+17.48 17.58+ 3.08 12.18 £2.87 42.04+2.06 45.97+2.72
_2425 6 143.25 £ 8.95 117.20£15.64 15.75+ 3.17 10.824+2.40 46.74+2.48 50.67+£2.72
7 137.24£27.23 106.31£26.96 12.82+ 3.53 8.34 £3.01 60.06+2.40 65.38+2.46
8 139.67£19.21 111.25+£20.81 13.22+ 3.60 8.60 £2.81 64.08+3.17 70.48+3.68
4 135.92£70.40  47.70 £ 5.51 3291+£10.40 13.44+2.66 41.02+0.78 44.03£1.61
F_PAXflow 5 62.50 £12.51 41.44 + 7.56 13.67+ 3.57 7.88 £1.40 44.48+1.68 47.90+2.06
2428 6 27.20 + 1.33 25.90 + 3.13 5.91 4+ 0.60 497 +£0.63 51.68+2.34 53.80+2.58
7 15.35 £ 0.19 13.77 £ 2.04 2.72 £ 0.13 2.55 £0.18 64.10+=2.70 66.18 £2.89
8 15.10 +£ 0.71 13.38 £ 2.28 2.44 4+ 0.07 2.26 £0.14 69.88+2.47 72.67+3.22
4 191.79+51.55 79.70 £26.59 57.78 £10.78 20.48+8.13 45.12+1.00 48.30£1.70
F_PAXflow 5 46.99 + 4.85 44.00 + 0.57 13.56 + 3.15 8.02 £0.82 48.82+1.81 52.70+1.72
_2501 6 25.71 + 0.34 25.71 £+ 0.34 3.78 £ 0.07 3.64 £0.08 65.22+1.70 67.70£1.87
7 13.54 £+ 0.15 13.54 £ 0.15 2.76 + 0.11 2.57 £0.10 73.34+3.23 76.70+3.57
8 12.17 £ 1.07 10.40 £ 1.13 2.20 £+ 0.06 2.08 £0.07 83.34+3.07 87.66+3.60
4 8.16 £ 0.15 8.16 £ 0.15 2.05 £+ 0.05 1.95 +£0.06 35.20£1.45 36.87+1.88
F_PAXflow 5 7.48 £ 0.74 748 + 0.74 1.54 + 0.04 1.48 £0.04 44.64+£1.78 47.38+£2.07
_21113 6 7.19 + 0.91 7.19 £ 0.91 1.30 + 0.04 1.26 +£0.04 53.56+2.21 56.21+2.69
7 6.95 £ 1.20 6.95 £ 1.20 1.19 £ 0.04 1.13 £0.05 60.08£2.83 63.05+3.35
8 6.09 £ 0.83 6.09 £ 0.83 1.08 + 0.04 1.02 £0.04 66.82+4.66 70.91+5.07

Therefore, if peaks in passenger demand differ significantly
from the forecast and the schedule over-fits this forecast then
evolutionary dynamic re-optimisation of schedules will likely
only partially mitigate for this problem.

IV. MEASURING THE FLEXIBILITY OF SCHEDULES

It can be considered that a highly optimised initial schedule
of security lane shifts will likely over-fit a forecast of ex-
pected passenger arrivals due to the secondary objective of
minimising the total number of shift hours. With differing
passenger arrivals the schedule will perform badly and due
to the constrained nature of schedules it can be theorised
that evolutionary dynamic re-optimisation will not achieve an
optimal schedule. Therefore, to improve the performance of
the re-optimisation process it would be beneficial to have an
initial schedule that is more amenable to modification. Essen-
tially, when evolving the initial schedules, a candidate schedule
needs, in addition to its primary objectives, to be assessed in
terms of its ability to deal with unforeseen passenger arrivals or
its flexibility. Indeed, Branke and Mattfeld also postulated that
in dynamic, changing environments the flexibility of schedules
should be of consideration in the evolutionary process [3].

A simple example can demonstrate the concept. Consider
an initial schedule with four shifts all starting at the same time
and lasting the same amount of time. This could be considered
ineffective as each of these shifts can only be modified within
the same time zone. An improved shift layout might be to
slightly offset the shifts, effectively stagger them such that
as a whole the four shifts have a greater degree of coverage
if required. An additional point to consider is the length of
shifts. A few shifts of four hours in length, the maximum

allowed, provides less potential options for re-optimisation
than a greater number of shifts of only two or three hours
in length as four hour shifts cannot be increased in length,
only the start time of the shift can be modified.

Therefore, some additional flexibility measures will be in-
troduced to try and reflect some of the aforementioned issues
with the initially evolved schedules in order to make them
more amenable to evolutionary dynamic re-optimisation.

A. Measuring the Maximum Number of Lane Hours

One method of describing the flexibility or amenability of a
schedule to evolutionary dynamic re-optimisation is to sum the
total number of hours that the security lanes can be operated
throughout the time period including both the current statically
defined shifts and the dynamic aspects. Essentially, at each five
minute interval in the schedule (as defined by the granularity)
count the number of the available security lanes that could be
opened by a shift in the current schedule including a maximum
dynamic modification. Thus, if at the current time interval a
shift by having its start time brought forward by up to an hour
can then be opened within this time period then a security
lane can be considered as being capable of being opened.
The number of lanes that can be opened in a time period
is obviously restricted to the maximum number of available
lanes. This flexibility measure will be henceforth referred to
as MaxLaneCoverage and this third optimisation objective can
be described as:

t<T

fs=>_ N
=1

maximise

3)



where NNV, is the total number of lanes that can be opened at
the five minute interval time period ¢ in the schedule with T’
the number of five minute intervals within the time period.

B. Measuring the Scope of a Schedule

An alternative measure to testing the flexibility of a given
schedule is to consider minimising the number of five minute
intervals within a given schedule whereby there is no lane
coverage at this time even when all the shifts in the initial
static schedule are dynamically modified to their full extent.
The reasoning behind this measure is that long delays can
often happen because passengers unexpectedly arrive at a
time when there are no security lanes open meaning they
have to simply wait in the queue until a security lane finally
opens. This flexibility measure will be henceforth referred to
as Unopenable and this objective can be described as:

t<T

fa=Y_C, )
t=1

where 7' is the number of five minute intervals within the
given time period and C; denotes if no security lanes can be
opened at time interval ¢ described as:

minimise

c - 1 if no lane can be opened at time ¢ )
£ 0 otherwise

However this flexibility measure does not consider situations
whereby only a single security lane can be opened as opposed
to up to eight lanes. Therefore, a second methodology of
measuring the degree of security lanes that cannot be opened
at a given time period is proposed. In this instance, the
number of the available security lanes that cannot possibly be
opened taking into consideration the dynamic modification of
shifts are counted at each five minute interval in a schedule.
Moreover, in order to more greatly penalise schedules that
have a high occurrence of time periods whereby most lanes
cannot be opened even with dynamic modification to the
schedule, the number of unopenable lanes at a given time
period is raised to a power of two. This flexibility measure
will be referred to henceforth as UnopenableLanes and this
optimisation objective can be described as:

t<T

minimise f3= Z Uf , (6)
t=1

where U, is the number of available security lanes that cannot

possibly be opened at the given time period and 7' is the

number of five minute time intervals in the given schedule.

C. Measuring the Average Shift Length in a Schedule

A final methodology of measuring the flexibility of an
evolved initial schedule is to simply consider the number of
shifts in the schedule or the average shift length. Consider that
a schedule could consist of say twenty two hour shifts or ten
four hours shifts. However, recall that shifts must be within
two and four hours in length and their start and finish times
can be modified by up to one hour. Therefore, in effect the

first schedule with more shifts can actually double the amount
of shift coverage whereas the second can not increase the
shift coverage at all but merely move the currently scheduled
shifts. Moreover, a greater number of shifts in a schedule
provides more options for the reconfiguration of a schedule
when exposed to evolutionary dynamic re-optimisation. Con-
sequently, a final flexibility measure is considered whereby the
aim is to reduce the average length of shifts within a given
schedule. This flexibility measure will be henceforth referred
to as AverageShiftLength and this optimisation objective can
be described as:
i<n

fs = M’ (7)

n

minimise

where S; is the time for which the i*" security lane shift lasts
and n is the number of shifts within the schedule.

V. COMPARING THE EFFECTIVENESS OF THE FLEXIBILITY
MEASURES

To gauge the effectiveness of the aforementioned four pro-
posed flexibility measures the experiments with evolutionary
dynamic re-optimisation of airport security lane schedules
will be repeated. However, the fitness function for evolving
the initial static schedules for the opening of security lanes
will now consist of three optimisation objectives. The first
being the minimisation of the maximum passenger waiting
time at security as recorded by the simulation. The second
objective being the minimisation of the number of hours that
the security lanes are open. The third objective will consist of
one of the four flexibility measures as described in Section
IV. As previously when evolving security lane schedules,
when comparing two candidate schedules to establish the
fitter of the two, the schedule with the lowest maximum
passenger waiting time is considered the fitter as this is the
priority objective. However, if the two schedules have the same
maximum passenger wait then the candidate schedule with the
lower number of security lane opening hours is considered
the fitter. However, if both schedules have the same maximum
waiting time and scheduled opening hours then the schedule
with the better flexibility measure will be considered the fitter.

As previously, experiments will be conducted by evolving
25 differing schedules and then dynamically re-optimising
them. Ten simulations will be performed to establish the
fitness of candidate schedules. The results for each flexibility
measure in terms of the maximum passenger waiting times
for schedules exposed to differing actual passenger arrivals at
security and dynamically re-optimised are shown in Table III.

From these results, the first aspect to note is that the
average maximum passenger waiting times recorded for each
flexibility measure across all problems and ranges of secu-
rity lane availability are broadly similar. However, there are
minor improvements over the results in Table II whereby no
flexibility measure is used. Thus, the advantages from using
a flexibility measure to improve the evolved initial schedules
amenability to dynamic re-optimisation are only subtle. This
though is to be expected as the number of hours security lanes



TABLE III
THE MAXIMUM PASSENGER WAITING TIMES FOR DYNAMICALLY RE-OPTIMISED SCHEDULES THAT WERE INITIALLY EVOLVED USING A RANGE OF
Slexibility MEASURES. RESULTS AVERAGED OVER 25 EVOLVED SCHEDULES AND 10 SIMULATIONS WITH VARYING PASSENGER PROCESSING TIMES. BEST
RESULTS HIGHLIGHTED IN BOLD.

Max. Maximum Passenger Waiting Time for Re-Optimised Schedules (in minutes)
Problem Lanes MaxLaneCoverage Unopenable UnopenableLanes  AverageShiftLength
4 117.22+ 15.60 112.42+21.74  105.03 £ 23.46 109.42+ 23.46
F_PAXflow 5 110.99+ 18.72 114.12+£17.49 112494 18.27 110.96 = 18.75
_2425 6 115.61+ 16.75 106.21 £19.60 115.64+ 16.69 110.94+ 18.78
7 110.85+ 18.91 109.28+£19.30 107.70+ 19.55 106.14 = 19.67
8 110.84+ 18.91 110.85£18.91 110.864 18.90 104.96 = 21.64
4 49.76 £ 4.05 46.95 £+ 4.03 46.67 £ 3.51 46.29 + 3.45
F_PAXflow 5 46.63 £ 9.60 42.03 £ 7.61 39.82 £ 6.22 41.83 £ 6.17
2428 6 28.09 + 0.78 26.35 + 2.38 2549 + 3.25 26.16 + 2.81
7 15.22 + 1.08 14.13 £ 1.81 13.69 + 1.86 13.98 + 1.86
8 15.35 £ 0.67 13.98 £+ 1.59 1349 + 2.23 13.56 £ 2.18
4 7491 + 1.78 75.01 + 1.74 74.83 £ 1.56 75.83 £ 9.79
F_PAXflow 5 4396 + 0.41 43.98 + 0.44 4396 + 0.41 43.97 £ 0.43
_2501 6 25.75 £ 0.31 25.75 + 0.31 25.71 £ 0.34 25.73 £ 0.33
7 13.54 £ 0.15 13.54 + 0.15 13.54 £ 0.15 13.54 £ 0.15
8 10.06 += 1.05 10.43 £ 1.51 10.26 £ 1.00 10.29 £ 1.22
4 8.43 £ 0.09 8.15 £ 0.17 8.16 £ 0.15 812 + 0.31
F_PAXflow 5 7.66 £ 0.71 747 + 0.76 7.54 £ 0.74 7.70 £ 0.72
_21113 6 7.55 £ 0.89 7.05 + 0.87 7.21 + 0.88 692 + 0.81
7 799 £ 0.82 729 £ 1.14 690 + 1.33 690 + 1.33
8 6.33 £ 0.71 5.88 + 0.96 6.09 £ 0.83 6.02 £ 0.88

are open will not change to a great degree and maximum
passenger waiting time is most likely dominated by points in
peak demand whereby all lanes need to be open.

The best improvements in the maximum passenger waiting
times achieved by the flexibility measures are predominately
from the UnopenableLanes measure which quadratically in-
creases the penalty associated with the number of security
lanes that cannot be opened. This measure seems to demon-
strate that good throughput of passengers can reduce conges-
tion and long delays and this can be achieved by reducing time
periods whereby there are few security lanes available to be
opened when taking into account dynamic modification. Fur-
thermore, when comparing to the results in Table II, improve-
ments in the maximum passenger waiting time are achieved in
most cases. The other flexibility measure that shows promise
is the AverageShiftLength measure. As previously theorised,
reducing the average shift length increases the number of shifts
that can be evolutionary dynamically re-optimised providing
greater scope and by shifts being shorter, a greater increase
in security lane opening time can be achieved to counter
unexpected peaks in demand.

It should be stated that the improvements in the maximum
passenger waiting times for the dynamically re-optimised
schedules were achieved with no appreciable increase in
security lane opening hours over those described in Table II
whereby no flexibility measure is used.

A. Combining Multiple Flexibility Measures

From Table III it was clear that the two most effective
flexibility measures in terms of reducing the maximum passen-
ger waiting time in unforeseen actual passenger flow circum-

stances were the UnopenableLanes and AverageShiftLength
measures. Therefore, it could be considered useful to combine
both measures into the fitness function. Two methods will be
considered. The first will extend the fitness function to consist
of four objectives. As previously, the primary objective is the
minimisation of the maximum passenger waiting times and the
second the minimisation of the security lane opening hours.
The third objective of minimising the AverageShiftLength is
used to differentiate if the first two objective values are the
same for two candidate schedules being compared. If all three
objective values are the same between the two candidate
schedules being compared then the fourth objective comes into
effect, the minimisation of the UnopenableLanes flexibility
measure.

The results from using both flexibility measures as fitness
objectives are shown in Table IV. Comparing these results to
those in Table II it can be observed that in most cases there
has been a small reduction in the maximum passenger waiting
times for both static and dynamically re-optimised schedules
when using the combined flexibility measure. Indeed, slightly
better reductions are observed for the average passenger wait-
ing times of approximately 2-3% although in some cases as
much as 10%. Moreover, there has only been a small increase
in security lane opening time of a few minutes on average.
However, it can be considered that the effect of the flexibility
measures has been minimal.

A second alternative methodology of combining the Un-
openableLanes and AverageShiftLength flexibility measures is
to simply limit the evolutionary algorithm to allocating shifts
at the minimum two hour length for the initial shift. This
achieves the minimum average shift length but there is an issue



TABLE IV
THE MAXIMUM WAITING TIMES, THE AVERAGE WAITING TIMES AND THE SCHEDULED TOTAL LANE OPENING TIME USING ACTUAL PASSENGER
ARRIVALS FOR A RANGE OF AVAILABLE LANES FOR STATIC AND DYNAMICALLY RE-OPTIMISED SCHEDULES USING BOTH THE AverageShiftLength AND
Unopenable FLEXIBILITY MEASURES. RESULTS AVERAGED OVER 25 EVOLVED SCHEDULES AND 10 SIMULATIONS WITH VARYING PASSENGER
PROCESSING TIMES.

Max. Maximum Wait (in minutes) Average Wait (in minutes) Shift Time (in hours)

Problem Lanes Static Dynamic Static Dynamic Static Dynamic
4 154.03+£17.42 105.844+19.67 27.07+ 4.27 15.16 £3.15  38.28 £1.27 42.974+1.77
F_PAXflow 5 138.38+£15.85 111.31+£18.70 16.50+ 3.88 11.5644+3.01 41.68+2.11 46.22+2.56
_2425 6 140.44+26.20 106.414+26.01 14.83+ 3.71 9.70 £3.14 47.03£3.00 51.21+£3.29
7 137.51+£29.76 99.65 +27.96 12.13+ 3.46 7.52 £3.08 57.62+£2.68 63.56+2.80
8 142.23 + 8.64 111.24+18.80 12.46+ 3.03 8.20 £2.67 64.58+2.79 70.73+3.21
4 112.59 +£66.71 47.06 £ 5.11 29.53+10.33 12374222 41.454+1.34 45.28+1.55
F_PAXflow 5 63.50 +13.52 41.87 £ 7.60 13.30+ 2.24 7.80 £1.36 45.00£1.33 48.77£1.57
_2428 6 27.26 + 0.76 25.94 + 2.44 6.09 + 0.47 490 +£0.54 51.67+£2.32 54.26+£2.75
7 15.00 £ 1.14 13.88 £+ 1.89 2.71 £ 0.13 2.56 £0.16 63.94+£2.26 66.22+2.76
8 14.69 £+ 1.03 13.26 £ 1.78 2.39 £+ 0.10 2.21 £0.12 70.75+£2.80 73.65+£3.12
4 197.19+50.81 74.85 + 1.46 59.32+ 9.15 18.48 £2.31 44.934+0.53 48.57+1.17
F_PAXflow 5 46.05 + 3.91 43.96 £+ 0.41 12.174+ 2.71 7.76 £0.60 49.27+1.57 52.95+1.62
_2501 6 25.72 + 0.33 25.72 + 0.33 3.78 £ 0.07 3.61 £0.10 65.20£1.62 67.88+£1.85
7 13.54 £ 0.15 13.54 £ 0.15 2.79 £+ 0.09 2.57 £0.10 72.07£2.81 75.66+£3.07
8 12.09 £+ 1.37 9.95 + 0.95 2.22 4+ 0.06 2.08 £0.06 82.80+3.67 87.42+3.98
4 8.13 £ 0.19 8.13 £ 0.19 2.04 £ 0.19 1.93 +£0.19 34.87+1.15 36.56+1.40
F_PAXflow 5 7.60 + 0.73 7.60 + 0.73 1.57 + 0.73 1.49 +£0.73 44.15+2.45 47.50+2.93
_21113 6 7.05 + 0.85 7.05 £ 0.85 1.30 £+ 0.04 1.24 +£0.04 54.07+£2.59 57.42+2.82
7 6.83 £ 1.42 6.83 + 1.42 1.18 + 0.05 1.13 £0.05 60.61+2.84 63.89+3.27
8 6.23 £+ 0.74 6.23 £+ 0.74 1.08 + 0.03 1.01 +£0.03 68.70+3.23 72.95+3.80

TABLE V

THE MAXIMUM WAITING TIMES, THE AVERAGE WAITING TIMES AND THE SCHEDULED TOTAL LANE OPENING TIME USING ACTUAL PASSENGER
ARRIVALS FOR A RANGE OF AVAILABLE LANES FOR STATIC AND DYNAMICALLY RE-OPTIMISED SCHEDULES EVOLVED USING FIXED INITIAL SHIFT
LENGTHS OF TWO HOURS AND THE Unopenable FLEXIBILITY MEASURE. RESULTS AVERAGED OVER 25 EVOLVED SCHEDULES AND 10 SIMULATIONS
WITH VARYING PASSENGER PROCESSING TIMES.

Max. Maximum Wait (in minutes) Average Wait (in minutes) Shift Time (in hours)

Problem Lanes Static Dynamic Static Dynamic Static Dynamic
4 129.67+£18.09 95.18+16.79 20.134+3.19 11.734+2.37 41.204+1.27 46.50+1.78
F_PAXflow 5 137.42+21.45 95.624+19.23 13.81+£3.13 8.32 £2.56 43.924+1.92 50.74+2.33
_2425 6 145.50 + 4.20 95.13+16.82 12.484+2.38 7.12 £2.51 49.76+2.29 56.16+2.76
7 144.83+ 5.79 91.85+14.50 10.854+2.24 5.77 £2.13 61.84+2.47 70.02+3.05
8 138.23+17.64 96.584+17.76 10.53+£3.21 6.17 £2.55 67.68+3.74 76.19+4.26
4 88.49 +44.90 45.01+ 2.88 24.60+6.97 10.56+1.24 44.40+£0.98 49.96+1.15
F_PAXflow 5 52.02 +14.15 32.79+ 6.21 11.08 £2.28 6.14 £0.81 47.60+1.60 52.01+1.95
_2428 6 25.91 + 2.05 21.07+ 3.74 5.28 £0.77 3.80 £0.43 55.844+1.96 59.78+2.17
7 13.56 £ 1.54 11.26 + 1.82 2.49 £0.16 2.23 £0.14 68.88+2.54 72.87+3.08
8 13.01 £ 1.56 9.84 + 1.55 2.20 £0.10 1.97 £0.06 76.084+2.23 81.09+2.69
4 105.28 £19.75  74.65+ 0.57 40.15+8.73 16.484+1.33 48.56+1.06 53.38+1.42
F_PAXflow 5 45.17 £+ 1.36 43.96 £+ 0.41 10.694+1.41 6.96 £0.47 53.04+1.80 57.72+1.83
_2501 6 25.59 + 0.37 25.59+ 0.37 3.62 £0.12 3.38 £0.13  69.20£1.96 73.27+2.26
7 13.54 £+ 0.15 13.544+ 0.15 2.66 £0.08 240 £0.07 76.96+1.71 82.20%2.33
8 11.67 £ 1.48 9.66 £+ 0.80 2.13 £0.04 1.95 £0.05 86.96+2.54 93.28+2.78
4 8.04 + 0.23 8.06 + 0.22 1.88 +0.06 1.75 £0.06 38.48+1.63 41.94+2.08
F_PAXflow 5 7.17 £ 0.93 7.17 £ 0.93 1.46 +0.05 1.36 £0.06 48.32+1.67 53.09+2.07
_21113 6 6.54 + 1.44 6.54 £+ 1.44 1.23 +0.05 1.15 £0.05 57.75+2.55 62.90+2.85
7 5.85 + 1.61 5.85 £ 1.61 1.12 +£0.04 1.05 £0.04 63.52+2.55 68.96 +2.92
8 4.78 £ 0.78 4.78 + 0.78 1.04 £0.04 0.96 £0.04 69.44+3.52 75.39+3.69




in this approach in that the optimised schedules will not be
able to precisely fit security lane opening hours to the forecast
of passenger arrivals. A security lane for instance cannot be
opened for three hours, the evolved schedules will consist of a
coarser granularity. In terms of the fitness function, the three
objectives of minimising maximum passenger waiting time,
minimising security lane opening hours and the Unopenable-
Lanes flexibility measure will be used.

Results are shown in Table V whereby it can be clearly
observed that the passenger waiting times are significantly
lower using this approach for both static and dynamically re-
optimised schedules. However, it can also be seen that there
has been an increase in the security lane opening hours of
approximately 10% which will naturally enable a reduction
in passenger queuing times. Restricting shifts to being two
hours in length for the initial schedules means that a schedule
of shifts cannot precisely fit the forecast of passenger arrivals
resulting in some extra shift hours. Effectively, this approach
naturally reduces the over-fitting of the evolutionary optimisa-
tion process to the forecast of passenger arrivals. Therefore,
this methodology must be considered by an airport if the 10%
increase in security lane opening hours is worth the greater
capacity to deal with unexpected passenger arrivals otherwise
the former methodology is the better to use.

VI. CONCLUSIONS

This paper has investigated the consideration of flexibility
when evolving schedules for a dynamic environment which
also suffers from constraints restricting dynamic modifica-
tions. Evolutionary processes were applied to the design of
schedules for the airport security lane problem whereby the
goal is to both reduce passenger waiting times and security
lane opening hours. However, evolved schedules were found
to over-fit forecasts of passenger arrivals such that if arrivals
deviate from this forecast long delays occur. Evolutionary
dynamic re-optimisation was found to greatly mitigate for this
issue but the effect can be limited due to the constraints in
that scheduled shifts can be modified to a great extent.

Therefore, it was hypothesized that the potential flexibility
or amenability of initially evolved schedules needs to be taken
into consideration in order to aid the dynamic re-optimisation
of schedules if required. Consequently, four differing flexibility
measures were presented and tested. These were found to have
a small positive effect on reducing the maximum passenger
waiting times. Furthermore, it was considered that two best
performing measures could be combined for maximum effect,
the minimisation of the average shift length and the reduction
of the number of security lanes that cannot be opened even
when taking into account dynamic modifications. Moreover,
limiting shifts in initial schedules to the minimum permissible
length provided the best results by helping to reduce the extent
of schedules over-fitting the forecast passenger arrivals.

Further work could consist of more sophisticated flexibility
measures and analysis of sets of evolved initial schedules that
perform well on the forecast of passenger arrivals but not

for actual passenger arrivals when dynamically re-optimised.
Schedules could also be tested directly to their amenability to

dynamic re-optimisation for hypothetical differing passenger
arrivals although this could be computationally expensive.
Consideration could also be given to robustness by using
multiple differing forecasts of passenger arrivals.
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