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Abstract—Memetic Computing (MC) is a discipline which
studies optimization algorithms and sees them as structures of
operators, the memes. Although the choice of memes is crucial for
an effective algorithmic design, special attention should be paid
also to the coordination amongst the memes. This paper presents
a study on a basic sequential structure, namely Three Stage
Optimal Memetic Exploration (3SOME). The 3SOME algorithm
is composed of three operators (or memes) which progressively
perturbs a single solution. The first meme, long distance explo-
ration is characterized by a long search radius and is supposed to
detect promising areas of the decision space. The second meme,
middle distance exploration, is characterized by a moderate
search radius and is supposed to focus the search in the the most
promising basins of attraction. The third meme, short distance
exploration, is characterized by a short search radius and had the
role of performing the local optimal search in the areas detected
by the first two memes. To assess the importance of the structure
within MC we compare the performance of 3SOME with two
modified versions of it over two complete benchmarks. In both
cases, while retaining the 3SOME structure, we replace one of
the three original components (short distance exploration) with
an alternative deterministic local search, respectively Rosenbrock
and Powell methods. Numerical results show that, regardless of
the choice of the specific memes, as far as the 3SOME structure
contains memes which perform long, middle, and short distance
explorations a similar performance is achieved. These results
remark that besides the intuitive finding that a proper choice
of operators is fundamental for the algorithmic success, the
structure composing them also plays a crucial role.

I. INTRODUCTION

Memetic Computing (MC) is probably one of the most

prominent emerging trends in modern Computational Intel-

ligence Optimization. MC approaches are dynamic compu-

tational structures composed of multiple interacting memes,

defined as units of information encoded in computational

representations for the purpose of problem solving [1], co-

ordinated according to some logic. A cornerstone example of

Memetic Computing is represented by Memetic Algorithms

(MAs), which are hybrid meta-heuristics composed of an

evolutionary framework, acting as global searcher, and one or

more local search components activated within its generation

cycle [2]. However, MC extends the rather rigid concept

of MAs as it entails the definition of hybrid frameworks

arbitrarily structured and not limited to the combination of an

evolutionary framework and one or more local searchers. Due

to their robustness and versatility, memetic approaches have

been successfully applied in many cases, ranging from biology

to engineering design. For a broad survey of applications of

Memetic Computing, the interested reader is referred to [3]

and [4].

A crucial issue in MC is the coordination among memes,

that is the way (when and how) each meme is activated. In

particular, related to MAs, several coordination schemes have

been proposed in the last two decades. For example, a rather

simple strategy to control the activation of local search, called

“partial Lamarckianism” [5] consists in randomly applying the

local search with some probability. Another possible scheme,

proposed in [6] and [7], consists in classifying the solutions

processed by the evolutionary framework according to their

fitness. In each generation a different set of local-search

parameters is then associated to each set of solutions, so that

the “intensity” of the local search, i.e. the exploitation pressure

applied on a given solution to be locally improved, is tuned.

More complex approaches make use of a learning process on

the activation of memes, see [8] and [9], multiple subpopu-

lations [10], or clustering [11]. Other MAs “interweave” the

local search within the population-based engine, see e.g. the

hill climbing crossover applied in [12] and [13]. A hybrid

coordination system which combines a learning component

of the landscape features with a fuzzy decision maker is

proposed in [14]. All these schemes are based on the idea that

an effective MA has to guarantee a proper balance between

exploitation and exploration, see [15], [16], [17] and [18].

However, if the study of coordination schemes in MAs is



nowadays a quite mature research area, see for example the

excellent tutorial [19], the taxonomy proposed in [20] and the

theoretical analysis performed in [21], almost no work has

been done on the structures used in MC. Although some of

the ideas successfully applied in MAs can be extended also

to modern MC, this research line still presents many open

issues. The reason for that is twofold. First of all, being MC

a much broader (and more recent) area than MAs, it is not

trivial to perform a general, conceptual analysis of all possible

coordination schemes, and their influence on the algorithmic

performance. In other words, the definition of a grammar

of structures (whose syntactic elements are memes) is yet

to come. In addition to that, since the algorithmic design

process in MC is characterized by a higher degree of freedom,

compared to MAs, most of the design focuses more on the

choice of components than on the coordination schemes itself.

This tendency turns sometimes into a poor understanding of

the algorithmic behaviour, and misleads the interpretation of

results. A first attempt to analyse the rationales behind the

choice of the algorithmic structure in MC has been done re-

cently in [22], where it has been shown that algorithms with a

simple structure can be as efficient as more complex methods.

This fact has been explained in the light of the Ockham’s

Razor, and suggested a simple algorithmic design practice

for MC, based on building up the algorithm with a bottom-

up approach. Following a bottom-up approach, the algorithm

is designed from scratch adding the minimum amount of as

simple as possible components, each one with a well-defined

algorithmic role. As an example of this approach, in [22] a

novel MC approach is introduced, named Three Stage Optimal

Memetic Exploration (3SOME). Despite its conceptual sim-

plicity, 3SOME has proven to efficiently handle different kinds

of optimization problems, also in high dimensionality values.

Nevertheless, a possible skepticism about such a structure is

that the extremely good performance of it is mainly due to

the presence of a strongly exploitative component, namely the

short distance search operator. Although from an algorithmic

design point of view the choice of this component is clearly

justified, since it balances the exploration pressure of the other

two memes, it is still interesting to further investigate the

3SOME framework in order to understand if the reason for

its performance is indeed the exploitation provided by the

short distance operator or rather the algorithmic structure itself.

Based on this idea, the purpose of this paper is to examine the

influence of the structure over the effect of memes using the

3SOME structure as a case of study. We propose two simple

variants in which the short search distance operator is replaced

by an alternative local search method. In both variants how-

ever, the coordination structure is kept constant. In this way

we aim to prove that the robustness of a memetic framework

is to be found not (only) in its component memes, but in its

structure itself. The remainder of this paper is organized in the

following way. Section II briefly introduces the basic structure

of 3SOME. Section III describes the two proposed variants.

Section IV displays the experimental testbed and numerical

results related to comparison among 3SOME and the new

variants. Finally, Section V gives the conclusion of this work.

II. THREE STAGE OPTIMAL MEMETIC EXPLORATION

In the following, we refer to the minimization problem of

an objective function f (x), where the candidate solution x is

a vector of n design variables (or genes) in a decision space

D. The original 3SOME algorithm consists of the following.

At the beginning of the optimization problem one candidate

solution is randomly sampled within D. In analogy with

compact optimization [23], we will refer to this candidate

solution as elite and indicate it with the symbol xe. In addition

to xe, the algorithm makes use of another memory slot

for attempting to detect other solutions. The latter solution,

namely trial, is indicated with xt. The algorithmic structure

is composed of three operators (i.e. exploratory stages) which

perturb a single solution, thus exploring the decision space

from complementary perspectives.

During the long distance exploration, similar to a stochastic

global search, a new trial solution xt is sampled within the

entire decision space, inheriting part (αe % of n) of the current

elite solution xe by means of the exponential crossover typical

of DE, see [23]. In other words, this exploration stage performs

a global stochastic search, attempting to detect unexplored

promising basins of attraction. On the other hand, while this

search operator extensively explores the decision space, it

also promotes retention of a small section of the elite within

the trial solution. This kind of inheritance of some genes

appears to be extremely beneficial in terms of performance

with respect to a stochastic blind search, which would generate

a completely new solution at each step. This mechanism is

repeated until it does not detect a solution that outperforms

the original elite. When a new promising solution is detected,

and thus the elite is updated, the middle distance exploration

is activated, so to allow a more focused search around it.

In the middle distance exploration stage, a hyper-cube

whose edge has side width equal to δ is constructed around

the elite solution xe. Within this region, k×n trial points are

stochastically generated by random perturbing the elite along

a limited number of dimensions, thus making a randomized

exploitation of the current elite solution. In other words, this

stage attempts to focus the search around promising solutions

in order to determine whether the current elite deserves further

computational budget or other unexplored areas of the decision

space must be explored. If the elite is outperformed, it is

replaced. A replacement occurs also if one of the newly

generated solutions has the same performance of the elite, in

order to prevent the search getting trapped in some plateaus

of the decision space. At the end of this stage, if the elite has

been updated a new hypercube is constructed around the new

elite and this mechanism is repeated. On the contrary, if the

middle distance exploration does not lead to an improvement,

an alternative search logic is applied, that is the deterministic

logic of the short distance exploration.

This final search stage perturbs the variables separately

and attempts to quickly and deterministically descend the

corresponding basin of attraction. The meaning of the short



Fig. 1. Coordination scheme of 3SOME

distance exploration is to perform the descent of promising

basins of attraction and possibly finalize the search if the basin

of attraction is globally optimal. De facto, this operator is a

simple steepest descent deterministic local search algorithm,

with an exploratory move similar to that of Hooke-Jeeves

algorithm [24], or the first local search algorithm of the

Multiple Trajectory Search [25]. The short distance explo-

ration stage requires an additional memory slot, which will

be referred to as xs (s stands for short). Starting from the

elite xe, this local search, explores each coordinate i and

samples xs[i] = xe[i] − ρ, where ρ is the exploratory radius.

Subsequently, if xs outperforms xe, the trial solution xt is

updated (it takes the value of xs), otherwise a half step in

the opposite direction xs[i] = xe[i] +
ρ
2
is performed. Again,

xs replaces xt if it outperforms xe. If there is no update, i.e.

the exploration is unsuccessful, the radius ρ is halved. This

exploration is repeated for all the design variables and stopped

when a prefixed budget (equal to 150 iterations) is exceeded.

After that, if there is an improvement in the quality of the

solution, the focused search of middle distance exploration

is repeated subsequently. Otherwise, if no improvement in

solution quality is found, the long distance search is activated

again to attempt to find new basins of attractions.

As a remark the original 3SOME algorithm applies a

toroidal management of the bounds. This means that if, along

the dimension i, the design variable x[i] exceeds the bounds

of a value ζ, it is reinserted from the other end of the interval

at a distance ζ from the edge, i.e. given an interval [a, b], if
x[i] = b+ ζ it takes the value of a+ ζ. The same mechanism

is used also in the algorithms proposed in this paper.

Figure 1 shows the coordination scheme of the 3SOME

components. Similar to a Finite State Machine, the algorithm

is described as a composition of states, each one corresponding

to a single operator (meme). Each operator processes an elite

xe and returns, as an output, a (possibly) fitness-wise improved

elite solution. The operator can be said to “succeed” if it is able

to improve upon the incoming elite, otherwise it can be said

to “fail”. With reference to figure 1, the arrows represent the

interaction amongst memes, while the “S” and “F” represent

success and failure, respectively, of the meme.

III. MEMES AND THEIR STRUCTURE

In order to determine the contribution of the short dis-

tance exploration to the global algorithmic performance, and

possibly understand the influence of the structure over the

component memes, a simple but effective idea is to replace the

short distance component with another local search, keeping

the same coordination scheme. In this study, we propose two

different variants, one using the Rosenbrock method and one

employing the Powell algorithm. A brief description of these

two classic optimization methods follows.

A. 3SOME with Rosenbrock Algorithm

In the first 3SOME variant, we refer to as 3SOME-

Rosenbrock, the short distance component is replaced by

the Rosenbrock optimization method [26]. The Rosenbrock

algorithm is a classical deterministic local search which, under

specific conditions, has been proved to always converge to a

local optimum [27]. Like the Hooke-Jeeves method, at the

beginning this method probes each of the n base directions,

with an initial step size h. In case of success, the step size is

increased of a factor α, otherwise it is decreased of a factor

β and the opposite direction is tried. Once a success has been

found and exploited in each base direction, the coordinate

system is rotated towards the approximated gradient, the step

size is reinitialized and the procedure is repeated, using the

rotated coordinate system, until a stop criterion is met. In our

tests, we used as stop criterion a threshold ε on the fitness

function. The main flaw of this algorithm is related to the

creation of the new rotated coordinate system: this operation,

which is usually performed by means of orthogonalization

procedures, is indeed computational expensive, and in some

cases may even become numerically unstable.

With respect to figure 1, once the Rosenbrock component

(in place of the short distance exploration) is activated, it is

executed until the stop criterion is met, and then the coor-

dination scheme activates either the long or middle distance

exploration, respectively in case of failure and success.

B. 3SOME with Powell Algorithm

The “direction set” Powell algorithm is a derivative-free

local searcher based on the idea of using a set of “non-

interfering” directions to search and converge quickly to the

local minimum of a function. The procedure, proposed by

Powell in [28], makes use of a generically defined search

method to minimize the function along a single direction. In

each iteration, n separate minimizations are performed along

n different directions. The latter are chosen so that the (i+1)th

direction does not affect the minimization along the ith one.

At the beginning of the algorithm, an n×n identity matrix is

used as set of conjugated directions; subsequently, the matrix

is updated so that its rank is always full (n linear indepen-

dent vectors) and new search directions are probed. More

specifically, at each step a new point Pn is obtained as linear

combination of the conjugated directions, and the displacement

vector P0 − Pn is computed, where P0 is the initial point at

the beginning of the iteration. If the displacement vector is



linearly independent from the other n−1 directions, it replaces

the direction which contributed most to the new direction (i.e.

the one along which the fitness function showed the largest

decrease), and a new minimization is performed along it. A

new point is then generated, and the process is repeated until

the fitness improvement is smaller than a fixed tolerance ftol.

It is worthwhile to notice that the performance of this

algorithm heavily depends on the specific search method

used for performing the minimization along each direction.

In this study we used the Golden Section Section (GSS). The

resulting combination of the 3SOME structure and the Powell

algorithm using GSS, called 3SOME-Powell, uses the same

coordination shown in figure 1, where the Powell algorithm is

used instead of the short distance exploration.

IV. NUMERICAL RESULTS

In order to evaluate in detail the structures presented in the

previous section, we performed an extensive comparative study

on two different benchmarks, namely the noiseless Black-

Box Optimization Benchmark (BBOB) 2010 [29] and the

benchmark used for the Special Session on Large-Scale Global

Optimization at CEC 2010 [30], consisting respectively of 24
and 20 test functions. Both the two benchmarks comprehend

test functions with different properties in terms of modality,

separability, and ill-conditioning. This makes the experimental

setup extremely heterogeneous and challenging from an opti-

mization point of view. Moreover, to test the scalability of the

original implementation of 3SOME and its variants we run the

experiments in different dimensionalities, i.e. 10, 40 and 100
for the BBOB 2010 and 1000 for the CEC 2010 benchmark.

Thus we considered 24× 3 + 20 = 92 test functions in total.

Each algorithm has been run for 5000× n fitness evaluations

for each run in the case of BBOB 2010, and 3e6 with the

CEC 2010 test functions. For each problem 100 runs have been
performed. All the experiments were implemented in Java and

executed on a cluster of 160 Pentium 2.4 GHz cores using the

optimization platform Kimeme [31].

As for the parameter setting, 3SOME was executed using

the parameters suggested in [22], namely inheritance factor

for αe = 0.05, δ and ρ respectively equal to 20% and

40% of the total decision space width, and coefficient of

generated points at each activation of the middle distance

exploration k = 4. For a fair comparison, the same values

of αe, δ and k were used also in 3SOME-Rosenbrock and

3SOME-Powell. Four additional parameters, i.e. initial step

size h = 0.1, the threshold ε = 1e − 8, the forward factor

α = 2 and the backward factor β = 0.5, were needed in

3SOME-Rosenbrock. Finally, 3SOME-Powell was executed

with a fitness tolerance ftol set equal to 1e − 5, while the

Golden Section Search was applied with bounds [−100, 100]
and a budget of 20 fitness evaluations.

Numerical results are shown in Tables I-IV, expressed as

average final value and standard deviation. The best results are

highlighted in bold face. In order to strengthen the statistical

significance of the results, the Wilcoxon Rank-Sum test [32]

was also applied, with a confidence level of 0.95. The symbols

“=” and “+” (“-”) indicate, respectively, a statistically equiva-

lent performance and a better (worse) performance of original

3SOME compared with the algorithm in the column label.
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Results show that the three algorithms have similar perfor-

mances, especially on the BBOB 2010 in lower dimensions (10
and 40). As the problem dimension grows however, both on the

BBOB 2010 (100) and on the CEC 2010 benchmark (1000),

3SOME outperforms its Powell-based variant, while 3SOME-

Rosenbrock seems to offer a slightly better global behaviour.

In general, the use of the Powell method appears beneficial

especially on non-separable multimodal functions with weak

or adequate global structure and low dimensionality, while it

can be detrimental in large scale problems. On these problems,

3SOME-Rosenbrock show better performances: more specifi-

cally, it is slightly more effective on separable unimodal func-

tions and non-separable problems in 100 and 1000 dimensions.

A careful analysis of the dynamic behaviour of the three



TABLE I
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST ON BBOB 2010 IN 10 DIMENSIONS (REFERENCE = 3SOME)

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 7.95e+ 01 ± 1.21e− 14 7.95e+ 01± 8.94e− 05 + 7.95e+ 01±0.00e+ 00 -
f2 −2.10e+ 02 ± 1.63e− 14 −1.86e+ 02± 4.48e+ 01 + −2.10e+ 02± 4.17e− 13 +
f3 −4.61e+ 02 ± 1.18e+ 00 −4.61e+ 02± 5.03e− 01 - −4.62e+ 02±2.54e− 01 -
f4 −4.60e+ 02 ± 1.39e+ 00 −4.61e+ 02± 8.10e− 01 - −4.62e+ 02±7.35e− 01 -
f5 5.33e+ 00 ± 2.91e+ 01 −8.56e+ 00± 2.49e− 01 - −9.21e+ 00±6.35e− 09 -
f6 8.25e+ 01 ± 2.83e+ 02 4.66e+ 01± 1.05e+ 01 - 3.63e+ 01±6.31e− 01 -
f7 1.05e+ 02 ± 1.23e+ 01 1.02e+ 02±5.88e+ 00 = 1.03e+ 02± 7.60e+ 00 =
f8 1.49e+ 02 ± 1.86e− 01 1.52e+ 02± 2.47e+ 00 + 1.51e+ 02± 2.09e+ 00 +
f9 1.25e+ 02 ± 1.69e+ 00 1.47e+ 02± 4.28e+ 01 + 1.26e+ 02± 1.10e+ 01 +
f10 3.95e+ 03 ± 2.63e+ 04 6.42e+ 03± 5.41e+ 03 + 2.01e+ 02±2.13e+ 02 -
f11 1.57e+ 02 ± 3.36e+ 01 1.01e+ 02±9.08e+ 00 - 1.66e+ 02± 3.20e+ 01 =
f12 −6.12e+ 02 ± 1.33e+ 01 −2.40e+ 02± 3.93e+ 02 + −6.12e+ 02± 1.50e+ 01 =
f13 4.26e+ 01 ± 1.28e+ 01 4.62e+ 01± 1.29e+ 01 + 4.28e+ 01± 1.17e+ 01 =
f14 −5.23e+ 01 ± 3.05e− 05 −5.23e+ 01± 2.06e− 03 + −5.23e+ 01±6.52e− 05 -
f15 1.10e+ 03 ± 6.38e+ 01 1.06e+ 03±2.23e+ 01 - 1.06e+ 03± 2.51e+ 01 -
f16 7.97e+ 01 ± 4.63e+ 00 7.58e+ 01±2.03e+ 00 - 7.67e+ 01± 3.80e+ 00 -
f17 −1.03e+ 01 ± 6.57e+ 00 −1.51e+ 01±9.11e− 01 - −2.32e+ 00± 1.09e+ 01 +
f18 5.80e+ 00 ± 2.56e+ 01 −1.17e+ 01±3.09e+ 00 - 3.96e+ 01± 5.28e+ 01 +
f19 −9.80e+ 01 ± 2.98e+ 00 −9.93e+ 01±7.62e− 01 - −9.44e+ 01± 4.24e+ 00 +
f20 −5.46e+ 02 ± 2.59e− 01 −5.46e+ 02±2.17e− 01 - −5.46e+ 02± 2.44e− 01 -
f21 5.36e+ 01 ± 1.34e+ 01 4.46e+ 01±3.62e+ 00 - 4.51e+ 01± 4.16e+ 00 -
f22 −9.88e+ 02 ± 1.55e+ 01 −9.96e+ 02±4.73e+ 00 - −9.96e+ 02± 7.80e+ 00 -
f23 7.86e+ 00 ± 4.95e− 01 7.92e+ 00± 2.46e− 01 = 7.54e+ 00±2.98e− 01 -
f24 1.92e+ 02 ± 4.46e+ 01 1.56e+ 02±1.43e+ 01 - 1.67e+ 02± 2.06e+ 01 -

TABLE II
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST ON BBOB 2010 IN 40 DIMENSIONS (REFERENCE = 3SOME)

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 7.95e+ 01 ± 2.56e− 14 7.95e+ 01± 2.89e− 03 + 7.95e+ 01±1.99e− 14 =
f2 −2.10e+ 02 ± 3.28e− 14 −8.97e+ 01± 1.09e+ 02 + −2.10e+ 02± 2.07e− 13 +
f3 −4.54e+ 02 ± 3.44e+ 00 −4.57e+ 02± 1.51e+ 00 - −4.59e+ 02±1.86e+ 00 -
f4 −4.51e+ 02 ± 4.06e+ 00 −4.52e+ 02± 2.64e+ 00 - −4.57e+ 02±2.56e+ 00 -
f5 5.63e+ 01 ± 1.78e+ 02 −5.43e+ 00± 7.20e− 01 - −9.21e+ 00±6.81e− 12 -
f6 3.59e+ 01 ± 9.31e− 07 1.13e+ 02± 1.04e+ 02 + 3.66e+ 01± 1.07e+ 00 +
f7 2.10e+ 02 ± 6.39e+ 01 2.30e+ 02± 5.20e+ 01 + 2.26e+ 02± 5.19e+ 01 +
f8 1.53e+ 02 ± 1.69e+ 01 2.31e+ 02± 3.64e+ 01 + 1.83e+ 02± 3.56e+ 01 +
f9 1.25e+ 02 ± 1.53e+ 00 1.77e+ 02± 3.46e+ 01 + 1.27e+ 02± 1.54e+ 00 +
f10 1.95e+ 05 ± 1.40e+ 06 2.62e+ 04± 1.25e+ 04 - 7.73e+ 02±3.58e+ 02 -
f11 3.80e+ 02 ± 6.30e+ 01 2.26e+ 02±3.43e+ 01 - 3.78e+ 02± 6.60e+ 01 =
f12 −6.11e+ 02 ± 8.98e+ 00 5.07e+ 03± 7.43e+ 03 + −6.10e+ 02± 8.73e+ 00 =
f13 4.19e+ 01 ± 1.28e+ 01 5.63e+ 01± 1.56e+ 01 + 4.32e+ 01± 1.38e+ 01 =
f14 −5.23e+ 01 ± 7.18e− 05 −5.23e+ 01± 4.10e− 03 + −5.23e+ 01±2.29e− 05 -
f15 2.06e+ 03 ± 4.04e+ 02 1.69e+ 03±1.82e+ 02 - 1.80e+ 03± 1.59e+ 02 -
f16 8.87e+ 01 ± 5.44e+ 00 9.17e+ 01± 4.68e+ 00 + 9.12e+ 01± 4.82e+ 00 +
f17 −5.52e+ 00 ± 3.25e+ 00 −8.89e+ 00±1.52e+ 00 - −5.94e+ 00± 2.91e+ 00 =
f18 2.56e+ 01 ± 1.47e+ 01 1.34e+ 01±4.92e+ 00 - 2.55e+ 01± 1.33e+ 01 =
f19 −9.33e+ 01 ± 3.68e+ 00 −9.32e+ 01± 1.28e+ 00 = −8.96e+ 01± 4.60e+ 00 +
f20 −5.46e+ 02 ± 1.28e− 01 −5.46e+ 02±1.08e− 01 - −5.46e+ 02± 1.19e− 01 -
f21 5.28e+ 01 ± 1.62e+ 01 4.79e+ 01±9.75e+ 00 = 4.94e+ 01± 1.19e+ 01 =
f22 −9.85e+ 02 ± 1.31e+ 01 −9.83e+ 02± 1.48e+ 01 + −9.87e+ 02±1.07e+ 01 =
f23 8.10e+ 00 ± 5.26e− 01 9.38e+ 00± 4.72e− 01 + 8.70e+ 00± 6.40e− 01 +
f24 9.44e+ 02 ± 2.79e+ 02 6.97e+ 02±1.18e+ 02 - 8.06e+ 02± 1.18e+ 02 -



TABLE III
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST ON BBOB 2010 IN 100 DIMENSIONS (REFERENCE = 3SOME)

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 7.95e+ 01 ± 3.29e− 14 7.95e+ 01± 7.05e− 03 + 7.95e+ 01± 2.86e− 14 +
f2 −2.10e+ 02 ± 5.69e− 14 4.80e+ 02± 5.03e+ 02 + −2.10e+ 02± 1.75e− 13 +
f3 −4.39e+ 02 ± 7.28e+ 00 −4.43e+ 02± 4.04e+ 00 - −4.45e+ 02±5.80e+ 00 -
f4 −4.27e+ 02 ± 8.70e+ 00 −4.28e+ 02± 5.07e+ 00 = −4.36e+ 02±7.52e+ 00 -
f5 7.40e+ 00 ± 1.65e+ 02 3.31e+ 00± 1.71e+ 00 - −9.21e+ 00±6.33e− 12 -
f6 3.59e+ 01 ± 8.86e− 08 4.43e+ 02± 2.11e+ 02 + 4.31e+ 01± 5.29e+ 00 +
f7 5.97e+ 02 ± 2.83e+ 02 9.36e+ 02± 2.65e+ 02 + 8.45e+ 02± 2.19e+ 02 +
f8 1.83e+ 02 ± 3.31e+ 01 3.19e+ 02± 6.10e+ 01 + 2.31e+ 02± 4.62e+ 01 +
f9 1.76e+ 02 ± 1.36e+ 01 2.53e+ 02± 4.53e+ 01 + 1.77e+ 02± 1.76e+ 01 =
f10 2.68e+ 03 ± 6.96e+ 02 6.31e+ 04± 1.78e+ 04 + 2.10e+ 03±5.99e+ 02 -
f11 3.83e+ 02 ± 8.22e+ 01 3.45e+ 02±7.84e+ 01 - 5.51e+ 02± 1.14e+ 02 +
f12 −6.09e+ 02 ± 1.83e+ 01 6.00e+ 03± 4.95e+ 03 + −6.12e+ 02±1.64e+ 01 =
f13 3.35e+ 01 ± 4.87e+ 00 5.79e+ 01± 9.02e+ 00 + 3.32e+ 01±4.16e+ 00 =
f14 −5.23e+ 01 ± 5.47e− 05 −5.23e+ 01± 4.90e− 03 + −5.23e+ 01±1.67e− 05 -
f15 4.53e+ 03 ± 5.89e+ 02 4.08e+ 03±5.10e+ 02 - 4.20e+ 03± 5.26e+ 02 -
f16 9.51e+ 01 ± 6.11e+ 00 1.03e+ 02± 4.79e+ 00 + 1.02e+ 02± 5.54e+ 00 +
f17 −2.63e− 02 ± 3.97e+ 00 −2.60e+ 00±2.97e+ 00 - −1.32e+ 00± 3.44e+ 00 -
f18 4.55e+ 01 ± 1.54e+ 01 3.57e+ 01±1.04e+ 01 - 4.02e+ 01± 1.27e+ 01 -
f19 −9.08e+ 01 ± 3.39e+ 00 −8.80e+ 01± 2.19e+ 00 + −8.90e+ 01± 3.92e+ 00 +
f20 −5.46e+ 02 ± 9.61e− 02 −5.46e+ 02±7.49e− 02 - −5.46e+ 02± 1.17e− 01 =
f21 5.19e+ 01 ± 1.21e+ 01 5.17e+ 01± 1.29e+ 01 = 5.02e+ 01±1.11e+ 01 =
f22 −9.82e+ 02 ± 1.47e+ 01 −9.80e+ 02± 1.54e+ 01 + −9.84e+ 02±1.30e+ 01 =
f23 8.21e+ 00 ± 4.93e− 01 1.02e+ 01± 4.95e− 01 + 9.13e+ 00± 5.39e− 01 +
f24 2.79e+ 03 ± 4.75e+ 02 2.65e+ 03±2.50e+ 02 - 2.68e+ 03± 3.15e+ 02 -

TABLE IV
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST ON CEC 2010 IN 1000 DIMENSIONS (REFERENCE = 3SOME)

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 8.81e− 03 ± 1.72e− 02 7.12e+ 07± 1.59e+ 07 + 0.00e+ 00±0.00e+ 00 -
f2 1.48e+ 01 ± 2.05e+ 01 3.97e+ 02± 2.73e+ 01 + 1.16e+ 03± 2.11e+ 02 +
f3 3.36e− 01 ± 3.36e− 01 3.01e+ 00± 1.32e− 01 + 2.23e+ 00± 2.29e− 01 +
f4 8.65e+ 12 ± 2.50e+ 12 9.40e+ 12± 2.99e+ 12 = 8.47e+ 12±2.56e+ 12 =
f5 6.89e+ 08 ± 1.11e+ 08 6.18e+ 08±1.25e+ 08 - 6.54e+ 08± 1.19e+ 08 =
f6 1.98e+ 07 ± 8.83e+ 04 1.98e+ 07± 1.06e+ 05 = 1.98e+ 07±1.31e+ 05 -
f7 1.50e+ 09 ± 3.67e+ 08 1.51e+ 09± 3.91e+ 08 = 1.54e+ 09± 4.38e+ 08 =
f8 3.65e+ 08 ± 1.47e+ 09 2.69e+ 08±1.04e+ 09 = 2.94e+ 08± 1.27e+ 09 -
f9 3.76e+ 08 ± 7.12e+ 07 4.67e+ 08± 4.37e+ 07 + 5.42e+ 07±1.09e+ 08 -
f10 6.79e+ 03 ± 3.75e+ 02 7.15e+ 03± 3.69e+ 02 + 8.19e+ 03± 4.36e+ 02 +
f11 1.99e+ 02 ± 5.33e− 01 2.08e+ 02± 6.47e− 01 + 2.18e+ 02± 3.59e− 01 +
f12 1.53e+ 05 ± 6.80e+ 04 3.92e+ 05± 2.43e+ 04 + 1.33e+ 04±5.65e+ 04 -
f13 1.54e+ 04 ± 5.67e+ 03 4.37e+ 04± 9.84e+ 03 + 1.23e+ 03±6.24e+ 02 -
f14 1.19e+ 08 ± 2.71e+ 07 1.27e+ 09± 8.65e+ 07 + 2.95e+ 07±9.98e+ 06 -
f15 1.38e+ 04 ± 5.64e+ 02 1.42e+ 04± 5.31e+ 02 + 1.39e+ 04± 5.20e+ 02 =
f16 3.71e+ 02 ± 7.75e+ 01 4.18e+ 02± 3.63e+ 00 + 3.97e+ 02± 3.16e− 01 +
f17 2.85e+ 05 ± 2.41e+ 05 9.27e+ 05± 3.92e+ 04 + 1.51e+ 05±3.15e+ 05 -
f18 2.71e+ 04 ± 1.43e+ 04 5.64e+ 05± 1.45e+ 05 + 2.22e+ 03±8.48e+ 02 -
f19 1.47e+ 05 ± 2.19e+ 04 1.87e+ 05± 2.86e+ 04 + 9.20e+ 04±1.69e+ 04 -
f20 1.14e+ 03 ± 1.40e+ 02 5.55e+ 05± 1.64e+ 05 + 9.22e+ 02±4.21e+ 02 -

algorithms with different problem dimensionalities was also

performed. Indicating with “L”, “M” and “S”, the long, middle

and short distance exploration (or Powell/Rosenbrock) opera-

tors, respectively, Tables V-VII display the memes activation,

in terms of percentage of the total budget consumed by each

meme, averaged over 100 runs on a subset of the BBOB 2010

test functions in 10, 40 and 100 dimensions. In order to assess

if the algorithmic dynamics depends on the optimization prob-

lem, the subset was chosen selecting the first functions of each

of the five subgroups of the BBOB 2010 [29], which differ

in terms of separability, multi-modality, and ill-conditioning.

It can be seen that, for each algorithm, the coordination

scheme scales up nicely with the problem dimensionality,

since the activation percentages seems to be almost constant

(apart from natural stochastic fluctuations) as the number of

dimensions grows. This behaviour is likely a consequence of

the serial nature of the 3SOME structure (and its variants),

which guarantees the same budget allocation regardless the

dimensionality. On the other hand, the comparison among the

three algorithms shows that their behaviour is very similar

(see f1, f10 apart from 3SOME-Powell in 10 dimensions, and

f15). Two interesting exceptions are f6 and f20, where the



three algorithms show different trends, especially in larger

dimensionalities. In particular, while 3SOME and 3SOME-

Rosenbrock seem to have similar dynamics, 3SOME-Powell

uses a lager budget in the long exploration stage. A possible

explanation of this phenomenon is that on some peculiar non-

separable multimodal landscapes the short distance search and

the Rosenbrock method tend to consume more budget than the

Powell algorithm, thus guaranteeing a better budget balance.

TABLE V
MEMES ACTIVATION ON BBOB 2010 IN 10 DIMENSIONS

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 L = 90.85% L = 97.36% L = 90.53%
M = 0.91% M = 1.04% M = 1.34%
S = 8.24% S = 1.6% S = 8.13%

f6 L = 14.19% L = 83.97% L = 0.005%
M = 2.59% M = 4.88% M = 3.593%
S = 83.22% S = 11.15% S = 96.402%

f10 L = 0.01% L = 23.24% L = 0.008%
M = 2.15% M = 5.33% M = 1.624%
S = 97.84% S = 71.43% S = 98.368%

f15 L = 74.77% L = 82.22% L = 80.01%
M = 0.95% M = 1.84% M = 1.64%
S = 24.28% S = 15.94% S = 18.35%

f20 L = 75.36% L = 90.63% L = 54.47%
M = 1.25% M = 2.17% M = 2.38%
S = 23.39% S = 7.2% S = 43.15%

TABLE VI
MEMES ACTIVATION ON BBOB 2010 IN 40 DIMENSIONS

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 L = 85.31% L = 95.36% L = 95.96%
M =1.64% M = 2.24% M = 1.52%
S = 13.05% S = 2.4% S = 2.52%

f6 L = 29.08% L = 80.67% L = 0.002%
M =3.74% M = 3.93% M = 2.624%
S = 67.18% S = 15.4% S = 97.374%

f10 L = 0.01% L = 0.001% L = 0.001%
M = 4.1% M = 4.72% M = 2.032%
S = 95.89% S = 95.279% S = 97.967%

f15 L = 64.64% L = 63.85% L = 78.65%
M = 1.99% M = 7,69% M = 3.01%
S = 33.37% S = 28.46% S = 18.34%

f20 L = 47.81% L = 82.8% L = 42.07%
M = 2.45% M = 5.2% M = 3.36%
S = 49.74% S = 12% S = 54.57%

The same analysis was also performed on the CEC 2010

benchmark, where we obtained similar results. For the sake of

brevity, we don’t report numerical results on memes activation.

We report instead the fitness trends on four of the test functions

from the benchmark, see Figures 2-5. It is interesting to notice

that, except f11 and f16 where the three algorithms show

remarkably different dynamics (with 3SOME outperforming

its two variants), in the other cases the fitness trends are

specular, see for example f2 and f3. Similar trends were

obtained in the remaining 16 functions of the CEC 2010

benchmark. This result confirms that, despite the three algo-

rithms use different exploitative components (with different

TABLE VII
MEMES ACTIVATION ON BBOB 2010 IN 100 DIMENSIONS

3SOME 3SOME-Powell 3SOME-Rosenbrock

f1 L = 85.31% L = 95.36% L = 95.96%
M =1.64% M = 2.24% M = 1.52%
S = 13.05% S = 2.4% S = 2.52%

f6 L = 29.08% L = 80.67% L = 0.002%
M =3.74% M = 3.93% M = 2.624%
S = 67.18% S = 15.4% S = 97.374%

f10 L = 0.01% L = 0.001% L = 0.001%
M = 4.1% M = 4.72% M = 2.032%
S = 95.89% S = 95.279% S = 97.967%

f15 L = 64.64% L = 63.85% L = 78.65%
M = 1.99% M = 7,69% M = 3.01%
S = 33.37% S = 28.46% S = 18.34%

f20 L = 47.81% L = 82.8% L = 42.07%
M = 2.45% M = 5.2% M = 3.36%
S = 49.74% S = 12% S = 54.57%

budget conditions), their global behaviour is almost completely

ruled by the structure, that is the coordination scheme.
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Fig. 4. Fitness trend of function f11 from CEC 2010

V. CONCLUSION

In this paper we have presented a comparative study fo-

cused on the structure of a Multi Stage Memetic Computing

approach recently proposed in literature, namely 3SOME. The

original framework was modified replacing its most exploita-

tive component with two different classic local search meth-

ods, namely the Rosenbrock and Powell algorithms. Numerical

results obtained on two broad sets of fitness functions show

that, despite the perturbation, the algorithmic structures show

a similar behaviour. This result allows us to conclude that the

3SOME structure is natural and efficient scheme for single

solution progressive perturbation. Future studies will aim at

extending the results in this work to Memetic Computing

structures in general by conjecturing that structure is at least as

important as memes. The demonstration of this concept could

then be used as cornerstone in future developments and designs
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Fig. 5. Fitness trend of function f16 from CEC 2010

of Memetic Computing approaches, which in our opinion is

the generation of an automatic algorithmic designer. Under

such conditions, it is clear that it will be important that the

system not only selects the most appropriate operators but also

effectively combines them.
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