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Abstract—Three Stage Optimal Memetic Exploration
(3SOME) is a single-solution optimization algorithm where the
coordinated action of three distinct operators progressively
perturb the solution in order to progress towards the problem’s
optimum. In the fashion of Memetic Computing, 3SOME is
designed as an organized structure where the three operators
interact by means of a success/failure logic. This simple
sequential structure is an initial example of Memetic Computing
approach generated by means of a bottom-up logic. This
paper compares the 3SOME structure with a popular adaptive
technique for Memetic Algorithms, namely Meta-Lamarckian
learning. The resulting algorithm, Meta-Lamarckian Three
Stage Optimal Memetic Exploration (ML3SOME) is thus
composed of the same three 3SOME operators but makes use
a different coordination logic. Numerical results show that
the adaptive technique is overall efficient also in this Memetic
Computing context. However, while ML3SOME appears to be
clearly better than 3SOME for low dimensionality values, its
performance appears to suffer from the curse of dimensionality
more than that of the original 3SOME structure.

Index Terms—Memetic Computing, Ockham Razor, Computa-
tional Intelligence Optimization, Automatic Algorithmic Design,
Meta-Lamarckian Learning

I. INTRODUCTION

In the past few years, the notion of Memetic Algorithm

(MA) for solving optimization problems, introduced in [1],

has evolved into a more general framework named Memetic

Computing (MC), see e.g., [2], [3], and [4]. According to

its original definition, a MA is defined as the fusion of

one or more local search algorithms within an evolutionary

framework, the former being activated within the generation

cycle of the latter. When more than one local search algo-

rithm are employed, the designer of the algorithm faces the

problem of deciding the manner in which these algorithmic

modules (referred to as memes) can be coordinated in order

to improve the global performance of the algorithm; these

research problems are at the core of the study of MAs. The

success and diffusion of MAs is to be searched within their

flexibility. The No Free Lunch Theorem [5] proves that there

is no universally suitable optimization algorithm and that each

optimization problem is a separate story which must be ad-

dressed by a specific algorithmic instrument. Since MAs (and

MC approaches) are naturally designed each time by selecting

their components, they appeared a valid alternative to tackle

specific applications, see e.g. [6]. If the concept of algorithmic

design is looked from a complementary perspective, most,

if not all, optimization algorithms can be considered as a

collection of relatively simple modules, the memes, that are in

some way coordinated in order to solve optimization problems.

In this sense, MC is an umbrella name to identify all the

optimization algorithms. Nonetheless, the MC definition is

crucially important as it allows to think about optimization

algorithms no longer as paradigms but as structured collections

of operators. For a given problem, the proper selection of the

operators and their coordination rule are at the basis of the

success of an algorithm.

The topic of algorithmic coordination in MAs has been

extensively disccused over the last years. In [7] a classification

is given. In [4] the classification of coordination methods has

been extended and updated. The following four categories have

been identified: 1) Adaptive Hyper-heuristic, where heuris-

tic rules are employed (e.g., [8], [9], [10], [11]); 2) Meta-

Lamarckian learning defined in [12], where the activation of

the memes depends on their success, see also [13], [14], [15];

3) Self-Adaptive and Co-Evolutionary, where the rules coor-

dinating the memes are evolving in parallel with the candidate

solutions of the optimization problem or encoded within the

solution, see [16], [17], [18], [19]; and 4) Fitness Diversity-

Adaptive, where the activation of the memes depends on a

measure of the diversity (e.g., [20], [21], [6], [22], [23]). As

a general idea, the algorithmic designer attempts to have a

system which performs the coordination automatically. The

algorithm is supposed to decide itself during runtime the

manner in which the different memes are applied, adapting

itself to the problem at hand and thus leading to a preliminary

form of automatic design of optimization algorithms.

In this paper, we study the effect of employing a Meta-

Lamarckian learning approach to coordinate the three opera-

tors composing the Three Stage Optimal Memetic Exploration

(3SOME) algorithm originally presented in [24]. The 3SOME

algorithm, as a choice of the authors, employs a minimalistic

coordination scheme simply based on the success of each

operator. The 3SOME coordination scheme constitutes the

structure of the algorithm. In the present work we attempt



to study the dependency of the algorithmic performance on

the coordination of the operators. More specifically, the same

3SOME operators are here tested without the 3SOME structure

but by means of the Meta-Lamarckian learning coordination,

thus generating the Meta-Lamarckian 3SOME (ML3SOME).

The selection of this simple coordination scheme instead of

modern relatively complex adaptive systems for parameter

setting and component coordination, see [25], [26], [27], has

been carried out as a consequence of the Oackham’s Razor

principle in MC formulated in [24]. It is fundamental to

avoid unnecessary complexity while the algorithmic design

is performed. MC structures should be constructed, in a

bottom-up logic, by progressively adding complexity until the

optimization aim is achieved.

The remainder of this paper is organized in the follow-

ing way. Section II describes the three operators composing

3SOME, while Section III describes in details the two coordi-

nation schemes. Section IV displays the experimental test bed

and numerical results produced by the two algorithms studied

in this paper. Finally, Section V gives the conclusion of this

work.

II. OPERATORS OF THE THREE STAGE OPTIMAL MEMETIC

EXPLORATION

In order to clarify the notation in this paper, we refer to the

minimization problem of an objective function f(x), where

the candidate solution x is a vector of n design variables (or

genes) in a decision space D.

At the beginning of the optimization problem one candidate

solution is randomly sampled within the decision space D. In

analogy with compact optimization, see e;g; [28] and [29], we

will refer to this candidate solution as elite and indicate it with

the symbol xe. In addition to xe, the algorithm makes use of

another memory slot for attempting to detect other solutions.

The latter solution, namely trial, is indicated with xt.

The following subsections describe the working principle

of each operator composing the 3SOME algorithm and the

other two variants proposed in this paper. These three operators

(memes) are named long-distance, middle-distance, and short-

distance exploration, respectively. Further details about the

implementation of each operator are available in [24].

A. Long-distance exploration

The purpose of the long-distance operator is to explore the

entire decision space and detect a new promising solution.

While the elite xe is retained, at first, a trial solution xt

is generated by randomly sampling a new set of n genes.

Subsequently, the DE exponential crossover is applied between

xe and xt, see [29]. If the trial solution outperforms the

elite, a replacement occurs. A replacement has been set also

if the newly generated solution has the same performance

as the elite, to prevent the search getting trapped in some

plateaus of the decision space. This exploration stage per-

forms a global stochastic search and thus attempts to detect

unexplored promising areas of the decision space. While this

search mechanism extensively explores the decision space,

the employed crossover method also promotes retention of a

small section of the elite within the trial solution. This kind of

inheritance of some genes appears to be extremely beneficial

in terms of performance with respect to a stochastic blind

search (which would generate a completely new solution at

each step). The pseudo-code of this component is shown in

Algorithm 1. The long-distance exploration is repeated until

it detects a solution that outperforms the original elite.

Algorithm 1 Long-distance exploration

generate a random solution xt within D
generate i = round (n · rand (0, 1))
count = 1
xt[i] = xe[i]
while rand (0, 1) ≤ Cr AND count < n do

xt[i] = xe[i]
i = i + 1
if i == n then

i = 1
end if

count = count + 1
end while

if f (xt) ≤ f (xe) then

xe = xt

end if

B. Middle-distance exploration

The middle-distance exploration operator attempts to focus

the search started by the long-distance exploration in order to

exploit the detected search directions. At first a a hypercube

of side δ, centred around the solution xe, is constructed.

The middle-distance exploration performs the search within

the hyper-volume contained in this hyper-cube of side δ.

Subsequently, for 4n times (n is the dimensionality), a trial

point xt is generated within the hypercube. The trial point xt

is generated from the elite xe by performing random sampling

within the hyper-cube at first and then an exponential crossover

between xe and the randomly generated point. The fitness of

this newly generated point is then compared with the fitness of

the elite. If the new point outperforms the elite (or has the same

performance), xe is replaced by the new point, otherwise no

replacement occurs. The pseudo-code displaying the working

principles of this operator is given in Algorithm 2.

Algorithm 2 Middle-distance exploration

construct a hyper-cube with side width δ around xe

for j = 1 : 4n do

generate a random solution xt within the hyper-cube

generate i = round (n · rand (0, 1))
count = 1
xt[i] = xe[i]
while rand (0, 1) ≤ Cr AND count < n do

xt[i] = xe[i]
i = i + 1
if i == n then

i = 1
end if

count = count + 1
end while

if f (xt) ≤ f (xe) then

xe = xt

end if

end for



C. Short-distance exploration

The short-distance exploration is a deterministic search that

perturbs the variables of the elite one by one, behaving as a

simple steepest descent deterministic local search algorithm.

The perturbation is not symmetrical but is heuristically ar-

ranged in order to save budget with respect to an exhaustive

exploratory step, see [30]. This exploration move attempts to

fully exploit promising search directions by performing the

descent of promising basins of attraction and possibly finalize

the search if the basin of attraction is globally optimal. The

short-distance exploration stage requires an additional memory

slot, which will be referred to as xs (s stands for short).

Starting from the elite xe, this local search, explores each

coordinate i (each gene) and samples xs[i] = xe[i]−ρ, where

ρ is the exploratory radius. Subsequently, if xs outperforms

xe, the trial solution xt is updated (it takes the value of xs),

otherwise a half step in the opposite direction xs[i] = xe[i]+
ρ
2

is performed. Again, xs replaces xt if it outperforms xe. If

there is no update i.e., the exploration was unsuccessful, the

radius ρ is halved. This exploration is repeated for all the

design variables and stopped when a prefixed budget (equal

to 150 iterations) is exceeded. The pseudo-code displaying the

working principles of the short-distance exploration is given

in Algorithm 3.

I should be noted that short distance exploration employs

an asymmetric search step as it explores solutions, along each

axis, at a ρ distance in one direction verse and ρ
2 in the opposite

verse. Although a rigorous theoretical explanation of this al-

gorithmic choice is not yet available, experimentally this logic

appeared to be much more efficient than a straightforward

symmetric exploration, see [30].

As a remark, a toroidal management of the bounds has been

implemented for the three operators above. This means that

if, along the dimension i, the design variable x[i] exceeds the

bounds of a value ζ, it is reinserted from the other end of the

interval at a distance ζ from the edge, i.e. given an interval

[a, b], if x[i] = b+ ζ it takes the value of a+ ζ.

Algorithm 3 Short-distance exploration

while local budget condition do

xt = xe

xs = xe

for i = 1 : n do

xs[i] = xe[i]− ρ
if f (xs) ≤ f (xt) then

xt = xs

else

xs[i] = xe[i] +
ρ
2

if f (xs) ≤ f (xt) then

xt = xs

end if

end if

end for

if f (xt) ≤ f (xe) then

xe = xt

else

ρ = ρ
2

end if

end while

III. COORDINATION OF THE OPERATORS

Let us indicate with L, M , and S, the long-distance, middle-

distance, and short-distance exploration respectively. The fol-

lowing subsections describe, at first, the original coordination

scheme employed in [24] and then a coordination according

to the Meta-Lamarckian learning proposed for the first time

in this paper.

A. Original 3SOME memetic structure

In the original 3SOME algorithm, the three operators are

coordinated according to a heuristically determined scheme,

which is repeated until the termination criterion is met, that is

the exhaustion of a budget of fitness evaluations.

The L operator is first applied until it produces a solution

that outperforms the elite. This operators has thus the role

of exploring the decision space to generate a new promising

solution to be further exploit. The M operator is then run

repeatedly, until it does not improve anymore upon the elite.

This means that this second operator attempts to search within

the interesting area of the decision space. If this search

leads to an improvement, the research is continued. It must

be appreciated that L and M are stopped by diametrically

opposite criteria. This is set because while L aims to detect one

new basin of attraction or a new promising search direction,

M aims to subsequently improve upon the genotype detect

by L and exploit the area of interest as much as possible.

This explains why L is interrupted when the search succeeded

(possibly after numerous failures) and M is interrupted when

the exploitation turns out to be unsuccessful.

Finally, S further refines the work performed by M by

performing a steepest descent deterministic search to fully

exploit the basin of attraction. As a further consideration,

S performs a narrow search and is a pretty computationally

expensive. Thus, it is used only when the basin of attraction

seems promising indeed and when M is no longer capable to

perform improvements. If S detects new promising solutions,

the exploitation of the area is continued by activating M

again (and then S again). If S fails at detecting a new elite

solution, the area is likely fully exploited and there is no use in

continuing the local search within it’s neighbourhood. For this

reason, if S fails, L is activated anew to attempt the exploration

in other areas of the decision space.

The description of the working principles of the 3 SOME

structure is given Algorithm 4.

B. Meta-Lamarckian learning

Meta-Lamarckian learning is a sophisticated and efficient

adaptive scheme proposed in [12] in the context of MAs.

This adaptive scheme organizes the operators composing the

algorithm (originally the local search components) within a

pool. A selection probability is associated to each operator.

The selection probability of each operator depends on its

performance history during the previous activations. More

specifically, the performance ηp(t) of the operator p at iteration



Algorithm 4 3SOME structure (coordination of the operators)

generate the solution xe

while global budget condition do

while xe is not updated do

apply to xe the long-distance exploration L
end while

while xe is updated do

apply to xe the middle-distance exploration M
end while

apply to xe the short-distance exploration S
if xe has been updated then

apply middle-distance exploration M
else

apply long-distance exploration L
end if

end while

t is computed as

ηp(t) =
fe∗p(t)

fep(t)
(1)

where fep(t) is the number of fitness evaluations spent by the

operator p at iteration t since the algorithm was started, and

fe∗p(t) is the number of fitness evaluations, at iteration t, used

by operator p, that have led to an improvement of the elite. In

our case, the probability Pp(t) for operator p to be selected at

iteration t is thus defined as

Pp(t) =
ηp(t)

ηL(t) + ηM (t) + ηS(t)
. (2)

The actual choice of the next operator is performed by the

mean of a roulette-wheel selection, as described in [12].

However, since the probability for an operator to be selected

depends on its past success, each operator must be given a

chance to accumulate some amount of success in order for its

selection probability to be above zero. The operators therefore

undergo at first a training period, during which their probabil-

ity of being selected does not follow Equation 2, but instead is

equal among all three operators. Every time t that an operator

has exhausted its allocated budget (or returns, in the case of

the long-distance operator), the number of fitness evaluations

fep(t) used by each of the three operators is checked. The

training period thus ends when ∀p ∈ {L,M,S} fep(t) > 0.

For the sake of clarity, this coordination scheme is represented

as pseudo-code in Algorithm 5.

IV. NUMERICAL RESULTS

The performance of the original 3SOME structure has been

compared with the ML3SOME.

The algorithms in this study have been tested on the

test bed defined in [31] (24 problems) in 10, 40, and 100

dimensions and on the testbed defined in [32] (20 problems)

in 1000 dimensions. In order to perform a fair comparison,

both the algorithms have been run with the same parameters,

αe = 0.05, δ and ρ equal to respectively 10 % and 40 % of the

total decision space width and the budget for middle length

exploration has been fixed equal to 4n fitness evaluations at

each activation. For an extensive discussion on the parameter

setting of the 3SOME framework see [24]. Each algorithm has

been allocated a budget of 5000×n fitness evaluations for each

run and for each problem, 100 runs have been performed.

Algorithm 5 Meta-Lamarckian coordination
t← 0
while termination condition is not met do

generate U ← rand(0, 1)
if feL(t) > 0 and feM (t) > 0 and feS(t) > 0 then

if U < PL(t) then

apply the long-distance operator

else if U < PL(t) + PM (t) then

apply the middle-distance operator

else

apply the short-distance operator

end if

else

if U < 1

3
then

apply the long-distance operator

else if U < 2

3
then

apply the middle-distance operator

else

apply the short-distance operator

end if

end if

update PL(t), PM (t) and PS(t)
t← t + 1

end while

Tables I, II, III, and IV display the numerical results (in

terms of final value and standard deviation) for the test prob-

lems considered in this work. The best results are highlighted

in bold face. In order to strengthen the statistical significance

of the results, the Wilcoxon Rank-Sum test has also been

applied according to the description given in [33], where

the confidence level has been fixed at 0.95: a “+” symbol

indicates the case when ML3SOME outperforms the algorithm

it is compared against, “−” indicates that ML3SOME is on

the contrary outperformed, and “=” indicates that the two

algorithms have indistinguishable performance.

The displayed results extend the finding in [12]. While in

[12] the meta-Lamarckian learning was proven to be effective

for coordinating multiple local search components within a

standard MA framework, the results here presented show

that the effectiveness of meta-Lamarckian schemes can be

etended to algorithms which do not have a population nor

an evolutionary structure. It can be observed that in 10
dimensions ML3SOME clearly outperforms 3SOME in 11
cases while it is outperformed for only 3 problems. Thus,

for the testbed proposed in [31] and in 10 dimensions, the

coordination of the operators by means of a meta-Lamarckian

scheme appears preferable. It must be observed that the testbed

in [31] is composed of 24 diverse problems which display

various features in terms of multimodality, separability, ill-

conditioning etc. In this sense, we can conclude that for low

dimensionality values the meta-Lamarckian coordination is a

robust and valid option for the meme coordination. A similar

consideration can be done for the problems in 40 dimensions.

Numerical results in 100 and 1000 dimensions are much

more contrasted. The comparison of the meta-Lamarckian

learning with the original 3SOME structure show that,

for high-dimensional values the performance of the two

scheme, albeit different, is equally good. More specifically, the

Wilcoxon test indicates that ML3SOME outperforms 3SOME

in roughly half of the test cases, while the opposite is true

in the other cases, with a small number of undecided cases.



TABLE I
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST FOR 10-DIMENSION PROBLEMS [31] (THE REFERENCE ALGORITHM IS

ML3SOME)

ML3SOME 3SOME

f1 7.95e + 01 ± 1.22e− 14 7.95e + 01± 1.21e− 14 =

f2 −2.10e + 02 ± 1.58e− 14 −2.10e + 02± 1.63e− 14 =

f3 −4.61e + 02 ± 2.77e + 00 −4.61e + 02± 1.18e + 00 +

f4 −4.60e + 02 ± 4.22e + 00 −4.60e + 02± 1.39e + 00 +

f5 −9.21e + 00 ± 5.42e− 14 5.33e + 00± 2.91e + 01 +

f6 3.59e + 01 ± 3.81e− 03 8.25e + 01± 2.83e + 02 =

f7 1.03e + 02 ± 7.31e + 00 1.05e + 02± 1.23e + 01 =

f8 1.49e + 02 ± 1.89e− 01 1.49e + 02± 1.86e− 01 -

f9 1.24e + 02 ± 9.47e− 01 1.25e + 02± 1.69e + 00 +

f10 3.13e + 02 ± 1.64e + 02 3.95e + 03± 2.63e + 04 +

f11 1.60e + 02 ± 3.21e + 01 1.57e + 02± 3.36e + 01 =

f12 −6.02e + 02 ± 2.32e + 01 −6.12e + 02± 1.33e + 01 -

f13 4.08e + 01 ± 9.36e + 00 4.26e + 01± 1.28e + 01 =

f14 −5.23e + 01 ± 2.41e− 05 −5.23e + 01± 3.05e− 05 -

f15 1.07e + 03 ± 4.10e + 01 1.10e + 03± 6.38e + 01 +

f16 7.83e + 01 ± 4.25e + 00 7.97e + 01± 4.63e + 00 +

f17 −1.31e + 01 ± 2.74e + 00 −1.03e + 01± 6.57e + 00 +

f18 −3.60e + 00 ± 1.06e + 01 5.80e + 00± 2.56e + 01 +

f19 −9.93e + 01 ± 1.72e + 00 −9.80e + 01± 2.98e + 00 +

f20 −5.46e + 02 ± 2.99e− 01 −5.46e + 02± 2.59e− 01 =

f21 5.05e + 01 ± 1.14e + 01 5.36e + 01± 1.34e + 01 =

f22 −9.90e + 02 ± 1.33e + 01 −9.88e + 02± 1.55e + 01 =

f23 7.80e + 00 ± 4.53e− 01 7.86e + 00± 4.95e− 01 =

f24 1.71e + 02 ± 2.80e + 01 1.92e + 02± 4.46e + 01 +

TABLE II
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST FOR 40-DIMENSION PROBLEMS [31] (THE REFERENCE ALGORITHM IS

ML3SOME)

ML3SOME 3SOME

f1 7.95e + 01 ± 1.96e− 14 7.95e + 01± 2.56e− 14 =

f2 −2.10e + 02 ± 3.18e− 14 −2.10e + 02± 3.28e− 14 =

f3 −4.56e + 02 ± 9.98e + 00 −4.54e + 02± 3.44e + 00 +

f4 −4.53e + 02 ± 8.17e + 00 −4.51e + 02± 4.06e + 00 +

f5 −9.21e + 00 ± 8.63e− 13 5.63e + 01± 1.78e + 02 +

f6 3.59e + 01 ± 3.02e− 06 3.59e + 01± 9.31e− 07 =

f7 1.60e + 02 ± 2.50e + 01 2.10e + 02± 6.39e + 01 +

f8 1.50e + 02 ± 8.20e + 00 1.53e + 02± 1.69e + 01 =

f9 1.26e + 02 ± 7.77e + 00 1.25e + 02± 1.53e + 00 -

f10 1.00e + 03 ± 3.53e + 02 1.95e + 05± 1.40e + 06 =

f11 4.20e + 02 ± 7.64e + 01 3.80e + 02± 6.30e + 01 -

f12 −6.16e + 02 ± 6.25e + 00 −6.11e + 02± 8.98e + 00 +

f13 4.37e + 01 ± 1.25e + 01 4.19e + 01± 1.28e + 01 =

f14 −5.23e + 01 ± 5.44e− 05 −5.23e + 01± 7.18e− 05 -

f15 1.40e + 03 ± 1.71e + 02 2.06e + 03± 4.04e + 02 +

f16 8.63e + 01 ± 5.03e + 00 8.87e + 01± 5.44e + 00 +

f17 −9.70e + 00 ± 2.00e + 00 −5.52e + 00± 3.25e + 00 +

f18 1.13e + 01 ± 8.67e + 00 2.56e + 01± 1.47e + 01 +

f19 −9.62e + 01 ± 2.43e + 00 −9.33e + 01± 3.68e + 00 +

f20 −5.45e + 02 ± 1.98e− 01 −5.46e + 02± 1.28e− 01 -

f21 5.06e + 01 ± 1.47e + 01 5.28e + 01± 1.62e + 01 =

f22 −9.87e + 02 ± 1.12e + 01 −9.85e + 02± 1.31e + 01 =

f23 8.06e + 00 ± 5.71e− 01 8.10e + 00± 5.26e− 01 =

f24 6.06e + 02 ± 1.98e + 02 9.44e + 02± 2.79e + 02 +

Despite the fact that ML3SOME and 3SOME appear to

consistently outperform each other on a subset of the test

problems across the number of dimensions, the interpretation

of the results is not trivial. In 100 dimensions, the original

3SOME structure appears to offer a slightly better performance

than the meta-Lamarckian scheme for separable, weakly ill-

conditioned, and uni-modal problems. This tendency has any-

way some exceptions such as linear slope and step ellipsoidal

functions (f5 and f7) respectively. For these two problems

ML3SOME achieves a better result with an important margin.

It is relevant to observe that the meta-Lamarckian learning

appears to be regularly more efficient than the 3SOME struc-

ture for all the multi-modal functions with adequate global

structure (f15 − f19). Regarding the multi-modal functions

with weak global structure, ML3SOME and 3SOME appear to

be equally good. In 1000 variables, ML3SOME outperforms

3SOME in half of the problems and is outperformed in most of

the other cases. It can be observed that when 3SOME displays

a better performance than ML3SOME, the difference in terms

of final fitness value is usually small with repect to the total

decay (see Fig.s 1 and 5) while in those problems where

ML3SOME outperforms 3SOME the margin of difference in

the fitness values is remarkably wide (see Fig.s 2, 3, and 4).

Although the relevance of the outperformance margin width



TABLE III
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST FOR 100-DIMENSION PROBLEMS [31] (THE REFERENCE ALGORITHM IS

ML3SOME)

ML3SOME 3SOME

f1 7.95e + 01 ± 3.75e− 14 7.95e + 01± 3.29e− 14 =

f2 −2.10e + 02 ± 5.43e− 14 −2.10e + 02± 5.69e− 14 =

f3 −4.22e + 02 ± 2.49e + 01 −4.39e + 02± 7.28e + 00 -

f4 −4.04e + 02 ± 3.73e + 01 −4.27e + 02± 8.70e + 00 -

f5 −9.21e + 00 ± 4.84e− 12 7.40e + 00± 1.65e + 02 +

f6 3.59e + 01 ± 9.81e− 08 3.59e + 01± 8.86e− 08 =

f7 3.67e + 02 ± 8.58e + 01 5.97e + 02± 2.83e + 02 +

f8 1.78e + 02 ± 4.10e + 01 1.83e + 02± 3.31e + 01 +

f9 1.94e + 02 ± 3.86e + 01 1.76e + 02± 1.36e + 01 -

f10 3.27e + 03 ± 7.21e + 02 2.68e + 03± 6.96e + 02 -

f11 7.97e + 02 ± 1.34e + 02 3.83e + 02± 8.22e + 01 -

f12 −6.17e + 02 ± 6.16e + 00 −6.09e + 02± 1.83e + 01 +

f13 3.69e + 01 ± 5.04e + 00 3.35e + 01± 4.87e + 00 -

f14 −5.23e + 01 ± 5.17e− 05 −5.23e + 01± 5.47e− 05 -

f15 2.44e + 03 ± 5.95e + 02 4.53e + 03± 5.89e + 02 +

f16 8.97e + 01 ± 4.38e + 00 9.51e + 01± 6.11e + 00 +

f17 −6.35e + 00 ± 3.68e + 00 −2.63e− 02± 3.97e + 00 +

f18 2.24e + 01 ± 1.32e + 01 4.55e + 01± 1.54e + 01 +

f19 −9.31e + 01 ± 2.56e + 00 −9.08e + 01± 3.39e + 00 +

f20 −5.45e + 02 ± 1.17e− 01 −5.46e + 02± 9.61e− 02 -

f21 5.18e + 01 ± 1.17e + 01 5.19e + 01± 1.21e + 01 =

f22 −9.84e + 02 ± 1.36e + 01 −9.82e + 02± 1.47e + 01 =

f23 8.25e + 00 ± 4.62e− 01 8.21e + 00± 4.93e− 01 =

f24 1.88e + 03 ± 4.62e + 02 2.79e + 03± 4.75e + 02 +

TABLE IV
AVERAGE FITNESS ± STANDARD DEVIATION AND WILCOXON RANK-SUM TEST FOR 1000-DIMENSION PROBLEMS [32] (THE REFERENCE ALGORITHM

IS ML3SOME)

ML3SOME 3SOME

f1 1.90e− 10 ± 1.40e− 10 1.33e− 11± 3.43e− 11 -

f2 9.92e− 06 ± 1.03e− 05 1.07e− 04± 1.77e− 04 +

f3 6.21e− 05 ± 1.16e− 05 5.42e− 04± 2.85e− 04 +

f4 1.89e + 13 ± 5.33e + 12 7.14e + 12± 2.35e + 12 -

f5 5.07e + 08 ± 1.50e + 08 7.06e + 08± 1.23e + 08 +

f6 1.93e + 07 ± 2.60e + 06 1.98e + 07± 1.01e + 05 =

f7 3.42e + 09 ± 9.45e + 08 1.00e + 09± 2.56e + 08 -

f8 8.73e + 08 ± 2.05e + 09 3.29e + 08± 1.42e + 09 -

f9 2.56e + 08 ± 6.34e + 07 2.12e + 08± 4.13e + 07 -

f10 3.47e + 03 ± 2.88e + 02 6.80e + 03± 3.43e + 02 +

f11 1.50e + 02 ± 5.12e + 01 1.98e + 02± 1.94e− 01 +

f12 5.37e + 04 ± 1.14e + 04 5.54e + 04± 1.18e + 04 =

f13 6.63e + 03 ± 4.53e + 03 4.68e + 03± 4.77e + 03 -

f14 6.38e + 07 ± 3.16e + 06 5.62e + 07± 5.44e + 06 -

f15 7.33e + 03 ± 5.57e + 02 1.38e + 04± 4.63e + 02 +

f16 8.67e + 01 ± 5.23e + 01 3.81e + 02± 6.26e + 01 +

f17 3.69e + 04 ± 7.04e + 03 4.78e + 04± 1.78e + 04 +

f18 1.40e + 03 ± 2.59e + 03 1.80e + 04± 1.24e + 04 +

f19 4.39e + 05 ± 6.23e + 04 8.71e + 04± 9.95e + 03 -

f20 9.94e + 02 ± 1.86e + 02 1.04e + 03± 1.63e + 02 +

strictly depends on the features of the fitness landscape, it can

be conjectured that this result is due to the meta-Lamarckian

logic which tends to select the components that mostly produce

fitness enhancements.

Fig.s 1, 2, 3, 4, and 5 show some examples of performance

trends.

V. CONCLUSION

This paper compares the performance of the original heuris-

tic scheme for coordinating the operators in the 3SOME al-

gorithm against an algorithm composed of the same operators

but where the algorithmic structure is replaced by an adaptive

scheme, namely meta-Lamarckian learning.

An extensive set of problems have been setup for this

comparison. This set includes very diverse problems in

terms of problem dimensionality, multimodality, separability,

and ill-conditioning. Numerical results show that the meta-

Lamarckian coordination appears to be more efficient than the

original heuristic structure for low dimensional problems. On

the other hand, the advantages of the adaptive coordination

are not too evident in high dimensions. In the latter cases, the

two coordination schemes display a different but still almost

equally good performance. Nonetheless, it can be observed

that the meta-Lamarckian learning is, in some cases, much

more efficient than than the heuristic structure. Despite the

fact that the two algorithms use the same set of operators,

the meta-Lamarckian coordination allows a regular achieve-

ment of much better results on multi-modal problems with

adequate global structure. Also in other isolated cases, the

meta-Lamarckian learning allows the detection of final fitness

values a few order of magnitude smaller than those detected
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Fig. 1. Performance trends for f7 from [32] in 1000 dimensions
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Fig. 2. Performance trends for f10 from [32] in 1000 dimensions

by the heuristic scheme. On the other hand, the original

algorithm for a limited amount of problems, appears to be

capable of detecting slightly better results compared to those

detected by ML3SOME. In addition, the 3SOME structure

appears, in some cases, very efficient in the early stages of

the evolution and capable of quickly finding solutions with a

high performance.

This study, although preliminary, has the important role of

highlighting the fact that different coordination schemes of

the same operators can lead to different results. Future studies

focused on the bottom-up algorithmic design will attempt to

combine and integrate adaptive coordination schemes within

the structure of the algorithms.
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Fig. 3. Performance trends for f15 from [32] in 1000 dimensions
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