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Abstract

The Greenfield–Chiclana Collapsing Defuzzifier is an established efficient accurate technique for the
defuzzification of the interval type-2 fuzzy set. This paper reports on the extension of the Collapsing
Defuzzifier to the generalised type-2 fuzzy set. Existing techniques for the defuzzification of gener-
alised type-2 fuzzy sets are presented after which the interval Collapsing Defuzzifier is summarised. The
collapsing technique is then extended to generalised type-2 fuzzy sets, giving the Generalised Greenfield–
Chiclana Collapsing Defuzzifier. This is contrasted experimentally with both the benchmark Exhaustive
Defuzzifier and the α-Planes/Karnik–Mendel Iterative Procedure approach in relation to efficiency and
accuracy. The GGCCD is demonstrated to be many times faster than the Exhaustive Defuzzifier and
its accuracy is shown to be excellent. In relation to the α-Planes/Karnik–Mendel Iterative Procedure
approach it is shown to be comparable in accuracy, but faster.

Keywords: generalised type-2 fuzzy set, defuzzification, type-reduction, Greenfield–Chiclana
Collapsing Defuzzifier, Generalised Greenfield–Chiclana Collapsing Defuzzifier, Representative
Embedded Set

1. Introduction

Uncertainty is ineradicably present in the factors upon which decisions are made, whether by humans,
computers, or a combination of both. In the computational intelligence methodology of fuzzy logic,
the ability to deal with uncertainty is desirable as better uncertainty handling engenders more accurate
outputs. Type-2 fuzzy sets are an extension of the original type-1 fuzzy sets in which the sets’ membership
grades are themselves type-1 fuzzy sets; their main strength is their ability to deal with the second-order
uncertainties that arise from multiple sources [26]. The concept dates back to Zadeh’s seminal paper of
1975 [54]. They take two forms, the interval, for which every Secondary Membership Grade (SMG) is
1, and the generalised, where the secondary membership grade may take any value between 0 and 1. The
interval type-2 fuzzy set may be thought of as a blurred version of the type-1 fuzzy set, and has an inbuilt
facility to handle uncertain inputs. However the generalised type-2 fuzzy set, an augmentation of the
interval type-2 fuzzy set, provides uncertainty handling that is subtle and sophisticated [19, 35], owing
to its crucial variability of the third dimension [40]. The capability of the type-2 paradigm to handle
uncertainty is explored in [12, 19].

The advantage that interval type-2 fuzzy logic has over generalised type-2 fuzzy logic for the applica-
tion developer, is that it is markedly computationally simpler. For the interval type-2 Fuzzy Inferencing
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System (FIS) [40] applications in areas such as control, simulation and optimisation have been devel-
oped [2–5, 7–10, 28, 36, 44, 47, 52]; they offer a more sophisticated model of uncertainty than their
type-1 counterparts [30], whilst lacking the computational complexity of the generalised type-2 fuzzy set
[24, 40]. Since the turn of the millennium algorithms based on the Karnik–Mendel Iterative Procedure
(KMIP) [25, 51] have become the established interval defuzzification techniques [3, 28, 36, 44, 47, 52].

Generalised type-2 fuzzy applications are so far relatively few in number [23, 24, 31, 35, 40, 43, 46,
48]. Historically this is in part attributable to the enormous computational cost of generalised type-2
fuzzy inferencing; the recent advances of Vertical Slice Centroid Type-Reduction [34] and the α-Planes
Method (Subsection 2.3.3) have dramatically reduced the computational cost. Another factor hindering
the development of generalised type-2 applications is the fact that designing the secondary membership
functions is non trivial. Since the generalised type-2 fuzzy set’s facility for dealing with uncertainty is
remarkable, it is a shame that it has not as yet been fully exploited. In [23] generalised type-2 fuzzy
inferencing has been shown to be superior to interval in classifying facial expressions for emotion recog-
nition. Sanchez, Castillo and Castro demonstrate in [46] that a generalized type-2 fuzzy control system
can outperform type-1 and interval type-2 control systems when external perturbations are present.

The focus of this paper is the discretised Mamdani FIS (Figure 1), in which a crisp numerical in-
put passes through three stages of processing: fuzzification, inferencing, and lastly, the crucial stage of
defuzzification. Through defuzzification, the aggregated set produced during the inferencing stage is
converted into a crisp number which is the output of the FIS. For discretised type-1 fuzzy sets, defuzzi-
fication is a simple procedure, with several defuzzification techniques available including the centroid,
centre of maxima and mean of maxima [29]. In contrast, defuzzification of a discretised type-2 fuzzy set
is a process consisting of two stages [38]:

1. Type-reduction, which converts the type-2 fuzzy set to a type-1 fuzzy set known as the Type-
Reduced Set (TRS);

2. Defuzzification of the TRS.

Owing to its enormous computational complexity, the additional stage of type-reduction in the form of
Exhaustive Defuzzification (Subsection 2.2) came to be regarded as a bottleneck [24]. However, in the
past decade several alternative type-reduction techniques with good accuracy have been developed, for
both the generalised case [15] and the interval case [16, 39, 50]. This paper presents another strategy for
generalised type-reduction.

1.1. Preliminaries
1.1.1. Assumptions

1. All secondary membership functions are convex.

2. The type-2 fuzzy set is contained within a unit cube and may be viewed as a surface represented
by (x,u,z) co-ordinates.

3. The centroid method of defuzzification for type-1 fuzzy sets is used.

4. The minimum t-norm is employed.

5. The Grid Method of Discretisation for generalised type-2 fuzzy sets [22] is employed.
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Figure 1: The Mamdani Type-2 FIS [17].
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1.1.2. Definitions
Let X be a universe of discourse. A type-1 fuzzy set A on X is characterised by a membership function

µA : X →U (U = [0,1]) and can be expressed as follows [53]:

A = {(x,µA(x))| x ∈ X ; µA(x) ∈U}. (1)

The scalar cardinality of fuzzy set A is the summation of the membership grades of all the elements of
X in A [20]: ||A||= ∑

x∈X
µA(x).

The assumption that the type-2 fuzzy set is contained within a unit cube means that it may be viewed
as a surface represented by (x,u,z) co-ordinates with X ≡U . In accordance with [1, 42], a type-2 fuzzy
set is defined as

Ã = {(x,u,µÃ(x,u))| x ∈ X ; u ∈U ;µÃ(x,u) ∈U}, (2)

where µÃ : X ×U →U is the membership function of Ã. The set Jx = {(x,u)|µÃ(x,u) > 0} is known as
the primary membership of x, while µÃ(x,u) is known as a secondary membership grade of x. For an
interval type-2 fuzzy set, Equation (2) reduces to:

Ã = {(x, ,u,1))| x ∈ X ; u ∈U}. (3)

Notice that the assumption of convexity of secondary membership functions implies that ∀x ∈ X and
for any (x,u1),(x,u2) ∈ Jx and any λ ∈ [0,1],

µÃ[x,λu1 +(1−λ)u2]≥ λµÃ(x,u1)+(1−λ)µÃ(x,u2).

Thus, we are assuming that µÃ(x,u) is continuous on the second variable (u) when the first variable (x) is
fixed and, as a consequence, Jx is a closed interval in [0,1]. In this case, we can write Jx = [µÃ(x),µÃ(x)],
where

µÃ(x) = inf{u| (x,u) ∈ Jx}; µÃ(x) = sup{u| (x,u) ∈ Jx},

are known as the the lower and upper membership functions of type-2 fuzzy set Ã. In the case when X is
an interval (as we are assuming that X ≡U), the Footprint Of Uncertainty of a type-2 fuzzy set Ã is the
closed region [0,1]2 with boundaries the lower and upper membership functions of Ã.

A vertical slice of a type-2 fuzzy set is a plane through the x-axis, parallel to the u-z plane [18, 40].
The degree of discretisation is the separation of the slices [18].

The next section concerns existing defuzzification techniques for type-2 fuzzy sets. Following this,
in Section 3 the interval Greenfield–Chiclana Collapsing Defuzzifier is summarised. In Section 4 this
method is extended to generalised type-2 fuzzy sets, resulting in the Generalised Greenfield–Chiclana
Collapsing Defuzzifier (GGCCD); Section 5 is devoted to its experimental evaluation. Lastly, Section 6
concludes the paper.

2. Type-Reduction of the Type-2 Fuzzy Set

2.1. The Wavy-Slice Representation Theorem
Associated with type-reduction is the concept of an embedded type-2 fuzzy set (embedded set) or

wavy-slice [15, 40] (Figure 2). An embedded set is a special kind of type-2 fuzzy set, which relates to
the type-2 fuzzy set in which it is embedded in this way: For every primary domain value, x, there is a
unique secondary domain value, u, plus the associated secondary membership grade that is determined
by the primary and secondary domain values, µÃ(x,u).
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Figure 2: Two embedded type-2 fuzzy sets, indicated by different flag styles. The flag height indicates the secondary member-
ship grade. The degree of discretisation of the primary and secondary domains is 0.1. The FOU is the shaded region. (Figure
adapted from [40].)

Definition 1 (Embedded Set [18]). “Let Ã be a type-2 fuzzy set in X. For discrete universes of discourse
X and U, an embedded type-2 set Ãe of Ã is defined as the following type-2 fuzzy set

Ãe = {(xi,ui,µÃ(xi,ui))| ∀i ∈ {1, . . . ,N} : xi ∈ Xui ∈U}. (4)

Ãe contains exactly one element from Jx1 , Jx2 , . . . , JxN , namely u1, u2, . . . , uN , each with its associated
secondary grade, namely µÃ(x1,u1), µÃ(x2,u2), . . ., µÃ(xN ,uN).”

Mendel and John have demonstrated that a type-2 fuzzy set is definable as the union of its embedded
type-2 fuzzy sets [40]. This powerful result is known as the type-2 fuzzy set Representation Theorem
or Wavy-Slice Representation Theorem. The Wavy-Slice Representation Theorem is formally stated thus
[40, page 121]:

“Let Ã j
e denote the jth embedded type-2 fuzzy set for type-2 fuzzy set Ã, i.e.,

Ã j
e ≡

{
(xi,u

j
i ,µÃ(xi,u

j
i )), i = 1, . . . ,N

}
where u j

i ∈ Jxi, i = 1, . . . ,n. Then Ã may be represented as the union of its embedded type-2
fuzzy sets, i.e.,

Ã =
n

∑
j=1

Ã j
e, where n≡

N

∏
i=1

Mi,Mi being the cardinality of Jxi.”
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2.2. Exhaustive Defuzzification
The strategy known as Exhaustive Defuzzification, so called because every embedded set is processed

in turn, is built upon the foundation of the wavy slice Representation Theorem and is therefore precise 1

[40]. However it is a very inefficient method owing to its high computational complexity deriving from
the large number of embedded sets each needing to be processed. Its first and main stage consists of
type-reduction of the type-2 fuzzy set to form the TRS [15], defined thus:

Definition 2 (TRS of a Type-2 Fuzzy Set [14]). “The TRS associated with a type-2 fuzzy set Ã with
primary domain X discretised into N points X = {x1,x2, . . . ,xN}, is

CÃ =

{(
∑

N
i=1 xi ·uki

∑
N
i=1 uki

,µÃ(x1,uk1)∗ . . .∗µÃ(xN ,ukN )

)∣∣∣∣∣∀(uk1,uk2, . . . ,ukN ) ∈UN

}
, (5)

where ∗ is a t-norm.”

Embedded sets (Figure 2) are referred to implicitly in (5) and explicitly in Algorithm 1. For the TRS

Input: a discretised generalised type-2 fuzzy set
Output: a discrete type-1 fuzzy set (the TRS)

1 forall embedded sets do
2 find the minimum secondary membership grade (z) ;
3 calculate the primary domain value (x) of the type-1 centroid of the embedded type-2 fuzzy

set ;
4 pair the secondary grade (z) with the primary domain value (x) to give set of ordered pairs

(x,z) {x-values may correspond to multiple z-values} ;
5 end
6 forall primary domain (x) values do
7 select the maximum secondary grade {make each x correspond to a unique value} ;
8 end
Algorithm 1: Exhaustive type-reduction of a discretised type-2 fuzzy set to a type-1 fuzzy set,
adapted from Mendel [38].

of an interval type-2 fuzzy set, Definition 2 reduces to:

Definition 3 (TRS of an Interval Type-2 Set [16]). “The TRS associated with an interval type-2 fuzzy set
Ã with primary domain X discretised into N points X = {x1,x2, . . . ,xN}, is

CÃ =

{(
∑

N
i=1 xi ·uki

∑
N
i=1 uki

,1

)∣∣∣∣∣ ∀(uk1 ,uk2, . . . ,ukN ) ∈UN

}
.”

2.3. Existing Alternatives to Exhaustive Defuzzification
Strategies have been developed that reduce the computational complexity of generalised type-2 de-

fuzzification [22, 32, 34, 55]. In [15] three notable strategies were evaluated, the Sampling Method,
Vertical Slice Centroid Type-Reduction, and the α-Planes Method:

1Discretisation in itself brings an unavoidable element of approximation. However the Exhaustive Method does not sub-
sequently introduce further inaccuracies.
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2.3.1. The Sampling Defuzzifier
The Sampling Method of Defuzzification [22] is an efficient, cut-down alternative to defuzzification

via the Exhaustive Method. By processing only a relatively small sample of embedded sets (Definition 1),
the computational complexity of type-reduction is drastically reduced. A full exposition of this technique
is to be found in [22]. This is a non-deterministic strategy in which the number of embedded sets sampled
is a parameter decided by the application developer.

2.3.2. Vertical Slice Centroid Type-Reduction
Lucas et al.’s 2007 proposal of Vertical Slice Centroid Type-Reduction (VSCTR) [34] is straightfor-

ward and highly intuitive. In this approach the type-2 fuzzy set is cut into vertical slices, each of which is
defuzzified as a type-1 fuzzy set. By pairing the domain value with the defuzzified value of the vertical
slice, a type-1 fuzzy set is formed, which is easily defuzzified to give the defuzzified value of the type-2
fuzzy set. Though chronologically preceding it, this method is a generalisation of the Nie-Tan Method
for interval type-2 fuzzy sets [45].

2.3.3. The α-Plane Representation
In 2008 Liu [32, 41] proposed the α-Planes Representation2. The defuzzification technique based on

the α-Planes Representation was originally conceived as a generalisation of the KMIP. By this technique
a generalised type-2 fuzzy set is decomposed into a set of α-planes, which are horizontal slices akin to
interval type-2 fuzzy sets. By repeated application of an interval defuzzification method, Liu [32] has
shown that a generalised type-2 fuzzy set may be type-reduced3. According to Melin et al. [37] “. . . α-
planes both enable the representation of, and computation with, general type-2 fuzzy sets.” The growing
number of generalised type-2 fuzzy applications are largely attributable to the α-planes/zSlices method
and include [6, 11, 27, 33].

3. The Greenfield–Chiclana Collapsing Defuzzifier

For the interval type-2 fuzzy set, a computationally simple alternative to the Exhaustive Method is the
Greenfield–Chiclana Collapsing Defuzzifier (GCCD) [20]. From the outset envisaged as a stepping stone
to generalised defuzzification, the GCCD converts an interval type-2 fuzzy set into a type-1 fuzzy set
which approximates to the Representative Embedded Set (RES), whose defuzzified value is by definition
equal to that of the original type-2 set (Figure 3). We term this type-1 set the Representative Embedded
Set Approximation (RESA). As a type-1 set, the RESA may then be defuzzified straightforwardly. Hence
the collapsing process reduces the computational complexity of type-2 defuzzification.

Full details of the collapsing algorithm may be found at [20]. We formally state the Simple4 Repre-
sentative Embedded Set Approximation:

Theorem 1 (Simple Representative Embedded Set Approximation [20]). “The membership function of
the embedded set R derived by dynamically collapsing slices of a discretised type-2 interval fuzzy set Ã,

2Independently to Liu, and at about the same time, Wagner and Hagras introduced the notion of zSlices [49], a concept
equivalent to that of α-Planes.

3Indeed this technique generalises any interval method [13] including the Greenfield–Chiclana Collapsing Defuzzifier
[13, 20], or the Nie-Tan Method [45]. However, in this paper we generalise the interval collapsing method without recourse
to the α-planes decomposition.

4In [20], we used the term ‘simple’ to describe an interval type-2 fuzzy set in which each vertical slice consists of only two
points, corresponding to L and U . The term is redundant in the context of this paper.
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Figure 3: A Representative Embedded Set (continuous case).

having lower membership function L, and upper membership function U, is:

µR(xi) = µL(xi)+ ri (6)

with

ri =

(
||L||+

i−1

∑
j=1

r j

)
bi

2
(
||L||+

i−1

∑
j=1

r j

)
+bi

, (7)

and bi = µU(xi)−µL(xi), r0 = 0.”

This is an iterative formula. Collapsing proceeds vertical slice by vertical slice. The first slice is
collapsed, the first u-value of the RESA calculated, the next slice is collapsed and the second u-value of
the RESA calculated, and so on until all the slices have been collapsed. In this formula bi is the blur
for vertical slice i, i.e. the difference between the upper membership function and the lower membership
function for slice i. ri is the amount by which the u-value of L must be increased to give the u-value of
the RESA R.

There are many variants of the collapsing strategy, since slice collapse may proceed in any slice order.
The different variants give rise to slightly different defuzzified values [21]. It has been demonstrated prac-
tically and theoretically that the two-pass Collapsing Outward Right-Left (CORL) is the most accurate
variant [21].

4. The Generalised Greenfield–Chiclana Collapsing Defuzzifier

4.1. General Solitary Collapsed Slice Lemma
In this paper, we shall derive the RES for the generalised type-2 fuzzy set, F̃ . We may think of

F̃ as having been formed by repeatedly blurring the membership function of a type-1 fuzzy set (A) at
a single domain value xI . This gives n(n ≥ 2) primary grades BI

0(= µA(xI)),BI
1,B

I
2, . . . ,B

I
n−1 at dis-

tances bI
0(= 0),bI

1,b
I
2, . . . ,b

I
n−1 from µA(xI), to which secondary membership grades zI

0,z
I
1,z

I
2, . . . ,z

I
n−1
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are assigned, so turning the Primary Membership Grades (PMGs) into type-2 embedded sets B̃I
0(=

µA(xI)), B̃I
1, B̃

I
2, . . . , B̃

I
n−1. Note that A(= BI

0) itself is assigned a secondary membership grade zI
0, so

becoming type-2 embedded set Ã(= B̃I
0). This is illustrated in Fig. 4.

x

u

0

1

Bn-1

b1

xI

A(=B0)

B3

B2

B4

B1
b2

b3

b4 bn-1

xNx1

Figure 4: A vertical slice, discretised into more than two co-domain points.

Our objective is to derive a formula for the membership function corresponding to the RES of this
generalised type-2 fuzzy set F̃ , in terms of the original type-1 membership function of the type-2 embed-
ded set Ã, bI

1,b
I
2, . . . ,b

I
n−1, and zI

0,z
I
1,z

I
2, . . . ,z

I
n−1.

F̃ contains n embedded sets, namely Ã(= B̃I
0), B̃I

1, B̃I
2, . . . , B̃I

n−1. In the interval case, since all the
secondary membership grades are 1, we are able to find the defuzzified value of F̃ by calculating the
mean of XA and XB1

I , XB2
I , . . . , XBI

n−1
, (where XBi

I is the defuzzified value of B̃I
i ). The generalised type-2

set is more complex; in this case we have to defuzzify the vertical slice by finding its centroid.

Lemma 1 (General Solitary Collapsed Slice Lemma). Let F̃ be the type-2 fuzzy set formed by (upwardly)
blurring the membership function of a type-1 fuzzy set (A) at a single domain value xI , to create a ver-
tical slice which is an interval as opposed to a single point (µA(xI)), discretised with n (n ≥ 2) points
{BI

0,B
I
1,B

I
2, . . . ,B

I
n−1} with primary membership grades at distances bI

0 (= 0), bI
1, bI

2, . . . , bI
n−1 from

µA(xI), associated with secondary membership grades {zI
0,z

I
1,z

I
2, . . . ,z

I
n−1}. Let the secondary member-

ship grades of the domain values of the type-1 fuzzy set (A) {x1,x2, . . . ,xI−1,xI,xI+1, . . . ,xN} be denoted
as {z1

0,z
2
0, . . . ,z

I−1
0 ,zI

0,z
I+1
0 , . . . ,zN

0 }. Then R, the RES of F̃, has primary membership function

µR(x j) =

{
µA(xI)+ rI if j = I,
µA(x j) otherwise,
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where rI =

||A||
n−1

∑
i=0

bI
i ZB̃I

i

||A||+bI
i

||B̃I||−
n−1

∑
i=0

bI
i ZB̃I

i

||A||+bI
i

; ZB̃I
i
= min{z1

0,z
2
0, . . . ,z

I−1
0 ,zI

i ,z
I+1
0 ,zI+2

0 , . . . ,zN
0 }; ||B̃I|| =

n−1

∑
i=0

ZB̃I
i
; and

the following secondary membership grades {z1
R,z

2
R, . . . ,z

I−1
R ,zI

R,z
I+1
R , . . . ,zN

R}

z j
R =

 ||B̃I||
n

if j = I,

z j
0 otherwise,

Proof. Let type-2 fuzzy set R̃ be the RES of F̃ such that its primary membership function R is the same
as that of A for all domain values xi apart from xI

5. At xI the primary membership grade deviates from
that of A so that µR(xI) takes the value µA(xI)+ rI . We know (from [20]) that

XR = XA +
rI(xI−XA)

||A||+ rI
.

We need another expression for XR. By definition, XR = XF̃ . So we shall proceed by defuzzifying F̃ to
find XF̃ .

XF̃ = centroid of TRS of F̃
= centroid of {(XBI

0
,ZB̃I

0
),(XBI

1
,ZB̃I

1
),(XBI

2
,ZB̃I

2
), . . . ,(XBI

n−1
,ZB̃I

n−1
)}

=

n−1

∑
i=0

XBI
i
ZB̃I

i

n−1

∑
i=0

ZB̃I
i

,

where ZB̃I
i

is the minimum secondary grade of type-2 embedded set BI
i , and may be calculated thus:

ZB̃I
i
= min{z1

0,z
2
0, . . . ,z

I−1
0 ,zI

i ,z
I+1
0 ,zI+2

0 , . . . ,zN
0 },

where N is the number of vertical slices.
Substituting

XBI
i
= XA +

bI
i (xI−XA)

||A||+bI
i

we obtain

XF̃ =

n−1

∑
i=0

(
XA +

bI
i (xI−XA)

||A||+bI
i

)
ZB̃I

i

n−1

∑
i=0

ZB̃I
i

.

5The RES set R̃ of F̃ is a type-2 fuzzy set with singleton primary membership values with an associated secondary mem-
bership grade. Thus the reduction step here applies to the fuzzy primary grades being replaced by a representative singleton
grade that will provide a centroid for R̃ equal to the centroid of F̃ .
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Let ||B̃I||=
n−1

∑
i=0

ZB̃I
i
. Then

XF̃ =

n−1

∑
i=0

(
XA +

bI
i (xI−XA)

||A||+bI
i

)
ZB̃I

i

||B̃I||
.

Equating XR to XF̃ allows us to obtain a formula for rI:

XR = XF̃ ⇒ XA +
rI(xI−XA)

||A||+ rI
=

1
||B̃I||

n−1

∑
i=0

(
XA +

bI
i (xI−XA)

||A||+bI
i

)
ZB̃I

i

⇒ XA||B̃I||+
rI(xI−XA)||B̃I||
||A||+ rI

=
n−1

∑
i=0

(
XAZB̃I

i
+

bI
i (xI−XA)ZB̃I

i

||A||+bI
i

)

⇒ XA||B̃I||+
rI(xI−XA)||B̃I||
||A||+ rI

= XA||B̃I||+
n−1

∑
i=0

(
bI

i (xI−XA)ZB̃I
i

||A||+bI
i

)

⇒ rI

||A||+ rI
=

1
||B̃I||

n−1

∑
i=0

bI
i ZB̃I

i

||A||+bI
i

⇒ ||B̃I||rI = ||A||
n−1

∑
i=0

bI
i ZB̃I

i

||A||+bI
i
+ rI

n−1

∑
i=0

bI
i ZB̃I

i

||A||+bI
i

⇒ rI

(
||B̃I||−

n−1

∑
i=0

bI
i ZB̃I

i

||A||+bI
i

)
= ||A||

n−1

∑
i=0

bI
i ZB̃I

i

||A||+bI
i

⇒ rI =

||A||
n−1

∑
i=0

bI
i ZB̃I

i

||A||+bI
i

||B̃I||−
n−1

∑
i=0

bI
i ZB̃I

i

||A||+bI
i

.

Notice that we also need to find the expression of the secondary membership grade corresponding to
the primary membership grade for domain value xI of R̃, the type-2 fuzzy RES set of F̃ . Applying the
concept of centroid to the second coordinate of the set of points

{(XBI
0
,ZB̃I

0
),(XBI

1
,ZB̃I

1
),(XBI

2
,ZB̃I

2
), . . . ,(XBI

n−1
,ZB̃I

n−1
)},

we obtain:

zI
R =

n−1

∑
i=0

ZB̃I
i

n
=
||B̃I||

n
.

This completes the proof of the General Solitary Collapsed Slice Lemma (GSCSL).

4.2. General Representative Embedded Set Approximation
Corresponding to the GSCSL, the General Representative Embedded Set Approximation (GRESA)

is obtained following a similar line of reasoning to that employed in Sections 3 and 4 of [20]. Indeed, a
recursive procedure based on the application of Lemma 1 can be used to approximate the representative
embedded set R̃ of a general type-2 fuzzy set.
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Theorem 2 (General Representative Embedded Set Approximation). Let F̃ be a generalised type-2 fuzzy
set with lower and upper membership functions µL and µU , whose domain X is discretised into N verti-
cal slices at domain values {x1,x2, . . . ,xI−1,xI,xI+1, . . . ,xN} with secondary membership grades (corre-
sponding to the lower membership function µL) be denoted as {z1

0,z
2
0, . . . ,z

I−1
0 ,zI

0,z
I+1
0 , . . . ,zN

0 }. Assume
that each vertical slice is discretised between L and U using n (n≥ 2) points {BI

0,B
I
1,B

I
2, . . . ,B

I
n−1}, with

primary membership grades at distances bI
0 (= 0), bI

1, bI
2, . . . , bI

n−1 (= µU(xI)−µL(xI)) from µL(xI) to
which secondary membership grades {zI

0,z
I
1,z

I
2, . . . ,z

I
n−1} are assigned. The primary membership func-

tion of the general representative embedded set approximation R̃ is:

∀I = 1, . . . ,N : µR̃(xI) = µL(xI)+ rI;

rI =

||RI−1||
n−1

∑
i=0

bI
i ZB̃I

i

||RI−1||+bI
i

||B̃I||−
n−1

∑
i=0

bI
i ZB̃I

i

||RI−1||+bI
i

;

||RI−1||= ||L||+
I−1

∑
k=1

rk; (||R0||= ||L||);

||B̃I||=
n−1

∑
i=0

ZB̃I
i
;

ZB̃I
i
= min{z1

R̃,z
2
R̃, . . . ,z

I−1
R̃ ,zI

i ,z
I+1
0 ,zI+2

0 , . . . ,zN
0 };

and corresponding secondary membership grade

zI
R̃ =
||B̃I||

n
.

Proof. In its first step, Lemma 1 is applied to compute the RES, R1, of the type-2 fuzzy set formed by
(upwardly) blurring the lower membership functions µL at x1 to create vertical slice 1, discretised with
n (n≥ 2) points {B1

0,B
1
1,B

1
2, . . . ,B

1
n−1}with primary membership grades at distances b1

0 (= 0), b1
1, b1

2, . . . ,

b1
n−1 (= µU(x1)−µL(x1)) from µA(x1), associated with secondary membership grades {z1

0,z
1
1,z

1
2, . . . ,z

1
n−1}.

In this step, we use secondary membership grades {z1
0,z

2
0,z

3
0, . . . ,z

N
0 } to compute R1. In the second step,

we apply Lemma 1 to the type-2 fuzzy set formed by (upwardly) blurring the lower membership functions
µR−1 at x2, and compute its RES, R1, etc..

In what follows, we will use induction on the number of collapsing vertical slices in conjunction with
Lemma 1 to prove the theorem.

1. Basis (collapsing vertical slice at x1): We apply Lemma 1 to the type-2 fuzzy set formed by (up-
wardly) blurring the lower membership functions µL, with secondary membership grades {z1

0,z
2
0,z

3
0, . . . ,z

N
0 },

at x1 to create vertical slice 1, discretised with points {B1
0,B

1
1,B

1
2, . . . ,B

1
n−1} with primary member-

ship grades at distances b1
0 (= 0), b1

1, b1
2, . . . , b1

n−1 (= µU(x1)−µL(x1)) from µA(x1), associated
with secondary membership grades {z1

0,z
1
1,z

1
2, . . . ,z

1
n−1}. The RES, R1, of this type-2 fuzzy set has

the following primary membership function

µR1(x j) =

{
µL(x1)+ r1 if j = 1
µL(x j) otherwise,

12



where r1 =

||L||
n−1

∑
i=0

b1
i ZB̃1

i

||L||+b1
i

||B̃1||−
n−1

∑
i=0

b1
i ZB̃1

i

||L||+b1
i

; ZB̃1
i
= min{z1

i ,z
2
0, . . . ,z

N
0 }; ||B̃I|| =

n−1

∑
i=0

ZB̃1
i
; and the following

secondary membership grades

z j
R1

=

 ||B̃1||
n

if j = 1,

z j
0 otherwise.

Because ||R0||= ||L|| and z1
R1

= z1
R̃, µR1(x1) = µR̃(x1).

2. Induction hypothesis: Assume that the type-2 fuzzy set formed by (upwardly) blurring the lower
membership functions µRI−1 , with corresponding secondary membership grades {z1

R̃,z
2
R̃, . . . ,z

I−1
R̃ ,zI

RI−1
(=

zI
0),z

I+1
RI−1

(= zI+1
0 ), . . . ,zN

RI−1
(= zN

0 )}, at xI to create vertical slice I, which is discretised with the n
points {BI

0,B
I
1,B

I
2, . . . ,B

I
n−1} with primary membership grades at distances bI

0 (= 0), bI
1, bI

2, . . . ,

bI
n−1 (= µU(xI)−µL(xI)) from µA(xI), associated with following secondary membership grades
{zI

0,z
I
1,z

I
2, . . . ,z

I
n−1}. Then, applying Lemma 1, the RES, RI , of this type-2 fuzzy set has following

primary membership function

µRI(x j) =

{
µRI−1(xI)+ rI if j = I
µRI−1(x j) otherwise,

where rI =

||RI−1||
n−1

∑
i=0

bI
i ZB̃I

i

||RI−1||+bI
i

||B̃I||−
n−1

∑
i=0

bI
i ZB̃I

i

||RI−1||+bI
i

; ZB̃I−1
i

= min{z1
R̃,z

2
R̃, . . . ,z

I−1
R̃ ,zI

i ,z
I+1
0 . . . ,zN

0 }; ||B̃I||=
n−1

∑
i=0

ZB̃1
i
;

and the following secondary membership grades

z j
RI
=


||B̃I||

n
if j = I,

z j
RI−1

otherwise.

It is clear that µRI(xI) = µR̃(xI).

3. Conclusion: The described recursive procedure based on the application of Lemma 1 proves that
the given primary membership function of the general representative embedded set approximation
R̃ is correct.

After Theorem 2 is applied, we end up with the following type-2 fuzzy set

R̃ = {(x1,µR̃(x1),z1
R̃),(x2,µR̃(x2),z2

R̃), . . . ,(x1,µR̃(x1),z1
R̃)}. (8)

This is called the General Representative Embedded Set Approximation (GRESA) of type-2 fuzzy set F̃ .
The centroid of R̃ is

XR̃ =

N

∑
j=1

x j ·µR̃(x j)

∑
N
j=1 µR̃(x j)

. (9)
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4.2.1. The GRESA Algorithm
Theorem 2 may be outlined algorithmically:

Input: a discretised generalised type-2 fuzzy set
Output: GRESA (a type-1 fuzzy set) of the generalised type-2 fuzzy set

1 forall vertical slices do
2 sum the secondary membership grades ;
3 find the codomain index of the first non-zero SMG ;
4 find the codomain index of the last non-zero SMG ;
5 calculate the number of non-zero SMGs on the slice ;
6 end
7 calculate the scalar cardinality of the LMF ;
8 forall vertical slices do
9 forall non-zero elements on the vertical slice do

10 calculate the difference between each PMG and the LMF PMG ;
11 end
12 end
13 forall vertical slices do
14 iteratively calculate the GRESA blur values {The blur value is the difference between the

GRESA PMG and the LMF PMG for a given slice.} ;
15 add the GRESA blur values to the LMF PMG to give the GRESA ;
16 end

Algorithm 2: GRESA

5. Testing the GGCCD

This section reports on tests contrasting the GGCCD and α-Planes/KMIP Method (Subsection 2.3.3)
for accuracy and efficiency relative to the absolutely accurate but inefficient Exhaustive Method of De-
fuzzification (Subsection 2.1). The error is defined as the difference between the Exhaustive Method
defuzzified value and the defuzzified value obtained by the method being tested. As regards efficiency,
the speed improvement factor is defined as the factor by which the speed of processing is multiplied by
adopting the method under test. It is calculated by dividing the Exhaustive Defuzzification time by the
defuzzification time of the method under test.

5.1. Experimental Set-Up
The defuzzification methods were coded in MatlabT M R2014a and tested on a PC with an Intel(R)

CoreT M i5-4570 CPU and a 8.00 GB RAM, with a clock speed of 3.20 GHz. The operating system used
was MS Windows 10 Education. Each test program was run as a process with a priority that was higher
than that of the operating system, so as to eliminate, as far as possible, timing errors caused by other
operating system processes.

Six generalised type-2 fuzzy test sets were created, depicted in Figures A.5 to A.10. These are
aggregated sets output by the inferencing stage of a prototype type-2 FIS6. For each inference the degree

6The MatlabT M code for test set creation and defuzzification may be found at http://www.tech.dmu.ac.uk/˜sarahg/
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of discretisation adopted was sufficiently coarse to permit Exhaustive Defuzzification. Three rule sets
were used. For each rule set the FIS was run with two distinct sets of parameters7. Table 1 summarises
the features of the test sets. More information about the rule sets may be found in [15]. The FIS generated
test sets were selected because of the complexity and lack of symmetry evident in their graphs; their
benchmark defuzzified values were found by Exhaustive Defuzzification. Each test set was defuzzified

• once through Exhaustive Defuzzification;
• 1000 times via the GGCCD;
• 1000 times via the α-Planes/KMIP Method using 11 evenly spaced α-planes;
• 1000 times via the α-Planes/KMIP Method using 101 evenly spaced α-planes.

For the tests involving the GGCCD and α-Planes/KMIP Method the averages of 1000 timings were taken
to allow for the effects of extraneous operating system processes which cannot be totally eliminated. The
means and standard deviations of the defuzzification times were calculated8.

Test Normal Normal Narrow No. of
Set FOU Sec. MF FOU Emb. Sets
Heater0.125 yes no no 14580
Heater0.0625 yes no yes 13778100
Powder0.1 yes no yes 24300
Powder0.05 yes yes yes 3840000
Shopping0.2 no no no 16
Shopping0.1 yes yes no 312500

Table 1: Features of the generalised type-2 fuzzy test sets.

5.2. Results and Discussion
Table 2 shows the results of the experiments in relation to accuracy, and Table 3 the results in relation

to efficiency. The RESA for each test set are shown in Figures A.5 to A.10.
The GGCCD and the α-Planes Method are approximate techniques; the experiments show both ap-

proaches to produce good approximations, with the α-Planes Method the superior of the two as it is more
accurate in two thirds of the test cases9.

Both the GGCCD and the α-Planes/KMIP Method are demonstrated to be very much faster than
the Exhaustive Method. However in every instance the GGCCD is shown to be faster than the α-
Planes/KMIP Method. Where there are 11 α-planes the GGCCD takes between 55% and 80% of the
time taken by the α-Planes/KMIP Method. The GGCCD is over 10 times faster when the type-2 fuzzy
set is decomposed into 101 α-planes. These efficiencies are of the most consequence in control applica-
tions, where rapid execution is of the essence.

7For example Heater0.0625 is not a finer version of Heater0.125; it uses different parameters for the input rules. That these
two test sets differ can be clearly seen from their 3-D representations.

8The experiment has two parts: Firstly, the prototype type-2 FIS is applied to create the aggregated type-2 fuzzy output
(Figure 1). This aggregated set is then used as a test set. Secondly, the three defuzzification methods to be tested are applied to
the aggregated sets. Table 3 provides the timings for this phase of the experiment. Timings solely account for defuzzification;
times for creation of the test sets are not taken into account.

9Interestingly, these results show the accuracy of the α-planes approach is greater when 11 α-planes are used than when
101 α-planes are used. This fits in with the observation reported in [15] that as the number of α-planes increases, the α-Planes
Method results converge, but not to the values obtained by Exhaustive Defuzzification.
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Test Set Exhaustive GGCCD DV GGCCD 11 α-Planes/ 11 α-Planes/ 101 α-Planes/ 101 α-Planes/
DV Error KMIP DV KMIP Error KMIP DV KMIP Error

Heater0.125 0.6313618377 0.6459218438 0.0145600061 0.6119623264 0.0193995113 0.6063363068 0.0250255309
Heater0.0625 0.2621587894 0.2267190468 0.0354397426 0.2734346950 0.0112759056 0.2797895424 0.0176307530
Powder0.1 0.2806983775 0.2240503031 0.0566480744 0.2818122309 0.0011138534 0.2868681564 0.0061697789
Powder0.05 0.8180632180 0.8507385436 0.0326753256 0.8007539910 0.0173092270 0.7959566861 0.0221065319
Shopping0.2 0.5481044441 0.5606320492 0.0125276051 0.5323554121 0.0157490320 0.5313901724 0.0167142717
Shopping0.1 0.5954109472 0.6691362079 0.0737252607 0.5905091249 0.0049018223 0.5867273458 0.0086836014

Table 2: The defuzzified values from the GGCCD and the α-Planes/KMIP Method contrasted with those obtained via the
Exhaustive Method. Two variants of the α-Planes Decomposition were employed, one with 11 α-planes and the other with
101 α-planes. The smaller errors are shown in bold.

Test Exhaustive Mean SD of GGCCD Mean 11 SD of 11 11 α-P./ Mean 101 SD of 101 101 α-P./
Set Defuzz. GGCCD GGCCD Speed α-P./KMIP α-P./KMIP KMIP Speed α-P./KMIP α-P./KMIP KMIP Speed

Time Defuzz. Defuzz. Improv. Defuzz. Defuzz. Improv. Defuzz. Defuzz. Improv.
Time Time Factor Time Time Factor Time Time Factor

Heater0.125 1.006565 0.0002877 0.0002759 3498.7 0.0005101 0.0006401 1973.3 0.0037529 0.0003365 268.2
Heater0.0625 907.073445 0.0005052 0.0000365 1795474.0 0.0006456 0.0000616 1405008.4 0.0053977 0.0000817 168048.1
Powder0.1 1.513906 0.0003178 0.0000310 4763.7 0.0005914 0.0000687 2559.9 0.0048862 0.0001453 309.8
Powder0.05 278.593608 0.0005686 0.0000401 489964.1 0.0007114 0.0000611 391613.2 0.0061578 0.0000667 45242.4
Shopping0.2 0.001255 0.0001667 0.0000290 7.5 0.0003856 0.0000403 3.3 0.0033859 0.0001199 0.4
Shopping0.1 20.010074 0.0003377 0.0000319 59254.0 0.0006055 0.0000482 33047.2 0.0053419 0.0001555 3745.9

Table 3: The timings (in seconds) of the GGCCD and the α-Planes/KMIP Method contrasted with those of the Exhaustive
Method. Two variants of the α-Planes Decomposition were employed, one with 11 α-planes and the other with 101 α-planes.
The greater speed improvement factors are shown in bold.
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6. Conclusions and Further Work

This paper contributes to the theory of type-2 fuzzy logic in relation to defuzzification by extending
the interval GCCD to generalised type-2 fuzzy sets, resulting in the GGCCD. Experiments reveal good
accuracy of the GGCCD with respect to the Exhaustive Method. Moreover it is extremely fast compared
with the Exhaustive Method. Regardless of how many α-planes are employed, for two thirds of the test
cases the GGCCD is less accurate than the α-Planes/KMIP Method, but in every case it is faster. In
the GGCCD, type-2 fuzzy logic developers now have another defuzzification technique to add to those
options presented in Section 2.

Future research will address these issues:

Collapsing Direction For the interval GCCD it was demonstrated that the order of slice collapse has
an impact on accuracy (Subsection 3) [16, 21]. There is every reason to suppose that the same
improvement of accuracy will occur with the GGCCD, but it would be profitable to investigate
further to confirm that this is the case.

Comparison With Existing Methods Greenfield and Chiclana’s 2013 paper [15] evaluated and con-
trasted defuzzification techniques for generalised type-2 fuzzy sets. It is timely to update this
research to include the GGCCD among the strategies evaluated. In such a comparison it would be
appropriate to improve the timings for the α-Planes Method by replacing the original KMIP by a
faster enhancement [50].

Appendix A. Test Sets
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Figure A.5: Heater0.125 — Heater FIS generated generalised test set, domain degree of discretisation 0.125.
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Figure A.6: Heater0.0625 — Heater FIS generated generalised test set, domain degree of discretisation 0.0625.
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Figure A.7: Powder0.1 — Powder FIS generated generalised test set, domain degree of discretisation 0.1.
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Figure A.8: Powder0.05 — Powder FIS generated generalised test set, domain degree of discretisation 0.05.
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Figure A.9: Shopping0.2 — Shopping FIS generated generalised test set, domain degree of discretisation 0.2.
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Figure A.10: Shopping0.1 — Shopping FIS generated generalised test set, domain degree of discretisation 0.1.
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