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Abstract 

Pitch height and pitch class are different, but strictly related, percepts of music tones. To investigate 

the influence of pitch height in a pitch class identification task, we systematically analyzed the errors - 

in terms of direction and amount - committed by a group of musicians. The aim of our study was to 

verify the existence of constant errors in the identification of pitch classes across consecutive octaves. 

Stimuli were single piano tones from the C major scale executed in two consecutive octaves. 

Participants showed different response patterns in the two octaves. The direction of errors revealed a 

constant tendency to underestimate pitch classes in the lowest octave and to overestimate pitch 

classes in the highest octave. Thus, pitch height showed to influence pitch class identification. We 

called this bias "pitch class polarization", since the same pitch class was judged to be respectively lower 

and higher, depending on relatively low/high pitch height.   
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Introduction 

In the twelve-tone equal temperament, musical tones are categorized in 12 pitch classes (C, C#, D, D#, 

E, F, F#, G, G#, A, A# and B). These pitch classes divide each octave, by semitone distances, into an 

equivalent number of intervals. Tones which are one semitone apart from each other (e.g., C-C#, E-F) 

have fundamental frequencies forming a 2
1/12

:1 ratio. Instead, an octave is defined as the interval 

between two pitches that have half or double frequency (1:2 ratio). Two pitches separated by an 

octave belong to the same pitch class and, thus, have the same letter name. Commonly, the octave 

designation is indicated by a number following the pitch class letter (e.g., C4). Therefore, the middle C 

(261.6 Hz) is designated as C4, while the C (523.2 Hz) above middle C is C5 and the C (130.8 Hz) below 

middle C is C3 (Owen, 2000).  

In music theory, according to octave equivalence, tones separated by one or more octaves are 

considered almost musically identical (Babbitt, 1960; 1965; Forte, 1973).  Indeed, all cultures consider 

tones which are one octave apart as similar (Burns & Ward, 1978; Crickmore, 2003). In twelve-tone 

equal temperament, equivalent tones share the same pitch class designation (e.g., the pitch class C is 

labelled in the same way across all octaves), but they differ in terms of pitch height. Pitch height refers 

to the absolute frequency of a tone (i.e., the more two tones differ in frequency, the more they differ 

in pitch height). Pitch height and pitch class are different percepts. Indeed, two tones separated by one 

semitone are similar in pitch height, but they belong to different pitch classes; whereas two tones 

separated by one octave are different in pitch height, but equal in terms of pitch class (Shepard, 1982; 

Oxenham, 2013). The pitch helix is a simple and effective spatial model for representing the 

relationship between pitch class and pitch height. All twelve pitch classes are represented around the 

helix on the horizontal plane whereas pitch height is represented on the vertical plane, thus the 
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resulting helix is the combination of these two planes (Figure 1). Empirical evidence supports this 

representational model (Deutsch, Dooley & Henthorn, 2008), suggesting that musical pitch varies along 

these two dimensions (i.e., the monotonic dimension of pitch height and the circular dimension of 

pitch class). 

 

 

 

Figure 1. Representation of the pitch helix. Modified from Shepard (1982). 

 

 

Although the concept of octave equivalence is well defined in music theory, empirical evidence 

suggests that this phenomenon is related to individuals’ experience (for a review, see Burns, 1999).  

Overall, experiments that required adult humans to judge the similarity of isolated pairs of pure tones 
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showed no evidence at all, or a very weak effect of similarity between the octaves in non-musicians 

(Allen, 1967; Kallman, 1982; Umemoto, 1990; Thurlow & Erchul, 1977). Conversely, most musicians in 

these studies showed a clear effect of octave equivalence.  

Incongruent evidence with the theoretical concept of octave equivalence was revealed by non-experts 

also in the identification of simple melodies. Indeed, the alteration of the octaves of several tones 

showed to effectively impair the identification of melodies (Deutsch, 1972). Conversely, using go/no-go 

operant discrimination and generalization, Hoeschele, Weisman, & Sturdy (2012) have recently 

provided new evidence in favour of octave equivalence in adult humans, regardless of music training. 

Overall, studies on octave equivalence struggled to show clear empirical evidence of this music 

phenomenon in non-experts. However, it seems quite clear that people with musical experience 

effectively perceive octave equivalence. 

Octave equivalence is a basic assumption for the identification of pitch classes. The pitch class 

identification task has traditionally been used to study the ability of a peculiar group of individuals, 

namely, the absolute pitch (AP) possessors. Standing to a wide and well-known literature, this ability 

allows individuals to associate a target pitch class to its label, without requiring particular strategies or 

effort (Ward & Burns, 1999; Levitin & Rogers, 2005; Takeuchi & Hulse, 1993; Vanzella & Schellenberg, 

2010; Wynn, 1993). However, many authors consider the AP ability as a rare (0.01% of the general 

population according to Bachem, 1955; Profita & Bidder, 1988) and controversial phenomenon (see 

Deutsch, 2013).  

Although AP possessors have the exceptional ability to identify pitch class, both AP and non-AP 

possessors showed to be considerably affected by pitch height of stimuli in their identification abilities. 

Indeed, several studies reported that identifications in central octaves were faster (Baird, 1917) and 

more accurate (Bachem, 1937; Miyazaki, 1989; Rakowski & Morawska-Bungeler, 1987; Ward, 1963) 
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compared to those in extremely high or low octaves. Similarly, the sensitivity to tonality revealed to be 

dramatically and moderately reduced in the low and high pitch register, respectively (Russo, Cuddy, 

Galembo & Thompson, 2007). Although AP possessors are more accurate in pitch class identification, 

most studies revealed no differences in octave identification between AP and non AP musicians 

(Bachem, 1955; Baird, 1917; Lockhead & Byrd, 1981; Miyazaki, 1989, Rakowski & Morawska-Bungeler, 

1987; Weisman, Balkwill, Hoeschele, Moscicki, Bloomfield, & Sturdy, 2010). Furthermore, a great 

majority of identification errors committed by AP possessors can be ascribed to octave errors (Bachem, 

1937; Baird, 1917; Lockhead & Byrd, 1981; Miyazaki, 1989). Therefore, some studies did not consider 

octave errors as errors during pitch class identification tasks (Zatorre & Beckett, 1989), or directly 

required participants to identify the pitch class without considering the octave (Miyazaki, 1989). Taken 

together, this evidence confirms the conceptual difference between pitch class and pitch height. 

However, it also shows how these features of a tone interact in human perception. 

In addition to pitch height, several studies showed that the accuracy of pitch class identifications can 

vary as a function of instrument timbre and it is not equal for all pitch classes. Among all musical 

instruments and electronically produced timbres (e.g., pure tones), pitches with piano timbre seem to 

be the easiest to identify (Bachem, 1937; Baird, 1917). Furthermore, a great familiarity with a timbre 

can make pitch identifications easier (Brammer, 1951). The accuracy and the speed of pitch class 

identification depend also on the specific pitch classes. Indeed, "white-key pitches", namely pitches 

that do not have sharp or flat in the pitch class name and correspond to the white keys of the piano, 

are identified  more accurately than "black-key pitches" (Baird, 1917; Miyazaki, 1989; Takeuchi & 

Hulse, 1991). 

From a methodological perspective, our review of literature revealed that the influence of pitch height 

in pitch class identification has been mostly studied in terms of accuracy. To the best of our knowledge, 
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no study has systematically analyzed the errors committed by participants, in terms of direction and 

amount. The study of this aspect is particularly relevant because it would allow us to understand 

whether or not pitch class identification is influenced by  systematic biases, due to pitch height.  

To address this issue, we decided to test pianists with formal music education, using a pitch class 

identification task. We decided not to include AP possessors because they would commit just a slight 

number of errors and, thus, they would not provide useful information for our level of analyses. To 

facilitate participants’ tasks we chose a very familiar set of stimuli, which were relatively easy to 

identify (i.e., white-key piano tones recorded in the two central octaves). The aim of our work was to 

verify the existence of constant errors in the identification of pitch classes across consecutive octaves. 

Given that the pitch height has a reliable influence on the accuracy of pitch class identification, we 

aimed to investigate the direction and the amount of these errors, measured in semitones and whole 

tones. 

 

Method 

Participants 

Twenty-one advanced students or recently graduated musicians from the State Conservatory of Music 

"G. Tartini" (Italy) took part in the experiment. They were 11 males and 10 females (mean age 23.9; SD 

= 2.6) with a mean of 7.3 (SD = 2.5) years of formal studies in piano playing. All participants self-

reported that they were not AP possessors. They all provided their informed consent prior to inclusion 

in the study and were unaware of the aims of the research. 
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Apparatus and stimuli 

The presentation of the stimuli was programmed and controlled by the E-Prime 2.0 software, running 

on a Dell notebook (Intel Core I3, 2 GB RAM). Stimuli were 14 piano tones with a duration of 3000 ms 

each, previously recorded with a professional Kurweil PC3 LE8 digital piano, and consisted in the C 

major scale repeated in the 3rd and 4th octave. On the music staff, notes in the 3rd octave are 

represented in the bass clef, while notes in the 4th octave are represented in the treble clef. 

Participants listened to the stimuli through professional headphones (AKG K121). The volume was set 

on a comfortable fixed level (about 65 dB) for all the participants. Responses were recorded either with 

an electric piano keyboard (Casio PX350 BK) or with a voice microphone (Shure PG58). Both response 

devices were connected to an external audio device (M-Audio Mobile Pre USB) connected to a 

MacBook Pro (Intel Core i5, 4 GB RAM). The experiment took place in a quiet room of the State 

Conservatory of Music "G. Tartini", without environmental distractions. 

Procedure 

All the participants were required to identify the pitch class of the stimuli. Participants were told to 

ignore the octave of the pitch and to respond exclusively by identifying the pitch class. Participants 

were informed that all the stimuli were pitches of the C major scale, however, they were not aware 

that the stimuli belonged only to the third and fourth octaves. Moreover, they were not given any 

pitch reference before or during the task. 

The stimuli were presented one-by-one for 3000 ms and were followed by 2000 ms of silence. 

Participants could respond any time after each stimulus had started, so they had globally 5000 ms to 

respond. Responses after 5000 ms were not accepted. After this time interval, before a new trial, a 

distracting drum sequence of 2000 ms started. This sequence was a fast drum rhythm played on bass 
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drum, snare drum and cymbals, in order to provide the listener with a  wider range of frequencies (low, 

medium, high). The aim of this distracting sound sequence was to interfere with participants’ echoic 

memory and, therefore, to discourage participants from using previous stimuli as references for next 

trials. Indeed, we meant to investigate participants’ errors in absolute pitch judgments, thus we had to 

prevent the retention in memory of previous stimuli (for additional information about memory for 

pitches and other musical attributes, see Levitin, 2002). Both response times and accuracy were 

stressed in the instructions.  

Participants’ responses were obtained in two conditions (motor or verbal response). In the motor 

response condition, participants were required to press the correct key of the electric piano 

corresponding to the listened pitch class. The electric piano was muted, thus no external pitch 

reference was provided to participants during the identification task. In the verbal response condition, 

they were required to identify the target pitch by naming its pitch class, by using Italian note names 

(e.g. DO, RE, MI).  

The order of the conditions was counterbalanced, thus half of participants started with the verbal 

condition, while the other half started with the motor one. Each condition was set up by 5 repetitions 

of the entire stimulus set (7 notes x 2 octaves), resulting in a total of 70 experimental trials for each 

condition. All 70 stimuli of each condition were presented in random order, but a stimulus could not be 

presented twice consecutively. Participants had the possibility to take a short break after completing 

the first condition. To practice with the task, each condition was preceded by 14 practice trials in 

random order (the complete stimulus set) which were excluded from data analyses.  

For data analyses, we calculated the direction and the amount of errors in pitch class identification 

(ignoring pitch height) as follows: correct responses were considered 0 and, therefore, they were not 

taken into account; errors could be either positive (+) or negative (-). We considered overestimation of 
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pitch classes (e.g., if the target tone was A and a participant responded B, C or D) as positive errors, 

while underestimation of pitch classes (e.g., if the target tone was A and a participant responded G, F 

or E) were considered as negative errors. Moreover, we considered the error amount by calculating the 

“Interval Error”, namely, the distance in tones (1 unit) and semitones (0.5 unit) between the 

participants’ response and the actual target pitch class (Table 1). The errors were always calculated on 

the closest note. For instance, if a participant responded B on a target C4, this was considered as a B3 

and not a B4, thus it was coded as a deviation of -0.5 semitone and not as a deviation of +11 

semitones. A similar approach to pitch errors was previously used by Levitin (1994) for analyzing 

participants’ errors during a singing production task. Finally, for each target tone, we separately 

calculated the sum of the interval errors for both octaves. Therefore, positive values (+) indicated a 

tendency to overestimate pitch classes, while negative values (-) indicated a tendency to 

underestimate pitch classes. It is noteworthy that both octaves contain the same notes and that the 

expected value for errors across all notes is 0. 

 

 C D E F G A B 

C 0.0 1.0 2.0 2.5 -2.5 -1.5 -0.5 

D -1.0 0.0 1.0 1.5 2.5 -2.5 -1.5 

E -2.0 -1.0 0.0 0.5 1.5 2.5 -2.5 

F -2.5 -1.5 -0.5 0.0 1.0 2.0 3.0 
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G 2.5 -2.5 -1.5 -1.0 0.0 1.0 2.0 

A 1.5 2.5 -2.5 -2.0 -1.0 0.0 1.0 

B 0.5 1.5 2.5 -3.0 -2.0 -1.0 0.0 

 

Table 1. Coding of Interval Errors, depending on the congruency between the pitch class of the stimuli 

(rows) and participants’ responses (columns). For instance, the error of the response “G” for a stimulus 

“F” was coded as +1 (two semitone error); while a response “E” was coded as -0.5 (one semitone 

error). 

 

Data analysis and results 

A repeated-measures ANOVA was run for the Interval Errors, with a 2x2x7 design (Response Condition 

x Octave x Pitch Class). The results revealed a significant main effect of Octave [F(1,20) = 6.35; p < .05; 

η
2 

= .24], indicating a difference in the interval errors committed in the relatively low (M= -0.61 tones) 

and high (M= 0.76 tones) octaves (Figure 2). Conversely, both the main effect of response condition [F 

(1, 20) = 0.04; p = 0.85] as well as the main effect of the pitch class [F (6, 120) = 0.37; p = 0.90] were not 

significant. 
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Figure 2. Results for interval errors. Dark gray lines represent the lower octave and light gray lines the 

higher octave. Error bars represent standard errors of the mean. 

 

Moreover, the results revealed significant values for the interactions Response Condition x Octave x 

Pitch Class, [F (6, 120) = 2.71; p < .05; η
2 

= .12], and Octave x Pitch Class, [F (6, 120) = 2.31; p < .05; η
2 

= 

.10]; while the interaction Response Condition x Octave was not significant, [F (1, 20) = 0.17; p = .68]. 

Additional within subjects t-tests were run to investigate differences across the two octaves for the 

single pitch classes. The results revealed significant differences across the two octaves for 3 pitch 

classes, namely, D [t(20) = -2.22; p < .05; d = .56], E [t(20) = -2.73; p < .05; d = .65], and F [t(20) = -2.70; 
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p < .05; d = .73], and  a marginally significant result for G [t(20) = -2.07, p = 0.052; d = .30]. The 

frequencies of participants responses for each stimulus are reported in Table 2. 

 

 

 C D E F G A B 
No 

response 

C3 172 6 3 3 8 9 6 3 

D3 9 150 7 6 9 16 10 3 

E3 13 24 123 21 4 5 15 4 

F3 17 18 13 136 11 8 4 3 

G3 10 14 20 6 145 7 6 2 

A3 10 18 12 16 12 137 2 3 

B3 7 2 18 7 13 8 151 4 

C4 158 10 7 13 12 4 2 4 

D4 5 144 20 10 19 6 5 1 

E4 7 10 128 18 17 20 6 4 

F4 9 6 5 137 31 17 2 3 

G4 10 3 7 4 155 20 10 1 

A4 16 2 4 4 10 160 12 2 

B4 14 0 10 1 7 6 170 2 

 

Table 2. Frequencies of participants' responses (columns) for each stimulus (rows), independently of 

the response modality.  
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Discussion 

The aim of our work was to verify the existence of constant errors in the identification of pitch classes 

across consecutive octaves, due to the influence of pitch height. Our findings confirmed that pitch 

height affects the identification of the pitch class of single tones in expert pianists. Analyzing the 

direction of the errors, we discovered an intriguing bias. Indeed, when requested to identify the pitch 

class of target tones between two consecutive octaves, participants showed a general tendency to 

overestimate pitch classes in the upper octave and to underestimate pitch classes in the lower octave. 

Therefore, pianists judged pitch classes (e.g., C) in the higher octave (e.g., C4 = 261.6 Hz) higher than 

they actually were, while they judged pitch classes in the lower octave (e.g., C3 = 130.8 Hz) lower than 

they actually were, leading respectively to overestimations (e.g., D) and underestimations (e.g., B) in 

the identification task. Thus, this perceptual bias was probably due to the different pitch height of the 

pairs of stimuli belonging to the same pitch class. Moreover, this phenomenon does not seem to 

depend from the response modality, as there were no differences between verbal and motor 

responses. 

In our opinion, participants used both pitch class and pitch height information to solve the task. 

Undoubtedly, they used pitch class information, since the number of correct responses was quite high 

(see Table 2). The high accuracy was because the stimuli were very familiar and easy to identify. 

However, since participants were not AP possessors, they used pitch height information to support 

their lack in pitch class identification. Indeed, our participants could not rely completely on their pitch 

class ability and, therefore, their responses were influenced by the pitch height of the stimuli, resulting 

in overestimation and underestimation of the pitch classes in the upper and lower octaves, 

respectively. 
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These results are consistent with previous findings regarding the influence of pitch height on pitch class 

identification (Bachem, 1937; Baird, 1917; Miyazaki, 1989; Rakowski & Morawska-Bungeler, 1987; 

Ward, 1963). However, in contrast to previous studies, our findings highlight some specific features of 

this phenomenon, revealing a systematic bias in the direction of the judgments. We call this effect 

"pitch class polarization", since judgments tends to go towards opposite directions: pitch classes are 

underestimated in the lower octave and overestimated in the upper octave.  

The pitch class polarization is an intriguing phenomenon for music theory. Indeed, one of the main 

assumptions of music theory is octave equivalence, that is, tones standing one or more octave apart 

are considered musically identical. However, the analysis of the interval errors has revealed that pitch 

classes are not identified as identical across octaves, showing a systematic bias. Previous studies 

revealed contradictory results about octave equivalence, depending on experimental demands. In 

general all humans can show octave equivalence to a certain degree, however musicians show octave 

equivalence in more situations than non-musically trained individuals (Allen, 1967; Hoeschele, 

Weisman, & Sturdy, 2012; Kallman, 1982; Umemoto, 1990; Thurlow & Erchul, 1977). Contrary to most 

of the literature, in which octave equivalence was directly tested, our method indirectly provides some 

further indication that musicians can violate the octave equivalence principle, since their identification 

judgments revealed a systematic bias. Thus, our results are in line with those studies which failed to 

find octave equivalence in musically trained participants (Hoeschele, Weisman & Sturdy, 2012; 

Kallman, 1982). 

Observing Figure 2, the polarization effect appears to be a phenomenon which consistently affects 

almost all pitch classes used in this study. However, the significant Octave x Pitch Class interaction and 

the analyses on single pitch classes suggest that this polarization effect is more evident in some pitch 

classes (D, E, F, G), compared to others (C, A, B). In our opinion, this result is mainly due to two factors, 
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namely the higher familiarity with some pitch classes and the range of stimuli. As for the familiarity 

with pitch classes, C and A are most likely more familiar compared to other pitch classes, because C is 

the tonic and the head tone of the C-major scale, while A is a frequently used pitch class, as the middle 

A (i.e., A4 440Hz) serves as tuning standard for musical pitch (Cavanagh, 2009). As for the range of 

stimuli, C and B are both the extreme points of the C major scale and the lowest (C3) and the highest 

(B4) stimuli we used in our experiment. Thus, we cannot exclude that participants created a 

representation of the range of stimuli, and for this reason it is possible that C and B (and in particular 

C3 and B4) were easier to identify compared to other stimuli. Indeed, the number of hits for C3 and B4 

were the highest (see Table 2), revealing a sort of ceiling effect at the extreme points of the range of 

stimuli. 

The role of the range of stimuli and, in general, the pitch class polarization effect should be further 

investigated in future studies. In particular, it would be interesting to replicate the polarization effect 

using different sets of stimuli, such as the chromatic scale, and to ascertain the existence of this bias 

also in non-consecutive octaves and across multiple octaves. In the latter case, it could be particularly 

interesting to investigate this effect across an odd number of octaves (e.g., three octaves), to verify the 

identification errors in the middle octave. It would be reasonable to expect a non-biased identification 

in the middle octave and, respectively, an underestimation and an overestimation in the lower and 

upper octaves. Moreover, we suppose that the pitch class polarization effect would grow as the 

distance between the octaves increases. 

In conclusion, we would like to highlight a reflection on a methodological issue. In our opinion, an 

important point of this study was its focus on the error analysis of the pitch class identification trials. 

Indeed, through the analysis of the direction and of the amount of errors (Levitin 1994), we have been 

able to show how the judgment of expert pianists is affected by pitch height, revealing a pitch class 
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polarization effect. Due to the particular nature of this effect (i.e., change of error direction depending 

on the octave) it would have been undetectable by using a dichotomous response paradigm (e.g. 

correct/incorrect), without analyzing the error direction. 
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