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Abstract

Soft consensus is a relevant topic in group decision making problems. Soft consensus measures
are utilized to reflect the different agreement degrees between the experts leading the consensus
reaching process. This may determine the final decision and the time needed to reach it. The
concept of coincidence has led to two main approaches to calculating the soft consensus measures,
namely, concordance among expert preferences and concordance among individual solutions. In the
first approach the coincidence is obtained by evaluating the similarity among the expert preferences,
while in the second one the concordance is derived from the measurement of the similarity among
the solutions proposed by these experts. This paper performs a comparative study of consensus
approaches based on both coincidence approaches. We obtain significant differences between both
approaches by comparing several distance functions for measuring expert preferences and a consensus
measure over the set of alternatives for measuring the solutions provided by experts. To do so, we use
the nonparametric Wilcoxon signed-ranks test. Finally, these outcomes are analyzed using Friedman
mean ranks in order to obtain a quantitative classification of the considered measurements according
to the convergence criterion considered in the consensus reaching process.
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1 Introduction

A group decision making (GDM) problem ends when the experts choose among a set of alternatives
those ones that will be a solution. Usually, together with the solution obtained, it is convenient to know
the degree of agreement reached by these experts [8, 18, 54, 48].

Facing the classical notion of consensus as a full agreement among individuals that form a group of
decision -experts-, Kacprzyk et al. [21, 22, 24] introduce the concept of soft consensus to model the
agreement process in GDM problems. This concept allows the definition of soft consensus criteria which
are the basis of numerous consensus approaches [1, 33, 39, 43, 44, 45, 49, 53]. In such a way, consensus
measures assessed in [0,1] are introduced, where 0 means null consensus, 1 means total consensus, and
values in (0,1) mean diverse partway consensus situations [4, 5, 13, 19]. Then, a process of reaching
consensus could be established as a multistage process iteratively developed and made up of several
discussion and consensus rounds [12, 19, 20]. In each round we consider the existence of a coordinator
of the process -moderator-, who evaluates the consensus levels existing among the experts through soft
consensus measures. Fixed a particular consensus threshold, a consensus level is less than that threshold
means that a large discrepancy among experts’ opinions is observed. In such a case, the coordinator
would propose that the experts discuss their opinions so as to make them closer. In the case that an
acceptable consensus level has been reached, it could be possible to make use of a selection process so as
to get the ending solution [4, 5, 19].
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Given a set of alternatives in a GDM problem, experts can express their preferences in different
ways such as: fuzzy preference relations [12, 20, 23], multiplicative preference relations [20, 45], linguistic
preference relations [1, 2, 39], hesitant fuzzy preference relations [46, 47] or intuitionistic fuzzy preference
relations [27, 28, 29, 50].

In addition, different approaches to consensus can be considered according to different criteria [4, 5,
19]. One of this criterion is the coincidence among the experts’ preferences. In this case, soft consensus
measures act on the preferences expressed by the experts, and consequently, their computation is build
around the concept of similarity among preferences [4, 5, 19]. We should point out that the specific
metric (distance function) utilized to assess the similarity could influence the convergence of the consensus
processes so as to get a solution admissible by the majority of experts. Another criterion is the coincidence
among the solutions expressed by the experts. In this case, the coincidence is computed by comparing
the positions of the alternatives observed in the individual solutions and the collective solution. We
should point out that this coincidence approach provides a more realistic measure of consensus among
experts [19, 20].

In this paper we use frequently employed fuzzy preference relations that we have already handled
in previous papers [12, 20] to analyze the behavior of the two aforementioned consensus approaches in
GDM problems. We present a comparative study between both approaches. Two-sample statistical tests
are used to study the differences among five of the distance functions most commonly used in modelling
soft consensus in GDM problems: Manhattan, Euclidean, Cosine, Dice, and Jaccard distance functions
[12], and the consensus measure over the set of alternatives called C, [20]. Using the nonparametric
Wilcoxon test [12, 25, 37, 42] significantly different results were found in most of the GDM problems
between the consensus model based on the use of distance functions and the model based on the consensus
measure C;. An in-depth analysis of this behavior also allowed us to specify concrete relations between
some distance functions and the consensus measure C, as well as indicate conditions under which both
considered models could be interchanged in the calculation of the degree of consensus when dealing with
a situation as the one analyzed in this paper. In addition, by using Friedman mean ranks we draw a
ranking of the different measures according to the degree of consensus whose application can control the
speed of convergence of the consensus process.

To do so, Section 2 introduces the main concepts and results in GDM problems. In describing the
consensus process two approaches are considered: the one according to soft coincidence among preferences
and the one in accordance with the coincidence among solutions. Section 3 shows the framework required
to evaluate the distinct distance functions. Section 4 exposes and discusses the main results of this
research. Section 5 includes a practical example of the use of the compared distance functions and
consensus measure for the same GDM problem to illustrate their application. By last, Section 6 shows
the conclusions.

2 Preliminaries

2.1 GDM Problem Framework

GDM problem is modelled by assuming a collection of possible alternatives X = {z;,i = 1,...,n} (n > 2)
which are assessed by the members of the group, i.e. experts, E = {e;,i =1,...,m} (m > 2), and then,
the goal is to get a consensus resolution in accordance with the most of the preferences expressed by the
experts [7, 33, 34, 36, 39, 56]. Fuzzy preference relations are widely utilized in the literature to depict
the expert preferences [15, 30, 32, 39, 40, 43].

Definition 1 Let X be a collection of alternatives. A fuzzy preference relation on X, P , is defined by
np: X x X = [0,1], depicting p;j = n(x;, x;) the different preference levels over the alternatives: p;; =1
stands for the highest level of preference for one alternative x; on another x;, p;; € (0.5,1) stands for
a certain preference for the alternative x; on the alternative x; and p;; = 0.5 stands for nonchalance.

Sometimes, some rational criteria are required, as for example, the additive reciprocity property: p;; +
pij = 1lforalli,jin {1,...,n}.

In this situation, the solution process of a GDM problem consists of obtaining a set of solution
alternatives, X, C X, from the preferences expressed by the experts. This solution process is found
on two dissimilar processes [9, 23, 35]: selection and consensus. The solution collection of alternatives is



deduced thanks to the selection process while the consensus process is employed to increase the level of
accord amongst experts before obtaining that solution.

2.2 Selection Process

Two procedures configure the selection process when dealing with a GDM problem [3, 38]: an aggregation
procedure of expert preferences and an exploitation procedure of that aggregated preferences.

By aggregating all single fuzzy preference relations, namely, {Pi, i=1,... ,m}, one collective re-
lation of preference, namely, P¢ = (p‘;j), is obtained. P¢ stands for the collective preference on every
pair of alternatives. Many aggregation operators could be used, however we should point out that the
ordered weighted averaging (OWA) operator [51] is extensively utilized in GDM frameworks.

Definition 2 An ordered weighted averaging operator is a function ¢: R™ — R, which uses a vector of

weights, W = (w1, ..., wp), being w; in the unit interval, [0,1], and Y ", w; =1, so as to perform the
aggregation of a set of values {p1,...,pm} through the expression:
m
G (P12 Pm) = Y Wk * Do), (1)
k=1
with o being a permutation function, o: {1,...,m} — {1,...,m}, according to which p,y > Do(k+1)

VE=1,...,m—1, this way being p, ) the k greatest value in the collection {p1,i =1,...,n}.

Yager defines an interesting procedure to determine the vector W through fuzzy linguistic quantifiers
Q [52]. Each weight wj, could be computed by the following expression:

w=a()-a (1), et o

m

Then, we could compute every collective preference value pf; in the collective preference relation as

pij = ¢Q (p}j, ey p?}) where ¢ denotes the OWA operator found on the notion of fuzzy majority
represented by

0 ifo<s<l
-1
Q(s) = > ifl<s<u (3)
w—
1 ifu<s<l1

In this paper we use three fuzzy linguistic quantifiers: “at least half”, “most of” and “as many as
possible”, with the parameters (0,0.5), (0.3,0.8) and (0.5,1) for (I,u), respectively.

By exploiting the collective preferences on the alternatives we achieve a whole ranking of them, which
allows us to attain the solution collection of alternatives. To do it, we could apply any degrees of choice
of alternatives. We employ the following two degrees of choice of alternatives [12, 20]:

1. Quantifier guided dominance degree:
QGDDZ :¢Q (pqua'“apfn)' (4)
2. Quantifier guided non dominance degree:

QGNDDi:(;SQ(l—pji,j:l,...,n), (5)

with p7; = max { pji — pfj, 0} representing the degree where x; is strictly dominated by x;.

QGDD,; represents the degree in which each alternative dominates a fuzzy majority of the rest of the
alternatives while QG N D D; depicts the level where each one of the alternatives is not dominated by a
fuzzy majority of the rest ones.

The solution X,,; is then achieved by means of the application of the two choice degrees in such a
way that those alternatives with higher choice degrees are chosen.



2.3 Consensus process

In a consensus process we have to define a coincidence criterion to calculate those consensus measures
that allows us to lead to the process of reaching consensus. This is a dynamic process (see Figure 1 and
Figure 2) in which a previously agreed consensus value and/or number of rounds serves as control of the
process. If any of these values is exceeded, the process ends and, if not, a feedback mechanism provides
advice to experts in order to approximate their positions.

Two of the main approaches that can be used in a consensus process are the notion of soft coincidence
among preferences and the concept of the coincidence among solutions [4, 5, 19].

2.3.1 Consensus models based on soft coincidence among preferences

In GDM problems it is very extended to consider consensus as an iterative procedure where, after several
rounds of discussion, accord is achieved. Then, it is assumed that the process of reaching consensus is
led by two consensus measures [5, 6]: the consensus measure to evaluate the level of consensus in every
one of the rounds of discussion and the prozimity measure to lead to the discussion stage. Furthermore,
these consensus measures allow us to discover information about the consensus state at every level of
representation, namely, pairs of alternatives, alternatives and complete relation. In such a way, the
degree of agreement among experts is determined by computing the similarity existing between their
preferences by means of distance functions [4, 5, 19].

Definition 3 Let A be a set of elements, then d: A x A — R is said to be a distance function defined
on A if it is nonnegative, d(x,y) > 0, symmetric, d(y,z) = d(z,y) and reflexive, d(xz,x) = 0, for all
x,y € A.

Definition 4 s: A x A = R s said to be a similarity function defined on A when s is nonnegative, is
symmetric, and if it is satisfied: s(x,y) < s(x,z) Vr,y € A, s(z,y) = s(z,z) &z =y.

It is very easy to transform a similarity s to a distance d bounded by the unit value, and one
possibility could be the following: d = 1 — s [14]. Then, the different consensus degrees utilized to
control the consensus phase are deduced by merging the similarity of the values of preference supplied
by the experts for every two alternatives. On the other hand, the proximity measures used to generate
feedback used in the discussion rounds are determined by evaluating the similarity that there exists
between the preferences expressed by every expert inside the group and the preferences in the collective.

This paper is focussed on the consensus degrees that we compute in a consensus process. The
consensus degrees are obtained as follows:

1. Given an expert, 7, the similarity between his/her preferences and the corresponding preferences
provided by the others experts inside the group is represented in an individual similarity matriz,
SM" = (smj;), obtained as:

smi; = s(Pjj, Pij) (6)
where p§ = (pl;, ..., p};), Pij = (L » 05 P i) and s: [0, 1]™71 x [0,1]™ 71 — [0, 1] is
a similarity function. If smj; =1 then pj; and pjj are equal, while if sm;;=0 pj; and pj; are totally
different.

2. A consensus matriz, CM = (cmy;), is defined as

Vi,je{l,...,n}: cmij:¢(sm}j,...7smi’?) (7)
being ¢ the OWA operator introduced in Definition 2.
3. Consensus degrees are determined in the feasible levels of computation in the following way:

L 1. Consensus on the pairs of alternatives: This degree of consensus, called cp;;, is computed for
every two alternatives (z;,z;), and it represents the accord among all the experts on the two
alternatives:

Vi, j=1,...,n,0# j: cpij = cmyj (8)



L 2. Consensus on alternatives, ca;. It is used to evaluate the accord among all the experts on the
alternative x;. This consensus degree is obtained through the aggregation of the degrees of
consensus of all the pairs of alternatives affecting alternative x;:

Cai:¢(cpij7cpj’i; jzla"'vna 17&]) (9)

L 3. Consensus on the relation, cr. This consensus degree is used to evaluate the global accord
among all the experts. This degree of consensus is derived from fusing the degrees of consensus
on alternatives:

er=¢(ca;; i=1,...,n) (10)

In this study our interest is focused on the consensus degree obtained in the level 3.

In order to support experts to agree a particular solution so that their individual positions converge,
a consensus level v € [0, 1] is set beforehand. The decision-making session ends as the required consensus
level is reached, ¢r > v, and then, by applying the selection procedure the solution is achieved. In another
way, a group discussion session is performed so as to permit the change of preferences to experts. In this
discussion session, a feedback mechanism build around both measures of adjacency and a collection of
recommendations is applied to aid the experts in modifying their preferences as displayed in Figure 1.
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Figure 1: Consensus Model based on distance functions
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The rules used to provide advice to experts are based on a comparison between the individual and
collective preferences:
DR.1. If p}; — p§; < 0, expert e; will be recommended to increase pi; and decrease p; in the same
quantity.
DR.2. If pﬁj —pi; > 0, expert e; will be recommended to decrease pﬁj and increase pgl in the same
quantity.
DR.5. If pﬁj —p§; = 0, expert e; will not receive a recommendation of change pfj and pzl

More details can be consulted in [20, 31].

As it is pointed out in [12] the consensus reaching process depends on the particular distance function
used to calculate the similarity [10, 11, 14, 41, 56]. As then, in this paper we consider the distance
functions that are defined below.

Definition 5 (Manhattan distance) A Manhattan distance dy is defined as a functiond; : R"xXR" —
R

dl(a,b) :Z|ai—bi\ (11)



Definition 6 (Euclidean distance) An Euclidean distance dy is defined as a function dy : R X R™ —
R

(12)

ds(a,b) = =1 (13)
Z a? - Z b?
=1 =1

Definition 8 (Dice distance) A Dice distance dy is defined as a function dy : R x R — R
n
2- Z a; -+ bl
i=1
ED
i=1 i=1
Definition 9 (Jaccard distance) A Jaccard distance ds is defined as a function ds : R* X R — R
D aib
i=1
LRSI
i=1 i=1 i=1

dy(a,b) = (14)

ds(a, b) = (15)

2.3.2 Consensus model based on coincidence among solutions

An alternative approach to the aforementioned consensus process consists of measuring consensus by
considering the position of the alternatives in each particular solution expresed by the experts [20]. This
model takes into account two different criteria: a consensus measure that calculates the accordance
among experts so as to conduct the consensus process to the ultimate solution and a proximity measure
which calculates the accordance among particular experts’ opinions and the opinion in the group so as
to conduct the debate of the group in the process of consensus. Both measures compare solutions, the
individual and the collective, instead of the respective preferences as in the model described in subsection
2.3.1. By comparing the position of the alternatives in each solution, this comparison procedure allows
to reflect the real consensus situation at each moment of the consensus process. This means that, at
each step of the process of consensus, the first thing to do is to apply the selection process to obtain a
temporary collective solution, and then measure the closeness of that solution to the individual solution
[20].

Let V' = (V{,..., V) be the individual solution of expert e;, where V} is the position of the alterna-
tive z; for the ith expert, and let V< = (V{°,..., V;7) be the collective solution, where V is the position
of the alternative x; in that collective solution. The position of the alternatives in the solution vectors
of alternatives is used to calculate both, the consensus measure and the proximity measure instead of
the choice degrees associated with the alternatives [55].

The adjacency of each expert for each alternative, p;(x;), is calculated by means of the comparison of
the position of that alternative in the experts’s particular solutions, {Vi; 1=1,... ,m}, and its position
in the collective solution, V¢, through the function [20]:

v - vil\*
pi(ry) = | ———— | €[0,1]

n—1



with 0 < b < 1. The parameter b is used to control the rigor of the consensus process; values of b close
to one decrease the number of rounds to develop in the process of group discussion, and values of b close
to zero increase the number of rounds. Appropriate values for this parameter are: 0.5, 0.7, 0.9, 1 [20].
In this paper, we use b = 1 in order to make the number of rounds small.

The degree of consensus for all experts on each alternative x; is derived from:

m

C(l’j)lipi (fj) (16)

Finally, the consensus measure over the collection of alternatives is calculated by accumulating the values

C ()

Co=(1-p)- Y Sy 5 C ) a7

: v w
=1

where w denotes the cardinal of X,;; v denotes the cardinal of X — X,;; and 8 € [0,1]. The parameter 3
is employed to control the influence of the consensus degree of the solution alternatives over the consensus
measure on the set of alternatives. High values of 8 represent high influence of the consensus degree of
the solution alternatives on the global consensus degree. Adequate values for this parameter are: 0.7,
0.8 and 0.9 [20]. In this paper, we use 8 = 0.9.
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Figure 2: Consensus Model for C, method

The above model is represented in Figure 2.

When the consensus measure C, has not reached the required level of consensus, a feedback mecha-
nism indicates the experts to change their opinions in a similar way to the one described in the Section
2.3.1. In this case, the rules used to make experts change their opinions are based on a comparison
between individual and collective solutions. This way, for the ith expert, e;, the opinion is changed using
the following rules:

R.1.If |V]c — Vj" < 0, then increase evaluations associated with alternative x;.

R.2.If ‘VJC — V]" > 0, then decrease evaluations associated with alternative x;.

R.3. If |Vf — Vf‘ = 0, do not change evaluations associated with alternative z;.

More details can be consulted in [20].

In this paper we examine whether the use of the aforementioned approaches produces differences
which are significant in measuring the consensus and accelerating the convergence of the process of
consensus. Following the study carried out in our previous paper [12] we consider the distance functions
d;, i=1,...,5, given in equations (11) - (15) to handle the model based on the soft coincidence among
preferences, and the consensus measure C,, given in expression (17) to deal with the model based on the
concordance among solutions [20].



3 Experimental design and comparative study

As mentioned before, two approaches can be considered to calculate soft consensus measures: concor-
dance among expert preferences and concordance among individual solutions. In the first approach, the
coincidence is obtained by evaluating the similarity among the expert preferences by means of distance
functions, and in the second one the concordance is calculated by measuring the similarity among the
solutions proposed by these experts using the consensus measure C,.

Following the guidelines presented in [12], the hypothesis we are testing in this paper can be estab-
lished as follows:

The application of Manhattan, Fuclidean, Cosine, Dice and Jaccard distance functions versus
the consensus measure C, in GDM problems do mot produce significant differences in the
measurement of consensus

To test this hypothesis, we generated ten sets of fuzzy preference relations in a ramdom way for
every one of the possible combinations of alternatives: four, six and eight, and experts: four, six, eight,
ten and twelve. Moreover, the distinct distance functions, d;, ¢ = 1,...,5, given in equations from (11)
to (15), and the consensus measure over the collection of alternatives, Cy, given in equation (17), were
successively used to size up consensus at the relation level, employing the OWA operators introduced in
Subsection 2.2. We compared every distance function with the consensus measure over the collection of
alternatives, d; vs C, (i =1,...,5), so that we finished handling two related samples.

The problem of two related samples can be adressed from two points of view: parametric and non-
parametric. In the parametric case, the t-test is applied provided that the assumption of normality and
independence distribution of the difference scores can be assumed [26, 37]. This way, the t-test could
be applied to the problem we are dealing with if these hypothesis could be assumed on the population
from which the random sample of fuzzy preference relation is selected. But, we have no information that
could allow to identify the nature of the population from which the random sample of fuzzy preference
relations is selected and we have any knowledge about any of its parameters. Therefore, we conclude
that nonparametric test are most appropriate in our experimental study.

For continuous data and two related samples, the main nonparametric tests available are the sign
test and the Wilcoxon signed-rank test [12, 25, 37, 42]. Since the Wilcoxon signed-rank test incorporates
more information about the data it is more powerful than the sign test, and so it is preferable to be used
in our study.

As a further step, it would be very interesting to be able to discriminate among the distance functions
d;, i=1,...,5, given in equations (11) - (15), and the consensus measure over the collection of alterna-
tives C,, given in equation (17). This discrimination procedure can be achieved through the mean ranks
used in the nonparametric Friedman test to deal with several related samples [17, 25, 37]. The ranking
that can be achieved when these mean ranks are considered will allow to emphasize the magnitude of
the differences between the aforementioned functions for the calculation of the consensus values.

In the following subsections we describe in detail these two statistical techniques to better understand
their application in the subsequent study.

3.1 Wilcoxon signed-ranks matched-pairs test

Let X1, Xo,..., X, denote a n-size random sample from a distribution function F' which is continuous,
let p denote a value in (0,1) € R, and let &,(F') indicate the p-quantile of F', that is, &,(F") is that value
which provides a solution of the equation F'(z) = p. When p = 0.5, {,.5(F) is called median of the
distribution function F.

A problem of symmetry and location consists in testing the hypothesis Hy : &y.5(F) = & and F is
symmetric against the hypothesis Hy : £y 5(F) # & and F' is not symmetric. A nonparametric statistical
technique known as Wilcoxon signed ranks test supplies a hypothesis test that considers the measure of
the differences between the observed values and the quantile in Hy with the aim of performing a problem
of symmetry and location.

Let Hy : £0.5(F) = &o be the null hipothesis and let D; = X; — &g, i = 1,2,...,n, be the differences to
the hypothesized value. Under Hy positive and negative differences are expected to be dispersed, so that
the expected number of negative differences will be n/2 and negative and positive differences of equal
absolute magnitude should take place with the same probability.



Let |D;|, i = 1,2,...,n, be the absolute values of D;, i = 1,2,...,n, and let us rank them from 1
(for the smallest) to n (for the largest). If Ty denotes the sum of ranks assigned to those D}s that are
positive and T_ denotes the sum of ranks assigned to those D.s that are negative, it follows that

- n(n+1)
T T_ =) k=———=
TR

So, T’y and T_ are linearly related and provide equivalent rules. A large value of T'; indicates that most
of the larger ranks are assigned to positive D}s, so that they support Hy : &5(F) > &. The same
assertion applies to the alternative Hy : &o5(F) < & and Hy : {o.5(F) # &o.

This way the test rejects Hy : §o.5(F) = & to accept Hy : §o.5(F) > & if T > c¢1; equivalently, if ¢o
denotes the observed value of T4, it rejects Hy if pg = P, [T+ > to] < «, being « the significance level
of the test. The test rejects Hy to accept Hy : £o.5(F) < & if T— > ¢g or pg = Py, [T- > to] < a, being
to the observed value of T_. And the test rejects Hy to accept Hy : {o5(F) # & if Ty > czor T- > ¢y
being values ¢; the critical region borders, or, equivalently, if pg = 2(smaller tail probability).

Under Hy, the common distribution of Ty and 7_ is symmetric about the mean E[T] = n(n+1)/4
with variance var[Ty] = n(n 4+ 1)(2n + 1)/24. For large n, the standardized T has approximately a
standard normal distribution.

If the available data are matched-paired, {(X;,Y;), i = 1,...,n}, being derived from applying two
treatments to the same set of subjects, to test Hy : .5(Fx,—v;) = & against the possible alternatives
Wilcoxon’s test is carried out in the same way as in the case of one sample by taking D; = X; —Y; — &
[12].

3.2 Friedman mean ranks

The analysis of data resulting from k-related samples can be performed using various nonparametric
techniques. One of them addresses the problem as an extension of the two-way analysis of variance for a
randomized block design when the assumption that distributions are continuous replaces the assumption
of normality.

Let (X;1,...,Xik), ¢ = 1,...,n, be a random sample from a k-variate continuous type distribution
function. The data may be arranged in n rows (blocks) and k columns (treatment/measure). The obser-
vations in different rows are independent and those in different columns are dependent. The observation
x;; then corresponds to the ith block and jth treatment/measure, j =1,...,kandi=1,...,n.

In order to test the hypothesis that measure effects are all equal against the hypothesis that measure
effects are not all equal, the Friedman procedure [37] involves replacing each observation in a block by its
rank. The rank of the jth observation in the ith block, R (z;;) = R;j, is the value from 1 to k obtained
by consecutively numbering the observations X;;, j = 1,...,k. So, for each block, the observed values
are sorted for each measure and ranked from 1 (the lowest value in the block) up to k (the highest value
of the block). Hence ranks are assigned separately for each block.

Let R; denotes the sum of ranks for jth measure, j =1,...,k, R; = 2?21 R;;. The mean rank for
the jth measure, j = 1,...,k, is defined as

4 Experimental analysis

In order to develop our study we configure a set of ten GDM problems randomly elaborated for every
feasible mixtures of expert numbers: four, six, eight, ten and twelve, and alternatives: four, six and
eight. Three executions were done for each one of these GDM problems. In each execution we use one of
the three distinct OWA operators aforementioned to calculate the consensus degree. In what follows, we
summarize the results obtained by applying the results mentioned above, the Wilcoxon statistical test
and the Friedman mean ranks.



4.1 Statistical test results

Table 1 shows the p-value for each one of the distances used in our experimental study versus C,. To
better understand this table and the following ones, from now on, d; is denoted by “Ma”, ds by “Eu”,
ds by “Co”, d4 by “Di” and, finally, ds is denoted by “Ja”. In view of the results, it follows that the
hypothesis tested and displayed in Section 3 is rejected.

Table 1: Wilcoxon signed-ranks matched-pairs statistical test results

Comparison Ma - C, Eu-C, Co-C; Di-C, Ja-C,
Sig. (2-tailed) ,000 ,000 ,000 ,000 ,013

The comparison between different distance functions and C, to measure consensus produces signifi-
cantly different results in all possible combinations used in the experiment. In particular, we observe a
p-value less or equal than 0,05 (predetermined significance level «) in all cases. In fact, in four of the
cases the p-value is lower than 0,001 («), except for the Jaccard distance function, where the p-value is
0,013.

Table 2: Mean ranks according to quantifiers

“at least half” “most of” “as many as possible”
Mean Mean Mean
Method rank Method rank Method rank
C, 1,21 Ja 1,33 Ja 1,04
Ja 2,53 C, 2,25 Cy, 2,81
Ma 3,47 Di 3,53 Di 3,06
Di 4,21 Eu 4,31 Co 4,07
Eu 4,35 Co 4,53 Eu 4,57
Co 5,23 Ma 5,06 Ma 5,45

Table 3: Mean ranks according to experts

4 experts 6 experts 8 experts 10 experts 12 experts
Mean Mean Mean Mean Mean
Method rank Method rank Method rank Method rank Method rank
Ja 2,32 Ja 1,59 Ja 1,48 Ja 1,38 Ja 1,39
Eu 2,39 C, 1,97 C, 1,70 C, 1,71 C, 1,77
Ma 2,57 Di 3,80 Di 3,39 Di 3,13 Di 2,98
C, 3,31 Eu 4,30 Co 4,40 Co 4,13 Co 4,00
Di 4,70 Ma 4,54 Eu 4,88 Eu 5,19 Eu 5,28
Co 5,71 Co 4,80 Ma 5,16 Ma 5,46 Ma 5,59

We note that, at the relation level, measurement of consensus is affected significantly by the use of a
different distance function in comparison with C,. Results differ significantly depending on the distance
function to be compared. Obviously, the comparison of different distance functions, for which significant
variation has been established, could affect the convergence of the consensus process at this level.

Moreover, it can be observed that the results of the C, consensus measure and the Jaccard distance
function are similar. This fact leads us to think that the consensus measure C, can be used as an
alternative to the Jaccard distance function in the considered situation, and also that a consensus model
based on the coincidence among solutions could replace a model based on the among experts preferences
and vice versa in the calculation of the degree of consensus when dealing with a situation like this one.

4.2 Friedman mean ranks results

Let us now analyze the results derived from Friedman mean ranks according to quantifiers, experts and
alternatives.

Table 2 shows mean ranks of all methods according to the linguistic quantifiers considered in this
study: “at least half”, “most of” and “as many as possible”. As regards to the first linguistic quantifier,
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we observe that the Jaccard distance function is closer to C, than the rest of distance functions. In
this case the Jaccard distance function achieves bigger values than C,. We also note that as for the
linguistic quantifier “most of”, C, is positioned between the Jaccard and Dice distance functions. In
this situation the Jaccard distance function is nearer to C, than the Dice distance function. Regarding to
the linguistic quantifier “as many as possible”, it can be seen that C, is positioned between the Jaccard
and Dice distance functions as in the previous situation but, in this case, C), is nearer to the Dice distance
function.

Table 3 shows mean ranks for different methods and different number of experts considered in this
study. In this case C, is situated between the Jaccard and Dice distance functions except for the 4
experts case where the results are different from the ones obtained from 6 experts. We also note that,
in all cases except the above-mentioned 4 experts case, C, gets values closer to the Jaccard distance
function than the Dice distance function.

On the other hand Table 4 shows mean ranks of different methods for the three possible number of
alternatives proposed in the study. We observe that the behavior of C, is very stable in all cases. It
can be pointed out that the values of C, are situated between the ones of the Jaccard and Dice distance
functions.

Table 4: Mean ranks according to alternatives

4 alternatives 6 alternatives 8 alternatives
Mean Mean Mean

Method rank Method rank Method rank
Ja 1,70 Ja 1,59 Ja 1,60
C, 2,20 Cy 1,97 Cy 1,95
Di 3,63 Di 3,80 Di 3,57
Eu 4,27 Eu 4,30 Eu 4,53
Ma 4,56 Co 4,54 Co 4,58
Co 4,65 Ma, 4,80 Ma 4,77

Table 5 shows mean ranks for all methods and samples. It can be observed that the Jaccard and
Dice distance functions are closer to C, in their mean rank positions than the rest of functions, being
Jaccard the closest one.

Table 5: Global mean rank

Mean

Method rank
Ja 1,63
Cy 2,09
Di 3,60
Eu 4,41
Co 4,61
Ma 4,66

In summary, we perceive that at the level of relation the evaluation of consensus depend on the
distance functions which are used instead of C,. Therefore, the utilization of distinct distance functions
could influence the convergence of the consensus reaching process at the level of relation. Furthermore,
the results obtained suggest that the Jaccard distance function is the best option versus C, method, and
the second option should be the Dice distance function.

The experimental study performed in this paper allows us to visualize a ranking of the different
distance functions useful for their application as it is illustrated in Figure 3. Most of metrics reach
a consensus speed faster than C,, so if we want a faster convergence to consensus we would measure
consensus on preferences with Manhattan, Cosine or Euclidian metric.

If required in a consensus process, the values of C, model on the set of solutions could be substituted
for those provided by the the appropriate distance function on the alternatives.

These results are coherent with the ones obtained in [12] but in this paper we also obtain a quantitative
classification for the considered methods.
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Figure 3: Global consensus speed.

Finally, note that the values obtained for the consensus measure C, are placed between the values
obtained for the Dice and Jaccard distance functions. This way, it seems to be confirmed that C, can
be considered a different measure but comparable with the measures already analyzed [12], being the
values of C, closer to those of the Jaccard distance functuion and being able to replace or be replaced
by them.

5 Example

As an application of the study carried out let us consider the example introduced in our previous paper
[12]. A GDM problem with four alternatives and four experts is performed using the OWA operator
guided by the linguistic quantifier “as many as possible” and a consensus threshold v = 0.75. It is
assumed that the initial set of individual fuzzy preference relations are the same as the ones that appear
in Example in [12].
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5.1 First round

At the relation level, the Jaccard distance function provides a consensus degree of 0.43, C, of 0.49 and
the Cosine distance function of 0.66. The global consensus degree is lower than the threshold consensus
level, so that experts receive feedback to modify their preference relations.

5.2 Second round

The new fuzzy preference relations are the same that appear in [12]. Using the Cosine distance function
the consensus degree results in 0.81 which is greater than the threshold consensus level and the consensus
process ends. However, if the Jaccard distance function or C,, are used, it would be necessary to continue
with the consensus reaching process since the consensus degree levels are 0.53 and 0.61 respectively.

5.3 Third round

The new fuzzy preference relations are the ones that appear in [12]. The Jaccard distance function results
in a consensus degree level of 0.60 and C,, of 0.65.
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5.4 Fourth round

The new fuzzy preference relations appear in [12]. Using C, we would have had a consensus degree level
of 0.79 which is greater than the threshold consensus level and the consensus process ends. However,
using again the Jaccard distance function we need to continue with the consensus reaching process since
the consensus degree level would be 0.69.

5.5 Fifth round

The new fuzzy preference relations areappear in [12]. The Jaccard distance function results in a consensus
degree level of 0.78, the consensus reaching process stops and the selection process is activated to derive
the solution of consensus.

6 Conclusion

We have analyzed the behaviour of two widely used consensus models based on two types of coincidence
in GDM problems with fuzzy preference relations. In the first case the coincidence is obtained through
similarity measured among expert preferences by using several distance functions. We have considered
five distance functions commonly used in measuring experts’ preferences: Manhattan, Euclidean, Cosine,
Dice and Jaccard. In the second case, the coincidence is derived from similarity calculated through the
individual solutions provided by expert preferences. We have used the consensus measure C,, on the set
of solution of alternatives. We have presented a comparative experiental study based on the utilization
of Friedman mean ranks and the nonparametric Wilcoxon’s test. The results are interesting since our
experimental study has shown that the consensus model based on the use of distance functions compared
with the model based on consensus measure C'; produce significantly different results in most of the GDM
problems performed. However, the similarity between the results of the C, consensus measure and the
Jaccard distance function unveils two relevant elements. On the one hand, a consensus model based on
the coincidence among solutions can replace a model based on coincidence among expert preferences and
vice versa in the calculation of the degree of consensus when dealing with a situation such as the one
contemplated in this paper. On the other hand, the consensus measure C, can be used as an alternative
to the Jaccard distance function in the considered situation. The analysis of the results allows to draw a
ranking of the different measures used according to the degree of consensus. In addition, this classification
can be successfully used to control the speed of convergence of the consensus process.
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